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Abstract. We investigate analogs of symmetric functions arising from an extension of the
nilHecke algebra defined by Naisse and Vaz. These extended symmetric functions form a
subalgebra of the polynomial ring tensored with an exterior algebra. We define families of bases
for this algebra and show that it admits a family of differentials making it a sub-DG-algebra of
the extended nilHecke algebra. The ring of extended symmetric functions equipped with this
differential is quasi-isomorphic to the cohomology of a Grassmannian. We also introduce new
deformed differentials on the extended nilHecke algebra that when restricted makes extended
symmetric functions quasi-isomorphic to GL (N )-equivariant cohomology of Grassmannians.
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1. Introduction

One of the most fundamental objects in higher representation theory is the nilHecke
algebra [9, 18,27]. This object is the most basic ingredient in categorified
quantum groups and is intimately related to the geometry of flag varieties and
Grassmannians [15, 19]. The nilHecke algebra admits a faithful action on the
polynomial ring, further relating it to the combinatorics of symmetric functions
and Schubert polynomials.

The categorification, or higher representation theory, perspective has demon-
strated that extensions or alternative categorifications of quantum groups often have
parallel implications in geometry and combinatorics. As an example, one motivation
for studying the odd (spin/super) nilHecke algebra [2, 7, 8,29] was an attempt to
supply a representation theoretic explanation for the appearance of “odd Khovanov
homology” — a distinct link homology theory with similar properties to Khovanov
homology. The odd nilHecke algebra shared many of the relationships of the usual
nilHecke algebra, including connections to a new noncommutative Hopf algebra of
symmetric functions with strikingly similar combinatorics [3]. The odd nilHecke
algebra gave “odd” noncommutative analog of the cohomology of Grassmannians
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and Springer varieties [2,17]. All of these developments grew out of the discovery
of an odd analog of the nilHecke algebra.

Recently, Naisse and Vaz [22] have introduced an extension of the nilHecke
algebra NH2 that we refer to as the extended nilHecke algebra. This algebra arose
in the study of a fundamental issue in higher representation theory. The problem
was the fact biadjointness for & and ¥ in the definition of categorified quantum
groups [10, 27] implied that it was only possible to categorify finite dimensional
modules; in particular, categorical analogs of Verma modules were inaccessible
within the existing theory. Naisse and Vaz overcame this issue in the case of sl, by
omitting the biadjointness condition, enhancing the nilHecke algebra to the extended
nilHecke algebra, and altering the main s[,-relation to a short exact sequence, rather
than a direct sum decomposition. This work allowed for the first categorification of
Verma modules and may be an indication of the way forward in higher representation
theory.

Given the importance of the extended nilHecke algebra in categorifying Verma
modules, this article investigates the combinatorial implications of this algebra. We
define analogs of symmetric functions A% arising from the extended nilHecke
algebra that we call extended symmetric functions. We construct families of bases for
these algebras and investigate their combinatorial properties. Extending the work of
Naisse and Vaz, we show that the ring A% admits a family of differentials dy such
that (A%, dy) is a sub-DG-algebra of the extended nilHecke algebra. Additionally,
we show that the extended nilHecke algebra with its differential dy is isomorphic
to the Koszul complex associated to a regular sequence of central elements
in NH,,. Restricting to (A", dy) gives a DG-algebra which is quasi-isomorphic
to the cohomology ring of a Grassmannian Gr(n, N). The algebra A has been
independently discovered by Naisse and Vaz using different techniques [24].

Our work facilitates an explicit realization of the extended nilHecke algebra NHS
as a matrix ring of size n! over its center, the ring of extended symmetric functions.
This identifies the ring A with the center of the DG-algebra NHE". The importance
of the explicit isomorphism as a matrix ring over a positively graded algebra is that it
allows us to define primitive idempotents decomposing the identity 1 € NHZ'. This
implies NH®! has a unique bigraded indecomposable module up to isomorphism
and grading shift. Using this fact, we prove that the family of extended nilHecke
algebras NHE®, taken for all n > 0, categorifies the bialgebra corresponding to the
positive part UT (sl,) of the quantized universal enveloping algebra of sl5, suggesting
that the extended nilHecke algebra likely fits into a similar extension of KLLR-algebras
categorifying U™ (g) for symmetrizable Kac-Moody algebras.

We also define new deformed differentials 3 on NHZ" in Section 6.3. The
deformed differentials also restrict to A" and the resulting cohomology of (A%, d }a)
is generically isomorphic to the GL (N )-equivariant cohomology of a Grassmannian.

Let us point out more clearly the relation between our work and [22]. In
loc. cit., Vaz—Naisse define bigraded algebras Q2 (k € Zx) and bigraded bimodules
Q1 Fou> 29,y These bimodules generate a 2-category which categorifies
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the Verma module for quantum sl, with generic highest weight. In this context,
the extended nilHecke NHZ® algebra arises as the ring of bimodule endomorphisms
of F®" or equivalently £®”. Our work provides an idempotent decomposition
of §®" (respectively, ¥ ®") as a direct sum of n! copies with shifts of a bimodule &
(respectively, F ™), thereby paving the way for a “thick calculus” version of the Vaz—
Naisse 2-category, similar to what was accomplished in [12]. In this context, the
ring of extended symmetric functions appears as the ring of endomorphisms of & ®
and . It occurs that the resulting endomorphism ring is isomorphic to €, so
that @, ., 3‘7&) and o, _, 85(2'2 may be more appropriately referred to as trimodules
over (RQi+n, 21, Q). We remark that all of the above is compatible with the
differentials d in the appropriate sense. See 6.4 for more.

Finally, we mention an interpretation of the algebraic structures appearing in
this subject in terms of Khovanov—Rozansky homology, both the doubly graded sl
version [13] and the triply graded HOMFLY-PT version [14]. The cohomology
rings of Grassmannian Gr(k, V) can be thought of as the sl homology of the k-
colored unknot [34,35], while the ring of extended symmetric functions AZX‘ can be
thought of as the HOMFLY-PT homology of the k-colored unknot [32]. The Koszul
differential dy considered here and in [22] is then a special case of Rasmussen’s sl
differential [25]. We expect that the trimodules g, , ?Sg']? and g, 85(2"]3 appear in
this setting as the homologies of certain MOY diagrams, namely the colored theta
graphs. This is likely to be related to the point of view adopted by Vaz and Naisse
in [23].

2. The nilHecke algebra

Many of our constructions for the extended nilHecke algebra build off of results for
the usual nilHecke algebra and its action on polynomials. Here we recall the relevant
results.

2.1. The definition. Recall the nilHecke algebra NH,, defined by generators x; for
1 <i<nandd;forl < j <n—1and relations

XiX; = XjXi,

8ixj=xj3,- ifli—j|>1, 8i8j=8j8i if|i—j|>1,

) 2.1)
d; =0, 0;0i+10; = 0i410;0i41,
Xi0; — 0ixj4+1 = 1, dixi — xi4+10; = 1.
It is not hard to prove that these relations imply
9ixfT — x2H0; = ha(xi xig1) = xfT19; — 9;x7f] (2.2)

foralla = 0.
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Given any element w € S, and a reduced decomposition w = s;, ...S;,, into
simple transpositions we write d,, := 0;, ... d;,,. The axioms ensure this definition
does not depend on the choice of reduced expression. We write wy for the longest
word in the symmetric group S, and 9, for the corresponding product of divided
difference operators.

The algebra NH,, acts on the polynomial ring P,, := Q[x1, ..., x,] with x; acting
by multiplication by x; and 9,: P, — P, given by divided difference operators

di= L% (2.3)
Xi — Xi+1

We recall several important facts relating to the nilHecke algebra and its action

on polynomials.

* The ring of symmetric functions can be realized strictly in terms of the divided
difference operators

n—1 n—1
Api=Zlx1,...,x, %" = ﬂ kerd; = ﬂ im0;.
j=1 j=1

* The additive basis of A, given by Schur functions s, can be defined using the
nilHecke algebra action on polynomials via

5 1= 8w0(£5+/\) — awo(x;t—l+/11x;l—2+/12 o x’(1)+)tn)’
for A = (A1,...,A,) a partition with n parts.
e For w € S, define the Schubert polynomials of Lascoux and Schiitzenberger [16]
as
G (X) = -1y ¥’ (2.4)
where wy is the permutation of maximal length and x4 = x¢=1x¢72 .. . x,_;. In
casew = 1 € S, we have 6;q = 8w0(x8) = 1.
* We have
imdy, = Ay C Pp. (2.5)

Indeed, if /' € A,, then f = f0y, (x%) = Owo (f x%) since divided difference
operators are Ap-linear. Conversely, if f € imdy,, then 9;(f) = 0 fori =
1,...,n—1,hence f € Pi”.

e The polynomial ring P, is a free module over A, of rank n! [21, Proposition 2.5.5
and 2.5.5]. In particular, multiplication in P, induces a ring isomorphism
Pn >~ Hy ® A, where J;, is equivalently the abelian subgroup spanned by either
of the sets {Sy, | w € Sy} or {x' ... x;" |0 <ix <n—k}.
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The last statement allows us to identify Endp, (P,) as the matrix ring of size n! with
coeflicients in the ring A,. The ring P, is graded with deg(x;) = 2. Taking
grading into account, it follows that there is an isomorphism of graded rings
Endy, (P,) = Mat((n)zlz;l\n), where (n)i]2 = ¢"=D/2[p]! are the symmetric
quantum factorials [18, Proposition 3.5].

The action of NH,, on P,, defines a graded ring homomorphism

y:NH, — Mat((n)éz; Ay).

It was shown in [18, Proposition 3.5] that y is an isomorphism of graded rings. We
recall an alternative proof from [12, Section 2.5] that we translate into algebraic
language from the so-called thick calculus.

For any composition i = (i1, . . ., jtn) write x* := x|""x52 ... x;". We write

n=1xn=2  x9. The set of sequences

§ . n—
=X Xl

X

Sqn) :={ =41.. 41 |0<{, <v,v=12,....,n—1} (2.6)

has size | Sq(n)| = n!. Let [£{| = ), £,, and set EAJ- = j —{;. Define a composition
with n-parts by
C=001. . lym) = (0,1 —€1,2— Ly, .ccon—1—Lyy). (27
Let eﬁ“) denote the rth elementary symmetric polynomial in a variables. The
standard elementary monomials are given by

er = eg)eg) .. eé‘:;ll). (2.8)
Define elements in NH,, by
0p 1= egdug, A= (—1)¢ xP By xt. (2.9)

Theorem 2.1 ([12]).
(1) Forall£,t"in Sq(n), Ay -0g = Sp v xsawo.

(2) The set {Agoqy € Sq(n)} form a complete set of mutually orthogonal primitive
idempotents in NH,,.

(3) The identity element 1 € NH,, decomposes as

1= Y (~Dlegduyat. (2.10)
4

(4) Enumerate the rows and columns of n! x nl-matrices by the elements £ € Sq(n).
There is an isomorphism of graded algebras

Mat((n)ﬁ}z, An) —> NH, (2.11)

sending an element x € A" in the (£, {') entry to the element oyxAy.
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The nilHecke algebra is the simplest example of a KLLR-algebra, corresponding
to the Lie algebra sl,. The results above are critical in the categorification of
positive parts of quantized universal enveloping algebras via KLLR-algebras [9,11,27].
Another important construction from categorified representation theory is the so-
called cyclotomic quotients of KLR-algebras. These are used to categorify irreducible
representations of Uy (g).

For each N > 1 define the cyclotomic ideal of NH, as the two sided ideal
generated by x{v ,

Iy = (xV). (2.12)
We define the cyclotomic quotient by NH,IlV := NH,/Iy. We have the following
results.

* The isomorphism y from (2.11) induces an isomorphism [19, Proposition 5.3]
Mat((n)ilz, H*(Gr(n, N))) — NHY (2.13)

where H*(Gr(n, N)) is the cohomology ring of the Grassmannian of complex
n-planes in C¥

* The categories of graded projective modules over P, NH,I,V categorify [6,20,31]
the irreducible Uy (sl>) representation V of highest weight N.

3. The extended nilHecke algebra

3.1. The definition. The extended nilHecke algebra NH,elXt, first defined in [22], is
a bigraded algebra with generators x1, ..., Xy, 01, ..., 0p—1, generators wy, ..., W,

satisfying equations (2.1) and the following relations

Xiwj = WjXj, wjw; = —W;wj,

diw;j = wj0; — 8ijwiy1(Xi+10; — diXiy1).

For each fixed integer k the algebra NHZ admits a Z x Z-grading in which the
generators Xx;, d;, w; are bihomogeneous with degrees

deg(x;) = (2,0), deg(d;) = (—2,0), deg(wr) = (—2k,1). (3.1

If a € NH" is homogeneous with deg(a) = (i, j), then i =: deg,(a) is referred to
as the quantum degree and j =: degj,(a) is the homological degree. The parity of a
is by definition the homological degree modulo 2.

Remark 3.1. For each m € Z we may put a bigrading on NHZ by leaving deg(x;)
and deg(9d;) unchanged, while shifting the degrees of w; by declaring deg(wg) =
(—2(k + m),1). The relations are homogeneous with respect to this bigrading,
regardless of m. The resulting bigraded rings will be denoted (NH>*)(™ Note that
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the algebra (NHZ") (™ is naturally a graded subalgebra of NHSY, ,, given by restricting
to the generators

{xi,aj,wi lm+1<i<n+m m+1<j <n+m—1}.

Remark 3.2. In [22] they consider an additional grading for their application to
categorical Verma modules. Here we ignore this additional grading.

3.2. Action on polynomials. Define the extended polynomial ring
szt=Q[xl,,,,,xn]®/\[a)1,...,a)n], (3.2)

bigraded via deg(x;) = (2,0), deg(w;) = (=2i,1). Then P has the structure of
a bigraded NH'-module, defined by letting x; and w; act by left multiplication and
letting 9; act by extended divided difference operators

1, if j =1,
81(1) =0, 8,-(a)j) = —Sij(l)j—l—la 8i()€j) =<1, ifj=i+1,
0, otherwise.

These operators are extended to arbitrary polynomials by the rule
9:(fg) = 0i(f)g + f0:i(g) — (xi — xi4+1)9; ()i (g) (3.3)
forall £, g € Q[x1,...,x,] ® Alw1,...,wn].

3.3. Differentials. Recall that a differential graded algebra (or DG-algebra) is a
Z-graded unital algebra A with d: A — A which is degree -1 satisfying
d?> =0, d(ab) =d(a)b + (—1)%@®®yq(p), d(1) = 0. (3.4)
A left DG-module M is a graded left A-module with differential dps: M; — M;_4
such thatforalla € A, m € M,
dy(am) = d(@)ym + (=1)*EDady (m). (3.5)

Remark 3.3. In the discussion below, we will consider bigraded algebras and
modules with differentials. Despite the presence of two gradings, we will continue to
use the standard abbreviation and refer to them simply as DG algebras and modules.

For each N > 0, define a differential dy on NHZ of bidegree (2N + 2, —1) by

dy(xi) =0, dy(@)=0. dy()=(D'hy-iti(x;).  (3.6)
where x; denotes the set of variables {x;,x2,...,x;}. Note the ordinary
nilHecke algebra NH, is in the kernel of this differential for all N. Furthermore,
dn(w1) = —xV. By [4, Proposition 2.8] it follows dy(w;) is contained in the

cyclotomic ideal Iy := (x) from (2.12).
Theorem 3.4 ([22, Proposition 8.3]). The DG-algebra (NH, dy) is quasi-iso-

n

morphic to the cyclotomic quotient of the nilHecke algebra NH,fV :=NH, /Iy.
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4. The ring of extended symmetric polynomials

4.1. Definition.

4.1.1. Preliminary definition. The action of NHZ on the extended polynomial
ring P& = Q[x1, ..., xx] ® Alwi, ..., »,] gives rise to a homomorphism

NHZ* — Endg (Pg") .

By analogy with the case of symmetric polynomials, we define the ring of extended
symmetric polynomials A% as

n—1 n—1
A = ﬂ kerd; = ﬂ im9;.
i=1

i=1

Remark 4.1. Thering AS* C P2 is bigraded and graded commutative (that is, super-
commutative) with respect to the parity discussed in the comments following (3.1).

4.1.2. Action of the symmetric group on P*'. The standard action of the symmetric
group S, on the polynomial ring P, = Q[xy,..., x,] lifts to an action on P
Namely, one sets

si(x;) = x5,y and  si(wj) = w; + 8; (X — Xj4+1)wj+1 “4.1)

forany 1 <i <n—1,1%# j < n, and extends it to P& by s; (fg) = 5;(f)si(g)
for any f, g € P2, With respect to this action, the operators 9; coincide with the
standard divided difference operators:

id —s;

0j = ——. 4.2)
Xi — Xi+1

Inparticular, (3.3) reduces to the standard Leibniz rule for divided difference operators

9: (fg) = 9:(f)g + 5 (/)i (g). (4.3)

It follows that A coincides with the subalgebra of S, -invariants AS" = (Pff‘)sn.

We now provide an explicit description of A§" and AS®. The general case is
discussed in 4.2 and 4.4.

Remark 4.2. The algebra Pi’“ is endowed with another, more natural action of the
symmetric group (which on the other hand does not respect the Z—grading (3.1)
and does not extend to an action of NH®). Namely, for any w € S,, one can set
w(w;) = wy(). The corresponding subalgebra of S,-invariants is described by
Solomon in [28], see also [5, Chapter 22]. In Section 5, we discuss the connection
between these two actions and their invariants.
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4.1.3. Casen = 2. The algebra P$" is a free module of rank 4 over P», and it is easy
to see that A§" is a free module of rank 4 over A, with basis {1, w1 + Aw,, w2, w1 w3},
where A is any solution of d1(A4) = 1. Particular choices of A are

{XL —X2, %(Xl - xz)}-

4.1.4. Case n = 3. The algebra P$" is a free module of rank 8 over P3. Then
v=a+bwi + cwr+dws + eww; + forws + gwrws + hojwaws € Ag’“

if and only ifae As,b = 3182(6[), c = 82(d), e = 8281(g), f = 81(g), h e As,
and

01(d) =0, 0102(d) € As,
02(g) =0, 0201(g) € As.

It is easy to show that the general solution of the system d;(d) = 0,9102(d) € A3
has the form

d=Af+ Bfa+ f3,

where f1, f2, f3 € Az and A, B € P3 are any solution of

01(A4) =0, 091(B) =0,
910,(A) = 1, 3,(B) = 1.

Similarly for g. We conclude that A§" is a free module over A3 of rank 8 with basis

{1, 01 + 02(A)w2 + Aws, w2 + Bws, ws,

w1y + 01 (C)w1w3 + Conws, w103 + Dwrws, waws, 601602603},
where A4, B, C, D € P3 are any solution of

01(4) =0, 091(B)=0, 92(C)=0, 91(D)=1,
910,(4) =1, 3(B) =1, 8,01(C) =1, 9,(D)=0.

Particular choices of solutions of the above system are

Ae {xlxz,xg}, B e{x1+x3,—x3}, C = xf, and D = x;.

4.2. The size of extended symmetric functions. We now discuss the general case
forn > 3.
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4.2.1. Notations. For any binary sequence o € Z1, set wy = @' ... ®,". Then

The action of S,, is concisely described by the formula
Si(wg) = Wy + Sa,',lga,'_H,O(xi - xi—l—l)wsi(a)-
Fork =1,...,n—1anda € Z}, set
Iy = {a €Zy o = 1,041 = 0},
Je={a € Z | ag = 0,ar41 = 1} = si(Ip),
Da={k|a€Jk},

so that, in particular,

Wqs ifo &I,

Sk, =
(@e) Wy + (Xi — Xi+1)Ws; (@), ifa € .

Fork = 0,1,...,n, let (Z}); be the subset of strings of length k
(Zg)k = {a IS Zg | | = Z?:l o = k}

endowed with the following partial ordering <. We say that @ < f if there exists a
sequence in (Z%)x
al = aaa2w-',am = ﬁ’

where m > l and foranyi =1,...,m —1,«; € I, and aj 4+, € J, for some r. Let

7®) 1) pe, respectively, the highest and lowest element in ((Z%)k, =), ie. ri(k) =0

if and only if i <n —k 4+ 1and A*) = 0 if and only if i > k.

4.2.2. Grassmannian permutations. A Grassmannian permutation w is a perm-
utation with a unique descent. In other words there exists k € {1,...,n — 1} such
that w(i) < w(@ + 1) ifi # k and w(k) > w(k + 1).

The Grassmannian permutations with descent n — k are in canonical bijection
with elements in (Z%)x, as we now describe. Let o € (Z5)r be given. Let

I <vi <--- <Vu_g < n be the indices such that &y, = -+ = &,,_, = 0, and
let 1 <uy <--- < ug < n be the indices such that oy, = --- = ay, = 1. Define
Oq € S, by

0 Vi, ifl<i<n-—k,
oq(i) =
* Ui—ntk, ifn—k+1<i<n.
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More concisely, oy is the unique minimal length permutation which sends

t® =(0,....,0,1,....1 ) > a.

N — T ——— p—
n—k k
In particular, o,«) = id. Note that o, is a minimal length representative of a coset
in Sn/sn—k X Sk.
For every o € (Z5)k, a # 1™ o, has a unique descent at n — k, and it is
therefore Grassmannian. Conversely every Grassmannian permutation arises in this
way.

4.2.3. Lehmer codes and partitions. Recall that the Lehmer code of a permuta-
tion w is the composition L = (LY{,..., L} ), where

LY =#{i < j:w(j) <w()}.

We write A(w) for the partition obtained by sorting LY into decreasing order. In
particular, the Lehmer code of the Grassmannian permutation o, o € (Z%)k, is
given by

Lo )M ifup —m <i <upyr—(m+1),

! 0, ifup—@m+1)<i.

More concretely, if | <i <n—k, L‘l?‘ is the number of ones which appear to the left
of the ith zero of &, and LY = 0 otherwise. In particular, LY < --- < sz—k’ and
LY = 0fori > n — k. The partition corresponding to oy, is then

Ag 1= )L(Oa) = (mrm)m=k,...,1-

where r,, = Upy4+1 — Uy — 1 for every m = 0,...,k (we impose ug = 0,Ux41 =
n+1). Notice that A, has at most n — k non zero terms. In fact, one sees immediately
that the biggest possible size of the tableau of shape Ao, @@ € (Z5)g, is (n — k) x k.
The conjugate partition is A, = ()Vj)j=1,...,k

k
M= tm=n+l-uj—(k—j+D)=n—k—u+/
m=j

4.2.4. Examples. Forany | < j < k < n, set c[jx] = §j---sk—1 and ¢®) =
Clik,n] *** C[2,n—k+2] *C[1,n—k+1]- We sometimes write c[j] := [} ,]- It may be helpful
to visualize these elements

o —

1 n—k n—k+1 n
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where diagrams are read from bottom to top. Then it is easy to see that

(0 0y Z 30
and, for any o € (Z%), 04 is a subword of c®.

4.2.5. Main result. The rest of this section is devoted to prove the following:
Theorem 4.3.

(i) The ring of extended symmetric polynomials A" is a free module over A, of
rank 2"

(ii) For any collection of polynomials { p }aezg satisfying

Pa € PY TS g 9, pe =1 (4.4)

there is an isomorphism of A,—modules

A~ D An-03(pa) where 03 (pa) = 0 + Y _ 354(pa) - 0.

aeZl B>a
(ili) Multiplication in A2 induces a ring isomorphism
ext S s
A~ Ay ®/\[w1,...,wn].

(iv) Multiplication in P2 induces a ring isomorphism P ~ J, ® AS", where

Hy C Py is the subspace spanned by either of the sets {Gy | w € Sy} or
{x{"...xs" | 0 < iy <n—k}. This gives rise to a canonical ring isomorphism

El’ldAgxt(PfLXt) ~ Mat(n!, AZXt).

Remark 4.4. In 4.4 we construct examples of p, € P:"*‘“' *Sla satisfying (4.4), for
each «.

The proof is carried out in 4.2.6-4.2.8.

4.2.6. First characterization of AS*.

Proposition 4.5. Let v = Za Jawo € Pf,Xt’
equivalent.

(i) v e A%

(ii) Foreveryi =1,...,n—1,

with fo € P,. The following are

_ 0, l'fOlQ/Ji,

i (fo) = P 4.5)
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(iii) For every o € 77,

oo, ifi gD
W =Y e (4.6)

Proof. Clearly, (ii) and (iii) are equivalent. Now, let v = )", fowq, fo € Py. For
everyi =1,...,n—1,

si) = Y silfa) + Y 0 = Xit1)si (fo) @, )
aeZl a€l;
= Z 8i (fa)wo + Z (si (fo) + 8i (fs; @) (Xi — Xi41)) @a-
adl; ael;
Therefore v € Af‘,"t if and only if, foreveryi = 1,...,n —1,
0, ifa & J;,
0(fo) = o
5i(fs; @), ifa € J;.

Finally, one observes that forevery o € J;, s; (a) & J;. Therefore, 5; (f5; @) = f5, @)
and (i) is equivalent to (ii). ]

4.2.7. Simplification. The system of equations (4.6) preserves ||, i.e. there are
n + 1 independent sets of equations, fork = 0,1,...,n,

0, ifi & Dq.

Yo € (Z%2 8,~ o) =
a € (Z3)k (fa) {f”(a)’ iti € D,.

Let 0, A0 be, as before, the highest and lowest element in (Z%); with respect
to <. Then it follows from (4.6) that f;«) € A, and, for every o € (Z})x,

Ja = 36, (fr0).

In particular, any solution of (4.6) is determined by the elements f,«) € P,, k =
0,1,...,n. More specifically, we have the following

Corollary 4.6. Letv =), fawy € P witha € 2 and fo € P,. Then v € A
ifand only if, forany k = 0, ..., n — 1, the elements Fy := [, satisfy

() Fy € Pislnkask’.

(i) for every a € (Z)k, Ju = o, (Fk)-

Proof. Note that if @ = t®), then D, = {n — k}. Thus, the necessity of conditions
(i) and (ii) are easy consequences of condition (iii) of Proposition 4.5.
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Now we show that (i) and (ii) are sufficient conditions for membership v € A%
Fix k € {l,...,n}, and suppose F; € P, is given and satisfies (i). Define
Jo 1= 05, (Fy) forall @ € (Z%);, and set v := Zae(zg)k fawy. We must show that
0; (fo) = 0 whenever i € D,. Let w be the longest element of S,_; X Sy C S,,.
By (i), Fy € Pi”_k Sk jg symmetric in the first n —k variables and the last k variables.
It follows that Fp = 04 (Gy) for some polynomial Gi. This is a straightforward
generalization of the fact that A,, = im d,,, C P, and follows easily from properties
of the nilHecke algebra.

From the definition of Dy, it is clear that £(s;0,w) = £(o,w) — 1 if and only
ifi &€ Dg. Recall that, for any 0,0’ € S,

0o, if€(oa’) = L(0) + £(0'),

0,0, =
7 0, otherwise

(see, for example, [21, §2.3.1]). Thus, if i & Dy, 0;(fo) = 0;09¢, 0w (Gx) = 0. This
completes the proof. O

4.2.8. Proof of Theorem 4.3. Corollary 4.6 gives us a map of A,-modules
Dy : PSn—k>Sk 5 A

defined by
O (F) =Y 9o, (F)eva

ae(ZY)x

Clearly @y is injective, since F can be recovered as the coefficient of w_«) in &y (F).
By Corollary 4.6, ®; surjects onto the component of A consisting of elements
which are degree k in the exterior variables w;. Since the dimension of Pk XSk
over A, = P,S,” is (Z) statement (i) of Theorem 4.3 follows.

Now, let { Pa}aezg be a solution of (4.4) and set

wi(Pa) = Wy + Z 303 (Pa) - wg.

B>«

By 4.6, the elements wg (py) belong to A% and they are linearly independent, since
they are triangular with respect to {w,}. By a dimension argument this induces an
isomorphism of A,—modules

AZ >~ @D An- 05 (pa).

n
a€Zs

This proves Theorem 4.3 (ii).
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For (iii), suppose we have chosen elements

s __ . . . ext
wi—w,—l—g fiwj €A}

j>i
fori € {1,...,n}. Since these elements are degree 1 in the exterior variables, we
have
s s _ _ 8 8
W w; = —w;;

for every 1 < i,j < n. Given the triangularity of {wf’ } with respect to {w; }, the
resulting map of rings

Nlwi. ... 05 > A (4.7)
is clearly injective. Extending linearly in A, gives an injective map of A,-algebras

WA, ® M\[of.....05] > AT

By a dimension argument, W is surjective, and we obtain (iii).
Finally, extending (4.7) by P, -linearity gives a P,-algebra homomorphism

P, ® /\[a)f ooy > Py ® /\[a)l, o ] = P (4.8)

which we claim is an isomorphism. Namely, the homomorphism is induced by the
nilpotent matrix A with coefficients in P, such that

n—1

=1+ Aw < o= Z(_l)iAiQS
i=0
where @ and ° denote, respectively, the column vectors (wi, .. .,wp)" and
(w,...,wp)". This determines the inverse to (4.8). Applying the classical

identification P,, >~ J#, ® A,, we get a ring isomorphism
PO~ J, @ An ® [\[0}. ... 0f] > Hy @ AT,

In particular, P& is a free module of rank n! over A" and there is a canonical
isomorphism
End ext (P ~ Mat(n!, AZ")

which completes the proof of Theorem (4.3). ]
4.3. Structure of the extended nilHecke algebra. The above analysis of A% also

has consequences for NHZ. Recall that ¢[j] = c¢[j,n] denotes the permutation
§j...8n—1. Recall also that that A% is bigraded b.
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Proposition 4.7. Let p; € pSn-1%51 pe polynomials of degree n — j such that
dej1(pj) = 1, and set wj = ; 0ci](pj)w; as in Theorem 4.3. Then there is an
isomorphism of algebras

NHZ = NH, ®¢ \[0}. ... 0f].

The induced action on P = P, ®q \[w],...,w,] is the standard action of NH,
on Py, tensored with the exterior algebra. Consequently,

NH = End e (PF) 2 Mat((n),», A"), 4.9)

where A& acts on PS by right multiplication.

Note that A" is graded commutative, hence in order for left multiplication by
w; € NH, on P& to honestly commute with the action of a)j € AS" (as opposed to
commutativity up to sign), it is necessary to let A" act on P& by right multiplication

in (4.9).

Proof. By definition NHZ contains NH, and P®' as subalgebras. Tensoring the
inclusion maps gives us an algebra map

NH, ®p, P — NH3X.

By Theorem 4.3, we know that P& =~ P, ®q Al®]....,®,], hence the above
reduces to an algebra map

NH, ®¢ [0}, ... 0] - NHZ".

As a NH,-module, the right hand side is isomorphic to NH, ®q Alwi,...,w,].
From the definitions, it is clear that the a)ls are unitriangular with respect to the w;,
hence the above algebra map is an isomorphism. This proves the first statement.
The statement regarding the action on P! is easily verified. Finally (4.9) follows
by combining the standard fact that NH, = Endy, (P,) together with Theorem 4.3,
which states that P is free of rank [n]! over AS. O

As an immediate corollary we have the following analogue of the usual fact that
Ay = Z(NHp).

Corollary 4.8. A% is isomorphic to the graded center of NHZ as graded algebras.

O
Here, the graded center of a Z/2 graded algebra A = Ay @ A; is spanned
by homogeneous elements z € A such that za = (—1)%e@de@ gz for every

homogeneous a € A. Here the Z/2 grading on NH" is inherited from the
homological grading as in the comments following (3.1).
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4.4. Bases of A2, We now discuss some explicit examples of bases of A%, We
adopt the following criteria. From Theorem 4.3, a basis of A" is determined by any
family of elements {p;}1<j<n C P, satisfying

dej1(pj) =1 and p; € PS»—1751, (4.10)
This allows to construct a ring isomorphism
AP~ Ay ® [0} 03],

where

w5 = Z defk)(pj)wk -

k>j

Any such collection {a)j }1<j<n Will be referred to as an exterior basis of A%,

4.4.1. Schubert polynomials. The first example we discuss involves the use of
Schubert polynomials. Recall that the Schubert polynomials S, € P,, withw € S,
are a collection of polynomials indexed by elements of S, and characterized by the
following conditions:

(i) Gia=1;

(ii) foreveryu € S,

Gypu-t1. ifl(wu™l) =1(w)—I(u),
0,6y = i
0, otherwise.

More explicitly, one can check that

n—1_n—2

Gy =20 XTI T xa)

w~lwg (
4.4.2. Schubert polynomials and AS*. The above characterization implies imme-
diately the following:

Proposition 4.9. The elements p; = S.[;1, | < j < n, are a solution of (4.10). In
particular, the elements

v, =w; + ch[j,k]wk
k>j

H ; ext
define an exterior basis of A3

Proof. It is clear from the definitions that &.[;; satisfy (4.10). The proposition
follows by an application of Theorem 4.3. 0
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Itis interesting to observe that the Schubert polynomials allow to define a solution
to the full system (4.4). Specifically, for every o € (Z})x, we can set py = G,
Then, it is easy to see that 806 Goy =6, -1,

Oa0g
06,66, =1 and 0;6,, =0
for every i # n — k. Therefore, we get extended symmetric polynomials

Vo = Wy + Z GUaGB_Iwﬁ € Ath.
B>a
In fact, these are exactly the elements of the standard basis of /\[J1, ..., J,].

Proposition 4.10. The standard basis of \[D1, . . ., U,] has the following description.
For any a € (Z%)k.,

OO = we + 26%0;1@3.

B>a

The proof will be carried out in 4.4.3, 4.4.4, and 4.4.5.

4.4.3. Determinantal identities. In what follows we will make use of the follow-
ing result, relating Schubert polynomials of Grassmannian permutations to Schur
functions.

Proposition 4.11 ([21, Proposition 2.6.8]). If w € S, is a Grassmannian permuta-
tion, and if r is its unique descent, then

Gw = 5A(w)(x17x27 R xr),
where 5 (y) is the Schur function in the variables {x1, ..., X, } corresponding to the
partition A(w).
Example 4.12.

(1) fw = c[j] = sjSj+1...52—1 € Sy, then w has a unique descent at position
n—1. The Lehmer code is (0,...,0,1,...,1,0) and the corresponding partition
A(w) = (1"77). Hence, S,[j] = en—; (X1, ..., Xpn—1).

(2) More generally, if j < k and w = c[j, k] = s;Sj41...5k-1 € Sy, then w
is a Grassmannian permutation with a unique descent in position k — 1. The
corresponding partition A(w) = (1¥77) and Sejk] = €k—j(X1,..., Xk—1).

(3) The permutations ¢® = c[k,n]...c[2,n —k +2] - c[l,n —k + 1] have a
unique descent at position n — k. The Lehmer code for ¢®) has LY =
Ly = .- =1L), =k and L'J‘.’ = 0 for j > n —k. It follows that
Sekr = Sgn—ky (X1, X2, .. s Xpn—k)-
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(4) Generalizing all of the previous examples,
w=clk,n]-clk—1L,n—1]...clk—j+1,n—j +1]

has a unique descentatn — j, and Gy = §(jn—k)(X1, X2, ..., Xpn—j).

Recall that Schur functions satisfy the second Jacobi—Trudi identity: for every
partition A of length /(1)

I\ X
53 = det(ey 4 -1)i 2y = det(er, i )2y @.11)

where A’ is conjugate to A. The proof of Proposition 4.10 relies on the following

Lemma 4.13. For any o € (Z5)g, letu = (uy, ..., ux) and Ay be, respectively, the
corresponding sequence of indices and the partition defined in 4.2.2. Then

k
Sao = det(e(—t+i)—u; )i, j=1-

Moreover,

k
She (X1, ..., Xp—k) = det (e,,_k+i_uj (x1,..., x,,_k))l.’j:1
k
= det (en—k+i—Uj (X], ) xn—k+i—1))i,,i=1'

Example 4.14. The result of Lemma 4.13 is addressing the following phenomenon.
Set n = 2 and consider the permutation s,s;. In this case we get

Gszsl = xf = det|: 1 1 :| — det|: el(xl) 1 i| .

X1X2 X1+ X2 ex(x1,x2) er(xy,x2)

On the other hand, s,s; has a unique descent at 1, its partition is [2], its conjugate
is [, 1], and, by the second Jacobi-Trudi identity,

e 1
§[2] = det |:e; 61:| = ef —es.

These coincide when we input the set of variables {x; }, namely
Syysy = X7 = €7(x1) — e2(x1) = sp(x1).

4.4.4. Proof of Lemma 4.13. The first statement is immediate. Namely, the second
Jacobi-Trudi identity for A, reads

k k
S5)g = det(e,l’j+i—j)i,j=1 = det(e(n—k+i)—u; )i, j=1

since
Miti—j=n—k—uj+j+i—j=m—k+i)—u;.
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To prove the second statement, we proceed by induction on k. For k = 1 there is
nothing to prove. For k > 1, consider the expansion of

D = det (en—k+i—Uj (X155 xn—k+i—1))

along the last row, i.e.

k
D= Zen—Uj(xla"-vxn—l)'Mj’
j=1

where M is the signed minor of the matrix obtained by removing the last row and the

Jjth column. By induction, M; depends exclusively on the variables x1, ..., X,
and
iy
Mj = (=1 *7 det (en—k-‘ri—ul (X1,..0s xn—k)) i=1,..k—1
I=1,...7,...k

Applying the usual recursive relation for elementary symmetric functions
em(xl’ s 7xn) = em(xl, ] xn—l) + xnem—l(xh R xn—l)

we get

k
D= Zen_uj(xl,...,xn_l)-Mj
j=1
k k
= Zen—Uj(xla---vxn—Z)'Mj + Xp—1 Zen—l—uj-(xly--wxn—Z)'Mj-
j=1

Jj=1

Now we observe that
k
Zen—l—uj'(xl, cesXp—2) M; =0
j=1

since it describes the determinant of a matrix with two equal rows. By iterating this
process we get

k
k
D= enu(X1..... Xp—1) - Mj = det(en_ti—u; (X1, .. Xn i) =y
j=1

4.4.5. Proof of Proposition 4.10. Let S € Mat(n x n, P,) be the unipotent lower
triangular matrix

[Slij = &s;usi_; = Gcji] = €i—j (X1,..., Xi—1)
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for any i > j. The elements ¢ = (¥,...,9,) satisfy & = STw, where 0 =
(w1,...,w,). In particular, their wedge product can be written in terms of minors
of S. More specifically, for every o € (Z%)x,

G im 0710030 = 3 Dpun.
B>a

where Dg, is the minor of S corresponding to the rows identified by B and the
columns identified by «.

Proposition 4.15. For every a, € (Z)k, B > «, 6%051 = Dgq. In particular,
Vo = Da.

Proof. Since o, is a Grassmannian permutation with descent at n — k, it follows
from Lemma 4.13

k
GUa = Siq (X150 Xp—g) = det(e(n—k-i-i)—uj (xX1,..., xn—k))i,j=1
and
k
Go-a = det (e(n_k+,-)_uj (x1,..., xn_k))i’j=1
k
= det (e(n—k+i)—u,; (X1.- -,Xn—k+i—1))i,j=1 = D, w)g-

Moreover, since the elements ¢}, are S,—invariant, so is ¥,. Hence the coeft-
icients D satisfy
Dﬂa = 805 D,(k)a
and therefore
Dga = aagDr(k)a = 8%6(,& =6_ 1. O

0u0p

This concludes the proof of Proposition 4.10.

Remark 4.16. It follows from the discussion above that the Schubert exterior basis
of A" is more concisely described in terms of elementary functions. It will be
convenient to reindex these elements. Henceforth, we will adopt the following
notation

j—1

w

e = Zek(xh s X j k) Ot 1=k = Un—jt1.
k=0

4.4.6. Dual Schubert polynomials. Our second example of a basis for A% relies
on the notion of dual Schubert polynomials.

Proposition 4.17 ([21, Proposition 2.5.7]). There is a A, -bilinear form on Py, defined
by (x,y) 1= Ouy(xy). With respect to this form the dual basis to the Schubert
polynomials are given by

St = (=) @Yy (Syuy), W E Sp. (4.12)
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The dual Schubert polynomials are characterized by the following conditions:
i) &5, =L

(ii) foreveryu € S,

&* i iflwuh) = 1(w) + (),

0,6* =
ew 0, otherwise.

This follows directly from the characterization of the Schubert polynomials in 4.4.1
and from the relation

Wo - Oy - Wo = (_1)l(u)8w0uw0-
In particular, we get the following result, dualizing Proposition 4.9.

Proposition 4.18. The elements pj = &
In particular, the elements

9 = wj+ ) S i@k
k>j

Z)Oc[j]’ 1 < j < n, are a solution of (4.10).

define an exterior basis of A& O

In 4.12, we showed that the Schubert polynomials involved in the exterior basis
of A2 are elementary symmetric functions, namely,

Seljk] = €k—j (X1, ..o, Xg—1)-

The dual Schubert polynomials are, instead, naturally described by complete
symmetric functions. By definition, we have

Sroetin = D T wo(Swpeljkiwg) = (D wo(Sepumis 1n—jr11-1)
since wo - ¢[j, k] wo = $y—j ... Sp—k+1. The permutation c[n —k + 1,n— j +1]7!

is still a Grassmannian permutation, whose unique descent is at n — k + 1 and whose
partition is conjugate to that of c[j, k]. Therefore

Setn—rk+1.n—j+11-1 = Mk—;j (1, Xn—k+1)
and
&t = CDF e G x).
In particular, the relation Bc[k]G;Ocm = 61’200[]. k] reads

et (1) hp—j(xn)) = (=¥ g (s .. Xn)

providing a different proof of [1, Prop. 5.4].
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As in the Schubert case, one observes that the dual Schubert polynomials give a

solution of (4.4). Namely, one can set py = &y, , . Then 5,6}, = 620004051 ,
3k _ . * _
904 Spoo, = 1 and 8161000'0[0"3_1 =0

for every f > o and i & Dg. It follows that there are elements in A$"

* *
190‘ = Wo + Z Gwooaoglwﬁ
B>a

which satisfy, in analogy with 4.10, 95 = (J])*' ... (J,;)*".
Remark 4.19. It follows from the discussion above that the dual Schubert exterior
basis of A% is concisely described in terms of complete functions. As before, it will
be convenient to reindex these elements. Henceforth, we will adopt the following
notation

j-1

h% = (=D N (Cng1—jtks - Xn)Ong1—jbk = O jyy-
k=0

4.4.7. A family of bases for A, We now describe a collection of bases of AS®
which interpolates between the Schubert basis 4.4.1 (described in terms of elementary
symmetric functions) and the dual Schubert basis 4.4.6 (described in terms of
complete symmetric functions). Recall that the elementary symmetric functions
satisfy the relation

J
&j (1. Xuet) = ) (=) T ey (xr. ).

1=0
Forevery0 <r <n — j, set
PV = (=1 x] e jor (X1.. . Xamt)
n—j—r
= (=D"xp > (=0T T ey (x L x)
1=0

Y D i Ge)er (xs X,

n—j—r
=

(=}

Proposition 4.20. For every choice of r, the elements pj.r), 1 < j < n, are a solution
of (4.10). In particular, the elements

ﬂy) =Y e (p,ﬁ-’))wk
k>j

H H ext
define an exterior basis of A}
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Proof. Since 0.[x)(h,—j—i1(x,)) = O forevery k > j and/ > k — j, we have

k—j
8c[k](PS-r)) = Z(—l)k_J_lel (15w es Xn) i jt (Xk s s X))

=0
Therefore,
depi1(pV) =1 and  B;d.5q(p{”) =0,
for every k > j andi # k — 1. The result follows. O

This basis interpolates between 4.4.1 and 4.4.6. Specifically, for r = 0,

p;O) = en—](xly e ,xn—l) = 66[]]

and we obtain the Schubert exterior basis 4.4.1. Instead, forr =n — j,
pﬁ'n_j) = (_l)n_jhn—j (xn) = Gzoc[j]

and we obtain the dual Schubert exterior basis 4.4.6. Indeed, more precisely, we
have, forany 0 <r <n — j,

P = Gelyar ey (4.13)

Example 4.21. Set n = 3, then we have

w Sw Show
id 1 1
S1 X1 —X2 — X3
S2 X1+ X2 —X3
$152 X1X2 x3
52851 X% X2X3
515251 X%Xz szg

In particular, the Schubert exterior basis of A§X‘ is
= w1 + X103 + X1 X203, Uy = wy + (X1 + x2)ws, V3 = ws.
Instead, the dual Schubert exterior basis is
¥ = w1 — (x2 + x3)02 + X%a)3, Uy = wy — X303, U = ws.
Other possible choices are obtained replacing #; or ¥ with
191(1) = w1 + x1w2 — (X1 + X2)X303

corresponding to the choice pgl) in4.4.7.
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4.4.8. Other bases. We conclude this section with two more examples.

(i) Power functions. One can consider power symmetric polynomials and set

pj = (—1)"_jpn_j(xl, ey Xp—1)-

On the other hand,

pj = (—1)"_jpn_j(x1, e ,xn—l)
=(—D)""pp—j(x1,....x5) + (—1)"_jhn_j(xn).

Therefore it simply gives back the description in terms of complete symmetric
functions.

(i) Symmetrizers. The easiest example, although computationally most expensive, is
obtained by full symmetrization of the exterior variables w;,i.e. forevery 1 < j <n,
set

1
w; = ] Z o(wj).

' o€eSy

4.5. Combinatorial identities. The following results give the relationship between
e’} and {h}"} (see Remarks 4.16 and 4.19), where

j—1

h? =3 (=D (o 1k s ¥)On1 =k (4.14)
k=0
j—1

e = er(X1... .\ Xy j k) Ont1—j+k- (4.15)
k=0

We use the following identity between elementary symmetric polynomials and
complete homogeneous symmetric polynomials to prove the next proposition:

Lemma 4.22.

ek (X1, Xn—j+k)

k
= (=D (o jkg1s - Xn)e (X1 X)), (4.16)
t=0



26 A. Appel, 1. Egilmez, M. Hogancamp and A. D. Lauda

Proof. Using standard facts about elementary and complete symmetric functions we
have

k

D D Mt ekt 1 -2 Xn)8 (X1, Xn)
t=0

k
= Y (D' (Cneje1s - - Xn)

t=0 t
: (Zea(xl, oo Xn—jrk)€r—a(Xn—jrk+1s - - 'vxn))
a=0
k k
= 3> ) ey (p et - - Xn)€r—a (ke 1 - - - Xn)
=0t=
¢ ¢ 'ea(xla-"’xn—j—f—k)
k k—a
4!
= Z Z(—l)k "he (Xn—jk41s - Xn)€k—a—t'(Xn—j k415 - - - » Xn)
=0¢'=0
a=ot -ea(xl,...,xn_j+k)

k
= (- Z €a(X1,. .. Xn—jtk)

a=0 k—a
4
: (Z(—l)t he (Xn—jak1s e s Xn)€k—a—t' (Xn—j+k+1s - - - JCn))

t’'=0
k
= (=DFD eqa(x1... . Xuj i) Bak)
a=0
= (—D¥er(xX1, ..\ Xnej+k)- O

Proposition 4.23. Forany 1 < j < n, we have

-1
ef =) echy .
k=0
Proof. Using the definition of h’’ we have

j—1
Z ekh;{)_k =eo(x1,... ,xn)hj"-’—i—el(xl, - ,xn)h?’_l—k. . .—|—e,-_1(x1, . ,xn)h'l”
k=0

j— k—1
k-1
= Wp+1-j + Z (Z(—l) he—1 (Xn—j+k+15- > Xn)€1(X1, . .. ’xn))wn—j+k+l
k

—1 V=0

w

=0nt1-j+ D Ckemi1-n(X1. . XD = €Y,
n+l1—j<k<n

where the third equality follows from Lemma 4.22 and the last step comes from a
change of variables. O
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5. Solomon’s theorem

5.1. Superpolynomials and superinvariants. Fix an integer n > 1. Let x denote
a set of formal even variables xi,...,x,, and let dx denote a set of formal odd
variables dx1, ..., dx,. Here “odd” means that these variables are assumed to anti-
commute amongst themselves and square to zero. Thus, Q[x, dx] is short-hand for
the superpolynomial ring

Q[x.dx] := Q[x1.....xx] ®¢q Nldx1.....dx,].

We make this ring bigraded by declaring thatdeg(x;) = (1,0) and deg(dx;) = (0, 1).

The symmetric group S, acts on Q[x, dx] by algebra automorphisms, defined
by permuting indices: w(x;) = xy(;) and w(dx;) = dx, ). Note that this action
preserves the bidegree.

Theorem 5.1 (Solomon [28]). For any family £ = {f1,..., fu} of algebraically
independent generators of Q[x]*", Q[x, dx]>" = QIf, df].

In particular,
Q[xl,...,xn,dxl,...,dxn]s" = Qle1,...,en,deq,....dey),

where ¢; = e;(x1,...,x,) is the ith elementary symmetric polynomial, and
de; € Q[x,dx] is to be interpreted in the usual manner for functions:

)
df = Za—i:dxi v/ e Q[x].

i=1
Note that deg(e;) = (i,0) and deg(de;) = (i — 1, 1).

Remark 5.2. The mapping f + df extends to a degree (—1,1) differential
Q[x, dx] — Q[x, dx]. This is the usual exterior derivative on polynomial differential
forms.

5.2. Action of the extended nilHecke algebra. Taking a cue from higher represent-
ation theory, we would like to consider divided difference operators d; acting on
superpolynomials. Unlike in the case of ordinary polynomials, here it is necessary to
introduce rational functions in the variables x1, ..., x,. So, let o; := x; — x;4; for
i=1,....,n—1,leta"l = {al_l, o ,a;_ll}, and consider the algebra Q[x, dx, ™ '].
Note that this algebra is bigraded, with deg((x; — x;11)~") = (=1,0).

We have the divided difference operators 9;: Q[x,dx,a™!] — Q[x,dx,a™!]
defined in the usual way

1-— Si

9 =

Xi — Xi+1
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It follows from Solomon’s theorem that for any tuple f = { f1, ..., f,} of algebraically
independent generators of Q[x]%” the subalgebra Q[x, df] C Q[x, dx, o~ !] is closed
under the action of the divided difference operators.

Consequently, Q[x, df] is a module over the extended nilHecke algebra. We wish
to compare this module with the polynomial representation of the extended nilHecke
algebra considered earlier. This representation can be described as follows. Let
® = {wy,...,w,} be aset of formal odd variables, with bidegree

deg(w;) = (n—1i,1).

The superpolynomial ring Q[X, @] admits an S, action via w(x;) = Xy for all
w € Sy, together with

wi + (Xi — Xi4 )01, if j =1,
sj(wi) = .
w;, otherwise.

Note that the S, action preserves the bidegree. The actions of Q[x] and Q[S,]
determines uniquely that of NHZ.

Note that the graded dimensions of Q[x, @] and Q[x, df] coincide. Thus, it is
natural to hope for a bidegree preserving isomorphism of NHZ!-modules Q[x, w] =~
QI[x, df]. Note that equivariance with respect to the NHS' action is equivalent to
linearity with respect to Q[x], together with equivariance with respect to S,,.

5.3. Preliminary computations. We say that a tuple p = {p1,..., pn} C Q[x] is
admissible if p; € Q[x]S1—1"S1, deg(p;) = n — j, and d.;)p; € Q* for any
J = 1,....n, where c[j] = 5 -5j41...5.—1 and c¢[n] = id. This implies, in
particular, that the matrix P = [0.[1pi]1<i,j<n € Mat(n, Q[x]) is upper triangular
and invertible.

We introduce the following operators. For any ring R andany k = 1,...,n — 1,
let yx be the linear operator on Mat(m x n, R) defined by

Yk (A)ij = 8jk+14ik,
and let pi be the linear operator on Mat(n x m, R) defined by!
P (A)ij = ik Ak,

The following lemma gives a characterization of admissible tuples in terms of the
corresponding matrices, obtained through divided difference operators.

In other words, yx gives back the kth column of A in (k + 1)th position, while px gives back the
(k + 1)th row of A in position k.
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Lemma 5.3.
(1) If p = {p1,..., pu} is an admissible tuple, then P satisfies 0;(P) = yi (P) for
any k = 1,...,n — 1, where the action of the divided difference operator is

defined entrywise.

(ii) For any invertible Q = [q;;] € Mat(n, Q[x]) such that 0x(Q) = yx(Q) for
k =1,....,n—1, and deg(qij) = j — i, the tuple @ = {qin.....qnn} is
admissible and Q;; = 0¢[;1qin-

Proof. (i) follows immediately from the fact that p; € Q[x]5»—1*S! and therefore

Ok Oc[/1Pi = 8} k+10ck]Pi-
Let now Q be a solution of dx(Q) = y%x(Q). Then, for any k = 1,...,n — 2,
0xqin = 0 and g;, € Q[x]5—1*S1,i = 1,...,n. Moreover,
Gik = Okqik+1 == 0kO0k41...0n-19in = Oc[k|qin-
Finally, since deg(g;;) = j — i and Q is invertible, it follows that d.[;1gj» € Q™.
Therefore q = {q1n,-..,qnn} is admissible. This proves (ii).

We now consider the following situation. Let® = {61,...,60,}, & = {&1,...,&,}
be two sets of algebraically independent elements in Q[x, dx] such that deg(6;) =
(n—i,1) =deg(&),i = 1,...,n,and let P € Mat(n, Q[x]) be the invertible matrix
defined by the relation

E =PO. (5.1)
Note that, necessarily, deg(p;;) = j —i.
Lemma 5.4. Any two of these equations imply the third:
(@) 9k(P) = yx(P);
(b) 9x(E) =0;
() 9(©) = —pi(©).
Proof. We first show that if (a) holds, then (b) and (c) are equivalent, that is, if
9k (P) = yi(P), then

W(E)=0 <= 30 =—p(O). (5.2)

Namely, since sg(yx(P)) = sx(0x(P)) = 0x(P) = yx(P), one checks easily that
Yk (P)® = 5¢(P)pr(®), where the action of s is defined entrywise as in the case
of dj. Now, the application of dj to (5.1) gives
0k (E) = 9k (P)O + s5x(P) 0k (©)
= Yk (P)O + 5k (P) 3k (©)
= 51 (P)(0x (®) + % (©)).
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Therefore, (5.2) follows from the invertibility of P. In particular, we proved that (a)
and (b) imply (c), and (a) and (c) imply (b).

It remains to show that (b) and (c) imply (a), that is, if 9 (E) = 0 and 9 (®) =
—pi (©), then dx (P) = yx (P). In this case, the application of d; to (5.1) gives

0= 0k (P)O + sk (P)0x (®) = 9 (P)O — 51 (P) pr (®).

Denote by Py,..., P, the column vectors of P. Since the component of
® = {0,,...,0,} are algebraically independent over Q[x], the equation d; (P)® =
sk (P)px (®) implies

Ok Pi = 8i k+15k (Pk)

and therefore 0P = i (P). O

5.4. NH"—equivariant isomorphisms. Letf = {f},..., f,} be aset of algebraic-
ally independent generators of Q[x]", with deg(f;) =n —i,p = {p1.....pn} C
Q[x] an admissible tuple and set P = [0.[j1pili,j=1,...,n-

Proposition 5.5. For any choice of £ and p, there is a unique Q[X]|-linear algebra
homomorphism

J;:Q[x,w] — Q[x, dx,a_l]

defined by the relation df = P - Jf)(a)). Moreover, Jf, is injective, NHS—equivariant,
and degree preserving.

Proof. Since p is admissible, the matrix P is invertible and the algebra homomor-

phism Jf) is uniquely determined by the condition df = PJf, (@) and linearity in Q[x].
The injectivity of Jf) follows from the invertibility of P and the algebraic

independence of the elements f = { f1,..., fu} and df = {df1,...,dfn}.

The S, -equivariance follows from Q[x]-linearity and Lemmas 5.3, 5.4. Namely,
since p is admissible, it follows from Lemma 5.3 that dx(P) = yx(P). Then,
since df = PJ;(w) and dg (df) = 0, it follows from Lemma 5.4 that 0j (Jf,(w)) =
—Pk (Jf, (@)), which is equivalent to

si (U (@))) = I (w)) + 8ij (xi — Xig1)I} (@i+1)

and implies the S,-equivariance of Jf). The NH2'-equivariance follows. Finally, the
fact that Jf) preserves the degree is a straightforward check. 0

The construction of the homomorphism Jf, allows us to compare the description
of the S, -invariants in Q[x, @] from Theorem 4.3 and that of the S,-invariants in
Q[x, dx] from Solomon’s theorem. We obtain the following corollary.
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Corollary 5.6. The homomorphisms Jf, restricts to a canonical identification of
Sy -invariants. More specifically, there is a commutative diagram

Qx. ©] <2 Qx, 0p] ——Q[x, @] == QIf, 0,]

f

Q[x, dx, o] =<—QIx, df] =<——Q|[x, df]5" —— QI[f, df]

where Bp denotes the change of Q[X]-basis defined by @, = Pw and the vertical
arrows send @p to df.

5.5. Example. Let h = {p;,..., p,} be the admissible tuple with p; =
(—=1)""/hu—j(xz), and let H be the corresponding matrix. In particular,

Hij = eipi = (=17 7y (xj, o xn)
It is easy to see that the homomorphism Jlf1 is defined by
Jfl(w) = Qdf where Qij =ej—i(Xigt1,....Xn).

Similarly, lete = {p1, ..., p}betheadmissible tuple with p; = e,_;(x1,...,Xs—1),
and let E be the corresponding matrix. In particular,

Eij = 0c[j1pi = €j—i(X1,...,Xj-1)
and the homomorphism Jf is defined by2

Ji(w) = Qde, where 6,, = (—l)j_ihj_i(xl,...,xi).

6. Differentials

In this section we show that the differential dy on NH®' defined in Section 3.3
restricts to the ring of extended symmetric functions A¢*. We identify the resulting

2 Both computations follow easily from the relation between the generating series of elementary and
complete functions. More specifically, for j > i, one has

Jj—1
(Z(—l)ktkhk(xj,...,x,,))(ztkek(xi+1,...,xj,...,xn)) = l_[(l + tx;).
k>0 k>0 I=i+1
In particular, comparing the coeflicients of £/ 7, we get
J '
Z(_l)j_khj—k(xj, “ee yxll)ek—i(xi+l g ’xn) = Oy
k=i

which implies that the entries of H™! are the polynomials € j —; (X;j 41, ...,Xp). Similarly for E.
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DG-algebra as the Koszul complex associated to a certain regular sequence of
symmetric polynomials in A, whose cohomology is isomorphic to the cohomology
ring of a Grassmannian. We also define new deformed differentials d 13 on NH®
in Section 6.3. The deformed differentials also restrict to A" and the resulting
cohomology of (A%, d 5) is related to GL(N)-equivariant cohomology of a
Grassmannian.

The reader may wish to recall the grading conventions from Section 3.3.

6.1. The standard differential. Recall that NHS* admits a differential dy for each
N > n — 1, defined by

dn(@i) = (=D’ hy—iy1(x1,....x),  dy(x) =0, dy(d;) =0,
for all i, together with the Leibniz rule. Consequently, dy is linear with respect to

the subalgebra NH,, C NH.

Remark 6.1. With respect to the bigradings (3.1), the differential d 5 is homogeneous
with degree (2 — 2N, —1).

The following states that A is a DG-subalgebra of NH! in a natural way.
Proposition 6.2. The differential dy restricts to a differential on A C NHEX,
Proof. The subset A®' = Z(NH2') C NHZ' can be characterized as the set

consisting of those elements z € NHZ such that [9;, z] = 0 for all divided difference
operators 9; € NHZ". On the other hand dy is NH,-linear, so

[0i,dn(z)] = dn([0i,z]) =0
if [9;,2z] = 0. -

Example 6.3. Let us consider the differential dy of h‘}’. We will see that dy (h‘;’)
lands in A%, by direct computation. Recall from Remark (4.19) that for n = 3

w
h{ = w3,
w
h2 = Wy — X3W3,
2
h = w1 — (x2 + x3)w2 + x3°w3.

Then the differentials are computed as follows.

dy(h?) = dy(w3) = (—1)>hy o (x1, X2, X3),
dy(h3) = dy (w2 — x3w3) = hy_1(x1,x2) + x3hy—2(x1, X2, X3)

= hy_1(x1,x2, x3).
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The last equality comes from the following observation:

{(a.bc)la+b+c=N—-1}
={@.b,0)|la+b=N-1}U{(ab.c)la+b+c=N—-1,c=>1}.

Similarly,

dy (hg) = dn (o1 — (X2 + x3)w2 + Xj03),
= —xVV — (x2 + x3)hy_1(x1, x2) — x3hy—a(x1, X2, X3)
- _hN(-X:l’ x27 x3)‘

Similar to the above argument, the last equality follows from the observation:

{(a.b.c)la+b+c=N}={0.0)|a=N}
U{(a.b,0) |a+b=N, b>1}U{(ab1)|a+b=N—1}
U {(a,b,c) |a+b+c=Nandc > 2}.
Before we compute dy (h?) in general, we need the following result on symmetric
functions. A

Lemma 6.4. Let h;i(x;,...,X,) denote the complete homogeneous symmetric
polynomial of degree i in variables x;,...,x,, for 1 < j < n. Then for any
1<i<nand N € N

n—i

hy—it1(X1,...,Xp) = Z hy—i—jr1(X1, o Xig )N (Xigjs ooy xn). (6.1)
Jj=0

Proof. Forany0 < j <n—i,1 <i <n,and N ¢ N

hy—i—j+1(x1, s Xig )N (Xigjs s Xn)

_ by bi; aj a
_( Z xl .”xi-i-j Z xi"rj ...xn"

by++biy; ajyj+-tan=j

=N—i—j+1

_ by bitjtaiv; aitj+1 an

= E 2: Xpoo Xy Xitj+1 A
bi++biy; aitjttan=j

=N—-i—j+1
J

_ by bitj+k aitj+1 a
(X (X ety )
k=0 " by+-+b;; ajyj+-+an=j—k
=N—i—j+1
The exponent of each monomial in above sum is an n-tuple

(bly"'5bl.+j +k7ai+j+17""an)9
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where

by +--+biy;=N—-i—j+1,
Aivj41+ - +an=j—k,
ai+j =k, forany 0 <k < j.

As j varies in the range 0 < j < n — i these exponents exhaust uniquely all

monomials appearing in hy_;+1(x1,...,Xn). ]

6.2. Koszul complex. Let R be a commutative ring, and let a;,...,a, € R be

given elements. The Koszul complex associated to (aq, ..., a,) is the DG algebra
R& A\lbr.....6/]

with R-linear differential uniquely characterized by d(6;) = a; together with the
graded Leibniz rule. For the purposes of the Leibniz rule, the grading places R in
homological degree zero, and each 6; in homological degree —1.

Proposition 6.5. As a DG-algebra, A" is isomorphic to the Koszul complex
associated to (—1)'hy_ijy1 € Ap (1 <i <n).

Proof. By Theorem 4.3 we know that Aj® ~ A, ® Alwj, ..., w,], where 0} =

a)j (p;) are determined by any choice of p; € Qxi,...,x,]5"=1*51 such that
0;0j41---0p—1(p;) = 1. For the purposes of computing the differential, it is
especially convenient to work with the choice of p; as constructed in 4.4.6. In this
case the resulting elements w; are given by

n—i
01'* = Z(—l)j hj (XH_J', ey xn)a),-+j.
Jj=0

We know that the differential d is linear with respect to the subalgebra A, (this
follows from dy (x;) = 0 and the Leibniz rule), hence to prove the Proposition we
need only show that dy (9)) = (=1)’hy—i+1(x1, ..., x,). Compute:

dy () = Z(—])jhj(Xi+j, oo Xn)dN (@it )
j=0

=Y (=170 Cigjo o X)) DN (X X )
j=0

=(—D'hy—it1(X1,...,Xn),

where the last equality follows from Lemma 6.4. 0
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A sequence of elements a = (ay,...,a,) € R is called a regular sequence if

* a; is not a zero divisor;

* q; isnot a zero divisor in R/{ay,...,a;—1) forall2 <i <n.

If a is regular, then the associated Koszul complex K(a) has cohomology only in
degree zero, where it is isomorphic to R/{ai,...,a,). Said differently, if a is a
regular sequence then the canonical projection K(a) — R/{ay,...,a,) is a quasi-
isomorphism.

Corollary 6.6. The DG-algebra (AS*,dy) is quasi-isomorphic to the cohomology
ring H*(Gr(n, N)).

Proof. The sequence hy,hn—1,...,hN—n+1 € A, is a regular sequence, see for
example [34, Proposition 7.2]. Thus, the cohomology of the associated Koszul
complex is isomorphic to the quotient A, /{hny,An—1, ..., hN—n+1), whichis known
to be isomorphic to A, /{hy_n+1) = H*(Gr(n, N)). O

6.3. Deformed differentials.

6.3.1. Deformed cyclotomic quotients. The cyclotomic quotients of the nilHecke
algebra, and KLR algebras more generally, admit deformations called deformed
cyclotomic quotients defined in [30]. For us the most relevant reference is [26,
Section 3.2].

Let k1,...,kny € C be given, and let ¥ denote the root multiset consisting
of pairwise distinct complex numbers A1, ..., Ay corresponding to the roots of the
polynomial

N
P(x)=x"+ ) ixN, (6.2)
j=1
with multiplicities Ny,..., Ny. For each N > 0 define the deformed cyclotomic
ideal 1 5 associated to X as the ideal of NH,, defined by

N
I3 = <Z;<jxf"f>, ki € C, (6.3)
j=0

where we take ko = 1. We define the deformed cyclotomic quotient
NHZ := NH, /15

In [26, Section 3.2] it is shown that the deformed cyclotomic quotient rings NHZ
are isomorphic to matrix rings of size n! with coefficients in the GL (N )-equivariant
cohomology ring H(*;L( N)(Gr(n, N)) with equivariant parameters equal to k =
(K1,k2,...,kn). We denote this specialization by HF. If the parameters k
are left generic, then the center of the deformed cyclotomic quotient is just the
GL (N )-equivariant cohomology itself [33, Theorem 2.10].
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Theorem 6.7 ([26, Theorem 13]). There is an algebra isomorphism

12
HY~ @ Q) H*Gr(n;.Ny).
an=n Jj=1
0<n;<N

We will realize both the deformed cyclotomic quotient NHZ and the rings H,”
within the context of the extended nilHecke algebra. For these realization we make
use of the following lemma.

Lemma 6.8. The following identities hold in NHE.

(1) Forany1 <i <n,

N
ZKJ'X[N_J = 0,
j=0
(2) Foranym < N,
N-m+1 N-—m+1
a a
ij lelxzz...lem= ZthN—m+1—j(xla---vxm):0-
j=0 Y ai=(N-m+1—j) J=0

Proof. The first claim is proven by induction. Namely, forany 0 <i <n — 1, we
prove the following.

(Al); Forany y € N,
N N
N—j N—j
Yo N0 = e N
j=0 j=0

(A2); Forany y € N,
N .
>kt 0 =0
j=0

(A3);

N

N—-j _
ZI{]'XH_I =0.
Jj=0



Abbreviated title of paper 37

Recall that by definition dg = 1. The case i = 0 holds by construction. Assume
now (Al);_1, (A2);_1, (A3);_1, withi > 0. One has

N N N
y+N—j y+N—j

E KjXiy, 0 = E Kj0iX; - E Kihytn—j—1(Xi, Xi+1)

Jj=0

Jj=0 J=0
N
= - Z"jhy+N—j—1(xi,xi+1)
j=0
N 4 N
=y wix? V9 - > kjhy N1 (X Xit1)
Jj=0 Jj=0
N .
= kN

<
Il
(=]

where the first and fourth equalities follow by (2.2), the second and third ones follow
by (A3);—1. This proves (Al);. Then, (A2); holds, since

N N
WJYHN—jq WYHN—jq .
ZKin+1 i = _ZKJXH-I 0i X +10;
j=0 Jj=0
N
_ 9. YFEN—j+1q
——ZKA,B,xiH 0,
Jj=0
N
_ CDYEN—j+1a2
——ijxi_H ;7 =0,
j=0

where the first equality follows from d; = —d;x;410;, the second and third ones
from (A1);. Finally, (A3); holds, since

N N N

CyIN—j _ yHN—jo  ytN—j+1q
Yoty =y e i = )k 9 =0,
j=0 j=0 =0

where the first equality follows from the nilHecke relations (2.1) and the second one
from (A2);. This proves the first claim.
The second claim is similarly proven by induction. Using (2.1), we have

N ) N ) N-1
Y ki (0ix) ) =Y k(N ) =) Kj( > X?xibﬂ)-

Jj=0 Jj=0 Jj=0 a+b=y+(N—j)—1

The induction step is identical to Proposition 2.8 in [4]. 0
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6.3.2. Deformed differentials. Let X denote the root multiset corresponding to the
roots and multiplicities of the polynomial (6.2). To each X define a differential d 5
on NHX, which we call deformed differential, by

dy(d;) =0, dy(x)=0,
N—-i+1
) (6.4)
and dy(w) = Y (=D ijhy g, x0).
ji=0

Note that the deformed differential d 16 is homogeneous of degree -1 with respect
to the homological grading deg,,, but is in general not homogeneous with respect
to deg,. Thus, we will regard (N H' dy) as only a singly graded object (via degy,).

Proposition 6.9. The map d 5 satisfies the relations

(1) 3;dF (wit1) = dy(wit1)dis

(2) 0;idF (i) + dF(wi+1)xi+10; = d (i) + 0;iXi41d 3 (Wit1),
foralll <i <n.

Proof. The first identity holds since d 1% (wi+1) is symmetric in x; and x; 4. For the
second identity, we show that

Ay (@it1)xi+10; — 0ixip1dy (@ir1) = dpy (0:1)d; — 0idy (7).
One has

AR (@it1)Xi+10;

N—i
= Z(—l)i+2Kj (hN—i—j (Xl, s xi+1)xi+18i)
j=0

N—i
= Z(—l)i+2Kj( > ha(xl,---7xi—1)hb(xi,xi+l)xi+lai)
/=0

a+b=N—i—j

_1)i+2Kj( Z ha(X1,...,Xi—1) Z xzkxﬁ_fai)

j:

N—i

Jj=0 a+b=N—i—j k+{=b
N—i

j=0

(_1)i+2Kj( Z ha(xl,-..,xz'—l)xfillai)

a+b=N—i—j

N—i
1 SILEY (D DYV SRTECTY
j=0

a+b=N—i—j K/ +£/=b—1
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N—i
= (—I)H'zlcj( Z ha(x1,...,Xi—1)0; xb'H)
Jj=0 a+b=N—i—j
N—i
- Z(—l)’+2/cj( Z ha(xl,...,xi_l)hb(xi,xi+1))
Jj=0 a+b=N—i—j
N—i
+ Z<_1y+2,<,.( 3 o, xi) Z xk+1 fjlla)
Jj=0 a+b=N—i—j k'+0=
N—i )
= (—I)H—ZKJ'( Z ha(xl,.. , Xi— 1)8 xb'H)
j=0 a+b=N—i—j
N—i .
— Z(—l)’“incth_,-_j(xl, e ,x,-+1)
j=0
N—i
D SCIELST (D SENCTNE I D S L8
j=0 a+b=N—i—j k’'+4'=b— 1

where the fifth equality follows by applying (2.2) to the first summand. A similar
computation gives

N—i
ixip1dy (@) = Y (=D D ha(xr, . xim) X

j=0 a+b=N—i—j
N—i
. ’ 4
+ Z(—l)l”/cj( Z ha (X1, .., Xi—1) Z xk i f++11)8l'
=0 a+b=N—i—j k' +t/=

Therefore,

Ay (@i+1)%i+10; — 9 Xiv1dny (Wi41)

N—i
=Y D Y e xim) i P = XD

j=0 a+b=N—i—j
+ Z(—l)i+1thN—i—j(X1, ey Xig1).

On the other hand, one has
N—i+1
di(@)0; — idyi(@i) = Y (=D icjhy—ipa—j (X1, ..., x)0; — i
Jj=0 N—i+1

Z (—1)i+1/<th_,~+1_j(x1, e ,xi)

J=0
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N—-i+1 )
= Z (_1)L+1Kj( Z ha(xl’ e ,Xi_l)hb(xl'))ai
Jj=0

a+b=N—i+1—j

N—i+1 .
—8l~ Z (—I)H_IKJ'( Z ha(xl,...,x,-_l)hb(xi))
j=0

a+b=N—-i+1—j

N—i+1
= > (=Dt (hN—i+1—j(X1,---,xi—1)3i + > ha(x1.. . xi)x] +lai)
j=0 a+b'=N—i—j
N—i+1
—0; Z (—1)l+1Kj(hN—i+1—j(X1,---,Xi—l)+ Z ha (X1, ..., xi—1)x? +1)
Jj=0 a+b’'=N—i—j
N-it1
SN END SEACINEUR A
j=0 a+b'=N—i—j
N-it1l
+ > (—1)l+1Kj( > ha(xl,---,Xi—l)hb’(xi,xiﬂ))
=0 a+b'=N—i—j
N—i+1
-, (—1)l+1Kj( D ha(xr.. . xic)dix) +1)
j=0 a+b'=N—i—j
N—i+1
= - KN —i—j (X1, Xig
D Dy )
j=0
N—i+1
+ Z(—l)’“xj( 3 ha(xre. o Xim)d (x4 —xf’“)),
Jj=0 a+b’'=N—i—j

where the fourth equality follows again from (2.2). Finally, since there is no
contribution for j = N —i + 1, one has

dy(w;)d; — ;d 3 (w;)

N—i
= Z(—l)"“xj( Y haere..xim)d; G T — X )
j=0

atb'=N—i—j .
+ Z(—l)i"'l/cth_i_j(xl, ce ,xi+1)
j=0
and the second identity follows. 0

Corollary 6.10. The deformed differential d 5 defines a degree —1 differential
on NHE.

Proof. The only nontrivial relations to verify are proven in Proposition 6.9. 0
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Theorem 6.11. The DG—algebra (NH2,d 1%) is quasi-isomorphic to deformed
cyclotomic quotient of the nilHecke algebra NHE = NH,,/((Z;V:O Kj x{v_J)).

Proof. The statement follows immediately from the identity (2) of Lemma 6.8. That
is, since

N—-m+1
Z KihN—my1—j(X1,...,Xm) =0
Jj=0
in NHZ, the same holds for the image of d 3 (;) in NHZ. O

Proposition 6.12. For each N > 0, the pair (A", d 1%) is a DG-subalgebra
of (NHZ, d%).

n

Proof. This is immediate since the differential d 5 acting on h? can be expressed
as a linear combination of undeformed differentials, each of which preserves the
ring AS. O

Theorem 6.13. The DG-algebra (A2*,d I)a) is quasi-isomorphic to the ring H.F from
Theorem 6.7.

Proof. This follows from [26, Lemma 11] and Proposition 6.5. 0

6.4. Categorification. Let f denote the positive part U (sl,) of the quantized uni-
versal enveloping algebra of sl,. This QQ(g)-algebra is a polynomial ring in the
generator E. This algebra is N-graded with £ in degree 2. We equip the tensor
product f ® f with the twisted algebra structure

(Ea ® Eb)(EC ® Ed) — q—ZCdEaEC ® EbEd

The algebra f contains a subring 4f which is the Z[q, g~ !]-lattice generated by all
products of quantum divided powers
En
EM .= —. (6.5)
[]!

Hence, a categorification of 4f amounts to identifying objects & ™ and " in a graded
category and lifting the divided power relation (6.5) to an explicit isomorphism

=PV =e"n-110eWn-3) - 0E"(1-n). (6.6)
[n]!

The extended nilHecke algebra has been studied in connection with Verma
modules by Naisse and Vaz [22,24]. Here we show that the results from the
previous section allow us to define a categorification of 4f, and in particular, define
categorifications of quantum divided powers. For this it suffices only to consider only
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the quantum grading on the extended nilHecke algebra, as we will do throughout this
section, regarding NH" as a Z-graded algebra. Consider the Z- graded ring

n

NHext = @ NHext

n>0

and denote by NH®! -gmod the category of projective graded NH®!-modules. Recall
from Proposition 4.7 the isomorphism NHS! = Mat((n)j}z, A%Y). One can easily

show that e, = x% dw, is the minimal idempotent projecting onto the lowest degree
column of NH®. The graded module NHE"e,, is the unique indecomposable projective
of NHZ" up to isomorphism and grading shift. The regular representation then
decomposes into 1! isomorphic copies of NH:'e,,. Taking gradings into account, if
we define

€™ = NH™e, (—n(n —1)/2), &" := NH*,

then we have an isomorphism of graded projective left modules

" := NH' = P NH e, = H e™.
[n]! [n]!

Hence, we have proven the following.

Proposition 6.14. There is an isomorphism of A-modules
Viaf — Ko(NH™) (6.7)

sending E®™ to the class of the indecomposable projective module &™.

There are inclusions of graded rings

rm: NHS @ NHO — NHEX

n+m

(6.8)

given diagrammatically by placing diagrams side-by-side with those in NH!
appearing above NHE". In order to make this inclusion graded, it is necessary to
adjust the gradings of the odd generators in NHZ!' by an appropriate amount, as in
Remark 3.1. In the notation of the aforementioned remark, the above map should be
written

tnm: (NHZH @ @ (NHZH ™ — (NHEY, ) ©.

These inclusions give rise to induction and restriction functors
Indy m: (NHZ)@ @ (NHEH ™) _gmod — (NHZ,)© -gmod,
Resy m: (NHZL, )@ -gmod — ((NHEH©@ & (NHEH) ™)) _gmod.

By the basis theorem 4.3 for NH® it follows that the super module NH  is

n+m n+m

a free graded left super (NHZ)(©® @ (NH2)("_module. A basis is given by the
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crossing diagrams in NHZXj_m corresponding to the minimal representative of a left
Sy X Sp-coset in Sy, 4, see for example [9, Proposition 2.16]. It follows that Res;,
takes projectives to projectives, and therefore descends to a map in the Grothendieck
group. Similarly, by a version of the Mackey induction-restriction theorem it follows
that Ind,, ,,, also sends projectives to projectives.

At the level of Grothendieck groups we have

[Indy ] Ko((NHEH©@ @ (NHEH ™) — Ko((NHEL,,) @),
[Resy,m]: Ko(NHZ,,) @) — Ko((NHE)©@ @ (NHEH ™),

n+m

Since Ko((NH)™) is canonically isomorphic to Ko((NHX)©@) = Ko(NHY),
these maps induce maps

[Ind, ] Ko(NHZ) ® Ko(NHEY) — Ko(NHZY,),

n+m

[Respn.m]: Ko(NHE,, — Ko(NHS") ® Ko(NHSY).

n+m

Summing over all n,m € Zx¢ these functors induce maps

[Ind]: Ko(NH®") ® Ko(NH™') — Ko(NH™),
[Res]: Ko(NH™) — Ko(NH™) ® Ko(NH™).

Just as in the case of the nilHecke algebra, see [9], induction and restriction equip 4f
with the structure of a twisted bialgebra and we have the following result.

Theorem 6.15. The isomorphism
viaf — Ko(NH®) (6.9)

is an isomorphism of twisted bialgebras.
Remark 6.16. In [24, Section 3.6] the authors independently considered a related
construction where they sum the algebras (N H,e,’“)(’ ) over both n,¢ € Z. They then
take the sum over ¢ € Z of induction and restriction functors

Ind,(f,)m: ((NHf{“)(’) ® (NHfjt)("H)) -gmod — (NH® ) -gmod,

n+m

Res{), - (NHZY, )@ -gmod — ((NHZH® @ (NHEH) 1) _gmod.

n+m

At the level of Grothendieck rings, this corresponds to a direct sum over ¢ € Z many
copies of 4f. They regard this as a copy of the positive part of s[(2) inside the
Beilinson-Lusztig-MacPherson idempotent form of the quantum group, since their
construction effectively includes idempotents indexed by the weight lattice ¢ € Z.
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