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Geodesic period integrals of eigenfunctions on
Riemannian surfaces and the Gauss-Bonnet
Theorem*
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We use the Gauss-Bonnet theorem and the triangle comparison
theorems of Rauch and Toponogov to show that on compact Rie-
mannian surfaces of negative curvature period integrals of eigen-
functions ey over geodesics go to zero at the rate of O((log \)~1/2)
if A are their frequencies. As discussed in [4], no such result is
possible in the constant curvature case if the curvature is > 0.
Notwithstanding, we also show that these bounds for period in-
tegrals are valid provided that integrals of the curvature over all
geodesic balls of radius r < 1 are pinched from above by —&r" for
some fixed N and § > 0. This allows, for instance, the curvature
to be nonpositive and to vanish of finite order at a finite number
of isolated points. Naturally, the above results also hold for the
appropriate type of quasi-modes.
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1. Introduction and preliminaries

Using Kuznecov formulae, Good [6] and Hejhal [7] showed that if ., is a
periodic geodesic on a compact hyperbolic surface M then

(1.1) ‘/ ex ds‘ <C,,..,
.

per

with ds denoting arc length measure on v,., and with ey denoting the L?-
normalized eigenfunction on M, i.e.,

—Agey = Aey, and / |e,\]2 dvy, =1.
M
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Here A, denotes the Laplace-Beltrami operator on (M, g) and dVj is the
volume element.

This result was generalized by Zelditch [15], who showed that if \; are
the eigenvalues of \/—A, on an compact Riemannian surface and if a;(vper)
denote the period integrals in (1.1) for an orthonormal basis of eigenfunctions
with eigenvalues A; then

> 1ai(vper) [P = ¢y, A+ O(1),
A <A

which implies (1.1). Further work for hyperbolic surfaces giving more infor-
mation about the lower order terms in terms of geometric data for e, was
done by Pitt [9]. Since the number of eigenvalues that are smaller than \ is
O()\?), this asymptotic formula implies that, on average, one can do much
better than (1.1). The problem of improving this upper bound was raised
and discussed in Pitt [9] and Reznikov [10].

In an earlier joint paper of Chen and the first author [4], it was pointed
out that no improvement of (1.1) is possible on compact two-dimensional
manifolds of constant non-negative curvature. For instance, on S?, the inte-
grals in (1.1) have unit size if ype, is the equator and ey is an L2-normalized
zonal function of even degree. Also on T2, for every periodic geodesic, Yper,
one can find a sequence of eigenvalues A\, and eigenfunctions ey, so that
ex, = 1 on yper and [ley, || z2(r2) ~ 1.

Despite this, in [4], it was shown that the period integrals in (1.1) are o(1)
as A — oo if (M, g) has strictly negative curvature. The proof exploited the
fact that, in this case, quadrilaterals always have their four interior angles
summing to a value strictly smaller than 27. This “defect” (see Figure 2) al-
lowed the authors to obtain o(1) decay for period integrals using a stationary
phase argument involving reproducing kernels for the eigenfunctions.

The purpose of this paper is to improve this result in two ways. First,
even though there can be no decay for period integrals for the flat two-torus,
we shall obtain decay if the curvature K = K, of (M, g) is assumed to be
non-positive but allowed to vanish at an averaged rate of finite type in the
sense that whenever B, C M is a geodesic ball of radius » < 1 (and arbitrary
center) we have that

(1.2) /<KM@§—MM r <1,
B,

for some fixed § > 0 and N < oco. Of course if K < —§ everywhere then
we can take N = 2 in (1.2) (and possibly have to replace § by a multiple
of itself). Condition (1.2) holds, for instance, if the curvature is negative
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off of a finite collection of points where it vanishes to finite order. Besides
this improvement, we shall also show that, under the assumption (1.2), the
period integrals in (1.1) are O((log A\)~/2).

To be more specific, our main result is the following.

Theorem 1.1. Let (M, g) be a compact two-dimensional boundaryless man-
ifold. Assume that its curvature satisfies (1.2). Then if y(t) is a geodesic in
M parametrized by arc length and if b € C5°((—1/2,1/2)) we have for A > 1

(1.3 | [s0ex6) dt| < Curgliog )7,

where Cyrp depends on M and b, but not on . Additionally, if Yper is a
periodic geodesic and if |Yper| denotes its length then for A >1

(1.4) ‘/ ex ds‘ < Ot |per| (log A) 712,
Yper

where Cyy depends only on (M, g).

If one uses a partition of unity argument, it is clear that (1.3) implies
(1.4). So we only need to prove the former.

The broad strategy will be similar to the earlier work of Chen and the
first author [4]. We shall need to refine the stationary phase arguments used
there a bit and use the Gauss-Bonnet theorem to exploit the aforementioned
“defects” of quadrilaterals that arise in these arguments, which allow one to
obtain favorable control of lower bounds for first and second derivatives of
the phase functions occurring in the stationary phase arguments (unlike in
the case of the two-torus).

This paper is organized as follows. In the next section we shall show that
we can prove (1.3) by estimating integrals over geodesics in the universal
cover of (M, g) that arise from reproducing kernels for eigenfunctions. We
shall also see here that (1.3) also holds when the eigenfunctions are replaced
by appropriate types of quasi-modes. In §3, using the Gauss-Bonnet theorem
and triangle comparison theorems, we shall collect the geometric facts that
we shall need for our estimates. In §4 we shall derive some simple one-
dimensional stationary phase estimates that will be needed for our proof.
In the next section, we shall use the Hadamard parametrix to show that
the oscillatory integrals that we need to estimate lend themselves to these
stationary phase estimates. We shall also show that we can get favorable
bounds for first and second derivatives of the phase functions using the
aforementioned geometric facts. In the final section we put things together
and finish the proof of our main estimate (1.3).
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In what follows, as we may, we shall assume that the injectivity radius
of (M, g) is ten or more and that its nonpositive curvature is pinched below
by —1,ie., -1 < K <0.

2. Hadamard’s theorem and a standard reduction

To prove (1.3) let us first fix a real-valued function p € S(R) satisfying
p(0)=1 and p(r)=0, |7]>1/4.

Then since p(T'(A — /—Ay))ex = ey, for any T' > 0, in order to prove (1.3)
it suffices to show that we can choose T'= T'(\) so that for A > 1 we have
the uniform bounds

21) | [HO(6TO - V=EDN O] < Cury (0g )72 2200,
To do this we shall take
(2.2) T = clog A,

where ¢ = ¢py > 0 is a small constant depending on (M, g).
Let {e;} be an orthonormal basis of eigenfunctions with eigenvalues {\; },
and let

Eif = (f,ej)ej,

denote the projection of f € L*(M) onto the eigenspace with eigenvalue \;.
Then since p(7) > 1/2 for |7| < 6, some 6 > 0, clearly (2.1)-(2.2) imply that

23) | [HOGTO = VB5)xr- ey s o 1) (0 |
< Carp (log A) ™2 [ £l 2y
if

X[A—(log A)~ 1 M -(log A) 1] = Z E;f
[IA=X;|<(log A)—1

denotes the projection of f onto a spectral band of width (log \)~! about \.
Using standard arguments (see [14]) one sees from this that we have

(2.4 | 3000t < Cunatios )7,
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for quasi-modes ) satisfying
(2.5) (log A/ A)[(Ag + M) Unl| 2 (ar) + @Al L2(ary < 1

with A > 1. Of course (2.4) implies that when (2.5) holds we also have the
following analog of (1.4)

(2.6) ‘/ Uy ds‘ < Cur|per| (log \) /2
.

per
if Yper is a periodic geodesic in M.

To set up the proof of (2.1) we first note that the kernel of the operator
there is given by

p(TOA = /=8y)( Z p(T ej(@)e;(y).
By Schwarz’s inequality, we would have (2.1) if we could show that
2
|| [0 32 o= 0) es0@)sm e avi) < Coastios )™,
A> 1

By orthogonality, if x(7) = (p(7))?, this is equivalent to showing that if
bt 5) = b()b(s) € C((—1/2,1/2)%),
then

@) | [ [ 865 X AT O~ A ()G deds | < Copalog 2)
J

if A> 1.
Note that

SOXTO = A)es@)e ) = = [ R(/T)e™ (e V55 () dr.
- 27T

As a first step in the proof of (2.7) fix a bump function § € C§°(R) satistying

B(r)=1, |7| <3 and B(r)=0, |7| >4.
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Then the proof of Lemma 5.1.3 in [11] shows that, because of our assumption
that the injectivity radius of (M, g) is ten or more, we can write

(28) T/ﬁ /T (e V2) (2, y) dr

A\L/2 ‘
= " D ax(Nidg(w, )W 1+ O(1/T),
+

if d, denotes the Riemannian distance on (M, g), where

dJ .
2.9 —ar(N7) | < Cor~3712 if ¢ > )\_1,
dri J
.
and
(2.10) las(A; )] < CAY2 if 0<r <AL

Since dgy(y(t),v(s)) = |t —s|, we conclude from (2.8) that we would have,
for a given ¢ > 0,

(2.11) 27TT‘ /// t,s) x(t/T)e ZT>‘( _”\/T)(y(t),v(s))detds
< Cp s (log N7 if T = clog ),

if
A2 / / b(t, 5)e= N las (O [t — s|) dtds | < Ciar.

Since the latter estimate is a simple consequence of (2.9) and (2.10), we
obtain (2.11).

In view of (2.11), we conclude that we would have (2 7) if we Could
obtain the following bounds for the remaining part of x (7' NEAY)

%LT)/// b(t,s) (1= B(7)) X(7/T)e™ (6—1‘7\/—7@,) (v(t),v(s))desdt‘
< Cp n(log /\)_1,

if T is as in (2.2). Note that for 7' > 1 we have the uniform bounds

1T (A+A)) < —N _
27rT(/ {(r/T)e dr| <O+ A +X)7Y, N=1,2,.
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and so, since A\; > 0 and A > 1,

212) 5| [ B/ V) (0,29 dr
<Cy(1+MNN N=1,2,....

Thus, by Euler’s formula, to prove (2.12), it suffices to show that if T" is
as in (2.2) (for an appropriate choice of ¢ = ¢ps > 0) we have

(2.13) ’/// b(t,s)(1 — B(T)))Z(T/T)e”)‘ (cosTv/—Ag) (¥(¢),7(s)) drdtds

< Cypum-

Here (cosTy/—Ay)(z,y) is the kernel for the map C*(M) > f — u €
C*®(R x M) solving the Cauchy problem with initial data (f,0), i.e.,

(02— Ag)u=0, u(0,-)=Ff, 0-u(0,-)=0.

To be able to compute the integral in (2.13) we need to relate this wave
kernel to the corresponding one in the universal cover for (M, g). Recall that
by a theorem of Hadamard (see [5, Chapter 7]) for every point P € M, the
exponential map at P, expp : TpM — M is a covering map. We might as
well take P = 7(0) to be the midpoint of the geodesic segment{vy(t) : |t| <
%} If we identify Tp M with R?, and let x denote this exponential map then
k : R? = M is a covering map. We also will denote by § the metric on R?
which is the pullback via x of the metric g on M. Also, let I' denote the
group of deck transformations, which are the diffeomorphisms « from R? to
itself preserving k, i.e., Kk = Kk o a. Next, let

Dpir = {7 € R?: d5(0,9) < d3(0, (7)), Yo € T, « # Identity}

be the Dirichlet domain for (R?, g), where dj( -, -) denotes the Riemannian
distance function for R? corresponding to the metric §. We can then add to
Dpir asubset of 9D p;, = Dp;-\Int (Dp;,.) to obtain a natural fundamental
domain D, which has the property that R? is the disjoint union of the a/(D)
as « ranges over I' and {§ € R? : d3(0,9) < 10} C D since we are assuming
that the injectivity radius of (M, g) is more than ten. It then follows that
we can identify every point € M with the unique point £ € D having
1

the property that x(2) = z. Let also 7(t), |t| < 5 similarly denote those

points in D corresponding to our geodesic segment (), |t| < % in M. Then
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{3() : |t] < %} is a line segment of unit length whose midpoint is the origin,
and we shall denote just by 4 the line through the origin containing this
segment. Note that 4 then is a geodesic in R? for the metric §, and the
Riemannian distance between two points on 4 agrees with their Euclidean
distance. Finally, if Aj denotes the Laplace-Beltrami operator associated to
g then since solutions of the above Cauchy problem for (M, g) correspond
exactly to periodic (i.e. I-invariant) solutions of the corresponding Cauchy
problem associated to 07 — Az, we have the following important formula
relating the wave kernel on (M, g) to the one for the universal cover (R?, g):

(2.14) (cosTv/—=Ag)(z,y) = Z (cosT/—Ag)(Z, (7))

ael’

Due to this formula, we would have (2.13) if we could show that for T
as in (2.2),

(2.15)
Z’ /// b(t,S)(l—ﬁ(T)))A((T/T)eiTA(COS T —0g)(3(t), a(5(s))) drdtds
ael’

< Cpm-

By Huygens principle, (cos T /—Ag) (,9) = 0if d3(Z,y) > 7, where dj
denotes the Riemannian distance on (R?, ). Since x = p? our assumption
that p(7) = 0 for |7| > 1/4 means that the integrand in (2.15) vanishes
when |7| > T'/2. Therefore, since there are O(exp(CyT')) “translates” of
D satisfying d3(D, a(D)) < T, we conclude that the sum in (2.15) involves
O(exp(CyT)) nonzero terms. Based on this, we conclude that we would
have (2.15) if we could prove the following.

Proposition 2.1. Given our (M, g) satisfying (1.2) we can fix ¢ = cpr > 0
so that we have for X > 1

(2.16)
‘// b(t,s)(1 — B(T))X(T/T)ei”(cosn/—Ag)(’?(t),a(’y(s))) drdtds
< Cou A if T =clog),

for some dpr > 0 which depends on M but not on b or \.

The power dp; in (2.16) depends on the power N in our assumption
(1.2). As we shall see we can take it to be 1/10N.
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3. Geometric tools

In this section we are working with R? equipped with the metric § which is
the pullback of the metric g on M via the covering map. Thus, if K denotes
the Gaussian curvature on (R?,§) and if B.(%) denotes a geodesic ball of
radius 7 centered at some ¥ € R?, our curvature assumption (1.2) on (M, g)
lifts to

(3.1) Kdv < =6, if r <1, and 7 € R?,
B,.(%)

for some 6 > 0 and N > 2.

To prove our estimates for period integrals over geodesics we shall re-
quire a couple consequences of elementary results from Riemannian geom-
etry. One is based on (3.1) and the Gauss-Bonnet theorem. As we pointed
this assumption is valid when the curvature on M is pinched from above
by a negative constant but allows situations where the curvature is nonpos-
itive and vanishes on lower dimensional sets. The other result is based on
Togonogov’s theorem and the fact that we are assuming that the curvature
on (M, g) and hence on (R?,§) is pinched below by —1.

Let us now state the two geometric results that will play a key role in
our analysis.

Proposition 3.1. Let 41(t) and A2(s), |s|, |t] < 1/2 be two unit length
geodesics in (R%,§) parameterized by arc length satisfying dz(31(t), 2(s)) >
L, |t], |s| < 1/2. Suppose that there is a (to,so) € [-1/2,1/2] x [-1/2,1/2]
so that the geodesic through 41 (ty) and J2(sp) intersects 41 with angle 6y,
and 2 with angle 05, (see Figure 1) and suppose further that

(3.2) 01,05, € [1/2 = N3, /2.
Then if
(3.3) g0 =1/5N

where N is as in (3.1) and if X is larger than a fixed constant

(3.4) max(m/2— 0, 7/2—0,) > ATHA,
if t,s€[-1/2,1/2] and max(|t — to|, |s — so|) > A7,

if 0y denotes the intersection angle of 41 and the geodesic through 4 (t) and
A2(8) and 6 denotes the intersection angle of this geodesic and As.
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Figure 1

The other proposition that we need is the following simple consequence
of Toponogov’s theorem which was used in earlier joint work of the first
author and Blair [2].

Proposition 3.2. As above assume that the Gaussian curvature of (R?, §)
satisfies

K> —1.
Let A(t), t € R, be a geodesic with 5(0) = Py. Given T > 1, let C(0;T),
0 < 1, denote the set of points QQ € Bp(Py) which lie on a geodesic though
Py which intersects 4 of angle < 6. Thus, C(0;T) is the intersection of the

geodesic ball Bp(Py) of radius T about Py with the cone of aperture 6 about
v with vertex Py. Then if 0 <r <1 and, if

Tr(3) = {z € R?: dg(,7) <1}
denotes the tube of radius r about v, we have that

sinh %r
sinh T’

(35)  C(Or,;T)CTr(7), if singp, = if T >0.

To prove Proposition 3.1 we shall use a couple of special cases for the
Gauss-Bonnet theorem (see [5]) concerning the sum of the interior angles «;
for geodesic quadrilaterals @ and geodesic triangles 7 in (R?, g). In the first
case we define the “defect” of (), Defect @), to be 27 minus the sum of the
four interior angles at the vertices, and in the case of 7, we define Defect T
to be m minus the sum of its three interior angles, as shown in Figure 2.
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/N A\

—/ KdV=2mr— (oq + as + a3 + au) —/KdV:w—(ozl—s—az—ﬁ—a;;)
Q T

Figure 2: Gauss-Bonnet Theorem

Then, by the Gauss-Bonnet theorem we have

Defect Q = —/ KdVv
Q

Defect T = —/ K dV.
T

Proof of Proposition 3.1. Suppose that, for a given (to, so) € [—1/2,1/2] x
[—1/2,1/2], (3.2) is valid. By symmetry it suffices to show that the conclu-
sion in (3.4) is valid if we assume that ¢t € [—1/2,1/2]\ (to — A™%°, to+ A~%°)
and |s| < 1/2. If s # sg there are two cases as shown in Figure 3: Either
the geodesic segment connecting 7 (tg) and 42(sp) and the one connecting
71(t) and A2(s) do not intersect or intersect. In the first case we obtain a
geodesic quadrilateral @ with vertices 1 (to), ¥1(t), ¥2(s0) and A2(s), while
in the other case we obtain two geodesic triangles using those four points
and the intersection point of the aforementioned geodesic segments. To reach
this conclusion we are using the fact that since we are assuming K < 0, two
geodesics in (R?,§) are disjoint or intersect at exactly one point by the
Cartan-Hadamard theorem.

In the first case, let oy, a, a5, and o denote the interior angles of the
geodesic quadrilateral @ at vertices 1 (to), Y1(t), Y2(s0) and A2(s), respec-
tively. Note that ay = 6, if 0 < oy < 7/2 and 6; = m1—ay if oy € (7/2,7), etc.

As we mentioned before, by the Gauss-Bonnet theorem

(3.6) Defect Q = 2w — (v, + a4 aisy + ) = —/ Kdv.
Q
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As in Figure 3, if we consider the geodesic ball, B,, r = A7 /100, which is
tangent to 41 at 41((t + to)/2) and on the same side of 4; as @, it follows
that, if X is larger than a fixed constant depending on the metric, we have
B, Cc Qif ay ¢ (0,7/4) U (37/4, 7). We may make this assumption since
otherwise we have 7/2 — 6; > m/4 > A~Y/% Thus, in the nontrivial case
where ay ¢ (0,7/4) U (37/4, ), since K < 0, we have for large enough A

Defect Q > —/ KdV > 6)\Neo = 5)\—1/5’
B.

for some § > 0 by (3.1). Since we are assuming (3.2) we must have
1T/2 — ag,|, |7/2 — ay,| < A~/? and therefore

(/2 — ag) + (1/2 —ag) > OATV/P 20713 > SN0 if A > 1,
which of course implies that
(3.7) max(7/2 — 0, 7/2 — 05 ) > A\7V4,

if A is larger than a fixed constant which is independent of our two geodesic
segments y; and 7s.

As noted before, the other case where s # sy and [t — tg] > A7%° is
where the geodesics connecting 71 (tg) and 42(sg) and the one connecting
A1(t) and A2(s) intersect at a point P. Then as in the second case Figure 3
we shall consider the geodesic triangle 7 with vertices 41 (to), 71(¢) and P.
If ay,, oy and ap are the corresponding interior angles for 7, as before, we
may assume that oy ¢ (0,7/4) U (37/4,7), for, if not, (3.7) trivially holds.
Then, as in Figure 3, if A is large enough the geodesic ball B,., r = A7¢° /100,
which is tangent to 41 at 41((t + t9)/2) and on the same side as 7 must be
contained in 7T if A is larger than a fixed constant depending on the metric.
Therefore, by the Gauss-Bonnet theorem

ﬂ—(at0+at+ap):—/ Kdvz—/ KdV > oxNeo = sA~1/5,
T B.

Therefore, by our assumption (3.2) and a variation of the earlier argument
7)2 — (ap +ap) > INTV5 i A1
Since ap > 0 this means that we must have

= € (0,2 —AT5) (0,2 — ATV if A1,

and so (3.7) is valid in this case as well.
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1 to to+ A t;to ¢ M te to+A @ t+to .
2
Defect Q = —/ KdV> —/ KdV Defect T= — / Kdv> —/ Kdv
JQ JB, JT JB,
Nonintersecting case Intersecting case

Figure 3: Two cases

The one remaining case to consider is where s = sg and |t — to| > A7%°.
One obtains (3.7) for this case as well by using this argument but with 7
now being the geodesic triangle with vertices 71 (to), 71(¢) and F2(s¢), which
completes the proof. [

Even though Proposition 3.2 was proved in [2], for the sake of complete-
ness we shall give its simple proof now.

Proof of Proposition 3.2. Recall that we are trying to show that

sinh %T

C(07,;T) C Tr(%), if sinibr, = o

We shall work in geodesic normal coordinates about Py and we may assume
that, in these coordinates, ¥ = {(¢,0) : ¢t € R}. C(6;T) then is the inter-
section of the geodesic ball of radius 7" > 0 about our origin with the cone
of aperture 6 about 4. Also, 7,(%) denotes the closed tube of fixed radius
0 <r <1 about 7.

Since, for fixed r, T" — 67, is monotonically decreasing, it suffices to
show that a point Q with coordinates Tw, w € S"~!, belongs to 7,.(7) if the
angle, <(w, (1,0)), is < O7,. In other words, to obtain (3.5), it suffices to
show that

(3.8) (T;0r,) C Tr (%),

if 3(7T,0) denotes all points @) with coordinates Tw satisfying <((w, 1) < 6,
with 1= (1,0).
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Clearly >(7;6) C 7-(5) when 6 is very small (depending on T'). So
choose the maximal O, < 7/2 so that ¥(T;6) C 7,(7) when 0 < 6 < Or,.
It follows that there must be a point ) with coordinates, Twy, satisfy-
ing <(wg,1) = Or, and dg(Q,%) = r. Also, (3.8) is valid when 67, is
replaced by ©7,. So we would have (3.5) and be done if we could show
that

(39) @T,r > OT,’I"

At this point, we shall use Toponogov’s theorem. First consider the
geodesic triangle, A%T S in (R2?, §) with vertices Q and the point with coor-
dinates 0 and the poinf P with coordinates (7',0). It is an isosceles triangle
since the geodesics connecting the point with coordinates 0 with P and @,
respectively, each have length 7T". The point P lies on 7 and hence if 7, is
the third side of our geodesic triangle, which connects P and (), we must
have that its length, ¢(7,p,) satisfies

E(%pp) = dé(Pa Q) >,

since, as we pointed out before, we must have d3(Q,7) = r. The angle at
the vertex whose coordinates are the origin, by construction, is ©7,, and
the two sides passing through it each have length 7. The third side of our
isosceles triangle, Yopp, is called a “Rauch hinge”.

Consider as well, an isosceles triangle, Agim, in two-dimensional hy-
perbolic space, H?, having two sides of equal length T, angle Or, at the
associated vertex and “Rauch hinge” 7oy, with length ¢(v,pp). By Topono-
gov’s theorem (see [3, Theorem 2.2 (B)]), since we are assuming that the
sectional curvatures of (R?, §) satisfy —1 < K < 0, we must have

{(Yopp) = £(Yopp) = T

By properties of isosceles triangles in H?, the ray bisecting the triangle at

the vertex spanned by the two sides of equal length 7" must intersect the
. H?Z2 . . .

Rauch hinge, vopp € A@T’T, orthogonally at its midpoint. Consequently, by

hyperbolic trigonometry, we must have

sinh(¢(opp)/2) - sinh 17
sinh T — sinhT

sin %@T,r = = sin %9T,r-

Thus, (3.9) is valid and the proof of Proposition 3.2 is complete. O
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4. Stationary phase bounds

Let us now collect the bounds for oscillatory integrals that we shall use to
prove our bounds for smoothly localized integrals over geodesic segments
and period integrals. These are more precise variations of the ones used in
the earlier work of Chen and the first author in [4].

The first concerns estimates for one-dimensional oscillatory integrals
with natural lower bounds for first derivatives of the phase function.

Lemma 4.1. Suppose that ¢ € C*°((—1,1)), is real valued and that a €
C3(Z), where T C (—1,1) is an open interval and set

(4.1) I\ = / e q(t)dt, N> 1.

Suppose that

(4.2) 0pp| > ATV on T

and suppose further that for 0 < j < N = (45_1]

(4.3) 18¢'| < X/2 and |3 a] < C;N/? on T.
Then if 0 <6 < 1/2

(4.4) II(\)] < CA72,

where C' depends only on ¢ and the Cj.

As the following result says, we also can obtain favorable estimates for
one-dimensional oscillatory integrals if we do not have the above hypothesis
concerning lower bounds for the first derivatives of the phase, but rather
have related lower bounds for second derivatives.

Lemma 4.2. Set
(4.5) J(A) = / MO by dt, A>1,

where b € C3°(Z), where I is as above, and that ¢ € C*((—1,1)) is real
valued. Suppose further that 0 € Z,

(4.6) 1P/ (0)] < ATV and A2 < 10" (H)] < X2, ted,
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and that

(4.7) bl <1, ] <AV2

Then if 0 < § < 1/4 there is a constant C = Cy so that
(4.8) IJ(N)| < OA~Y/2H20,

Proof of Lemma /.1. Note that

LM — 0 g [ — L
Therefore, if L* denotes the adjoint of L, for every N =1,2,3,...,

(4.9) I\) = / e ((L*)Na)(t) dt.

—0o0

By a simple induction argument, one shows that (L*)"a is a finite linear
combination of terms of the form

crd N\ d\ B d \ Bx
A~N () ~2N+i (_) ‘ (_) ro (_) /
(¢') ) \g) ¢ =) 7
where j, 8,€1{0,1,2,...,N}, and K < N.
Therefore by (4.2) and (4.3) each of these terms is bounded by
CN)\fN)\(Qij)(l/Qf(S))\j/?)\N§/2 < CNA7N5/2.
This and (4.9) gives us (4.4). O
Proof of Lemma 4.2. Fix p € C*(R) satisfying
(4.10) lpl <1, p(t) =1, [t| <1, and p(t) =0, [t] >2.
Clearly
‘/ei)\ap(t) b(t) p()\l/2—26t) dt| < ax—1/2+25

and so it suffices to show that

J\) = / e b(1) (1 — p(AY27201)) dt

satisfies the bounds in (4.8).
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If we integrate by parts as in the proof of Lemma 4.1 and use (4.7) and
(4.10), we see that

(411) [T <A /

A-1/2425 <t <1

(IO o)1 = s\ 1)) |
+ b1 O 21" (1)) dt.
By the mean value theorem and (4.6), for large enough A > 1, we have

0/ (£)] > A2 = NTV2H0 > SN2 if e TN ATV <y < 1),

DO | =

Therefore, since we are assuming supp b C Z, by the second part of (4.6)
and by (4.7)
_ 1
IT(N)] < A—l/ (N2 NY2 7] 4 N/272) g
A—1/2+28

S )\—1/2—}—5/2 lnA—f— )\—1/2—3/25 + )\—1/2—5/2

< A~1/2426

as desired if A > 1. O
We can combine Lemma 4.1 and Lemma 4.2 to obtain the following.

Proposition 4.3. Suppose that ¢ € C*°(R) is real valued and that a €
C3(Z), where T C (—1/2,1/2) is an open interval. Suppose that for some
0<d<1/2

(4.12) AT <), tel.

Suppose further that for 0 < j < N = (45_1W

(4.13) 18 a(t)| < CjN/?

and that

(4.14) 070 < N2, tel.
Then

(4.15) \ / eM® o(t) dt | < CATY2H2

where C depends only on 6 and the above constants C;, j < [45*1]
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Proof. To see this, we note that if (4.2) is valid we can replace (4.12) by the
stronger bounds in (4.4). For the other case, where (4.2) is not valid, there
must be a point tg € T where |¢/(tg)] < A~1/?+%. We then get (4.15) from
(4.8) if we let the phase function ¢ in Lemma 4.2 be ¢(t —ty) and the bump
function b € C3°(Z — {to}) be a(t — o), completing the proof. O

5. Kernel bounds

To be able to use the results from the last two sections to prove Proposi-
tion 2.1 and thus complete the proof of Theorem 1.1 we need to calculate
the kernels in (2.16), i.e,

(5.1) Kra(z,y) = /(1 — ,B(T)))Z(T/T)e”)‘(cos T\/I) (z,y)dr.

Here, since all the calculations from now on will be taking place in the
universal cover, to simplify the notation, we are setting A = Ajz. Also, in
what follows ALY and Aév will denote N powers of the Az with respect to
the x and y variables, respectively.

Recall that the bump function S in (5.1) is supported in (—4,4) and
equals one on [—3,3] and that x(r) = 0 for |7| > 1/2. Also recall that
we are assuming, as in (2.2), that T = clog A where ¢ = c¢)s is a small
positive constant that will be specified later on. Using this and the Hadamard
parametrix we shall obtain the following useful result.

Proposition 5.1. Ifdg > 1 and A > 1 we can write

(52) KT,)\('Ta y) = )‘1/2 Z a+ (T7 )\7 xz, y)eii)\d?7 (@.9) + RT,)\('Ta y)a
+

where

(5.3) lax (T, X; z,y)| < C,

and if £ =1,2,3,... s fived
(5.4) Alas (T, Xz, y) = O(exp(Codz (2, y)))
or

(5.5) Ajas (T, A;z,y) = O(exp(Cydy(z,y))),



Geodesic period integrals of eigenfunctions 141

and
(5.6) |Rra(z,y)| < A7

provided that the constant ¢ > 0 in (2.2) is sufficiently small. Also, in this
case we also have

(5.7) Kra(z,y) = 0N, if dg(x,y) < 1.

Let us first handle the case were dj(x,y) > 1 since proving (5.7) will be
much easier than proving the first part of the Proposition. Since cos 7v/—A
is self-adjoint, we only need to show that K7 can be written as in (5.2)
where the amplitudes satisfy (5.5) and the remainder term is as in (5.6).

To prove this we shall use the Hadamard parametrix as in Bérard [1].
As was shown there we can write for |7| > 1

(5.8)
(cosTV=A)(z,y) = > a;(x,y) / e @I 7119|1273 df + R(r, 2, y),

—0o0

j=0
where d = dz(z,y),

(5.9) ap(z,y) =0(1) and «o; = O(exp(Cid)), j=1,2,...,
and

(5.10) |AY o] = O(exp(Cnd)), j=0,1,..., N=1,2,...,
and, if m is large enough?,

(5.11) | R(,z,y)| = O(exp(Cd)), j=0,1,2.

In the above Fourier integrals we regularize the powers of |f| near the origin
at the expense of smooth errors that can be absorbed in the remainder term.

The fact that the first coefficient, ag, in the Hadamard parametrix is
bounded here is well known (see [12]) and was used, for instance, by the
first author and Zelditch in the related work [13]. It is a consequence of the

1Strictly speaking Bérard [1] only stated this sort of bound for R itself in (42)
on p. 263. The proof of this particular pointwise estimate for the remainder was
based on energy estimates. If one includes sufficiently many terms in (5.8) and uses
higher order energy estimates one can obtain bounds like (5.11). (See also [12].)
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Giinther comparison theorem and our assumption that K < 0. Bérard [1]
proved the other bounds (5.9)—(5.10) and used them, along with energy
estimates, to obtain bounds of the form (5.11) for the remainder term in the
parametrix.

If we change variables we can rewrite (5.8) in the more useful form

(5.12) (cosTV—A)(z,y) = / =m0y (7 2,9, 0) dO + R(r, x,y),

where the remainder term is as before and where

(5.13) |0905q(r,2,y,0)| < Cj [+ 02 F (L +d +|r]) ™
+exp(Cd)(1+10) V> A+ d+|r)) 7], if d+ |7 > 1,

as well as

(5.14)  |A05q(T, 2, y,0)| < Cireexp(Ced)(1+ 1) (1 +d+ |7[) 7,
if d+ 7] > 1.

Since x(7/T) = 0if |[7| > T'/2, it is clear that by (5.11) and an integration
by parts argument

/(1 — B(T)))%(T/T)@”AR(T, x,y)dr = ON 2 exp(CT)),

and thus this term can be made to satisfy the bounds in (5.6) if "= clog A
with ¢ > 0 sufficiently small.

On account of this, if we plug the main term in (5.12) into (5.1), we
would have the first part of the proposition if we could show that
(5.15)

[ ] @ BRI (5, 6) dbdr = NN
0

—0o0

and
(5.16)

0 0o
/ / (1 — B(T)))A((T/T)e”)‘ew(d+7)q(7', x,y,0)dodr = A/2e=iMdg

where a4 satisfy the bounds in (5.3) and (5.4).
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To see this for (5.15) we note that the left side can be written as

)\I/Zei)‘d[/\_lm/ / (1—B(T)))Z(T/T)ei(e_)‘)(d_T)q(T,m,y,@) dodr |.
0 —00

Thus, if we set a; to be the term inside the square brackets, we can use
(5.12) and integration by parts argument to see that

lar] < CATY/2 //(1 +10 = A)"2(1+|d—7))"2(1 +|0))/? drdo

+ Cexp(Cd)A—2 //(1 F10 = A)"2(1+ |d— 7)"2(1 + 0)) "2 drdd
< C(1+exp(Cd)A™1).

This yields the bounds in (5.3) for a4 if T' = clog A with ¢ > 0 small enough
since K(z,y) =0 if dg(x,y) > T. If we repeat this argument and use (5.14)
we also obtain the bounds in (5.4) for a4 since

(5.17) Aydg(z,y) = O(exp(Cedy (2, y)))

(which also follows from estimates in the appendix in Bérard [1]). Since
the same argument shows that (5.16) is valid with a_ satisfying these two
bounds, the proof of the first part of Proposition 5.1 is complete.

To prove (5.7) we recall that the factor (1 — (7)) = 0 if |7| < 3 and
so the bounds in (5.13) and (5.14) hold on the support of the integrals in
(5.15)—(5.16). Since |[d— 7| > 1 as well on the support if as in (5.7), d < 1, we
conclude that (5.7) follows from a simple integration by parts argument. [J

Note that (5.7) implies that the estimate in Proposition 2.1 is valid when
« is the identity map. To handle the other nonzero summands in (2.16) we
note that the kernel coming from the 7-integration is K x(%(t), a(7(s)))
with [¢|, |s| < 1/2. Our assumption that the injectivity radius of M is ten
or more insures that dz(7(t), «(5(s))) > 1 in this case if o # Id and so we
can use (5.2)—(5.6).

We shall need more information about the phase functions

(5.18) ¢ast, s) = dg(Y(t), (7(s)))

that arise from (5.2). Specifically, we shall require the following.
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Proposition 5.2. Let ¢p(a;t, s) be as in (5.18) with o # Id. Then for each
Jj=1,2,3,... there is a constant C; so that

(5.19) [0 p(ast, s)| + [0 (e t, s)| < exp(CyT),
if max{dz(3(t),a(3(s))) : [t], |s| <1/2} < T.

Moreover, we have the uniform bounds

(5.20) Bds6(ast,5)| < C.
Additionally,
(5.21) 97 ¢(asto, s0) > exp(=CT), if dg(3(to), a(3(s0))) < T

for some C' if
(5.22) |0rp(ev; to, 50)| < 1/4.

The bound in (5.19) for & ¢ follows from (5.17). Since ¢(a;t,s) =
dz(7(s), = (%(t))), the bound for 8¢ also follows from (5.17).

To prove (5.20) we may work in geodesic normal coordinates about 7(t),
with 4 being the first coordinate axis in these coordinates. Write a(%(s)) =
(z1(s),x2(s)) in these coordinates. Then

%(a;t,s) = —xl(s).

ot

Thus
9% _ 21(8) [ (23 (s) + 23(s))] _da(s) O((s)))
Otds |z(s)]? |z (s)]
since our assumptions give |z(s)| > 1. Consequently we would have (5.20) if
we could show that

(5.23) i (s)] = O(1).

To do this we note that since « is an isometric mapping a(%(s)) = z(s)
must be a geodesic. We recall that if

2
p(a,&) = | > g (@)&

Jk=1
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where ¢/% is the cometric, i.e., ¢g/% = (gjk)_l, then by the Hamilton-Jacobi
formulation of unit speed geodesic flow (see, e.g. §2.3 in [12]) we must have
that
. Op
z(s) = 8—6(33(8),5(3)), where p(z(s),&(s)) = 1.
Therefore, to get (5.23) it suffices to show that in our geodesic coordinate
system

2 2
(5.24) D g <1 it ) g @)ga =1
j=1 k=1

After a rotation U

Uy’ (2)U = diag(1,|g| ™),
where |g| = det(g;r(x)). By volume comparison estimates since we are as-
suming that K < 0 in (M, g) and hence in (R?, §) we must have that |g| > 1

since we are working in geodesic normal coordinates about ~(t).
If ¢ = Un then

2

(5.25) Yo dt@EE =1 = nitlgl =1
k=1

Thus, since [g] > 1
2 ; 2 ; 2
= [(¢’"(2))Un|” = |U'¢?*(x)Un|

=%+ |g| 72 n3 <%+ |g)tn3 < 1,

| (97" (2))¢]

as desired, which completes the proof of (5.23) and (5.20).

To prove (5.21) we shall again work in geodesic normal coordinates, this
time about 4(tg), again with 4 being the first coordinate axis. Then, as
before

99 a;to, s :—Il(s)
(o0 = 7

ot
where 65,(tg) € [0,7) denotes the intersection angle of the geodesic ray
A(t), t > to with the geodesic ray starting at J(tp) and passing through
x(sg) = a(J(s0)). See Figure 4. For At > 0 small, as in this figure, consider
the angle 05, (to + At) formed by the geodesic ray (t), t > tg + At and the

= —cos s, (to),
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geodesic ray passing through 7(tg+ At) and «(5(sg)) as in the Figure. Then

82(25 . . . 050 (tO + At) — 980 (to)
W(&’ to, So) = sin(fs,(t0)) Al;r{lo A7 :

Our assumption (5.22) means that sin 6y, (tp) > 1/10 and so

0% . O, (to + At) — 05, (o)
oz (@ito,s0) & lim g At -

Since K < 0, by the Rauch comparison theorem (see [8]), if A8 denotes the
angle of the aforementioned rays through «(5(sg)) as in Figure 4, then we
must have

AG + 0, (to) + (T — b5, (to + AL)) <,

since m — 05, (tg + At), 0s,(tp) and Al are the three interior angles for the
triangle with vertices (to), ¥(to + At) and a(7(so)). Thus,

9% . O, (to + At) — 05, (to) - Af
- r . % 0 0 > —
oz (@ito,s0) & lim N > dimo A

By Proposition 3.2, we must have that A > sinh(At¢/2)/sinh T', which leads
to (5.21) and completes the proof of Proposition 5.2. O

We also need the following simple consequence of Proposition 3.1, which
was based on our assumption (1.2).

Proposition 5.3. Let ¢(«;t,s) be is as above with o # Id. Then if for
to,s0 € [—1/2,1/2] and A > 1

(5.26) ’V@sqb(a;to, 80)| < S\TUB,

N |

it follows that if €y is as in (3.3), we have

1
(5.27) |Visop(ast,s)| > 5)\_1/4,
if max([t —tol, |s — s0]) = A7 and |t],|s| < 1/2.
By the above arguments |0:¢(a;t, s)| = cosf; and |0s¢(a;t, s)| = cos s

where 6; and 6, are as in Proposition 3.1. From this one immediately sees
that Proposition 5.3 follows from Proposition 3.1. L
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I Voo

dy (B0 (to + A)) = At

950(750 + At)

ol
AO> b p & sinh(; At)

CllrasT) sinh T’
/

Figure 4: Bounding Hessian from below

6. End of proof of period integral estimates

In this section we shall complete the proof of Proposition 2.1 and hence that
of Theorem 1.1. We need to verify that we can fix ¢ = ¢p; > 0 so that for
A > 1 (2.16) is valid for some dp; > 0. We shall take

5M:80/2

where 0 < g9 < 1/10 is as in (3.3) and (5.27).
As we pointed out earlier, we know that (2.16) is valid when « = Id.
Hence it suffices to show that all the other nonzero terms there satisfy

(6.1) ‘ // b(t, s)Krx(3(t), a(5(s))) dtds ‘ < Cb,M)\_EO/27
if T = cpslog A with ¢py > 0 small enough. Recall that b € C§°((—1/2,1/2)?).

In view of the estimate (5.6) for the remainder term in (5.2), it suffices
to show that

(6.2) >\1/2‘ / / b(t, s)ax (T, \;7(t), (F(s))) X089 drds | < Gy p A0/



148 Christopher D. Sogge et al.

under the above assumptions with ¢(a;t, s) = dg(7(t), a(7(s))) as in Propo-
sitions 5.2 and 5.3. As noted before, we have ¢(a t, s) dz (a1 (F(t)),7(s)).

i
Also since (cosT\/=Az)(z,y) = (COST\/ Ag)(a~ (a:),a L(y)), we have

that Krx(x,y) = KTA(a_l(a:),a_l(y)) and so

at (T, X7(t), a(3(s))) = ax(T, X, o™ (3(1)), 3(s)).

Therefore, by (5.4), (5.5) and (5.17) if T' = clog A with ¢ = ¢)r > 0
sufficiently small and if K7 does not vanish identically we have

(6.3) [0 d(ess, t)| + [ d(a; s, 1) + |0 alt, X (1), (3(s)))]
+ [ Halt, \;3(t), a(3(s))] < A8 with 1<j < [8¢,'].

We use £0/8 here since we shall eventually want to apply Proposition 4.3
with 6 = g¢/4.

To apply Proposition 5.3 and the stationary phase bounds from §4, we
shall consider two cases:

1. _
(6.4) [Viesd(oss, 1)) > S\ 31t |s| < 1/2,
and the complementary case where
1
(6.5) |Viso(a;to,so)| < 5)\_1/3 for some (tg,s0) € (—1/2) x (—1/2).

To show that (6.2) is valid under the assumption (6.4) we shall use a par-
tition of unity argument to exploit (6.3). Specifically, choose p € C§°((—1,1))
satisfying

oo

d pt—j)=1, teR

j=—o00

Then for m = (mq,mg) € Z? set
pm(t8) = p(A2t —my) p(A/2s — my).

It follows that Y., ;. pm(t,s) = 1 and that |07 pm| + [02pm| < C;N/2.
Also, py, is supported in a O(A~/?) size neighborhood about (tm,,s,) =
(A Y2m, A72my).  Assuming that this neighborhood intersects
(—1/2,1/2) x (=1/2,1/2) and that (f,,,5m) is in the intersection, by (6.4)
we must have that

|0k (0 i, 5m)| = 4>\ 3. or |05 (c; tm,5m)| > 4/\ 173,
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Let us assume the former since the argument for the latter is similar. By
(5.20) and (6.3) we must have that

|0cp| > %)\—1/3 — O()\_l/2)\80/4) — O()\_l/z) > %)\_1/3 on supp pPm
for large A since g9 < 1/10. Therefore, by Lemma 4.1, we have that
N2 / bt 5)pm (1, 5)ac (T, 3(E), a(3(s))) e e | < o A2,
Since pp(t,s) = 0 if |s — s;u| > CA™Y2, this in turn gives the bounds

N / / b(t, 5)pm(t, 5)a (T, X 3(E), a(3(s))) XA dids | < Cy o272

Since there are O(\) such terms which are nonzero, we conclude that when
(6.4) holds we obtain a stronger version of (6.2) where A\~%0/2 is replaced by
AL

To complete the proof, we must show that (6.2) is valid when we assume
(6.5). We shall use Proposition 5.3 for this (which makes use of our curvature
assumption (1.2)). To this end, let 8 € C§°(R) be as above, i.e.,

B(t)=1on [-3,3] and [(t) =0 for |[t| > 4.
We then obtain
| []1=80¢ -t B0 s—s0D) a5 (T X3 (1), a3 ) 24 dtas
< Cpe A2
by the previous argument since by (5.27)
1
Visplast,s)] = ATV4 i (1= B[t — to]) BN s — so])) # 0.
2
Thus, our proof would be complete if we could show that

(6.6)
(/ / BOClt—to) B s —sol)bi(t, 5) ax (T, X (£), a(F(s))) €M) dtds

S Cb M)\_EO/2_1/2-
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To do this, we note that, by (5.21), we have that when 7' = clog A with
c = cpr > 0 small,

07 d(ast,s)| = A7/% i SOOI — to]) BN |s — so]) # 0,

since our assumption (6.5) along with (6.3) and (5.20) ensure that (5.22) is
valid for such (¢, s). Therefore, by Proposition 4.3 with § = £¢/4, we have
that for each |s| < 1/2

)\1/2‘/5()\6°|t—t0’)5(>\80’5—30\)13(75,3) at (T, \;3(1), a(F(s)))eto(ets) gy
< Cp /2.

Since s — [B(A°|s—sp|) is supported in an interval of size &~ A™%° this implies
(6.6), which completes the proof. O
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