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Abstract

We establish a Sturm–Liouville theorem for quadratic operator pencils with matrix-valued potentials 
counting their unstable real roots, with applications to stability of waves. Such pencils arise, for example, 
in reduction of eigenvalue systems to higher-order scalar problems.
© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, motivated by recent results of [28] in a special case, we establish a general 
Sturm–Liouville problem for quadratic operator pencils with matrix-valued potentials on the 
half- or whole-line. Specifically, we consider eigenvalue systems on the half line,

y′′ + V (x)y = λf1(x)y + λ2f2(x)y; x ∈ R−, y ∈ Cn,

(c + φ(λ))y(0) − y′(0) = 0,
(1.1)
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and on the whole line,

y′′ + V (x)y = λf1(x)y + λ2f2(x)y; x ∈R, y ∈ Cn, (1.2)

where φ ∈ Mn(C) is a complex analytic matrix-valued function, the matrix c ∈ Mn(C) is Her-
mitian, φ(λ) is Hermitian for λ ∈R, and V, fj ∈ C(R, Cn×n) are Hermitian potentials. We also 
list the following assumptions:

(A1) The limits limx→−∞ V (x) = V− and limx→−∞ fj (x) = fj− exist, and V −V−, fj −fj− ∈
L1(R−), f1 > 0 and f2 ≥ δ > 0, and there is γ < 0 such that, for all μ ∈R and all λ ∈C,

det(−μ2 + V− − λf1− − λ2f2−) = 0 (1.3)

implies

�λ ≤ γ < 0. (1.4)

(A2) φ(0) = 0 and φ′(λ) < 0 for λ ∈ R+.
(A3) sign 
λ
φ(λ) ≤ 0 for all λ with �λ ≥ 0.3

(A4) The limits limx→±∞ V (x) = V± and limx→±∞ fj (x) = fj± exist, and V −V±, fj −fj± ∈
L1(R±), f1 > 0 and f2 ≥ δ > 0, and there is γ < 0 such that, for all μ ∈R and all λ ∈C,

det(−μ2 + V± − λf1± − λ2f2±) = 0 (1.5)

implies

�λ ≤ γ < 0. (1.6)

(A4) is related to problem (1.2); (A1), (A2) and (A3) are related to problem (1.1). Our partic-
ular interest lies in counting the number of real nonnegative eigenvalues of (1.2) and (1.1). As de-
scribed further in Section 6, quadratic eigenvalue problems (1.1)–(1.2) arise for example through 
reduction of a standard eigenvalue system to a higher-order system in a lower-dimensional vari-
able. As such, their stability has bearing on stability of traveling waves, calculus of variations, 
etc. In particular, reduction of a first-order 2 × 2 system to a second-order scalar problem can 
always be performed [14,28,29], in which case the assumptions of Hermitian coefficients, since 
they are real scalar, is automatically satisfied.

We consider at the same time the truncated eigenvalue problems

y′′ + V (x)y = λf1(x)y + λ2f2(x)y; x ∈ RL := (−∞,L], L ∈R,

y(L) = 0.
(1.7)

3 Here and elsewhere 
M for an operator M is defined as its skew-symmetric part 1
2 (M∗ −M). Note, for 
λ = 0, that 

φ(λ) since Hermitian, automatically satisfied 
φ(λ) = 0.
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Next, we introduce the corresponding operator pencils:

L−(λ) : dom(L−(λ)) ⊂ (L2(R−))n → (L2(R−))n,

L−(λ)y := y′′ + V (x)y − λf1(x)y − λ2f2(x)y, y ∈ dom(L−(λ)), x ∈ R−,

dom(L−(λ)) = {y ∈ (H 2(R−))n : (c + φ(λ))y(0) − y′(0) = 0}.
(1.8)

And

LL(λ) : dom(LL(λ)) ⊂ (L2(RL))n → (L2(RL))n,

LL(λ)y := y′′ + V (x)y − λf1(x)y − λ2f2(x)y, y ∈ dom(LL(λ)), x ∈ RL,

dom(LL(λ)) = {y ∈ (H 2(RL))n : y(L) = 0}.
(1.9)

Finally,

L(λ) : dom(L(λ)) ⊂ (L2(R))n → (L2(R))n,

L(λ)y := y′′ + V (x)y − λf1(x)y − λ2f2(x)y, y ∈ dom(L(λ)), x ∈ R,

dom(L(λ)) = (H 2(R))n.

(1.10)

Essential spectrum. Our first goal is to show that Assumption (A1) implies that there exists an 
open subset � containing the closed right half plane that consists of either points of the resolvent 
set or isolated eigenvalues of finite algebraic multiplicity of the operator pencil L−(·).

We introduce the closed densely defined operator pencil T (λ) : D(λ) →H, where D(λ) ⊂H
is the domain of T (λ).

Definition 1.1 (Essential spectrum). The essential spectrum of T , denoted σess(T ), is the set of 
all complex numbers λ such that T (λ) is not a Fredholm operator with index 0.

Since for the half-line case, the domain of the operator pencil is λ dependent, we couldn’t find 
a precise reference for the following lemma which we prove in Appendix B.

Lemma 1.1. Let Assumption (A1) hold. Then � ⊂C \ σess(L−). Moreover, � consists of either 
points of the resolvent set or isolated eigenvalues of finite algebraic multiplicity of the operator 
pencil L−(·).

Similarly,

Lemma 1.2. Let Assumption (A4) hold. Then � ⊂C \ σess(LL). Moreover, � consists of either 
points of the resolvent set or isolated eigenvalues of finite algebraic multiplicity of the operator 
pencil LL(·).

For purpose of self-containment, we also provide the proof of the following lemma in Ap-
pendix B.
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Lemma 1.3. Let Assumption (A4) hold. Then � ⊂ C \ σess(L). Moreover, � consists of either 
points of the resolvent set or isolated eigenvalues of finite algebraic multiplicity of the operator 
pencil L(·).

Maslov index. As a starting point, we define what we will mean by a Lagrangian subspace of 
C2n.

Definition 1.2. We say � ⊂C2n is a Lagrangian subspace of C2n if � has dimension n and

(J2nu, v)C2n = 0, J2n :=
(

0 −In

In 0

)
(1.11)

for all u, v ∈ �. Here, (·, ·)C2n denotes the standard inner product on C2n. In addition, we de-
note by 	(n) the collection of all Lagrangian subspaces of C2n, and we will refer to this as 
the complex Lagrangian Grassmannian. The complex Lagrangian Grassmannian is the complex 
homogeneous manifold of Lagrangian subspaces of complex dimension n(n + 1)/2 ([2,6]).

Any Lagrangian subspace of C2n can be spanned by a choice of n linearly independent vectors 
in C2n. We will generally find it convenient to collect these n vectors as the columns of a 2n ×n

matrix X, which we will refer to as a frame for �. Moreover, we will often coordinatize our 
frames as X = (

X
Y

)
, where X and Y are n × n matrices.

Suppose �1(·), �2(·) denote paths of Lagrangian subspaces �i : I → 	(n), for some parameter 
interval I . The Maslov index associated with these paths, which we will denote Mas(�1, �2; I), 
is a count of the number of times the paths �1(·) and �2(·) intersect, counted with both multi-
plicity and direction. (In this setting, if we let t∗ denote the point of intersection (often referred 
to as a conjugate point), then multiplicity corresponds with the dimension of the intersection 
�1(t∗) ∩ �2(t∗); a precise definition of what we mean in this context by direction will be given 
in Section 2.) In some cases, the Lagrangian subspaces will be defined along some path in the 
(α, β)-plane

� = {(α(t), β(t)) : t ∈ I},

and when it is convenient we will use the notation Mas(�1, �2; �).
We say that the evolution of L = (�1, �2) is monotonic provided all intersections occur with 

the same direction. If the intersections all correspond with the positive direction, then we can 
compute

Mas(�1, �2;I) =
∑
t∈I

dim(�1(t) ∩ �2(t)).

Suppose X1(t) =
(
X1(t)
Y1(t)

)
and X2(t) =

(
X2(t)
Y2(t)

)
respectively denote frames for Lagrangian sub-

spaces of C2n, �1(t) and �2(t). Then we can express this last relation as

Mas(�1, �2;I) =
∑
t∈I

dim ker(X1(t)
∗JX2(t)).
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1.1. Main results

We establish the following generalized Sturm-Liouville theorems relating the spectral count, 
or number of real eigenvalues greater than a given nonnegative value λ, to the number of con-
jugate points of the Lagrangian frame asymptotic to the decaying eigenspace at x → −∞ plus, 
in the case of the half-line problem (1.1), a computable boundary correction term. Note that, in 
contrast to the standard case of a linear operator pencil, we do not obtain information for neg-
ative λ, but only about the number of possible unstable real eigenvalues λ > 0. Nonetheless, 
this is sufficient to determine stability or instability of spectra, which is typically the question of 
interest.

Theorem 1.1. For equation (1.1), let Assumptions (A1), (A2) hold, and let X and Xφ denote 
the Lagrangian frames corresponding the unstable subspace Eu−(x, λ) and the 
(λ) subspace 
colspan

(
In

c+φ(λ)

)
, respectively. If N (λ) denotes the spectral count for (1.1) (the number of real 

eigenvalues that are greater than λ), then

N (λ) = −Mas(Eu−(·;λ),
(λ); [−∞,0]) − dim(ker(L−(λ)))

+ Mor(
√

λf1− + λ2f2− − V− − c − φ(λ)) + dim ker(
√

λf1− + λ2f2− − V− − c − φ(λ)),

λ ≥ 0.

Theorem 1.2. For equation (1.7), let Assumption (A4) hold, and let X and XD denote the La-
grangian frames corresponding to the unstable subspace Eu−(x, λ) and the Dirichlet subspace 
D, respectively. If N (λ) denotes the spectral count for (1.2) (the number of real eigenvalues that 
are greater than λ), then

N (λ) =
∑

−∞<x<L

dim(Eu−(x,λ) ∩D) =
∑

x∈(−∞,L)

dim ker(X(x;λ)∗JXD), λ ≥ 0.

Theorem 1.3. For equation (1.2), let Assumption (A4) hold, and let X and XD denote the La-
grangian frames corresponding to the unstable subspace Eu−(x, λ) and the Dirichlet subspace 
D, respectively. If N (λ) denotes the spectral count for (1.2) (the number of real eigenvalues that 
are greater than λ), then

N (λ) =
∑
x∈R

dim(Eu−(x,λ) ∩D) =
∑
x∈R

dim ker(X(x;λ)∗JXD), λ ≥ 0.

Typical examples of the eigenvalue curves

Example 1 (Half-line, scalar). We consider the potentials V (x) = −1 − (815 +219 cos(1.8x)) ×
e0.1x , f1 = 1, f2 = 2 along with the boundary condition (18 − 9λ)y(0) − y′(0) = 0. In this case, 
we see the emergence of an eigenvalue from the bottom shelf, and we notice a very distinct loss 
of the monotonicity. See the left-half of Fig. 1. The Maslov Index in this case is 1, the Morse 
index of 

√−V− − c is 1, and according to 1.1, this means that N (0) = 0 (the number of real 
eigenvalues for the problem (1.1) that are greater than 0).
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Fig. 1. Eigenvalue curves.

Example 2 (Full-line, scalar). We consider the potentials V (x) = −1 + 1.8e−0.06|x|, f1 = 1, 
f2 = 2. In this case, there can be no crossings along the bottom shelf, and indeed the only al-
lowable behavior is for the eigenvalue curves to enter the box through the curve λ = 0 and move 
upward until reaching the curve x = ∞. See the right-half of Fig. 1. We ran our numerics up 
to some big positive value x∞. The number of intersections of the unstable subspace Eu−(x, 0)

and the Dirichlet subspace D is 3, and according to Theorem 1.3 this means that N (0) = 3 (the 
number of real eigenvalues for the problem (1.2) that are greater than 0).

Example 3 (Half-line, 2 × 2 system). We consider the potentials

V (x) =
(−1 − (815 + 219 cos(1.8x))e0.1x 0

0 −1 − (255 + 0.1 cos(0.5x))e0.15x

)
,

f1 = I and f2 = 2I

along with the boundary matrices φ(λ) =
(−9λ 0

0 −9λ

)
and c =

(
18 2
2 25

)
. Note that the 

coupling appears via the matrix c. See the left-half of Fig. 2. The Maslov Index in this case is 1, 
the Morse index of 

√−V− − c is 2, and according to 1.1, this means that N (0) = 1 (the number 
of real eigenvalues for the problem (1.1) that are greater than 0).

Example 4 (Full-line, 2 × 2 system). We consider the potentials

V (x) =
(−1 + 1.93e−0.141|x| 0.5

0.5 −1 + 1.93e−0.141|x|
)

, f1 = I and f2 = 2I.

Note that the coupling appears via the potential V . See the right-half of Fig. 2. The number of 
intersections of the unstable subspace Eu−(x, 0) and the Dirichlet subspace D is 5, and according 
to Theorem 1.3 this means that N (0) = 5 (the number of real eigenvalues for the problem (1.2)
that are greater than 0). Also, note that for the systems, the eigenvalue curves might intersect 
which can be observed for our particular 2 × 2 system.
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Fig. 2. Eigenvalue curves.

1.2. Reality of eigenvalues

The above theorems concern only the real spectrum of the associated operator pencil. How-
ever, adapting an argument of [28, Lemma 4.1] similar to that for the classic linear pencil case, 
we may readily see that nonstable spectra �λ ≥ 0 of the whole-line problem are necessarily real, 
hence our conclusions are decisive for stability. Likewise, for the half-line problem, unstable 
spectra are real under the additional (sharp, see Remark 3.2) assumption that 
φ(λ)
λ < 0 for 
�λ ≥ 0; see Lemma 3.3.

2. The Maslov index on C2n

Suppose X = (
X
Y

)
, XD = ( 0

In

)
and Xφ = (

In

c+φ(λ)

)
respectively denote frames for Lagrangian 

subspaces �(x, λ) := Eu−(x, λ), the Dirichlet subspace D and the 
(λ) subspace. We now set

W̃D : = (X + iY )(X − iY )−1,

W̃φ : = −(X + iY )(X − iY )−1(Xφ − iYφ)(Xφ + iYφ)−1,
(2.1)

noting that W̃D and W̃φ detect intersections of � = colspan(X) = Eu−(x, λ) with the Dirichlet 
subspace and the φ subspace, respectively [10]. Moreover,

dim ker(X∗JXD) = dim ker(W̃D + I ),

dim ker(X∗JXφ) = dim ker(W̃φ + I ).

In general, given any two Lagrangian subspaces �1 and �2, with associated frames X1 = (
X1
Y1

)
and X2 = (

X2
Y2

)
, we can define the complex n × n matrix

W̃ = −(X1 + iY1)(X1 − iY1)
−1(X2 − iY2)(X2 + iY2)

−1. (2.2)
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Given two continuous maps �1(t), �2(t) on a parameter interval I , we denote by L(t) the path

L(t) = (�1(t), �2(t)).

In what follows, we will define the Maslov index for the path L(t), which will be a count, 
including both multiplicity and direction, of the number of times the Lagrangian paths �1 and �2
intersect. In order to be clear about what we mean by multiplicity and direction, we observe that 
associated with any path L(t) we will have a path of unitary complex matrices as described in 
(2.2). We have already noted that the Lagrangian subspaces �1 and �2 intersect at a value t∗ ∈ I
if and only if W̃(t∗) has −1 as an eigenvalue. (Recall that we refer to the value t∗ as a conjugate 
point.) In the event of such an intersection, we define the multiplicity of the intersection to be 
the multiplicity of −1 as an eigenvalue of W̃ (since W̃ is unitary the algebraic and geometric 
multiplicities are the same). When we talk about the direction of an intersection, we mean the 
direction the eigenvalues of W̃ are moving (as t varies) along the unit circle S1 when they cross 
−1 (we take counterclockwise as the positive direction). We note that we will need to take care 
with what we mean by a crossing in the following sense: we must decide whether to increment 
the Maslov index upon arrival or upon departure. Indeed, there are several different approaches to 
defining the Maslov index (see, for example, [7,24]), and they often disagree on this convention.

Following [5,8,15,23] (and in particular Definition 1.5 from [5]), we proceed by choosing 
a partition a = t0 < t1 < · · · < tn = b of I = [a, b], along with numbers εj ∈ (0, π) so that 
ker

(
W̃ (t) − ei(π±εj )I

) = {0} for tj−1 ≤ t ≤ tj ; that is, ei(π±εj ) ∈ C \ σ(W̃ (t)), for tj−1 ≤ t ≤ tj
and j = 1, . . . , n. Moreover, we notice that for each j = 1, . . . , n and any t ∈ [tj−1, tj ] there are 
only finitely many values β ∈ [0, εj ) for which ei(π+β) ∈ σ(W̃ (t)).

Fix some j ∈ {1, 2, . . . , n} and consider the value

k(t, εj ) :=
∑

0≤β<εj

dim ker
(
W̃ (t) − ei(π+β)I

)
, (2.3)

for tj−1 ≤ t ≤ tj . This is precisely the sum, along with multiplicity, of the number of eigenvalues 
of W̃ (t) that lie on the arc

Aj := {eit : t ∈ [π,π + εj )}.

The stipulation that ei(π±εj ) ∈ C\σ(W̃ (t)), for tj−1 ≤ t ≤ tj ensures that no eigenvalue can enter 
Aj in the clockwise direction or exit in the counterclockwise direction during the interval tj−1 ≤
t ≤ tj . In this way, we see that k(tj , εj ) − k(tj−1, εj ) is a count of the number of eigenvalues that 
enter Aj in the counterclockwise direction (i.e., through −1) minus the number that leave in the 
clockwise direction (again, through −1) during the interval [tj−1, tj ].

In dealing with the catenation of paths, it’s particularly important to understand the difference 
k(tj , εj ) − k(tj−1, εj ) if an eigenvalue resides at −1 at either t = tj−1 or t = tj (i.e., if an eigen-
value begins or ends at a crossing). If an eigenvalue moving in the counterclockwise direction 
arrives at −1 at t = tj , then we increment the difference forward, while if the eigenvalue arrives 
at −1 from the clockwise direction we do not (because it was already in Aj prior to arrival). 
On the other hand, suppose an eigenvalue resides at −1 at t = tj−1 and moves in the counter-
clockwise direction. The eigenvalue remains in Aj , and so we do not increment the difference. 
However, if the eigenvalue leaves in the clockwise direction then we decrement the difference. In 
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summary, the difference increments forward upon arrivals in the counterclockwise direction, but 
not upon arrivals in the clockwise direction, and it decrements upon departures in the clockwise 
direction, but not upon departures in the counterclockwise direction.

We are now ready to define the Maslov index.

Definition 2.1. Let L(t) = (�1(t), �2(t)), where �1, �2 : I → 	(n) are continuous paths in the 
Lagrangian–Grassmannian. The Maslov index Mas(L; I) is defined by

Mas(L;I) =
n∑

j=1

(k(tj , εj ) − k(tj−1, εj )). (2.4)

Remark 2.1. As we did in the introduction, we will typically refer explicitly to the individual 
paths with the notation Mas(�1, �2; I).

Remark 2.2. As discussed in [5], the Maslov index does not depend on the choices of {tj}nj=0
and {εj }nj=1, so long as these choices follow the specifications described above.

2.1. Direction of rotation

As noted in the previous section, the direction we associate with a conjugate point is de-
termined by the direction in which eigenvalues of W̃ rotate through −1 (counterclockwise is 
positive, while clockwise is negative). When analyzing the Maslov index, we need a convenient 
framework for analyzing this direction, and the development of such a framework is the goal of 
this section.

Lemma 2.1 ([13]). Suppose �1, �2 : I → 	(n) denote paths of Lagrangian subspaces of C2n

with absolutely continuous frames X1 = (
X1
Y1

)
and X2 = (

X2
Y2

)
(respectively). If there exists δ > 0

so that the matrices

−X∗
1JX

′
1 = X1(t)

∗Y ′
1(t) − Y1(t)

∗X′
1(t)

and (noting the sign change)

X∗
2JX

′
2 = −(X2(t)

∗Y ′
2(t) − Y2(t)

∗X′
2(t))

are both a.e.-non-negative in (t0 − δ, t0 + δ), and at least one is a.e.-positive definite then the 
eigenvalues of W̃ (t) rotate in the counterclockwise direction as t increases through t0. Likewise, 
if both of these matrices are a.e.-non-positive, and at least one is a.e.-negative definite, then the 
eigenvalues of W̃(t) rotate in the clockwise direction as t increases through t0.

3. Proof of Theorem 1.1

3.1. Upper bound on the spectrum of (1.1)

By Lemma 1.1, we know that the real part of the essential spectrum of (1.1) is bounded above 
by γ < 0. Next, we show that a set of the real eigenvalues of (1.1) is bounded above.
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Lemma 3.1. Assume (A1) and (A2). Then there exists ν ∈ R such that for all real eigenvalues λ
of (1.1)

λ ≤
√‖f2‖L∞(R−)|ν|

δ
. (3.1)

Proof. Let λ be a real eigenvalue of (1.1) with the corresponding eigenvector y. Then

y′′ + V (x)y = λf1(x)y + λ2f2(x)y; x ∈ R−,

(c + φ(λ))y(0) − y′(0) = 0.
(3.2)

Thus, after multiplying by y and integration by parts, we arrive at

(
(c + φ(λ))y(0), y(0)

) − (y′, y′) + (Vy, y) = λ(f1y, y) + λ2(f2y, y), (3.3)

or, rearranging,

(f2y, y)λ2 + (f1y, y)λ + (y′, y′) − (Vy, y) − (
(c + φ(λ))y(0), y(0)

) = 0. (3.4)

Therefore, λ ∈ R satisfies one of the following equalities

λ =
−(f1y, y) ±

√
(f1y, y)2 − 4(f2y, y)[(y′, y′) − (Vy, y) − (

(c + φ(λ))y(0), y(0)
)]

2(f2y, y)
.

(3.5)

If λ satisfies the equality with the negative sign in front of the square root, then λ is nonpositive. 
Thus, we may assume that λ satisfies the equality with the positive sign in front of the square 
root.

Now, we estimate the following quadratic form M with the domain H 1(R−):

M[y] = (y′, y′) − (Vy, y) − (
(c + φ(λ))y(0), y(0)

)
, λ ∈ R. (3.6)

Since φ(λ) is Hermitian and φ′(λ) < 0 for λ ∈ R+, by [17, Theorem 5.4.], we conclude that 
φ(λ) ≤ 0 for λ ∈R+. Hence,

M[y] ≥ (y′, y′) − (Vy, y) − (
cy(0), y(0)

)
, λ ∈R. (3.7)

Given any ε > 0 there is a corresponding β(ε) > 0 so that

|y(0)|2 ≤ ε‖y′‖2
L2(R−)

+ β(ε)‖y‖2
L2(R−)

.

Choose ε > 0 small enough so that ||c||ε < 1. Then (see [9])

M[y] ≥ ‖y′‖2
L2(R−)

− ‖V ‖L∞(R−)‖y‖2
L2(R−)

− ||c||ε‖y′‖2
L2(R−)

− ||c||β(ε)‖y‖2
L2(R−)

= (1 − ||c||ε)‖y′‖2
2 +

(
− ‖V ‖L∞(R−) − ||c||β(ε)

)
‖y‖2

2
L (R−) L (R−)
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≥
(

− ‖V ‖L∞(R−) − ||c||β(ε)
)
‖y‖2

L2(R−)
.

Therefore, if ν = (−‖V ‖L∞(R−) − ||c||β(ε)) which is independent of λ and y ∈ H 1(R−), then 
M ≥ ν. Thus, we have

− (f1y, y) +
√

(f1y, y)2 − 4(f2y, y)[(y′, y′) − (Vy, y) − (
(c + φ(λ))y(0), y(0)

)]
≤ −(f1y, y) +

√
(f1y, y)2 − 4(f2y, y)ν‖y‖2

L2(R−)
] ≤ 2

√
‖f2‖L∞(R−)|ν|‖y‖L2(R−),

(3.8)

and therefore, λ ≤
√

‖f2‖L∞(R−)|ν|
δ

. �
Remark 3.1. We introduce the truncated eigenvalue problem

y′′ + V (x)y = λf1(x)y + λ2f2(x)y; x ∈Rx0 := (−∞, x0],
(c + φ(λ))y(x0) − y′(x0) = 0.

(3.9)

According to the proof of Lemma 3.1, we have the uniform upper bound estimate (indepen-
dent of x0) for any real eigenvalue of (3.9), that is,

λ ≤
√‖f2‖L∞(R−)|ν|

δ
.

We also have the upper bound 

√
‖f2−‖L∞(R−)|ν−|

δ
(ν− := −‖V−‖L∞(R−) − ||c||β(ε)) for any real 

eigenvalue of the constant-coefficient problem

y′′ + V−y = λf1−y + λ2f2−y; x ∈ R−,

(c + φ(λ))y(0) − y′(0) = 0.
(3.10)

3.2. Positivity of the derivative of the matrix square root

Lemma 3.2. Let M ∈ C1(R, Cn×n), and assume that M(λ) and M ′(λ) are Hermitian and posi-
tive definite for λ ∈R. Then (

√
M(λ))′ > 0 for λ ∈ R.

Proof. We have

(M1/2)′M1/2 + M1/2(M1/2)′ = M ′ (3.11)

Multiply both sides by M−1/4 from the right and the left

M−1/4(M1/2)′M1/4 + M1/4(M1/2)′M−1/4 = M−1/4M ′M−1/4 (3.12)

Let C := M−1/4(M1/2)′M1/4. Since M−1/4M ′M−1/4 > 0, we have C + C∗ > 0. Therefore, we 
have the estimate on the real part of the spectrum of C, that is, �(σ (C)) > 0. We also know that 
C is similar to (M1/2)′. Hence, �(σ ((M1/2)′)) > 0, or σ((M1/2)′) > 0 ((M1/2)′ is Hermitian). 
Hence, (

√
M(λ))′ > 0. �
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3.3. Proof of Theorem 1.1

We define a new vector y(x) ∈ C2n so that y(x) = (y1(x) y2(x))t , with y1(x) = y(x) and 
y2(x) = y′(x). In this way, we rewrite the equation in (1.1) in the form

Jy′ = B(x;λ)y; B(x;λ) =
(

V (x) − λf1(x) − λ2f2(x) 0
0 I

)
, J =

(
0 −In

In 0

)
.

Let λ∞ > max{
√

‖f2‖L∞(R−)|ν|
δ

, 

√
‖f2−‖L∞(R−)|ν−|

δ
} (cf. Lemma 3.1, Remark 3.1). By Maslov Box, 

we mean the following sequence of contours: (1) fix x = 0 and let λ run from 0 to λ∞ (the top 
shelf ); (2) fix λ = λ∞ and let x run from 0 to −∞ (the right shelf ); (3) fix x = −∞ and let λ run 
from λ∞ to 0 (the bottom shelf ); and (4) fix λ = 0 and let x run from −∞ to 0 (the left shelf ). We 
denote by � the simple closed curve obtained by following each of these paths precisely once.

Top shelf. For the top shelf, we know from Lemma 2.1 that monotonicity in λ can be de-
termined by −X(0; λ)∗J∂λX(0; λ), where X(0; λ) is a frame corresponding to the unstable 
subspace Eu−(0, λ), and Xφ(λ)∗J∂λXφ(λ). We readily compute

∂

∂x
X∗(x;λ)J2n∂λX(x;λ) = (X′)∗J2n∂λX+X∗J2n∂λX′

= −(X′)∗J t
2n∂λX+X∗∂λJ2nX′

= −X∗B(x;λ)∂λX+X∗∂λ(B(x;λ)X) =X∗BλX.

Integrating on (−∞, x], we see that

X(x;λ)∗J2n∂λX(x;λ) =
x∫

−∞
X(y;λ)∗Bλ(y;λ)X(y;λ)dy

= −
x∫

−∞
X(y;λ)∗[f1(x) + 2λf2(x)]X(y;λ)dy.

Also,

Xφ(λ)∗J∂λXφ(λ) = −φ′(λ) > 0.

Monotonicity along the top shelf follows by setting x = 0 and appealing to condition fj > 0. 
In this way, we see that conditions fj > 0 and φ′(λ) < 0 for λ ∈ R ensure that as λ in-
creases the eigenvalues of W̃φ(0; λ) will rotate in the counterclockwise direction. Therefore, 
Mas(�(0; ·), 
(·); [0, λ∞]) is equal to the total number of intersection of the unstable subspace 
Eu−(0, λ) and the boundary subspace 
(λ) for all λ ≥ 0, which in turn is the total geometric 
multiplicity of the operator pencil L− (cf. (1.8)) for all λ ≥ 0. Next, we show that all nonnegative 
eigenvalues of the operator pencil L− are semisimple. Let a nonnegative λ0 be an eigenvalue 
of L− with the corresponding eigenvector y0 ∈ dom(L−(λ0)), and assume there exist a nonzero 
y1 ∈ dom(L−(λ0)) such that L−(λ0)y1 = −L′−(λ0)y0. We have
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(L−(λ0)y1, y0) = ((f1 + 2λ0f2)y0, y0). (3.13)

Moreover,

(L−(λ0)y1, y0) = y∗
0 (0)y′

1(0) − (y′
0(0))∗y1(0) + (y1,L−(λ0)y0). (3.14)

Since y0 and y1 satisfy the boundary condition from (1.1), and c +φ(λ0) is self-adjoint, we have

(L−(λ0)y1, y0) = (y1,L−(λ0)y0). (3.15)

Using (3.15) in (3.13), we arrive at

(y1,L−(λ0)y0) = ((f1 + 2λ0f2)y0, y0). (3.16)

Since y0 is the eigenvector of L−(λ0) corresponding to λ0, left-hand side of (3.16) is zero, but 
under Assumption (A1) the right-hand side of (3.16) is strictly positive, a contradiction. Hence,

Mas(�(0; ·),
(·); [0, λ∞]) =N (0) + dim(ker(L−(0))), (3.17)

where N (λ) denotes the spectral count for (1.1) (the number of real eigenvalues (including alge-
braic multiplicities) that are greater than λ).

Right shelf. Intersections between �(x; λ) and 
(λ) at some nonpositive value x = x0 will 
correspond with one or more non-trivial solutions to one of the truncated eigenvalue problems 
(3.9) or (3.10). Then, according to Lemma 3.1 and Remark 3.1, we have

Mas(�(·;λ∞),
(λ∞); [0,−∞]) = 0. (3.18)

Bottom shelf. We observe that the monotonicity that we found along horizontal shelves 
does not immediately carry over to the bottom shelf (since that calculation is only valid for 
x ∈ (−∞, 0]). We can still conclude monotonicity along the bottom shelf in the following way: 
by continuity of our frames, we know that as λ increases along the bottom shelf the eigenvalues 
of W̃φ(−∞, λ) cannot rotate in the clockwise direction. Moreover, eigenvalues of W̃φ(−∞, λ)

cannot remain at −1 for any interval of λ values (otherwise, there would exit an interval of λ val-
ues consisting of the eigenvalues of the constant-coefficient operator pencil L−(·)). Therefore,

Mas(�(−∞; ·),
(·); [λ∞,0]) = −
∑

0≤λ<λ∞
dim(Eu−(−∞;λ) ∩ 
(λ)).

Next, our goal is to find all the intersections of two Lagrangian subspaces Eu−(−∞, λ) and 

(λ), where Eu−(−∞, λ) is the unstable eigenspace of the asymptotic matrix A−(λ)

A−(λ) =
(

0 I

λf1− + λ2f2− − V− 0

)
.

Note that λf1− + λ2f2− − V− is a self-adjoint holomorphic pencil, therefore, the correspond-
ing eigenvalues denoted by {νj (λ)}nj=1 are real for real values of λ. We denote the corre-

sponding eigenvectors by {rj (λ)}n so that (λf1− + λ2f2− − V−)rj (λ) = νj (λ)rj (λ) for all 
j=1



A. Sukhtayev, K. Zumbrun / J. Differential Equations 268 (2020) 3848–3879 3861
j ∈ {1, 2, . . . , n}. Moreover, since λf1− + λ2f2− − V− is a self-adjoint holomorphic pencil, the 
eigenvalue functions {νj (λ)}nj=1 can be chosen to be holomorphic for λ ∈R and the correspond-
ing eigenvectors {rj }nj=1 can be chosen to be orthonormal and holomorphic for λ ∈ R (cf. [17, 
VII.2.1, p. 375]). Also notice that {νj (λ)}nj=1 are positive curves for λ ∈ R+ = [0, ∞) (other-

wise, there would exist μ ∈ R such that det(−μ2 + V− − λf1− − λ2f2−) = 0 which means that 
condition (A1) is violated). We introduce μ±

j (λ)

μ±
j (λ) = ∓

√
νj (λ)

for j = 1, 2, . . . , n.
We note that the eigenvalues of A− are precisely the values {μ±

j }nj=1, and the associated 

eigenvectors are {r ±
j }nj=1 = {( rj

μ±
j rj

)}nj=1. Therefore, two Lagrangian subspaces Eu−(−∞, λ) and 


(λ) intersect if and only if there exist non-zero vectors c1 and c2 such that R(λ)c1 = c2 and 
R(λ)D(λ)c1 = (c + φ(λ))c2, where the columns of R(λ) are rj (λ) and D(λ) is diagonal with 
{μ−

j }nj=1 on the diagonal. Hence, R(λ)D(λ)c1 = (c + φ(λ))R(λ)c1. Or, (R(λ)D(λ)R−1(λ) −
(c + φ(λ)))c̃1 = 0, where c̃1 = R(λ)c1. Next, notice that

(R(λ)D(λ)R−1(λ))2 = R(λ)D2(λ)R−1(λ) = λf1− + λ2f2− − V−. (3.19)

Hence,

√
λf1− + λ2f2− − V− = R(λ)D(λ)R−1(λ). (3.20)

Consequently, two Lagrangian subspaces Eu−(−∞, λ) and 
(λ) intersect if and only if the ma-

trix pencil M(λ) := √
λf1− + λ2f2− − V− − (c + φ(λ)) has a zero eigenvalue. It is clear that 

M is a continuously differentiable pencil with respect to nonnegative parameter λ. In particular, 
the eigenvalue curves of M are continuously differentiable pencil with respect to nonnegative 
parameter λ and when λ = 0 M(0) has Mor(

√−V− − c) + dim ker(
√−V− − c) nonpositive 

eigenvalues. Next, notice that λf1−+λ2f2− −V− and its derivative f1− +2λf2− are strictly posi-
tive for λ ≥ 0 which in turn implies that the derivative of 

√
λf1− + λ2f2− − V− is strictly positive 

for λ ≥ 0 (cf. Lemma 3.2). Then, by Assumption (A2), M ′(λ) > 0 for λ ≥ 0. Hence, the eigen-
value curves {mj(λ)}nj=1 of M(λ) are strictly increasing for λ ≥ 0 by [17, Theorem 5.4, p. 111]. 

Moreover, by Assumption (A2), −φ(λ) ≥ 0, consequently, M(λ) ≥ √
λf1− + λ2f2− − V− − c

for λ ≥ 0. Now, we choose λ0 > 0 such that 
√

λ0 >
maxλ∈σ(c) λ√
minλ∈σ(f1−) λ

. By the min-max principle, we 

know that the eigenvalues {νj (λ0)}nj=1 of λ0f1− +λ2
0f2− −V− are greater than λ0 minλ∈σ(f1−) λ, 

therefore, the eigenvalues {μ−
j }nj=1 of 

√
λf1− + λ2f2− − V− are greater than 

√
λ0 minλ∈σ(f1−) λ. 

Hence,

M(λ0) ≥
√

λ0f1− + λ2
0f2− − V− −

√
λ0 min

λ∈σ(f1−)
λI − (c −

√
λ0 min

λ∈σ(f1−)
λI ) > 0. (3.21)

Hence, the eigenvalue curves of M(λ) whose initial values at λ = 0 are nonpositive eigenvalues 
of M(0) are strictly increasing and since there exist λ0 > 0 such that M(λ0) > 0, these eigenvalue 
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curves must intersect the λ-axis exactly once. Therefore, the number of times M(λ) has a zero 
eigenvalue is equal to Mor(

√−V− − c) + dim ker(
√−V− − c). Therefore,

Mas(�(−∞; ·),
(·); [λ∞,0]) = −Mor(
√−V− − c) − dim ker(

√−V− − c). (3.22)

Finally, by formulas (3.17), (3.18), (3.22), and fact that the Maslov index of the Maslov box 
is 0, we arrive at the formula for N (0)

N (0) = −Mas(Eu−(·;0),
(0); [−∞,0]) − dim(ker(L−(0)))

+ Mor(
√−V− − c) + dim ker(

√−V− − c).

Similarly, one can easily derive a formula for N (λ) for λ ≥ 0.

3.4. Reality of eigenvalues

Lemma 3.3. Let Assumptions (A1) and (A3) hold, and λ = a + ib with a ≥ 0 be an eigenvalue 
of the operator pencil (1.8). Then b = 0, that is, λ ∈R.

Proof. After multiplying (1.1) by the corresponding eigenvector y and integration by parts, we 
arrive at

(
(c + φ(λ))y(0), y(0)

) − (y′, y′) + (Vy, y) = λ(f1y, y) + λ2(f2y, y). (3.23)

Next, we take the imaginary part of (3.23)

(
φ(λ)y(0), y(0)) = b(f1y, y) + 2ab(f2y, y). (3.24)

It follows from Assumption (A1) that (f1y, y) + 2a(f2y, y) > 0, therefore, the sign of the right 
hand side is sign b = sign 
λ. By Assumption (A3), the matrix 
φ(λ) is semidefinite, with sign 
opposite to sign 
λ = sign b. Therefore, the sign of the left hand side is also of (indefinite) sign 
opposite to sign 
λ. Comparing signs of lefthand and righthand sides, we find that b = 0. �
Remark 3.2. Assumption (A1) on 
φ is sharp in Lemma 3.3, as without it one may read-
ily construct counterexamples for operator pencils independent of λ. For polynomial φ(λ) =∑r

j=1 cjλ
j , (A1) on 
φ implies that r = 1, or linearity, as may be seen by looking at the large 

|λ| limit, for which the highest term crλ
r dominates sgn
φ(λ).

4. Proof of Theorem 1.2

4.1. Upper bound on the spectrum of (1.7)

By Lemma 1.2, we know that the real part of the essential spectrum of (1.7) is bounded above 
by γ < 0. Next, we show that a set of the real isolated eigenvalues of (1.7) is bounded above.
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Lemma 4.1. Assume (A4). Then there exists ν ∈R such that for all real eigenvalues λ of (1.7)

λ ≤
√‖f2‖L∞(R)‖V ‖L∞(R)

δ
. (4.1)

Proof. Let λ be a real eigenvalue of (1.7) with the corresponding eigenvector y. Then

y′′ + V (x)y = λf1(x)y + λ2f2(x)y; x ∈ RL,

y(L) = 0.
(4.2)

Or, after multiplying by y and integration by parts, we arrive at

−(y′, y′) + (Vy, y) = λ(f1y, y) + λ2(f2y, y). (4.3)

Or,

(f2y, y)λ2 + (f1y, y)λ + (y′, y′) − (Vy, y) = 0. (4.4)

Therefore, λ satisfies one of the following equalities

λ = −(f1y, y) ± √
(f1y, y)2 − 4(f2y, y)[(y′, y′) − (Vy, y)]

2(f2y, y)
(4.5)

If λ satisfies the equality with the negative sign in front of the square root, then λ is nonpos-
itive. Next, we assume that λ satisfies the equality with the positive sign in front of the square 
root. Next, we estimate the following quadratic form M with the domain H 1(RL):

M[y] = (y ′, y′) − (Vy, y) ≥ −‖V ‖L∞(R)‖y‖2
L2(RL)

. (4.6)

Therefore,

− (f1y, y) +
√

(f1y, y)2 − 4(f2y, y)[(y′, y′) − (Vy, y)]

≤ −(f1y, y) +
√

(f1y, y)2 + 4(f2y, y)‖V ‖L∞(R)‖y‖2
L2(RL)

]

≤ 2
√

‖f2‖L∞(R)|‖V ‖L∞(R)|‖y‖L2(RL).

Therefore, λ ≤
√‖f2‖L∞(R)‖V ‖L∞(R)

δ
. �

Remark 4.1. Note that the upper bound from Lemma 4.1 is independent of L.

In this section, we use our Maslov index framework to prove our main theorems.
We define a new vector y(x) ∈ C2n so that y(x) = (y1(x) y2(x))t , with y1(x) = y(x) and 

y2(x) = y′(x). In this way, we rewrite (1.7) in the form
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Jy′ = B(x;λ)y; B(x;λ) =
(

V (x) − λf1(x) − λ2f2(x) 0
0 I

)
.

4.2. Proof of Theorem 1.2

Let λ∞ >

√‖f2‖L∞(R)‖V ‖L∞(R)

δ
(cf. Lemma 4.1). By Maslov Box, we mean the following 

sequence of contours: (1) fix x = −∞ and let λ run from λ∞ to 0 (the bottom shelf ); (2) fix 
λ = 0 and let x run from −∞ to L (the left shelf ); (3) fix x = L and let λ run from 0 to λ∞ (the 
top shelf ); and (4) fix λ = λ∞ and let x run from L to −∞ (the right shelf ). We denote by � the 
simple closed curve obtained by following each of these paths precisely once.

Bottom shelf. We begin our analysis with the bottom shelf. Since Eu−(−∞, λ) does not inter-
sect the Dirichlet subspace D, we see that in fact the matrix det (W̃D(0;λ) + I ) does not vanish, 
and so

Mas(�(−∞; ·),D; [λ∞,0]) = 0. (4.7)

Left shelf. It is clear that X∗
DJ∂xXD = 0, but −X(x; 0)∗J∂xX(x; 0) is not sign definite for 

values of x which means that can not directly apply Lemma 2.1. Instead, we can compute the 
spectral flow of W̃D(·; 0) through −1. Assume that at least one of the eigenvalues of W̃D(·; 0) at 
x = x∗ is −1 (Eu−(x∗, 0) and D has a non-trivial intersection). Then the spectral flow of W̃D(·; 0)

through −1 as x crosses through x∗ is determined by signature of the following quadratic form 
defined on ker(W̃D(x∗; 0) + In) (cf. [13]):

Q̃(w) = −2
((

(X − iY )−1
)∗
X(x∗;0)∗J∂xX(x∗;0)(X − iY )−1w,w

)
Cn

= 2
((

(X − iY )−1
)∗

(X(x∗)∗Y ′(x∗) − Y(x)∗X′(x∗))(X − iY )−1w,w
)
Cn

(4.8)

= 2
((

(X − iY )−1
)∗

(X(x∗)∗(−V )X(x∗) − Y(x∗)∗Y(x∗))(X − iY )−1w,w
)
Cn

.

Since (X − iY )−1w ∈ ker(X(x∗)), we have the following formula for Q̃:

Q̃(w) = −2
((

(X − iY )−1
)∗
X(x∗;0)∗J∂xX(x∗;0)(X − iY )−1w,w

)
Cn

= 2
((

(X − iY )−1
)∗

(X(x∗)∗Y ′(x∗) − Y(x)∗X′(x∗))(X − iY )−1w,w
)
Cn

(4.9)

= −2
(
Y(x∗)(X − iY )−1w,Y (x∗)(X − iY )−1w

)
Cn

< 0.

Therefore,

Mas(�(·;0),D; [−∞,L]) = −
∑

−∞<x≤L

dim(�(x;0) ∩D)

= −
∑

−∞<x≤L

dim ker(X(x;0)∗JXD) (4.10)

= −
∑

−∞<x<L

dim ker(X(x;0)∗JXD) − dim(ker(LL(0))).
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Top shelf. Since X∗
DJ∂λXD = 0, by Lemma 2.1, monotonicity in λ can be determined by 

−X(L; λ)∗J∂λX(L; λ), and we readily compute

∂

∂x
X∗(x;λ)J2n∂λX(x;λ) = (X′)∗J2n∂λX+X∗J2n∂λX′

= −(X′)∗J t
2n∂λX+X∗∂λJ2nX′

= −X∗B(x;λ)∂λX+X∗∂λ(B(x;λ)X) =X∗BλX.

Integrating on (−∞, x], we see that

X(x;λ)∗J2n∂λX(x;λ) =
x∫

−∞
X(y;λ)∗Bλ(y;λ)X(y;λ)dy

= −
x∫

−∞
X(y;λ)∗[f1(x) + 2λf2(x)]X(y;λ)dy.

Monotonicity along the top shelf follows by setting x = L and appealing to condition fj > 0. 
In this way, we see that condition fj > 0 ensures that as λ increases the eigenvalues of W̃D(L; λ)

will rotate in the counterclockwise direction. Therefore, Mas(�(L; ·), D; [0, λ∞]) is equal to the 
total number of intersection of the unstable subspace Eu−(L, λ) and the boundary subspace D
for all λ ≥ 0, which in turn is the total geometric multiplicity of the operator pencil LL (cf. 
(1.9)) for all λ ≥ 0. Next, we show that all nonnegative eigenvalues of the operator pencil LL

are semisimple. Let a nonnegative λ0 be an eigenvalue of LL with the corresponding eigenvector 
y0 ∈ dom(LL(λ0)), and assume there exist a nonzero y1 ∈ dom(LL(λ0)) such that LL(λ0)y1 =
−L′

L(λ0)y0. We have

(LL(λ0)y1, y0) = ((f1 + 2λ0f2)y0, y0).

After ingratiating by parts, we arrive at

(y1,LL(λ0)y0) = ((f1 + 2λ0f2)y0, y0). (4.11)

Since y0 is the eigenvector of LL(λ0) corresponding to λ0, left-hand side of (4.11) is zero, but 
under Assumption (A4) the right-hand side of (4.11) is strictly positive, a contradiction. Hence,

Mas(�(L; ·),D; [0, λ∞]) =N (0) + dim(ker(LL(0))), (4.12)

where N (0) denotes the spectral count for (1.7) (the number of real eigenvalues (including alge-
braic multiplicities) that are greater than 0).

Right shelf. Intersections between �(x; λ) and D at some value x = x0, where −∞ < x0 ≤ L

will correspond with one or more non-trivial solutions to the truncated eigenvalue problem:

y′′ + V (x)y = λf1(x)y + λ2f2(x)y; x ∈Rx0 := (−∞, x0], x0 ≤ L,

y(x0) = 0.
(4.13)
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By Lemma 4.1 and Remark 4.1, we have the uniform upper bound 
√‖f2‖L∞(R)‖V ‖L∞(R)

δ
for the 

real eigenvalues of (4.13), and �(−∞; λ∞) and D do not intersect by the bottom shelf argument. 
Therefore,

Mas(�(·;λ∞),D); [L,−∞]) = 0. (4.14)

Finally, by formulas (4.7), (4.10), (4.12), (4.14), and fact that the Maslov index of the Maslov 
box is 0, we arrive at the formula for N (0)

N (0) =
∑

−∞<x<L

dim(Eu−(x,0) ∩D).

Similarly, one can easily derive a formula for N (λ) for λ ≥ 0.

4.3. Proof of Theorem 1.3

Proof. We follow the proof of similar results from [3,26]. Our goal is to compute the number of 
positive eigenvalues of the operator pencil L(·), that is, the number of λ ∈ (0, λ∞) such that

Es+(0, λ) ∧Eu−(0, λ) = 0.

On the other hand, N (0) for the operator pencil LL is equal to the number of zeros of the function

D ∧Eu−(L,λ), λ ∈ (0, λ∞).

We claim that Es+(0, λ) ∧Eu−(0, λ) and D ∧Eu−(L, λ) have the same number of zeros, counting 
multiplicity, for sufficiently large values of L.

Let φ(x1, x2; λ) denote the propagator of the non-autonomous differential equation y′ =
A(x, λ)y. Also denote DL(λ) = φ(0, L; λ)D ∧ Eu−(0, λ) and D∞(λ) = Es+(0, λ) ∧ Eu−(0, λ), 
and choose an analytic basis {v+

j (λ)} of Es+(0, λ). Note that D ⊕ Eu+(+∞, λ) = C2n because 
Eu+(+∞, λ) ∩D = {0}.

It is known that Es/u
+ (L, λ) → Es/u

+ (+∞, λ) exponentially as L → +∞; see [26, Thm. 
1]. Then, as in [26, Thm. 2], there exist unique vectors w+

j (λ) ∈ Eu+(L, λ) such that D =
span{φ(L, 0; λ)v+

j (λ) + wj(λ) : j = 1, . . . , n} and

φ(0,L;λ)D = span{v+
j (λ) + φ(0,L;λ)w+

j (λ) : j = 1, . . . , n}.

Thus φ(0, L; λ)D and Es+(0, λ) are exp(−σ+L)-close, where σ+ is the rate of exponential decay 
of solutions at +∞. Then DL(λ) and D∞(λ) have the same multiplicities of zeros by [26, Rmk 
4.3]. The claim now follows from the fact that Eu−(L, λ) = φ(L, 0; λ)Eu−(0, λ), hence

DL = φ(0,L;λ)D ∧ φ(0,L;λ)Eu−(L,λ) = [detφ(0,L;λ)]D ∧Eu−(L,λ).

In particular, N (0) for the operator pencil LL is independent of L for L large enough. Finally, 
applying Theorem 1.2, we infer the main assertion. �
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5. Application

We study spectral stability of hydraulic shock profiles of the (inviscid) Saint-Venant equations 
for inclined shallow-water flow:

∂th + ∂xq = 0,

∂tq + ∂x

(
q2

h
+ h2

2F 2

)
= h − |q|q

h2 ,
(5.1)

where h denotes fluid height; q = hu total flow, with u fluid velocity; and F > 0 the Froude 
number, a nondimensional parameter depending on reference height/velocity and inclination.

Following [30], we here focus on the hydrodynamically stable case 0 < F < 2, and associated 
hydraulic shock profile solutions

(h, q)(x, t) = (H,Q)(x − ct), lim
z→−∞(H,Q)(z) = (HL,QL), lim

z→−∞(H,Q)(z) = (HR,QR).

(5.2)

These are piecewise smooth traveling-wave solutions satisfying the Rankine-Hugoniot jump and 
Lax entropy conditions at any discontinuities. Their existence theory reduces to the study of an 
explicitly solvable scalar ODE with polynomial coefficients [30].

We now turn to the discussion of stability. Linearizing (5.1) about a smooth profile (H, Q)

following [19,28], we obtain eigenvalue equations

Av′ = (E − λId − Ax)v, (5.3)

where

A =
[ −c 1

H
F 2 − Q2

H 2
2Q
H

− c

]
, E =

[
0 0

2Q2

H 3 + 1 − 2Q

H 2

]
. (5.4)

It is shown in [30] that essential spectrum of L := −A∂x −∂xA +E is confined to {λ : �λ < 0} ∪
{0}, with an embedded eigenvalue at λ = 0. Moreover, it is shown that the embedded eigenvalue 
at λ = 0 is of multiplicity one in a generalized sense defined in terms of an associated Evans 
function defined as in [1,19]. It follows by the general theory of [20] relating generalized, or 
Evans-type, spectral stability to linearized and nonlinear stability, that smooth hydraulic shock 
profiles are nonlinearly orbitally stable so long as they are weakly spectrally stable in the sense 
that there exist no decaying solutions of (5.3) on {λ : �λ ≥ 0} \ {0}.

The discontinuous case is more complicated, involving a free boundary with transmission/evo-
lution conditions given by the Rankine-Hugoniot jump conditions. However, following the 
approach of Erpenbeck-Majda for the study of such problems in the context of shocks and det-
onations, one may deduce a generalized eigenproblem consisting of the same ODE (5.3), but 
posed on the negative half-line x ∈ (−∞, 0) with boundary condition

[λW − R(W)]⊥ · A(0−)v(0−) = 0, (5.5)
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where W := (H, Q)T and [h] := h(0+) − h(0−) denotes jump in h across x = 0; see [30] for 
further details. Similarly as in the smooth case, it is shown in [30] that essential spectrum of L
with boundary condition (5.5) is confined to {λ : �λ < 0} ∪ {0}, with an embedded eigenvalue 
at λ = 0, of multiplicity one in a generalized sense defined by an associated Evans-Lopatinsky 
function. It follows by the general theory of [30] that discontinuous hydraulic shock profiles are 
nonlinearly orbitally stable so long as they are weakly spectrally stable in the sense that there 
exist no decaying solutions of (5.3)-(5.5) on {λ : �λ ≥ 0} \ {0}.

In summary, by the analytical results of [20,30], the question of nonlinear stability of hydraulic 
shock profiles has been reduced in both smooth and discontinuous case to determination of weak 
spectral stability, or nonexistence of eigenvalues λ �= 0 with �λ ≥ 0 of eigenvalue problem (5.3)
on the whole- or half-line, respectively.

The special structure exploited here is that the eigenvalue system (5.3) may be reduced to a 
scalar second-order system of generalized Sturm-Liouville type. Specifically, following the gen-
eral approach described in [28], the eigenvalue system (5.3) originating from any 2 ×2 relaxation 
system may converted to a scalar second-order equation

y′′ + V (x)y = λf1(x)y + λ2f2(x)y. (5.6)

In the half-line case, there is in addition a λ-dependent Robin-type boundary condition

y′(0) = (c1 + c2λ)y(0), (5.7)

where f1(x), f2(x) > 0, c1, c2 < 0, V (x) < δ < 0, and Assumptions (A1)-(A4) are satisfied for 
the half- and whole line, respectively. Moreover, Eu−(·, 0) does not intersect D for the whole 
line case, and Eu−(·, 0) does not intersect colspan

( 1
c1

)
for the half line case [28]. Thus, applying 

Theorems 1.1 and 1.3, we obtain the following result:

Theorem 5.1. Nondegenerate hydraulic shock profiles of the Saint-Venant equations (5.1) are 
weakly spectrally stable, across the entire range of existence.

6. Discussion and open problems

Eigenvalue problems of form (1.2), (1.1) were studied in [28] in connection with stability of 
hydraulic shock profiles, or asymptotically constant traveling-wave solutions w(x, t) = W(x −
ct) of the inclined Saint-Venant equations, a 2 × 2 first-order hyperbolic relaxation system of 
form

wt + f (w)x = R(w), R = (r,0)T . (6.1)

The eigenvalue equations associated with W are of form (Aw)′ = (E − λ)w, where A(x) :=
(df/dw − cId)(W(x)) and E(x) := (dR/dw)(W(x)). Solving for one coordinate of w as a lin-
ear function of λ and the other coordinate yields a second-order scalar problem in the second 
coordinate, now quadratic in its dependence on λ; see [28, (1.8), (1.9)]. More generally, eigen-
value problems with possibly nonlinear dependence on λ are standard in Evans function literature 
[1], which treats generalized eigenvalue problems of the first-order form w′ = A(λx)w, with A
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analytic in λ but not necessarily linear. For solution by rather different techniques in the fourth-
order scalar case of a quadratic eigenvalue problem related to stability of phase-transitional shock 
waves, see [31].

In [28], the associated eigenvalue problems were shown to be stable, by a combination of 
classical Sturm–Liouville techniques, and by-hand arguments making use of special structure 
as needed. Here, we generalize and systematize this approach using Maslov index techniques, 
to obtain a full Sturm–Liouville theorem giving an exact eigenvalue count in the general case. 
The methods used in [12,13] to obtain spectral counts of operators on a bounded interval as 
particularly close to the point of view followed here. At the same time, we extend the theory from 
scalar to vector with Hermitian coefficient case, a task involving interesting issues (Lemma 3.2) 
related to monotone matrix functions and Löwner’s theorem [11]; for further discussion, see 
Appendix A.

In the scalar case, our results answer the problem posed in [28] of determining minimal struc-
tural requirements under which one can obtain a complete Sturm–Liouville theorem counting 
unstable eigenvalues. In the system case, an interesting open problem is to extend our results 
to the general, non-Hermitian coefficient case. We note that even in the Hermitian-coefficient 
system case, it is not clear how to determine analytically the number of conjugate points; 
however, numerical counting gives an attractive alternative to numerical Evans function com-
putations/winding number calculations, as described, e.g., in [32]. A second very interesting 
open problem, noted in [28] is to determine whether the assumptions of our theory developed 
apply to shock profiles of general 2 × 2 relaxation systems of the type considered in [18], and 
if so, whether these are always stable (as in the Saint Venant case [28]) or whether one can 
find examples of spectrally unstable smooth or discontinuous profiles for amplitudes sufficiently 
large.

Appendix A. Monotone matrix functions and Löwner’s theorem

In this appendix, we explore relations between Lemma 3.2 and the theory of monotone matrix 
operators and Löwner’s theorem [11].

A.1. Monotonicity of f (A) = Ap , 0 < p ≤ 1

We first prove (a variant of) the standard result of monotonicity of A → Ap (proof adapted 
from [22]), in the process establishing a strict convex interpolation inequality for families of 
commuting matrices.

Lemma A.1 (Monotonicity of the geometric mean). Let A < B , C ≤ D. A, B, C, D symmetric 
positive definite, and let A, C and B, D commute. Then,

(AC)1/2 < (BD)1/2.

Proof. A < B and C < D implies |B−1/2AB−1/2| < 1 and D−1/2CD−12| ≤ 1, which in turn 
gives |B−1/2AB−1/2D−1/2CD−1/2| < 1, and thus ρ(B−1/2AB−1/2D−1/2CD−1/2) < 1, where 
ρ(·) denotes spectral radius and | · | denotes matrix norm.

By similarity, this implies ρ(C1/2D−1/2B−1/2AB−1/2D−1/2C1/2) < 1, hence, by commuta-
tivity of A, C and B, D,
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ρ
(
C1/2(BD)−1/2A1/2(C1/2(BD)−1/2A1/2)∗

)
< 1,

or |C1/2(BD)−1/2A1/2| < 1. By similarity, this is equivalent to ρ
(
(AC)1/2(BD)−1/2

)
< 1, or 

(AC)1/2 < (BD)1/2 as claimed. �
Corollary A.1 (Matrix interpolation). Let A < B , C ≤ D. A, B, C, D symmetric positive defi-
nite, and let A, C and B, D commute. Then, ApC1−p < BpD1−p for all 0 < p ≤ 1.

Proof. By repeated application of Lemma A.1, we obtain the result for any dyadic p, giving 
ApC1−p ≤ BpD1−p for general p by continuity. Noting that any 0 < p ≤ 1 may be expressed as 
the geometric mean of a dyadic 0 < p1 ≤ p and a general p ≤ p2 ≤ 1, we obtain strict inequality 
for general p as well. �
Corollary A.2 (Monotonicity of Ap [11]). For A < B , Ap < Bp for any 0 < p ≤ 1.

Proof. Take C = D = Id in Corollary A.1. �
Remark A.1. From Corollary A.2, we obtain already nonnegativity, (Ap)′ ≥ 0 for A′ ≥ 0, of the 
derivative of the matrix function f (A) = Ap , for any 0 ≤ p ≤ 1.

A.2. Connection to Löwner’s matrix

Proposition A.1 ([11]). Let A(t) > 0 be symmetric and R(t) an orthogonal matrix of eigenvec-
tors of A(t), with A(t)R(t) = R(t)D(t), D diagonal, and f differentiable. Then

(
RT (d/dt)(f (A)R

)
jk

= (
RT A′R

)
jk

f (dj ) − f (dk)

dj − dk

. (A.1)

Proof. From

A(t)R(t) = R(t)D(t), RT (t)A(t) = D(t)RT (t), (A.2)

we obtain, differentiating (A.2)(i), A′R + AR′ − R′D − RD′ = 0, whence, applying RT on the 
left and using (A.2)(ii), we get

0 = RT A′R + RT AR′ − RT R′D − RT RD′ = RT A′R + DRT R′ − RT R′D − RT RD′

= RT A′R + DRT R′ − RT R′D − D′.

From this we may deduce that

D′ = diagRT A′R; (RT R′)jk = RT A′R
dj − dk

, j �= k. (A.3)

Differentiating f (A) = Rf (D)RT , gives (A1/2)′ = R′D1/2RT +Rf ′(D)′RT +Rf (D)(RT )′, 
whence, multiplying on the left by RT and the right by R, and using RT R = Id and (RT )′R =
−RT R′, we have
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RT f (A)′R = RT R′f (D) + f ′(D) + f (D)(RT )′R

= f ′(D) +
(
RT R′f (D) − f (D)RT R′).

(A.4)

Combining this with (A.3) then gives (A.1). �
Definition A.1. The Löwner matrix is defined as Ljk = f (dj )−f (dk)

dj −dk
.

Corollary A.3 ([11]). The matrix function f (A) is nonstrictly monotone, (d/dt)f (A) ≥ 0 for 
(d/dt)A ≥ 0, if and only if the Löwner matrix Lji is positive semidefinite.

Proof. Since P := RT A′R ≥ 0 if and only if A′ ≥ 0, this is equivalent to the statement that 
Qjk := LjkPjk ≥ 0 for all symmetric P ≥ 0. Assume that Q ≥ 0 for any P ≥ 0. Then in partic-
ular, we have for any vector v, taking P = vvT , that

xT QX =
∑
j,k

yjLjkyk ≥ 0,

yj := vjxj , for all choices of x, v, hence all choices of yj . This gives Ljk ≥ 0. On the other 
hand, if Ljk ≥ 0, then, expanding any symmetric P ≥ 0 as P = ∑

i μiv
i(vi)T , μi ≥ 0 we have, 

setting yi
j := vi

j xj ,

xT Qx =
∑

i

μi

∑
jk

yi
jLjky

i
k ≥ 0. � (A.5)

Proposition A.2 (Positivity of f (A)′). The matrix function f (A) satisfies (d/dt)f (A) > 0 for 
(d/dt)A > 0, if and only if the Löwner matrix Lji is positive semidefinite and f ′(t) > 0.

Proof. By (A.5), and Lk ≥ 0, we have Q > 0 if and only if Lyi �≡ 0 for all i for yi
j := vi

j xj and 

all choices of x, vi , where L is the Löwner matrix associated with D. By considering A diagonal, 
we find that f ′ > 0 is a necessary condition, along with semidefiniteness of L as established in 
Corollary A.2. To see that they are sufficient, note that f ′ > 0 implies that the coefficients of L
are positive. By the Frobenius–Perron theorem, therefore, it has a principal eigenvector w with 
positive entries wj , and w has eigenvalue ν > 0. Thus,

xT Qx =
∑

i

μi

∑
jk

yi
jLjky

i
k ≥

∑
i

μiν
(
∑

j yi
jwj )

2

|w| > 0

unless 0 = ∑
j yi

jwj = ∑
j vi

j (wjxj ) for all i. As {vi} is a basis, this would imply wjxj = 0, 
which, by wj > 0, would imply xj = 0 for all j , or x = 0. Thus, Q > 0 and we are done. �
Corollary A.4. The matrix function f (A) = Ap has positive derivative, (d/dt)f (A) > 0 for 
A > 0, (d/dt)A > 0, for all 0 < p ≤ 1.

Proof. By Corollary A.2, f is nonstrictly monotone, hence f (A)′ ≥ 0 and L ≥ 0. Since f ′ > 0
by inspection, we are done. �
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Remark A.2. The conclusions and methods regarding nonstrict monotonicity are standard. How-
ever, our conclusions regarding strict positivity of f (A)′ so far as we know are new.

A.3. Implications

The conclusions of Corollaries A.2, A.4 imply interesting inequalities on the associated 
Löwner matrices. For example, in the case of the square root function f (A) = A1/2, the as-

sociated Löwner matrix is Ljk = d
1/2
j −d

1/2
k

dj −dk
= 1

d
1/2
j +d

1/2
k

, which must therefore be semidefinite. 

We conjecture that for every dimension n, and dj distinct,

det
( 1

d
1/2
j + d

1/2
k

)
= �j>k(d

1/2
j − d

1/2
k )2

�j>k(d
1/2
j + d

1/2
k )2�j 2d

1/2
j

,

giving positive definiteness of L by induction on principal minors.

Appendix B. Essential spectrum

The analysis presented in this Appendix partially overlaps with that of [16,27], which treats 
the case of operators on the whole line for which λ enters linearly. Our situation is different due to 
the fact that we consider quadratic operator pencils on the half-line with λ-dependent boundary 
conditions, and therefore, λ-dependent domains. First, we consider the limiting operator pencil 
L−∞(λ) and the corresponding first order operator pencil T−∞(λ):

L−∞(λ) : dom(L−∞(λ)) ⊂ (L2(R−))n → (L2(R−))n,

L−∞(λ)y := y′′ + V−y − λf1−y − λ2f2−y, y ∈ dom(L−∞(λ)), x ∈ R−,

dom(L−∞(λ)) = {y ∈ (H 2(R−))n : (c + φ(λ))y(0) − y′(0) = 0},
T−∞(λ) : dom(T−∞(λ)) ⊂ (L2(R−))2n → (L2(R−))2n,

T−∞(λ)Y := Y ′ − A−(λ)Y, A−(λ) =
(

0 I

λf1− + λ2f2− − V− 0

)
, Y ∈ dom(T−∞(λ)),

dom(T−∞(λ)) = {y ∈ (H 1(R−))2n : (c + φ(λ) − I )Y (0) = 0}.

(B.1)

When A−(λ) is hyperbolic, its stable Es−(λ) and unstable Eu−(λ) subspaces yield direct sum 
decomposition of C2n. We denote by P s−(λ) and P u−(λ) the corresponding eigenprojections. 
Moreover, in this case, the system Y ′ = A−(λ)Y possesses the exponential dichotomy on R−.

Let {νj (λ)}nj=1 denote the eigenvalues of the matrix pencil λf1− +λ2f2− −V−. We introduce 

{μ±
j (λ)}nj=1

μ±
j (λ) = ∓

√
νj (λ)

that are precisely the eigenvalues of A−(λ). Hence, A− is not hyperbolic at λ ∈C if and only if 
det(−μ2 + V− − λf1− − λ2f2−) = 0 for some μ ∈R. In particular, Assumption (A1) guaranties 
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that there exists an open subset denoted by � containing the closed right half plane that consists 
of the points λ such that A− is hyperbolic and nu−(λ) = dimEu−(λ) = n.

Next, we look for an H 1(R−) solution of Y ′ = A−(λ)Y +F , where F ∈ (L2(R−))2n. In what 
follows, we will suppress λ dependence. By variation of parameters formula, we have

Y(x) = eA−xY0 +
x∫

0

eA−(x−t)F (t)dt, x ≤ 0,

where Y0 is the initial data. Or,

Y(x) = eA−xP u−Y0 + eA−xP s−Y0 +
x∫

0

eA−(x−t)P u−F(t)dt +
x∫

0

eA−(x−t)P s−F(t)dt.

Finally, we can rewrite it as follows:

Y(x) = eA−xP u−Y−
0 + eA−xP s−Y−

0 −
0∫

x

eA−(x−t)P u−F(t)dt +
x∫

−∞
eA−(x−t)P s−F(t)dt,

where

Y−
0 = Y0 −

0∫
−∞

e−A−tP s−F(t)dt. (B.2)

Once again, we can rewrite the solution Y by using the Green’s function G(z) ={
−eA−zP u−, if z ≤ 0,

eA−zP s−, z > 0.

Y (x) = eA−xP u−Y−
0 + eA−xP s−Y−

0 + (G ∗ F̂ )(x),

where F̂ (x) =
{

F(x), if x ≤ 0,

0, x > 0.
Note that ‖G ∗ F̂‖2 ≤ C‖G‖2‖F‖2. Then the solution Y be-

longs to (L2(R−))2n if and only if Y−
0 := Y(0) − ∫ 0

−∞ e−A−tP s−F(t)dt ∈ Eu−, that is,

Y(x) = eA−xP u−Y−
0 + (G ∗ F̂ )(x). (B.3)

Fix λ ∈ � and denote by E(λ) the 2n × 2n matrix ((I c + φ(λ))T vu
1 (λ) . . . vu

n(λ)), where 
n = dimEu− and {vu

j }nj=1 form a basis for Eu−. If det(E(λ)) �= 0, then there exists α ∈ C2n such 
that

E(λ)α =
0∫

e−tA−P s−F(t)dt, (B.4)
−∞
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which guaranties the existence of the solution Y of Y ′ = A−(λ)Y +F that satisfies the boundary 
condition at 0 and such that Y−

0 ∈ Eu−, therefore, by formula (B.3), Y ∈ H 1(R−) and λ belongs to 
the resolvent set of the operator pencil T−∞(·). Similarly, let F = (0, f )T , where f ∈ (L2(R−))n

and det(E(λ)) �= 0, then the existence of y ∈ dom(L−∞(λ)) such that L−∞(λ)y = f , therefore, 
λ belongs to the resolvent set of the operator pencil L−∞(·).

Before we prove the next lemma, we introduce the adjoint operator pencils T ∗−∞(λ) L∗−∞(λ):

L∗−∞(λ) : dom(L∗−∞(λ)) ⊂ (L2(R−))n → (L2(R−))n,

L∗−∞(λ)y := y′′ + V−y − λ̄f1−y − λ̄2f2−y, y ∈ dom(L∗−∞(λ)), x ∈R−,

dom(L−∞(λ)) = {y ∈ (H 2(R−))n : (c + φ∗(λ))y(0) − y′(0) = 0},
T ∗−∞(λ) : dom(T−∞(λ)) ⊂ (L2(R−))2n → (L2(R−))2n,

T ∗−∞(λ)Y := Y ′ + A∗−(λ)Y, A∗−(λ) =
(

0 λ̄f1− + λ̄2f2− − V−
I 0

)
, Y ∈ dom(T ∗−∞(λ)),

dom(T ∗−∞(λ)) = {y ∈ (H 1(R−))2n : (I c + φ∗(λ))Y (0) = 0}.
(B.5)

Furthermore, F ∈ ran(T ∗−∞(λ)) if and only if there exists α ∈ C2n such that

Ê(λ)α =
0∫

−∞
e−tA∗−(I − (P s−)∗)F (t)dt, (B.6)

where Ê(λ) denotes the 2n × 2n matrix ((c + φ∗(λ) − I )T v̂u
1 (λ) . . . v̂u

n(λ)), where n =
dim(ran(I − (P u−)∗)) and {v̂u

j }nj=1 form a basis for ran(I − (P u−)∗), where I − (P u−)∗ is the 
exponential dichotomy projection for the system Y ′ = −A∗−(λ)Y on R−.

The following lemma holds:

Lemma B.1. Let Assumption (A1) hold and fix λ ∈ �. Then ran(L−∞(λ)) and ran(T−∞(λ)) are 
closed and

dim(ker(L−∞(λ))) = dim(ker(T−∞(λ))) = dim(ker(E(λ))),

codim(ran(L−∞(λ))) = codim(ran(T−∞(λ))) = codim(ran(E(λ))).

Moreover, L−∞(λ) and T−∞(λ) are Fredholm with index 0.

Proof. It is clear from (B.3) that F ∈ ran(T−∞(λ)) if and only if 
∫ 0
−∞ e−tA−P s−F(t)dt ∈

ran(E(λ)). Since ran(E(λ)) is closed and F → ∫ 0
−∞ e−tA−P s−F(t)dt is continuous in

(L2(R−))2n, it follows that ran(T−∞(λ)) is closed. Similarly, by choosing F = (0, f )T and 
constructing a continuous map f → ∫ 0

−∞ e−tA−P s−F(t)dt in (L2(R−))n, we deduce that 
ran(L−∞(λ)) is closed.
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Also, it is clear that y ∈ ker(L−∞(λ)) if and only if (y, y′)T ∈ ker(T−∞(λ)) and both are 
in one-to-one correspondence with an α ∈ ker(E(λ)) (note that ker(E(λ)) = colspan

(
I

c+φ(λ)

) ∩
ran(P u−(λ))).

Finally, we know that codim(ranE(λ)) = dim(ker(E∗(λ))) and

ker(E∗(λ)) = (colspan

(
I

c + φ(λ)

)
∪ ran(P u−(λ)))⊥

= colspan⊥
(

I

c + φ(λ)

)
∩ ran⊥(P u−(λ)) (B.7)

= colspan

(
c + φ∗(λ)

−I

)
∩ ran(I − (P u−(λ))∗) = ker Ê(λ).

Since it is clear from (B.6) that y ∈ ker(L∗−∞(λ)) if and only if (−y′, y)T ∈ ker(T ∗−∞(λ)) and 
both are in one-to-one correspondence with an α ∈ ker(Ê(λ)), by (B.7), we have

dim(ker(L∗−∞(λ))) = dim(ker(T ∗−∞(λ))) = dim(ker Ê(λ)) = dim(ker(E∗(λ))). (B.8)

Finally, L−∞(λ) and T−∞(λ) are Fredholm with index 0 due to the following identity:

dim(ker(E(λ))) − codim(ran(E(λ))) = (2n − codim(ker(E(λ)))) − (2n − dim(ran(E(λ))))

= 0. �
Now, we would like to mimic the above analysis for the operator pencil L−(·). Assumption

(A1) guaranties the existence of exponential dichotomy on R− for λ ∈ � for the system:

Y ′ = A(x,λ)Y, A(x,λ) =
(

0 I

λf1(x) + λ2f2(x) − V (x) 0

)
, (B.9)

which is due to the roughness theorem of exponential dichotomies. That is, there exist a projec-
tion P and constants Ki > 0, αi > 0 such that for all x, t ∈R−

|U(x)PU−1(t)| ≤ K1e
−α1(x−t), t ≤ x,

|U(x)(1 − P)U−1(t)| ≤ K2e
−α2(t−x), t ≥ x,

(B.10)

where U(x) (U(0) = I ) is the fundamental matrix for (B.9).

Y(x) = U(x)Y0 +
x∫

0

U(x)U−1(t)F (t)dt, x ≤ 0,

where Y0 is the initial data. Or,
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Y(x) =U(x)PY−
0 + U(x)(1 − P)Y−

0 −
0∫

x

U(x)(1 − P)U−1(t)F (t)dt

+
x∫

−∞
U(x)PU−1F(t)dt,

where

Y−
0 = Y0 −

0∫
−∞

PU−1(t)F (t)dt. (B.11)

Once again, we can rewrite the solution Y by using the Green’s function G(x, t) ={
−U(x)(1 − P)U−1(t), if x ≤ t,

U(x)PU−1(t), x > t.

Y (x) = U(x)PY−
0 + U(x)(1 − P)Y−

0 +
0∫

−∞
G(x, t)F (t)dt,

where the integral term on the right hand side is L2-integrable with respect to x. Then the solution 
Y belongs to (L2(R−))2n if and only if Y−

0 := Y0 − ∫ 0
−∞ PU−1(t)F (t)dt ∈ Eu− := ran(I − P), 

that is,

Y(x) = U(x)(1 − P)Y−
0 +

0∫
−∞

G(x, t)F (t)dt.

Fix λ ∈ � and denote by E−(λ) the 2n × 2n matrix ((I c +φ(λ))T vu
1 (λ) . . . vu

n(λ)), where 
n = dimEu− = dim ran(I −P) and {vu

j }nj=1 form a basis for Eu− = ran(I −P). If det(E−(λ)) �= 0, 

then there exists α ∈ C2n such that

E−(λ)α =
0∫

−∞
PU−1(t)F (t)dt, (B.12)

which guaranties the existence of Y(0) that satisfies the boundary condition at 0 and such that 
Y−

0 ∈ Eu− = ran(I − P), therefore, λ belongs to the resolvent set of the operator pencil T−(·). 
Similarly, let F = (0, f )T , where f ∈ (L2(R−))n and det(E(λ)) �= 0, then the existence of y ∈
dom(L−∞(λ)) such that L−∞(λ)y = f , therefore, λ belongs to the resolvent set of the operator 
pencil L−∞(·).

Furthermore, the following lemma holds:



A. Sukhtayev, K. Zumbrun / J. Differential Equations 268 (2020) 3848–3879 3877
Lemma B.2. Let Assumption (A1) hold and fix λ ∈ �. Then ran(L−(λ)) and ran(T−(λ)) are 
closed and

dim(ker(L−(λ))) = dim(ker(T−(λ))) = dim(ker(E−(λ))),

codim(ran(L−(λ))) = codim(ran(T−(λ))) = codim(ran(E−(λ))).

Moreover, L−(λ) and T−(λ) are Fredholm with index 0.

Proof. The proof is similar to that of Lemma B.1, and a key relation is

F ∈ ran(T−(λ)) ⇐⇒
0∫

−∞
PU−1(t)F (t)dt ∈ ran(E−(λ)). �

Let us recall the definition of multiplicity of eigenvalues of nonlinear pencils (cf. [4,21]).

Definition B.1. Let λ0 be an eigenvalue of the pencil T (·).

1. A tuple (v0, . . . , vn−1) ∈ (dom(T (λ0)))
n is called a chain of generalized eigenvectors (CGE) 

of T (·) at λ0 if the polynomial v(λ) = ∑n−1
j=0(λ − λ0)

j vj satisfies

(T v)(j)(λ0) = 0, j = 1, n − 1.

The order of the chain is the index r0 satisfying

(T v)(j)(λ0) = 0, j = 1, r0 − 1, (T v)(r0)(λ0) �= 0.

The rank r(v0) of a vector v0 ∈ ker(T (λ0)), v0 �= 0, is the maximum order of CGEs starting 
at v0.

2. A canonical system of generalized eigenvectors (CSGE) of T (·) at λ0 is a system of vectors

vj,p ∈ dom(T (λ0)), j = 0,μp − 1, p = 1, q,

with the following properties:
(a) v0,1, . . . , v0,q form a basis of ker(T (λ0)),
(b) the tuple (v0,p, . . . , vμp−1,p) is a CGE of T (·) at λ0 for p = 1, q ,
(c) for p = 1, q the indices μp satisfy

μp = max{r(v0) : v0 ∈ ker(T (λ0)) \ span{v0,ν : 1 ≤ ν < p}.

(d) The number μ1 + . . . + μq is called the algebraic multiplicity of λ0.

Lemma B.3. Let Assumption (A1) hold. Then � ⊂C \ σess(L−). Moreover, � consists of either 
points of the resolvent set or isolated eigenvalues of finite algebraic multiplicity of the operator 
pencil L−(·).
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Proof. Fix λ ∈ �. Then, by Lemma B.2, λ /∈ σess(L−). Therefore, λ is either a point of the resol-
vent set of L−(·) or an eigenvalue of L−(·). Moreover, λ is an eigenvalue of L−(·) if and only if λ
is an eigenvalue of T−(·) if and only if it is a root of the analytic function det(E−(λ)). Therefore, 
all the eigenvalues from � are isolated. Moreover, one can show that L−1− (·) is meromorphic in 
� and the order of the pole at the eigenvalue λ0 is the algebraic multiplicity of λ0 (cf. [4,21,25]). 
In particular, one can use the functional analytic approach of combining the differential operator 
and the boundary operator to a two-component operator defined on a fixed space, not depending 
on the eigenvalue parameter, that is,

L̂−(λ) ∈ B(H 2(R−), (L2(R−))n ×Cn),

L̂−(λ)y :=
(

y′′ + V (x)y − λf1(x)y − λ2f2(x)y

(c + φ(λ))y(0) − y′(0)

)
. �

Lemma B.4. Let Assumption (A4) hold. Then � ⊂ C \ σess(L). Moreover, � consists of either 
points of the resolvent set or isolated eigenvalues of finite algebraic multiplicity of the operator 
pencil L(·).

Proof. One can prove the result similar to Lemma B.3 for the full line problem. In this case, one 
would use Es+(λ) instead of colspan

(
I

c+φ(λ)

)
, and a key relation is

F ∈ ran(T (λ)) ⇐⇒
0∫

−∞
PU−1(t)F (t)dt +

∞∫
0

(1 − Q)U−1(t)F (t)dt ∈ ran(E(λ)),

where T (λ) is the first-order operator pencil associated with the eigenvalue problem (1.2), P
and Q are the dichotomy projections on R− and R+, respectively, and E(λ) = ran(I − P(λ)) ∧
ran(Q(λ)). Then the proof is similar to that of Lemma B.3. �
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