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Abstract

We establish a Sturm-Liouville theorem for quadratic operator pencils with matrix-valued potentials
counting their unstable real roots, with applications to stability of waves. Such pencils arise, for example,
in reduction of eigenvalue systems to higher-order scalar problems.
© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, motivated by recent results of [28] in a special case, we establish a general
Sturm-Liouville problem for quadratic operator pencils with matrix-valued potentials on the
half- or whole-line. Specifically, we consider eigenvalue systems on the half line,

Y+ V@) y=rfi(x)y + A2 H(x)y; xeR_, yeC",

(1.1)
(c+¢)y(0) —y'(0) =0,
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and on the whole line,

Y +V@)y=rfix)y+r2fr(x)y; xeR, yeC”, (1.2)

where ¢ € M,,(C) is a complex analytic matrix-valued function, the matrix ¢ € M,,(C) is Her-
mitian, ¢ (A) is Hermitian for A e R, and V, f; € C(R, C"*") are Hermitian potentials. We also
list the following assumptions:

(A1) The limits lim, , oo V(x) =V_andlim, ,  fj(x) = fj_exist,and V—-V_, f; — f;_ €
LY RL), f1>0and f> >§ >0, and there is y < 0 such that, for all x € R and all A € C,

det(—p> +V_ —Afi— — A2 fr_)=0 (1.3)
implies
Rr <y <O. (1.4)

(A2) p(0) =0and ¢'(L) <Ofor A e R.

(A3) sign IAIp (1) <O for all A with RA > 0.3

(A4) The limits lim,  +00 V(x) = Vx and limy , +o0 fj(x) = fjrexist,and V — Vg, f; — fj+ €
LY(Ry), f1>0and f, > 6§ > 0, and there is ¥ < 0 such that, forall x € R and all A € C,

det(—p? + Vi — Afie — 22 o) =0 (1.5)
implies
RAL <y <O. (1.6)

(A4) is related to problem (1.2); (A1), (A2) and (A3) are related to problem (1.1). Our partic-
ular interest lies in counting the number of real nonnegative eigenvalues of (1.2) and (1.1). As de-
scribed further in Section 6, quadratic eigenvalue problems (1.1)—(1.2) arise for example through
reduction of a standard eigenvalue system to a higher-order system in a lower-dimensional vari-
able. As such, their stability has bearing on stability of traveling waves, calculus of variations,
etc. In particular, reduction of a first-order 2 x 2 system to a second-order scalar problem can
always be performed [14,28,29], in which case the assumptions of Hermitian coefficients, since
they are real scalar, is automatically satisfied.

We consider at the same time the truncated eigenvalue problems

Y V@)Y =rfix)y + 22 fHr(x)y; xeRy:=(—0o,L], LR,
y(L) =0.

(1.7)

3 Here and elsewhere M for an operator M is defined as its skew-symmetric part %(M * — M). Note, for 1 =0, that
¢ (1) since Hermitian, automatically satisfied J¢ (1) = 0.
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Next, we introduce the corresponding operator pencils:

L_(1) :dom(L_(1)) C (L*(R-))" — (L*(R_))",
L_(N)y =Y +V@)y—rfix)y —r2fr(x)y, yedom(L_(1), xeR_, (1.8)
dom(£_ (1) = {y € (H*(R_))": (¢ + ¢(1))y(0) — y'(0) = 0}.

And
L1(x) :dom(Ly (1) C (L*(Rp)" — (L*(Rp))",
Lr(W)y:=y"+V@)y—rfi(x)y =22 fr(x)y, y edom(LL (1), xRy, (1.9
dom(Lz (M) = {y € (H*(Rp))" : y(L) = 0}.

Finally,

L) : dom(L()) C (L*(R))" — (L*(R))",
LGy =y +V@)y —rfi(x)y — A2 f(x)y, y edom(L(L)), xR, (1.10)
dom(L (%)) = (H*(R))".

Essential spectrum. Our first goal is to show that Assumption (A1) implies that there exists an
open subset €2 containing the closed right half plane that consists of either points of the resolvent
set or isolated eigenvalues of finite algebraic multiplicity of the operator pencil £_(-).

We introduce the closed densely defined operator pencil 7 (A) : D(A) = H, where D(A) C H
is the domain of T (X).

Definition 1.1 (Essential spectrum). The essential spectrum of T, denoted o, (7), is the set of
all complex numbers A such that 7 (1) is not a Fredholm operator with index 0.

Since for the half-line case, the domain of the operator pencil is A dependent, we couldn’t find
a precise reference for the following lemma which we prove in Appendix B.

Lemma 1.1. Let Assumption (A1) hold. Then Q C C \ 0¢55(L_). Moreover, Q2 consists of either

points of the resolvent set or isolated eigenvalues of finite algebraic multiplicity of the operator
pencil L_(-).

Similarly,

Lemma 1.2. Let Assumption (A4) hold. Then Q2 C C \ 0.55(L1). Moreover, 2 consists of either
points of the resolvent set or isolated eigenvalues of finite algebraic multiplicity of the operator
pencil Ly ().

For purpose of self-containment, we also provide the proof of the following lemma in Ap-
pendix B.
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Lemma 1.3. Let Assumption (A4) hold. Then Q C C \ 0.55(L). Moreover, Q2 consists of either
points of the resolvent set or isolated eigenvalues of finite algebraic multiplicity of the operator
pencil L(-).

Maslov index. As a starting point, we define what we will mean by a Lagrangian subspace of
c?,

Definition 1.2. We say ¢ ¢ C?" is a Lagrangian subspace of C2" if £ has dimension n and

(Jontt, V)cn =0, Joy :=<0 _1”) (1.11)
L, 0

for all u, v € £. Here, (-, -)c2: denotes the standard inner product on C 21 In addition, we de-
note by A(n) the collection of all Lagrangian subspaces of C?", and we will refer to this as
the complex Lagrangian Grassmannian. The complex Lagrangian Grassmannian is the complex
homogeneous manifold of Lagrangian subspaces of complex dimension n(n + 1)/2 ([2,6]).

Any Lagrangian subspace of C2 can be spanned by a choice of n linearly independent vectors
in C?". We will generally find it convenient to collect these n vectors as the columns of a 21 x n
matrix X, which we will refer to as a frame for £. Moreover, we will often coordinatize our
frames as X = (if) where X and Y are n x n matrices.

Suppose £1(+), £2(-) denote paths of Lagrangian subspaces ¢; : Z — A (n), for some parameter
interval Z. The Maslov index associated with these paths, which we will denote Mas(¢1, £2; 7),
is a count of the number of times the paths £1(-) and £5(-) intersect, counted with both multi-
plicity and direction. (In this setting, if we let 7, denote the point of intersection (often referred
to as a conjugate point), then multiplicity corresponds with the dimension of the intersection
£1(tx) N £a(ty); a precise definition of what we mean in this context by direction will be given
in Section 2.) In some cases, the Lagrangian subspaces will be defined along some path in the

(o, B)-plane

F={(a(®),p(0) 1 €1},

and when it is convenient we will use the notation Mas(¢1, £»; I').

We say that the evolution of £ = (£, £2) is monotonic provided all intersections occur with
the same direction. If the intersections all correspond with the positive direction, then we can
compute

Mas(¢y, r; T) = Zdim(él(t) N €1(1)).
tel

Suppose X (1) = (?:((;))) and Xo(t) = ();22((;))) respectively denote frames for Lagrangian sub-

spaces of C?", £,(¢) and £ (¢). Then we can express this last relation as

Mas(£1,€y; 1) = Z dimker(X; (1)*J Xz (1)).
tel
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1.1. Main results

We establish the following generalized Sturm-Liouville theorems relating the spectral count,
or number of real eigenvalues greater than a given nonnegative value X, to the number of con-
jugate points of the Lagrangian frame asymptotic to the decaying eigenspace at x — —oo plus,
in the case of the half-line problem (1.1), a computable boundary correction term. Note that, in
contrast to the standard case of a linear operator pencil, we do not obtain information for neg-
ative A, but only about the number of possible unstable real eigenvalues A > 0. Nonetheless,
this is sufficient to determine stability or instability of spectra, which is typically the question of
interest.

Theorem 1.1. For equation (1.1), let Assumptions (A1), (A2) hold, and let X and Xy denote
the Lagrangian frames corresponding the unstable subspace E* (x,A) and the ® (L) subspace

colspan (c +§;’(M), respectively. If N'(\) denotes the spectral count for (1.1) (the number of real
eigenvalues that are greater than ).), then

N () = —Mas(E" (-; 1), D(A); [—00, 0]) — dim(ker(L_ (1))

F Mor(y/Afi— +32fs- = Vo — e = $ () +dimker(/1fi- +32fo- — V- —c—p(0),
A=0.

Theorem 1.2. For equation (1.7), let Assumption (A4) hold, and let X and Xp denote the La-
grangian frames corresponding to the unstable subspace E" (x, ) and the Dirichlet subspace
D, respectively. If N'(L) denotes the spectral count for (1.2) (the number of real eigenvalues that
are greater than A), then

Nw= Y dimE“x.0)ND)= Y dimker(X(x; 1)*JXp), 2> 0.

—oo<x<L xe(—oo,L)

Theorem 1.3. For equation (1.2), let Assumption (A4) hold, and let X and Xp denote the La-
grangian frames corresponding to the unstable subspace E" (x, ) and the Dirichlet subspace
D, respectively. If N (L) denotes the spectral count for (1.2) (the number of real eigenvalues that
are greater than A), then

Ny =) dim(E"(x,2))ND) =) _ dimker(X(x; 1)*JXp), A > 0.
xeR xeR

Typical examples of the eigenvalue curves

Example 1 (Half-line, scalar). We consider the potentials V(x) = —1 — (815+219cos(1.8x)) x
V% fi =1, f» =2 along with the boundary condition (18 — 9)y(0) — y’(0) = 0. In this case,
we see the emergence of an eigenvalue from the bottom shelf, and we notice a very distinct loss
of the monotonicity. See the left-half of Fig. 1. The Maslov Index in this case is 1, the Morse
index of o/—V_ — c is 1, and according to 1.1, this means that A'(0) = 0 (the number of real
eigenvalues for the problem (1.1) that are greater than 0).
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-00

Fig. 1. Eigenvalue curves.

Example 2 (Full-line, scalar). We consider the potentials V(x) = —1 + 1.8¢~0-061x fi=1,
f> = 2. In this case, there can be no crossings along the bottom shelf, and indeed the only al-
lowable behavior is for the eigenvalue curves to enter the box through the curve A =0 and move
upward until reaching the curve x = oco. See the right-half of Fig. 1. We ran our numerics up
to some big positive value xo,. The number of intersections of the unstable subspace E” (x, 0)
and the Dirichlet subspace D is 3, and according to Theorem 1.3 this means that /(0) = 3 (the
number of real eigenvalues for the problem (1.2) that are greater than 0).

Example 3 (Half-line, 2 x 2 system). We consider the potentials

Vo = (1 (815 +219cos(1.8x))e .
B 0 —1— (2554 0.1¢c0s(0.5x))e%15x |

fi=1 and fr =21

. . -9r 0 18 2
along with the boundary matrices ¢ (i) = 0 —on and ¢ = ( ) 25). Note that the
coupling appears via the matrix c. See the left-half of Fig. 2. The Maslov Index in this case is 1,
the Morse index of ./—V_ — ¢ is 2, and according to 1.1, this means that A/(0) = 1 (the number

of real eigenvalues for the problem (1.1) that are greater than 0).

Example 4 (Full-line, 2 x 2 system). We consider the potentials

_ —0.141|x|
Vix)= ( ]+ 1'?3; i 1.90556—0.141|x>’ fi=I and fp=2I
Note that the coupling appears via the potential V. See the right-half of Fig. 2. The number of
intersections of the unstable subspace E* (x, 0) and the Dirichlet subspace D is 5, and according
to Theorem 1.3 this means that A/(0) = 5 (the number of real eigenvalues for the problem (1.2)
that are greater than 0). Also, note that for the systems, the eigenvalue curves might intersect
which can be observed for our particular 2 x 2 system.
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Fig. 2. Eigenvalue curves.

1.2. Reality of eigenvalues

The above theorems concern only the real spectrum of the associated operator pencil. How-
ever, adapting an argument of [28, Lemma 4.1] similar to that for the classic linear pencil case,
we may readily see that nonstable spectra A > 0 of the whole-line problem are necessarily real,
hence our conclusions are decisive for stability. Likewise, for the half-line problem, unstable
spectra are real under the additional (sharp, see Remark 3.2) assumption that J¢ (A)IA < 0 for
MA > 0; see Lemma 3.3.

2. The Maslov index on C2"

Suppose X = (}), Xp = (10,1) and Xy = (, +;§l(,\)) respectively denote frames for Lagrangian
subspaces £(x, 1) := E* (x, A), the Dirichlet subspace D and the ®(A) subspace. We now set

Wp:i=((X+i¥)(X—iY)™", 2.1
Wp:=—(X+iV)(X —i¥) " (Xg—iYs)(Xp+iYp)~", '

noting that Wp and W¢ detect intersections of £ = colspan(X) = E“ (x, A) with the Dirichlet
subspace and the ¢ subspace, respectively [10]. Moreover,

dimker(X*JXp) = dimker(Wp + I),
dimker(X*JX,) = dimker(Wy, + I).

In general, given any two Lagrangian subspaces £1 and ¢», with associated frames X| = ();11)

and X, = ();,22), we can define the complex 7 x n matrix

W=—(X1+iVDX1 —i¥D) (X2 —iV) (X2 +i¥2) " (22)
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Given two continuous maps £ (¢), £2(¢) on a parameter interval Z, we denote by L(#) the path

L(1) = (£1(2), £2(1)).

In what follows, we will define the Maslov index for the path L£(¢), which will be a count,
including both multiplicity and direction, of the number of times the Lagrangian paths £; and ¢»
intersect. In order to be clear about what we mean by multiplicity and direction, we observe that
associated with any path £(7) we will have a path of unitary complex matrices as described in
(2.2). We have already noted that the Lagrangian subspaces £; and £, intersect at a value ¢, € Z
if and only if W (z,) has —1 as an eigenvalue. (Recall that we refer to the value #, as a conjugate
point.) In the event of such an intersection, we define the multiplicity of the intersection to be
the multiplicity of —1 as an eigenvalue of W (since W is unitary the algebraic and geometric
multiplicities are the same). When we talk about the direction of an intersection, we mean the
direction the eigenvalues of W are moving (as ¢ varies) along the unit circle S! when they cross
—1 (we take counterclockwise as the positive direction). We note that we will need to take care
with what we mean by a crossing in the following sense: we must decide whether to increment
the Maslov index upon arrival or upon departure. Indeed, there are several different approaches to
defining the Maslov index (see, for example, [7,24]), and they often disagree on this convention.

Following [5,8,15,23] (and in particular Definition 1.5 from [5]), we proceed by choosing
a partition a =ty <t; < --- <t, =b of I = [a, b], along with numbers ¢; € (0, ) so that
ker (W(t) — e!*<)[) = {0} for tj_y <t <t;; thatis, e!*) € C\ o (W (1)), fort;_1 <t <t;

and j =1, ..., n. Moreover, we notice that foreach j=1,...,n and any ¢ € [tj-1,1;] there are
only finitely many values 8 € [0, €;) for which el mHh) ¢ U(W(t)).
Fix some j € {1, 2, ..., n} and consider the value
k(t,€;) = Z dimker (W (1) — /™ 1P) ), (2.3)
0<B<e;

fort;_1 <t <t;. This is precisely the sum, along with multiplicity, of the number of eigenvalues
of W (¢) that lie on the arc

Aji={e" telm, +e)))

The stipulation that ! "+€/) € C\ o (W(z)), for ;1 <t < t; ensures that no eigenvalue can enter
A in the clockwise direction or exit in the counterclockwise direction during the interval #;_; <
t <t;.Inthis way, we see that k(z;, €;) —k(t;_1, €;) is a count of the number of eigenvalues that
enter A; in the counterclockwise direction (i.e., through —1) minus the number that leave in the
clockwise direction (again, through —1) during the interval [¢; 1, ;].

In dealing with the catenation of paths, it’s particularly important to understand the difference
k(tj,€;) —k(tj—1, €;) if an eigenvalue resides at —1 at either r =¢; 1 or r =1¢; (i.e., if an eigen-
value begins or ends at a crossing). If an eigenvalue moving in the counterclockwise direction
arrives at —1 at t = ¢;, then we increment the difference forward, while if the eigenvalue arrives
at —1 from the clockwise direction we do not (because it was already in A; prior to arrival).
On the other hand, suppose an eigenvalue resides at —1 at t = ¢;_1 and moves in the counter-
clockwise direction. The eigenvalue remains in A ;, and so we do not increment the difference.
However, if the eigenvalue leaves in the clockwise direction then we decrement the difference. In
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summary, the difference increments forward upon arrivals in the counterclockwise direction, but
not upon arrivals in the clockwise direction, and it decrements upon departures in the clockwise
direction, but not upon departures in the counterclockwise direction.

We are now ready to define the Maslov index.

Definition 2.1. Let £(t) = (¢1(¢), £2(t)), where €1, £> : Z — A(n) are continuous paths in the
Lagrangian—Grassmannian. The Maslov index Mas(L; Z) is defined by

n

Mas(L:Z) = Y (k(tj. €;) — k(tj—1.€;)). (2.4)
j=1

Remark 2.1. As we did in the introduction, we will typically refer explicitly to the individual
paths with the notation Mas(¢1, £3; 7).

Remark 2.2. As discussed in [5], the Maslov index does not depend on the choices of {tj}’;.zo
and {e; };?z 1» S0 long as these choices follow the specifications described above.

2.1. Direction of rotation

As noted in the previous section, the direction we associate with a conjugate point is de-
termined by the direction in which eigenvalues of W rotate through —1 (counterclockwise is
positive, while clockwise is negative). When analyzing the Maslov index, we need a convenient
framework for analyzing this direction, and the development of such a framework is the goal of
this section.

Lemma 2.1 ([13]). Suppose £1, 0> : I — A(n) denote paths of Lagrangian subspaces of C*"

with absolutely continuous frames X1 = (;il') and Xp = ();22) (respectively). If there exists § > 0
so that the matrices

=XFIX] = X1(0)*Y{(t) = Y1 ()" X (1)

and (noting the sign change)

X3TX5 = —(X2(1)" Y5 (1) — Y2(1)* X5(1))
are both a.e.-non-negative in (ty — 8, ty + 8), and at least one is a.e.-positive definite then the
eigenvalues of W (t) rotate in the counterclockwise direction as t increases through ty. Likewise,
if both of these matrices are a.e.-non-positive, and at least one is a.e.-negative definite, then the
eigenvalues of W (t) rotate in the clockwise direction as t increases through ty.
3. Proof of Theorem 1.1

3.1. Upper bound on the spectrum of (1.1)

By Lemma 1.1, we know that the real part of the essential spectrum of (1.1) is bounded above
by y < 0. Next, we show that a set of the real eigenvalues of (1.1) is bounded above.
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Lemma 3.1. Assume (A1) and (A2). Then there exists v € R such that for all real eigenvalues A

of (1.1)
VIf2lle®_ylvl

A< 3.1
< 5 (3.1
Proof. Let A be a real eigenvalue of (1.1) with the corresponding eigenvector y. Then
Y+ V@y=afit)y +22 00y xeR-, 42
(c+¢(1)y(0) —y'(0) =0.
Thus, after multiplying by y and integration by parts, we arrive at
(€ +¢())y(0). y() = (v, ) + (Vy, y) = A(f13. ) + X (f2y. 3. (3.3)

or, rearranging,

(F2y, IR+ (f1y, A+ G Y) = (Vy, y) = ((c + ¢ (1)y(0), y(0)) =0. (3.4)

Therefore, A € R satisfies one of the following equalities

, —(fiy. ) £ \/(fl)’» V2= 4Ly, VIO Y) = (Vy, y) = ((c + (1) y(0), y(0))]
B 2(/2y,y) '

(3.5)

If A satisfies the equality with the negative sign in front of the square root, then A is nonpositive.
Thus, we may assume that X satisfies the equality with the positive sign in front of the square
root.

Now, we estimate the following quadratic form M with the domain H LR_):

Myl= (" y) = (Vy, ») = ((c + o)y (0), y(0)), *eR. (3.6)

Since ¢ (1) is Hermitian and ¢’(1) < 0 for A € Ry, by [17, Theorem 5.4.], we conclude that
¢(1) <0 for A € Ry. Hence,

Myl =" y) = (Vy,y) = (cy(0), y(0)), reR. (3.7
Given any € > 0 there is a corresponding B(¢) > 0 so that
yOF <elly 7@, + B8OOIV ® )
Choose € > 0 small enough so that ||c||e < 1. Then (see [9])
M= 1Y 2@, = Vi@ 1132 gy = lellely 172 @, = ellBEIVIT2 R

= =[Oy 172, + (— IVIie®_) — ||c||ﬂ<e>)||y||iz(R_)
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> (= IVl = 1el1B©) 13132 -

Therefore, if v = (|| Voo _) — lIc||B(€)) which is independent of A and y € H'(R_), then
M > v. Thus, we have

- (fiy. )+ \/(fl)’» W2 =42y, DI, y) = (Vy, y) = ((c + ¢ (1) y(0), y(0))]

3.8
= —(fi3 )+ /i3 22 =4y oIy IEa g 1= 212l WY ), oY
and therefore, A < —‘”ML:M.
Remark 3.1. We introduce the truncated eigenvalue problem
Y V)Y =rfi)y + 22 f(x)y;  x € Ry = (=00, x], 39

(c+d(W)y(x0) — y'(x0) =0.

According to the proof of Lemma 3.1, we have the uniform upper bound estimate (indepen-
dent of x¢) for any real eigenvalue of (3.9), that is,

V2l ® vl
<Y 7

- 8

I f2=llpeer_ylv-1
We also have the upper bound *——F——

eigenvalue of the constant-coefficient problem

(v—:=—[[V_llLe®_)y — llcl|B(€)) for any real

Y+ Voy=nrfiiy+22fryr xeR_,

(3.10)
(c+¢()y0) —y'(0)=0.

3.2. Positivity of the derivative of the matrix square root

Lemma 3.2. Let M € C' (R, C"™™"), and assume that M (}) and M' () are Hermitian and posi-
tive definite for . € R. Then (/M (X))’ > 0 for » € R.

Proof. We have
MYV M2 MV Y =M (3.11)
Multiply both sides by M ~1/4 from the right and the left
MVAMYRY MVA L MY A MY MV = VA A (3.12)
Let C:= M~Y4MY2YMY*. Since M—Y4*M'M~14 > 0, we have C + C* > 0. Therefore, we
have the estimate on the real part of the spectrum of C, that is, %(o (C)) > 0. We also know that

C is similar to (M'/?)". Hence, R(o (M'/?)")) > 0, or o (M'/?)") > 0 ((M'/?)’ is Hermitian).
Hence, (/M) >0. O
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3.3. Proof of Theorem 1.1

We define a new vector y(x) € C2" so that y(x) = (y1(x) y2(x)), with y;(x) = y(x) and
y2(x) = y'(x). In this way, we rewrite the equation in (1.1) in the form
_ 2 _
Iy =B(:A)y: B A) = Vx) = Arfi(x) =A% fa(x) O U= 0 —I)
0 1 L, O

JIale@ ol il lv-]
Let Aoo > max{ 3 , 3 } (cf. Lemma 3.1, Remark 3.1). By Maslov Box,

we mean the following sequence of contours: (1) fix x =0 and let A run from 0 to A (the top
shelf); (2) fix A = Ao and let x run from 0 to —oo (the right shelf); (3) fix x = —oo and let A run
from A to O (the bottom shelf); and (4) fix A = 0 and let x run from —oo to O (the left shelf). We
denote by I the simple closed curve obtained by following each of these paths precisely once.

Top shelf. For the top shelf, we know from Lemma 2.1 that monotonicity in A can be de-
termined by —X(0; A)*J 9, X(0; 1), where X(0; A) is a frame corresponding to the unstable
subspace E” (0, 1), and X4(1)* J 93Xy (A). We readily compute

0
a—X* (3 1) 200X (x5 2) = (X)* T2 5. X + X" 2,0, X’
X

= —(X)* I}, 0, X + X*0; Jo, X'
= —X*B(x; 1)3; X + X*3;, (B(x; 1)X) = X*B; X.

Integrating on (—oo0, x], we see that

X

X(x; 1) 2, 2 X (x5 A) = / X(y; M)*Ba(y: MX(y; A)dy

—00

X

—_ f X (i 1) Lf1 () 4+ 20> ()IX (v M)y,

—00

Also,
X¢(k)*J8,\X¢()») =—¢'(V) > 0.

Monotonicity along the top shelf follows by setting x = 0 and appealing to condition f; > 0.
In this way, we see that conditions f; > 0 and ¢’(L) < 0 for A € R ensure that as A in-
creases the eigenvalues of W¢ (0; &) will rotate in the counterclockwise direction. Therefore,
Mas(£(0; -), @(-); [0, Axo]) is equal to the total number of intersection of the unstable subspace
E" (0, ) and the boundary subspace ®(A) for all A > 0, which in turn is the total geometric
multiplicity of the operator pencil £_ (cf. (1.8)) for all » > 0. Next, we show that all nonnegative
eigenvalues of the operator pencil £_ are semisimple. Let a nonnegative Ag be an eigenvalue
of L£_ with the corresponding eigenvector yp € dom(L_(Ap)), and assume there exist a nonzero
y1 € dom(L_(Ag)) such that £_(Ag)y; = —L" (Ao)yo. We have
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(L_(A0)y1, yo) = ((f1 + 220 f2)¥0, Y0)- (3.13)

Moreover,

(L-(0)y1, ¥0) = ¥5(0)y1(0) — (35(0)*y1(0) + (y1, L-(20)y0)- (3.14)

Since yg and y; satisfy the boundary condition from (1.1), and ¢ 4+ ¢ (A¢) is self-adjoint, we have

(L-(A0)y1, y0) = (y1, L-(20) y0)- (3.15)

Using (3.15) in (3.13), we arrive at

1, L-(Ao)yo) = ((f1 + 220 f2)¥0, Y0)- (3.16)

Since yq is the eigenvector of £_()g) corresponding to Ag, left-hand side of (3.16) is zero, but
under Assumption (A1) the right-hand side of (3.16) is strictly positive, a contradiction. Hence,

Mas(£(0; -), ©(-); [0, Aoo]) = N(0) 4 dim(ker(L_(0))), (3.17)

where NV (L) denotes the spectral count for (1.1) (the number of real eigenvalues (including alge-
braic multiplicities) that are greater than 1).

Right shelf. Intersections between £(x; A) and ®(A) at some nonpositive value x = xo will
correspond with one or more non-trivial solutions to one of the truncated eigenvalue problems
(3.9) or (3.10). Then, according to Lemma 3.1 and Remark 3.1, we have

Mas(£(-; Aoo), P(Aeo); [0, —o0]) =0. (3.18)

Bottom shelf. We observe that the monotonicity that we found along horizontal shelves
does not immediately carry over to the bottom shelf (since that calculation is only valid for
x € (—00,0]). We can still conclude monotonicity along the bottom shelf in the following way:
by continuity of our frames, we know that as A increases along the bottom shelf the eigenvalues
of W¢(—oo, A) cannot rotate in the clockwise direction. Moreover, eigenvalues of W(p(—oo, A)
cannot remain at —1 for any interval of A values (otherwise, there would exit an interval of A val-
ues consisting of the eigenvalues of the constant-coefficient operator pencil £_(-)). Therefore,

Mas(£(—00; -), P(-); [Aoo, O]) = — Z dim(E” (—o0; 1) N ®(1)).
0<Ai<Xoo

Next, our goal is to find all the intersections of two Lagrangian subspaces E* (—oo, A) and
® (1), where E” (—oo, A) is the unstable eigenspace of the asymptotic matrix A_(X)

0 1
A-R)= (Afl_ +22fon =V 0) '

Note that Afi_ + A% fo_ — V_ is a self-adjoint holomorphic pencil, therefore, the correspond-
ing eigenvalues denoted by {v; ()L)}’j’.:1 are real for real values of A. We denote the corre-

sponding eigenvectors by {r; (A)}f}zl so that (Af1— + Azfz_ — VOrj(A) =vi)r;j) for all
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je{l,2,...,n}. Moreover, since Af;_ + A% f,_ — V_ is a self-adjoint holomorphic pencil, the
eigenvalue functions {v; ()‘)}7:1 can be chosen to be holomorphic for A € R and the correspond-
ing eigenvectors {r j};le can be chosen to be orthonormal and holomorphic for A € R (cf. [17,
VIL2.1, p. 375]). Also notice that {v; ()L)}’}:1 are positive curves for A € R4 = [0, co) (other-

wise, there would exist ;€ R such that det(—u? + V_ — Afi_ — A% f»_) = 0 which means that
condition (A1) is violated). We introduce uf()»)

KT =F\/v; ()

for j=1,2,...,n.

We note that the eigenvalues of A_ are precisely the values {,uj.E ?:1’ and the associated
n
j
@ (1) intersect if and only if there exist non-zero vectors ¢ and ¢, such that R(A)c; = ¢ and
R(MA) DM )cy = (¢ + ¢(1))cz, where the columns of R()) are r;j(A) and D(A) is diagonal with
{u;}?zl on the diagonal. Hence, R(A)D(X)c; = (¢ + ¢(L))R(A)cy. Or, (ROWDMWRI) —

(c + @ (A)))c1 =0, where ¢; = R(A)c. Next, notice that

eigenvectors are {r]i}’}: = {(u;ir) _;- Therefore, two Lagrangian subspaces E“ (—o0, 1) and
JjJ

(ROWDMRI ) =RMWD*MVR'O) =Afio + A2 fo — V_. (3.19)

Hence,

\//\fl_ +22%_ —V_=RMA)DMR' ). (3.20)

Consequently, two Lagrangian subspaces E” (—oo, 1) and ®(A) intersect if and only if the ma-
trix pencil M(A) := \/Afl_ +A2f, —V_ — (c+ ¢ (1)) has a zero eigenvalue. It is clear that
M is a continuously differentiable pencil with respect to nonnegative parameter A. In particular,
the eigenvalue curves of M are continuously differentiable pencil with respect to nonnegative
parameter A and when A = 0 M(0) has Mor(,/—V_ — ¢) + dimker(,/=—V_ — ¢) nonpositive
eigenvalues. Next, notice that A fj_ + A2 fo_ — V_ and its derivative fj_ +2A f>_ are strictly posi-
tive for A > 0 which in turn implies that the derivative of \/ Afi— + A2 fo_ — V_ is strictly positive
for A > 0 (cf. Lemma 3.2). Then, by Assumption (A2), M’(1) > 0 for A > 0. Hence, the eigen-
value curves {mj(k)}’}zl of M(}) are strictly increasing for A > 0 by [17, Theorem 5.4, p. 111].

Moreover, by Assumption (A2), —¢ (1) > 0, consequently, M (1) > \/ AMi—+A2fh —V_—c¢
for A > 0. Now, we choose Ag > 0 such that \/Ag > —es@*

- . By the min-max principle, we
mln;\ea(flf) A

know that the eigenvalues {v; ()»O)}’}:] of Ag f1— +A%f2_ — V_ are greater than Ao minjcqs(f,_) A,

therefore, the eigenvalues {,u;};'.zl of \/Afl_ + A2 fo_ — V_ are greater than /A MiNjcq(f_) A
Hence,

M) > /hofie + A2 fom — Vo — A in Al —(c— [ in A)>0. (321
(o) = hofi + 231> fro, min 31— (e~ [r, min wn>0. 32D

Hence, the eigenvalue curves of M (1) whose initial values at A = 0 are nonpositive eigenvalues
of M (0) are strictly increasing and since there exist Ao > 0 such that M (1) > 0, these eigenvalue
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curves must intersect the A-axis exactly once. Therefore, the number of times M (1) has a zero
eigenvalue is equal to Mor(,/—V_ — ¢) + dimker(,/—V_ — ¢). Therefore,

Mas(¢(—o0; ), P(+); [Aeo, 0]) = —Mor(y/—V_ — ¢) — dimker(,/—V_ —¢). (3.22)

Finally, by formulas (3.17), (3.18), (3.22), and fact that the Maslov index of the Maslov box
is 0, we arrive at the formula for A/(0)

N(0) = —Mas(EL(-; 0), ®(0); [—o0, 0]) — dim(ker(L_(0)))

+ Mor(y/—V_ — ¢) + dimker(/—V_ — ¢).
Similarly, one can easily derive a formula for A'(1) for A > 0.

3.4. Reality of eigenvalues

Lemma 3.3. Let Assumptions (A1) and (A3) hold, and . = a + ib with a > 0 be an eigenvalue
of the operator pencil (1.8). Then b =0, that is, . € R.

Proof. After multiplying (1.1) by the corresponding eigenvector y and integration by parts, we
arrive at

((c +d())Y(0), y(0) — V', )+ (Vy, ») = A(f1y, ¥) + A2 (foy, ). (3.23)

Next, we take the imaginary part of (3.23)

RPNy (0), y(0)) =b(f1y, y) +2ab(f2y, y). (3.24)

It follows from Assumption (A1) that (f1y, y) + 2a(f2y, y) > 0, therefore, the sign of the right
hand side is sign b = sign JA. By Assumption (A3), the matrix J¢ (1) is semidefinite, with sign
opposite to sign IJA = sign b. Therefore, the sign of the left hand side is also of (indefinite) sign
opposite to sign IA. Comparing signs of lefthand and righthand sides, we find that b =0. O

Remark 3.2. Assumption (A1) on J¢ is sharp in Lemma 3.3, as without it one may read-
ily construct counterexamples for operator pencils independent of L. For polynomial ¢ (L) =
Z;'=1 c j)J , (A1) on JI¢ implies that » = 1, or linearity, as may be seen by looking at the large
|A| limit, for which the highest term c,A” dominates sgn J¢ (1).

4. Proof of Theorem 1.2
4.1. Upper bound on the spectrum of (1.7)

By Lemma 1.2, we know that the real part of the essential spectrum of (1.7) is bounded above
by y < 0. Next, we show that a set of the real isolated eigenvalues of (1.7) is bounded above.
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Lemma 4.1. Assume (A4). Then there exists v € R such that for all real eigenvalues ). of (1.7)

oo V oo
AS\/”fz”L (]1?” [F3 ®)

Proof. Let A be a real eigenvalue of (1.7) with the corresponding eigenvector y. Then

Y+ V@y=rfi(x)y + 22 H(x)y; xeRp,
y(L)=0.

Or, after multiplying by y and integration by parts, we arrive at

— )+ (Vy, y) =A(fiy, ) + 22 (f2y, ¥).

(foy, A2+ (fiy, A+, ¥) — (Vy,y) =0.

Therefore, X satisfies one of the following equalities

_ =y N EVUY 0 = 4Ry DO Y) = V)]
2(f2y. )

A

A.1)

4.2)

4.3)

4.4)

(4.5)

If X satisfies the equality with the negative sign in front of the square root, then A is nonpos-
itive. Next, we assume that A satisfies the equality with the positive sign in front of the square

root. Next, we estimate the following quadratic form M with the domain H 1 Rp):

Miyl= (") = (Ve ) 2 = IV i@ 1122,

Therefore,

— iy )+ (13292 =423 VLG ¥) = (VY )]

< —(fi3 )+ /i3 2+ 4y DIV @) 11 g, )]

< 2\/||f2||L°°(R) Ve ylL2w,)-

\4
Therefore, A < \/HfZHLOO(I%) [ HLOO(R)'

O
Remark 4.1. Note that the upper bound from Lemma 4.1 is independent of L.

In this section, we use our Maslov index framework to prove our main theorems.

(4.6)

We define a new vector y(x) € C?* so that y(x) = (y1(x) y2(x))!, with y;(x) = y(x) and

v2(x) = y'(x). In this way, we rewrite (1.7) in the form
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2
Ty =B(x; 2)y; B(x;k)=<v(x)_)”fl(g)_)“fz(x) ?)

4.2. Proof of Theorem 1.2

Let Ao > ‘/”fZHLOO(D?HV”LOO(R) (cf. Lemma 4.1). By Maslov Box, we mean the following
sequence of contours: (1) fix x = —oo and let A run from Ay to O (the bottom shelf); (2) fix
A =0 and let x run from —oo to L (the left shelf); (3) fix x = L and let A run from 0 to A (the
top shelf); and (4) fix A = Ay and let x run from L to —oo (the right shelf). We denote by I" the
simple closed curve obtained by following each of these paths precisely once.

Bottom shelf. We begin our analysis with the bottom shelf. Since E* (—o0, A) does not inter-

sect the Dirichlet subspace D, we see that in fact the matrix det (WD (0; X)) + I) does not vanish,
and so

Mas(¢(—o0; +), D; [Aso, 0]) = 0. 4.7

Left shelf. It is clear that X* Jo,yXp =0, but —X(x; 0)*J3,X(x; 0) is not sign definite for
values of x which means that can not directly apply Lemma 2.1. Instead, we can compute the
spectral flow of WD( 0) through —1. Assume that at least one of the eigenvalues of WD( 0) at
X = x4 is —1 (E" (x4, 0) and D has a non-trivial intersection). Then the spectral flow of WD( ;0)
through —1 as x crosses through x, is determined by signature of the following quadratic form
defined on ker(Wp (x4; 0) + I,) (cf. [13]):

O(w) = =2(((X = i1)™") X3 070, X (v O(X =iV ww)
=2((X =) K@)V @) = Y@ X @K =i ww) - @8)
=2(((X =i 7) K" VX () = Y)Y DX = i) w,w) .
Since (X — i¥)~'w € ker(X (x)), we have the following formula for O:
Sy = =2(((X =) ™) X(rs 018, X s OX —i¥) N, w)
=2((X =) K@) = Y@ X )X =i N ww) | (49)

“2(Y @)X =i w, Y )X =iV w) | <0,

Therefore,

Mas(£(:;0), D; [—oo, L) =~ > dim(£(x;0) ND)
—oco<x<L
> dimker(X(x; 0)*JXp) (4.10)
—oo<x<L

Z dimker(X(x; 0)*JXp) — dim(ker(L, (0))).

—oco<x<L
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Top shelf. Since X7},J3;Xp = 0, by Lemma 2.1, monotonicity in A can be determined by
—X(L; A)*J 3, X(L; 1), and we readily compute

]
a—xX*(x; 1) J2n 0, X (x; &) = (X)) * T, X + X 2,1 X
=—X)*JL, 0 X+ X*0;, 1, X'
= —-X*B(x; 1) X + X*9, (B(x; VX) = X*B, X.

Integrating on (—o0, x], we see that

X

X(x; 1) J2, 00X (x5 A) = / X(y; M)*Ba(y; MX(y; M)dy

—00

X

—_ f X (2 1) Lf1 () 4+ 20> ()IX (v M)y,

—00

Monotonicity along the top shelf follows by setting x = L and appealing to condition f; > 0.
In this way, we see that condition f; > 0 ensures that as A increases the eigenvalues of Wp(L; 1)
will rotate in the counterclockwise direction. Therefore, Mas(£(L; -), D; [0, Aso]) is equal to the
total number of intersection of the unstable subspace E” (L, ) and the boundary subspace D
for all A > 0, which in turn is the total geometric multiplicity of the operator pencil L, (cf.
(1.9)) for all A > 0. Next, we show that all nonnegative eigenvalues of the operator pencil £;,
are semisimple. Let a nonnegative Ag be an eigenvalue of £ with the corresponding eigenvector
yo € dom(Ly (Ag)), and assume there exist a nonzero y; € dom(Ly,(rg)) such that L (Ag)y; =
—L'; (k0)yo. We have

(L (0)¥1, y0) = ((f1 + 2X0./2) 0, Y0)-

After ingratiating by parts, we arrive at

1, LL (o) yo) = ((f1 + 240./2) Y0, Y0)- (4.11)

Since yy is the eigenvector of Ly (X¢) corresponding to Ag, left-hand side of (4.11) is zero, but
under Assumption (A4) the right-hand side of (4.11) is strictly positive, a contradiction. Hence,

Mas(¢(L; -), D; [0, Aoo]) = N(0) 4+ dim(ker(L (0))), (4.12)

where N (0) denotes the spectral count for (1.7) (the number of real eigenvalues (including alge-
braic multiplicities) that are greater than 0).

Right shelf. Intersections between £(x; 1) and D at some value x = x, where —o0 < xg < L
will correspond with one or more non-trivial solutions to the truncated eigenvalue problem:

Y A V@)Y =2fix)y + 22 H(x)y;  x € Ry, = (—00,x0l, x0 <L,

(4.13)
y(xo) =0.
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5| o0 |Vl oo
N (]1?\ llLoo(r) for the

By Lemma 4.1 and Remark 4.1, we have the uniform upper bound
real eigenvalues of (4.13), and £(—00; A) and D do not intersect by the bottom shelf argument.
Therefore,

Mas(£(-; Aoo), D); [L, —00]) =0. (4.14)

Finally, by formulas (4.7), (4.10), (4.12), (4.14), and fact that the Maslov index of the Maslov
box is 0, we arrive at the formula for A/ (0)

NO= > dim(E"(x,0)nD).

—oo<x<L

Similarly, one can easily derive a formula for N'(1) for A > 0.
4.3. Proof of Theorem 1.3

Proof. We follow the proof of similar results from [3,26]. Our goal is to compute the number of
positive eigenvalues of the operator pencil L£(-), that is, the number of A € (0, Aoo) such that

E% (0,A) AEY(0,2) =0.
On the other hand, N\ (0) for the operator pencil £, is equal to the number of zeros of the function

DAE“(L, 1), A€ (0, Ar).

We claim that [E% (0, A) AE (0, 1) and D A E¥ (L, 1) have the same number of zeros, counting
multiplicity, for sufficiently large values of L.

Let ¢(x1,x2; A) denote the propagator of the non-autonomous differential equation y’ =
A(x,A)y. Also denote Dy (1) = ¢(0, L; \)D AEY (0, 1) and Do (A) = E? (0, 1) A E¥ (0, 1),
and choose an analytic basis {vf()\)} of E% (0, 1). Note that D @ E% (+00,1) = C?" because
E% (400,A) N D = {0}.

It is known that ]Ei/”(L,A) — Eﬂ“(—i—oo,k) exponentially as L — +o00; see [26, Thm.
1]. Then, as in [26, Thm. 2], there exist unique vectors wf()n) € EY (L, A) such that D =
span{¢ (L, 0; ))v] (W) +w;():j=1,...,n} and

#(0,L; \)D = span{vj()\) +¢(0, L; ,\)wj(x) cj=1,...,n).

Thus ¢ (0, L; 1)D and E?_(0, 1) are exp(—o4 L)-close, where o is the rate of exponential decay
of solutions at +o00. Then Dy (A) and Dy, (A) have the same multiplicities of zeros by [26, Rmk
4.3]. The claim now follows from the fact that E* (L, .) = ¢ (L, 0; A)E* (0, 1), hence

DL =¢(0,L; )D A0, L; ME (L, 2) = [detp(0, L; A)]D AE (L, A).

In particular, A/ (0) for the operator pencil £, is independent of L for L large enough. Finally,
applying Theorem 1.2, we infer the main assertion. 0O
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5. Application

We study spectral stability of hydraulic shock profiles of the (inviscid) Saint-Venant equations
for inclined shallow-water flow:

9ih +9xq =0,

lalg 1)

9 +9 @, "\,
T\ Tapr )T T T

where h denotes fluid height; ¢ = hu total flow, with u fluid velocity; and F > O the Froude
number, a nondimensional parameter depending on reference height/velocity and inclination.

Following [30], we here focus on the hydrodynamically stable case 0 < F < 2, and associated
hydraulic shock profile solutions

(h,q)(x, 1) =(H, Q)(x —ct),  lim (H, Q)(2)=(HL, Qr), lim (H,Q)()=(Hg.Qr)
5.2)

These are piecewise smooth traveling-wave solutions satisfying the Rankine-Hugoniot jump and
Lax entropy conditions at any discontinuities. Their existence theory reduces to the study of an
explicitly solvable scalar ODE with polynomial coefficients [30].

We now turn to the discussion of stability. Linearizing (5.1) about a smooth profile (H, Q)
following [19,28], we obtain eigenvalue equations

Av' = (E — AId — Ay)v, (5.3)
where
A ¢ : E 0 0 (5.4)
= 2 2 . = 2 2 2 . .

It is shown in [30] that essential spectrum of £ := —Ad, — dy A + E is confined to {A : A < O} U
{0}, with an embedded eigenvalue at A = 0. Moreover, it is shown that the embedded eigenvalue
at A = 0 is of multiplicity one in a generalized sense defined in terms of an associated Evans
function defined as in [1,19]. It follows by the general theory of [20] relating generalized, or
Evans-type, spectral stability to linearized and nonlinear stability, that smooth hydraulic shock
profiles are nonlinearly orbitally stable so long as they are weakly spectrally stable in the sense
that there exist no decaying solutions of (5.3) on {A : A > 0} \ {0}.

The discontinuous case is more complicated, involving a free boundary with transmission/evo-
Iution conditions given by the Rankine-Hugoniot jump conditions. However, following the
approach of Erpenbeck-Majda for the study of such problems in the context of shocks and det-
onations, one may deduce a generalized eigenproblem consisting of the same ODE (5.3), but
posed on the negative half-line x € (—o0, 0) with boundary condition

AW — R(W)]L - A(0T)v(07) =0, (5.5)
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where W := (H, Q)T and [h] := h(0") — h(0™) denotes jump in & across x = 0; see [30] for
further details. Similarly as in the smooth case, it is shown in [30] that essential spectrum of £
with boundary condition (5.5) is confined to {A : iA < 0} U {0}, with an embedded eigenvalue
at A = 0, of multiplicity one in a generalized sense defined by an associated Evans-Lopatinsky
function. It follows by the general theory of [30] that discontinuous hydraulic shock profiles are
nonlinearly orbitally stable so long as they are weakly spectrally stable in the sense that there
exist no decaying solutions of (5.3)-(5.5) on {A : x> 0} \ {0}.

In summary, by the analytical results of [20,30], the question of nonlinear stability of hydraulic
shock profiles has been reduced in both smooth and discontinuous case to determination of weak
spectral stability, or nonexistence of eigenvalues A # 0 with 9iA > 0 of eigenvalue problem (5.3)
on the whole- or half-line, respectively.

The special structure exploited here is that the eigenvalue system (5.3) may be reduced to a
scalar second-order system of generalized Sturm-Liouville type. Specifically, following the gen-
eral approach described in [28], the eigenvalue system (5.3) originating from any 2 x 2 relaxation
system may converted to a scalar second-order equation

Y 4+ V(x)y =Afi(x)y + 22 f2(x)y. (5.6)

In the half-line case, there is in addition a A-dependent Robin-type boundary condition

¥'(0) = (c1 +21)y(0), (5.7

where f1(x), f(x) >0, c1,c2 <0, V(x) <§ <0, and Assumptions (A1)-(A4) are satisfied for

the half- and whole line, respectively. Moreover, E* (-,0) does not intersect D for the whole
line case, and E" (-, 0) does not intersect colspan (cll) for the half line case [28]. Thus, applying
Theorems 1.1 and 1.3, we obtain the following result:

Theorem 5.1. Nondegenerate hydraulic shock profiles of the Saint-Venant equations (5.1) are
weakly spectrally stable, across the entire range of existence.

6. Discussion and open problems

Eigenvalue problems of form (1.2), (1.1) were studied in [28] in connection with stability of
hydraulic shock profiles, or asymptotically constant traveling-wave solutions w(x, ) = W(x —
ct) of the inclined Saint-Venant equations, a 2 x 2 first-order hyperbolic relaxation system of
form

w; + f(w)y =Rw), R=(07". (6.1)

The eigenvalue equations associated with W are of form (Aw) = (E — A)w, where A(x) :=
df/dw — cId)(W(x)) and E(x) := (dR/dw)(W (x)). Solving for one coordinate of w as a lin-
ear function of A and the other coordinate yields a second-order scalar problem in the second
coordinate, now quadratic in its dependence on A; see [28, (1.8), (1.9)]. More generally, eigen-
value problems with possibly nonlinear dependence on A are standard in Evans function literature
[1], which treats generalized eigenvalue problems of the first-order form w’ = A(Ax)w, with A
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analytic in A but not necessarily linear. For solution by rather different techniques in the fourth-
order scalar case of a quadratic eigenvalue problem related to stability of phase-transitional shock
waves, see [31].

In [28], the associated eigenvalue problems were shown to be stable, by a combination of
classical Sturm-Liouville techniques, and by-hand arguments making use of special structure
as needed. Here, we generalize and systematize this approach using Maslov index techniques,
to obtain a full Sturm—Liouville theorem giving an exact eigenvalue count in the general case.
The methods used in [12,13] to obtain spectral counts of operators on a bounded interval as
particularly close to the point of view followed here. At the same time, we extend the theory from
scalar to vector with Hermitian coefficient case, a task involving interesting issues (Lemma 3.2)
related to monotone matrix functions and Lowner’s theorem [11]; for further discussion, see
Appendix A.

In the scalar case, our results answer the problem posed in [28] of determining minimal struc-
tural requirements under which one can obtain a complete Sturm-Liouville theorem counting
unstable eigenvalues. In the system case, an interesting open problem is to extend our results
to the general, non-Hermitian coefficient case. We note that even in the Hermitian-coefficient
system case, it is not clear how to determine analytically the number of conjugate points;
however, numerical counting gives an attractive alternative to numerical Evans function com-
putations/winding number calculations, as described, e.g., in [32]. A second very interesting
open problem, noted in [28] is to determine whether the assumptions of our theory developed
apply to shock profiles of general 2 x 2 relaxation systems of the type considered in [18], and
if so, whether these are always stable (as in the Saint Venant case [28]) or whether one can
find examples of spectrally unstable smooth or discontinuous profiles for amplitudes sufficiently
large.

Appendix A. Monotone matrix functions and Lowner’s theorem

In this appendix, we explore relations between Lemma 3.2 and the theory of monotone matrix
operators and Lowner’s theorem [11].

A.l. Monotonicity of f(A)=AP,0<p<1

We first prove (a variant of) the standard result of monotonicity of A — A? (proof adapted
from [22]), in the process establishing a strict convex interpolation inequality for families of
commuting matrices.

Lemma A.1 (Monotonicity of the geometric mean). Let A < B, C < D. A, B, C, D symmetric
positive definite, and let A, C and B, D commute. Then,

(AO)'? < (BD)'/2.

Proof. A < B and C < D implies |[B~'/2AB~1/?| < 1 and D~'2CD~'?| < 1, which in turn
gives |[B~1/2AB~12D~12CD~1/?| < 1, and thus p(B~Y/2AB~12D~12CD~1/2) < 1, where
p(+) denotes spectral radius and | - | denotes matrix norm.

By similarity, this implies p(C!/2D~1/2B=1/2AB~1/2p~1/2C1/2) < 1, hence, by commuta-
tivity of A, C and B, D,
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p(Cl/Z(BD)—l/ZAl/Z(Cl/Z(BD)—1/2A1/2)*) < 1’

or |CY/2(BD)~12A12| < 1. By similarity, this is equivalent to p((AC)l/z(BD)_l/z) <1, or
(AC)Y2 < (BD)'/? as claimed. O

Corollary A.1 (Matrix interpolation). Let A < B, C < D. A, B, C, D symmetric positive defi-
nite, and let A, C and B, D commute. Then, APC!~P < Ble_Pfor all0<p<1.

Proof. By repeated application of Lemma A.1, we obtain the result for any dyadic p, giving
APC'~P < BP D'=7 for general p by continuity. Noting that any 0 < p < 1 may be expressed as
the geometric mean of a dyadic 0 < p; < p and a general p < p, < 1, we obtain strict inequality
for general p as well. O

Corollary A.2 (Monotonicity of AP [11]). For A < B, A? < B? forany0 < p <1.
Proof. Take C = D =1d in Corollary A.1. O

Remark A.1. From Corollary A.2, we obtain already nonnegativity, (AP)’ > 0 for A’ > 0, of the
derivative of the matrix function f(A) = A?,forany 0 < p <1.

A.2. Connection to Lowner’s matrix

Proposition A.1 ([/1]). Let A(t) > 0 be symmetric and R(t) an orthogonal matrix of eigenvec-
tors of A(t), with A(t)R(t) = R(¢)D(t), D diagonal, and f differentiable. Then

f(dj) — fd)

(RT(d/dD)(f(AR) ;= (RTA'R) -

(A1)

Proof. From
A(@)R() = R()D(1), RT(t)A(t) = D(t)RT(t), (A2)

we obtain, differentiating (A.2)(i), A’R + AR’ — R'D — RD’ =0, whence, applying R on the
left and using (A.2)(ii), we get

0=RTA'R+RTAR —R"R'D—R"RD'=R"A'R+DR"R' — RTR'D— RTRD'
=RTA'R+DR"R —R"R'D-D'.
From this we may deduce that

RTA'R

D' =diagRTA'R; (RTR)jx = ,
1ag ( )]k dj_dk

j#k. (A.3)

Differentiating f (A) = Rf(D)R”, gives (A'/2) = R"D'2RT + Rf'(DY RT + Rf (D)(RT),
whence, multiplying on the left by R and the right by R, and using R’ R =1d and (RT)'R =
—RTR’, we have
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RTf(AYR=R"R f(D)+ f'(D)+ f(D)(R")'R

. . (A4)
— /(D) + (R R f(D) - f(D)R R’).

Combining this with (A.3) then gives (A.1). O

RAC AT

Definition A.1. The Lowner matrix is defined as L j; = =
J

Corollary A.3 ([11]). The matrix function f(A) is nonstrictly monotone, (d/dt) f(A) > 0 for
(d/dt)A >0, if and only if the Lowner matrix L j; is positive semidefinite.

Proof. Since P := RTA’R > 0 if and only if A’ > 0, this is equivalent to the statement that
Qjk := L jx Pjx = 0 for all symmetric P > 0. Assume that Q > 0 for any P > 0. Then in partic-
ular, we have for any vector v, taking P = vv’, that

ox= Z)’ijk)’k >0,
Jk

yj == vjx;, for all choices of x, v, hence all choices of y;. This gives L jx > 0. On the other
hand, if LJk > 0, then, expanding any symmetric P > 0 as P = Do mivt (v )T wi =0 we have,
settlng y = v xj,

X"Ox=>"w Y YiLjpyi=0. O (A.5)
i jk

Proposition A.2 (Positivity of f(A)'). The matrix function f(A) satisfies (d/dt) f(A) > 0 for
(d/dt)A > 0, if and only if the Lowner matrix L j; is positive semidefinite and f'(t) > 0.

Proof. By (A.5), and L > 0, we have Q > 0 if and only if Ly’ = 0 for all i for y’/ = vj.xj and
all choices of x, vi, where L is the Léwner matrix associated with D. By considering A diagonal,
we find that f/ > 0 is a necessary condition, along with semidefiniteness of L as established in
Corollary A.2. To see that they are sufficient, note that f’ > 0 implies that the coefficients of L
are positive. By the Frobenius—Perron theorem, therefore, it has a principal eigenvector w with
positive entries w;, and w has eigenvalue v > 0. Thus,

(Z ij])

x Qx—ZuzZy, ,kyk>2uz ol
unless 0 = Zj yj.wj = Zj vj.(wjxj) for all i. As {v'} is a basis, this would imply w;x; =0,
which, by w; > 0, would imply x; =0 for all j, or x =0. Thus, Q > 0 and we are done. O

Corollary A.4. The matrix function f(A) = AP has positive derivative, (d/dt) f(A) > 0 for
A>0,(d/dt)A >0, forall0<p<1.

Proof. By Corollary A.2, f is nonstrictly monotone, hence f(A) >0 and L > 0. Since f’ >0
by inspection, we are done. 0O
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Remark A.2. The conclusions and methods regarding nonstrict monotonicity are standard. How-
ever, our conclusions regarding strict positivity of f(A)’ so far as we know are new.

A.3. Implications

The conclusions of Corollaries A.2, A.4 imply interesting inequalities on the associated
Lowner matrices. For example, in the case of the square root function f(A) = A2 the as-
J\2_gin

. .. .. d, . . .
sociated Lowner matrix is Ljx = 57— d’; = ld] 72, which must therefore be semidefinite.
J % s

J k

We conjecture that for every dimension n, and d; distinct,

1/2 1/2
1 Mjok(d,” — dy/)?
1/2) =

det(
d)” +d, Mjok(d)” +dy/*)2112d

1/2°
J

giving positive definiteness of L by induction on principal minors.

Appendix B. Essential spectrum

The analysis presented in this Appendix partially overlaps with that of [16,27], which treats
the case of operators on the whole line for which A enters linearly. Our situation is different due to
the fact that we consider quadratic operator pencils on the half-line with A-dependent boundary
conditions, and therefore, A-dependent domains. First, we consider the limiting operator pencil
L_0(2) and the corresponding first order operator pencil T_oo(A):

L_co(A) :dom(L_oo (1)) C (L*(R_))" — (L*(R_))",

Loy :=)y'+V_oy=rfiiy—4"froy, yedom(L (h), xeR_,

dom(L_oo (X)) = {y € (H*(R_)": (c + ¢ (1)) y(0) — ¥’ (0) =0},

Too(A) :dom(T_oo (1)) C (L>(R_))*" — (L2(R_))*", (B.1

0 I
AMio+ 2 fH_o—V_ 0

dom(T_oo (M) = {y € (H'(R_)* : (c+¢(A) — )Y (0)=0}.

T oMY =Y —A_(VY, A_(A) = ( ) , Y edom(T-c (1)),

When A_ (L) is hyperbolic, its stable E* (1) and unstable E* (1) subspaces yield direct sum

decomposition of C?*. We denote by P* (1) and P“(A) the corresponding eigenprojections.

Moreover, in this case, the system ¥/ = A_ (L)Y possesses the exponential dichotomy on R_.
Let {v; (A)}f}: | denote the eigenvalues of the matrix pencil A f1— + 12 f>_ — V_. We introduce

oy,

wy ) =F,/v;0)

that are precisely the eigenvalues of A_(1). Hence, A_ is not hyperbolic at A € C if and only if
det(—u? 4+ V_ — Afi— — A2 f>_) = 0 for some p € R. In particular, Assumption (A1) guaranties
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that there exists an open subset denoted by €2 containing the closed right half plane that consists
of the points A such that A_ is hyperbolic and n* (1) = dim E* () = n.

Next, we look for an H'(R_) solution of Y = A_(A)Y + F, where F € (L?>(R_))*". In what
follows, we will suppress A dependence. By variation of parameters formula, we have

X
Y (x) =Y, —i—/eA*(x_’)F(t)dt, x <0,
0

where Y is the initial data. Or,
X X
Y(x) = P4Yy + AP Yy + / eA-CTDPUE()dr + f eA-CD pS F(1)ds.
0 0

Finally, we can rewrite it as follows:

0 X
Y(x) = e PUYy 4 et P Yy — f e~ PYF (1ydt + / AT PS F(ndt,
X

—00

where
0
Yy =Yo— / e 1P F(ydt. (B.2)
—0o0

Once again, we can rewrite the solution Y by using the Green’s function G(z) =
—ef=2p", ifz <0,
eA-1ps, z>0.

Y(x) = e PUYy + A PU Yy + (G F) (),

F(x), ifx <0, . .
. (x), ifx o Notethat |G x Flla < CI|G ]| Fl2. Then the solution ¥ be-

longs to (L?(R_))*" if and only if ¥, := Y (0) — ffoo e~ A~ PS F(t)dt € E*, that is,

where F x) = {

Y(x) = e~ P Yy + (G * F)(x). (B.3)

Fix A € Q and denote by E()) the 2n x 2n matrix ((I ¢ + ¢ (1))T vi(A) ... vy (X)), where
n =dim E" and {v'/‘.};?zl form a basis for E“. If det(E (1)) # 0, then there exists « € C?* such
that ’
0
E(MNa = / e A= PS F(1)dt, (B.4)

—0o0
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which guaranties the existence of the solution Y of Y/ = A_(A)Y + F that satisfies the boundary
condition at 0 and such that ¥,;” € E¥, therefore, by formula (B.3), Y € H LR_)and A belongs to
the resolvent set of the operator pencil 7_ oo (-). Similarly, let F = (0, f)T, where f € (L*(R_))"
and det(E (1)) # 0, then the existence of y € dom(L_s (1)) such that £L_o,(X)y = f, therefore,
A belongs to the resolvent set of the operator pencil £_(-).

Before we prove the next lemma, we introduce the adjoint operator pencils 7*, (A) £* (1):

LF () rdom(LE (W) C (L2(R-))" — (LA(R-))",

LXMWy =y'+V_y—Afi_y—A2foy, yedom(L* (1), xeR_,
dom(L _oo (M) = {y € (H*(R))": (c + ¢*(1))y(0) — ¥’ (0) =0},

T (M) 1 dom(T_oo(A)) C (L2 (R_)*" — (L*(R_))*™,

0 Afi+X2fH_ —V_

TreWY =Y + ALY, AX (L) = (, 0

) , Y edom(T*,,())),

dom(T* (M) = {y € (H' (R_)* : (I ¢+ ¢*(1)Y (0) =0}

(B.5)
Furthermore, F € ran(7*,,(1)) if and only if there exists o € C?" such that
0
E\a = f eI — (PEMF(tdt, (B.6)
—0o0

where E()) denotes the 2n x 2n matrix ((c + ¢*(A) — I)T 0f(A) ... Uy(X)), where n =
dim(ran(/ — (P*)*)) and {ﬁ?}’}.:l form a basis for ran(/ — (P*)*), where I — (P*)* is the
exponential dichotomy projection for the system ¥’ = —A* (A\)Y on R_.

The following lemma holds:

Lemma B.1. Let Assumption (A1) hold and fix A € Q. Then ran(L_x, (1)) and ran(T_x (1)) are
closed and

dim(ker(£_oo(1))) = dim(ker(7_oo(1))) = dim(ker(E (1))),
codim(ran(£_so(1))) = codim(ran(7_o(1))) = codim(ran(E (1))).

Moreover, L_~(A) and T_~ (1) are Fredholm with index 0.

Proof. It is clear from (B.3) that F € ran(7_ (1)) if and only if fi)oo e "A-PSF(t)dt e
ran(E(A)). Since ran(E(X)) is closed and F — fi)ooe*’A*PiF(t)dt is continuous in
(L2(R_))?", it follows that ran(7_s (1)) is closed. Similarly, by choosing F = (0, f)7 and
constructing a continuous map f — f?oo e A= PS F(n)dr in (L*(R_))", we deduce that
ran(£_o, (1)) is closed.
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Also, it is clear that y € ker(£_ (1)) if and only if (y, y’)T € ker(T_s0(1)) and both are

in one-to-one correspondence with an o € ker(E(A)) (note that ker(E (1)) = colspan (C " q[> (/\)) N
ran(P*(1))).
Finally, we know that codim(ran E (1)) = dim(ker(E*(A))) and
* _ I u 1
ker(E™(A)) = (colspan (c n gb(k)) Uran(P” (1))

_ L I 1,/ pu

= colspan (C n ¢>(k)) Nran— (P (1)) (B.7)

= colspan (C +_¢[ (A)> Nran(I — (P*(X)*) =ker E()).

Since it is clear from (B.6) that y € ker(L* . (%)) if and only if (—y/, e ker(7*,, (1)) and
both are in one-to-one correspondence with an o € ker(lg" (1)), by (B.7), we have

dim(ker(L* (1)) = dim(ker(7*, (1)) = dim(ker E()) = dim(ker(E*(1))). (B.8)
Finally, £_ (1) and T_ (1) are Fredholm with index O due to the following identity:
dim(ker(E (1)) — codim(ran(E (1))) = (2n — codim(ker(E(1)))) — (2n — dim(ran(E (1))))
=0. O
Now, we would like to mimic the above analysis for the operator pencil £_(-). Assumption

(A1) guaranties the existence of exponential dichotomy on R_ for A € 2 for the system:

’_ _ 0 I
Y'=AKx, MY, A(x, L) = ()»fl(x) +A2f2(x) — V) 0) ’ (B.9)

which is due to the roughness theorem of exponential dichotomies. That is, there exist a projec-
tion P and constants K; > 0, o; > 0 such that for all x,r € R_

Ux)PU (1) < Kje ™ C=D |t <x,

(B.10)
|Ux)(1 = P)YUT (1)] < Kpe @209 ¢ >,

where U (x) (U(0) = I) is the fundamental matrix for (B.9).

Y(x):U(x)Yo+/U(x)U_l(t)F(t)dt, x <0,
0

where Y is the initial data. Or,
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0
Y(x) =U(x)PYy +U@)(1 - P)Yy — / U)(1 — PYU (1) F(t)dt

X

+ / Ux)PU'F(r)dt,

—00
where

0
Yy =Yo— / PU Y (1)F(t)dt. (B.11)

—00

Once again, we can rewrite the solution Y by using the Green’s function G(x,t) =
—Ux)(1-P)U @), ifx<t,

Ux)PU L), x>t
0
Y(x)=UX)PYy +U@x)(1—P)Y; + / G(x,t)F(t)dt,

where the integral term on the right hand side is L?-integrable with respect to x. Then the solution
Y belongs to (L*(R-))*" if and only if ¥; := Y — ffoo PU-'(t)F(t)dt € E* :=ran(I — P),
that is,

0
Y(x) =U@)(1 - P)Yy + f G(x,t)F(t)dt.

—00

Fix A € Q and denote by E_()) the 2n x 2n matrix ((/ ¢ +¢(K))T v’f (A) ... v¥(A)), where
n =dim E* =dimran(/ — P) and {v]’f ;?:1 form a basis for E* =ran(I — P).If det(E_(1)) #0,
then there exists « € C2" such that

0
E_(Ma = / PU Y (t)F(t)dt, (B.12)

—0o0

which guaranties the existence of Y (0) that satisfies the boundary condition at O and such that
Y, € EY =ran(I — P), therefore, A belongs to the resolvent set of the operator pencil 7_(-).
Similarly, let F = (0, f)T, where f € (L*(R_))" and det(E())) # 0, then the existence of y €
dom(L_x (1)) such that £_o,(A)y = f, therefore, A belongs to the resolvent set of the operator
pencil £_o(+).

Furthermore, the following lemma holds:
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Lemma B.2. Let Assumption (A1) hold and fix 1 € Q. Then ran(L_(A)) and ran(T-(1)) are
closed and

dim(ker(£_(1))) = dim(ker(7_(1))) = dim(ker(E_()))),
codim(ran(£_(1))) = codim(ran(7_(1))) = codim(ran(E_(1))).
Moreover, L_(A) and T_ (L) are Fredholm with index 0.
Proof. The proof is similar to that of Lemma B.1, and a key relation is

0
F eran(T_ (1)) < /PU_I(t)F(t)dteran(E_(A)). O

—00
Let us recall the definition of multiplicity of eigenvalues of nonlinear pencils (cf. [4,21]).
Definition B.1. Let A be an eigenvalue of the pencil 7 (-).

1. Atuple (vo, ..., v,—1) € (dom(7T (X9)))" is called a chain of generalized eigenvectors (CGE)
of T(-) at A if the polynomial v(%) = Y""Z§ (A — A0)/v; satisfies

TP ) =0, j=T,n— L

The order of the chain is the index rq satisfying

(TP ) =0, j=T,r0—1, (Tv)"(rg) #0.

The rank r(vg) of a vector vy € ker(T (Ag)), vo # 0, is the maximum order of CGEs starting
at vg.
2. A canonical system of generalized eigenvectors (CSGE) of 7 (-) at A¢ is a system of vectors

vjpedom(T (ro)), j=0,u,—1, p=1,q,

with the following properties:

(@) vo,1, ..., V0,4 form a basis of ker(7 (A9)),

(b) the tuple (vo,p, -, vu,—1,p) is a CGE of T(-) at A¢ for p = 1.q,
(c) for p =1, q the indices p, satisfy

wp =max{r(vo) : vo € ker(7 (Ag)) \ span{vg,, : 1 <v < p}.
(d) The number w1 + ...+ g is called the algebraic multiplicity of Ao.
Lemma B.3. Let Assumption (A1) hold. Then Q C C \ 0.55(L_). Moreover, Q consists of either

points of the resolvent set or isolated eigenvalues of finite algebraic multiplicity of the operator
pencil L_(-).
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Proof. Fix A € Q. Then, by Lemma B.2, A ¢ 0,4, (L_). Therefore, A is either a point of the resol-
vent set of £_(-) or an eigenvalue of £_(-). Moreover, A is an eigenvalue of £_(-) if and only if A
is an eigenvalue of 7_(-) if and only if it is a root of the analytic function det(E_())). Therefore,
all the eigenvalues from 2 are isolated. Moreover, one can show that L7 is meromorphic in
2 and the order of the pole at the eigenvalue X is the algebraic multiplicity of Ag (cf. [4,21,25]).
In particular, one can use the functional analytic approach of combining the differential operator
and the boundary operator to a two-component operator defined on a fixed space, not depending
on the eigenvalue parameter, that is,

A

L£_(0) e BH*(R-), (L*(R_))" x C™),

A Y V@)Y = Afi(x)y — A2 fr(x)y
£-@y "( (c+ $())y(0) — y'(0) > .

Lemma B.4. Let Assumption (A4) hold. Then Q C C \ 0¢55(L). Moreover, 2 consists of either
points of the resolvent set or isolated eigenvalues of finite algebraic multiplicity of the operator
pencil L(-).

Proof. One can prove the result similar to Lemma B.3 for the full line problem. In this case, one
would use E¥ (1) instead of colspan (C n q,l) (A)), and a key relation is

0 oo
F eran(7T (1)) — f PU_l(t)F(t)dt + [(1 — Q)U_l(t)F(t)dt eran(E (X)),
—00 0

where 7 (A) is the first-order operator pencil associated with the eigenvalue problem (1.2), P
and Q are the dichotomy projections on R_ and R, respectively, and E(A) =ran(/ — P(A)) A
ran(Q(A)). Then the proof is similar to that of Lemma B.3. O
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