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We revisit the analysis by R.A. Gardner of convergence of spectra of periodic 
traveling waves in the homoclinic, or infinite-period limit, extending his results to the 
case of essential rather than point spectra of the limiting homoclinic wave. Notably, 
convergence to essential spectra is seen to be of algebraic rate with respect to period 
as compared to the exponential rate of convergence to point spectra. In the course 
of the analysis, we show not only convergence of spectrum but also convergence 
of an appropriate renormalization of the associated periodic Evans function to the 
Evans function for the limiting homoclinic wave, a fact that is useful for numerical 
investigations.
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r é s u m é

Nous revenons sur l’analyse de R.A. Gardner de convergence de spectres de 
périodique ondes progressives dans le limite de période infinie, etendant ses résultats 
au cas de spectres essentiels. Notamment, la convergence vers les spectres essentiels 
a un taux algébrique par rapport à la période. Au cours de l analyse, nous 
montrons non seulement la convergence du spectre mais aussi la convergence d’une 
renormalisation appropriée de la fonction d’Evans périodique à la fonction d’Evans 
pour l’onde homocline limite, un fait qui est utile pour les enquêtes numériques.

© 2019 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this note, using asymptotic Evans function techniques like those introduced for the study of homoclinic 
and heteroclinic traveling waves in [26,31,32], we build on the pioneering analysis of R.A. Gardner [10,11] of 
convergence of spectra of periodic traveling waves in the infinite-period, or “homoclinic”, limit, extending 
his results to the case that the limiting homoclinic spectra are of essential rather than point spectrum type.
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Under quite general conditions, Gardner showed that loops of essential periodic spectra bifurcate from 
isolated point spectra λ0 of the limiting homoclinic wave. Indeed, it is readily seen that, on compact sets 
bounded away from regions of essential homoclinic spectrum, periodic spectra converge as period X → ∞
at exponential rate O(e−ηX), η > 0 to the point spectra of the limiting homoclinic; see [23,28], or Section 4
below.

In the standard case arising generically for reaction diffusion systems of a limiting homoclinic wave with 
strictly stable essential spectrum, or “spectral gap”, and a single isolated eigenvalue at λ = 0 associated 
with translational invariance of the underlying equations, this reduces the study of periodic stability in 
the large-period limit to asymptotic analysis of the loop of “critical” periodic spectra bifurcating from 
the neutral eigenvalue λ = 0. For, recall that linearized and nonlinear stability have been shown in quite 
general circumstances to follow from the “dissipative spectral stability” condition of Schneider: that periodic 
spectra move into the stable half plane at quadratic rate in the associated Bloch-Floquet number as the 
Bloch number is varied about zero [15,16,18,19,29,30]. This problem was resolved definitively by Sandstede 
and Scheel in [28], essentially closing the question of large-period periodic stability in the case of a spectral 
gap.

However, there are interesting cases arising in systems with conservation laws, notably for models of 
elasticity and thin film flow [6,18,23,24] of families of periodic waves for which the spectral gap condition 
is not satisfied in the homoclinic limit, λ = 0 being an eigenvalue embedded in the essential spectrum. In 
particular, for thin film flows, the homoclinic limit typically has unstable essential spectrum branching from 
the origin, and it is spectra bifurcating from this essential spectrum rather than the embedded eigenvalue at 
λ = 0 that appears to dominate the stability behavior of nearby periodic waves; see the discussion of [2,3]. 
This motivates our study here of convergence in the vicinity of essential spectra, both to essential spectra 
themselves and to eigenvalues embedded in essential spectrum, to neither of which cases Gardner’s original 
analysis applies.

Recall [12,14] that the essential spectrum of a homoclinic traveling wave is given by the union of algebraic 
curves λ = λj(k) obtained from the dispersion relation of the (constant-coefficient) linearization of the 
governing evolution equation about the endstate u∞ = limx→±∞ ū(x) of the homoclinic profile ū(·), where 
k ∈ R denotes Fourier frequency, corresponding to the (entirely essential) spectra of the constant solution 
u(x, t) ≡ u∞. Thus, the generic situation in the context of essential spectrum, analogous to an isolated 
eigenvalue in the point spectrum context considered by Gardner, is a point λ lying on a single curve λj , 
corresponding to a single nondegenerate root k∗ of λj(k) = 0. This is closer in nature to the (also entirely 
essential) spectra of periodic waves than is the case of an isolated eigenvalue; indeed, it is the spectra of the 
constant periodic solution u(x, t) ≡ u0, with Fourier frequency k corresponding to γ-value γ = eikXε in the 
notation of Section 2.

Similarly as in [11], our analysis is carried out by examination of the associated periodic Evans functions 
Eε(λ, γ) introduced by Gardner [10], λ, γ ∈ C, |γ| = 1, an analytic function whose zeroes λ coincide with 
the spectrum of the linearized operator about the wave, where ε → R indexes the family of periodic waves 
converging as ε → 0 to a homoclinic, or solitary wave, profile. However, differently from the approach of 
[10,11], our results are obtained not by topological considerations, but, similarly in [17,31,32], by demonstra-
tion of convergence, at exponential rate O(e−ηXε), of a suitably rescaled version of the sequence of periodic 
Evans functions Eε(λ, γ) and a sequence of functions interpolating between different versions of the homo-
clinic Evans function D0(λ) defined on various components of the complement of the union of curves λj(·)
composing the homoclinic essential spectrum, with transition zones of scale ∼ 1/Xε → 0 around isolated 
points λ = λj(k).

Away from the homoclinic essential spectrum, this reduces to the simpler computation an appropriate 
renormalization Dε(λ, γ) of Eε converges to the homoclinic Evans function D0(λ) at exponential rate, 
recovering and further illuminating the original result of Gardner [11] that the zero-set of Eε(·, ξ) converges 
for each ξ to the zero-set of D0, at exponential rate; see Section 4. This convergence is potentially useful in 
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numerical investigations, as the basis of numerical convergence studies in this singular, hence numerically 
sensitive, limit. See, e.g., the applications in [5], as discussed in [5, Appendix D, pp. 70–72].

Near isolated arcs of curves λj of the homoclinic essential spectrum, as described above, for which the 
bordering homoclinic Evans functions do not vanish (in particular precluding embedded eigenvalues), we 
find that the zero-set of Eε, comprising curves of periodic essential spectrum, converges not to a single point 
but to a full arc of λj, and at algebraic rather than exponential rate; see Section 5. In the case of an isolated 
arc with a single embedded eigenvalue, we find as might be guessed that the periodic spectra comprise two 
curves: a loop converging exponentially to the isolated eigenvalue, and a curve converging algebraically to 
the arc λj ; see Section 5.2. The method of analysis is general, and should extend to other, more degenerate 
cases, at the expense of further effort/computation.

Our results apply in particular to the Saint Venant equations of inclined shallow water flow studied in 
[2,3], verifying instability of periodic waves in the homoclinic limit by consideration of spectra bifurcating 
from unstable essential spectrum of the limiting homoclinic. A very interesting open problem is to carry out 
an analysis like that of [28] determining separately the stability of spectra bifurcating from the embedded 
eigenvalue at λ = 0. An interesting related problem is to verify the heuristic picture of “metastable” 
behavior conjectured in [3], deducing stability for large but not infinite-period waves based on properties of 
an essentially unstable homoclinic limit with stable point spectrum.

We note finally a close relation between the results obtained here on approximation by periodic waves of a 
homoclinic limit and those obtained in [27] for approximation by truncation of the homoclinic to a large but 
finite interval, in particular the similarity between reduced equation [27, Eq. (5.6)] and the limiting equation 
(5.5) obtained here in describing convergence to essential spectra. In their concluding discussion [27, p. 276], 
the authors mention the case of approximation by periodic waves as a direction for generalization, stating 
that “... the results” [for approximation by domain truncation] “remain true so long as the periodic waves 
remain O(e−δL) close to the limiting solitary wave.”

Our results confirm this statement in particularly transparent fashion by the introduction of a periodic 
conjugation lemma (Lemma 3.1) converting both limiting and approximant eigenvalue problems to constant-
coefficient, and associated transitional Evans functions (5.2) and (5.1) toward which rescaled versions of 
homoclinic and periodic Evans functions converge. The latter observation if of interest in its own right, both 
as an illuminating theoretical framework and a test (as in, e.g., [5]) of numerical convergence.

Acknowledgment

Thanks to Björn Sandstede for pointing out the relation between our results here on periodic approxi-
mation and those of [27] on domain truncation.

2. Preliminaries

Following Gardner [11], we consider a family of periodic traveling-wave solutions

u(x, t) = ūε(x − cεt), ūε(x + Xε) = ūε(x) (2.1)

of a family of PDEs ut = Fε(∂x, u) with smooth coefficients, converging as ε → 0 to a solitary-wave solution 
ū0, or homoclinic orbit of the associated traveling-wave ODE −c0∂xu = F0(u), as meanwhile Xε → ∞. 
Taking without loss of generality cε ≡ 0 (changing to co-moving coordinates x̃ = x − cεt), we investigate 
stability of the equilibria ūε, Fε(ūε) = 0, through the study of the spectra λ of the associated family of 
eigenvalue ODEs

λu = Lεu := dF(ūε)u, (2.2)
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with an eye toward relating the spectral properties of periodic waves ūε as ε → 0 to those of the limiting 
homoclinic ū0.

Assume as in [10,11] that (2.2) may be written as a first-order system

W ′ = Aε(x, λ)W (2.3)

in an appropriate phase variable W , where Aε is analytic in λ, C1 in x, and continuous in ε for ε > 0. 
Then, the spectrum of the periodic waves ūε, ε > 0 is made up of essential spectra given [10] by the union 
of γ-eigenvalues λ consisting of zeroes of the periodic Evans function

Eε(λ, γ) := det(Ψε(Xε, λ) − γId), (2.4)

where Ψε(x, λ) denotes the solution operator of (2.3), with Ψε(0, λ) = Id and γ ∈ C with |γ| = 1. A 
γ-eigenvalue of particular importance is the 1-eigenvalue λ = 0 associated with eigenfunction ∂xū corre-
sponding to instantaneous translation, arising through translation-invariance of the underlying PDE. In the 
case that Fε is divergence-form, there exist other important 1-eigenvalues corresponding to variations along 
the manifold of nearby Xε-periodic solutions, which in this case has dimension dim u + 1 > 1 [15,23].

As shown in a variety of settings (see [4,5,15,16,18,19,29,30] and references therein), linearized and non-
linear modulational stability are implied by the properties:

(D1) the multiplicity of the 1-eigenvalue λ = 0 is equal to the dimension d of the manifold of nearby 
Xε-periodic solutions (in the typical case considered by Gardner [11], d = 1).

(D2) other than the 1 eigenvalue λ = 0, there are no other γ-eigenvalues with �λ ≥ 0.
(D3) parametrizing γ = eikX , �λ ≤ −ηk2 for 0 ≤ kX ≤ 2π, for some η > 0.

Accordingly, these are the spectral properties that we wish to investigate. In particular, note that (D3) 
concerns not only location, but curvature of the spectral loop through λ = 0.

Conditions (D1)–(D2) are easily seen to be necessary for linearized modulational stability, while condition 
(D3) implies a Gaussian rate of time-algebraic decay sufficient to close a nonlinear iteration; see [15,16,24,
29,30] for further discussion.

2.1. Assumptions

Loosely following [11], we assume, for |λ| ≤ M :

(H1) Xε → ∞ as ε → 0.
(H2) |A0(x, λ) − A0

∞(λ)| ≤ C(M)e−ν|x|, for some C(M), ν > 0.
(A3) |ūε(x) − ū0(x)| ≤ δ(ε) for |x| ≤ Xε

2 , with δ(ε) → 0 as ε → 0.

In order to obtain the quantitative estimates we require, we augment (A3) with

δ(ε) ≤ Ce−θ̄Xε/2 for some θ̄ > 0. (2.5)

Remark 2.1. Condition (2.5) is an additional assumption beyond those made in [11]. However, it follows 
from (A3) in the standard case that the vertex ū0

∞ = ū(±∞) of the limiting homoclinic is a hyperbolic rest 
point of the traveling-wave ODE, under the generically satisfied transversality condition that the associated 
Melnikov separation function be full rank with respect to ε, as do (H1)–(H2) as well, with ν = θ̄ = α, were 
α is the minimum growth/decay rate of the linearized equations about u0

∞; see [28, Prop. 5.1 pp. 166–167]. 
Thus, Gardner’s original condition (A3) is the main assumption in practical terms.
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Remark 2.2. In the planar Hamiltonian traveling-wave ODE setting, for which all periodics and the limiting 
homoclinic lie in the same phase portrait of a single traveling-wave ODE, setting ε to be the distance of ūε(·)
from the saddle-point ū0

∞, one may compute more or less explicitly that Xε ∼ c log ε−1 and δ(ε) ≤ Cε, with 
|ūε − ū0| ≤ Cε2 away from ū0

∞. This gives another class of interesting examples to which our assumptions 
apply.

As a consequence of (A3) we obtain for |λ| ≤ M , |Aε(x, λ) − A0(x, λ)| ≤ C(M)δ(ε) as in assumption (iii) 
of [11], p. 152, yielding together with (2.5):

(H3) |Aε(x, λ) − A0(x, λ)| ≤ C(M)e−θ̄Xε/2 for |λ| ≤ M , |x| ≤ Xε

2 , and θ̄ > 0.

Hereafter, we drop the motivating assumption (A3) and work similarly as in [11] with hypotheses (H1)–(H3) 
on the first-order eigenvalue system (2.3) alone.

3. The homoclinic and rescaled periodic Evans functions

We begin by formulating the homoclinic and periodic Evans functions following the approach of [22,31,32], 
in a way that is particularly convenient for their comparison.

3.1. Reduction to constant coefficients

Adapting the asymptotic ODE techniques developed in [22,26,31,32] for problems on the half-line (see 
Appendix A), we obtain the following quantitative description relating (2.3) to a constant-coefficient version 
of the homoclinic eigenvalue problem W ′ = A0(x, λ)W .

Lemma 3.1. Assuming (H1)–(H3), for each ε ≥ 0, there exist in a neighborhood of any |λ0| ≤ M bounded and 
uniformly invertible linear transformations P ε

+(x, λ) and P ε
−(x, λ) defined on x ≥ 0 and x ≤ 0, respectively, 

analytic in λ as functions into L∞[0, ±∞), such that, for any 0 < η̄ < min(θ̄, ν), θ̄, ν as in (H2)–(H3), 
some C > 0, and |x| ≤ Xε

2 ,

P ε
±(±Xε/2) = Id, (3.1)

|(P ε − P 0)±| ≤ Ce−η̄Xε/2 for x ≷ 0, (3.2)

and the change of coordinates W =: P ε
±Z reduces (2.3) to the constant-coefficient system

Z ′ = A0
∞Z, for x ≷ 0 and |x| ≤ Xε

2 . (3.3)

Proof. Extending Aε(x, λ) by value A0
∞ for |x| > Xε

2 , we obtain a modified family of coefficient matrices 
agreeing with Aε on |x| ≤ Xε

2 and satisfying

|(Aε(x, λ) − Aε
∞) − (A0(x, λ) − A0

∞)| = |Aε(x, λ) − A0(x, λ)| ≤ C(M)e−θ̄Xε/2

for |x| ≤ Xε/2, and

|(Aε(x, λ) − Aε
∞) − (A0(x, λ) − A0

∞)| = |A0(x, λ) − A0
∞| ≤ C(M)e−ν|x|

for |x| ≥ Xε/2, yielding for all x the estimate
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|(Aε(x, λ) − Aε
∞) − (A0(x, λ) − A0

∞)| ≤ C(M)δ2(ε)e−σ|x| (3.4)

for δ2(ε) := e−η̄Xε/2, 0 < σ < min{ν, θ̄} − η̄, and, trivially,

|Aε
∞ − A0

∞| = 0 ≤ C(M)δ2(ε). (3.5)

Likewise, we have

|Aε(x, λ) − Aε
∞(λ)| = |Aε(x, λ) − A0

∞(λ)|
≤ |Aε(x, λ) − A0(x, λ)| + |A0(x, λ) − A0

∞(λ)|

≤ 2C(M)e− min{ν,θ̄}|x|,

(3.6)

hence also, by σ < min{ν, θ̄}, evidently

|Aε(x, λ) − Aε
∞(λ)| = |Aε(x, λ) − A0

∞(λ)| ≤ 2C(M)e−σ|x|. (3.7)

Using (3.6) and applying Lemma A.1, Appendix A, with p = ε and θ = min{ν, θ̄}, we obtain |P ε
± − Id| ≤

Ce−η̄|x| for x ≷ 0. Moreover, by Remark A.2, (P ε
±)′ = ApP ε

± − P ε
±Aε

± and P ε
∞ = Id, yielding (P ε

±)′ = 0 for 
|x| ≥ Xε/2, and therefore (3.1). Finally, using (3.4)–(3.5), (3.7), we obtain (3.2) by Lemma A.3, Appendix A, 
with p = ε, δ(p) = δ2(ε), and θ = σ. �
3.2. The homoclinic Evans function

Away from a finite set of curves λj(k) determined by the dispersion relation ik ∈ σ(A0
∞(λ)), k ∈ R, where 

σ denotes spectrum, the eigenvalues of A0
∞ have nonvanishing real part. Denote by Λr the open components 

of C \ {λj(k)}. We refer to Λr as the domains of hyperbolicity of A0
∞. Denote by nr the number of negative 

real part eigenvalues of A0
∞.

Definition 3.2 ([3,12]). On each domain of hyperbolicity Λr, the homoclinic Evans function is defined as

D0
r(λ) := det(R−, R+)|x=0

det(R−
∞, R+

∞)
=

det(P 0
−R−

∞, P 0
+R+

∞)
det(R−

∞, R+
∞)

, (3.8)

where R−
∞ is any matrix whose columns are a basis for the unstable subspace of A0

∞, R+
∞ is any matrix 

whose columns are a basis for the stable subspace of A0
∞, and R−(x) := P 0

−(x)eA0
∞xR−

∞ and R+(x) :=
P 0

+(x)eA0
∞xR+

∞ are matrices whose columns are bases for the subspaces of solutions of (2.3) decaying as 
x → −∞ and x → +∞, respectively.

Evidently, each D0
r is analytic in λ on Λr, and vanishes at λ0 ∈ Λr if and only if λ0 is an eigenvalue of 

L0. Moreover, it can be shown with in great generality that its zeros correspond in multiplicity with the 
eigenvalues of L0; see [12,21], and references therein.

3.3. The rescaled periodic Evans function

Following [11], we note that, by Abel’s formula, Eε(λ, γ) may be written alternatively as

Eε(λ, γ) = Ẽε(λ, γ)e
∫ Xε/2

0 trAε(λ,y)dy,

where
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Ẽε(λ, γ) := det(Ψε(0, λ)Ψε(−Xε/2, λ)−1 − γΨε(0, λ)Ψε(Xε/2, λ)−1) (3.9)

is a “balanced” periodic Evans function defined symmetrically about x = 0 similarly as the homoclinic 
Evans function.

Definition 3.3. On Λr, we define the rescaled balanced periodic Evans function as

Dε
r(λ, γ) := e− trA0

∞ΠuXε/2e trA0
∞ΠsXε/2(−γ)−nr Ẽε(λ, γ), (3.10)

where Πu and Πs denote the unstable and stable eigenprojections associated with A0
∞(λ).

4. Convergence to isolated point spectra

We begin by recovering in a particularly direct and simple fashion the basic result of Gardner [11] on 
bifurcation from isolated point spectra; for related arguments, see [23,28,31].

4.1. Convergence as Xε → ∞

To show convergence, we first reformulate the homoclinic Evans function as a Jost-function type deter-
minant such as appears in the definition of the periodic Evans function, involving the difference of two 
matrix-valued solutions. See [13,33] for related discussion.

Lemma 4.1. Assuming (H1)–(H3), for 
(

L−
∞

L+
∞

)
:= (R−

∞, R+
∞)−1,

D0
r(λ) = (−1)nr det(R−L−

∞ − R+L+
∞)|x=0. (4.1)

Proof. Factoring (R−L−
∞ − R+L+

∞) = (R−, −R+) 
(

L−
∞

L+
∞

)
= (R−, −R+)(R−

∞, R+
∞)−1, taking determinants, 

and comparing to (3.8), we obtain the result. �
Proposition 4.2. Assuming (H1)–(H3), on each compact K ⊂ Λr, there exist C, η > 0 such that

|Dε
r(λ, γ) − D0

r(λ)| ≤ Ce−ηXε/2 for all λ ∈ K, |γ| = 1, (4.2)

for any η less than the minimum of η̄, given in Lemma 3.1, and the spectral gap of A0
∞(λ), defined as the 

minimum absolute value of the real parts of the eigenvalues of A0
∞.

Remark 4.3. In the generic case discussed in Remark 2.1, the restrictions on η in Proposition 4.2 reduce to 
0 < η < spectral gap of A0

∞(λ), by the estimates of [28, Prop. 5.1].

Proof. Using the description of Lemma 3.1, and the spectral expansion formula

eA0
∞x = eA0

∞ΠuxR−
∞L−

∞ + eA0
∞ΠsxR+

∞L+
∞,

we find, using P ε
±(±Xε/2) = Id (see (3.1)) and |eA0

∞ΠsXε/2| ≤ Ce−ηXε/2, that

Ψε(0, λ)Ψε(−Xε/2, λ)−1 = P ε
−(0)

(
P ε

−(−Xε/2)e−A0
∞Xε/2

)−1

= P ε
−(0)eA0

∞Xε/2

ε A0
∞ΠuXε/2 − − −ηXε/2
= P−(0)e R∞L∞ + O(e )
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and, likewise, Ψε(0, λ)Ψε(Xε/2, λ)−1 = P ε
+(0)e−A0

∞ΠsXε/2R+
∞L+

∞ + O(e−ηXε/2), from which we find, fac-
toring similarly as in the proof of Lemma 4.1, that

Dε
r(λ, γ) = e− trA0

∞ΠuXε/2e trA0
∞ΠsXε/2(−γ)−nr det

(
P ε

−(0)R−
∞ P ε

+(0)R+
∞

)
× det

( (
L−

∞eA0
∞ΠuXε/2R−

∞ 0
0 −γL+

∞e−A0
∞ΠsXε/2R+

∞

)
+ O(e−ηXε/2)

)

× det
(

L−
∞

L+
∞

)

= det
(
P ε

−(0)R−
∞ P ε

+(0)R+
∞

)
det(Id + O(e−ηXε

)) det
(

L−
∞

L+
∞

)

= D0
r(λ) + O(e−ηXε/2),

(4.3)

by 
(

L−
∞

L+
∞

)
:=

(
R−

∞ R+
∞

)−1 and the definition of D0
r in (3.8). �

Corollary 4.1 ([11,23,28]). Assuming (H1)–(H3), on compact K ⊂ Λr such that D0
r does not vanish on 

∂K, the spectra of Lε for Xε sufficiently large consists of loops of spectra λε
r,k(γ), k = 1, . . . , mr, within 

O(e−ηXε/2mr ) of the eigenvalues λr of L0, where mr denotes the multiplicity of λr and η is as in (4.2).

Proof. Immediate by properties of analytic functions (Rouchés Theorem). �
Remark 4.4. Note that different rescalings of Ẽε converge as Xε → ∞ to different versions D0

r of the 
homoclinic Evans function on different components Λr.

4.2. A flip-type stability index and behavior near λ = 0

We mention in passing the important special case of an isolated eigenvalue at λ = 0 of the limiting 
homoclinic wave, corresponding with translational invariance of the underlying PDE. Similar translational 
(γ = 1)-eigenvalues occur at λ = 0 for periodic waves of all periods Xε. As shown in [28] by rather 
different Melnikov integral/Lyapunov-Schmidt computations, this exact correspondence for γ = 1 implies 
cancellation in Dε

r − D0
r , yielding convergence at faster exponential rate O(e−αηXε/2), where α > 1, and 

also an asymptotic description of the location of (γ �= 1)-eigenvalues near λ = 0, deciding diffusive spectral 
stability of spectral loops passing through the origin. In typical cases, these loops are to lowest order in 
|λ − λ∗| ellipses with axes parallel to real and imaginary coordinate axes, hence their diffusive stability or 
instability is decided by whether the (γ = −1)-eigenvalue lies in the stable (�λ < 0) or unstable (�λ > 0) 
half-space [28, Discussion, p. 182, par. 2].

These conclusions do not follow by our straightforward computations above, and indeed would appear to 
be cumbersome to reproduce by such an Evans function approach. However, a related necessary condition 
σ ≥ 0 based on the stability index

σ := sgnEε(0, −1)sgnEε(∞real, −1), (4.4)

is readily obtained from the Evans function formulation by the observation that Eε(λ, −1) is real-valued for 
λ real, hence δ ≤ 0 by the intermediate value theorem implies existence of a −1-eigenvalue with nonnegative 
real part, violating diffusive stability conditions (D2)–(D3).

The necessary condition (4.4) is valid in much more general contexts than is the necessary and sufficient 
condition obtained in [28], in particular to systems with conservation laws for which λ = 0 is an embedded 
eigenvalue of the limiting homoclinic wave. See, for example, [20, Thm. 1.9] for an important application of 
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this principle in the case of the Saint Venant equations of inclined shallow water flow. A change of sign in δ
corresponds to passage of a −1-eigenvalue through λ = 0, or “flip” bifurcation in the periodic traveling-wave 
ODE.

5. Convergence to essential spectra

We now turn to our main object, of bifurcation from essential homoclinic spectra of periodic spectra in the 
large-period limit. Recall that the essential spectrum of the homoclinic limit is given by the union of curves 
λj(k) determined by the dispersion relation ik ∈ σ(A0

∞(λ)), k ∈ R, bounding domains of hyperbolicity Λr

with Evans functions D0
r .

5.1. Convergence to an isolated arc of essential spectra

Consider the generic situation of a point of homoclinic essential spectrum λ∗ = λj(k∗) lying on a single 
curve λj , for which k∗ is a nondegenerate root and unique solution of λj(k) = λ∗. Without loss of generality, 
suppose that λj separates domains of hyperbolicity Λ1 and Λ2, on which are defined homoclinic Evans 
functions D0

1 and D0
2, as described in (3.8).

By assumption, μ∗ := ik∗ is a simple imaginary eigenvalue of A0
∞(λ∗), with all other eigenvalues of 

strictly positive or negative real part. By standard matrix perturbation theory, therefore, there exist near 
λ∗ an analytic eigenvalue μc(λ) and associated eigenprojecton Πc(λ) with μc(λ∗) = ik∗ and analytic strongly 
stable and unstable eigenprojections Πss and Πsu, corresponding at λ = λ∗ to center, stable, and unstable 
projections of A0

∞(λ∗). Without loss of generality, suppose that �μc < 0 on Λ2 and �μc > 0 on Λ1. 
By analyticity of Πc, Πss, and Πsu, the homoclinic Evans functions D0

1 and D0
2 extend analytically to a 

neighborhood of λ∗; denote their values at λ∗ as d1 = D0
1(λ∗) and d2 = D0

2(λ∗).

Definition 5.1. Near λ∗, we define the transitional periodic Evans function as

D̃ε(λ, γ) := e− trA0
∞ΠsuXε/2e trA0

∞ΠssXε/2(−γ)−n1Ẽ(λ, γ), (5.1)

where Πsu and Πss denote strongly unstable and stable eigenprojections of A0
∞(λ) (n1 here corresponding 

to dim RangeΠss), and the transitional homoclinic Evans function as

H̃ε(λ, γ) := eμc(λ)Xε/2D0
1(λ) − γe−μc(λ)Xε/2D0

2(λ). (5.2)

Proposition 5.2. Assuming (H1)–(H3), let λ∗ = λj(k∗) lie on an isolated arc of homoclinic essential spectra 
as described above. Then, there exists C1 > 0, η > 0 such that for any C > 0, for Xε sufficiently large,

|D̃ε(λ, γ) − H̃ε(λ, γ)| ≤ C1e−ηXε/2, for all λ ∈ B(λ∗, C/Xε), |γ| = 1. (5.3)

Proof. Letting R−
∞, Rc

∞, and R+
∞ denote bases of RangeΠsu, RangeΠc, and RangeΠss, set

(
L−

∞
Lc

∞
L+

∞

)
=

(
R−

∞ Rc
∞ R+

∞
)−1

.

Expanding as in the proof of Proposition 4.2 via spectral resolution of A0
∞ gives
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D̃ε(λ, γ) = e− trA0
∞ΠsuXε/2e trA0

∞ΠssXε/2(−γ)−n1

× det
(

P ε
−(0)eA0

∞ΠsuXε/2R−
∞L−

∞ + P ε
−(0)eμc(λ)Xε/2Rc

∞Lc
∞

− γP ε
+(0)e−μc(λ)Xε/2Rc

∞Lc
∞ − γP ε

+(0)e−A0
∞ΠssXε/2R+

∞L+
∞ + O(e−ηXε/2)

)
.

Using �μcXε = O(1) on B(λ∗, C/Xε) and factoring as in the proof of Proposition 4.2 gives

D̃ε(λ, γ) = det
(
P ε

−(0)R−
∞

(
eμc(λ)Xε/2P ε

−(0)Rc
∞ − γe−μc(λ)Xε/2P ε

+(0)Rc
∞

)
P ε

+(0)R+
∞

)
× det

(
L−

∞
Lc

∞
L+

∞

)
+ O(e−ηXε/2),

or, expanding the first determinant with respect to the middle column and recalling the definitions of D0
1

and D0
2, we have

D̃ε(λ, γ) = eμc(λ)Xε/2D0
1(λ) − γe−μc(λ)Xε/2D0

2(λ) + O(e−ηXε/2) =: H̃ε(λ, γ) + O(e−ηXε/2). �
Corollary 5.1. Assuming (H1)–(H3), let λ∗ = λj(k∗) lie on an isolated arc of homoclinic essential spectra as 
above, with D0

1(λ∗), D0
2(λ∗) �= 0. Then, denoting γ = eikXε , there exists C1 > 0 such that for any C > 0, for 

Xε sufficiently large, the γ-eigenvalues of ūε in B(λ∗, C/Xε), corresponding to zeros of Eε(·, γ), lie within 
C1/Xε of the set

{λj(κ) : κ = k mod(2π/Xε)}. (5.4)

Proof. From (5.2)–(5.3) and Taylor expansion μc(λ∗ + z/Xε) = ik∗ + μ′
c(λ∗)z/Xε + O(|Xε|−2), we see 

immediately that for z ∈ B(0, C), |γ̂| = 1 fixed

d−1
1 e−ik∗Xε/2+μ′

c(λ∗)z/2D̃ε(λ∗ + z/Xε, eik∗Xε

γ̂) → eμ′
c(λ∗)z − γ̂d2/d1

as ε → 0, at rate O(|Xε|−1), from which we find by properties of analytic functions (Rouchés Theorem) 
that zeros of D̃ε(λ∗ + z/Xε, eik∗Xε

γ̂) converge at rate O(|Xε|−1) to solutions of

μ′
c(λ∗)z = [ln(γ̂) + ln(d2/d1)] mod(2πi). (5.5)

Converting back to λ coordinates, we have that λ − λ∗ = z/Xε converges at rate O(|Xε|−2) to

(1/μ′
c(λ∗))(ln(γ̂) + ln(d2/d1))/Xε mod(2πi/Xε), (5.6)

whence, using γ̂ = γe−ik∗Xε = eikXε−ik∗Xε , or ln(γ̂)/Xε = ik − ik∗ (mod 2πi/Xε), we find that μc(λ) =
ik∗ + μ′

c(λ∗)(λ − λ∗) + O(|Xε|−2) converges at rate O(|Xε|−2) to

[ik + ln(d2/d1)/Xε] mod(2πi/Xε),

and thus at O(|Xε|−1) rate to ik mod(2πi/Xε). By definition of λj , this is equivalent to convergence of λ
at rate O(|Xε|−1) to λj(κ) for κ = k mod(2π/Xε). Noting that convergence at each step of the argument 
is uniform with respect to γ̂, we obtain the result. �
Remark 5.3. Estimate (5.6) shows that the rate of convergence O(|Xε|−1) is sharp unless d1 = d2, giving 
an explicit corrector ln(d2/d1)/μ′

c(λ∗)Xε valid to order O(|Xε|−2).
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5.2. Convergence to embedded point spectra

Finally, we consider the case of an embedded homoclinic eigenvalue λ∗ of multiplicity m contained in an 
isolated arc of essential spectrum λj dividing regions of hyperbolicity Λ1 and Λ2 as described in Section 5.1. 
By multiplicity m eigenvalue, we mean a value with an m-dimensional subspace of decaying generalized 
eigenfunctions. This implies that both homoclinic Evans functions D0

1 and D0
2 have a zero of multiplicity at 

least m at λ = λ∗, since they differ only with respect to the nondecaying mode μc. We make the additional 
nondegeneracy assumption that D0

1 and D0
2 have zeros at λ∗ of exactly multiplicity m.

Corollary 5.2. Assuming (H1)–(H3), let λ∗ = λj(k∗) be a point lying on an isolated arc of homoclinic 
essential spectra at which D0

1, D0
2 possess zeros of degree m. Then, denoting γ = eikX , there exists C1 > 0

such that for any C > 0, η > η̃ > 0, for Xε sufficiently large, the γ-eigenvalues of ūε in B(λ∗, C/Xε), or 
zeros of Eε(·, γ), consist of points lying within C1/Xε of {λj(κ) : κ = k mod(2π/Xε)} plus m points lying 
within C1e−η̃Xε/2(m+1) of λ∗.

Proof. Factoring D0
1(λ) = (λ − λ∗)mD̂0

1(λ), D0
2(λ) = (λ − λ∗)mD̂0

2(λ), setting d̂1 := D̂0
1(λ∗), d̂2 := D̂0

2(λ∗), 
and applying again (5.3), we find that for z ∈ B(0, C), |γ̂| = 1 fixed,

(Xε)md̂−1
1 e−ik∗Xε/2+μ′

c(λ∗)z/2D̃ε(λ∗ + z/Xε, eik∗Xε

γ̂) → zm
(
eμ′

c(λ∗)z − γ̂d̂2/d̂1
)

as ε → 0, at rate O(|Xε|−1), from which we find that the zeros of D̃ε(λ∗ + z/Xε, eik∗Xε

γ̂) converge at rate 
O(|Xε|−1/(m+1)) to solutions of

μ′
c(λ∗)z = [ln(γ̂) + ln(d̂2/d̂1)] mod(2πi), (5.7)

and to the m-tuple root at z = 0. Converted back to λ-coordinates, this gives the desired result of O(|Xε|−1)
convergence to Lk = {λj(κ) : κ = k mod(2π/Xε)} along with the suboptimal result of O(|Xε|−1+1/(m+1))
convergence to the m-tuple root at λ = λ∗.

To obtain the optimal O(e−η̃Xε/2(m+1)) rate of convergence stated for the m-fold eigenvalue λ∗, we may 
go back again to (5.3) to obtain the sharper result that

(Xε)m(D̂0
1)−1e−ik∗Xε/2+(μc(λ∗+z/Xε)−μc(λ∗))Xε/2D̃ε(λ∗ + z/Xε, eik∗Xε

γ̂)

lies within O(e−η̃Xε/2) of zm
(
e(μc(λ∗+z/Xε)−μc(λ∗))Xε − γ̂D̂0

2/D̂0
1
)
, from which we may obtain the result by 

direct application of Rouchés Theorem, on a case-by-case basis depending whether or not d̂2/d̂1 = eikXε , 
i.e., whether or not λ∗ ∈ Lk. We omit the details. �
5.3. Behavior near an embedded eigenvalue at λ = 0

In the case of a multiplicity-one embedded “translational” homoclinic eigenvalue at λ = 0, it often 
transpires that, besides the corresponding translational (γ = 1)-eigenvalues of nearby periodic waves at 
λ = 0, the (γ = 1)-eigenvalue at λ = 0 has additional multiplicity equal to the number of arcs λj of 
homoclinic essential spectra on which it lies. See in particular the case of hyperbolic and parabolic balance 
laws discussed in [18,19]. In this case we may deduce from (5.7) that d̂1 = d̂2, giving an improved convergence 
rate of (C1/Xε)2 of periodic to homoclinic essential spectra as described in Corollary 5.2.



38 Z. Yang, K. Zumbrun / J. Math. Pures Appl. 132 (2019) 27–40
6. Application to Saint Venant equations

The Saint Venant equations for inclined shallow-water flow are, in nondimensional form,

∂th + ∂x(hu) = 0, ∂t(hu) + ∂x

(
hu2 + h2

2F 2

)
= h − |u|u + ν∂x(h∂xu), (6.1)

where h is fluid height, u vertical fluid velocity average, x longitudinal distance, t time, F a Froude number 
given by the ratio between (a chosen reference) speed of the fluid and speed of gravity waves, and ν = R−1

e , 
with Re the Reynolds number of the fluid. Terms h and |u| u on the right represent opposing forces of 
gravity and turbulent bottom friction.

Well-known solutions of (6.1) are periodic roll (traveling) waves [7–9] advancing with constant speed 
down a canal or spillway. For fixed Froude number F > 2, these appear in families indexed by period X
and average height u over one period, arising through a classical Hopf to homoclinic bifurcation scenario 
[2]. In particular, they feature a homoclinic limit as studied in this note, with a single embedded eigenvalue 
at λ = 0, contained in a single arc of unstable essential spectra, and all other spectra strictly stable; see 
[3] for further details. As noted in the introduction, this is a case to which the results of [10,11,28] do not 
apply but that can be treated by our analysis here.

Specifically, Corollary 5.2 verifies the intuitive conclusion that periodic roll waves are unstable in the 
large-period limit due to convergence of periodic spectra to unstable homoclinic essential spectra, settling 
the question of large-period stability. However, there is a much more interesting phenomenon involved with 
the homoclinic limit, worthy of further investigation. Namely, as noted in [25] more generally, mathematical 
models of inclined thin film flow appear to share the feature that homoclinic waves are essentially unstable; 
yet, both experiment and models of inclined thin film flow yield asymptotic behavior consisting of the 
approximate superposition of well-separated homoclinic waves.

A heuristic explanation of this paradox given in [2,3] is that sufficiently closely arrayed homoclinic waves 
can stabilize each others convective essential instabilities, manifested as exponentially growing perturbations 
traveling with a nonzero group velocity, through de-amplifying properties of the localized homoclinic pulses 
encoded in their strictly stable point spectrum. Indeed, this appears to match well with observed onset of 
stability of periodic waves at periods suggested by this proposed mechanism [3, Section 6].

However, up to now, there is lacking a rigorous explanation at the level of spectral stability relating 
the observed behavior to properties of the homoclinic wave. To carry out such an analysis by asymptotic 
techniques like those used here and in [10,11,28] seems an outstanding open problem in periodic stability 
theory and dynamics of thin-film flow.

Appendix A. Asymptotic ODE theory

Here, we recall the asymptotic Evans function results cited earlier; for proofs, see, e.g., [32].

A.1. The conjugation lemma

Consider a general first-order system

W ′ = Ap(x, λ)W (A.1)

with asymptotic limits Ap
± as x → ±∞, where p ∈ Rm denote model parameters.

Lemma A.1 ([22,26]). Suppose for fixed θ > 0 and C > 0 that

|Ap − Ap
±|(x, λ) ≤ Ce−θ|x| (A.2)
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for x ≷ 0 uniformly for (λ, p) in a neighborhood of (λ0), p0 and that A varies analytically in λ and con-
tinuously in p as a function into L∞(x). Then, there exist in a neighborhood of (λ0, p0) invertible linear 
transformations P p

+(x, λ) = I + Θp
+(x, λ) and P p

−(x, λ) = I + Θp
−(x, λ) defined on x ≥ 0 and x ≤ 0, 

respectively, analytic in λ and continuous in p as functions into L∞[0, ±∞), such that

|Θp
±| ≤ C1e−θ̄|x| for x ≷ 0, (A.3)

for any 0 < θ̄ < θ, some C1 = C1(θ̄, θ) > 0, and the change of coordinates W =: P p
±Z reduces (A.1) to the 

constant-coefficient limiting systems

Z ′ = Ap
±Z for x ≷ 0. (A.4)

Remark A.2. As shown in the proof (e.g., [32]), necessarily also (P p
±)′ = ApP± − P±Ap

±.

A.2. The convergence lemma

Consider a family of first-order equations

W ′ = Ap(x, λ)W (A.5)

indexed by a parameter p, and satisfying exponential convergence condition (A.2) uniformly in p. Suppose 
further that, for some δ(p) → 0 as p → 0,

|(Ap − Ap
±) − (A0 − A0

±)| ≤ Cδ(p)e−θ|x|, θ > 0 (A.6)

and

|(Ap − A0)±)| ≤ Cδ(p). (A.7)

Lemma A.3 ([1,26]). Assuming (A.2) and (A.6)–(A.7), for |p| sufficiently small, there exist invertible linear 
transformations P p

+(x, λ) = I + Θp
+(x, λ) and P 0

−(x, λ) = I + Θp
−(x, λ) defined on x ≥ 0 and x ≤ 0, 

respectively, analytic in λ as functions into L∞[0, ±∞), such that

|(P p − P 0)±(x)| ≤ C1δ(p)e−θ̄|x| for x ≷ 0, (A.8)

for any 0 < θ̄ < θ, some C1 = C1(θ̄, θ) > 0, and the change of coordinates W =: P p
±Z reduces (A.5) to the 

constant-coefficient limiting systems

Z ′ = Ap
±(λ)Z for x ≷ 0. (A.9)

References

[1] B. Barker, J. Humpherys, K. Zumbrun, One-dimensional stability of parallel shock layers in isentropic magnetohydrody-
namics, J. Differ. Equ. 249 (9) (2010) 2175–2213.

[2] B. Barker, M.A. Johnson, P. Noble, L.M. Rodrigues, K. Zumbrun, Whitham averaging and nonlinear stability of periodic 
solutions of viscous balance laws, in: Proceedings and Seminars, Centre de mathématiques de l’École polytechnique, 
Conference Proceedings, Journ. Equ. Dériv. Partielles (2010), Port d’Albret, France (2012).

[3] B. Barker, M. Johnson, M. Rodrigues, K. Zumbrun, Metastability of solitary roll wave solutions of the St. Venant equations 
with viscosity, Phys. D 240 (16) (2011) 1289–1310.

[4] B. Barker, M. Johnson, P. Noble, M. Rodrigues, K. Zumbrun, Stability of periodic Kuramoto–Sivashinsky waves, Appl. 
Math. Lett. 25 (5) (2012) 824–829.

[5] B. Barker, M.A. Johnson, P. Noble, L.M. Rodrigues, K. Zumbrun, Nonlinear modulational stability of periodic traveling-
wave solutions of the generalized Kuramoto–Sivashinsky equation, Phys. D 258 (2013) 11–46.

[6] B. Barker, M.A. Johnson, P. Noble, L.M. Rodrigues, K. Zumbrun, Stability of viscous St. Venant roll waves: from onset 
to infinite Froude number limit, J. Nonlinear Sci. 27 (1) (2017) 285–342.

http://refhub.elsevier.com/S0021-7824(19)30162-X/bib42485As1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib42485As1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib424A4E525A34s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib424A4E525A34s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib424A4E525A34s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib424A525As1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib424A525As1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib424A4E525A31s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib424A4E525A31s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib424A4E525A32s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib424A4E525A32s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib424A4E525A33s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib424A4E525A33s1


40 Z. Yang, K. Zumbrun / J. Math. Pures Appl. 132 (2019) 27–40
[7] R.R. Brock, Development of roll-wave trains in open channels, J. Hydraul. Div. 95 (4) (1969) 1401–1428.
[8] R.R. Brock, Periodic permanent roll waves, J. Hydraul. Div. 96 (12) (1970) 2565–2580.
[9] R.F. Dressler, Mathematical solution of the problem of rollwaves in inclined open channels, Commun. Pure Appl. Math. 

2 (1949) 149–194.
[10] R. Gardner, On the structure of the spectra of periodic traveling waves, J. Math. Pures Appl. 72 (1993) 415–439.
[11] R.A. Gardner, Spectral analysis of long wavelength periodic waves and applications, J. Reine Angew. Math. 491 (1997) 

149–181.
[12] R.A. Gardner, K. Zumbrun, The Gap Lemma and geometric criteria for instability of viscous shock profiles, Commun. 

Pure Appl. Math. 51 (1998) 797–855.
[13] F. Gesztesy, K.A. Makarov, (Modified) Fredholm determinants for operators with matrix-valued semi-separable integral 

kernels revisited, Integral Equ. Oper. Theory 47 (2003) 457–497; See also Erratum 48 (2004) 425–426 and the corrected 
electronic only version in 48 (2004) 561–602.

[14] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 
1981.

[15] M. Johnson, K. Zumbrun, Nonlinear stability of periodic traveling waves of viscous conservation laws in the generic case, 
J. Differ. Equ. 249 (5) (2010) 1213–1240.

[16] M. Johnson, K. Zumbrun, Nonlinear stability of spatially-periodic traveling-wave solutions of systems of reaction diffusion 
equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28 (4) (2011) 471–483.

[17] M. Johnson, K. Zumbrun, Convergence of Hill’s method for nonselfadjoint operators, SIAM J. Numer. Anal. 50 (1) (2012) 
64–78.

[18] M. Johnson, K. Zumbrun, P. Noble, Nonlinear stability of viscous roll waves, SIAM J. Math. Anal. 43 (2) (2011) 577–611.
[19] M.A. Johnson, P. Noble, L.M. Rodrigues, K. Zumbrun, Behaviour of periodic solutions of viscous conservation laws under 

localized and nonlocalized perturbations, Invent. Math. 197 (1) (2014) 115–213.
[20] M.A. Johnson, P. Noble, L.M. Rodrigues, Z. Yang, K. Zumbrun, Spectral stability of inviscid roll-waves, Commun. Math. 

Phys. 367 (1) (2019) 265–316.
[21] C. Mascia, K. Zumbrun, Pointwise Green’s function bounds for shock profiles with degenerate viscosity, Arch. Ration. 

Mech. Anal. 169 (2003) 177–263.
[22] G. Métivier, K. Zumbrun, Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems, Mem. Am. 

Math. Soc. 175 (826) (2005), vi+107 pp.
[23] M. Oh, K. Zumbrun, Stability of periodic solutions of conservation laws with viscosity: analysis of the Evans function, 

Arch. Ration. Mech. Anal. 166 (2) (2003) 99–166.
[24] M. Oh, K. Zumbrun, Stability of periodic solutions of conservation laws with viscosity: pointwise bounds on the Green 

function, Arch. Ration. Mech. Anal. 166 (2) (2003) 167–196.
[25] R. Pego, H. Schneider, H. Uecker, Long-time persistence of Korteweg-de Vries solitons as transient dynamics in a model 

of inclined film flow, Proc. R. Soc. Edinb. 137A (2007) 133–146.
[26] R. Plaza, K. Zumbrun, An Evans function approach to spectral stability of small-amplitude shock profiles, Discrete Contin. 

Dyn. Syst. 10 (2004) 885–924.
[27] B. Sandstede, A. Scheel, Absolute and convective instabilities of waves on unbounded and large bounded domains, Phys. 

D 145 (2000) 233–277.
[28] B. Sandstede, A. Scheel, On the stability of periodic travelling waves with large spatial period, J. Differ. Equ. 172 (2001) 

134–188.
[29] G. Schneider, Diffusive stability of spatial periodic solutions of the Swift-Hohenberg equation (English. English summary), 

Commun. Math. Phys. 178 (3) (1996) 679–702.
[30] G. Schneider, Nonlinear diffusive stability of spatially periodic solutions—abstract theorem and higher space dimensions, 

in: Proceedings of the International Conference on Asymptotics in Nonlinear Diffusive Systems, Sendai, 1997, in: Tohoku 
Math. Publ., vol. 8, Tohoku Univ., Sendai, 1998, pp. 159–167.

[31] K. Zumbrun, Stability of noncharacteristic boundary layers in the standing shock limit, Trans. Am. Math. Soc. 362 (12) 
(2010) 6397–6424.

[32] K. Zumbrun, Stability of detonation waves in the ZND limit, Arch. Ration. Mech. Anal. 200 (1) (2011) 141–182.
[33] K. Zumbrun, 2-modified characteristic Fredholm determinants, Hill’s method, and the periodic Evans function of Gardner, 

Z. Anal. Anwend. 31 (4) (2012) 463–472.

http://refhub.elsevier.com/S0021-7824(19)30162-X/bib427231s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib427232s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4472s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4472s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4731s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4732s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4732s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib475As1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib475As1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib474Ds1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib474Ds1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib474Ds1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4865s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4865s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4A5A31s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4A5A31s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4A5A32s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4A5A32s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4A5A33s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4A5A33s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4A5A4Es1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4A4E525A31s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4A4E525A31s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4A4E52595As1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4A4E52595As1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4D615As1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4D615As1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4D5As1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4D5As1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4F5A31s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4F5A31s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4F5A32s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib4F5A32s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib505355s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib505355s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib505As1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib505As1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib535332s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib535332s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib535331s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib535331s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib5332s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib5332s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib5331s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib5331s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib5331s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib5A31s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib5A31s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib5A32s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib5A33s1
http://refhub.elsevier.com/S0021-7824(19)30162-X/bib5A33s1

	Convergence as period goes to inﬁnity of spectra of periodic traveling waves toward essential spectra of a homoclinic limit
	1 Introduction
	2 Preliminaries
	2.1 Assumptions

	3 The homoclinic and rescaled periodic Evans functions
	3.1 Reduction to constant coefﬁcients
	3.2 The homoclinic Evans function
	3.3 The rescaled periodic Evans function

	4 Convergence to isolated point spectra
	4.1 Convergence as Xε->∞
	4.2 A ﬂip-type stability index and behavior near λ=0

	5 Convergence to essential spectra
	5.1 Convergence to an isolated arc of essential spectra
	5.2 Convergence to embedded point spectra
	5.3 Behavior near an embedded eigenvalue at λ=0

	6 Application to Saint Venant equations
	Appendix A Asymptotic ODE theory
	A.1 The conjugation lemma
	A.2 The convergence lemma

	References


