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Nous revenons sur l’analyse de R.A. Gardner de convergence de spectres de
périodique ondes progressives dans le limite de période infinie, etendant ses résultats
au cas de spectres essentiels. Notamment, la convergence vers les spectres essentiels
a un taux algébrique par rapport a la période. Au cours de 1 analyse, nous
montrons non seulement la convergence du spectre mais aussi la convergence d’une
renormalisation appropriée de la fonction d’Evans périodique a la fonction d’Evans
pour 'onde homocline limite, un fait qui est utile pour les enquétes numériques.
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1. Introduction

In this note, using asymptotic Evans function techniques like those introduced for the study of homoclinic
and heteroclinic traveling waves in [26,31,32], we build on the pioneering analysis of R.A. Gardner [10,11] of
convergence of spectra of periodic traveling waves in the infinite-period, or “homoclinic”, limit, extending
his results to the case that the limiting homoclinic spectra are of essential rather than point spectrum type.
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Under quite general conditions, Gardner showed that loops of essential periodic spectra bifurcate from
isolated point spectra Ag of the limiting homoclinic wave. Indeed, it is readily seen that, on compact sets
bounded away from regions of essential homoclinic spectrum, periodic spectra converge as period X — oo
at exponential rate O(e~"X), n > 0 to the point spectra of the limiting homoclinic; see [23,28], or Section 4
below.

In the standard case arising generically for reaction diffusion systems of a limiting homoclinic wave with
strictly stable essential spectrum, or “spectral gap”, and a single isolated eigenvalue at A = 0 associated
with translational invariance of the underlying equations, this reduces the study of periodic stability in
the large-period limit to asymptotic analysis of the loop of “critical” periodic spectra bifurcating from
the neutral eigenvalue A = 0. For, recall that linearized and nonlinear stability have been shown in quite
general circumstances to follow from the “dissipative spectral stability” condition of Schneider: that periodic
spectra move into the stable half plane at quadratic rate in the associated Bloch-Floquet number as the
Bloch number is varied about zero [15,16,18,19,29,30]. This problem was resolved definitively by Sandstede
and Scheel in [28], essentially closing the question of large-period periodic stability in the case of a spectral
gap.

However, there are interesting cases arising in systems with conservation laws, notably for models of
elasticity and thin film flow [6,18,23,24] of families of periodic waves for which the spectral gap condition
is not satisfied in the homoclinic limit, A = 0 being an eigenvalue embedded in the essential spectrum. In
particular, for thin film flows, the homoclinic limit typically has unstable essential spectrum branching from
the origin, and it is spectra bifurcating from this essential spectrum rather than the embedded eigenvalue at
A = 0 that appears to dominate the stability behavior of nearby periodic waves; see the discussion of [2,3].
This motivates our study here of convergence in the vicinity of essential spectra, both to essential spectra
themselves and to eigenvalues embedded in essential spectrum, to neither of which cases Gardner’s original
analysis applies.

Recall [12,14] that the essential spectrum of a homoclinic traveling wave is given by the union of algebraic
curves A = \;(k) obtained from the dispersion relation of the (constant-coefficient) linearization of the
governing evolution equation about the endstate us = lim,—, 1o @(z) of the homoclinic profile u(-), where
k € R denotes Fourier frequency, corresponding to the (entirely essential) spectra of the constant solution
u(x,t) = us. Thus, the generic situation in the context of essential spectrum, analogous to an isolated
eigenvalue in the point spectrum context considered by Gardner, is a point A lying on a single curve Aj,
corresponding to a single nondegenerate root k, of A;(k) = 0. This is closer in nature to the (also entirely
essential) spectra of periodic waves than is the case of an isolated eigenvalue; indeed, it is the spectra of the
constant periodic solution u(z,t) = ug, with Fourier frequency k corresponding to y-value v = e?*X “in the
notation of Section 2.

Similarly as in [11], our analysis is carried out by examination of the associated periodic Evans functions
E=()\,~) introduced by Gardner [10], A,y € C, |y| = 1, an analytic function whose zeroes A coincide with
the spectrum of the linearized operator about the wave, where ¢ — R indexes the family of periodic waves
converging as € — 0 to a homoclinic, or solitary wave, profile. However, differently from the approach of
[10,11], our results are obtained not by topological considerations, but, similarly in [17,31,32], by demonstra-
tion of convergence, at exponential rate O(e~"% E), of a suitably rescaled version of the sequence of periodic
Evans functions E€()\,v) and a sequence of functions interpolating between different versions of the homo-
clinic Evans function D°()\) defined on various components of the complement of the union of curves \;(-)
composing the homoclinic essential spectrum, with transition zones of scale ~ 1/X¢ — 0 around isolated
points A = \; (k).

Away from the homoclinic essential spectrum, this reduces to the simpler computation an appropriate
renormalization D?()\,~) of E° converges to the homoclinic Evans function DY()\) at exponential rate,
recovering and further illuminating the original result of Gardner [11] that the zero-set of E(-,&) converges
for each ¢ to the zero-set of D, at exponential rate; see Section 4. This convergence is potentially useful in
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numerical investigations, as the basis of numerical convergence studies in this singular, hence numerically
sensitive, limit. See, e.g., the applications in [5], as discussed in [5, Appendix D, pp. 70-72].

Near isolated arcs of curves A; of the homoclinic essential spectrum, as described above, for which the
bordering homoclinic Evans functions do not vanish (in particular precluding embedded eigenvalues), we
find that the zero-set of E¢, comprising curves of periodic essential spectrum, converges not to a single point
but to a full arc of \j, and at algebraic rather than exponential rate; see Section 5. In the case of an isolated
arc with a single embedded eigenvalue, we find as might be guessed that the periodic spectra comprise two
curves: a loop converging exponentially to the isolated eigenvalue, and a curve converging algebraically to
the arc \;; see Section 5.2. The method of analysis is general, and should extend to other, more degenerate
cases, at the expense of further effort/computation.

Our results apply in particular to the Saint Venant equations of inclined shallow water flow studied in
[2,3], verifying instability of periodic waves in the homoclinic limit by consideration of spectra bifurcating
from unstable essential spectrum of the limiting homoclinic. A very interesting open problem is to carry out
an analysis like that of [28] determining separately the stability of spectra bifurcating from the embedded
eigenvalue at A = 0. An interesting related problem is to verify the heuristic picture of “metastable”
behavior conjectured in [3], deducing stability for large but not infinite-period waves based on properties of
an essentially unstable homoclinic limit with stable point spectrum.

We note finally a close relation between the results obtained here on approximation by periodic waves of a
homoclinic limit and those obtained in [27] for approximation by truncation of the homoclinic to a large but
finite interval, in particular the similarity between reduced equation [27, Eq. (5.6)] and the limiting equation
(5.5) obtained here in describing convergence to essential spectra. In their concluding discussion [27, p. 276],
the authors mention the case of approximation by periodic waves as a direction for generalization, stating
that .. the results” [for approximation by domain truncation] “remain true so long as the periodic waves

remain O(e~°F)

close to the limiting solitary wave.”

Our results confirm this statement in particularly transparent fashion by the introduction of a periodic
conjugation lemma (Lemma 3.1) converting both limiting and approximant eigenvalue problems to constant-
coefficient, and associated transitional Evans functions (5.2) and (5.1) toward which rescaled versions of
homoclinic and periodic Evans functions converge. The latter observation if of interest in its own right, both

as an illuminating theoretical framework and a test (as in, e.g., [5]) of numerical convergence.
Acknowledgment

Thanks to Bjorn Sandstede for pointing out the relation between our results here on periodic approxi-
mation and those of [27] on domain truncation.

2. Preliminaries

Following Gardner [11], we consider a family of periodic traveling-wave solutions
u(z,t) = u(z — ct), u(r+ X°) =u(x) (2.1)

of a family of PDEs u; = F¢(0,,u) with smooth coefficients, converging as ¢ — 0 to a solitary-wave solution
u°, or homoclinic orbit of the associated traveling-wave ODE —c?0,u = F°(u), as meanwhile X¢ — oo.
Taking without loss of generality ¢¢ = 0 (changing to co-moving coordinates & = x — ¢°t), we investigate
stability of the equilibria u®, F¢(u°) = 0, through the study of the spectra A of the associated family of

eigenvalue ODEs

A = Lfu := dF(uf)u, (2.2)
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with an eye toward relating the spectral properties of periodic waves u® as € — 0 to those of the limiting
homoclinic «°.

Assume as in [10,11] that (2.2) may be written as a first-order system
W' = A% (x, )W (2.3)

in an appropriate phase variable W, where A is analytic in A\, C'! in z, and continuous in € for ¢ > 0.
Then, the spectrum of the periodic waves u°, € > 0 is made up of essential spectra given [10] by the union
of y-eigenvalues A consisting of zeroes of the periodic Fvans function

E5(\, ) = det(T° (X5, \) — 41d), (2.4)

where We(z,\) denotes the solution operator of (2.3), with ¥¢(0,\) = Id and v € C with |y| = 1. A
~v-eigenvalue of particular importance is the 1-eigenvalue A = 0 associated with eigenfunction d,u corre-
sponding to instantaneous translation, arising through translation-invariance of the underlying PDE. In the
case that F¢ is divergence-form, there exist other important 1-eigenvalues corresponding to variations along
the manifold of nearby X°*-periodic solutions, which in this case has dimension dimw + 1 > 1 [15,23].

As shown in a variety of settings (see [4,5,15,16,18,19,29,30] and references therein), linearized and non-
linear modulational stability are implied by the properties:

(D1) the multiplicity of the l-eigenvalue A = 0 is equal to the dimension d of the manifold of nearby
X¢-periodic solutions (in the typical case considered by Gardner [11], d = 1).

(D2) other than the 1 eigenvalue A = 0, there are no other y-eigenvalues with R\ > 0.

(D3) parametrizing v = e™*X R\ < —nk? for 0 < kX < 27, for some 1 > 0.

Accordingly, these are the spectral properties that we wish to investigate. In particular, note that (D3)
concerns not only location, but curvature of the spectral loop through A = 0.

Conditions (D1)—(D2) are easily seen to be necessary for linearized modulational stability, while condition
(D3) implies a Gaussian rate of time-algebraic decay sufficient to close a nonlinear iteration; see [15,16,24,
29,30] for further discussion.

2.1. Assumptions
Loosely following [11], we assume, for |A| < M:

(H1) X > o0ase — 0.
(H2) |A%(z,\) — A% (\)| < C(M)e~ "l for some C(M),v > 0.
(A3) |uf(x) — u(x)| < d(e) for |z| < XTE, with d(e) - 0 as e — 0.

In order to obtain the quantitative estimates we require, we augment (A3) with
i(e) < Ce X°/2 for some 6 > 0. (2.5)

Remark 2.1. Condition (2.5) is an additional assumption beyond those made in [11]. However, it follows
from (A3) in the standard case that the vertex a2, = u(£00) of the limiting homoclinic is a hyperbolic rest
point of the traveling-wave ODE, under the generically satisfied transversality condition that the associated
Melnikov separation function be full rank with respect to ¢, as do (H1)-(H2) as well, with v = § = a, were
« is the minimum growth/decay rate of the linearized equations about u2 ; see [28, Prop. 5.1 pp. 166-167].
Thus, Gardner’s original condition (A3) is the main assumption in practical terms.
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Remark 2.2. In the planar Hamiltonian traveling-wave ODE setting, for which all periodics and the limiting
homoclinic lie in the same phase portrait of a single traveling-wave ODE, setting € to be the distance of 4°(-)
from the saddle-point 4%, one may compute more or less explicitly that X¢ ~ cloge~! and 6(¢) < Ce, with
|u® — u°) < Ce? away from ul,. This gives another class of interesting examples to which our assumptions

apply.

As a consequence of (A3) we obtain for |\| < M, |A%(z,\) — A%(z, \)| < C(M)é(¢) as in assumption (iii)
of [11], p. 152, yielding together with (2.5):

(H3) |A%(z,\) — A%z, \)| < C(M)e=%X7/2 for |\| < M, |z| < £~ and 0 > 0.

Hereafter, we drop the motivating assumption (A3) and work similarly as in [11] with hypotheses (H1)—(H3)
on the first-order eigenvalue system (2.3) alone.

3. The homoclinic and rescaled periodic Evans functions

We begin by formulating the homoclinic and periodic Evans functions following the approach of [22,31,32],
in a way that is particularly convenient for their comparison.

8.1. Reduction to constant coefficients

Adapting the asymptotic ODE techniques developed in [22,26,31,32] for problems on the half-line (see
Appendix A), we obtain the following quantitative description relating (2.3) to a constant-coefficient version
of the homoclinic eigenvalue problem W’ = A%(z, \)W.

Lemma 3.1. Assuming (H1)-(H3), for each e > 0, there exist in a neighborhood of any |\o| < M bounded and
uniformly invertible linear transformations P$ (x, X) and P2 (x, ) defined on x > 0 and x < 0, respectively,
analytic in \ as functions into L>®[0,400), such that, for any 0 < 7 < min(0,v), 0, v as in (H2)-(H3),
some C >0, and |z| < XTE,

P5(+£X°/2) =1d, (3.1)
|(PF — P%) 4| < Ce™ ™2 for 20, (3.2)

and the change of coordinates W =: P{Z reduces (2.3) to the constant-coefficient system

)

X
7' =A% Z, for x=0and |z| < - (3.3)

Proof. Extending A(z,\) by value A% for |z| > XTE, we obtain a modified family of coefficient matrices
agreeing with A¢ on |z| < XTE and satisfying

(450 ) = 4% = (A%, ) = AL)] = [4%(2, X) = A%z, N)| < OO/
for x| < X*/2, and
(A% (2, \) — A5) — (A%a, \) — AL)| = |A%a, \) — A% | < C(M)e V1]

for || > X*/2, yielding for all = the estimate
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(A%(2, ) = AS) = (A%(x, ) — AL)| < CO(M)da(e)e 1! (3.4)
for 65(e) := e 1X/2, 0 < 0 < min{v, 0} — 7, and, trivially,
A%, = A% = 0 < C(M)a(e). (3.5)
Likewise, we have

[A%(2, ) = AL (V)] = [A%(2, A) = AL (V)]
< A% (@, \) = A (@, M)+ A% (2, A) — AS (V)] (3.6)
< QC(M)E_ min{u,é}pc\7

hence also, by o < min{v, #}, evidently
| A% (2, \) — AS (V)] = A% (2, \) — A% (N)] < 20(M)e 7], (3.7)
Using (3.6) and applying Lemma A.1, Appendix A, with p = € and § = min{v, 0}, we obtain |P{ —1d| <
Ce~ | for = 0. Moreover, by Remark A.2, (P§)" = APP§ — P{AS and P, = Id, yielding (P§)’ = 0 for
|x| > X /2, and therefore (3.1). Finally, using (3.4)—(3.5), (3.7), we obtain (3.2) by Lemma A.3, Appendix A,

with p=-¢, 0(p) = d2(¢), and 0 = 0. O

8.2. The homoclinic Evans function

Away from a finite set of curves \;(k) determined by the dispersion relation ik € o(A% ()\)), k € R, where
o denotes spectrum, the eigenvalues of A% have nonvanishing real part. Denote by A, the open components
of C\ {)\j(k)}. We refer to A, as the domains of hyperbolicity of A% . Denote by n,. the number of negative
real part eigenvalues of A2 .

Definition 3.2 (/3,12]). On each domain of hyperbolicity A,., the homoclinic Evans function is defined as

_ det(R™,RT)|,—0 _ det(P°R;, P)RY)

DY(\) := = , 3.8

) det(R~, RL) det(R~, RL) (38)

where R__ is any matrix whose columns are a basis for the unstable subspace of A%, RL is any matrix
whose columns are a basis for the stable subspace of A%, and R™(z) := P°(z)eA~*RZ, and R*(z) :=

Py (x)eAgoxR;'o are matrices whose columns are bases for the subspaces of solutions of (2.3) decaying as
x — —oo and x — +00, respectively.

Evidently, each D¢ is analytic in A on A,., and vanishes at A9 € A, if and only if )\g is an eigenvalue of
L°. Moreover, it can be shown with in great generality that its zeros correspond in multiplicity with the
eigenvalues of LY; see [12,21], and references therein.

3.83. The rescaled periodic Fvans function
Following [11], we note that, by Abel’s formula, E¢(),~) may be written alternatively as

ES (A7) = ES(A,y)et * oAy,

where
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Ef(\, ) = det(WF(0, )W (—X/2,\) "1 — 4T (0, \)TE(XE/2,\)71) (3.9)

is a “balanced” periodic Evans function defined symmetrically about & = 0 similarly as the homoclinic
Evans function.

Definition 3.3. On A,., we define the rescaled balanced periodic Evans function as

Di(A,7) = o7 PARTXT 2o WAL/ ()T 23, ), (3.10)
where II, and II, denote the unstable and stable eigenprojections associated with A% (\).
4. Convergence to isolated point spectra

We begin by recovering in a particularly direct and simple fashion the basic result of Gardner [11] on
bifurcation from isolated point spectra; for related arguments, see [23,28,31].

4.1. Convergence as X¢ — oo

To show convergence, we first reformulate the homoclinic Evans function as a Jost-function type deter-
minant such as appears in the definition of the periodic Evans function, involving the difference of two
matrix-valued solutions. See [13,33] for related discussion.

Lemma 4.1. Assuming (H1)-(H3), for (éﬂ’f) = (R, RL) L,
DY) = (~1)" det(R™ Ly, — R LE ) mo. (41)

Proof. Factoring (R"L,— RTLY)=(R™,—R") (é?}) = (R™,—R")(Ry,RL)™!, taking determinants,

and comparing to (3.8), we obtain the result. O
Proposition 4.2. Assuming (H1)-(H3), on each compact K C A,, there exist C,n > 0 such that
IDE(A, ) = DY) < Ce "X /2 for all A € K, |y| = 1, (4.2)

for any n less than the minimum of 7], given in Lemma 3.1, and the spectral gap of A% (N\), defined as the
minimum absolute value of the real parts of the eigenvalues of A%, .

Remark 4.3. In the generic case discussed in Remark 2.1, the restrictions on 7 in Proposition 4.2 reduce to
0 < n < spectral gap of A% ()\), by the estimates of [28, Prop. 5.1].

Proof. Using the description of Lemma 3.1, and the spectral expansion formula

0 0 o 0
eroaj — eAQCHurROOLOO _|_ eAOOHSIR+ L+

o0 oo

we find, using P§(£X°/2) =1d (see (3.1)) and |eA% T X"/2| < Ce=nX"/2  that

TE(0, \) U (—X°/2,\)~" = P2 (0) (pf(,XE/Q)engoxs/z)—l

= P=(0)eA%X"/2
= P2 (0)eAX 2R [~ 4 O(e X" /?)
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and, likewise, W(0, \)W¢(X¢/2,A)"! = P5(0)e  A<TX/2RE L+ + O(e=7X"/2), from which we find, fac-
toring similarly as in the proof of Lemma 4.1, that

DE(\,y) = e~ WARTX/2g WALTLXT/2(_\)=nr qet (P2 (0)Ry,  PL(0)RL)

LgoeAgoH“XEmRo_o 0 —nX°/2
xdet(( . Lt Almxeapy ) HOET )
xdm(éf) (4.3)
— det (PZ(0)R, P (0)R%) det(Id + O(e="%")) det (ﬁ%)

= DY(\) +O(e ™ /?),
by (éﬁ?) = (R, Rjo)_l and the definition of D? in (3.8). O

Corollary 4.1 ([11,23,25]). Assuming (H1)-(HS3), on compact K C A, such that D% does not vanish on
0K, the spectra of L¢ for X¢ sufficiently large consists of loops of spectra )\i,k(v), kE=1,...,m,, within
O(e="X"/2mr) of the eigenvalues A\, of L°, where m,. denotes the multiplicity of A, and 1 is as in (4.2).

Proof. Immediate by properties of analytic functions (Rouchés Theorem). O

Remark 4.4. Note that different rescalings of E° converge as X° — oo to different versions DY of the
homoclinic Evans function on different components A,..

4.2. A flip-type stability index and behavior near A =0

We mention in passing the important special case of an isolated eigenvalue at A = 0 of the limiting
homoclinic wave, corresponding with translational invariance of the underlying PDE. Similar translational
(v = 1)-eigenvalues occur at A = 0 for periodic waves of all periods X¢. As shown in [28] by rather
different Melnikov integral/Lyapunov-Schmidt computations, this exact correspondence for v = 1 implies

cancellation in D — DY, yielding convergence at faster exponential rate O (e~ "X /2)

, where a > 1, and
also an asymptotic description of the location of (y # 1)-eigenvalues near A = 0, deciding diffusive spectral
stability of spectral loops passing through the origin. In typical cases, these loops are to lowest order in
A — A« ellipses with axes parallel to real and imaginary coordinate axes, hence their diffusive stability or
instability is decided by whether the (y = —1)-eigenvalue lies in the stable (A < 0) or unstable (A > 0)
half-space [28, Discussion, p. 182, par. 2].

These conclusions do not follow by our straightforward computations above, and indeed would appear to
be cumbersome to reproduce by such an Evans function approach. However, a related necessary condition

o > 0 based on the stability index
o = sgnF*(0, —1)sgnE* (00ear, —1), (4.4)

is readily obtained from the Evans function formulation by the observation that E<(\, —1) is real-valued for
Areal, hence § < 0 by the intermediate value theorem implies existence of a —1-eigenvalue with nonnegative
real part, violating diffusive stability conditions (D2)—(D3).

The necessary condition (4.4) is valid in much more general contexts than is the necessary and sufficient
condition obtained in [28], in particular to systems with conservation laws for which A = 0 is an embedded
eigenvalue of the limiting homoclinic wave. See, for example, [20, Thm. 1.9] for an important application of
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this principle in the case of the Saint Venant equations of inclined shallow water flow. A change of sign in §

corresponds to passage of a —1-eigenvalue through A = 0, or “flip” bifurcation in the periodic traveling-wave
ODE.

5. Convergence to essential spectra

We now turn to our main object, of bifurcation from essential homoclinic spectra of periodic spectra in the
large-period limit. Recall that the essential spectrum of the homoclinic limit is given by the union of curves
A;(k) determined by the dispersion relation ik € o(A% ()\)), k € R, bounding domains of hyperbolicity A,
with Evans functions D.

5.1. Convergence to an isolated arc of essential spectra

Consider the generic situation of a point of homoclinic essential spectrum A, = A;(k,) lying on a single
curve J\;, for which k. is a nondegenerate root and unique solution of A;(k) = A.. Without loss of generality,
suppose that \; separates domains of hyperbolicity A; and As, on which are defined homoclinic Evans
functions DY and DS, as described in (3.8).

By assumption, u, := ik, is a simple imaginary eigenvalue of AY (\.), with all other eigenvalues of
strictly positive or negative real part. By standard matrix perturbation theory, therefore, there exist near
A« an analytic eigenvalue p.(A) and associated eigenprojecton I1.(A) with p.(A.) = ik, and analytic strongly
stable and unstable eigenprojections Il and Ilg,, corresponding at A = A, to center, stable, and unstable
projections of A% (\.). Without loss of generality, suppose that Ru. < 0 on Ay and Ry, > 0 on A;.
By analyticity of II., I, and Ilg,, the homoclinic Evans functions D{ and D§ extend analytically to a
neighborhood of \,; denote their values at A\, as d; = DY(\,) and dy = DI(\,).

Definition 5.1. Near \,, we define the transitional periodic Evans function as
DE()\, ,Y) = e~ t1rAgcl'IwX5/2€trAgoHSSXE/2(7,_}/)7711E~|(>\7 ’Y)a (51)

where II,, and I, denote strongly unstable and stable eigenprojections of A% () (n; here corresponding
to dim Rangell,s), and the transitional homoclinic Evans function as

(A7) = WX 2 DY(N) - qe WX /2Dy ), (5.2)

Proposition 5.2. Assuming (H1)-(H3), let A, = Xj(k.) lie on an isolated arc of homoclinic essential spectra
as described above. Then, there exists C1 > 0,n > 0 such that for any C > 0, for X¢ sufficiently large,

|DE(\, ) — HE (A, 7)| < Cre™ X772 for all X € B(\.,C/X?), || = 1. (5.3)

Proof. Letting R, RS, , and R} denote bases of Rangells,, Rangell., and Rangell;, set

Ly
(L;):(Roo Re, RL)TL.
L,

Expanding as in the proof of Proposition 4.2 via spectral resolution of A%, gives
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DE(}\7 7) — e trAgoHS“,XE/Qe trAgCHSSXE/Q(_,Y)fnl
x det (Pf(O)eAgoHquEﬂ RLLZ, + P2 (0)et<MNX*/2ge [e
AP () H WX PR LS, 4P (0)e ST X2RE LE 1 0(e ).
Using Ru.X = O(1) on B(A,, C/X¢) and factoring as in the proof of Proposition 4.2 gives

DF(\,7) =det (PE(0)Ry,  (er<WX* /2P (0)RS, — ye #eWX /2P (0)RS)  P5(0)RL)

L .
x det (L;) +0(e™ "X /?),
L

or, expanding the first determinant with respect to the middle column and recalling the definitions of DY
and DY, we have

DE(N, ) = et NXT2DO(N) — e WX 2DO(N) 4+ O(e™"X7/2) =0 HE(A,7) + O(e™"X/?). O
Corollary 5.1. Assuming (H1)-(HS3), let A, = \j(k) lie on an isolated arc of homoclinic essential spectra as
above, with DY(\,), DY(\,) # 0. Then, denoting v = e**X" | there exists Cy > 0 such that for any C > 0, for
X¢ sufficiently large, the y-eigenvalues of u¢ in B(A\., C/X®), corresponding to zeros of E*(-,7), lie within
C1/X*® of the set

{A\j(k) 1 K =k mod(27/X°)}. (5.4)

Proof. From (5.2)—(5.3) and Taylor expansion pi.(As + 2/X¢) = ik, + pl(A)z/ X5 + O(|X5]72), we see
immediately that for z € B(0,C), |4 = 1 fixed

d;le—ik*XE/2+pg(A*)z/2Ee()\* + Z/Xc"eik*XE,” - eu’c(/\*)z . @dg/dl

as € — 0, at rate O(]X¢|™1), from which we find by properties of analytic functions (Rouchés Theorem)
that zeros of D=(\, 4 2/X¢, e?X"4) converge at rate O(|X|~") to solutions of

p(\)z = [In(¥) + In(da/d1)] mod(27i). (5.5)
Converting back to A coordinates, we have that A — A\, = 2/X¢ converges at rate O(|X¢|~2) to
(1/4,(\))(I0(3) + In(da/d1))/X* mod(2mi/X?), (5.6)

whence, using 4 = ye~# X" = kX =k X" "1 1n(4) /X = ik — ik, (mod 27i/X*®), we find that p.(\) =
ik + pL (M) (X — Ai) + O(]X#|72) converges at rate O(]X¢|~?) to

[ik + In(dy/dy)/X®] mod(27i/X*®),
and thus at O(|X¢|™!) rate to ik mod(27i/X¢). By definition of \;, this is equivalent to convergence of A
at rate O(|X¢|™!) to A\;(k) for & = k mod(2m/X*). Noting that convergence at each step of the argument

is uniform with respect to 4, we obtain the result. O

Remark 5.3. Estimate (5.6) shows that the rate of convergence O(|X¢|™1) is sharp unless d; = da, giving
an explicit corrector In(dg/dy)/pl(A) X valid to order O(|X¢|72).
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5.2. Convergence to embedded point spectra

Finally, we consider the case of an embedded homoclinic eigenvalue A, of multiplicity m contained in an
isolated arc of essential spectrum A; dividing regions of hyperbolicity A; and Ay as described in Section 5.1.
By multiplicity m eigenvalue, we mean a value with an m-dimensional subspace of decaying generalized
eigenfunctions. This implies that both homoclinic Evans functions D{ and D$ have a zero of multiplicity at
least m at A = A4, since they differ only with respect to the nondecaying mode p.. We make the additional
nondegeneracy assumption that DY and D§ have zeros at \. of exactly multiplicity m.

Corollary 5.2. Assuming (H1)-(H3), let \. = X\j(ks) be a point lying on an isolated arc of homoclinic
essential spectra at which DY, DY possess zeros of degree m. Then, denoting v = e*X | there exists C; > 0
such that for any C > 0, n > 7 > 0, for X¢ sufficiently large, the y-eigenvalues of u® in B(\, C/X¢), or
zeros of E°(-,7), consist of points lying within C1/X® of {\j(k) : K =k mod(2m/X®)} plus m points lying
within Cye~TX"/2(m+1) of X,

Proof. Factoring DY(\) = (A — A,)™DY(X\), DI(A) = (A — A\)™DY(N), setting dy := DO(N,), da := DI(\,),
and applying again (5.3), we find that for z € B(0,C), |§] = 1 fixed,

(Xs)mdAl—167ik*X€/2+u’c()\*)z/2D5()\* + z/XE,eik*Xs’Ay) N Zm(BM,C()\*)Z _ "A}/CZQ/CZl)

as € — 0, at rate O(|X¢|~1), from which we find that the zeros of D*(\, + z/X¢, e?+X"4) converge at rate
O(|Xe|~Y/m+1) to solutions of

1Az = [In(§) + In(dy/dy)] mod(2mi), (5.7)

and to the m-tuple root at z = 0. Converted back to A-coordinates, this gives the desired result of O(| X¢|~1)
convergence to Ly = {\;(k) : & = k mod(27/X¢)} along with the suboptimal result of O(|X=|~1+1/(m+1)
convergence to the m-tuple root at A = A,.

To obtain the optimal O(e~1X"/2(m+1) rate of convergence stated for the m-fold eigenvalue M., we may
go back again to (5.3) to obtain the sharper result that

(Xa)m(ﬁ?)—1e—ik*XE/2+(uc()\*+z/XE)—uc(/\*))XE/QDE()\* + Z/XE, eik*XE,?)

lies within O(e™7X"/2) of 2™ (e(te(Aet2/X5)=pe(A )X ’?f?g/f)(f), from which we may obtain the result by
direct application of Rouchés Theorem, on a case-by-case basis depending whether or not do / di = ethX®

i.e., whether or not A\, € L. We omit the details. O
5.3. Behavior near an embedded eigenvalue at A =0

In the case of a multiplicity-one embedded “translational” homoclinic eigenvalue at A = 0, it often
transpires that, besides the corresponding translational (v = 1)-eigenvalues of nearby periodic waves at
A = 0, the (y = 1)-eigenvalue at A = 0 has additional multiplicity equal to the number of arcs A; of
homoclinic essential spectra on which it lies. See in particular the case of hyperbolic and parabolic balance
laws discussed in [18,19]. In this case we may deduce from (5.7) that dy = ds, giving an improved convergence
rate of (C1/X¢)? of periodic to homoclinic essential spectra as described in Corollary 5.2.
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6. Application to Saint Venant equations

The Saint Venant equations for inclined shallow-water flow are, in nondimensional form,

2

Oth + 05 (hu) =0,  Oi(hu) + 0y (hu2 + %) = h — |u|u + vy (hOzu), (6.1)
where h is fluid height, u vertical fluid velocity average, x longitudinal distance, ¢ time, F' a Froude number
given by the ratio between (a chosen reference) speed of the fluid and speed of gravity waves, and v = R_ !,
with R, the Reynolds number of the fluid. Terms h and |u|u on the right represent opposing forces of
gravity and turbulent bottom friction.

Well-known solutions of (6.1) are periodic roll (traveling) waves [7-9] advancing with constant speed
down a canal or spillway. For fixed Froude number F' > 2, these appear in families indexed by period X
and average height u over one period, arising through a classical Hopf to homoclinic bifurcation scenario
[2]. In particular, they feature a homoclinic limit as studied in this note, with a single embedded eigenvalue
at A = 0, contained in a single arc of unstable essential spectra, and all other spectra strictly stable; see
[3] for further details. As noted in the introduction, this is a case to which the results of [10,11,28] do not
apply but that can be treated by our analysis here.

Specifically, Corollary 5.2 verifies the intuitive conclusion that periodic roll waves are unstable in the
large-period limit due to convergence of periodic spectra to unstable homoclinic essential spectra, settling
the question of large-period stability. However, there is a much more interesting phenomenon involved with
the homoclinic limit, worthy of further investigation. Namely, as noted in [25] more generally, mathematical
models of inclined thin film flow appear to share the feature that homoclinic waves are essentially unstable;
yet, both experiment and models of inclined thin film flow yield asymptotic behavior consisting of the
approximate superposition of well-separated homoclinic waves.

A heuristic explanation of this paradox given in [2,3] is that sufficiently closely arrayed homoclinic waves
can stabilize each others convective essential instabilities, manifested as exponentially growing perturbations
traveling with a nonzero group velocity, through de-amplifying properties of the localized homoclinic pulses
encoded in their strictly stable point spectrum. Indeed, this appears to match well with observed onset of
stability of periodic waves at periods suggested by this proposed mechanism [3, Section 6].

However, up to now, there is lacking a rigorous explanation at the level of spectral stability relating
the observed behavior to properties of the homoclinic wave. To carry out such an analysis by asymptotic
techniques like those used here and in [10,11,28] seems an outstanding open problem in periodic stability
theory and dynamics of thin-film flow.

Appendix A. Asymptotic ODE theory
Here, we recall the asymptotic Evans function results cited earlier; for proofs, see, e.g., [32].
A.1. The conjugation lemma

Consider a general first-order system
W' = AP(z, )W (A.1)
with asymptotic limits AL as z — o0, where p € R™ denote model parameters.
Lemma A.1 (/22,26]). Suppose for fized 6 > 0 and C > 0 that

|AP — AR |(z,\) < Ce 1=l (A.2)
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for @ 2 0 uniformly for (\,p) in a neighborhood of (X\o), po and that A wvaries analytically in X and con-
tinuously in p as a function into L°°(x). Then, there exist in a neighborhood of (Ao, po) invertible linear
transformations PY(x,\) = I + ©% (x,\) and P’ (x,\) = I 4+ ©" (x,\) defined on © > 0 and z < 0,
respectively, analytic in A and continuous in p as functions into L>°[0,+00), such that

L] < Ce~0lal forxz =0, (A.3)

for any 0 < 6 < 6, some C; = C1(,0) > 0, and the change of coordinates W =: PLZ reduces (A.1) to the
constant-coefficient limiting systems

Z'=A8Z  forxz = 0. (A.4)
Remark A.2. As shown in the proof (e.g., [32]), necessarily also (P})" = APP; — Py AL

A.2. The convergence lemma

Consider a family of first-order equations
W' = AP(z, )W (A.5)

indexed by a parameter p, and satisfying exponential convergence condition (A.2) uniformly in p. Suppose
further that, for some §(p) — 0 as p — 0,

(AP — AB) — (A% — AL)| < Co(p)e I, 0>0 (A.6)
and

(A7 — A%)4)| < Cé(p). (A7)

Lemma A.3 ([1,26]). Assuming (A.2) and (A.6)—(A.7), for |p| sufficiently small, there exist invertible linear
transformations P} (xz,\) = I + ©% (x,)\) and P°(xz,\) = I + O (x, ) defined on x > 0 and x < 0,
respectively, analytic in A as functions into L]0, £00), such that

(PP = P°)1 ()] < C1o(p)e=l for z 2 0, (A8)

for any 0 < 0 < 6, some C; = C1(,0) > 0, and the change of coordinates W =: PLZ reduces (A.5) to the
constant-coefficient limiting systems

Z'=A8(\N)Z  forx=0. (A.9)
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