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a b s t r a c t

We study existence and stability of steady solutions of the isentropic compressible Navier–Stokes equa-
tions on a finite interval with noncharacteristic boundary conditions, for general not necessarily small-
amplitude data. We show that there exists a unique solution, about which the linearized spatial operator
possesses (i) a spectral gap between neutral and growing/decaying modes, and (ii) an even number of
nonstable eigenvaluesλ (with a nonnegative real part). In the case that there are no nonstable eigenvalues,
i.e., of spectral stability, we show this solution to be nonlinearly exponentially stable in H2

× H3. Using
‘‘Goodman-type’’ weighted energy estimates, we establish spectral stability for small-amplitude data. For
large-amplitude data, we obtain high-frequency stability, reducing stability investigations to a bounded
frequency regime. On this remaining, bounded-frequency regime,we carry out a numerical Evans function
study, with results again indicating universal stability of solutions.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we initiate in the simplest setting of 1D isentropic
gas dynamics, a systematic study of existence and stability of
steady solutions of systems of hyperbolic parabolic equations on a
bounded domain, with noncharacteristic inflow or outflow bound-
ary conditions, and data and solutions of amplitudes that are not
necessarily small. We have in mind the scenario of a ‘‘shock tube’’,
or finite-length channelwith inflow–outflowboundary conditions,
which in turn could be viewed as a generalization of the Poisseuille
flow in the incompressible case.

Our conclusions in the present, isentropic case, obtained by
rigorous nonlinear and spectral stability theory, augmented in the
large-amplitude case by numerical Evans function analysis, are
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that for any choice of data there exists a unique solution, and this
solution is linearly and nonlinearly time-exponentially stable in
H2

× H3. These results suggest a number of interesting directions
for further investigation in 1 and multi-D.

1.1. Setting

We consider the 1D isentropic compressible Navier–Stokes
equations{

ρt + (ρu)x = 0,

(ρu)t +
(
ρu2

+ P(ρ)
)
x = νuxx

(1)

on the interval [0, 1], with the noncharacteristic boundary condi-
tions⎧⎨⎩

ρ(t, 0) = ρ0 > 0,
u(t, 0) = u0 > 0,
u(t, 1) = u1 > 0.

(2)

Notice that we have an inflow boundary condition at x = 0 and
an outflow boundary condition at x = 1. We assume that the
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viscosity ν is positive and constant and that the pressure P is a
smooth function satisfying

P ′ > 0. (3)

Stability of steady states for hyperbolic parabolic systems has
been studied by many authors. For problems on the whole line,
the reader can refer to [1,2] and references within. In the case
of noncharacteristic boundary conditions on the half line, see for
instance [3,4]. For studies of scalar conservation laws on a bounded
interval, one may see for instance [5,6]. Finally, we refer to [7]
for the study of boundary controllability of the 1D Navier–Stokes
equations.

In this paper, we study the existence and stability of steady
states of (1) satisfying the boundary conditions (2). Section 2 is
devoted to the existence and the uniqueness of such steady states.
In Section 3, we study the corresponding linearized problem about
the steady state. In Section 4, we show that constant steady states
and almost constant steady states, see Condition (5), are spectrally
stable. We also show that general steady states are numerically
spectrally stable. Section 5 is devoted to a local wellposedness re-
sult for problem (1)–(2). Then, in Section 6, we show the nonlinear
stability of steady states that are spectrally stable. Theorem 6.3 is
the main result of this paper. Finally, in Section 7, we improve the
previous theorem under more restrictive assumptions.

Remark 1.1. It is worth noting that boundary conditions (2) are
not the only ones we can deal with. For instance, the case⎧⎨⎩

ρ(t, 1) = ρ0 > 0,
u(t, 0) = u0 < 0,
u(t, 1) = u1 < 0,

is equivalent by the change of variables x � 1−x and the change of
unknowns (ρ̂, û) � (ρ̂, −û). Moreover, these two possibilities are
the only types of noncharacteristic boundary conditions yielding
physically realizable steady states. For, the first equation of (1)
yields that steady solutions have constant momentum ρu ≡ m, so
that u(0) and u(1) necessarily agree in sign. By similar reasoning,
characteristic boundary conditions u(0) = u(1) = 0 yield u ≡ 0
yield only trivial, constant steady states (ρ, u) ≡ (ρ0, 0).

1.2. Discussion and open problems

As mentioned earlier, our goal in this paper is to open a line
of investigation of large-amplitude steady solutions for inflow–
outflow problems on bounded domains. The main technical con-
tribution is our argument for nonlinear exponential stability of
spectrally stable solutions, which is both particularly simple and
also applies to general hyperbolic parabolic systemsof ‘‘Kawashima
type’’, as considered on the whole- and half-line in [1–4]. Our goal,
and the novelty of the argument as compared to those for the
whole- and half-line, was to take advantage of the spectral gap to
obtain a simple proof based on standard semigroup/energy meth-
ods. However, a close reading will reveal that this is deceptively
difficult to accomplish, involving the introduction of a precisely
chosen space (ρ, u) ∈ H1

× L2 with norm strong enough that
we can carry out energy-based high-frequency resolvent estimates
and different from the usual Kawashima type estimates, but weak
enough that the range of nonlinear terms is densely contained.

The reduction of nonlinear to spectral stability gives a base for
investigation of more general systems such as full (nonisentropic)
gas dynamics or (isentropic or nonisentropic) MHD. Our results
on uniqueness and universal stability on the other hand are likely
accidents of low dimension. For example, the demonstration of
unstable large-amplitude boundary layers in [8,9] is suggestive
via the large-interval length limit from bounded interval toward

the half-line, that unstable large-amplitude steady solutionsmight
occur on bounded intervals for polytropic full gas dynamics in
someparameter regimes. Definitely, the example of unstable shock
waves on the whole line in [10] together with the asymptotic
analysis in [9,11] of spectra in the whole-line limit shows that
unstable steady solutions are possible on an interval for full gas dy-
namics with an artificial equation of state satisfying all of the usual
requirements imposed in standard theory, including existence of a
convex entropy, genuine nonlinearity of acoustic modes, etc.

Moreover, due to the presence of spectral gap/absence of es-
sential spectra in the bounded-interval problem, differently from
the whole- and half-line problems, changes in stability of the type
considered in [8,9], involving passage of a real eigenvalue through
zero, are associated necessarily with bifurcation/nonuniqueness,
by Lyapunov–Schmidt or center manifold reduction to the finite-
dimensional case.2 Thus, any such violations of stability should
yield also examples of large-amplitude nonuniqueness at the same
time. Small-amplitude uniqueness, on the other hand, follows
readily by uniqueness of constant solutions, as follows by en-
ergy estimates like those here, plus continuity. The investigation
of large-amplitude uniqueness and stability for larger systems
thus appears to be a very interesting direction for future explo-
ration; likewise, the study of the corresponding multi-D problem,
for which existence/uniqueness of small-amplitude solutions has
been studied for example in [15–17]. In both 1- and multi-D, a
very interesting open problem would be to study the asymptotic
structure of solutions in the small-viscosity limit, particularly in
the multi-D case analogous to Poiseuille flow.

Notation

In this paper, C(·) denotes a nondecreasing andpositive function
and C a generic notation whose exact values are of no importance.
| |2 refers to the L2-norm on (0, 1) and | |Hn , for n ≥ 1, to the Hn-
norm. | |∞ refers to the L∞-norm on [0, 1].

2. Existence and uniqueness of steady states

2.1. Analytical results

In this part, we prove the following result.

Proposition 2.1. Assume that P is a smooth function. For any
(ρ0, u0, u1), with ρ0 > 0, u0 > 0 and u1 > 0, problem (1)–(2) has a
unique steady solution

(
ρ̂, û

)
with ρ̂ > 0.

Proof. A steady solution
(
ρ̂, û

)
of (1)–(2) satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
ρ̂û
)
x = 0,(

ρ̂û2
+ P(ρ̂)

)
x = νûxx,

ρ̂(0) = ρ0,

û(0) = u0 , û(1) = u1.

Thus, ρ̂û = ρ0u0 and{
νρ0u0ρ̂x = bρ̂2

− (ρ0u0)2ρ̂ − ρ̂2P(ρ̂),
ρ̂(0) = ρ0

(4)

2 See in particular the center manifold theory for generators of C0 semigroups
in [12] or the still more general Fredholm-based Lyapunov–Schmidt reduction
of [13, Appendix D] for closed densely defined operators with an isolated crossing
eigenvalue, along with the general finite-dimensional bifurcation result of [10,
Lemma 3.10]. This is to be contrasted with the case of the whole line discussed
in [14, §6.2], for which λ = 0 is embedded in essential spectrum and a crossing
eigenvalue at λ = 0 may signal either steady state bifurcation as here or more
complicated time-dependent bifurcations involving far-field behavior and solutions
of an associated inviscid Riemann problem.



18 B. Melinand and K. Zumbrun / Physica D 394 (2019) 16–25

where b is a constant that has to be determined.We define themap

φ := b � ρ̂(1) −
ρ0u0

u1

where ρ̂ is the unique solution of System (4). Notice that we only
defineφ when ρ̂ is defined on [0, 1]. Then,we remark thatφ(ρ0u2

0+

P(ρ0)) = ρ0 −
ρ0u0
u1

and that φ is increasing. We also remark that if

b1 is in the domain ofφ, any b < b1 is in the domain ofφ. Therefore,
the domain ofφ is an interval containingρ0u2

0+P(ρ0). Furthermore,
φ is not bounded from above. Otherwise, one can show that ρ̂
is bounded uniformly with respect to b and then that φ(b) > b
for b large enough. One can also show that lim

b�−∞

φ(b) = −
ρ0u0
u1

.

Therefore, there exists a unique b such that ρ̂(1) =
ρ0u0
u1

and
ρ̂ > 0. □

Notice that a solution of (1) is constant if and only if u0 = u1.
In the following, we study among other things the stability

of almost constant steady solutions of (1), by which we mean
solutions satisfying

∃ε > 0 , ε ≪ 1 and |u0 − u1| ≤ ε. (5)

For this, the following lemma will be useful.

Lemma 2.2. Assume that we are under the assumptions of Proposi-
tion 2.1. Then, the unique steady solution (ρ̂, û) of problem (1)–(2) is
smooth and if u1 ̸= u0 we have

ρ̂ > 0 , û > 0, (u1 − u0) ρ̂x < 0 , (u1 − u0) ûx > 0,
lim

u1�u0

(⏐⏐ρ̂x
⏐⏐
∞

+
⏐⏐ûx
⏐⏐
∞

)
= 0.

Proof. The first four inequalities are clear (notice that if u0 ̸= u1,
|ûx| > 0). The last inequality follows from a comparison argument
and the continuity of the map φ. □

We denote solutions as compressivewhen ûx > 0 and expansive
when ûx < 0.

2.2. Numerical simulations

A steady solution
(
ρ̂, û

)
of (1)–(2) is characterized by system

(4) where b is the unique zero of φ. The numerical computation of
such a solution is carried out in two steps:

– We compute b with a Newton’s method. We initiate the process
with b = b0 where

b0 = ρ0u2
0 + P(ρ0).

Note that for a small viscosity (ν ≤ 1), the initial starting point
b = b0 ceases to be relevant. Thus, in this case, we use a dichotomy
method to find a better starting point.

– The solution of system (4) is computed with a four-order Runge–
Kutta method.

We display the results of numerical simulations for a
monatomic pressure law P(ρ) = ρ1.4 with ν = 1. Fig. 1 represents
the expansive solution for u0 = 2, u1 = 3 and ρ0 = 3. Fig. 2
represents the compressive solution when u0 = 1.5, u1 = 1 and
ρ0 = 2.

3. Linear estimates

3.1. The eigenvalue problem

In order to study the stability of steady states, we linearize
system (1) about the steady state

(
ρ̂, û

)
. Then, we study the cor-

responding eigenvalue problem for (r, v){
λr +

(
ρ̂v + ûr

)
x = 0,

λρ̂v +
(
ρ̂ûv + P ′(ρ̂)r

)
x + ûx

(
ûr + ρ̂v

)
= νvxx,

(6)

Fig. 1. A steady expansive solution of (1). Left: ρ; Right: u.

Fig. 2. A steady compressive solution of (1). Left: ρ; Right: u.

with

r(0) = v(0) = v(1) = 0. (7)

We define the linear unbounded operator

L (r, v) =

(
−
(
ρ̂v + ûr

)
x

νvxx −
(
ρ̂ûv + P ′(ρ̂)r

)
x − ûx

(
ûr + ρ̂v

)) , (8)

for (r, v) in the domain D(L) =
{
(r, v) ∈ H1

× H2, r(0) = v(0) =

v(1) = 0v
}
and the matrix

S =

(
1 0
0 ρ̂

)
. (9)

Remark 3.1. For constant steady states, the eigenvalue problem
simplifies into{

λr + ρ̂vx + ûrx = 0,
λρ̂v + ρ̂ûvx + P ′(ρ̂)rx = νvxx.

(10)

In the following,wedenote byσ (S−1L) the spectrumof
(
S−1L,

D(L)
)
in L2(0, 1). The following proposition shows that σ (S−1L)

only contains eigenvalues.

Proposition 3.2. The inverse of L exists and is compact and
σ (S−1L) only contains eigenvalues. Furthermore, the spectrum of(
S−1L,D(L) ∩ H2

× H3
)
in the space

{
(r, v) ∈ H1, r(0) = v(0) =

v(1) = 0
}
only contains eigenvalues.

Proof. Firstwe show that 0 /∈ σ (L). For f and g in L2(0, 1), we solve

L(ρ, v) = (f , g) with r(0) = v(0) = v(1) = 0.
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This leads to the system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ̂v + ûr = −

∫ x

0
f (y),

νvx = νvx(0) + ρ̂ûv −
P ′(ρ̂)
û

(
ρ̂v +

∫ x

0
f
)

+

∫ x

0
g(y)

−

∫ x

0
ûx

∫ y

0
f (y).

Then, we can solve the second equation with the initial condi-
tion v(0) = 0

v(x) =
1
ν

∫ x

0
exp

(
1
ν

∫ x

y
ρ̂û −

P ′(ρ̂)
û

ρ̂dz
)

×

(
νvx(0) −

P ′(ρ̂)
û

∫ y

0
f +

∫ y

0
g −

∫ y

0
ûx

∫ z

0
f
)
dy.

Since v(1) = 0, we can compute vx(0) and it implies that L
is invertible. Furthermore, if f and g are bounded in L2(0, 1), we
get from the previous equality that vx(0) is bounded and that v is
bounded in H1(0, 1). The first statement follows easily. The second
statement follows from similar computations. □

Remark 3.3. Notice that (ρ̂ ′, û′) cannot be an eigenfunction of
S−1L for the eigenvalue λ = 0 since it does not satisfy the
boundary conditions (7). This differs from the whole line case.

In order to prove the spectral stability of steady solutions,
we need high frequency estimates for problem (6)–(7). First, we
establish a useful lemma.

Lemma3.4. For any (r, v) satisfying the boundary conditions (7) and
|λ| large enough, we have⏐⏐r̃⏐⏐22 ≤

C
|λ|

(
|r|22 + |v|

2
2 + |(λS − L) (r, v)1|22

)
,

|r|22 + |v|
2
2 ≤

C
|λ|

(
|rx|22 + |vx|

2
2 + |(λS − L) (r, v)|22

)
,

|vx|
2
2 ≤

C
|λ|

(
|rx|22 + |vxx|

2
2 + |(λS − L) (r, v)|2H1

)
,

where r̃(x) =
∫ x
0 r(y)dy.

Proof. If we denote (λS − L) (r, v) = (f , g) and f̃ (x) =
∫ x
0 f (y)dy,

we have⎧⎪⎨⎪⎩
λr̃ + ρ̂v + ûr = f̃ ,
λr +

(
ρ̂v + ûr

)
x = f ,

λρ̂v +
(
ρ̂ûv + P ′(ρ̂)r

)
x + ûx

(
ûr + ρ̂v

)
= νvxx + g.

(11)

Thus, we easily see that⏐⏐r̃⏐⏐22 ≤
C
|λ|

(
|r|22 + |v|

2
2 + |f |22

)
.

Furthermore, by integrating by parts, we get

|r|22 +

⏐⏐⏐√ρ̂v

⏐⏐⏐2
2

=
1
|λ|

⏐⏐⏐⏐∫ 1

0
rλr
⏐⏐⏐⏐+ 1

|λ|

⏐⏐⏐⏐∫ 1

0
vλρ̂v

⏐⏐⏐⏐ ≤
C
|λ|

(
|r|22

+

⏐⏐⏐[û |r|2
]1
0

⏐⏐⏐+ |v|
2
H1 + |(f , g)|22

)
and the second inequality follows from Lemma A.2. Finally, by
differentiating the second equation of (11), we obtain⏐⏐(ρ̂v

)
x

⏐⏐2
2

=
1
|λ|

⏐⏐⏐⏐∫ 1

0

(
ρ̂v
)
xλ
(
ρ̂v
)
x

⏐⏐⏐⏐ ≤
C
|λ|

(
|r|2H1 + |v|

2
H2

+

⏐⏐⏐[ρ̂vx
(
νvxx − P ′(ρ̂)rx

)]1
0

⏐⏐⏐+ |(f , g)|2H1

)
.

Then, we notice that⎧⎨⎩
νvxx(0) − P ′(ρ0)rx(0) = ρ0u0vx(0) − g(0),
νvxx(1) − P ′(ρ̂(1))rx(1) = ρ̂(1)u1vx(1)

+ P ′′(ρ̂(1))ρ̂x(1)r(1) + ûx(1)u1r(1) − g(1)

and thanks to Lemma A.2, we get⏐⏐⏐[ρ̂vx
(
νvxx − P ′(ρ̂)rx

)]1
0

⏐⏐⏐ ≤ C |v|
2
H2 + C |r|2H1 + C |g|

2
H1 .

The result follows easily. □

We can now establish a high frequency estimate in H1.

Proposition 3.5. Assume that P satisfies (3). There exists a constant
α > 0 such that if ℜ(λ) > −α and |λ| is large enough,

|(r, v)|2H1 ≤ C |(λS − L) (r, v)|2H1×L2

for any (r, v) ∈
{
(r, v) ∈ H1

× H1, r(0) = v(0) = v(1) = 0
}
.

Proof. This proof is based on an appropriateGoodman-type energy
estimate. In the following we denote (λS − L) (ρ, v) = (f , g). We
define the energy

E (r, v) =
1
2

∫ 1

0
φ1 |rx|2 + φ2

⏐⏐(ρ̂v
)
x

⏐⏐2
where φ1 and φ2 satisfy

φ1 > 0 , φ2 > 0 , φ1 = P ′(ρ̂)φ2 ,
1
2
(ûφ1)x − 2ûxφ1 < 0.3

This energy is equivalent to the H1-norm by the Poincaré inequal-
ity (see Lemma A.1). Then, we compute

2ℜ(λ)E (r, v) = ℜ

(∫ 1

0
φ1rxλrx

)
+ ℜ

(∫ 1

0
φ2
(
ρ̂v
)
xλ
(
ρ̂v
)
x

)
.

Arguing by density, we assume that (r, v) ∈ H2
× H3. We have

2ℜ(λ)E (r, v) ≤ −

∫ 1

0
ℜ
[
φ1rx

(
ûrxx + ρ̂vxx + ûxrx

])
+ C |rx|2

×
(
|r|2 + |v|H1 + |f |H1

)
+

∫ 1

0
ℜ
[
φ2ρ̂vx

(
νvxxx − P ′(ρ̂)rxx − ρ̂ûvxx

)]
+

∫ 1

0
φ2ρ̂vxgx

+

∫ 1

0
ℜ
[
φ2ρ̂xv

(
νvxxx − P ′(ρ̂)rxx

])
+ C |v|H1

×
(
|r|H1 + |v|H1 + |vxx|2

)
.

Therefore, we have

2ℜ(λ)E (r, v) ≤

∫ 1

0
−νρ̂φ2 |vxx|

2
+

(
1
2
(ûφ1)x − 2ûxφ1

)
|rx|2

+ ℜ(rxvxx)
(
−ρ̂φ1 + ρ̂P ′(ρ̂)φ2

)
+ ℜ

([
−

1
2
ûφ1 |rx|2 + φ2ρ̂vx

×
(
νvxx − P ′(ρ̂)rx + g

) ]1
0

)
+ C |rx|2

(
|r|2 + |v|H1 + |f |H1

)
+ C |v|H1

×
(
|r|H1 + |v|H1 + |vxx|2

)
+ C |g|2 |vxx|2 .

3 For instance, φ1(0) = 1 and ûφ′

1 = 3û′φ1 − δû for δ > 0 small enough.
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Then, we notice that
u0rx(0) = −ρ0vx(0) + f (0),
νvxx(0) − P ′(ρ0)rx(0) + g(0) = ρ0u0vx(0),
νvxx(1) − P ′(ρ̂(1))rx(1) + g(1) = ρ̂(1)u1vx(1)

+
(
P ′′(ρ̂(1))ρ̂x(1) + ûx(1)u1

)
r(1)

(12)

and thanks to Lemma A.2, we obtain

ℜ

([
−

1
2
ûφ1 |rx|2 + φ2ρ̂vx

(
νvxx − P ′(ρ̂)rx + g

)]1
0

)
≤ C |r|2 |rx|2 + C |vx|2 |vx|H1 + C |f |2H1 .

Then, using the second and the third inequality of Lemma 3.4 and
Young’s inequality, we can find a constant α > 0, such that for |λ|

large enough,

2ℜ(λ)E (r, v) ≤ −α |(rx, vxx)|22 + C |(λS − L) (r, v)|2H1×L2 .

Since E is a norm equivalent to theH1-norm, the inequality follows
from the Poincaré–Wirtinger inequality on vx. □

3.2. The linear time evolution problem

In this part, we study the linearization of system (1) about the
steady state

(
ρ̂, û

)
⎧⎪⎪⎨⎪⎪⎩

S
(
r
v

)
t
− L

(
r
v

)
= 0,

(r, v)|t=0 = (r0, v0) ,

r(0) = v(0) = v(1) = 0.

We define for k ∈ N the spaces

Hk =

{
(r, v) ∈ Hk,

dlr
dxl

(0) =
dlv
dxl

(0) =
dlv
dxl

(1) = 0 , for any l < k
}

H1,0 =
{
(r, v) ∈ H1

× L2, r(0) = 0
}
.

Themain goal of this subsection is to show a linear exponential sta-
bility in H1,0. This will help us to show the nonlinear exponential
stability (see Remark 6.4). The following lemmas show that S−1L
generates a C0-semigroup on Hk and H1,0.

Lemma 3.6. The operator
(
S−1L,D(L)

)
is closed densely defined

on L2 and generates a C0-semigroup. Similarly
(
S−1L,Hk ∩ Hk+1

×

Hk+2
)
is closed densely defined onHk and generates a C0-semigroup.

Proof. The proof is similar to the proof of Proposition 2.2 in [1]. In
the following we denote (f , g) = (λ − S−1L)(r, v). For λ > 0 and
(r, v) ∈ D(L)

λ |r|22 +

(
λρ̂v,

1
ρ̂

v

)
2

= −
(
ρ̂rx, r

)
2 −

(
ûvx, r

)
2 + (f , r)2

+ ν (vxx, v)2

−
(
P ′(ρ̂)rx, v

)
2 −

(
ρ̂ûvx, r

)
2 + (g, v)2

+ C |(r, v)|22
≤ −ν |vx|

2
2 + (f , r)2 + (g, v)2

+ C |(r, v)|2 (|(r, v)|2 + |vx|2)

where we have integrated by parts and we have noticed a good
sign for |r(1)|2. Applying Young’s inequality, there exists a constant
C0 > 0 such that

λ |r|22 + λ |v|
2
2 ≤ C0 |(r, v)|22 + |(r, v)|2 |(f , g)|2 . (13)

Dividing by |(r, v)|2, we get

λ |(r, v)|2 ≤ C0 |(r, v)|2 +
⏐⏐(λ − S−1L)(r, v)

⏐⏐
2 ,

hence for λ > C0

|(r, v)|2 ≤
1

λ − C0

⏐⏐(λ − S−1L)(r, v)
⏐⏐
2 . (14)

Similarly, we have for (r, v) ∈ H1 ∩ H2
× H3

λ |rx|22 + λ |vx|
2
2 = (fx, rx)2 + (gx, vx)2 − (ûrxx, rx)2 + (vxxx,

ν

ρ̂
vx)2

+C (|vxx|2 + |(rx, vx)|2) |(r, v)|H1

and there exists a constant C1 > 0 such that for any λ > 0

λ |(rx, vx)|22 ≤ C1 |(r, v)|2H1 + |(rx, vx)|2 |(fx, gx)|2 . (15)

Summing (13) and (15), and noting that

|(r, v)|2 |(f , g)|2 + |(rx, vx)|2 |(fx, gx)|2 ≤ |(r, v)|H1 |(f , g)|H1

by Cauchy–Schwarz’ inequality, we get

λ |(r, v)|2H1 ≤ (C0 + C1) |(r, v)|2H1 + |(r, v)|H1
⏐⏐(λ − S−1L)(r, v)

⏐⏐
H1

hence for λ > C0 + C1,

|(r, v)|H1 ≤
1

λ − C0 − C1

⏐⏐(λ − S−1L)(r, v)
⏐⏐
H1 . (16)

Since we know from Proposition 3.2 that the spectrum of S−1L
only contains eigenvalues, the inequalities (14) and (16) give re-
solvent bounds and it shows that S−1L generates a C0-semigroup
on L2 andH1 by the Hille–Yosida theorem (see also [18]). The case
k ≥ 2 is a small adaptation of the previous estimates. □

In the following, we denote this C0-semigroup by etS
−1L.

Lemma3.7. There exists a constantω > 0 such that for any (r0, v0) ∈

H1,0

|etS
−1L(r0, v0)|H1×L2 ≤ eωt

|(r0, v0)|H1×L2 . (17)

Furthermore, etS
−1L is a C0-semigroup on H1,0.

Proof. We argue by density and we take (r0, v0) ∈ H2. In the
following, we denote (r(t), v(t)) = etS

−1L(r0, v0). Notice that we
have r(t, 0) = v(t, 0) = v(t, 1) = rx(t, 0) = 0 for any t ≥ 0. We
define the energy

E(r, v) =
A
2

(
|r|22 +

(
ρ̂v, v

)
2

)
+
(
v, ρ̂2rx

)
2 +

ν

2
|rx|22 .

In the following we take A > 0 large enough. In particular, E is
equivalent to the H1

× L2-norm. We get

d
dt

E(r, v) ≤ νA (vxx, v)2 + AC |(r, v)|2 |(r, v)|H1

+
(
νvxx, ρ̂rx

)
2 −

(
v, ρ̂3vxx

)
2

−
(
v, ρ̂2ûrxx

)
2 −

(
νρ̂vxx, rx

)
2 − ν

(
ûrxx, rx

)
2

+ C (|v|2 + |rx|2) |(r, v)|H1

≤ −Aν |vx|
2
2 +

(
vx, ρ̂

3vx
)
2 +

ν

2

(
ûxrx, rx

)
2

+ C (A |(r, v)|2 + |rx|2) |(r, v)|H1

where we have used cancellation of the highest-order terms ±(
νvxx, ρ̂rx

)
2, we have integrated by parts and we have noticed a

good sign for rx(1)2. Then, applying Young’s inequality, we obtain
for some ω > 0 large enough,

d
dt

E(r, v) ≤ 2ω
(
|r|22 + |v|

2
2 + |rx|22

)
≤ 2ωE.

The inequality (17) follows easily. Finally for any U0 ∈ H1,0 and
V0 ∈ H1
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⏐⏐⏐
H1×L2

≤

⏐⏐⏐etS−1LV0 − V0

⏐⏐⏐
H1

+(1 + eωt ) |U0 − V0|H1×L2

and continuity at t = 0 follows since etS
−1L is continuous at t = 0

on H1 and H1 is dense in H1,0. □

The following proposition gives linear exponential stability un-
der the assumption of a spectral gap. It is the main result of this
subsection.

Proposition 3.8. Assume that P satisfies (3). Assume that there exists
a constant α > 0, such thatℜσ (S−1L) < −α. Then, there exist θ and
C, 0 < θ < α, such that for any (r0, v0) ∈ H1,0⏐⏐⏐etS−1L(r0, v0)

⏐⏐⏐
H1×L2

≤ Ce−θ t
|(r0, v0)|H1×L2 .

Proof. If (r0, v0) ∈ H1, Proposition 3.5 gives two constants C and
θ with 0 < θ < α such that for any λ ∈ C satisfying R(λ) = −θ⏐⏐⏐(λ − S−1L

)−1
(r0, v0)

⏐⏐⏐
H1×L2

≤ C |(r0, v0)|H1×L2 .

The result follows by density and Prüss’ theorem (see for in-
stance [19,20]). □

4. Spectral stability

4.1. Constant and almost constant states

First, we study the spectral stability of constant states.

Proposition 4.1. Assume that
(
ρ̂, û

)
is a constant solution of (1) and

that P satisfies (3). Then, there exist α > 0, ℜσ (S−1L) ≤ −α.

Proof. Computing ℜ
((
(10)1, P ′(ρ̂)r

)
L2 +

(
(10)2, ρ̂v

)
L2
)
, we get

ℜ(λ)
(⏐⏐⏐√P ′(ρ̂)r

⏐⏐⏐2
2
+

⏐⏐⏐√ρ̂v

⏐⏐⏐2
2

)
+ ν |vx|

2
2 +

1
2
P ′(ρ̂(1))u1 |r(1)|2 = 0.

Thus, ℜ(λ) < 0. The result follows from Propositions 3.2 and
3.5. □

We can now establish the main proposition of this part. We
recall that

(
ρ̂, û

)
is a steady solution of (1)–(2). We introduce the

Evans function associated to
(
ρ̂, v̂

)
D [ρ0, u0, u1] (λ) = v(1),

where (ρ, v) satisfies the ordinary differential equation⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
rx = −

λr +
(
ρ̂v
)
x + ûxr

û
,

νvxx = λρ̂v +
(
ρ̂ûv

)
x + P ′′(ρ̂)ρ̂xr

− P ′(ρ̂)
λr +

(
ρ̂v
)
x + ûxr

û
+ ûx

(
ûr + ρ̂v

) (18)

with

r(0) = v(0) = 0 , v′(0) = 1.

One can easily show thatD [ρ0, u0, u1] (λ) = 0 if and only if λ is an
eigenvalue of (6). We now establish the spectral stability of almost
constant steady solutions of (1).

Proposition 4.2. Assume that P satisfies (3). Let
(
ρ̂, û

)
be the unique

steady solution of (1)–(2). Let ε > 0 be small enough. Then an
eigenvalue λ of (6)–(7) has a negative real part.

Proof. By Proposition 3.5, problem (6)–(7) does not have any
eigenvalue of nonnegative real part outside a compact set K . Fur-
thermore, from Proposition 4.1, D [ρ0, u0, u0] does not have any
zero inside K ∩ {ℜ > 0}. Since the Evans function D depends
continuously on the boundary conditions,D [ρ0, u0, u1] never van-
ishes inside K ∩ {ℜ > 0} for ε small enough. □

4.2. About general steady states

In the previous part, we only prove the spectral stability of
almost constant states. In this part, we show some theoretical
and numerical arguments that support the spectral stability of any
steady states.

We know from previous works that the stability index cri-
terion is a necessary condition for the spectral stability (see for
instance [21–23]). The stability index criterion states that

sgn (D [ρ0, u0, u1] (0)) sgn (D [ρ0, u0, u1] (+∞)) = 1.

The following proposition shows that this criterion is satisfied.

Proposition 4.3. For all steady states of problem (1)–(2), the stability
index criterion is satisfied.

Proof. First we compute sgn (D [ρ0, u0, u1] (0)). Proceeding as in
Proposition 3.2, we get the following system⎧⎪⎪⎨⎪⎪⎩

ρ̂v + ûr = 0,

ρ̂ûv +
ρ̂

û
P ′(ρ̂)v = νvx − νvx(0),

r(0) = v(0) = 0 , vx(0) = 1,

and we obtain

v(x) =

∫ x

0
exp

(
1
ν

∫ x

y
ρ̂û −

P ′(ρ̂)
û

ρ̂dz
)
dy vx(0).

Then sgn v(1) = sgn vx(0) = 1. Secondly, we compute D
[ρ0, u0, u1] (+∞). We have⎧⎨⎩

λr + ûrx = f ,
νvxx = λρ̂v + P ′(ρ̂)rx + g,

r(0) = v(0) = 0 , vx(0) = 1,
(19)

where |f |2 + |g|2 ≤ C (|r|2 + |v|2 + |vx|2). By solving the first
equation of system (19) we get for λ large enough

|r|2 ≤
C

√
λ

(|v|2 + |vx|2) .

We can rewrite the second equation of system (19) as

νvxx = λρ̂v + P ′(ρ̂)rx + g̃ with v(0) = 0 , vx(0) = 1,

where |̃g|2 ≤ C (|v|2 + |vx|2). Then, we consider for s ∈ [0, 1] the
equation

νwxx = λ
(
(1 − s)ρ̂ + s

)
w + (1 − s)P ′(ρ̂)rx + (1 − s)̃g

with w(0) = w(1) = 0.

Multiplying byw and integrating, we notice thatwhen λ is large
enough the only solution of this equation is w = 0. Therefore, for
λ large enough, we define z solution of

νzxx = λz with z(0) = 0 , zx(0) = 1.

and v(1) and z(1) agree in sign. It follows that sgn v(1) =

sgn z(1) = sgn zx(0) = 1. □

This proposition also shows that problem (6)–(7) has an even
number of nonstable eigenvalues, i.e. eigenvalues with a nonnega-
tive real part (see [21–23]).
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Fig. 3. Contour in the complex plane.

Fig. 4. Image of a contour mapped by the Evans function. ν = 1, u0 =
3
2 , u1 = 1,

ρ0 = 2.

Thanks to Proposition 3.5, we can numerically check that σ (S−1

L) does not contain nonstable eigenvalues. Such verifications have
for instance been done on the whole line (see [2]).

In the following, we display some numerical simulations for a
monatomic pressure law P(ρ) = ρ1.4. For any λ, we can compute
the associated Evans function thanks to system (18). We use a
Runge Kutta 4 scheme. For each value of u0, u1, ρ0 and ν, we
compute the Evans function along semi-circular contours of radius
M (see Fig. 3). We choose M large enough such that our domain
contains the half ball of Lemma 3.4. Fig. 4 represents the image of
the contour withM = 10, ν = 1, u0 =

3
2 , u1 = 1 and ρ0 = 2. Fig. 5

represents the image of the contourwithM = 10, ν = 0.1, u0 =
3
2 ,

u1 = 1 and ρ0 = 2.We can see on these examples that thewinding
number of these graphs are both zero. Several computations have
been performed for other values of the parameters ν ∈ [0.1, 10],
u0 ∈ [1, 10], u1 ∈ [1, 10] and ρ0 ∈ [1, 10]. We could not find any
nonstable eigenvalues.

5. Local existence

In this section,we state a localwellposedness result for problem
(1)–(2) (see e.g. [24,25]).

Proposition 5.1. Let ρ0 > 0, u0 > 0 and u1 > 0. Assume that P
satisfies (3). Let (ρini, uini) ∈ H1 satisfying the boundary conditions
(2) and ρini > 0. Then, there exists a time T > 0 such that problem

Fig. 5. Image of a contour mapped by the Evans function. ν = 0.1, u0 =
3
2 , u1 = 1,

ρ0 = 2.

(1)–(2) has a unique solution (ρ, u) in C
(
[0, T ];H1(0, 1)

)
with

sup
[0,T ]

|(ρ, u) (t)|H1 ≤ 2 |(ρini, uini)|H1 and ρ(t, x) ≥
ρini(x)

2
,

0 ≤ t ≤ T , 0 ≤ x ≤ 1.

6. Nonlinear stability

For a solution (ρ, u) of problem (1)–(2), we define (r, v) =

(ρ−ρ̂, u−û).Wenotice that (r, v) satisfies the boundary conditions
(7) and (L and S are defined in Section 3.1)(
1 0
0 ρ

)(
r
v

)
t
− L

(
r
v

)
=

(
− (rv)x

−(ûv)xr − ρ̂vvx − vrvx −
(
P(ρ) − P(ρ̂) − P ′(ρ̂)r

)
x

)
. (20)

Then, we get

S
(
r
v

)
t
− L

(
r
v

)
= N with r(t, 0) = u(t, 0) = u(t, 1) = 0 (21)

where N1 = −(rv)x and

N2 = −
ρ̂

ρ̂ + r

[
(ûv)xr + ρ̂vvx + vrvx

+
(
P(r + ρ̂) − P(ρ̂) − P ′(ρ̂)r

)
x

]
+

r
ρ̂ + r

[(
ρ̂ûv + P ′(ρ̂)r

)
x + ûx

(
ûr + ρ̂v

)
− νvxx

]
.

Notice that N1(t, 0) = N2(t, 0) = 0 and that

N2(t, 1) = −
[
ûvxr +

(
P ′(ρ̂ + r) − P ′(ρ̂)

−P ′′(ρ̂)r
) (

ρ̂ + r
)
x + P ′′(ρ̂)rrx

]
(t, 1).

The following proposition is a nonlinear damping estimate.

Proposition 6.1. Let T > 0 and consider a solution (r, v) ∈

C
(
[0, T ];H1

)
of (21) on [0, T ]. Assume that P satisfies (3) and that

there exists ε > 0 small enough such that

sup
[0,T ]

|(r, v)(t)|H1 ≤ ε.

Then, there exist some constants C > 0 and θ0 > 0 such that for all
0 ≤ t ≤ T and any θ ≤ θ0,

|(r, v)(t)|2H1 ≤ Ce−θ t
|(r, v)(0)|2H1 + C

∫ t

0
e−θ (t−s)

|(r, v)(s)|22 ds.
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Furthermore, if (r, v) ∈ C
(
[0, T ];H2

× H3
)
∩ C1

(
[0, T ];H1

)
and for

ε small enough

sup
[0,T ]

|(r, v)(t)|H2×H3 ≤ ε,

there exist some constants C > 0 and θ1 > 0, for any 0 ≤ t ≤ T and
θ < θ1

|(r, v)(t)|2H2×H3 ≤ Ce−θ t
|(r, v)(0)|2H2×H3

+C
∫ t

0
e−θ (t−s)

|(r, v)(s)|22 ds.

Proof. This proof is based on an appropriateGoodman-type energy
estimate and is similar to the proof of Proposition 3.5. We define
the energy equivalent to the H1-norm (by the Poincaré inequality
A.1)

E (r, v) =
1
2

∫ 1

0
φ1 |rx|2 + φ2

⏐⏐(ρ̂v
)
x

⏐⏐2
where φ1 and φ2 satisfy

φ1 > 0 , φ2 > 0 , φ1 = P ′(ρ̂)φ2 ,
1
2
(ûφ1)x − 2ûxφ1 < 0.

Then, after some computations, we obtain

d
dt

E (r, v) ≤ − ν

∫ 1

0
ρ̂φ2 |vxx|

2
+

(
1
2
(ûφ1)x − 2ûxφ1

)
|rx|2

+ rxvxx
(
−ρ̂φ1 + ρ̂P ′(ρ̂)φ2

)
+

[
−

1
2
ûφ1 |rx|2 + φ2ρ̂vx

(
νvxx − P ′(ρ̂)rx

)]1
0

+

∫ 1

0
φ1rx (N1)x + φ2

(
ρ̂v
)
x (N2)x

+ C |rx|2
(
|r|2 + |v|H1

)
+ C |v|H1

(
|r|H1 + |v|H1 + |vxx|2

)
.

Integrating by parts and using Lemma A.2 we get∫ 1

0
φ1rx (N1)x + φ2

(
ρ̂v
)
x (N2)x

≤
[
φ2ρ̂vxN2

]1
0 + C |(r, v)|2H1 (|(r, v)|H1 + |vxx|2).

Then, since N1(t, 0) = N2(t, 0) = 0, we have

u0rx(t, 0) = −ρ0vx(t, 0),
νvxx(t, 0) − P ′(ρ0)rx(t, 0) = ρ0u0vx(t, 0),
νvxx(t, 1) − P ′(ρ̂(1))rx(t, 1) + N2(t, 1)

= ρ̂(1)u1vx(t, 1) + P ′′(ρ̂(1))ρ̂x(1)r(t, 1) + ûx(1)u1r(t, 1).

Finally, thanks to the previous boundary equalities, Lemmas A.2,
A.3, Young’s inequality and the fact that |(r, v)|H1 is small enough,
we obtain
d
dt

E (r, v) ≤ −θ0 |(rx, vxx)|22 + C |(r, v)|22 .

The first inequality easily follows from the Poincaré–Wirtinger
inequality. Similarly, since (rt , vt ) satisfies the boundary conditions
(7), we get for ε and θ0 small enough

d
dt

E (rt , vt) ≤ −θ0 |(rtx, vtxx)|22 + C |(rt , vt )|22 .

Then, using (20) we notice that

|(rt , vt )|2 ≤ C |(r, v)|H1 + C |vxx|2 .

Therefore using the Poincaré inequalities, we get for δ and θ1 small
enough

d
dt

(E (r, v) + δE (rt , vt)) ≤ −θ1
(
|(rx, vx)|22 + |(rtx, vtx)|22

)
+C |(r, v)|22 (22)

and the result easily follows from the fact that

|(r, v)|H2×H3 ≤ C |(r, v)|H1 + C |(rt , vt )|2 . □

Remark 6.2. By taking further time-derivatives, we could obtain
an estimate similar to (22) in an arbitrarily high-regularity Sobolev
space of mixed type Hr

× Hs, with s ∼ 2r as r → ∞. This
observation repairs a minor error in [3], citing an estimate with
r = s.

We can now state the main result of this paper.

Theorem 6.3. Let ρ0 > 0, u0 > 0 and u1 > 0. Let (ρ̂, û) be the
unique steady solution of problem (1)–(2). Assume that P satisfies (3).
Assume that there exists α > 0 such that ℜ(σ (S−1L)) < −α. Then,
there exist ε > 0 and θ > 0, for any (ρini, uini) ∈ H2

× H3 satisfying
the boundary conditions (2), the compatibility conditions

(ρiniuini)x(0) = 0,
(
ρiniu2

ini + P(ρini) − νuini x
)
x(0) = 0,(

ρiniu2
ini + P(ρini) − νuini x

)
x(1) = 0

(23)

and⏐⏐(ρini, uini) −
(
ρ̂, û

)⏐⏐
H2×H3 ≤ ε,

the unique solution (ρ, u) of problem (1)–(2)with the initial condition
(ρini, uini) satisfies⏐⏐(ρ, u) (t) −

(
ρ̂, û

)⏐⏐
H2×H3 ≤ C

⏐⏐(ρini, uini) −
(
ρ̂, û

)⏐⏐
H2×H3 e−θ t .

Remark 6.4. As we will see in the proof, since we do not know
if N2(t, 1) = 0, the only way to use a linear damping estimate is
to work in L2 for the v component. That is why in Proposition 3.8
we used H1

× L2 and not H1. Notice also that we impose the
compatibility conditions (23) in order to get enough regularity.

Proof. We denote by U(t, x) = (ρ, u) (t) −
(
ρ̂, û

)
(t, x). Let T be

the existence time of Proposition 5.1. The Duhamel formulation
of Eq. (21) is, for 0 ≤ t ≤ T ,

U(t) = etS
−1LU(0) +

∫ t

0
e(t−s)S−1LS−1N (s)ds.

Noticing that N ∈
{
(r, v) ∈ H1

× L2, r(0) = 0
}
and that N con-

tains at least quadratic terms, Proposition 3.8 gives the existence
of θ > 0

|U(t)|2 ≤ |U(t)|H1×L2

≤ Ce−θ t
|U(0)|H1×L2 +

∫ t

0
e−θ (t−s)

|U(s)|2H2 C
(
|U(s)|H2

)
ds.

Then, the equality (20) gives

|U(t)|2 ≤ Ce−θ t
|U(0)|H1×L2

+

∫ t

0
C
(
|U(s)|H2

)
e−θ (t−s) (

|U(s)|2H1 + |Ut (s)|2H1

)
ds.

Furthermore, the compatibility conditions (23) imply that U ∈

C
(
[0, T ];H2

× H3
)
. Therefore, we can use the nonlinear damping

estimate of Proposition 6.1 and by Proposition 5.1 the H2-norm of
U is controlled by the initial condition. We get for ε and θ > 0
small enough
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|U(t)|2 ≤ C
(
|U(0)|H2×H3

) (
(1 + t)e−θ t

|U(0)|H2×H3

+

∫ t

0
(t − s)e−θ (t−s)

|U(s)|22 ds
)

.

Denoting ζ0(t) = sup
[0,t]

e
θ
2 s |U(s)|2, we obtain that for 0 ≤ t ≤ T

ζ0(t) ≤ C
(
|U(0)|H2×H3

) (
ε + ζ0(t)2

)
.

Furthermore, denoting ζ1(t) = sup[0,t]

(
e

θ
2 s |U(s)|H1 +

e
θ
2 s |Ut (s)|H1

)
and using Proposition 6.1, ζ1 is also controlled on

[0, T ]. Finally, if ε is small enough, we can take T = +∞ and ζ1 is
bounded on R+. □

7. An improvement in some situations

Themain result of this paper, Theorem6.3, states that spectrally
stable steady states are stable inH2

×H3. In this part, we prove that
under more restrictive conditions, we can state a stability result in
H1

× H2. To achieve that, we add another assumption

P ′′ > 0 if ûx > 0 (compressive solutions),
P ′′(y)
P ′(y)

<
2
y
and ρ̂x <

1
4
ρ̂ if ûx < 0 (small expansive solutions).

(24)

With this additional assumption, we can establish a high frequency
estimate in L2.

Proposition 7.1. Assume that P satisfies (3) and that Condition (24)
is satisfied. There exists a constant α > 0 such that if ℜ(λ) > −α and
|λ| is large enough,

|(ρ, v)|22 ≤ C |(λS − L) (ρ, v)|22 ,

for any (ρ, v) satisfying the boundary conditions (7).

Proof. This proof is based on an appropriateGoodman-type energy
estimate. In the following we denote (λS − L) (ρ, v) = (f , g). We
define the following energy

E (r, v) =
1
2

∫ 1

0
φ1 |r|2 + φ2ρ̂ |v|

2

where φ1 and φ2 satisfy

φ1 > 0 , φ2 > 0 , ρ̂φ1 = P ′(ρ̂)φ2.

Then, we compute

2ℜ(λ)E (r, v) = ℜ

(∫ 1

0
φ1rλr

)
+ ℜ

(∫ 1

0
φ2ρ̂vλv

)
.

After some computations we get

2ℜ(λ)E (r, v) ≤

∫ 1

0
−νφ2 |vx|

2
+

1
2
û2
(

φ1

û

)
x
|r|2

+ ℜ(rvx)
[
P ′(ρ̂)φ2 − ρ̂φ1

]
+ C |(f , g)|2 |(r, v)|2

+

∫ 1

0

[
ν(φ2)xx − 2φ2ûxρ̂ + (φ2)xρ̂û

] |v|
2

2
+ ℜ (vr)

[
(φ2)xP ′(ρ̂) − φ1ρ̂x − φ2ûxû

]
.

Then,we separately consider the three situations ûx > 0 (compres-
sive solution), ûx = 0 (constant solution) and ûx < 0 (expansive
solution).

– If ûx > 0, we take φ2 = 1, φ1 =
P ′(ρ̂)

ρ̂
and we get

û2
(

φ1

û

)
x
= û(φ1)x − ûxφ1 =

P ′′(ρ̂)ρ̂xû
ρ̂

< 0 ,

ν(φ2)xx − 2φ2ûxρ̂ + (φ2)xρ̂û = −2ûxρ̂ < 0.

– If ûx = 0, we take φ1 = P ′(ρ̂) − βx, φ2 = ρ̂ − β
ρ̂

P ′(ρ̂)xwith β > 0
small enough, and we get

û(φ1)x − ûxφ1 = −βû < 0 ,

ν(φ2)xx − 2φ2ûxρ̂ + (φ2)xρ̂û = −β
ρ̂2û
P ′(ρ̂)

< 0.

– If ûx < 0, we take φ2(x) =
√
M − 2x, M > 2 and φ1(x) =

P ′(ρ̂)
ρ̂

φ2(x) and thanks to Condition (24) we get

û(φ1)x − ûxφ1 =
φ2

ρ̂
P ′(ρ̂)û

(
P ′′(ρ̂)
P ′(ρ̂)

ρ̂x −
1

M − 2x

)
< 0,

ν(φ2)xx − 2φ2ûxρ̂ + (φ2)xρ̂û ≤ φ2û
(
2ρ̂x −

ρ̂

M − 2x

)
< 0.

Moreover, in any case, we have (denoting r̃(x) =
∫ x
0 r(y)dy)∫ 1

0
ℜ (vr)

(
(φ2)xP ′(ρ̂) − φ1ρ̂x − φ2ûxû

)
≤ C

⏐⏐r̃⏐⏐2 |v|H1 .

Thus, using the first inequality of Lemma3.4,we can find a constant
α > 0, for |λ| large enough,

2ℜ(λ)E (r, v) ≤ −α |(r, v)|22 + C |(λ − L) (ρ, v)|22 ,

and the inequality follows. □

Thanks to this L2 high frequency estimate, we can improve
Proposition 3.8. Under the assumption that Re

(
σ (S−1L)

)
≤ −α <

0, we get⏐⏐⏐etS−1L(r, v)
⏐⏐⏐
2

≤ Ce−αt
|(r, v)|2 .

Furthermore, thanks to the previous appropriate Goodman-type
estimate, we can improve the nonlinear damping estimate in
Proposition 6.1. If (r, v) in C

(
[0, T ];H2

× H1
)
is a solution of (21)

on [0, T ] and

sup
[0,T ]

|(r, v)(t)|H1×H2 ≤ ε

for ε small enough, we have

|(rt , vt )(t)|22 ≤ Ce−θ t
|(r, v)(0)|2H1×H2 + C

∫ t

0
e−θ (t−s)

|(r, v)(s)|22 ds.

Finally, applying the Duhamel formulation in L2, we obtain the
following theorem.

Theorem 7.2. Let ρ0 > 0, u0 > 0 and u1 > 0. Let (ρ̂, û) be the
unique steady solution of problem (1)–(2). Assume that P satisfies (3)
and that Condition (24) is satisfied. Assume that there exists α > 0
such that ℜ(σ (S−1L)) < −α. Then, there exist ε > 0 and θ > 0, for
any (ρini, uini) ∈ H1

× H2 satisfying the boundary conditions (2) and⏐⏐(ρini, uini) −
(
ρ̂, û

)⏐⏐
H1×H2 ≤ ε,

the unique solution (ρ, u) of problem (1)–(2)with the initial condition
(ρini, uini) satisfies⏐⏐(ρ, u) (t) −

(
ρ̂, û

)⏐⏐
H1×H2 ≤ C

⏐⏐(ρini, uini) −
(
ρ̂, û

)⏐⏐
H1×H2 e−θ t .
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Appendix. L∞ estimates and interpolation

In this appendix, we recall some basic results about Sobolev
spaces in a bounded domain. The first lemma is a Poincaré inequal-
ity.

Lemma A.1. For any f ∈ H1(0, 1) with f (0) = 0, we have

|f |2 ≤ 2 |fx|2 .

Proof. For any x, y ∈ [0, 1], we have

f (x)2 = f (y)2 + 2
∫ x

y
f (z)f ′(z)dz. (25)

Since f (0) = 0, we choose y = 0 and we obtain the result by
integrating over x. □

The following lemma allows us to control boundary terms and
L∞-norms by appropriate Sobolev norms.

Lemma A.2. For any f ∈ H1(0, 1), we have

|f |∞ ≤
√
2 |f |2 |fx|2 , if f (0) = 0,

|f |∞ ≤ |f |2 +
√
2 |f |2 |fx|2.

Proof. It is a direct consequence of the equality (25). □

We also have the following derivative-interpolation theorem.

Lemma A.3. For any v ∈ H2(0, 1),

|vx|
2
2 ≤ C |v|

2
2 + C |v|2 |vxx|2 .

Proof. Integrating by parts, we get∫ 1

0
v2
x dx = −

∫ 1

0
vvxxdx + [vvx]10 .

The result follows from the previous lemma. □
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