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Improved critical eigenfunction estimates

on manifolds of nonpositive curvature

Christopher D. Sogge

We prove new improved endpoint, Lpc , pc =
2(n+1)
n−1 , estimates (the

“kink point”) for eigenfunctions on manifolds of nonpositive cur-
vature. We do this by using energy and dispersive estimates for
the wave equation as well as new improved Lp, 2 < p < pc, bounds
of Blair and the author [4], [6] and the classical improved sup-
norm estimates of Bérard [3]. Our proof uses Bourgain’s [7] proof
of weak-type estimates for the Stein-Tomas Fourier restriction the-
orem [42]–[43] as a template to be able to obtain improved weak-
type Lpc estimates under this geometric assumption. We can then
use these estimates and the (local) improved Lorentz space esti-
mates of Bak and Seeger [2] (valid for all manifolds) to obtain our
improved estimates for the critical space under the assumption of
nonpositive sectional curvatures.

1. Introduction

Let (M, g) be a compact n-dimensional Riemannian manifold and let Δg be
the associated Laplace-Beltrami operator. We shall consider L2-normalized
eigenfunctions of frequency λ, i.e.,

−Δgeλ = λ2eλ,

∫
M
|eλ|2 dVg = 1,

with dVg denoting the volume element.
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The author showed in [28] that one has the following bounds for a given
2 < p ≤ ∞ and λ ≥ 1:

(1) ‖eλ‖Lp(M) ≤ Cλμ(p), μ(p) = max
(
n−1
2

(
1
2 − 1

p

)
, n

(
1
2 − 1

p

)
− 1

2

)
.

These estimates are saturated on the round sphere by zonal functions, Zλ, for
p ≥ 2(n+1)

n−1 = pc and for 2 < p ≤ pc by the highest weight spherical harmon-

ics Qλ = λ
n−1

4 (x1 + ix2)
k, if λ = λk =

√
(k + n− 1)k. See [27]. The zonal

functions have the maximal concentration at points allowed by the sharp
Weyl formula, while the highest weight spherical harmonics have the maxi-
mal concentration near periodic geodesics that is allowed by (1).

Over the years there has been considerable work devoted to determining
when (1) can be improved. Although not explicitly stated, this started in the
work of Bérard [3], which implies that for manifolds of nonpositive curvature
the estimate for p =∞ can be improved by a (log λ)−

1

2 factor (see [31,
Proposition 3.6.2]). By interpolation with the special case of p = pc in (1),
one obtains improvement for all exponents pc < p ≤ ∞, which was further
recently improved by Hassell and Tacy [14]. The author and Zelditch [35]
showed that for generic manifolds one can obtain o(λμ(p)) bounds for ‖eλ‖Lp

if pc < p ≤ ∞. These results were improved in [34] and in [39] and [40]. In the
latter two articles, a necessary and sufficient condition in the real analytic
setting was obtained for such bounds for exponents larger than the critical
one, pc.

The estimate for the complementary range of 2 < p < pc has also gar-
nered much attention of late. In works of Bourgain [8] and the author [30]
for n = 2, it was shown that improvements of (1) for this range is equiva-
lent to improvements of the geodesic restriction estimates of Burq, Gérard
and Tzvetkov [9], as well as natural Kakeya-Nikodym bounds introduced in
[30] measuring L2-concentration of eigenfunctions on λ−

1

2 tubes about unit-
length geodesics. This is all very natural in view of the properties of the
highest weight spherical harmonics (see [30] and [32] for further discussion).
Using this equivalence and improved geodesic restriction estimates, the au-
thor and Zelditch showed in [38] that ‖eλ‖Lp = o(λμ(p)) for 2 < p < pc if
n = 2 under the assumption of nonpositive curvature, and similar improved
bounds in higher dimensions and the equivalence of this problem and im-
proved Kakeya-Nikodym estimates were obtained by Blair and the author in
[5]. Very recently, in [4] and [6], we were able to obtain logarithmic improve-
ments for this range of exponents in all dimensions under the assumption
of nonpositive curvature using microlocal analysis and the classical Topono-
gov triangle comparison theorem in Riemannian geometry. In addition to
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relationships with geodesic concentration and quantum ergodicity, improve-
ments of (1) for 2 < p ≤ pc are of interest because of their connection with
nodal problems for eigenfunctions (see, e.g., [5], [4], [11], [15], [17], [36] and
[37]).

Despite the success in obtaining improvements of (1) for the ranges 2 <
p < pc and pc < p ≤ ∞, improvements for the critical space where p = pc =
2(n+1)
n−1 have proven to be elusive. The special case of (1) for this exponent

reads as follows:

(1′) ‖eλ‖
L

2(n+1)
n−1 (M)

≤ Cλ
n−1

2(n+1) ,

and by interpolating with the trivial L2 estimate and the sup-norm estimate
‖eλ‖L∞ = O(λ

n−1

2 ), which is implicit in Avakumović [1] and Levitan [23], one
obtains all of the other bounds in (1).

Improving (1′) has been challenging in part because it detects both point
concentration and concentration along periodic geodesics (as we mentioned
for the sphere). The techniques developed for improving (1) for p > pc fo-
cused on the former and the more recent ones for 2 < p < pc focused on the
latter. To date the only improvements of (1′) are recent ones of Hezari and
Rivière [15] who used small-scale variants of the classical quantum ergodic
results of Colin de Verdière [12], Snirelman [26] and Zelditch [44] (see also
[45]) to show that for manifolds of strictly negative sectional curvature there
is a density one sequence of eigenfunctions for which (1′) can be logarith-
mically improved. The L2-improvements for small balls that were used had
been obtained independently by Han [13] earlier, and, in a companion ar-
ticle [33] to [15], the author showed that, under the weaker assumption of
ergodic geodesic flow, one can improve (1′) for a density one sequence of
eigenfunctions.

Our main result here is that, under the assumption of nonpositive cur-
vature, one can obtain improved Lpc estimates for all eigenfunctions:

Theorem 1. Assume that (M, g) is of nonpositive curvature. Then there
is a constant C = C(M, g) so that for λ� 1

(2) ‖eλ‖
L

2(n+1)
n−1 (M)

≤ Cλ
n−1

2(n+1)

(
log log λ

)− 2

(n+1)2 .

Additionally,

(3)
∥∥χ[λ,λ+(log λ)−1]f

∥∥
L

2(n+1)
n−1 (M)

≤ Cλ
n−1

2(n+1)

(
log log λ

)− 2

(n+1)2 ‖f‖L2(M).
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Here if 0 = λ0 < λ1 ≤ λ2 ≤ · · · are the eigenvalues of
√−Δg counted

with respect to multiplicity and if {ej} is an associated orthonormal basis
of eigenfunctions, if I ⊂ [0,∞)

χIf =
∑
λj∈I

Ejf,

where

Ejf(x) =

(∫
M

f ej dVg

)
× ej(x),

denotes the projection onto the jth eigenspace. Thus, (3) implies (2).
By interpolation and an application of a Bernstein inequality, this bound

implies that for all exponents p ∈ (2,∞] one can improve (1) by a power of
(log log λ)−1. Although stronger log-improvements are in [3], [4], [6] and [14]
for p 	= pc, (2) represents the first improvement involving all eigenfunctions
for the critical exponent. Also, besides the earlier improved geodesic eigen-
function restriction estimates for n = 2 of Chen and the author [10], this
result seems to be the first improvement of estimates that are saturated by
both the zonal functions and highest weight spherical harmonics on spheres.

The main step in proving these Lpc-bounds will be to show that one has
the following related weak-type estimates:

Proposition 2. Assume, as above, that (M, g) is a fixed manifold of non-
positive curvature. Then there is a uniform constant C so that for λ� 1 we
have ∣∣{x ∈M :

∣∣χ[λ,λ+(log λ)−1]f(x)
∣∣ > α

}∣∣ ≤ Cλ
(
log log λ

)− 2

n−1α−
2(n+1)

n−1 ,(3′)
α > 0, if ‖f‖L2(M) = 1.

Here |Ω| denotes the dVg measure of a subset Ω of M .

Note that, by Chebyshev’s inequality (3) implies an inequality of the
type (3′), but with a less favorable exponent for the log log λ factor. The
inequality says that χ[λ,λ+(log λ)−1] sends L2(M) into Lpc,∞(M), i.e., weak-
Lpc , with norm satisfying

(3′′) ‖χ[λ,λ+(log λ)−1]‖
L2(M)→L

2(n+1)
n−1

,∞
(M)

= O
(
λ

n−1

2(n+1) /(log log λ)
1

n+1 ).

After we obtain this weak-type Lpc estimate, we shall be able to obtain
(3) by, in effect, interpolating it with another improved Lpc estimate of Bak
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and Seeger [2], which says that the operators χ[λ,λ+1] map L2(M) into the

Lorentz space Lpc,2(M) (see §4 for definitions) with norm O(λ
n−1

2(n+1) ). This
“local” estimate holds for all manifolds—no curvature assumption is needed.

Before turning to the proofs, let us point out that the weak-type bound
(3′) cannot hold for Sn. There there are two special values of α that cause

problems. The zonal functions are sensitive to α ≈ λ
n−1

2 , and

|{x ∈ Sn : |Zλ(x)| > α}| ≈ λ−n ≈ λα−
2(n+1)

n−1 , if α = cλ
n−1

2 ,

with c > 0 fixed sufficiently small. Similarly, the highest weight spherical
harmonics, Qλ, are sensitive to α ≈ λ

n−1

4 in that

|{x ∈ Sn : |Qλ(x)| > α}| ≈ λ−
n−1

2 ≈ λα−
2(n+1)

n−1 , if α = cλ
n−1

4 ,

and c > 0 fixed sufficiently small. Note that by (1′) and Chebyshev’s in-
equality, we always have, on any (M, g),

(4) |{x ∈M : |eλ(x)| > α}| � λα−
2(n+1)

n−1 ,

and so the zonal functions and the highest weight spherical harmonics sat-
urate this weak-type estimate. We shall give a simple proof of (4) in the
next section that will serve as a model for the proof of the improved weak-
type bounds in Proposition 2. It is based on a modification of Bourgain’s [7]
proof of a weak-type version of the critical Fourier restriction estimate of
Stein and Tomas [42]–[43].

Let us give an overview of why are able to obtain (3′) and (3). As
we mentioned before, the potentially dangerous values of α for the for-
mer are α ≈ λ

n−1

2 and α ≈ λ
n−1

4 . The aforementioned sup-norm estimates of
Bérard [3] provide log-improvements over (4) for α ≥ λ

n−1

2 /(log λ)
1

2 , while
the recent log-improved Lp estimates, 2 < p < pc, of Blair and the author
[4], [6] yield log-improvements for α near the other dangerous value λ

n−1

4 .

Specifically, we are able to obtain improvements when α ≤ λ
n−1

4 (log λ)δn for
some δn > 0. We can cut and paste these improvements into the aforemen-
tioned argument of Bourgain [7] to obtain (3′). We then can upgrade the
weak-type estimates that we obtain (at the expense of less favorable pow-
ers of (log log λ)−1) to a standard Lpc estimate using the result of Bak and
Seeger [2]. Thus, we combine the earlier “global” results of [3], [4], and [6]
with “local” harmonic analysis techniques to obtain our main estimate (3).

The paper is organized as follows. In the next section we shall give the
variation of the argument from [7] that yields (4). In §3 we shall show how
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we can use it along with the results of [3], [4] and [6] to obtain Proposition 2.
Then in §4 we shall give the simple proof showing that we can use it and the
aforementioned result of Bak and Seeger [2] to obtain the Theorem. Finally,
in §5, we shall state some natural problems related to our approach. Also,
in what follows whenever we write A � B, we mean that A is dominated by
an unimportant constant multiplied by B.

2. The model local argument

In this section we shall present an argument that yields the weak-type esti-
mate (4) and serves as a model for the argument that we shall use to prove
Theorem 1.

Let us fix a real-valued function ρ ∈ S(R) satisfying

(5) ρ(0) = 1, |ρ(τ)| ≤ 1, and supp ρ̂ ⊂ (−1/2, 1/2).

If we set

P =
√−Δg,

consider the operators

(6) ρ(λ− P )f(x) =

∞∑
j=0

ρ(λ− λj)Ejf(x),

where, as before, 0 = λ0 < λ1 ≤ λ2 ≤ · · · are the eigenvalues counted with
respect to multiplicity and Ej denotes projection onto the jth eigenspace.

The “local” analog of Proposition 2 then is the following result whose
proof we shall modify in the next section to obtain the “global” weak-type
estimates (3′).

Proposition 3. For λ ≥ 1 there is a constant C, depending only on (M, g),
so that

(7)
∣∣{x ∈M : |ρ(λ− P )f(x)| > α}∣∣ ≤ Cλα−

2(n+1)

n−1 ‖f‖
2(n+1)

n−1

L2(M), α > 0.

Consequently, (4) is valid, and, moreover, if χλ denotes the unit-band spec-
tral projection operators

χλf =
∑

λj∈[λ,λ+1]

Ejf,
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we have

(7′)
∣∣{x ∈M : |χλf(x)| > α}∣∣ ≤ Cλα−

2(n+1)

n−1 ‖f‖
2(n+1)

n−1

L2(M), α > 0.

Since ρ(0) = 1 we have that |ρ(τ)| ≥ 1/2 for |τ | ≤ δ for some δ > 0. Thus,
if one applies (7) with f replaced by fλ =

∑
λj∈[λ,λ+δ](ρ(λ− λj))

−1Ejf , one
deduces that∣∣∣∣∣∣

⎧⎨
⎩
∣∣∣∣∣∣

∑
λj∈[λ,λ+δ]

Ejf(x)

∣∣∣∣∣∣ > α

⎫⎬
⎭
∣∣∣∣∣∣ ≤ Cλα−

2(n+1)

n−1 ‖f‖
2(n+1)

n−1

L2(M), α > 0,

which implies (7′). So to prove Proposition 3, we just need to prove (7).
To prove (7), we require the following lemma which will be useful in

the sequel. We shall assume, as we may, here and in what follows that the
injectivity radius of M , Inj M , satisfies

Inj M ≥ 10.

Also, B(x, r), r < Inj M , denotes the geodesic ball of radius r about a point
x ∈M with respect to the Riemannian distance function dg( · , · ). The result
we need then is the following.

Lemma 4. Let a ∈ C∞0 ((−1, 1)). Then there is a constant C, depending
only on (M, g) and the size of finitely many derivatives of a, so that for
λ−1 ≤ r ≤ InjM we have

(8)

∥∥∥∥
∫

a(t)eitλ
(
e−itP f

)
dt

∥∥∥∥
L2(B(x,r))

≤ Cr
1

2 ‖f‖L2(M),

and, also, if
(
e−itP

)
(x, y) denotes the kernel of the half-wave operators e−itP ,

we have

∣∣(â(P − λ)
)
(x, y)

∣∣ = ∣∣∣∣
∫

a(t)eitλ
(
e−itP

)
(x, y) dt

∣∣∣∣(9)

≤ Cλ
n−1

2

(
dg(x, y) + λ−1

)−n−1

2 .

We shall omit the proof of (9) since it is well known and follows easily
from using stationary phase and parametrices for the half-wave equation.
One can easily obtain (9) by adapting the proof of Lemma 5.1.3 in [29].

Even though (8) is in a recent article of the author [33], for the sake of
completeness, we shall present a different simple proof here, which only uses
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energy estimates and quantitative propagation of singularities estimates for
the half-wave operators.

We start by introducing a Littlewood-Paley bump function β ∈ C∞0 (R)
satisfying

(10) β(τ) = 1, τ ∈ [1/2, 2], and supp β ⊂ (1/4, 4).

Then standard arguments using the aforementioned parametrix show that
for any N , we have that

∥∥∥∥
∫

a(t)eitλ
(
I − β(P/λ)

) ◦ e−itP dt

∥∥∥∥
L2(M)→L2(M)

= O(λ−N ),

where for each N ∈ N the constants depend only on finitely many derivatives
of a. Thus, since we are assuming λ−1 ≤ r, to prove (8), it suffices to prove
the variant where e−itP is replaced by β(P/λ) ◦ e−itP . By a routine TT ∗

argument, this in turn is equivalent to showing that

∥∥∥∥
∫

b(t)eitλ
(
β(P/λ) ◦ e−itP )h dt∥∥∥∥

L2(B(x,r))

≤ Cr‖h‖L2(B(x,r)),(8′)

if supp h ⊂ B(x, r) and λ−1 ≤ r ≤ Inj M,

with

b = a( · ) ∗ a(− · ).

By Minkowski’s inequality, the left side of (8′) is dominated by

∫
|t|≤10r

|b(t)| ∥∥(β(P/λ) ◦ e−itP )h∥∥
L2(B(x,r))

dt

+

∫
|t|≥10r

|b(t)| ∥∥(β(P/λ) ◦ e−itP )h∥∥
L2(B(x,r))

dt = I + II.

By energy estimates, we trivially have

I � r‖h‖L2 ,

as desired, and we do not need to use our support assumptions in (8′) here.
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To handle II, though, we do need to make use of them. We also need
the routine dyadic estimates∣∣(β(P/λ) ◦ e−itP )(w, z)∣∣ = O

(
λn(1 + λ|t|)−N) ∀N,(11)

if dg(w, z) ≤ |t|/2, t ∈ supp b,

which also follows easily from an integration by parts argument using the
parametrix for e−itP . From (11) we immediately get for t ∈ supp b∣∣(β(P/λ) ◦ e−itP )(w, z)∣∣ = O

(
λn(1 + λ|t|)−N) ∀N,

if w, z ∈ B(x, r) and |t| ≥ 10r.

As a result, by Schwarz’s inequality, we have that if, as in (8′), supp h ⊂
B(x, r),

II � (rλ)n

(∫
|t|≥10r

(
λ|t|)−n dt

)
× ‖h‖L2 ≈ r‖h‖L2 ,

as desired, completing the proof of (8′).

Proof of Proposition 3. To prove (7) it suffices to show that if Ω is a rela-
tively compact subset of a coordinate patch Ω0 for M then we have

(12)
∣∣{x ∈ Ω : |ρ(λ− P )f(x)| > α

}∣∣ ≤ Cλα−
2(n+1)

n−1 , α > 0,

assuming that

(13) ‖f‖L2(M) = 1.

We shall work in these local coordinates to make the decomposition we
require.

Let

A = {x ∈ Ω : |ρ(λ− P )f(x)| > α}
denote the set in (12). Our decomposition will be based on the scale

(14) r = λα−
4

n−1 ,

which is motivated by an argument in Bourgain [7]. Note that, since the
sup-norm estimates of Avakumović [1] and Levitan [23] give

‖ρ(λ− P )f‖L∞ = O(λ
n−1

2 ),
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the estimate (12) is trivial when r is smaller than a multiple of λ−1, which
allows us to use (8).

Write

A =
⋃

Aj ,

where Aj = A ∩Qj and Qj denote a nonoverlapping lattice of cubes of side-
length r in our coordinates. At the expense of replacing A by a set of pro-
portional measure, we may assume that

(15) dist (Aj , Ak) > C0r, j 	= k,

for a constant C0 to be specified later. Also, let

(16) ψλ(x) =

{
ρ(λ− P )f(x)/|ρ(λ− P )f(x)|, if ρ(λ− P )f(x) 	= 0

1, otherwise,

so that ψλ, of modulus one, is the signum function of ρ(λ− P )f .
We then have, by Chebyshev’s inequality, (13) and the Cauchy-Schwarz

inequality,

α|A| ≤
∣∣∣∣
∫

ρ(λ− P )f ψλ1A dVg

∣∣∣∣ ≤
⎛
⎝∫ ∣∣∣∣∣∣

∑
j

ρ(λ− P )aj

∣∣∣∣∣∣
2

dVg

⎞
⎠

1

2

,

where 1A denotes the indicator function of A and aj denotes ψλ times
the indicator function of Aj . As a result, if Sλ =

(
ρ(λ− P )∗ ◦ ρ(λ− P )

)
=

ρ2(λ− P ),

α2|A|2 ≤
∑
j

∫
|ρ(λ− P )aj |2 dVg +

∑
j 	=k

∫
ρ(λ− P )aj ρ(λ− P )ak dVg

=
∑
j

∫
|ρ(λ− P )aj |2 dVg +

∑
j 	=k

∫
Sλaj ak dVg

= I + II.

Since aj is supported in a ball of radius ≈ r, by (5) and the dual version
of (8) with a = ρ̂, we have∫

|ρ(λ− P )aj |2 dVg ≤ Cr

∫
|aj |2 dVg = Cr|Aj |.



Improved critical eigenfunction estimates 559

Whence, by (14)

I � r|A| = λα−
4

n−1 |A|.
To estimate II, we note that by (9) with a = ρ̂( · ) ∗ ρ̂(− · ), we have that

the kernel Kλ(x, y) of Sλ satisfies

(17) |Kλ(x, y)| ≤ Cλ
n−1

2

(
dg(x, y) + λ−1

)−n−1

2 .

Therefore, by (16),

II �
∑
j 	=k

∫∫
|Kλ(x, y)| |aj(x)| |ak(y)| dVg(x)dVg(y)

� λ
n−1

2

(
C0r

)−n−1

2

∑
j 	=k

‖aj‖L1‖ak‖L1

≤ C
−n−1

2

0 α2|A|2.

Thus,

α2|A|2 � λα−
4

n−1 |A|+ C
−n−1

2

0 α2|A|2,
and so, if C0 in (15) is large enough, the last term can be absorbed in the
left side. We conclude that

|A| � λα−2−
4

n−1 = λα−
2(n+1)

n−1 ,

which is (12). �

3. Proof of improved weak-type estimates

We shall now prove Proposition 2. Repeating the arguments from the pre-
vious section shows that if ρ ∈ S(R) is as in (5) then it suffices to show that
we have the following

Proposition 5. Let (M, g) be an n-dimensional compact Riemannian man-
ifold of nonpositive curvature. Then for λ� 1

(18)
∥∥ρ(log λ(λ− P ))

∥∥
L2(M)→L

2(n+1)
n−1

,∞
(M)

= O
(
λ

n−1

2(n+1) /(log log λ)
1

n+1

)
.

The earlier arguments show that (18) yields (3′′) and hence Proposition 2
assuming, as in there and as we shall throughout this section, that the
sectional curvatures of (M, g) are nonpositive.
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To prove (18), as in (12), it suffices to show now that if Ω is a relatively
compact subset of a coordinate patch Ω0, then

(19)
∣∣{x ∈ Ω : |ρ(log λ(λ− P ))f(x)| > α

}∣∣ ≤ Cα−
2(n+1)

n−1 λ/(log log λ)
2

n−1 ,

assuming that

(20) ‖f‖L2(M) = 1.

To prove this, in addition to (8), we shall require the following two
results.

Lemma 6. Let (M, g) be as above. Then there is a δn > 0 so that for λ� 1
and μ(p) as in (1)

(21)
∥∥ρ(log λ(λ− P ))

∥∥
L2(M)→L

2n
n−1 (M)

= O
(
λ
μ
(

2n
n−1

)
/(log λ)δn).

Lemma 7. If (M, g) is as above then there is a constant C = C(M, g) so
that for T ≥ 1 and large λ we have the following bounds for the kernel of
η(T (λ− P )), η = ρ2,

(22)
∣∣η(T (λ− P )

)
(w, z)

∣∣ ≤ CT−1(λ/dg(w, z))
n−1

2 + Cλ
n−1

2 exp(CT ).

The first estimate, (21), is a simple consequence of the bounds

(21′)
∥∥χ[λ,λ+(log λ)−1]

∥∥
L2(M)→Lp(M)

≤ λμ(p)/(log λ)δ(p,n), 2 < p < 2(n+1)
n−1 ,

with δ(p, n) > 0 from [4] for the special case of p = 2n
n−1 . Any other exponent

between 2 and 2(n+1)
n−1 in (21′) would work as well for us. We just chose

p = 2n
n−1 to simplify the calculations.
The other bound, (22), is well known and follows from the arguments in

Bérard [3]. Indeed, it is a simple consequence of inequality (3.6.8) in [31].
Let us see how we can use these results to obtain (19).
We first note that by Lemma 6 and the Chebyshev inequality we have

that since 2n
n−1 · μ( 2n

n−1) =
1
2 ,∣∣{x ∈ Ω : |ρ(log λ(λ− P ))f(x)| > α

}∣∣(23)

≤ α−
2n

n−1

∫
M
|ρ(log λ(λ− P ))f | 2n

n−1 dVg

� α−
2n

n−1λ
1

2 (log λ)−
2n

n−1
δn .
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To use this, we note that for large λ we have

α−
2n

n−1λ
1

2 (log λ)−
2n

n−1
δn � α−

2(n+1)

n−1 λ
(
log log λ

)− 2

n−1 ,(24)

if α ≤ λ
n−1

4 (log λ)δn .

Thus, by (23), we would obtain (19) if we could show that for λ� 1

∣∣{x ∈ Ω : |ρ(log λ(λ− P ))f(x)| > α
}∣∣ ≤ Cα−

2(n+1)

n−1 λ(log log λ)−
2

n−1 ,(25)

if α ≥ λ
n−1

4 (log λ)δn .

As we mentioned in the introduction, this step is key for us since it
has allowed us to use our curvature assumptions and move well past the
dangerous heights where α is comparable to λ

n−1

4 .
At this stage, due to the nature of the pointwise estimates in Lemma 7,

we need to change the frequency scale we are working with. Instead of ef-
fectively working with (log λ)−1 windows for frequencies as above, we shall
work with wider windows of size T−1 where T = c0 log log λ, with c0 chosen
later to deal with the second term in the right side of (22).

We claim that we would have (25), and therefore be done, if we could
show that

∣∣{x ∈ Ω : |ρ(c0 log log λ(λ−P )
)
h(x)|>α

}∣∣�α−
2(n+1)

n−1 λ(log log λ)−
1

n+1 ,(26)

if α ≥ λ
n−1

4 (log λ)δn , and ‖h‖L2(M) ≤ 1.

To verify this claim, we note that since ρ(0) = 1 and ρ ∈ S, for τ ∈ R

and for λ� 1 have

∣∣[ρ(c0 log log λ(λ− τ))− 1
]
ρ(log λ(λ− τ))

∣∣ � log log λ

log λ
(1 + |λ− τ |)−N ,

for any N = 1, 2, . . . . Thus, by using the fact that by [28] the unit band
spectral projection operators χλ satisfy

‖χλ‖
L2(M)→L

2(n+1)
n−1 (M)

= O(λ
n−1

2(n+1) ),

we deduce that

∥∥[ρ(c0 log log λ(λ−P ))−I
]◦ρ(log λ(λ−P ))f

∥∥
L

2(n+1)
n−1 (M)

� log log λ

log λ
λ

n−1

2(n+1) ,
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and so, by Chebyshev, for all α > 0 we have∣∣{x ∈M : |[ρ(c0 log log λ(λ− P ))− I] ◦ ρ(log λ(λ− P ))f(x)| > α
}∣∣

�
( log log λ

log λ

) 2(n+1)

n−1 λα−
2(n+1)

n−1 ,

which is much better than the bounds posited in (25). If we take h =
ρ(log λ(λ− P ))f in (26), we deduce the claim from this since, by (5),
‖ρ(log λ(λ− P ))‖L2(M)→L2(M) ≤ 1.

Following the arguments from the preceding section, to prove (26), let

A = {x ∈ Ω : |ρ(c0 log log λ(λ− P ))h(x)| > α},

and let ψλ be defined as in (16) but with ρ(λ−P ) replaced by ρ(c0 log log(λ−
P )). Note that for large λ

A = ∅ if λ
n−1

2 (log log λ)−
1

2 � α,

since estimates of Bérard [3] (see also [31]) give

‖ρ(c0 log log λ(λ− P ))‖L2(M)→L∞(M) � λ
n−1

2 /
(
log log λ

) 1

2 .

This will allow us to apply (8).
Next, as in the proof of Proposition 3, we write A = ∪Aj where Aj =

Qj ∩A, with the Qj coming from a lattice of nonoverlapping cubes in our
coordinate system, except now, instead of (5), we take

(27) r = λα−
4

n−1 (log log λ)−
2

n−1 .

As before, at the expense of replacing A by a set of proportional measure,
we may assume that

(28) dist (Aj , Ak) > C0r, j 	= k,

where C0 will be specified momentarily.
Let us now collect the two estimates that we need for the proof of (26).

First, if Sλ = η(c0 log log λ(λ− P )), η = ρ2, then by (22) if c0 > 0 is fixed
small enough, we have that its kernel, Kλ, satisfies

(29) |Kλ(w, z)| ≤ C

[
(log log λ)−1

(
λ

dg(w, z)

)n−1

2

+ λ
n−1

2 (log λ)
δn
10

]
,

with C independent of λ� 1.
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The other estimate that we require is that there is a uniform constant
so that, for T ≥ 1, we have

(30)
∥∥ρ(T (λ− P ))f‖L2(B(x,r)) ≤ Cr

1

2 ‖f‖L2(M), if λ−1 ≤ r ≤ Inj M,

with C independent of λ� 1. Since

ρ(T (λ− P )) =
1

2πT

∫
ρ̂(t/T )eitλe−itP dt,

and, by (5), ρ̂(t/T ) = 0 if |t| ≥ T , we claim that this follows from (8) and
the fact that the half-wave operators e−itP are unitary.

To verify this, choose ψ ∈ C∞0 ((−1, 1)) satisfying
∑∞

j=−∞ ψ(t− j) = 1,
t ∈ R, and then write

ρ(T (λ− P ))f = (2πT )−1
∑
j

∫
ρ̂(t/T )ψ(t− j)eiλte−itP f dt

= (2πT )−1
∑
j

∫
aj(t)e

iλte−itP fj dt,

where

aj(t) = ρ̂((t+ j)/T )ψ(t) and fj = eiλje−ijP f.

Since ‖fj‖L2(M) = ‖f‖L2(M), and since derivatives of the aj are bounded
independent of j if T ≥ 1, by (8), we have the uniform bounds∥∥∥∥

∫
aj(t)e

iλte−itP fj

∥∥∥∥
L2(B(x,r))

≤ Cr
1

2 ‖f‖L2(M),

which yield (30) since aj ≡ 0 if |j| ≥ T + 1.
We now use the proof of Proposition 3 to obtain (26). We argue as be-

fore to see that if Tλ = ρ(c0 log log λ(λ− P )) and aj = ψλ × 1Aj
, then since

‖h‖L2(M) ≤ 1, we have

α2|A|2 ≤
∑
j

∫
|Tλaj |2 dVg +

∑
j 	=k

∫
Sλaj ak dVg = I + II.

By the dual version of (30) and (27)

I � r
∑
j

∫
|aj |2 dVg = r|A| = λ(log log λ)−

2

n−1α−
4

n−1 |A|.
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By (29)

II �
[
(log log λ)−1λ

n−1

2

(
C0r

)−n−1

2 + λ
n−1

2 (log λ)
δn
10

] ∑
j 	=k

‖aj‖L1‖ak‖L1

≤ C
−n−1

2

0 α2|A|2 + λ
n−1

2 (log λ)
δn
10 |A|2.

Since we are assuming that α ≥ λ
n−1

4 (log λ)δn , the last term is � α2|A|2 if
λ is large. This means that we can fix C0 in (28) so that for large λ we have

II ≤ 1

2
α2|A|2.

Hence

α2|A|2 ≤ Cλ(log log λ)−
2

n−1α−
4

n−1 |A|+ 1

2
α2|A|2,

which of course yields the desired estimate

|A| � λ(log log λ)−
2

n−1α−2−
4

n−1 = λ(log log λ)−
2

n−1α−
2(n+1)

n−1 ,

assuming, as we are, that α ≥ λ
n−1

4 (log λ)δn .
This concludes the proof of (26), Proposition 5 and Proposition 2.

4. Proof of Theorem 1

Even though (3), and hence Theorem 1, follows directly from interpolating
between the weak-type estimate (3′) and the estimate,

(31) ‖χ[λ,λ+1]‖L2(M)→Lpc,2(M) = O(λ
1

pc ), pc =
2(n+1)
n−1 ,

of Bak and Seeger [2], for the sake of completeness, we shall give the simple
argument here.

Let us start by recalling some basic facts about Lorentz spaces. See §3
in Chapter 5 of Stein and Weiss [41] for more details.

First, given a function u on M , we let

ω(α) =
∣∣{x ∈M : |u(x)| > α

}∣∣, α > 0,

denote its distribution function, and

u∗(t) = inf{α : ω(α) ≤ t}, t > 0,

the nonincreasing rearrangement of u.
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Then the Lorentz spaces Lp,q(M) for 1 ≤ p <∞ and 1 ≤ q <∞ are
defined as all u so that

(32) ‖u‖Lp,q(M) =

(
q

p

∫ ∞

0

[
t

1

pu∗(t)
]q dt

t

) 1

q

<∞.

By equation (3.9) in Chapter 5 of [41], we then have

(33) ‖u‖Lp,p(M) = ‖u‖Lp(M),

and by Lemma 3.8 there we also have

sup
t>0

t
1

pu∗(t) = sup
α>0

α
[
ω(α)

] 1

p

= sup
α>0

α
∣∣{x ∈M : |u(x)| > α

}∣∣ 1

p .

If we take u = χ[λ,λ+(log λ)−1]f and assume from now on that ‖f‖L2(M) =
1, we therefore have, by our improved weak-type estimates (3′),

(34) sup
t>0

t
1

pc u∗(t) ≤ Cλ
1

pc

(
log log λ

)− 1

n+1 .

Also, for this u we have χ[λ,λ+1]u = u, and so, by (31),

(35) ‖u‖Lpc,2(M) ≤ Cλ
1

pc ‖u‖L2(M) ≤ Cλ
1

pc ‖f‖L2(M) = Cλ
1

pc .

By (32)–(33) and (34)–(35), we therefore get

‖u‖Lpc (M) =

(∫ ∞

0

[
t

1

pc u∗(t)
]pc dt

t

) 1

pc

≤ (pc/2)
1

pc

(
sup
t>0

t
1

pc u∗(t)
) pc−2

pc

(
2

pc

∫ ∞

0

[
t

1

pc u∗(t)
]2 dt

t

) 1

pc

�
[
λ

1

pc

(
log log λ

)− 1

n+1
] pc−2

pc ‖u‖
2

pc

Lpc,2(M)

�
[
λ

1

pc

(
log log λ

)− 1

n+1
] pc−2

pc

(
λ

1

pc

) 2

pc

= λ
1

pc

(
log log λ

)− 2

(n+1)2 ,

as (pc − 2)/(n+ 1)pc = 2/(n+ 1)2. Since u = χ[λ,λ+(log λ)−1]f and we are as-
suming that ‖f‖L2(M) = 1, we conclude that (3) must be valid, which com-
pletes the proof of Theorem 1. �
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5. Concluding remarks

First of all, we were only able to get endpoint results with gains of powers of
log log λ instead of powers of log λ due to the estimate (22) for the smoothed
out spectral projection kernels. Ideally, one would want to be able to use a
variant of (22) where the exponential factor is not present for the second
term in the right. Lower bounds of Jakobson and Polterovich [20]–[21] show

that this error term cannot be O(λ
n−1

2 ), but their bounds do not rule out
some improvement over (22), which would lead to more favorable estimates.

A better avenue for improvement, though, might be to try to improve the
ball-localized estimates (8), where the operators â(P − λ) are replaced by
ρ(T (λ− P ))) for appropriate T = T (r). A seemingly modest improvement
where r

1

2 is replaced by r
1

2 /(log λ)ε, for some ε > 0, if λ−1 ≤ r ≤ (log λ)−δ,
for some δ > 0 could be of use. The author in [32] obtained such improve-
ments with ε = 1

2 if λ−1 ≤ r � λ−
1

2 , but this does not seem very useful. On
the other hand, assuming that the curvature is strictly negative, Han [13]
and Hezari and Rivière [15] obtained these types of bounds with ε = n/2
and δ depending on the dimension for a density one sequence of eigenfunc-
tions. For toral eigenfunctions, Lester and Rudnick [22] did even better for
a density one sequence of eigenfunctions by showing, for instance, that in
when n = 2 one can replace r

1

2 in (8) by r
n

2 all the way down to r being
equal to the essentially the wavelength, i.e., λ−1+o(1) as λ→∞. (See also
[16] for earlier work.)

Finally, the arguments we have given could possibly prove new sharp
bounds for eigenfunctions on manifolds with boundary. Sharp estimates in
the two-dimensional case were obtained by Smith and the author [25], but
sharp estimates in higher dimensions are only known for certain exponents.
It turns out that the critical exponent for manifolds with boundary should
be 6n+4

3n−4 , which is larger than the one for the boundaryless case, 2(n+1)
n−1 .

If one could obtain the analog of (9) in this setting with the right hand
side replaced by

(λ/dist (x, y))
n−1

2
+ 1

6 ,

then one would likely be able to obtain sharp weak-type estimates for p =
6n+4
3n−4 , which by interpolation would yield sharp Lp estimates for all other
p ∈ (2,∞]. One would also need analogs of (8), but these are probably
much easier and likely follow from stretching arguments of Ivrĭı [19] and
Seeley [24]. In the model case involving the Friedlander model, recently
Ivanovici, Lebeau and Planchon [18] obtained dispersive estimates for wave
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equations which have similarities with the types of spectral projection kernel
estimates we just described.
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[26] A. I. Šnirel′man, Ergodic properties of eigenfunctions, Uspehi Mat.
Nauk 29 (1974), no. 6(180), 181–182.

[27] C. D. Sogge, Oscillatory integrals and spherical harmonics, Duke
Math. J. 53 (1986), no. 1, 43–65.

[28] C. D. Sogge, Concerning the Lp norm of spectral clusters for second-
order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988),
no. 1, 123–138.

[29] C. D. Sogge, Fourier integrals in classical analysis, Vol. 105 of Cam-
bridge Tracts in Mathematics, Cambridge University Press, Cambridge
(1993).

[30] C. D. Sogge,Kakeya-Nikodym averages and Lp-norms of eigenfunctions,
Tohoku Math. J. (2) 63 (2011), no. 4, 519–538.

[31] C. D. Sogge, Hangzhou lectures on eigenfunctions of the Laplacian,
Vol. 188 of Annals of Mathematics Studies, Princeton University Press,
Princeton, NJ (2014).

[32] C. D. Sogge, Problems related to the concentration of eigenfunctions
(2015). arXiv:1510.07723, to appear in Journees EDP.

[33] C. D. Sogge, Localized Lp-estimates of eigenfunctions: A note on an
article of Hezari and Rivière, Adv. Math. 289 (2016) 384–396.

[34] C. D. Sogge, J. A. Toth, and S. Zelditch, About the blowup of quasimodes
on Riemannian manifolds, J. Geom. Anal. 21 (2011), no. 1, 150–173.

[35] C. D. Sogge and S. Zelditch, Riemannian manifolds with maximal eigen-
function growth, Duke Math. J. 114 (2002), no. 3, 387–437.

[36] C. D. Sogge and S. Zelditch, Lower bounds on the Hausdorff measure
of nodal sets, Math. Res. Lett. 18 (2011), no. 1, 25–37.

[37] C. D. Sogge and S. Zelditch, Lower bounds on the Hausdorff measure
of nodal sets II, Math. Res. Lett. 19 (2012), no. 6, 1361–1364.

[38] C. D. Sogge and S. Zelditch, On eigenfunction restriction estimates
and L4-bounds for compact surfaces with nonpositive curvature, in: Ad-
vances in analysis: the legacy of Elias M. Stein, Vol. 50 of Princeton
Math. Ser., 447–461, Princeton Univ. Press, Princeton, NJ (2014).



570 Christopher D. Sogge

[39] C. D. Sogge and S. Zelditch, Focal points and sup-norms of eigenfunc-
tions, to appear in Rev. Mat. Iberomericana (2015).

[40] C. D. Sogge and S. Zelditch, Focal points and sup-norms of eigenfunc-
tions II: the two-dimensional case, to appear in Rev. Mat. Iberomeri-
cana (2015).

[41] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean
spaces, Princeton University Press, Princeton, N.J. (1971). Princeton
Mathematical Series, No. 32.

[42] P. A. Tomas, A restriction theorem for the Fourier transform, Bull.
Amer. Math. Soc. 81 (1975), 477–478.

[43] P. A. Tomas, Restriction theorems for the Fourier transform, in:
Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math.,
Williams Coll., Williamstown, Mass., 1978), Part 1, Proc. Sympos.
Pure Math., XXXV, Part, 111–114, Amer. Math. Soc., Providence, R.I.
(1979).

[44] S. Zelditch, Uniform distribution of eigenfunctions on compact hyper-
bolic surfaces, Duke Math. J. 55 (1987), no. 4, 919–941.

[45] S. Zelditch, On the rate of quantum ergodicity. I. Upper bounds, Comm.
Math. Phys. 160 (1994), no. 1, 81–92.

Department of Mathematics, Johns Hopkins University

Baltimore, MD 21218, USA

E-mail address: sogge@jhu.edu

Received March 14, 2016


