Arch. Rational Mech. Anal. 235 (2020) 195-285
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-019-01422-4

l‘)

Check for
updates

Stability of Hydraulic Shock Profiles
ZHAO YANG® & KEVIN ZUMBRUN

Communicated by A. BRESSAN

Abstract

We establish nonlinear H> N L' — H? stability with sharp rates of decay

in L?, p > 2, of general hydraulic shock profiles, with or without subshocks, of
the inviscid Saint-Venant equations of shallow water flow, under the assumption
of Evans—Lopatinsky stability of the associated eigenvalue problem. We verify
this assumption numerically for all profiles, giving in particular the first nonlinear
stability results for shock profiles with subshocks of a hyperbolic relaxation system.
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1. Introduction

In this paper, by a combination of rigorous analysis and numerical verification,
we establish nonlinear stability of nondegenerate hydraulic shock profiles of the
inviscid Saint-Venant equations for inclined shallow water flow, across their entire
domain of existence, in particular including large-amplitude profiles containing
subshock discontinuities. Specifically, assuming spectral stability in the sense of
Majda—Erpenbeck [21,22,31,43,70], we prove linear and nonlinear H 2Nt -
H? phase asymptotic orbital stability, with sharp rates of decay in L?, p > 2.
We then verify the spectral stability condition numerically, by exhaustive Evans—
Lopatinsky/Evans function computations.

The inviscid Saint-Venant equations

0th + 0xq =0,
2 2
qg>  h lqlq (1.D)
gt (L + 2 )=n- 19
fq“L"(thzF?) 12

here given in nondimensional form, model inclined shallow water flow where £ is
fluid height, ¢ = hu is total flow with being u fluid velocity, and F' > 0is the Froude
number—a nondimensional parameter depending on reference height/velocity and
inclination. Among other applications, they are commonly used in the hydraulic
engineering literature to describe flow in a dam spillway or channel, etc.; see, for
example, [8,10,11,17,32,36] for further discussion.

Equations (1.1) form a hyperbolic system of balance laws [9,16,42], with the
first equation representing conservation of fluid and the second balance between
change of momentum and the opposing forces of gravity (%) and turbulent bottom
friction (—h~2|q|q). More specifically, they compose a 2 x 2 relaxation system
[9,16,40,65], with associated formal equilibrium equation

dth + 9xqx(h) =0, (1.2)

where g, (h) := h3/? is the value of ¢ for which gravity and bottom forces cancel.
That is, near-equilibrium behavior is formally modeled by a scalar conservation



Hydraulic Shock Profiles 197

law, or generalized (inviscid) Burgers equation. On the other hand, short-time, or
transient, behavior is formally modeled by the first-order part of (1.1), with zero-
order forcing term & — h=2¢? (¢ > 0) set to zero; for later reference, we note that
this coincides with the equations of isentropic y-law gas dynamics with y = 2
[9,16,62].

As discussed, for example, in [33,40,65], the formal approximation (1.2) is
valid for general 2 x 2 relaxation systems in the vicinity of an equilibrium point
(h, q) = (ho, g«(ho)) provided there holds the subcharacteristic condition that the
characteristic speed g/, (19) of (1.2) lies between the characteristic speeds of (1.1).
This is also the condition for hydrodynamic stability, or stability under perturbation
of a constant equilibrium flow (4, g)(x,1) = (ho, g«(hg)): for the Saint-Venant
equations, the classical Froude number condition of Jeffreys [32],

F <2. (1.3)

In this regime, one may expect persistent asymptotically-constant traveling wave
solutions

(h)(r.0) = (H. Q)(x =), _lim (H.Q)() = (Hy. Q). _lim (H. Q)() = (Hg. Qr):
(1.4)

analogous to shock waves of (1.2), known as relaxation shocks, or relaxation pro-
files; in the context of (1.1), we shall call these hydraulic shock profiles. In the
complementary regime F' > 2, one expects, rather, complex behavior and pattern
formation [4,33,36].

Indeed, we have the following description of existence (Section 2); here and
elsewhere, let [1] = h(x*) — h(x ™) of a quantity & across a discontinuity located
at x:

Proposition 1.1. Let (Hy, Hg, c¢) be a triple for which there exists an entropy-
admissible shock solution in the sense of Lax [42] with speed ¢ of (1.2) connecting
left state Hj, to right state Hpg, that is, H, > Hgr > 0 and c[H] = [q+«(H)]. Then,
there exists a corresponding hydraulic shock profile (1.4) with Q1 = q+(HL) and
Or = q«(Hpg) precisely if 0 < F < 2. The profile is smooth for H; > Hp >

2

H, —2 T ) ) 7 risti
L3 F 1 JiEaE and nondegenerate in the sense that c is not a characteristic

2F?

speed of (1.1) at any point along the profile. For 0 < Hr < Hj, TrF+ T

the profile is nondegenerate and piecewise smooth, with a single discontinuity
consisting of an entropy-admissible shock of (1.1). At the critical value Hgp =
H 2F2

LI 2F+J/1+4F’
is continuous but not smooth, with discontinuous derivative at Hg. For F > 2,
there exist smooth “reverse shock” profiles connecting the endstates in the op-
142F —+/1+4F In
=

Hp is characteristic, and there exists a degenerate profile that

posite direction Hp — Hj, precisely when Hp < Hp < Hp

the degenerate case Hp, = Hp 1+2F+ ”1+4F, Hj is characteristic and there exists
an uncountable family of degenerate entropy-admissible piecewise smooth homo-
clinic profiles connecting Hp, to itself, but no smooth profiles. In all cases, these are
the only entropy-admissible piecewise smooth, asymptotically-constant traveling
waves of (1.1), and ¢, Q > 0.
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This corresponds to the picture for general relaxation systems [40,47,65,68],
wherein smooth relaxation profiles are known to exist for small-amplitude equi-
librium shocks near equilibrium points that are stable as constant solutions, but
larger-amplitude profiles contain discontinuities, or “subshocks”, if they exist at
all. Meanwhile, profiles initiating from an unstable equilibrium typically connect
endstates in a reverse direction corresponding to a non-entropy admissible shock of
(1.2) [68] (and in any case cannot be stable as solutions of the associated relaxation
system [47,48]). Accordingly, we focus hereafter on the case 0 < F < 2 for which
hydraulic shock profiles exist in the proper direction, and examine the stability of
such profiles as solutions of (1.1).

1.1. Main Results

We first recall that system (1.1) is of classical Kawashima class, meaning that
it is of symmetrizable hyperbolic type, with a symmetrizer that simultaneously
symmetrizes the linearized zero-order relaxation (or “balance”) term; see Obser-
vation 4.1. By the analytical results of [47,49], therefore, we obtain immediately
spectral, linearized, and nonlinear stability and asymptotic orbital stability with
sharp rates of smooth hydraulic shock profiles of sufficiently small amplitude, for
any fixed endstate Hy . Moreover, by [48], we obtain the same linearized and non-
linear stability results for smooth profiles of arbitrary amplitude, provided they
are spectrally stable in the sense of a standard Evans function condition, and non-
degenerate in the sense that hyperbolic characteristics do not coincide along the
profile with the speed of the wave. Hence, the smooth nondegenerate case may be
treated by existing analysis, reducing to a standard numerical Evans function study
of intermediate-amplitude waves, as carried out for example in [2,3,6,7,27].

We focus here on the complementary large-amplitude case of nondegenerate
2F2
+VI+4F"

we do not treat. For perturbations satisfying

shock profiles containing subshocks, or 0 < Hp < Hp ——=—— oF The degen-

2F2

. L AA2FAVIAR . ; :
appropriate compatibility conditions at the shock, in particular for perturbations

supported away from the shock, short-time H® existence follows by the analysis
of Majda [43,44], as noted in [34]. However, so far as we know, there were no
results up to now on large-time behavior or existence under perturbation of re-
laxation profiles containing subshocks. Our main result is the following theorem
establishing global existence and nonlinear phase-asymptotic orbital stability in
this case, with sharp rates of decay, assuming spectral stability in the sense of an
Evans—Lopatinsky condition analogous to that of the smooth profile case:

erate case Hg = Hp

Theorem 1.2. For 0 < F < 2and 0 < Hg < Hp —-"——— 1+2F+m let W = (H, Q)
be a hydraulic shock profile (1.4), and vy be an initial perturbation supported away
from the subshock discontinuity of W of norm ¢ sufficiently small in HNL', s > 2.
Moreover; assume that W is spectrally stable in the sense of the Evans—Lopatinsky
condition defined in Section 4. Then, for initial data Wo = Wo + vo, there exists a

global solution of (1.1), with a single shock located at ct — n(t), and H® to either
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side of the shock, satisfying, fort > 0, 2 < p < oo and some limiting phase 1o,

(W t) = W(—ct +n(0)gs < Ce(l+1)7 "4,
(W, 1) = W(—ct+n)|r < Ce(14 1)~ I/DA=P),
(0] < Ce(1+1)~1/2, (1.5)
In()| < Ce,
() = Nool < Ce(1+1)"V* 4+ Cluol 11 e/

for any v > 0, and some C = C(v) > 0. In particular, n(t) — nNeo ast — +oo.

Estimates (1.5)(1)—(iv) may be recognized as exactly the same as those given for
smooth profiles in [48, Thm. 1.2], but with n now an exact shock location forced
by the presence of a discontinuity rather than an approximate location designed
to optimize errors as in the smooth case. Estimate (1.5)(v), upgrading asymptotic
orbital stability to phase-asymptotic orbital stability, is new even in the smooth
case. We complement these results by systematic numerical studies verifying the
Evans—Lopatinsky condition for nondegenerate hydraulic shock profiles contain-
ing subshocks, and the Evans condition for nondegenerate smooth profiles, across
their full domain of existence. Together with our analytical results, this yields both
linearized and nonlinear phase-asymptotic orbital stability of (all) nondegenerate
hydraulic shock profiles of (1.1), that is, asymptotic convergence under pertur-
bation to a nearby translate of the original wave. Note that, due to translation
invariance, this is the strongest possible notion of stability for a traveling wave
[18,41,59,69].

Remark 1.3. As noted in [48] for the smooth case, the rates (1.5) are sharp. In
particular, as noted in [47,48], under the very weak localization vy € L'n HS
assumed on the initial perturbation, it is not possible to give a rate for the con-
vergence 1(f) — 7o, even at the linearized level. For by translating the initial
perturbation farther and farther toward infinity, an operation that does not change
its norm, we may by finite propagation speed of the underlying hyperbolic model,
delay indefinitely the interaction of the perturbation with the component subshock
of the traveling wave. However, conservation of mass principles [40,41], applied to
the linearized problem, imply that, to linear order in perturbation norm & the asymp-
totic shock location depends only on the “total perturbation mass” f :;O ho(y) dy,
hence is independent of translation. These two facts together are inconsistent with
convergence at a fixed rate depending only on &€ = |vo|;1~gs-

1.2. Discussion and Open Problems

Large-amplitude hydraulic shock profiles are physically interesting from the
point of view of dam break or river bore phenomena. Our results bear on the ques-
tion whether the Saint-Venant equations (1.1) typically used in hydraulic engineer-
ing can model such phenomena. An interesting question for further investigation is
whether the modeling of additional physical effects such as viscosity or capillarity
become important at large amplitudes, radically changing behavior, or whether the
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solutions studied here indeed accurately capture behavior even in the discontinuous
regime. We mention also the recent introduction in [54,55] of vorticity to model
(1.1), yielding effectively a 3 x 3 relaxation model with scalar equilibrium sys-
tem. In the unstable, pattern formation regime analogous to F > 2 for (1.1), this
augmented model is seen to give much closer correspondence in wave form for
periodic roll wave patterns to that seen in experiment in [10,11]. A very interesting
open problem would be to study existence and stability of hydraulic shocks for this
more complicated model, in particular comparing results to Saint-Venant profiles
and experiment.

On the mathematical side, our main contribution here is the treatment for the
first time of nonlinear stability of relaxation profiles containing subshocks, a topic
that so far as we know has up until now not been addressed. (Though see [19,20]
for related, contemporary, studies of stability of discontinuous solutions of scalar
balance laws.) Indeed, at the outset it is perhaps not clear what is the proper frame-
work in which this problem should be approached, as smooth and discontinuous
shocks have been treated in the literature by quite different and at first sight incom-
patible techniques. However, a useful bridge between these two (continuous and
discontinuous) domains comes from the study of smooth boundary layer solutions
of initial boundary value problems in [51,67] and the treatment of piecewise smooth
detonation waves in [34], in particular the suggestive use of the “good unknown”
to separate interior and boundary problems in a convenient way.

Combining these two approaches allows us to formulate the linearized problem
by an inverse Laplace transform representation similar to that appearing for smooth
profiles in [47,51,67,69], and thereby to obtain detailed pointwise Green function
bounds by analogous (stationary phase, or Riemann saddlepoint) techniques. This
allows us, as in the smooth profile case, to set up a nonlinear iteration based on
contraction mapping, for which the nonlinear source loses one derivative. The
nonlinear argument is then closed by an energy-based “nonlinear damping” estimate
on the half-line modifying the corresponding large-amplitude estimate of [48])
on the whole line, which controls higher Sobolev norms in terms of L? and an
exponentially decaying multiple of the initial high norm, thus closing the iteration.

A key new ingredient in the half-line argument is the observation that the hy-
perbolic Friedrichs symmetrizer Ag used in the symmetric hyperbolic part of the
energy estimates may be chosen so that the boundary conditions become maximally
dissipative, a special feature of the one-dimensional case. A second new ingredi-
ent is the use of “Strichartz-type” bounds (Lemma 8.8) to control new trace terms
arising in phase bounds for the nonsmooth case; the resulting “vertical estimate”
(10.7) controlling time integrals at fixed spatial location seems of interest in its
own right. A further novelty in the analysis is the introduction of a new “approxi-
mate characteristic” argument by which we can roughly decompose tail from center
contributions of the initial perturbation, to obtain convergence of the phase 7(¢) as
t — +o00. The latter result is new even in the smooth case.

The treatment for discontinuous waves of decay in low norms L”, 1 < p <2
is an interesting open problem that we expect could be carried out by a suitable
modification of the argument for the smooth case in [48]. A very interesting novelty
in either smooth or nonsmooth case, would be to prove decay in L' at nonuniform
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rate f[_a_ {2 —ast )2 |vo(x)| dx determined by the tail of the initial data, where a4
denote limiting equilibrium characteristic speeds as x — oo for the linearized
equations about the wave. This should be possible using an L' version of the
approximate characteristic estimate (10.16) developed here. Such a result would at
the same time give an alternative, shorter proof of convergence 7 () — 1o of the
phase, based on conservation of mass of the unforced first coordinate u, similar to
the classical argument of [41] for shock profiles of viscous conservation laws.

We note that all of our nonlinear arguments extend to nondegenerate piecewise
smooth relaxation shocks of general n x n systems with scalar equlibrium systems,
in particular to the 3 x 3 Richard-Gavrilyuks (RG) model of [54,55]. Thus, the
stability problem in that case reduces to an examination of the existence and spectral
stability problems. For n x n relaxation systems with » x r equilibrium systems,
r > 1,Lax shocks of the equilibrium system admit» — 1 > 0 outgoing characteristic
modes, leading to new, algebraically-decaying contributions from G source terms
in the nonlinear Rankine—Hugoniot equations for which our our current L”-based
nonlinear iteration scheme appears not to close. However, this should be treatable
under further localization conditions on the initial perturbation by a more detailed
pointwise analysis as in [29,30,56].

Though we do not show it here, in the present case, for which the equilibrium
behavior corresponds to a scalar shock, given the H* bounds established in Theorem
1.2, the weighted norm method of Sattinger [59] can be applied in straightforward
fashion to yield exponential decay of |v(#)|L, assuming spatial exponential decay
on the initial perturbation. This yields time-exponential convergence of the phase to
a limiting value, giving the stronger results of time-exponential phase-asymptotic
orbital stability. Similarly, assuming algebraic decay at rate |vg(x)| < C(1+|x])™",
1 < r < 3/2 of the initial data, a pointwise analysis as in [28-30,56] should give
time-algebraic convergence to a limiting phase atrate |v| .~ < C(1+ t)l_’, reflect-
ing the rate at which “mass”, or integral of the conserved quantity u, is convected
from initial data to the shock center: more precisely, the rate at which residual mass
f[—a,r,—@ 11 VO (x) dx converges to zero, where a4 are the characteristic velocities
of the limiting equilibrium systems at x — =Fo0. This rate, if not the precise char-
acteristic description, is obtained in the present analysis for r < 5/4; see Remark
10.2 for further discussion. For r > 5/4, we get the nonsharp rate (1 4 1)~ 1/4+v
for any v > 0.

An interesting new issue in the nonsmooth case is compatibility at time t = 0
of Rankine—Hugoniot conditions and initial perturbation. In Fig. 1, we display the
results of numerical time-evolution of a perturbed subshock-type profile, first with
initial perturbation supported away from the subshock (panels (a)—(d)) and second
with piecewise smooth initial perturbation supported at the subshock (panels (e)—
(h)) and incompatible with the Rankine—Hugoniot conditions at time ¢ = 0. In both
cases, stability is clear; however, in the second experiment one can see clearly an
additional shock discontinuity originating from the subshock, generated by initial
incompatibility.

An interesting open problem would be to analyze the second case by the intro-
duction/tracking of this additional shock wave in the nonlinear Ansatz, “relieving”
incompatibility at # = 0. More generally, it would be interesting to treat lower regu-
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larity perturbations than piecewise H?2, for example in piecewise Lipshitz class by a
paradifferential damping estimate following [44]. To treat perturbations admitting
shocks would also be interesting, but appears to require new ideas. Likewise, in
the setting of more general balance laws not admitting a damping estimate, it is
not clear how to proceed even for the case of arbitrarily smooth compatible initial
perturbations. As noted in [34], for example, the time-asymptotic stability of piece-
wise smooth Zeldovich—von Neumann—Doering (ZND) detonations is an important
open problem.

Finally, it would be very interesting to attack by techniques like those used
here the open problem cited in [36] of nonlinear time-asymptotic stability of dis-
continuous periodic “roll wave” solutions of (1.1) or its 3 x 3 analog (RG) in the
hydrodynamically unstable regime F' > 2. It would appear that a Bloch wave ana-
log of the linear analysis here would apply also for periodic waves, similar to that
of [35,37] in the viscous periodic case; for the requisite Bloch wave framework
for discontinuous waves, see [36]." A difficulty is the apparent lack of a nonlin-
ear damping estimate given instability of constant states. However, as suggested
by L. M. Rodrigues [57], one may hope that an “averaged” energy estimate us-
ing “gauge functions”, or specially chosen weights generalizing the Goodman- and
Kawashima-type estimates here, as used to obtain damping estimates in the viscous
case in [58] might yield a nonlinear damping estimate here as well.

Note Our numerical conclusions have subsequently been verified analytically by
generalized Sturm—Liouville considerations in [63], yielding a complete analytical
proof of stability.

2. Hydraulic Shock Profiles of Saint-Venant Equations

We begin by categorizing the family of hydraulic shock profiles, or piecewise
smooth traveling wave solutions of (1.1) with discontinuities consisting of entropy-
admissible shocks. For closely related analysis, see the study of periodic “Dressler”
waves in [36, §2]; as discussed in Remark 2.3, this corresponds to the degenerate
case H; = Hp, F > 2 in our study here. As the first-order derivative part of (1.1)
comprises the familiar equations of isentropic gas dynamics, entropy-admissble
discontinuities are in this case Lax 1- or 2-shocks satisfying the Rankine—-Hugoniot
jump conditions and Lax characteristic conditions [42,62].

Consider the Saint-Venant equations (1.1)

q2 h2

We seek a traveling wave solution (h, g) = (H, Q)(x — ct) with ¢ constant and
(H (&), Q(£)) smooth with

ggrfloo(H’ 0)(¢) = (HL, QL), EETOO(H’ 0)(§) = (Hg, Or). 2.1)

1 Though, note the degeneracy at A = 0 of spectral curves of roll wave solutions of (1.1)
described in [36, Rmks. 2.1 and 5.1], making this case more complicated.
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with Lax 1- or 2-shocks at each discontinuity. In smooth regions, we have, therefore,

, ;o , (0% HY\ 1010
—cH +(0) =0, —cQ +<7+m> =H — 72 2.2)

and at sub-shock discontinuities & ;, we have the Rankine—Hugoniot jump conditions

2 2
0 H}ZO,

~c[H]+101=0. —c[Q]+ [? +5m 23)

where [ f] denotes the jump f (éj) - f (éjf) of a quantity f at discontiuity &;.
Our first observation is the standard one, true for general n x n relaxation

systems of block structure w; + F(w)y = 0 ), that (Hz, Q1) and (Hg, QR)

r(w)

must necessarily be equilibria, with the triple (Hy, Hg, c) satisfying the Rankine—
Hugoniot conditions

c[H] = [q«(H)] := [H*?] 2.4)

of the reduced equilibrium system (1.2), thatis, a (not necessarily entropy-admissible)
shock of (1.2).

Integrating the first equation of (2.2), and combining with the first equation of
(2.3) gives

Q — cH = constant =: —qq. 2.5)

Meanwhile, taking (H’, Q') — 0 in (2.2)(ii), we find that H; and Hg must be
equilibria of the relaxation system (1.1), satisfying Qp r = g«(HL.Rr) = Hz/ IZQ:
in particular, note therefore that Oy, Qg > 0 in the physical regime H > 0
that we consider. Substituting Qr g = ¢g«(Hp r) into (2.5) then gives (2.4). As
g+ (h) = h3/? is convex, there are at most two such equilibrium solutions of (2.5)
for a given value of g, hence, for each possible left state (Hy, Q) of (2.1), and
choice of speed c, there is at most one possible right state (Hg, Or) # (H, OL).
Moreover, for such a nontrivial right state to exist, since then ¢ = [g.(h)]/[h] is
given by the Rankine—Hugoniot conditions for (1.2), ¢ must necessarily be positive;
from now on, therefore, we take ¢ > 0.

Next, substituting (2.5) in the second equation of (2.2), we obtain the scalar
ODE

_Q(% H / 2
F_'_ﬁ H =H —|—qo+cH|(—qo+cH)/H (2.6)

and, substituting in the second equation of (2.3), the scalar jump condition

2 2
90 H
— +—1=0. 2.7
|:H+2F2:| 0 2.7

Since —qgo + ¢cH = Q is monotone in H, and (as noted just above) is positive at
equilibria (Hy, Q) and (Hg, Qr), we have that Q is positive on [Hy,, Hg] and
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so we may drop the absolute values in (2.6) in this regime, and in the larger regime
Q > 0, replacing (2.6) by

( a3 H>H/_H3—(—QO+CH)2

w T
As the righthand side is cubic, with zeros at equilibria H; and Hp, it factors as
(H — Hgr)(H — Hy)(H — H3), where Hj is a third root that— since as observed
above, there can be at most two— is not an equilibrium of (1.1). It follows that
03 = —qo + cH3 must be negative, or else we would have a contradiction; thus,
H3 < min{H|, Hg}; this gives in passing go > 0.

Writing (1.1) in abstract form as w; + F(w), = (0,7 (w))T, so that (2.2)
becomes (d F (w) — cId)W’ = (0, r(W))T, we see that (2.2) is singular precisely
when the eigenvalues o4 of (d F — cld) take value 0, where (see, for example, [62])
a+ = Q/H +/H/F? — c, hence, by (2.5),

ay = —qo/H £VH/F (2.8)

along a shock profile. As go > 0, this happens precisely at the “sonic point” where
a4 = 0, that is, the shock speed agrees with a characteristic speed of the hyperbolic
relaxation system, or, solving: —qg J/H?* + H/F?* = 0. Comparing with (2.6), we
see that the scalar ODE becomes singular at the same value of H. Following [36],
we denote this point as

s = (q0F)*". 2.9)

Evidently along the profile, the signs of o4 are constant for H to the right and
left of H. Taking H — +00, we see that

o <0<ayforH> Hyando_, a4 < 0for H < H;. (2.10)

Recalling the Lax characteristic conditions [42,62], we find that the only possible
entropy-admissible shock connections are Lax 2-shocks from points H L > H;
to points Hr < H,, that is, shocks for which a_(H;) < 0 < a+(HL) and
o_ (H R), a+(H R) < 0.In partlcular any such discontinuities are decreasing in H,
with, moreover, Hg < Hy; < Hj.

We find it convenient to introduce a fifth point H,, defined as satisfying the
scalar jump condition (2.7) (and thus, along the profile, by (2.5), the full jump
conditions (2.3)) when paired with value Hg. Combining all information, we have

2 2
HL_%:Q HR_%:Q
- 2 Rz 2 2 .11
90 H* 0 HR
—_ H = —_ H = — s _— = — _—
Qr —cHp = Qr —cHg q0 H*+2F2 HR+2F2

Setting v := ,/ Z—]L? > 1 and solving for ¢, qo, Hy yields

2 2
vo4+v+1 v /
:—\/HR, q0 = H3»

v+1 v+1
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Hpg
—v—14+V8F2v 12 4+2v +1

H, = 20+ 1) k (2.12)
—v—1—+8F2v 412 4+2v +1

20+ 1) K

from which we keep the nontrivial physically relevant (positive) solution

14V I F v £ 1
H, = + VBFIV 402 420 + Hg. 2.13)
2(w+1)

Substituting ¢, go in (2.6) now yields

_ F*(H — Hp) (H — Hg) (H — H3)

H = . s (2.14)
(H — Hg)(H*+ HHg + HY)
where
V2 FvZ\3
Hy .= ——Hg, H:= Hp. 2.15
T Vw1 (v+l> K 2.15)

Since v > 1, we have H3 < Hg < H|, recovering our earlier observation on the
ordering of roots H;.
Our analysis of hydraulic shock profiles is based on the following case structure:

Lemma 2.1. With the notation above, we have that

i. Hy > Hp is equivalent to Fv—v—1>0,o0rH > HRH2F2+ VZIHF. It is
always satisfied when F > 2;

ii. Hy < Hy is equivalent to F < v+, or Hy > HRHZF+ VI1+4F

satisfied when F < 2, asis H, < Hp.

At is always

Proof. The quadratic conditions in v follow immediately from (2.15), whence
the boundaries in terms of H;, and Hg follow by the quadratic formula. Likewise,
applying (2.13), we find that H, < Hj isequivalentto 2F? < v>+ % +2v+ % +2,
which is always satisfied for F' < 2, by the inequality z+1/z > 2 forz > 0. (2.13)

O

Lemma 2.2. With the notation above, Hy lies between Hg and H,, and there is an
admissible Lax 2-shock between the larger of Hy, Hg and the smaller:

Proof. The function g(H) := qg J/H 4 H?/2F? appearing in the scalar jump
condition [¢] = 0 is convex, with ¢'(H) = —qg /H?+ H/F? equal to the prefactor
in the lefthand side of (2.6), with ¢/(Hy) = 0 uniquely specifying Hy. By convexity,
¢(Hy) = c(Hpg) implies by Rolle’s theorem that ¢’ (H,) and ¢’ (Hg) have opposite
signs, with ¢’ > 0 at the larger of the two points, and ¢’ vanishes somewhere
between, hence H; € (H,, Hg). Recalling (2.10), we see that there is then an
(entropy-admissible) Lax 2-shock connecting the larger of H,, Hp to the smaller.

O
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Proof of Proposition 1.1. Asnoted in the discussion above, in all cases necessarily
¢ > 0 for any shock profile, and Q > 0 for H > Hpg. Since smooth solutions
of (2.14) cannot cross equilibrium Hg, and entropy admissible shocks can only
decrease H, we have that connecting profiles must satisfy H > Hpg, and thus
Q > 0, for any choice of parameters.

(Case F < 2)When 0 < F < 2, H > HRH'ZF2+ VZIHF, then Hr <
H; < H,, and so, by the factorization (2.14), H < 0 on (Hy, Hr), and thus
on (H,, Hy). It follows that there exist discontinuous traveling wave solutions as
depicted in Fig. 2a, consisting of a smooth piece emanating from the equilibrium
of (2.6) at Hy, and continuing down to H,, followed by a Lax 2-shock from H,
to Hg. However, there does not exist a smooth profile, as the solution emanating
from Hj, cannot cross the singular point H; to reach Hg; indeed, one may see by
the factorization (2.14) that H > 0 on (Hg, Hy).

In the limiting case when H;, = HR]HF2+ V21+4F, for which Hy; = H, = Hp,
there exist piecewise smooth traveling wave solutions as depicted in Fig. 2b, with

discontinuous derivative at the endpoint Hg = Hj.

In the small amplitude region Hgr < Hy < HR% 31+4F, for which H, <
H; < Hpg, the corresponding smooth traveling wave profile does not pass the
singular point, and so there exist smooth traveling wave solutions as depicted in
Fig. 2c. However, there exist no solutions containing subshocks, as these would
necessarily jump below H; < Hpg, and so the solution could never return past
H;, since H' < 0 on (H,, Hy) blocks approach by smooth solution, and since any
admissible discontinuities can only decrease the value of H. See Fig. 3b for domain
of existence for traveling waves.

(Case F > 2.) The case F > 2 goes similarly. When Hy; > Hp, we have,
examining the factorization (2.14) and using F > 2, that H' > O on (Hg, Hy), and
so there exists a smooth “reverse” connection from Hg to H;. As Hr < H; < H,,
we also have in this case that H, > Hj, and, since we also have that H' < 0 on
(Hp, Hy), there is no way to reach H, starting from either Hg or Hy, and so there
can be no discontinuous profile connecting equilibria Hy and Hp, in either direction.
In the degenerate case H; = Hy, we find that the factor (H — Hy) in the singular
prefactor —qg /H? + H/F? on the lefthand side of (2.14) exactly cancels with the
factor (H — Hp) on the righthand side, and so (2.14) reduces to the nonsingular
scalar ODE

,  F2(H — Hg)(H — H3)
" (HY+ HH, + H?)

, (2.16)

from which we find that H” > 0 for all H > Hpg, with no special significance to
the point Hy . Noting that H, > H; = Hp, we see that there exists an entropy-
admissible piecewise smooth homoclinic profile consisting of a smooth part ini-
tiating from Hp and increasing to H,, followed by a Lax 2-shock from H, back
to Hpg, and finally a constant piece H = Hpg. As Hp is not an equilibrium of
the reduced ODE (2.16), it cannot be an asymptotic limit and there is no profile
connecting to it. Since Hp is a repellor, it can only be a limit at +o0 if the profile
is constant there, and so any connecting profile must be a discontinuous solution
starting with a smooth piece from Hpr at —oo and ending with a constant piece
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H = Hp near +00. However, there exists an uncountable family of multiple-
discontinuity homoclinic profiles, in which intermediate shocks (H3;, Hzj 1 with
Hy, > Hy; > Hy > Hpj1 > Hp are arbitrarily placed in between, with smooth
pieces connecting Hj11 to Hyjy2, where Hajy1 < Hy < Hzjyo. In the remain-
ing case Hp < Hy < H, < Hy, we have H' > 0 on (Hy, Hy) and H' < 0 on
(HR, Hy), hence there is no smooth solution leaving either Hg or Hy,, and the only
admissible shock is from H, to Hg. Thus, there is no admissible piecewise smooth
profile joining the two equilibria Hy, Hp in either sense. O

Remark 2.3. The scenario (2.16) treated in the degenerate case H; = Hy, F > 2
may be recognized as the same one considered in [36, §2] with regard to existence of
periodic entropy-admissible piecewise smooth relaxation profiles; indeed, existence
of periodic and quasiperiodic profiles follows by essentially the same construction
used here to show existence of homoclinic ones.

Observation 2.4. (Rescaling) By scale-invariance of the Saint-Venant equations
[5,36], we may perform the rescaling

H(x) = HH G Hy), Hy = 28 =, =1

X) = X s = —— = —=, =

E2S L L), LR Hy ) 115
to obtain a solution H for which the left limiting water height is 1. From now on,
we omit the underline in H, and simply take H; = 1. After rescaling, the domain
of existence of hydraulic shock profiles with a sub-shock discontinuity is

2F?
1 4+2F +/1+4F

Observation 2.5. (Positivity) We have shown that H and Q are positive along
hydraulic shock profiles W, hence also in their vicinity. It follows that for purposes
of investigating stability their stability, we can drop the absolute value in (1.1)(ii)
and write the source term simply as 4 — ¢/ h?, as we shall do from now on. We
see, further, that u, ¢ > 0 for steady flow down an incline.

O0<F <2, 0<Hr < Hc:=

2.17)

3. Majda’s Type Coordinate Change and Perturbation Equations

We next recall the general framework introduced by Majda [43,44] for the
study of stability of shock waves, converting the original free-boundary problem to
a standard initial boundary-value problem on a fixed domain. Consider a general
system of balance laws

w; + F(w)y — R(w) =0, w e R", (3.1)

admitting a traveling wave solution W(x —ct) = W(S ) that is smooth and solves
(3.1)on & = 0 and at £ = 0 has a discontinuity satisfying the Rankine—Hugoniot
condition

—c[W]+[F(W)] =0, (32)
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where [f(£)] = f(07) — £(07).
Let w(x, t; s) be a family of perturbed solutions to (3.1) with shock at x =
£(t; s) and
w(x,1;0) = W(x —ct), ¢(t;0) = ct.

Perform the Majda’s type coordinate change [43] F=tE=E@,t;8) =x—C(;5)
and set

u(&,t;8) = wlx,t;s)
so that in u the shock frontis fixed at £ = 0. Inu(&, 7; 5), balance laws (3.1) become
up +&ug + Fu)e — R(u) =0, (3.3)

and the Rankine—Hugoniot condition (3.2) becomes
& s=o[u] + [F(w)] = 0. (3.4)
Now substituting

E(x,t;5) =x —ct + (), uE, i;5) = WE) +vE, 1) (3.5)

in the interior equation (3.3) and putting linear order terms on the left and quadratic
order terms on the right, we obtain that perturbations 7, v satisfy

vi+ W + (dF(W) = ¢ 1d)v), — dR(W)v = —njvg — N1 (v, ) + Na(v, v),

(3.6)
where N;(v,v) = O(|v]?). Likewise, substituting (3.5) in the Rankine—Hugoniot
condition (3.4) and putting linear order terms on the left and quadratic order terms
on the right, we obtain, on the boundary & = 0, that perturbations n, v satisfy

ni W1+ [(dF(W) — ¢ 1d) v] = —nz[v] — [N1 (v, v)]. 3.7

Observation 3.1. Specialized to the Saint-Venant equations (1.1), N1 (v, v), N (v, v)

are
0
(Q+sv)? | 1 2(Q+sw)
Ni(v,v) = 1 2oyt o ,
Ut fo (1 — S) (H+i)12)(Q+V£) (H+Sgl) dsv
(H+sv;)? H+sv;

(3.8)
0

_ _6(0+s1))? 4(Q+sv))
N2, v) = V! fol(l —5) < (H+svp)* (Hts2v1)3 ) dsv

4(Q+sv2)
(H+sv1)3 (H4+svp)?
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4. The Evans-Lopatinsky Determinant

Continuing, we derive now a generalized spectral stability condition follow-
ing [21,22,34,39,43,44,70,71] in the form of an appropriate “stability function”,
or Evans—Lopatinsky determinant. Combining (3.6) and (3.7), along with initial
conditions, gives

vi + W + (Av) — Ev = —n0¢ — N1 (v, 0)g + Na(v, v) := Is(z, v, ve),
n;IW1+ [Av] = —n;[v] — [Ny (v, v)] := Bs(n;, v),
v(0, ) = vo(€),

1n(0) = no,
_, 4.1
or in “good unknown” v := v + nW [34,36,70,71],
U7 + (Aﬁ)g — Ev = I,
W] —n[R(W)] + [AD] = Bs,
n;lW1—n[R(W)] + [Av] s 42)

(0, §) = vo(&) + noW,
1n(0) = no,
where A := dF(W) —c1d and E := dR(W).

Observation 4.1. Specialized to the Saint-Venant equation (1.1) with hydraulic
shock profile, A and E are

A - : E o 9 (4.3)
= 2 2 , = 2 2 2 . .
From (4.3), we see in passing that the Saint-Venant equations are simultaneously
symmetrizable in the sense that there exists a positive definite matrix

20(F*H3>+F?2Q*+H?
AO _ ( sz ) _H3 _ 2Q2
—H>—-20? 2HQ

such that A°A and AE are symmetric, and A°E is negative semidefinite.
Setting D=17— nOW/ and = n — no then yields

5+ (Aé)S —Ed =15,

(W1 — ALR(W)] + [AD] = Bs, (4.4)
5(0,8) = v (&),
7(0) = 0.

Hereafter we use ¢, x in place of 7, .
System (4.4) is essentially the same set of equations studied in [34,70,71] in
the context of detonation waves of the ZND model. As noted in [34], short time
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existence and continuous dependence in H®, s > 2, is provided by the (much
simpler, one-d version of the multi-d) analysis of Majda and Métivier [43,44] for
general conservation laws; see Section 9 for further details. In particular, we have
for H* initial data, that a solution exists, is continuous in H* with respect to time,
and grows in H* at no more than exponential rate Ce*’, so long as |v| H2(R) remains
bounded; that is, the solution is of “exponential type”. It follows from [15] that the

Laplace transform v(x, 1) := O+°° e 5(x, s)ds with respect to ¢ of a bounded

solution o € H is well-defined in H* , and that the original solution 7 is recoverable
by the inverse Laplace transform formula

" 1 a+ioo
U(x,1) ;== —P.V. MU (x, M)dr,
2mi a

—i00
1 a-+ioo (4'5)
i) == —,P.V./ H()da.
2mi a—ioco

We now solve (4.4) using the Laplace transform. Carrying out the Laplace
transfogm on (4.4)(1)—(ii) and denoting Laplace transform of v, 7, Is, Bg as
v, 1, Is, Bg, yields

Uy = A NE =M — A+ A7 s(0) 4+ A g
= AMD + A Ts() + A v, (4.6)
Bs() = iAW — R(W)] + [AD].
Definition 4.2. Dropping the inhomogeneous source terms in (4.6), the associated
eigenvalue equation is defined as
AV + (AV)x = ED,

Vi, TS — . 4.7

HAW — R(W)] + [A¥] =0,
To solve (4.6), by the conjugation lemma of [45], we need to calculate eigen-

values of matrices limy_, 400 A(L) = A;l (Ex+ — AI).

At x = —o0, the two eigenvalues are

Fv(v+1) (—2F+ Fv+ Fv? —2FA+\/F2(|)2 +v —2)2 + 4 (v + 1) (—F2 4202 4+ 2v) + 42202 (v + 1)2>
r,-() =

2(7F2 +vd 4203 +v2)

Fv(+1) (—2F+ Fv+ Fv: —2F) —\/F2(v2 +v —2)2 +40 v+ 1) (=F2 4207 +20) + 202 (v + 1)2)

=
723 2(—F2+ v 4203 +12)

(4.8)
At x = 400, the two eigenvalues are

Fv(w+1) (Fv + Fv2 —2Fv3 —2Fn? +\/F2v2(72v2 +v4 1)2 4 W+ 1) (=F2? +20+2) + 420 + 1)2)

A) =
.+ ) 2P F v+ )

Fv(w+1) (Fv + Fv2 —2Fv3 —2F? — \/szz(,hz +v4 1)2 +4a (4 1) (—F202 +20 +2) +422(v + 1)2)

A) =
Y2+ () 2(—F 4 120+ 1)

(4.9)
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It is easy to verify that in the domain (2.17) it holds that
Ny1-A) >0, Ny —(A) <0, forallMr >0, F<2,v>1,

1+ J/T+4F (410
2F

Definition 4.3. We define the domain of consistent splitting A as

Ry1,+() >0, Ryz (X)) >0, forallr >0, v>

A= 9y—() > 0, Rya— () <0, Ry 4 (W) > 0, Ry (A) > 0}
4.11)
By (4.10), we see {A : WA > 0} C A. (See Fig. 3a for an example of domain of
consistent splitting).

By the conjugation lemma of [45], there exist locally analytic coordinate changes

Tt (A, x) (T = 1d) on x 2 0, converging exponentially to /d as x — %00, such

thatv = Tyzy, A7 (ig (A)+vg) = T4 greduce resolvent equation 4.6(i) to constant
coefficients

2= AZ (Ex —ADz+ g = A ()2 + 8. (4.12)

Letting P; 2 4+ (A) be the eigenprojections of .44 (1) associated with eigenvalues
y1,2.+(A), the solution of (4.6)(i) on x 2 0 can be written as

T_(, x)(ey‘*(k)"Pl,,()»)T__l (L, 07)P(h, 07)

+ f PO P )T Gl AT ) (v00) + Is G ) dy

(A, x) = —o0 [
_ / = ME Py )T 1) AT ) (v00) + s 1)) dy), x <0,
J’C+OC
B / AP 41 (uo(y) +Is(, y)) dy, r =0
: (4.13)

Here again P; _(}) is the projection onto the unstable subspace of .4_ (1) and
P> (1) is the projection onto the stable subspace of A_(1). Setting x = 0% in
(4.13) yields

+o0 .
50,07 == [ e AOAT (s + F56 ) .
0+
T (L, 07)0(A, 07) = PL_(W)T ' (A, 07)v(x,07) (4.14)
—0Q
[ e 01 0 A7 0) (s00) + FsG ) .
which implies
+0o0 o
50, 07) = — / A AL (w(y) + s ) .
0+
Py ()T~ (A, 07)¥(2, 07)

=- / e T2 00 ) AT ) (w00) + 56 ) dy.
(4.15)
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Now set Py — ()L)T:1 (A, 07)v(x,07) = @z, — (1) with the scale of z;,— (A) chosen
such that _,
T_(0, x)e" = D%z, _(0) = W (x). (4.16)

Then, A(07)v(XA, 07) can be written as
AOT)B(, 07)
= AO)T-(x,07) (PL—(A) + Po—(W)) TZ (2, 07)d (1, 07)
= AO7)T_ (A, 0 )azi_ (L) + AO)T_ (A, 07)Pr_(WT - (X, 07)v(X,07)
= A07)T_(x, 0 )azi (1)

—0Q
—A(O_)T_(A,O_)/ e 1=y
o

Pa— (TG0 AT ) (w00 + I5 G 1) d.
(4.17)
Plugging (4.17) along with (4.14)(i) into the matching condition (4.6)(ii) implies
Bs(A) = 9[AW — R(W)] + ALv(h, 0F) — A(0T)V(A,07)
=7[AW — R(W)] —aAQ)T-(1,07)z1,— (1)

+o00
A —AL@y g1 Is(h, v))d
+/0+ e n (vo(y)+ s( y)) y 4.18)

+A(0*)T_(x,o*)/foo
N
e Py TG AT ) (o) + Is G ) d.

Definition 4.4. Setting M(1) = [[AW — R(W)] ) AOHT_(, o—)m,_(x)], on
the domain of consistent splitting, we define the Evans—Lopatinsky determinant
function A()) as

A(X) :=det(M())). (4.19)

By construction, the Evans—Lopatinsky function is analytic on the set of con-
sistent splitting, in particular on {A : RA > 0} \ {0}. Moreover, by separation of
eigenvalues of A_ at A = 0, the associated eigenvectors and projections may be
extended analytically to a neighborhood of A = 0, allowing us to extend A analyt-
ically to a neighborhood of {A : M\ > 0}. (For origins of this standard argument,
see, for example, [25,53,69].)

Definition 4.5. Following [21,25,34,70,71], we say that a profile W is Evans—
Lopatinsky stable if A()) has no zeros on {9iX > 0} save for a single, multiplicity-
one root at A = 0.

Remark 4.6. Evidently, Evans—Lopatinsky stability is a generalized spectral sta-
bility condition correponding with the usual notion of spectral stability on the set
of consistent splitting, namely, absence of eigenvalues, but also including informa-
tion on the embedded eigenvalue A = 0 lying on the boundary of the domain of
consistent splitting.
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5. Integral Kernels and Representation Formula

With the defined Evans—Lopatinsky determinant matrix M (), equation (4.18)
rewrites as

M) <_’7a>

. +00 o o
= Bs() + As /O et (wo) + I5G.y) ) dy 5.0
— AO)T-(»,07)
/7 e 2=-0p, ()T 0L AT N(Y) (vo(y) + Is(, y)) dy.

When M is invertible (A # 0), solving for «, 17 yields solutions for equation (4.4):
T’(A’x’(”"“”“-f(” (0 —1) M~ (Bs)
+o00 .
+ AL /m ALY (v(,(y) +Is(h, y)) dy
AT 0,00 [T T 00T 00 (1000 + s 0) )
Dk, x) = -

# [ e p )10 aT o) (w00 + TG ) dy
0

- / e )T 0, AT ) () + 50, ) dy>, x <0,

x

+00
- / AW AT (u () + Ts(3 1) ) ds x>0,

x

v +00 v
7o) = (1 O)M*1<x><3s<x>+A+fo A AT (u () + s G 1)) dy

—AO)T-(.07) / e e 1 00 AT ) (v + Is 0 ) dy).
0

5.2)
Following the stagdard analysis in [47,69] , we define the interior source resolvent
kernel functions G, G, and G, as follows:

Definition 5.1. Setting ES(A) = 0 in (5.2) and gathering terms in different x, y
locations, the interior source v-resolvent kernel G, (x; y) is defined as

G;L(x; y) =

_ eA+(>»)(xf.v)A;1’ O0<x<y,
0, 0<x,y<ux,
T_(h, 0)e" =M%z _ ) (0 —1) M~ () ApeAr@y ATl x<0,y>0,
=T (h, x)e" =PI P )T 0L AT G) 4+ T, 1) =P () x

(0 =1) M~ G)AOIT-(r, 07)e >~ Py )T (1, A (), x<y=<0,
T_(h, x)e?= Py )T L AT ) + T (0= Pz _ (W) x

(0 —1) M~ ' WAO)T_(,07)e =Y Py _ ()T (h, ) AT (), y<x<0,

(5.3)
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and the interior source 7-resolvent kernel G, is defined as

10YM ' (WA e A+®y AT y >0,
Gia(y) = (10) 1 . _ j —p_y -1 -1 (5.4)
(10) M~ MAO)T- (A, 0))e > P (WTZ (A, NAT (»), v <0.
Let
~ —
Gi(x;y) = G(x; y) = W (x)G1,,.(y), (5.5
and split G, into two parts G = G}\ + G2, where G}\, G% are defined as
_ e'A+()‘)(X7y)A;17 0<x <y,
. — T, x)e" =P p T oL AT ), x <y <O,
G;(x;y) =
T_(A, x)e?=PEpy  oyT7 L, y)AT (), y<x <0,
0, otherwise,

T_ (e, x)e" =P () (0 —1) M~ ) Ape AWy AT!
—T_0,)e"=O%z; _0) (10) M' WAL ™+P7aTl x <0,y >0,
T_ (A, x)e" =Pz _ () (0 —1) M~ (WAOHT-(.,07)x

Gi(x:y) =1 e Py (WT ', A~ (y)

—T-(0, x)e" =%z _(0) (1 0) M~ Q) AOT_ (%, 07)x

Py (VT 0L AT (), x<0,y<0,
) x > 0.
(5.6)
These can be written alternatively as
—E A 0<x<y,
— AT AT, 0,
Glaiyy=] ~* M WA ), x<y<
F 7 AT o), y<x <0,
0. otherwise,
— (A L) (0 1) + W (10)) M a7 70 AL, x<0,y>0,
Gliy) =1 _ (7,07 (0 1) + W (10)) M WAO)AE ™ MumAa™ (), x <0y <0,
) x>0,

(5.7)
where ff " is the solution operator from y to x of eigenvalue equation (4.7) and
I, s (I1, ) is the projection onto the stable (unstable) flow as x — —oo.

In addition to these interior source kernels analogous to those of the smooth
profile case [47,69] , we define the boundary source v-, -resolvent kernel functions
K, K1, as follows:

Definition 5.2. Setting ig(k, ¥) = 0, vo(y) = 0in (5.2) and gathering terms in
different x locations, the boundary source v-resolvent kernel K (x) is defined as

7 ) 0, x >0, 5.8)

A (X) = .
T_(h, x)e" =M%z ) (0 -1)M '), x <0,

and the boundary source 7-resolvent kernel K ; is defined as

Kip=(10)M"'0), (5.9)
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and we set

Ku(x) := K5, (x) — W () Ky ;.

Lemma 5.3. G, and K are analytic near » = Q.

ZHAO YANG & KEVIN ZUMBRUN

(5.10)

Proof. It suffices to show that ( 11 ) M=) is analytic at O:

Sl 1
(11)yM~ 'y = (1 l)—det(M(k)) (

(Awy (A, 0_2))2 —(Awy;,— (X, 07))
(=20 + (H — £3))

(AH)
.11

Since 0 is a simple root of det(M (1)), 0 will not be a pole of (1 1) M~'(x) if

(AW’(0->32 —(AW'(07)),
(H-%) 0

o)

(5.12)

= (AW )2 — RAVO )2 + RAVO), —(AW (©0)); )

vanishes, but if does vanish because W is a traveling wave solution to (1.1).

O

Definition 5.4. The corresponding interior/boundary source Green kernels are de-

fined as

=~ 1
G(x,t; y) = %PV

/a+ioo
a—ioo

a+ioo

1

a—ioo

/a+ioo
a—ioo
/a+ioo
a—ioo
/a—i-ioo
a—ioo

a+ioo

1
Ki(t) = —.P.V./
2mi a—ioo

a+ioo

1
G(x,t; y) = %PV

G 2(x,t;y) = LP 1%
’ ,Y) L . . .
27
g 1

K(x,t) = %PV

1
K(x,t):=—P.V.
2mi /

a—ioo

where a is a sufficiently large number.

MG (x; y)da,
MG (y)dh,
MG (x; y)da,
MGl (x; y)dr, (5.13)
MK, (x)dA,

eMKL)\d)»,

MK, (x)dA,

Proposition 5.5. The interior/boundary source Green kernels satisfy

K&, t) = WK () =K, 1), G, t;y)—

W (@)Gi(t;y) = Gx, 1; y).
(5.14)
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With these definitions, equations (5.2) can be rewritten in the concise form

e¢]

Bk x) = I?A(x)és(x)+/ G5 ) (v00) + 15, ) d,

(5.15)

o0

7(A) = K13 Bs(A) + f

—00

G1.) (w00 + I5 G ) d.

Formally exchanging the order of integration in the inverse Laplace tranform for-
mula (4.5), we get finally, a formal description of the solution to (4.4) as

o0

t
1:)(x,t)=/ k(x,r—s)BS(s)der/ G (x,1; y)vo(y)dy
0 00

t o0
+f/ G(x,t —s; y)Is(s, y)dyds,
0 J=eo (5.16)

e¢]

t
n(t) =f0 Kl(t—S)Bs(S)dS+/ G1(t; y)vo(y)dy

-0
t [ee)

+/f Gi(t —s;y)Is(s, y)dyds.
0 J—0

Translating from good unknowns back to original coordinates and validating rigor-
ously the formal exchange of integration, we consolidate our results in the following
integral representation:

Proposition 5.6. For v uniformly bounded in H?, the solution of (4.1) may be
written as

o]

t
vix,t) = / K(x,t —s)Bs(s)ds +/ G(x,t; y)vo(y)dy
0 [e'e)

t o0
+// G(x,t —s;y)s(s, y)dyds,
0 J—
(5.17)

e ¢]

t
n() =no +/0 K (t — s)Bs(s)ds +f G1(t; y)vo(y)dy

—0Q
t o0
+// Gi(t —s;y)Is(s, y)dyds,
0 J—0

where K, G, K1, and G defined in (5.13) are distributions of order at most two,
that is, expressible as the sum of at most second-order derivatives of measurable
functions.?

Proof. Using v — W/f; = v and Proposition 5.5, (5.17) follows formally by sub-
tracting W times (5.16)(ii) from (5.16)(i). Thus, the issue is to show that, inter-
preted in the sense of distributions, the order of integration may be exchanged in
the double-integral terms of (4.5) expanded as

2 In fact as we show in the following section, they are precisely of order one.
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" 1 a+ioo
U(x, 1) = —,P.V./ eMU(x, 1)da
2mi a—ioco
1 a+ioco » .
= TP.V./ ™ Ky (x)Bs(1)dA
Tl a—ioco
1 a+ioo +oo (.18)
+—P.V. / e)"/ G.(x, y)vo(y)dy da
2mi a—ioo —00
1 a—+ioo +oo » .
+Lp v/ eM/ Go(x, sy, Mdy da,
2mi a—ioo —00
and
1 a+ioo
ix, 1) = TP.V.f Mai(x, M)da
Tl a—ioco
1 a-+ioo .
= 5PV f &Ky Bs(da
1 ailao—(i)-ioo +00 (5.19)
+—.P-V-/ ek’/ Gia(yvo(y)dyda
2mi a—ioo —00

1 a+ioo +00 .
+ ey / ek’f G is(y. »dydi.,
a

2mi —ioco —00

the single-integral terms being treatable by the standard property that the inverse
transform of a product is the convolution of inverse transforms of its factors.

The double-integral terms may be treated similarly as in [47,48,69] by a stan-
dard device used in semigroup theory to validate the inverse Laplace transform rep-
resentation of the solution operator [52, §1.7, pp. 28-29], adapted to the context of
integral kernels. Namely, applying the resolvent kernel identity G, = (LG +38 ) /A
deriving from the defining property (A — LGy =6 y of the interior resolvent kernel
G;., we may factor

Gy = L*G /2> 4+ L8y /3> + 8y /1.
By the crude high-frequency bound
(d/dx) Gy (x,y) < Ce™ ! (5.20)
fork > Oand W1 > «, o sufficiently large, carried out in Section 6.1, we have there-
fore that term 51— 1 -P.V. f”+l°° M f+ G.(x, y)Is(y, A)dy diin (5.18) may be ex-

panded as L2 apphed to the integral - L pP.Vv. f”+loo A (oo G;L(x Y)vo(y)/A2dy
dA plus two explicitly evaluable terms

Observing for A = a fixed that the integrand e)"GA(~, y)vo(y)/A2 is abso-
lutely integrable in (y, A), we have by Fubini’s theorem that we may switch the order
of integration to obtain instead L applied to the limit 5 f e py. f ”HOO MGy,
(x, y)vo(y)/A2dr dy, which, since limits and derlvatlves of d1str1but10ns freely
exchange, is equal to

1 +o00 a+ioco 5
5 P.V.f ' M L2G (x, y)vo(y)/A%dA dy.
—00 a—ioo
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We find in passing that the result is a distribution of at most order 2, since it is
expressible as the second-order derivative operator L? applied to a measurable
function.

Likewise, we find by standard inverse Laplace transform computations that
the order of integration may be exchanged in 5= P.V. [ a+'°° M (08, /Ady da

a+zoo M +oo
and ﬁPV f

entire G-term in (5.18). The first term is at most order 2 since expressible as the
first-order operator applied to an order-1 distribution (the delta-function), while the
second is order 1. Thus, the entire term is at most of order 2.

The G termin (5.19) goes similarly, using the defining relation (A —L)G1 ; =
0. Thus, the order of integration may be exchanged also for double-integral terms of
(5.19) may be expanded as L? applied to the integral (5.17)(ii), justifying (5.17)(ii);
atthe same time this shows that G is a distribution of at most order 2. (Alternatively,
observing that the terms in the representation of 7 are expressible as functions of
v(O t), we may conclude (5. 16)(11) dlrectly from (5.16)(1).)

Similarly, using the property K, = LK /A, and the uniform bound |K; | ;7s < C
for M sufficiently large obtained in Section 6.1, we find that

8y /Adyda, Vahdatlng the exchange in order for the

- 1 a+ioo . 1 a+ioco .

K(x,1):= —P.V. / MK (x)dn = Lz—,P.v./ MK (x) /A 2da
2mi a—ioco 2mi a—ioco

factors as L? applied to an H* function defined by the absolutely convergent integral

of

MK (x)/A2dh = O(1/|A),

so is a distribution of order at most 2. Finally, using the large-|A| bound K, =
Vi /A + O(1/|A|?) obtained in (6.25), Section 6.1, we find that K (¢) := #P V.

fa+too At
a—ioo
term

K ;dA decomposes into the sum of an explicitly evaluable, constant

1 a+ioo
Vi=—P.V. / HMalda =,
2ri a—ioco

and an absolutely convergent integral —P V. f a+l°° e O(Jx|7?)dA, hence is a
€Y function with respecttoz. O

Remark 5.7. Noting (Section 6.1) that the crude high-frequency estimate (5.20)
holds for X > —b and |A| > R for b > O sufficiently small and R > 0 sufficiently
large, we find by the same analysis used to justify exchange of integration order in
the proof of Proposition 5.6 that the contour P.V. [“*'* in (5.13), Definition 5.4

—i00
(interpreted in distributional sense) may be deformed to

—b—iR a—iR a+iR —b+iR —b+iM
lim / / / / ) (5.21)
M—>oo a+iR b+iR

forb > 0 sufﬁciently small and R > 0O sufficiently large. This simplifies somewhat
the corresponding analysis of [47] based on more detailed bounds.
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6. Resolvent Estimates

We now derive bounds on the various resolvent kernels, on the crucial large- and
small-|1| regimes, corresponding via the usual frequency/temporal duality for the
Laplace transform to small- and large-# behavior of the associated time-evolutionary
Green kernels. These are obtained with no a priori assumption of spectral stability,
that is, we establish in the course of our analysis rigorous high- and low-frequency
Evans—Lopatinsky stability. Intermediate frequencies 1/C < |A| < C for C > 0
yield, by construction, immediately uniform exponential estimates

G(x, p) = CeT T > 0, ©6.1)
etc., provided the Evans—Lopatinsky condition is satisfied, hence their analysis is
trivial in this sense. On the other hand, the verification of the Evans—Lopatinsky
condition appears to be quite complicated in this regime, and we find it necessary
to carry this out numerically (see Section 11).

6.1. High Frequency Analysis

We now study behavior of system (4.7)(i) in the high frequency regime. Denote
w = v and write (4.7)(i) as

=2 'w+ A HE - Apw (6.2)

and perform two diagonalizations U := RR~'w similar to procedures in High
Frequency analysis in [36], we reach a 2 by 2 system in which U satisfies

;L w0 M1 (x) 0y, 1
v = <)‘ < 0 Mz(x)) + < 0 Mzz(x)> * )\N(A’x)> v
= (A(A,x) + %N(A,x)) U (6.3)

where

—A—1:R<‘“ O)R—l, M=RYA"'E-AT"A)R - R 'R,,

0 ua
/ _ MMy Mo
K12 = kil 3HR+1) ]?:Id—l—( (m1 ﬁl/lz)z)nz w1 Mz))»> 6.4)
’ 3 ’ 21
FHr£H2(VHr+ 1) EETTET)

R ( —FH FH )
=\ 32 _ _ F(H—Hg) 173/2 F(H—Hg)
H FH.Hg O H + FH/Hg + SN/ Tre

and |[N(A, x)| < C(F, Hg) uniformly in [A] > 1,x 2 0.

Lemma 6.1. Let U (x) = (U1 (x) Ua(x) )T be stable flow (as x — —o0) of (6.3)
and define ®, = U,/U;. Let U(x) = ([]1 (x) Uz(x))T be unstable flow (as
x — —00) of (6.3) and define > = Uy /Us. For WA > —ij (77 > 0, 7 sufficiently
small) and |A| sufficiently large, we then have ®1 2(x, 1) = O (1/|A]) uniformly in
x < 0.
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Proof. We find after a brief calculation that
1
Q) = (A — AP + 5 (N21 + Npp®) — N1 @1 — N12<D%) . (6.5)

For x < 0, let .7},\ denotes the flow of equation ® = (A () — A1 (1))®. For
NRAL > -7,
N(A2nR) — A1 (L) = (u2 — 1) RA + Mxp — My
2FHY?(Hg + 1)
T H3Hp + H? — F2HR* +2H3/Hy

M, — My
2

N+ My — My

< —c<0. (6.6)

Define bounded operator 7, on Banach space B = C b((—oo, 0], C)3 by

AR |
(ﬁ@uw=/ F 5 (N1 () + N2 () () ]
—00 (6.7)

~NHMP) = Np()P2(») dy.

Claim one: For L > 0, the operator 7, is a contraction map on {® : ||D||s <
2

L, ® € B} provided that |A| > max{%, “C(IL—,H‘)}. This follows from in-

equalities

x ZC+2CL+CL? C(1+ L)%
I@QMNS/ et CH2CLA LT, CUALT )
—00 2| c|A
- x 201+ L)||® — @ 1 ~
Kﬁ@—ﬁ@uns/ e 2EUEDI® = Blloo g Ly g
—00 A 2 65
Claim two: For |A| > 8TC, 7, is a contraction map for L := % < % This is
because
C(1+L)? (2? 4C(14+L) 8C
= =l —— < — <AL
C cm C C

Claim two then follows from Claim one.
The unique solution to (6.5) guaranteed by the contraction mapping theorem

will be in the ball of radius L = %, which is of O(1/|A]). On the other hand,

1
@) = (A1 — Ap)Ps + X (le + N1 P2 — Npp®p — N21<D%> . (6.9)

3 Here C? ((—00, 0], C) is the space of bounded continuous function on (—oo, 0] asso-
ciated with the sup norm.
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Let .7:} now denote the flow of equation ® = (A1 (L) — A2 (1)) ®. For KA > —n,
R(A11 (M) — Ap(A)) > ¢ > 0, we define bounded operator 7, on Banach space
Ch((=00,0], ©)

Tyl
(7,.®)(x) i=f0 F 7 Vi2(y) + Nu () (y)

(6.10)
—N2(1)P() = Nay (NP2() ) dy.
Again, inequalities
0 LC+2CL+CL? C(1+ L)?
(L)) < / £ y= <1,
. Al cli|
- 0 20(1 + L)||® — @ 1 .
(1.0 - T.3)()| 5/ e 260+ |)l|| b gy < iie -
! 6.11)

yield claims one and two, completing the lemma. 0O

Lemma 6.2. Writing Rin(6.4)as R = ( R Ry ) and setting <£; ) = ( R R )_l,

for RA > —n (n > 0, n sufficiently small), |\| sufficiently large, the solution op-
erator ff_)x of system (6.2) on x > 0 is

1 1 _
P e(>~/tl.++M11,++,\N11.+(?»)+AN12.+(?L))(X ) (RisLis + O(1/IAD)

A2+ Moz s Nane O+ N2t 4 () ) =) (

+e( Ry Ly + 0(1/|A|)) , 0<x<y.

(6.12)

Moreover; the stable and unstable flow operators of system (6.2) on x < 0 are

F () = eh (h1@+M1 @+ E N1 G2+ N1 G2) ) dz

(Ri(x)L1(y) + O(1/IAD), x <y <0,

, 6.13)
J (2@ Mo @)+ £ Naa ()4 Nai (3,2) ) dz

f){}%xnk,u(Y) =e
(Ra(x)La(y) + O(1/IA]), y <x <0,

where (112, M as in (6.4) are independent of A, |N (A, x)| < C(F, Hg) uniformly
in|Al > 1,x 2 0, and the bound O(1/|A|) is independent of x, y.

Proof. By lemma 6.1, the stable flow of (6.3) may be writtenas U = (U; ®U| )T
with ®; = O(1/|A]). The equation for U; then reads Ul/ = (A11 + %Nn + %ng
CI>])U 1. Integrating from O to x yields solution

Y (A1 G DHENT G+ IV @1 (L) )dy

Uy(h, x) = P ( U1 (0). (6.14)

Hence the full solution to (6.3) is
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u\ _ (U
Uy)  \®1U;
_ S (MG NG MGGy )dy ( 1

o0, x)) U1(0).
(6.15)

Transforming back to w coordinates by w = RR~'U and using estimate @ (A, x) =
O(1/|A]), R™' = Id + O(1/|1]), we obtain

x 1 1
w()\”x) — ef() (All()»»Y)-HNU()»,Y)-Ule()u)’)‘bl()uy))dy (Rl(x) + 0(1/|)\|)) .

(6.16)
The projection onto the stable manifold IT; ;(y) is approximately Ry (y)L1(y) +
O (1/|A]); following the flow from y to x thus yields (6.13)(i). The unstable flow
operator (6.13)(ii) can be derived similarly. O

6.2. Pointwise Estimates on Resolvent Kernels

6.2.1. Large ). ~ Small Time

Proposition 6.3. For "A > —n (7 > 0, 1 sufficiently ) and |\| sufficiently large,
Gi, G%, and K; can be written as

Gl =

B e(km.++M1|,++%NM(A>+%N12.+(‘A)¢|,+<A))<x—y> (RisLis + O(1/)) AT
5 B +

[V o
_ (M N 0 Nt 4 009209 ) () (Ros Loy + O(/1AD) AT, 0<x<y (6.17)

x 7 4L aya L - )d~
_h (A1 @MU @+ E NG+ N2 (L2 @1 G, dz (RILIG) + O/ A (), x <y <0,

C (A2 @+Mn @)+ L Ny (e 2)+ £ Nayt (L2 @2.(1,2) ) dz -
(2@ M@+ L N2+ N 6. 0200) (Ra(0)La(y) + O(L/IAD) A~ (). y<x <0,

2
G2 =

x5 el a L - 2)dz
_ <ef0 (F1 @+ M1 @+ E N1 G0+ N (L2 @1 (1,2 )z (RIGL1(O7) + 0L/ 1)) V-+
— - 1 1 )y
W/(x)O(l/lM))AJr (e ()»m.++M||.++,\ N11‘+()»)+AN12.+()~)¢|.+(A))) (Rl,+L1.+ + O(I/MD)

— bt L Iy, y _
te ()»HZA++M2A.++AN22.+O»)+,\N.1A+()»)<P2.+()»))} (R2,+L2.+ + O(I/MD) >A+l, x<0,y>0,

¢ (s el 4L NGz 9)dz
_ (efo (Mll(~)+M||(4)+A Nit 2+ le(m~)¢|(?m))d~ (Rl(x)Ll(()*) + O(I/MD) Vi

W’(x)O(l/W))A(O‘)x

o (2@t N0 N 00090 () (0 () 4 0(1/14D) A7 (3, ¥ <0,y <0,
(6.18)
K, =
0, x>0,

N z D+1 D+1 z 2))dz —
= (@ QRN G N9 (1)1 07+ 0(1/3) V + T RO/, x <0,

(6.19)
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where 112, R, L, M1y, My asin (6.4), V as in (6.22) are explicitly calculable and
independent of X, ®12(\, x) as in Lemma 6.1 are O (1/|A|) terms uniformly in x,
y. Moreover, they can be decomposed as

G, = H} +(G;, - H)), G} =H]+(G;—H}), K= Hg;+(K,—Hg))
(6.20)
where H)\l’z, Hk . are their corresponding lowest order terms defined by

_ e()‘“‘v++M"v+)("’y)R1’+L1.+A;1

» _ e(AM2,++M22,+)(X*,\')R2,+L2’+A_T_l, 0<x<y,
P - ek tmenm@E g Ay, x <y <0,

eh GO R (L (AT W),y <x <0,

— oo @M R (YL 07TV AL

% (ef(lltl,++M11.+)}’R]‘+L1,+ + e*(x#2v++M22~+>)'R2’+L2,+> AII, x<0,y>0,

— efg Cr@+Mu @z R () L 0TIV AT

0
x ¢y (12T Ry 07 Ly (1) AT (), x <0,y <0,
0, x>0,

— Ji Gm@+Mu@Nz R ()1 (07)V,  x <O,
(6.21)

and G K;L — H, are O(1/|A|) terms.
Proof. As consequences of Lemma 6.2 and using either (5.6) or (5.7), the G i part
(6.17) then follows. As for the Gi part, explicit calculation shows that in the high
frequency regime

(10)M~') = 0/r)

(01)M-‘<x>=(( et Bt PR z)+0(1/|x|)

H2 4 JHRH 2+ FHR)  (HS2+Hg H/+F Hy)

=V + O(1/|A]).

(6.22)
Equation (6.18) then follows. To estimate the error terms, we find, forx <y < 0,
that

o (11 @+ M1 @+ EN1 G D+ ENRGLD @1 60 )dz o Gt @My (2)dz

1 (S 1G9 + NG, 910, 2 d2)|

n! A

Z ef O»ltl(z)+M11(z))dz

n=1

(Cax =)' V0 —y) (C—y)"!

cr—y) X Z YT

= Z n!Al" _,; nlAl (n — DA~
o 1

e“UTIR(Cx — y)"

1 ey Co=
= —e¢ 2
R Gy

T = 01/,

n=1

(6.23)
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Thus Gi — H)f isan O(1/|1]) termon y < x < 0. The other parts can be similarly
estimated. O

Desingularizing 7-resolvent kernels G, K, by multiplying by a factor A,
we have the following estimates on AG 1, AK j in the high frequency regime:

Proposition 6.4. For X\ > —n (n > 0, 7 sufficiently small) and |A| sufficiently
large, AG 1, AK| ) can be written as

AG) =

5 1 1 2 )
(o NN DR (01 A (Rus Ly + O(1/IRD) A7

- bt ] 1 o)y _
. (M2 Mo+ E Noz 2 G+ £ V21 £ (OB () y (Vi + OU/P) As (Ros Loy + O(/IAD) AT, 0 <y,

0 (Aua(z o+l el P20,2))dz
o (A;L2(~)+Mzg(~)+)‘sz()w)Jr;“N2|(k,g)tb,()\,,))dN(Vh + 00/ x

A7) (R2(07)L2(y) + O(1/IAD) A7 (), y <0,
(6.24)
AK1 =V + O1/|A]), (6.25)

where (12, R, L, M1, M2 as in (6.4) Vy, as in (6.28) are explicitly calculable and
independent of X, ®12(X, x) as in Lemma 6.1 are O (1/|A]) terms uniformly in x,
y. Moreover, LG ;. can be decomposed as

AGy; = Hy )+ (G — Hi ), (6.26)
where H\ ) is its corresponding lowest order term defined by

ef()‘“1<++M”*+)y VhA+R1,+L1,+A.T_1
Hl,k = 6_()\M2’++M22’+)y VhA+R2’+L2,+A__,’_1, 0<x < y,
0~
ely MOy, A7) Ry (07 La (DA™ (1), ¥ <x <0,

(6.27)
and AG1; — Hy ) isan O(1/|A|) term.

Proof. By definition of K ; (5.9) and equations (11.16) (11.17), equation (6.25)
follows from the calculation

AK1x = (10)aM~ ()
S-00) <—M1<B><R1<S—(>A>;V+_i((1v/v|)x)lz ,,JJM(R1<0—()A)VIV+_0R((1V/V|)A)|]>>
= (H, — Hy) (FHg + H2( +/Hp))

x(—H;”*(/Hg + 1) + F(Hy — Hg + H,Hg + Hy\/Hp))

—FH.(VHg + 1))+ O/|A])
=V, + O1/7r)). (6.28)
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By definition of G, (5.4) and using Lemma 6.2, in the high frequency regime,
Gin=

_ - M in Iy ) )
(1 O)M I(A)AJr(e (AH1.++ 14+ 7 N1+ W)+ 5 Nz + () 1<+(A))) (R1,+L1‘++0(1/|)»|))

4o (e M PN L G0 E N4 00020y (

Ry + Lo+ + 0(1/|M))>A;1, y >0,
Miz(z)Jerz(z)Jr{sz()»,z)Jr;%Nm(A,z)q’z(k,z))dz

(10) M~ )el
(R2(07)La(y) + O(1/IA)) A (y), vy <O.

(6.29)
By equation (6.28), the LG, part (6.24) then follows. Following similar calculation
as in (6.23), we find that AG1 ; — H;  isan O(1/|A|) term. O

Proposition 6.5. For WA > —n (7 > 0, 7 sufficiently small) and |A| sufficiently
large, the y derivative of G can be decomposed as

3yG1,)L=HY)h+(3yG1,)h—HY)h), (6.30)
where HY, is its corresponding lowest order term defined by

_ M1,+3_(M1‘++M“’+)yVhA+R1.+L1,+A11

HY, =1 — M27+e*()~lt2,++Mzz.+)>' VhA+R2’+L2,+A_T_l, 0<x<y,

~pa(y)els GmEMEONy 4 (=) Ry (07) Ly (AT (), y < x <0,
(6.31)
and 9yG1; — HY) isa O(1/|)|) term.

Proof. By taking y derivative of G ; using (6.29), we see when the y-derivative
falls on the exponential terms, the exponent —A 1 4 then gives another factor of
A that cancel the % factor in (1 0) M~'(1) (6.22), giving HY), term. When the

y-derivative falls on other terms, it results in terms of order O (ﬁ). m|

6.2.2. Small 1 ~ Large Time Expanding (4.8)(4.9) near A = 0 yields

- =+l A+ 003,

y2() =—cy_r+c3 A+ 00 =7 () + 003,
Vo) =3, +ch A+ 00D,

V) =cl A —cf 27+ 003 =714 + 00D,

(6.32)

where c] .+ are positive constant explicitly calculable as functions of F, Hg. Since
AL () (.A (1)) has distinct eigenvalues y; 2.+ (y1,2,—) near A = 0, we have the
following proposition.

Proposition 6.6. The resolvent kernels G/l\ (x;y), G%(x; v), and K, (x) can be ex-
tended holomorphically to B(0, r) for sufficiently small r. Moreover G}L (x;y) can
be decomposed as

Gl =5 +R]., (633)
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where
— W AT, 0<x <y,
Sixy) =1 =W p, )aAZ!, y<x <0, (6.34)
0, otherwise,
and Ri is a faster-decaying residual
Ri(x;y) =

_ eyz‘J’()L)(x_y)Pzgr()L)A;l + (e'];l'Jr(A)(x_y)Pl,Jr(O) _ e}/L+()L)(X—y)Pl’+()k)> A_T_l, 0O<x<y,

— - DEIT L) P OTZ 0L AT ), x<y<0,

— = WE Py () AT 4 PTG )Py ()T (L AT (), y<x<0,

0, otherwise.
(6.35)

Further, Gi (x; y) is a faster decaying term which can be estimated as

1631 =0 =="], x <0,y >0,
1631 =0 2", x <0,y <0, (630

and K, (x) is a faster decaying term which can be estimated as
|K.| = ‘O(e_g/lxl) , x<0. (6.37)

Proposition 6.7. The desingularized resolvent kernels LG ,(y), LK1 ; can be ex-
tended holomorphically to B(0, r) for sufficiently small r. Moreover, defining

Vi=1lima(10)M (), (6.38)
r—0
it holds that
AK1 = Vi+ O(A]), (6.39)
and LG ;(y) can be decomposed as
AGia = S10 + Ry, (6.40)
where _— 1
e MHYYVIALP L (0)AL 0<y,
Sami=1 y (6.41)
e 2=y A7) P, _(0)AT!, y <0,

and R ; is a faster-decaying residual.

Proof. By the definition of G ; (5.4)

. [ (10) M7 AL (00 PG+ 700y L)) AT v >0,
1A=

(10) M~ ' WAO)T- (1, 0 )e 2P, _(WT~ (A, y)A™ (y), y <O.
(6.42)
We see in the neighborhood of the origin (1 0) M~'(%) is desingularized by the
extra A factor in AG1 . The proposition then follows. O
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Proposition 6.8. The y-derivative of G, can be decomposed as

3yG15 = SY15 + SY2, + RY), (6.43)
where
SY15 = - C},+e_]il‘+()\)yVIAJFP]'*(O)A;lv 0<y,
' — ey _e PV A0 Py (AT, y <0,
—(10) M ) Ay e 0P ()AL, y >0,
TN oy e T, o*)e*n-fsz,f(x)—T:l(k’ay)Afl(y), <0,
g (6.44)

and RY,_is a faster-decaying residual that is of order O (|, SY1 ,|). The term SY» ;,
has a simple pole at the origin and in y it is of order O (e~

Proof. Taking y-derivative of (6.42) yields

3G =
—(10)M'(MA, (y1,+e*”«+<”>’Pl,+(x) + yz,+e*y2«+<”>‘Pz,+<x>) Ay y>0,
—(10)M' WAO)T-(A, 0 )z e Y P (WT " (b, A ()

T='60u A~ ()

+(10) M G)AO)IT_(A, 07 )e 2= P, _ () 5

y < 0.

(6.45)
By (6.32), we see the terms contain factor y1 4 (A), y2,— (A) will be desingularized,
giving the SY1 ) and RY) term. The remaining terms are defined to be SY ;. O

Proposition 6.9. The term G|, ((1)) can be decomposed as

0
G, <1> = SVia+ SVa + RVy, (6.46)
where
e‘ﬂ#k)yVZAJF(E);»P],JF)(O)A;l (?) , 0<y,
SVL)» = 0
effz,—(?»)yVIA(O’)(B;LPl_)(O)A:l <1> , ¥y <0,
(10) M ')A e 2+Mypy L ()AL <?) , y >0,
SVos =1 (10) M~'"WAWO)T_(x,07)
x ey ()17 1) AT () - A7) (?) .y <0,
(6.47)

and RV is a faster-decaying residual that is of order O (| SV ;|). The term SV3 ;,
has a simple pole at the origin and in y it is of order O (e~
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Proof. By expansion

Pi () = P14(0) + (82 P14 ) (01 + O (A%,
Py () = Py (0) + (31 P2 - ) O)A + O(IA]%),

and the special structure on Pl,_F(O)A;l and Pz,_(O)A:1 from Observation 7.5,
the proposition follows by a similar argument as for Proposition 6.8. O

7. Pointwise Estimates on Green Kernels

With the above preparations, we are now ready to carry out our main linear
estimates, obtaining detailed pointwise bounds on the Green kernels of the time-
evolution problem.

Theorem 7.1. The interior source v-Green kernel function G defined in (5.13) may
be decomposed as
G=H'+H>+S'+R, (7.1)

where, assuming Evans—Lopatinsky stability,

Hl(x, t;y) =
_ e—fl1+(—7lﬂl.++M11.+)(X—y)RIY+L1,+A_—F]S(t + 4 (x — y))
_ e*ﬁ’+(*ﬁﬂ2,++M22,+)(X*y)R2’+L2’+AI_15(1 + a4 (x — y))’ 0<x<y,

- X - X
— oML CIOEMIENE Ry () Ly () AT ()8 (1 + / p@dz), x<y<0,
y

- X, - . X
¢ My I MR Ry () Ly () AT (18 (1 + f n@dz),  y<x <0,
\

(7.2)
Hz(x‘ t;y) =

S o B x
— M CIOEMIENE R, (1) Ly (07)V AL (6 (r —HLey / 1 (z)dz> RitLit
0
— X -
x e~ L+t MiLL)Y | s <t — oy + / ul(z)dz) R2.+L2~+67(7mtz.++Mzz.+)y)A;I’ x<0,y>0,
0

S px S P e
_ e*ﬂ“rfo (=71 (<)+1\/111(<.))£L+fy ( Uﬂz(‘)Jerz(d)d«R] (X)L (07)VAO )R2(07)La(y)

X 0
x A7 (y)8 <t +f m(z)derf Mz(z)dz), x <0,y <0,
0 ¥
LT e e 73
_ vt e P AT, 0
Xt>1 > e ’ 1,+(0) , <x <Yy,
4c1’+m
Sl(x’ 1 y) = cé i _Cé_(t—cé_(x—y))z (7.4)
. 43 _t P, (A", y<x <o,

0, otherwise,
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S (x.re y) = e (1
y X L3 y) - thl,0<)r<ye P
(t—c) (=) 1
+Xt21,y<x<067 Mt @) <;> ) (75)

(t+el , =32 1
R(x, 1 y) = Xt31,0<.\'<ye Mt o (;)

(1—c) _—y»? 1 L o
R S —0lx
+ Xlzl,y<x<06 Mt 0 - + —=€

NG (7.6)
1 L _(t7L=+\)2 _(t+<% ))2
+ X1>] x<0$e o |XIO (X()<ye Mi + X\<Oe Mt
+ O(e*ﬁ(\xf)’\ﬂ)),
(e} ) 1
Ry(x’ N )’) = Xt2|,0<x<ye Mi o _3>
t2
(t—c} _c—y)? 1 1
+ Xt>1.v<x<()e_ Mi O <_3 + _e_gl)Cl)
= 3t (1.7)
1 gy =] »? g _»)?
+ thl,x<0 ;e 0 X0<)'e Mi + Xy<06 M1
+ O(g—ﬁ(\x—y\-&-t))’
1 0
Sy ) =0 (7.8)

and moreover

0 e p)? 1
R(-xvt?y) <1> =Xt31,0<x<)'e Mt 0 <_>

(1=} (=) 1
+ thl.y<x<()e Mr 0 3

1 —9/|X| _(t—c}._*_y) _(H—C%,—y)z
+ thl.x<0 ;6‘ 0 X0<ye i + Xy<06 M1

+ O(e—f](lx—}’H-t)),
(7.9
where M is some sufficiently big constant and 1) is a sufficiently small positive
constant.

The interior source kernel estimates of Theorem 7.1 may be recognized as
essentially those of the smooth profile case [47,48]. Namely, as displayed in Fig. 4,
the principal high-frequency component consists of time-decaying delta-functions
moving along hyperbolic characteristics of (1.1) and refracting/reflecting from the
shock, while the principal low-frequency component consists of time-algebraically
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decaying Gaussian signals moving along characteristics of the reduced, equilibrium
system (1.2).

The behavior of additional, boundary kernels in the discontinuous (subshock)
case is similar.

Theorem 7.2. For x > 0, the boundary source v-Green kernel function K (x,t)
defined in (5.13) is identically 0. For x < 0, it may be decomposed as

K(x,t) = Hg + Rk, (7.10)
where, assuming Evans—Lopatinsky stability,
Hi (x, 1) = —e 1o (G @+Mi(2)dz
Ri(x)L1(07)V$é (t + /Ox /«H(Z)dz) , x<0, (7.11)
Rg(x,1) = O(e 1M+ - x < 0.

Theorem 7.3. The time derivative of the interior source n-Green kernel function
G1(t; y) defined in (5.13) may be decomposed as

Gi; = Hi +S1+ Ry, (7.12)
where, assuming Evans—Lopatinsky stability,

Hy(t;y)
efﬁtf(fﬁm‘*JrM”'*)yVhA+R1.+L1.+A115(t — KLL4Y)

4+ it ==z 4+ M, 1)y V11A+R2,+L2‘+A115(l‘ — t24y). 0<y,

P P N 0
e ML IR Y, 4(07) Ry (07) Lo (AT (18(1 + / ma(dz). y <0,
\

(7.13)
! o] ] 2
Vet VAP (0)AT! O<y
thl\/?é : 1A+ P (0)AL, <V,
dey it
Sity) == (7.14)
el o el _»?
29— T
Xi>1 \/?e - VIA(Of)PZY,(O)A:l, y <0,
4e; _mt
] 3 1 ey _? 1
S0 = 20 00 (1) e I 0(3), (7.15)

(t—c]  »? (t+e) _»)? 1 _
Ri(t;y) = Xiz10o9¢” M O ( ) + Kot y0€ MO (;) + O(E_H(lyH—t))s (7.16)

lw

1
t
el  »? 1 (el _y? 1 )
Ryy(t;y) = Xiz1,0y€ }VIT 0 (i + Xiz1y<0€ %”' 0 ( ) + O(e*U(l)’\th))’
’ o t
(7.17)
0
Siey| ) =0 (7.18)
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and moreover

0 7(#6%#)')2 1
Rl (ta )’) (1) = X;31.0<ye Mt 0 (_3)
t2

(t+c£’7y)2 1 _
izt o€ MO (—) +0(e "), (7.19)
) ]
where M is some sufficiently big constant, 1 is a sufficiently small positive constant,
and Vy,, V) defined in (6.28), (6.38) are constant vectors.

Theorem 7.4. The time derivative of boundary source n-Green kernel function
K1 (t) defined in (5.13) may be decomposed as

K = HK] + RKI, (7.20)
where, assuming Evans—Lopatinsky stability,
Hg, (1) = V36(t) and R, = O(e ™). (7.21)

Observation 7.5. (Special structure on P, _ (O)A:1 and Py ¢ (O)Ajr1 ) The matrices
Pz,_(O)A:] and P1,+(O)Ajr1 can be computed symbolically to be

2+2/Hg 0 2+4+2/Hg
_ 1—2Hp+/H, _ Hr—2++/H
Py _(0)AZ! = REVER . PLy0AT = ? .

_ 9HR—3+6Hg>? _9HR=3HR’+6/Hg
1-5Hp+4Hg? 4—5Hp+Hg?

In particular, the second columns vanish and equations (7.8) (7.18) follow.

Proof of Theorem 7.1. Case 1. |[x — y|/t sufficiently large Following [47], we
note, for |x — y|/t > S, S sufficiently large, that G = 0. Taking a sufficiently
large in (5.13), we can use Proposition 6.3 to estimate G2 (x, 7; y). For example
onx <y <0,

1 a+ioo o M d
|Gl(.x, t y)| — ‘_PV/ e)»tefy( 1 (2)+Mi1(z))dz (Rl(x)Ll(y)A—l(y)

2n a—ioo
+O(1/IA])) dA|

<

1 a-+ioo X0 M d
PV / Ml @) ZRl(x)Ll(y)A](y)d?»'
a—1i1o0

1 A T G (M1 (2))dz
+ —P.V./ M ey Cr@FMIE 5 (1 /1514y
a

2z —ioo
X X oo . X
<ea(t+f; m(z)dz)%—[; My (z)dz P.V./ elé(t-i-f). Ml(Z)dZ)dE'
~ —00
> 1

+ ea(t+f}f‘u1(z)dz)+f; M11(z)dz/ dE
—0 /(12+§2

X X X
:ea(t+fy m(z)dz)+fy M11(z)dza<t+/ ,ul(Z)dZ>
y

n ea(l+f; m(z)dz)Jrf; M1 (z)dz /OO 1

—dé&.
e

(7.22)
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In “<” line, the integral can be explicitly computed because w1, M11, Ry, L1, and
A are independent of A. And, on the next line, using the triangle inequality for the
integral yields the bound. Since there are ¢, C depending only on F', Hg such that

—C<u(H@E@) <—-c<0<c<ui(z) <C,

8<t + f}x Ml(z)dz) will be O provided that @ < % or ‘xt;v‘ > C for some C
sufficiently large. As for the term in the last row of (7.22), for [x — y|/t sufficiently
large, 1 + j;x 1(z)dz will be a negative number. Thus by sending a to +oo this
term also vanishes. The same resultholdsony < x < 0and0 < x < y. Similarly,
G2(x,1: y) also vanishes.

Case II. |x — y|/t bounded. First, observe that |[x — y| < Ct yields for 6 > 0

that

o0 < o1 H—YD
for some 0; > 0, a contribution absorbable in error term R. Thus, in this regime,
it is enough to show that terms are time-exponentially small in order to verify that
they are absorbable in R.

By our construction of resolvent kernels, they are meromorphic on the set of
consistent splitting, with poles precisely at zeros of the Evans—Lopatinsky function
A (4.19). Function A is nonvanishing on {A : A > —a, |A| > r} by a combination
of Proposition 11.2 and the assumed Evans—Lopatinsky stablity, that is, M is in-
vertible on {X : WA > —a, |A| > r}. As observed in Remark 5.7, we can deform the
contour of integration in (5.13) to (5.21). Since, by Lemma 5.3, G is holomorphic
in a small neighborhood of the origin, we can further deform the contour to the left
of the origin and obtain

1 —n+ir 1 —in—ir —N+iR
G(x,t;y) = —/ MG dh + — / —}—/ M Gida
27i ) Goir 2ri \J_j—ir  J—qiir
1

—ii—iR —ij+ioco
+PV.— (/ +/ )e“GAd)L =1+ 114111
2mi \Jj—ico  J-ii+iR
(7.23)

for n > 0, i sufficiently small. We will use superscript 1, 2 to denote contributions
from G}\’2 to G.

Intermediate frequency contribution I1. For X in the intermediate frequency
regime [—n—iR, —n—ir]and [—n+ir, —-+i R], the resolvent kernel is bounded.
Therefore term 1 is time-exponentially small of order e~ and absorbable in R.

High frequency contribution I11. In this regime, we can again use Proposition
6.3. The term 711! can be written as

1 1 e 1 TR
111" = S P.V. HMHdL — — M Hda

Tl f—ioco 2mi —i1—iR
1 —n—iR —n+ioo 7.04
+—P.V. </ +[ )&’(G;—H;)d,\ (7.24)
2mi —fj—ioco —7+iR

=11+ 111} + 111}
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The term 711} can be explicitly computed to be
it Y= _ 1
IIIal — —¢ m‘i‘,/y ( Uﬂl(Z)‘f‘Mll(Z))dZRl ()C)L](y)A 1(y)EPV
/\OO elf(l“‘f;ﬂl(z)dz)d%_

—00
_ X - X
_e—'IH‘,f_v (_UI'LI(Z)JFMII(Z))dZRl(x)Ll(y)Afl(y)a(t+/ Ml(Z)dZ),
y

(7.25)
which gives contribution H Lonx < y < 0. Asfortheterm /11 ! it can be bounded
by

e - 1
|IIIbl| — le nt+fy( nﬂl(Z)—’_M“(Z))dle(x)Ll(y)A_l(y)g

R (e o) 4

_Re § (7.26)

< Sy (S @)+ M1 (2)dz
< pit+(—x)),

in which the last inequality follows by —nu1(z) + M11(z) > ¢ > n > 0 for 5
sufficiently small and all z < 0. Hence 7/ Ib1 is absorbable in R. By Proposition
6.3,G i - H)} expands as 1/A times a bounded function % (x, y) plus an error term
of order 0(#) on the contour of integral /11, Cl Thus,

~ o0 R
I < e " h(x, y)P.V. (/ +/ )x‘d/\
R —00

(1
+e / ——d¢ <
R 1+ E?
which again is absorbable in R. Similar analysis can be carried outon y < x < 0
and for Gi.

(7.27)

Low frequency contribution /.

(Case t < 1). Estimates in the short-time regime ¢ < 1 are trivial. Since then
MG, is uniformly bounded on the compact set [—n — ir, —n + ir], we have
|I| < e~ is absorbable in R.

(Caset > 1). Next, consider I, I? on the critical regime? > landy < x < 0.

I': Decompose G1 = S} + R} and write 1! as

1 —n+ir 1 —n+ir
) — Ml 4+ — HMRIdA =10+ 1} (7.28)
2mi —f—ir 2mi —f—ir
We then analyze I, I }13 separately.
1 Sl: Deform the integral to write / Sl as

71— n*_lr ok T | | |
Is = 2 (/ / )e 'S3dh = Igy + Iy + Ig3, (7.29)

n—ir «—Ir +ir
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where the saddle point n.(x, y, t) is defined as
o . o
- if |=|=e
(e, y, 1) =1 ¥ &p (7.30)
+e, if — 2 =ke,
p
with
roy-a! 5 _(x—y)
&= S p= (7.31)
2t et
A key observation is that when % < ¢, ¢ sufficiently small, B — y are
2.,
comparable; that is, we have
t
—(x —y) < (=) < 5
€
25 ¢
(1 + o ) x—y)<2x—y). (7.32)
€2,—
O

Observation 7.6. Assuming the comparability condition (7.32) and y < x < 0
we have eI <

/ . . .
9’11 is time-exponentially decaying
Proof. By the comparability condition, y < x — # < —#
2,— 2,—
0/
B 2c1 !
2-. 0O
I 1. When 7| < ¢, I, can be explicitly computed to be
_ (z—czv?(x—y))z -
L= L, 3 e / e_C%-*u_y)SzdSPz‘_(O)Ail
525 57 .,
| ey =)
_ e 4 -y P2,_(0)A:I
‘/403 _w(x—y)
B t <2 (x—, \) _
I 7 / / D L )V
2w ' B
/Cé o ‘%,Jrfc%ﬁ(x*)))z (733)
- V- . dey _t sz,(O)A:l
/4c§.77rt
(; (=} _(x=y)? | B (1=} _(x-y)?
e 4(27'7(17,\‘; ) Pg_,(O)A:I

/4c2 Tt ,/405_7T(X*y)

7(—4 (x— \) _
. (/ / ) “E-CIE e py _(0)AZ!

——e

2
ol
i=S8"+ Isop; + Isapiio
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where S! gives contribution S! in (7.1) and I}, ., 11, .. are shown in “Appendix
B” to be absorbable in R.

S ;: By direct calculation,

1 1 2
/.1 ) _=ch _-»? |
C 2 =~ T — —
S=|p_at Y2 T ms et a tmy)
yl= |72 - 2
4¢3t 2¢5 _t
V¥, (7.34)
b =) -7
< 16 86’%,7[
~t

ii. When % > g, the term / 512 can be bounded by

1] < efmch_Grmmreldd_(x-y) / "3 g g
—r
< FU=Cy _(@=y)tecs _(x=y)

~

1

1 v o
Sez(t—cl_(x y)e <e &'t

(7.35)

Hence itis absorbable in R. Similarly, when % < —e¢, I, is also time-exponentially
small.

ISI1 and ISI3 :i. When

a < g, the term / Sll and / 313 can be estimated as
12

/ " (e ) _-ng? dé‘ .

—2 2
5], 53] S e 2"

(7.36)
7

Since n, is the critical point of quadratic function (t — cif(x — y)) E+ c%yf(x —
y)éz, we then have

—2 2e—y) —(t=c) _(x=y))i+c3 _(x—y)7? _
511, 155 S em 2" e (-d-e)ie In« + 1l

(7.37)
Choosing 7 sufficiently small with respect to 2 and using comparability of i
andx —y, [ Sll, 1 513 is then time-exponentially decaying.
ii. When )% > &, we have

| |
g1, g3l

< Gty
~J

/ﬂ e _Gmy)etad _ye? d

]

5 e—cgﬁr2 (x—y) (e—(t—fi (X—Y)) fH‘C%_,(X—y)’_ZZ

(e+m)

(7.38)
+€_([_C%’_ (x—y))e+c%v_ (x—y)£2>
— (e—ﬁt+(céy_ﬁ+c%1_f]2—c%'_r2)(x—y)

el erd D) g,
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Again choosing 7, ¢ sufficiently small with respect to r yields that Ig1, Ig3 are
time-exponentially small.

1}:Using Po,_ (%) = Po,_(0)+O(IA), T-(h, x) = Id+0(e "), 7= (n, y) =

Id+ 0P, 1o —(A) = 72— (A) + O(APP), and A~ (y) = AZ' + O(e™?),
Ri can be estimated as

R)l\ — —e};z’*()‘)(x_y)Pz’,(O)Ail
+ =PI Gy Py (T, y)ATN(Y)
— _6172,7()~)(X—y)p2 7(0)A:1

+ =D (14 023 = »D) (1d + 0=H)
x (Po,_(0) + O(2])) (Id n O(e—f)"y')) (A:1 + O(e—‘)Y))

— Py (O(|A3(x W+ O(e—em)) Py _(0)AZ!

(7.39)

4 el - M x=y) <0(|)\|)A:]

+Py_(0)0(e~"PhAaT! + Pz,_(o)o(efem))
=# +#.

Deform the contour as before to write / 112 as

Il B 1 Ny—ir Ns+ir —n+ir o
l=— + + ¢ Rldx
27i \J—j—ir Ni—ir Natir
= Ihy + Ijy + I3 (7.40)

I}uz On the contour [n, — ir, nx + ir], we notice that

3
O(A) = O(nh) + 0D, O (x — D) =Y 0Unal 115 1 — y].

i=0
(7.41)
i. When % <e, I}Q2 can be estimated as
thise G0 [ #3000 4ig
—r
3
+ 3 I IR x =yl + e 4o~ |y|> ”
i=0
)
Se S / eE A0 (0. + g (7.42)
bt

3
+ ) sl EP T e - y|) d&

i=0
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(t—rl (x—y 2
‘D, — }))
b L TR gty o)y

Ve _(x—y)

gl 1
1= Igyi + IRaii-

The 1 }uii term in the last line of (7.42) is absorbable in R because c+ and x —y are

2,—
(e} )’

2 R ’
comparable so \/%e -0 0 (e~ "1¥1) is absorbable in R (7.6) and by
62.,()(_)’)
B (r—oé_,(x—y))z
9 g (e~?""] is time-exponentially

Observation 7.6 the term —L—¢
JA =y

small hence also absorbable. The term / }ui is shown in “Appendix B” to be ab-
sorbable in R.

ii. When % > ¢, following part ii above in the estimation of 512, we find

that 1 }‘,2 is also time-exponentially decaying. Using (7.39) and imitating the way
of estimating / ;1 and / 513, we find that / Iln and / 11e3 are also time-exponentially
decaying.

In the regime + > 1 and x < y < 0, by Proposition 6.6, Gl = Ri. Because
Nyy,—(A) > ¢ > Oinasmall neighborhood of the origin, G i (x; y)isthenuniformly
boundedin x < y < 0, and so the term I in (7.23) is time-exponentially decaying.

Following the way of estimating / ,1? and using estimates (6.36), I% can be
estimated in a similar way and absorbed in R.

R (?) In R, theterms 11, I1 Iblf, and ;<] are time-exponentially small,
hence absorbable in (7.9).* By Observation 7.5, any terms in R that has a labeling

“S" will become 0 when right multiplied by (O . The only term remaining to be

1
0

1

analyzed is I}(,. By (7.39), # < 1

(7.9) by Observation 7.6.
Finally estimation of R, can be done by estimating y-derivatives of terms in
(A.2)(iii) separately, that is, for

) = 0, the other term #; <0> is absorbable in

e [I: The y-derivative of the resolvent kernel is bounded on the intermediate
frequency regime, hence /1y is time-exponentially small;

o [11 bl,’czz Direct computation shows they are time-exponentially small;

o xi<11: MG 1,y uniformly bounded, so time-exponentially small;

o / ; 1530 X % ./ ;2: When the y-derivative hits the exponential term, this will bring

down only the order-one exponential rate, with no improvement due to differ-
entiation. But, this term is already uniformly bounded for low frequencies. So,

4 Refer to “Appendix A” equation (A.2)(iii) for decomposition of R.
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these terms again are time-exponentially small by following the estimates in
the undifferentiated case;
° Xg<81512Ri: See “Appendix B”;
5=

° X%gsl.;‘ZRii: See “Appendix B”;

. . Il - .
o/ }e: Again we demonstrate how to estimate a_yR onthe criticalregime y < x < 0.
By direct computation,

0 -
g (_eVZ,—()\)(X—y)sz_(O)A:l

+e2= DI x) Py (WTZ 0 1) AT )
= Pa—(We= PPy _(0)A7!

— 2= PEIT Gy Py (T (1, A7)

(7.43)

£ OOIT G 0P ()2 (T2 0. A7 )
dy
= #3 + #y,
and
# =W~ PI Py (0)A”!

— (=) + 0(aP)) =D (14 023 (x = D)
x (zd + O(e—e/'xl)) (P2._(0) + O(IAD)
(Id + O(e—e"yl)) (A:1 + O(e_9|Y|))

— (0(|)L|3)e)72,—()»)(x*}') + )72’_()\)6172.—()»)(X*Y)
(0123 = I+ 0 ™1h)) P-4
+ 7. ()P~ PE=)
(0(|A|)A:l + P (0T & Pz,_(O)O(e_em))

(7.44)

= (O(|)\|3)e)72,7(k)(X—y) + 0(|)“|)e)72,—()~)(x—y)

(023 =01+ 0E™1h)) P @A~
+ O(|A])e?2- P &=y

(O(|A|)A:‘ + Py _(0)0(e ATl 4 Pz’f(())o(e—@\yl)) '
We then see

[#s] = |2~ P 0 (|x|2 + A x = y| + [Ale O 4 |x|e—9"y|) . (7.45)
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The estimation is then similar to that of / 11e and we gain another %ﬁ from the
extra |A|. Because

#y = =Dy (0)0 (D). (7.46)

The estimation is again similar to that of / 11e in particular by Observation 7.6,
this term is time-exponentially small. O

Proof of Theorem 7.2. Following a similar analysis as for High frequency con-
tribution Il in the estimation of G above and noting the bound (6.37) at low
frequencies, we find that the boundary source v-resolvent kernel K is exponen-
tially decaying in |x|, hence the boundary source v-Green kernel K decomposes
into only an Hk part and an R part as written in (7.10). O

Proof of Theorems 7.3 and 7.4. Taking time derivatives of K1, G in (5.13), we
get an extra A which removes the singularity of M ~! at 4 = 0. The decompositions
for Ky; (7.20), G1; (7.12) then follow by shifting the contour to {X : A = —n}
and using Propositions 6.4 and 6.7. O

8. Linear Stability
From the pointwise estimates of Theorem 7.1 we obtain the following linear

L9 — LP? stability estimates, from which we will ultimately derive nonlinear
stability and asymptotic orbital stability.

8.1. Linear Orbital Stability Estimates

Lemma 8.1. The time derivative of equation (5.17)(ii) is

t o0
n) = K1(O)Bs(t)+/ Ku(t—S)Bs(S)dS+f G (t; y)vo(y)dy
o) ’ t o0 - (8‘1)
+/ G1(0;y)1s(t;y)dy+/0/ G (t — 55 y)s(s, y)dyds.

Proof. Directly by taking time derivative of (5.17)(ii). O

Taking Bs = 0, Is = 0 in (5.17) and taking the time derivative of the n-
equation yields the linearized integral equations

9]

o

vt = [ Genyuwmidy, 0= [ Guaumi. 62
—0o0 —0oQ

Linear asymptotic orbital stability follows immediately from Theorem 7.1. Splitting

G (7.1) into singular part H := H' + H? and regular part G := S' + R, K (7.10)

into singular part Hg and regular part Rg, and G1; (7.12) into singular part H; and

regular part G1; := S1 + Rj, we then have the following lemmas:
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Lemma 8.2. Assuming Evans—Lopatinsky stability, for the splitting G = G + H,
we have

+oo _
./‘ G(,t;y) f(y)dy

—00 Lp

< CA+0"20D fl 1 4 Ce | L, (8.3)
+oo _ 0
G(,t; d
[ aemn (o))
—Le=1/r —qt
<C(l+1"2 | fla + Ce ™| flre, 8.4)

+oo
f Gy 12 y) F(dy

—00

Lr
<CA+07 22D flg + Ce ™| flLo, (8.5)

and
+00 _
’ <Ce "|flLr, (8.6)

H(-,t;y) f(y)dy

—00 LP

forallt > 0, some C,nn > 0, forany 1 <r < pand f € L7 (resp. L?), where
1/r+1/g=1+1/p.

Lemma 8.3. Assuming Evans—Lopatinsky stability, for the splitting K = Hx + Rk,
we have

< Cle™ ™ gl 1r ) (8.7)
LP

t
’ / Hi (- .1 — $)g(s)ds
0

and

< Cle ™ Vgl 1100 (8.8)
LP '

t
/ Rk (.1 — $)g(s)ds
0

forallt >0, some C, i > 0, forany 1 < p and g € L (resp. L').

Lemma 8.4. Assuming Evans—Lopatinsky stability, for the splitting G1, = G1; +
Hi, we have

< C(L+1)7%|flLa, (8.9)

f Gru(t: y) f ()dy

/_Oo Gn(t;y)<f?y))dy <CA+07T % I, (8.10)
/ Gy (5 ) fO)dy| = €L+ 17273 £, &.11)

and

< Ce | f|L, (8.12)

‘ / Hi(t: y) f ()dy

forallt >0, some C,7n >0, forany 1 < q and f € L1 (resp. L*).
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Lemma 8.5. For Ky, it holds that

t
‘/O Ky (t —s5)g(s)ds

t -
= Vig(t) + O( / e 1079 |g(s)|ds)
0

<C sup g +e " glre@r), (8.13)

t/2<s<t
forallt >0, some C,51 > 0, and g € L*(0, 1).
Proof of Lemmas 8.2-8.5. These follow by direct calculation from our more de-

tailed pointwise Green function bounds, exactly as in the proof of [47, Lemma
7.1].

0
8.2. Linear Phase Estimates
Lemma 8.6. Assuming Evans—Lopatinsky stability, for K, it holds that
Ki(t)=Ki(0)+ V4 + 01 —e™ ™), (8.14)
/0 "Kit - 9)8(5)ds| < Cleluion, (8.15)
forallt >0, some C,7 > 0, and any g € L.
Proof. (8.14) follows by direct computation using Theorem 7.4:
' 1
Ki(t) = K1(0) +f0 Ki:(s)ds = K1(0) + Vj, +f0 0(e 1" )ds.
Lik_ewise, (8.15) follows immediately from (8.14), using |K1(0) + Vj, + O(1 —
e™M|<C. O
Lemma 8.7. Assuming Evans—Lopatinsky stability, for Gy, it holds that
|G1(t; )| < C, where Cis independent of t, y, (8.16)
'foo dyG1(t: 2) f(z)dz| = C(1 +t)_ﬁ|f|m +e M e
—00
e FOI L, (8.17)

and

’/ Gl(f;Z)<f?Z)>dZ

forallt >0, some C,7) >0, forany 1 < q and f € L1 N L.

<CA+07 % fla+ e fO) . (8.18)
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Proof. By equations (6.29) and (6.22), in the high frequency regime G;; =
O(d_l)’ hence there will be no §-function contribution to G(¢; y). Integrating the
term G ; in the high frequency regime will contribute to G (¢; y) a time and space
exponentially decaying term, which is harmless. In the low frequency regime, by
shifting the integral contour to the left of the origin and applying the Residue the-
orem, we get a residue term that is independent of time and decaying in space plus
a time exponentially small term. Therefore (8.16) follows.

By Proposition 6.5, integrating the term HY; in the high frequency regime will
contribute to d,G1(¢; y) a term containing a §-function like H;(¢; y) in Theorem
7.3. Integrating such a term in space with f(y) gives a contribution that can be con-
trolled by e ™| f| .. Integrating the term (dyG1,, — HY)) in the high frequency
regime will contribute to d,G1(¢; y) a time and space exponentially decaying term,
which is harmless. By Proposition 6.8, integrating the term SY ; in the low fre-
quency regime will contribute to G1(¢; y) a scattering term like S; (¢; y) in Theorem
7.3. Integrating such scattering term with f(z) can be bound similarly as in (8.9).
Integrating the term SY> ; in the low frequency regime will result in a residue term
that is decaying exponentially in space and independent of time. Hence, integrating
this term with f(z) gives a contribution that can be controlled by |e 7'l £(-)] L

By equation (6.29), in the high frequency regime, G1 ; = 0(\)1»_|)’ hence there

will be no §-function contribution to G (¢; y) . The low frequency contri-

( 0
(@
bution can be estimated similarly as to (8.17) by applying Proposition 6.9. O

8.3. Auxiliary Estimates

Lemma 8.8. Assuming Evans—Lopatinsky stability, for the splitting G = G + H,
it holds that

t +00
/0 / G(x’S;)’)f()’)dy’dS§C|f|L'ﬂL°°’ (8.19)
t(1+ )3 /sfooé( — 1 )( 0 )d de| d
; K - X, 8§ —1T;y 1) ydr| ds
4 1
§C/ (14 5)" 21| £, 5)|2ds, (8.20)
0
t | s +00 _
/(1—}-s)77 / / Gy(x,s —t;y) f(y, r)dydr| ds
0 0 —00
t
§C/ (14 )72V £, $)] 2ds, (8.21)
0
t s
/(1+s)—% / G(x,s — 7; 0%) f(r)dr| ds
0 0
t
gcf (1 4+ )72| f(s)|ds, (8.22)
0
t Ky
/(1+s)*% / K(x,s — 1) f(r)dz| ds
0 0
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t
< c/ (1 + )" 3| f(5)]ds, (8.23)
0

an

d
t s —+00
f(1+s)_1/2/ H(x,s —1;y) f(y, T)dydt| ds
0 0 J=eo (8.24)

t
1
= [ a9 Hreslnds
0
forallt > 0and x 2 0, any v > 0, and some C = C(v) > 0.
Proof. For estimate (8.19), we estimate separately the contributions of terms G

and H in the splitting G = G + H. For G, changing order of integration, and using
the fact that [; |G(x, s; )| ds < C, we obtain

[

t oo
sfof 1G e, 55 011 )]y ds

+oo _
/ G(x,S;y)f(y)dy‘ ds

—00

400 r
= [ o [ 16 sy < i,
—00 0
In turn, bound fot |G(x, s; ¥)|ds < C may be verified as in [64], by integrating a
Gaussian moving with nonzero speed, hence passing transversally to the vertical
line y = constant. Namely, denoting by 0(z, s) the moving Gaussian 6(z, s) :=
(s)’l/ze’(z’”s)z/bs withz =x —y,and ® = ffoo 6 its bounded (error function)
antiderivative, we have

Oy = —a®; +b/40,, = —ab + b/406,,

from which we may bound

t o t
f 1G(x, 55 y)lds < C/ e*”('z‘“)derC/ Xs=10(z, 5)ds
0 0 0

t
< C+C/ stle(z’s)ds
0

b

t 1 t
f Ko210(2, $)ds = —~ f Xo2103 (2. $)ds + —
0 a 0 461

t
/ Xs>10:(z, s)ds.
0
The term f(; Xs>1095(z,5)ds = O(z,t) — O(z, 1) is uniformly bounded. The
term fot Xs>10;(z, s)ds may be reduced by a similar argument to a constant times
©.(z,1) — ©(z, 1) = 6(z, 1) — 0(z, 1) plus a multiple of [ xs>16-2(z, s)ds; the
latter can be bounded as | fol Xs>1022(z, $)ds| < flt(l+s)’3/2ds < C,.The H part

can be directly obtained from taking p = oo in estimate (8.6) and then integrating
in time. This completes the proof of (8.19).
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Estimates (8.20) and (8.21) are more delicate, based on the estimate

‘ 2
ey _fas—lD
/s == ds

1

for a # 0 and some C = C(v) independent of ¢. To prove (8.25), by symmetricity,
it suffices to show

<cC (8.25)

L2

o0 ! (as—z) 2 2
/ / sV ds| dz] <cC. (8.26)
0 1
Based on the bound on the integrand function
2 2
ey, e @ea?2as —z| g,
§ € b =e ’ bsl.5+U § XZ\asfz|<ﬁb

_ —1-
=S U|92|(Z’ S) +s UXZ\asfz|<\/§h’

(8.26) follows from

2 \2
dz <C.

t t
/ s7Y10;1(z, s) ds f XZ‘kmkﬁbs_l_Uds
1 1

o0
<(C, and /
L2 0

Estimate (8.27)[i] follows readily for z ¢ [a, at] by rewriting

(8.27)

’

t t t
/ s7V10;1(z, s) ds 5/ 621(z, s)ds = ‘/ 0;(z, s)ds
1 1 1

then using 6; = —a6, + b/46,, to obtain

! d O b 1 1
0,(z,s)ds = —— 4+ —0,, ) ds = —-0(z,1) — —0(z, 1)
1 1 a 4a a a

)
+/ _QZZ(sz) dss
1 4a

where we see |0(-, t)|;2,|0(-, 1)|;2 < C and

t t 5 2
_3 _(=as)
‘/ 0.:(,s)ds| <C f s 2e” 265 ds
1 12 1 12
"3 _an? r s
<C | |s72¢" % | ds<C [ s"ids <C.
1 L2 1

For z € [a, at], setting 6.(z, s) := (s)’l/ze’(z’“s)z/b”, 1 < c¢ to be a Gaussian
with larger support moving at the same speed as 6, we may estimate |s v 0,0| <
C|3,6172V|, for v < (c — 1)/2. Calculation shows
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bc
BS(QCH—ZU) — _a(ecl-i-Zv)Z + Z(OCIJ’_ZU)ZZ

bcv<(93+2“)z)2

N q(@M), + F(z,s).
2(1 4+ 20)9 T2 ¢«

Observing that

t z/a t
/] |(93+2”>z|<z,s)ds=‘( f] - f/ )652)..5) ds

and hence integrating the principal contribution —1/ad (93*2“), results in terms
bounded by

s

C(Gc(z, D2V 4 (14127127 1 0.(2, z)1+2v) c L2(2).

As for integrating the F' term, calculation shows

_ (Z—a.v)2(1+2v)
s

e be: (1 +2v) ((z —as)? — bcs) 3 (z—as)?
F(z,s) = Shes3/iy =0(s e o).
Therefore, by the triangle inequality, we also have that
z/a t
)(/ —/ )F(-,s)ds <cC.
1 z/a L2
Estimate (8.27)[ii] follows by direct computation:
00 t | 2
—1-v
‘/O\ ﬂ X2\zfas|<\/§bs dS dZ
00 00 1 2
< X, s Vds| dz
/0 /; 2|z—as|<+/sb

® [ 51(2) — 52(2) \2
< C/O (—(1 +S2(Z))l+v> dz <C,

where 512 = (8az + b*> + /16azb? + b*)/(8a?) are the two roots of equation
2|z — as| = /sb and the last inequality follows from

< 51(2) — 52(2)

2
—1-2v
—_— ) ~ f 1.
(1+s2(z))1+“) z orz >
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By the decomposition of Gy = S; + Ry and bounds on S}],, Ry from Theorem
7.1, we obtain

t
[ @497, s~ wimlas
T

-7
< (1+r)_1/2+“/ (1+140)Y|Gy(x,0;y)do
0 (8.28)

(ao—|z?
bo

-7
<ca +r)*‘/2+U/ (A+7+0) Yo le” do

1
Cijage 7 Cioy taok?
S C(l +T) o e bo dU
1

Switching orders of integration and applying (8.28), Holder’s inequality and (8.25)
yields

t
/ (1+5)"1/2
0

t 12 s +oo  _
5/0(1+s)‘/ fo / |Gy(x, s — s Y[ f(y, T)ldydrds
—00

t “+o00 t B
=f0/ |f(y,r)|(f<1+s>—1/2|Gy<x,s—r;y)|ds)dydr

t —+00 t—1 (m_m)z
< c/ (1+r)_1/2+”/ |f(x —z, r)|/ o Ve "m0 dodzdr
0 —00 1

s +o0 _
/ / Gy(x,s —7; ) f(y, v)dydr| ds
0 —00

t
< c/ (14 ) 2 f o)l 2 dr
0

verifying (8.21). By equation (7.8) and estimate (7.9), estimate (8.20) follows sim-
ilarly.
Using fé |G(x,1t; y)| < C, we have, switching the order of integration,

t
/ (14 5)-112
0

t s
5] / 1+ Y2 |Gx, s — ;0% f(v)| dr ds
0 JO

ds

/Sé(x,s — ;0% f(r)dr
0

t t
:c/ (1+r)_1/2|f(t)|/ |G(x,s —1;0%)| dsdr
0 T
t -7
50/ (1+r)*1/2|f(r)|/ |G(x, 05 0%)| do dr
0 0
t
sc/ (+0)7 12 f (o)) dr,
0

verifying (8.22). The proof of (8.23) goes similarly by applying Lemma 8.3. Like-
wise, applying (8.6) with p = oo, we have
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t N
/ a +s)*1/2/
0 0

t —
< C/ (1+s)—1/2/ e 16D £, )| oo dr ds,
0

K
0

+00
/ Hx,s —t;y)f(y,t)dy| dr ds
—0o0

which, switching the order of integration, yields bound

t -
f I+ s>‘”2/ e 1D £(, 7)| e dT ds
0

s
0
t pt _
:/ / (145727167 £, 1) |10 ds dT
0 T

t t B
=/ (1+r>—1/2|f<-,r)|Loo/ e~ 160 45 dr
0

T
t
< cf (1 + 0} Dlpedr,
0
verifying (8.24). 0O

Remark 8.9. The above “Strichartz-type” bounds make crucial use of transverse
propatation and pointwise bounds. By contrast, a straightforward estimation by
Holder’s inequality

)

ro '
5/0 |G<x,s;y>|Loo|f|udss</O (142 ds)| fl

+oo0 _
/ G(x,s;y)f(y)dy‘ ds

—0o0

yields bound C(1 + t)1/2|f|L1, poorer by factor (1 + 1)1/2 than (8.19). Similarly
for the cases (8.20)—(8.21), straightforward estimates by Holder’s inequality yield
bounds poorer by factor (1 + ¢)!/4~v.

9. Short-Time Existence and Nonlinear Damping Estimate

We next establish nonlinear existence and damping estimates, obtained by
Kreiss symmetrizer and Kawashima type energy estimates, respectively. As noted
in [34], short time existence theory may be concluded by the analysis of shock
stability carried out by Kreiss symmetrizer techniques in [43,44]. Denote by R,
the punctured real line (—o0, a) U (a, +00), and R the symmetric version 1%0. We
obtain by the results of [44] immediately the following short time existence theory.’

5 Note that we correct a minor typo in [44, Thm. 4.1.5], which requires data vy only in

H* rather than H5T1/2_ (This is not necessary for our later analysis, but only sharpens our
initial regularity assumptions.)
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Proposition 9.1. For 0 < F < 2and 0 < Hp < H —=F— 1+2F+m let W =
(H, Q) be a hydraulic shock (1.4), and vy be a perturbation supported away from
the subshock discontinuity of W and lying in H* (R)), s > 2. Moreover, assume that
W is spectrally stable in the sense of the Evans—Lopatinsky condition defined in
Section 4. Then, for initial data Wo = W, there exists a unique solution of (1.1)
definedfor0 <t < T, forsome T > 0, with a single shock located at ct —n(t), and

H? to either side of the shock, such that for v(x,t) := W(x +ct—n(t),t) —Wx),
(v, ) € C" ([o, T: HS(IE{)) x CSTL([0, 1]). 9.1)

Moreover, the maximal time of existence T, defined as the supremum of T > 0 for
which the solution is defined is either +00 or satisfies im,_, .~ |v[y1.00 = +00.

Finally, ifv(’) — o, with v6 € H'tV2 r > s then the corresponding solutions
(", ") converge to (v, ) in C° ([o, T HS(R)) x CSH1([0, 1]).

Proof. Noting that the assumption that the perturbation is supported away from the
subshock implies compatibility to all orders, we have that the first two assertions
follow from Theorems 4.15 and 4.16 of [44], provided that the subshock satisfies
the (shock) Lopatinsky condition of Majda [43]. But (see Remark 11.3), Lopatinsky
stability of the component subshock is implied in the high-frequency limit by the
Evans—Lopatinsky condition for the full shock profile. The third assertion, though
not explicitly stated in [44, Thm. 4.1.5], is established in the course of its proof.

]

Remark 9.2. In fact, the subshock can be seen directly to satisfy Majda’s Lopatin-
sky condition, independent of Evans—Lopatinsky stability of the associated relax-
ation shock profile, by the fact [43] that shock waves of isentropic gas dynamics are
stable, since the shock Lopatinsky condition depends only on the first-order part of

(1.1).

Our main effort will be devoted to proving the following nonlinear damping
estimate generalizing the one proved for smooth relaxation profiles in [48, Prop.
1.4]:

Proposition 9.3. Under the assumptions of Proposition 9.1, suppose that, for 0 <
t <T, |v(, S)|HS(I§) and || are bounded by a sufficiently small constant { > 0.
Then, for all 0 <t < T and some 6 > 0,

t
2, (1) < Ce w2, +C /0 e O (7, + [P (d. (92)

Remark 9.4. In the course of the proof, we show using the Rankine—Hugoniot
conditions at the subshock that |77|? is controlled by a bounded linear sum of trace
terms |v(0%)|% at £ = 0. By one-dimensional Sobolev embedding, these in turn are
controlled by a lower-order term C |v|§_11 absorbable in the estimates (9.24) from
which (9.2) is obtained, hence (9.2) could be improved to

t
W, (1) < Ce "2, + C/ e D)2, (v)dr, (9.3)
0
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slightly improving the estimate of the smooth case [48].

Remark 9.5. For clarity, we carry out the proof of Proposition 9.3 for shock pro-
files of (1.1); however, the argument applies more generally to profiles of general
relaxation systems of the class considered in [48], provided they contain a single
subshock. (This allows the freedom to initialize the symmetrizer A° arbitrarily at
the endstates of the subshock, as we use crucially to arrange maximal dissipativ-
ity with respect to A? of the associated Rankine—Hugoniot conditions.) A very
interesting open problem would be to develop corresponding damping estimates
in multi-dimensions, perhaps by Kreiss symmetrizer techniques [39]; see Remark
9.12 for related discussion.

9.1. Preliminaries

Under the assumptions of Proposition 9.3, the equations (1.1) and profiles W
satisfy the structural assumptions made for general relaxation systems in [48] along
the smooth portions of W, that is, everywhere except at the subshock at x = 0.
Thus, we have the following results of [48], denoting by XM := %(M + M*) the
symmetric part of a matrix M:

Lemma 9.6. Under the assumptions of Proposition 9.3, for some 0 > 0, and all
k>0,

|(d/dx)*(W =W )| < C[W,| < Ce ™ as x — +o0. (9.4)
(Stable manifold theorem, plus hyperbolicity of rest points W of (2.14).)

Lemma 9.7. ([26,48]) Let D be diagonal, with real entries appearing with pre-
scribed multiplicity in order of increasing size, and let E be arbitrary. Then, there
exists a smooth skew-symmetric matrix-valued function K(D, E) such that

N(E — KD) =Ndiag E,
where diag E denotes the diagonal part of E.

Lemma 9.8. ([48]) Under the assumptions of Proposition 9.3, there exist diago-
nalizing matrices L+, Ry, (LAR)y diagonal, (LR)+ = I, such that

N diag (LER)+ < 0.

Lemma 9.9. ([48]) There is a correspondence between symmetric positive definite
symmetrizers A°, A’A symmetric, and diagonalizing transformations L, R, LAR
diagonal, given by A° = L*L, or equivalently L = O*(AO)%, where O is an
orthonormal matrix diagonalizing the symmetric matrix (A%) 5 A(AY~ 5 . Moreover,
the matrix O (or equivalently L) may be chosen with the same degree of smoothness
as A%, on any simply connected domain.
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Following [48], we recall also the relations

1 1
W, SWaam = =5 (W, ScW)an + 5 W N (9.5)
and

1 1
8t§<w)n KW)@py = Wy, KWi)@ap) + §<W)n K:W)a.p)

1 1

(W, KW ap) + 5 Wi KW, (9.6)
here adapted to the case of a domain with boundary, where S is symmetric and
K skew-symmetric, and (-, -)(4,5) denotes L? inner product on (a, b). When the
domain (a, b) is clear (as below, where all energy estimates will be carried out on
(—00, 0) and (0, 00)), we omit the subscript (a, ).

9.1.1. Boundary Dissipativity. A new aspect in the present, discontinuous, case
is boundary dissipativity at the subshock. For a general symmetrizable initial
boundary-value problem on (—o0o, 0]

Vi+AV, =F, x e (-00,0),

9.7
BV =G, x=0, ©D

with symmetrizer A? symmetric positive definite and A’A symmetric, that is non-
characteristic in the sense that det(A) 7 0 at the boundary x = 07, is Lopatinsky
stable in the sense of Kreiss [39] if B is full rank on the stable subspace of A. It is
maximally dissipative with respect to the symmetrizer A if AA is positive definite
on ker B, which yields readily the following key consequence:

Lemma 9.10. Suppose that (9.7) has maximally dissipative boundary conditions
with respect to symmetrizer A°. Then, for some 6, C > 0,

—V(©7) - A°AV(07) < -0V > + C|G|% 9.8)

Proof. Decompose V(0™) = vker + v, Where vg.r € ker B and v € (ker B)L.
Then,

—V(©07) - A°AV(07) = —vrer - A°Aver — 2vger - A%Av; — v - AAv, .

By maximal dissipativity, — ke, AOAv,, < —6; [Vker |2. Using Young’s inequality,
the middle cross term is bounded by [2vge, - AAv | < 61|vker|?/2 + CrlvL %
The last term is bounded by v, - A°Av, | < Ca|v |>. Summing these estimates,
we obtain

—V(©07) - A°0)AOHV(O") < —%wkwﬁ +(C1 + v % 9.9)

From the fact that B is full rank on (ker B)L and the boundary condition,

B2lvi] < [Buy| = [BV(O7)| = |G|
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Therefore, —|vier|* = —(vker|* + [v1]?) + i[> = —[VO)? + |vi]* <
—|V(07)|? + |G|?/6%. Substituting in (9.9), we obtain

Ci+Cr+6,/2

G|,
o2 |G|

~V(07) - A%(0T)AN)V(07) < —%]IV(O_)I2 +

which yields (9.8). O

The Lopatinsky condition is necessary and sufficient for maximal L? estimates
[39]. For maximally dissipative boundary conditions, maximal L?> estimates may
be obtained by taking the L? inner product of v against the symmetrized equation
A%, + A%Av, = Af and applying (9.5), (9.8). Thus, maximally dissipative
boundary conditions are always Lopatinsky stable. The following result shows that
the converse is true as well, for some choice of symmetrizer A°:

Lemma 9.11. For any symmetrizable initial boundary-value problem (9.7) that is
Lopatinsky stable, there exists a symmetrizer A® with respect to which (9.7) is
maximally dissipative.

Proof. Equivalently, M = b” A Ab is positive definite, where b € R"~"*" is a
matrix whose columns span ker 5. Let A = S~ 'block-diag{A~, AT}S,

A~ =diag{A1,..., A}, AT =diag{A 41, ..., A,
withA; <... A <0< Apgy < -+ Skk,andsetAO:STdiag{a,...,a,l,...,
1}S, a > 0. Then, AYA is symmetric and M = —Mja + M, with M| =

b'STE Sh, My = b ST E;Sb, where E; := block-diag{—A~, 0} and E, :=
block-diag{0, A1} are symmetric positive semidefinite. Thus, we may achieve M >
0 for a sufficiently small if and only if M, is positive definite, or b Nker E2S = @:
equivalently, b is full rank on the stable subspace ker E2S of A. O

Remark 9.12. Lemma 9.11 is special to one spatial dimension. A generalization to
multi-dimensions is given by the (pseudodifferential) frequency-dependent sym-
metrizers of Kreiss [12,39].

9.2. Energy Estimates

We are now ready to carry out the main energy estimates, adapting the argument

of [48]. Define the nonlinear perturbation v(x, t) := W(x +ct — n(t), 1) — W(x)

as in the statement of Proposition 9.3, where ct — n(¢) denotes subshock location;

for definiteness, fix without loss of generality 7(0) = 0. As computed in [48, Eq.

(3.1) p. 87] the interior equation (4.1)(i) for v may be put in the alternate quasilinear
form

v+ Avy — Ev = My ()W, + Ma(v) = (1) (W +v), (9.10)

where A ;== dF(W(x +ct — n(t), 1)) — cld, E := dR(W(x + ct — n(t), 1)) and

Mi() = A = A(.0) = O(v).  Mav) = (0(&2)) -
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Followmg [48], let AV = AO(W(x + ct — n(t),t) denote a symmetrizer
of A as guaranteed by Lemma 9.9 with values AO(W(Oi 4+ ct — n(t), 1)) to
be specified later, and factor AYA = (AO)Z O0DO! (AO)Z, or, equivalently, A =
(AO)_% 650’(1&0)%, Where~0~ is orthogonal, O’ = O, and C? as a function of
(u, v) (see Lemma 9.9) and D = diag{ay, a>}, where a; denote the eigenvalues of

A, indexed in increasing order. Define the weighting matrix «(x) := diag{og, a2},
where «; > 0 are defined by ODE

(aj)x =—C*sgnaj|Wx|ocj, a;(0) =1, 9.11)

Cx > 0 a sufficiently large constant to be determined later, and set
0= (A%20a0'(A%?. 9.12)
Let K| := K(Z[), 2a0~’(140)%E(AO)_% 0+ N), where K (-) is as in Lemma
9.7, and N is an arbitrary matrix with |N |C,%4I < C(Cy) and vanishing on diagonal

blocks, to be determined later, and set
” F0\E A x At A0y 4
Ky, = (A")20K,0'(A")2. (9.13)
Finally, define
EW) = (AQuyy, vex) + (v, Kava) + Mol (9.14)

for M > 0. Since, for v € H?, |UX|L2 can be bounded by C <|v|L2 + |vxx|L2) for

some C > 0, then the functional defined in (9.14) is equivalent to |v|)2L[2 if M is
large enough.

Assume without loss of generality that vy € H? (since we may pass to the H>
limit by Proposition 9.1). Then, following to the letter the computations of [48],
we obtain using (9.5)—(9.6) the key estimate

% = _9€+C(|v|32 + |77(t)|2) +[vix ‘AgAvxx]+f](t)[vxx 'Agvxx] — [y - Kqvx]

(9.15)
for some C,0 > 0, where the terms [vyy - AO Avxx] () [Vxx - A oVUxx] and
—[vy - Kqvy] arising through integration by parts at the boundary x = 0 of
(Vyx, A9 Avxxx) (t)(A Vxxs Urxx)» and (vyy, K vy) through (9.5) and (9 6) are
the sole differences from the whole-line estimate of [48].

Proof of Proposition 9.3. For clarity, we carry out the proof for the lowest level
of regularity s = 2; higher orders s > 2 go similarly. Starting with the H? estimate
(9.15), it remains only to show that the new trace terms [vy - ABAUM], () [vxx -
Ag Uxx ] and —[vy; - K « V] in the righthand side may be absorbed in other terms, after
which, multiplying by % and integrating in time from O to ¢ as in [48], we obtain
(9.2), completing the proof. To this end, recall the nonlinear boundary condition
(4.1)(ii) at x = 0F, written in the alternative form

n W1+ [Av] = =[N (v, v)] = O(Jv(05)?), (9.16)
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where now Ny (v, v) := F(W) — F(W) — (A + cld)v.

To obtain boundary conditions for v,,, we may differentiate (9.16) with respect
to ¢, then convert any ¢-derivatives of v into x-derivatives using the interior equa-
tions. Namely, we may first differentiate (9.10) with respect to ¢, x and differentiate
(9.16) with respect to ¢ to get estimates

v (0%) = O(Jvx(0F)] + [v(0D)| + [n:]) < C¢,

Vi (0F) = —Av (0) 4+ O(Jux (09)] + [0(0)] + [1:(09)] + ¢ v (0],

Vi (0%) = A%0,(0%) + O (v (05)] + [(OF)] + 0] + ¢ [vr (0D,
W7 (=mloi] = [Aro] = [Av] - [2420])

(W17 W]
= O(|ve (09| + [v(05)] + Ine]) < C,

Nt =

9.17)
where ¢ is the small constant chosen in Proposition 9.3. Then, by differentiating
(9.16) with respect to ¢ twice and applying estimates (9.17), we get the second-order
boundary conditions

MW+ [Avee] = g = 0005 + O] + 0] + £ [vax (05, x =0.
(9.18)
As noted in [43,44], a key point in dealing with the transmission problem (9.10)
coupled with boundary condition (9.18) is that one may eliminate the front variable
¢, converting the boundary condition (9.18) to a standard boundary condition

M[A3 v ] = Mg, x=0, (9.19)

where M is a row vector which spans the subspace [W]E.

Another key point [43,44] is that one may double the coordinates and convert the
transmission problem to a conventional half-line problem. That is, forx € (—o0, 0),
defining

[ v _ | nld 0
V(x, 1) := [v(_x’ t)], x () = [ 0 —n(t)Id:| ’
_ [Ax,D 0
A(x, 1) := [ O—A(—x,t):|’

and similarly defining doubling matrices IE, W, M[;, and M, in the doubling coor-
dinates, the interior equation (9.10) reduces to a equation on half-line:

Vi+AV, = EV4+M; V)W, +Mo(V)—x (1) (W, +V,), x € (—00,0), (9.20)
from which we deduce

(Vaodi + AWVin)s = (EV + My (VW + Ma(V) = x(OW + V)
—2A Vi — AV, (9.21)



258 ZHAO YANG & KEVIN ZUMBRUN

In the doubling coordinates, the second-order boundary conditions (9.19) becomes
BV, (1,07) = —M[A3vy] =: G, (9.22)

where B := ( M M ) A3(t,07). We then see that the half line problem (9.21)-(9.22)
is of the form (9.7) with V, in the place of V and the previous Kreiss theory [39]
may be applied. O

Corollary 9.13. Under the assumptions of Proposition 9.3, there exists a choice of
symmetrizer Ag 0 = blockdiag{AO(O’), A%(0™)} such that the half-line prob-
lem (9.21)-(9.22) is maximally dissipative with respect to Ag.

Proof. As noted previously (see Remark 11.3), Majda’s shock Lopatinsky condi-
tion for the subshock follows in the high-frequency limit from Evans—Lopatinsky
stability of the relaxation profile. From this, it follows in turn that the Lopatin-
sky condition is satisfied for the doubled half-line problem (9.21)—(9.22). Ap-
plying Lemma 9.11, we find that there exists a symmetrizer A? with respect to
which the half-line problem is maximally dissipative, that is, A? is positive defi-
nite on the kernel of the boundary condition. Recalling that A is block-diagonal,
we find that the block-diagonal part of A must be a symmetrizer as well, and,
moreover, is positive definite whenever the full matrix is, in particular on the
kernel of the boundary condition. Thus, we may take without loss of generality
A%(0™) = blockdiag{A%(0™), A°(0")}. Now extend the definition of A? from 0~
to —oo and define o by (9.11) and A by (9.12). Because a(0%) = Id, A2 (0™, 1) is
equal to A°(0~, 7). Therefore, the half-line problem is maximally dissipative with
respect to AY. O

Remark 9.14. The step in the proof where we extend the value of A° from the
boundary 0~ to —oo is the point where we require the property that there is only a
single subshock. If there were subshocks at xo < 0, then we could not necessarily
simultaneously prescribe dissipative values at )c(‘)|r , 0™ and also achieve smoothness
on (xg, 0).

Applying Lemma 9.10, we have
[V - Agfivxx] = -V, (07) AgA(Oi)“/)rx(Oi)
== 0V (0 + 0 (V207
HVOP + 2 + 2V (0D)2) ©9.23)
0 _
= =5 (I )P + 1 09)2)

+ 0 (10 @5 + ) 2 + i)

where in the last inequality we take ¢ < 6 to eliminate O(§2|Vxx (O’)|2). The
term O (|n; |2) is evidently absorbable in (9.15), and, by Sobolev embedding,
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e (0 < 0[50 < Clvaxl72 + CO[vI7,,
WOH* < vl31 < Zlvel7 + C@OIvl7a.

hence O (Jvx (0%)[% + [v(0%)]?) is controlled by ¢& + C(E)|v|iz.

Because 1(#)[vyy - A~g Uxx] = O(C|vxx (Oi)|2), the trace term 1 () [V - A~g Vx|
can be eliminated by taking { < 6. N
By (9.17) and Young’s inequality, the term [v,; - K, vy] may be estimated as

[Vye - Igavx] = _[Avxx : kavx]
+0 (0@ + 1O + e + ¢ |ue (09)2)

By our estimates just above, the terms within the “Big-Oh” term O(. . .) are either
controlled by & + C(|v|iz + 17(1)|?) or eliminted by —0|V . (07)|?.
Moreover, applying Young’s inequality and Sobolev embedding, we have

[Avyy - Kavx] < Coec (05) 2 + C(0) 02 (05) 1 < £ vyr (0F) ]
+C(@)C |vxxl72 + CE, DI

Taking ¢ <« 0 and ¢ < Z, the estimate (9.15) thus becomes

dg 2 . 2
7S 0& + C (v, + 1)

+ [Vpx - Aglivxx] + () [Vxx - Agvxx] — [vxs - Izavx] ©.24)
< = 0"+ oxx (0D ) + C (2, + (P,

implying, and slightly improving, the estimate % < —0& + C(Ivlf2 + 17(0))%)
required to finish the argument (the same one established in the smooth case [48]).
This completes the proof. O

10. Nonlinear Stability

With the above preparations, nonlinear orbital asymptotic stability now follows
essentially as in [48]. After, we obtain nonlinear stability/boundedness of the phase
n by a bootstrap argument using the “Strichartz-type” bounds of Section 8.3, a
new aspect of our analysis not present in the smooth case. Finally, by a further,
approximate characteristic estimate, we establish convergence of the phase and full
phase-asymptotic orbital stability. Let v(x, 1) = W(x + ct — (), 1) — W(x) be
the nonlinear perturbation defined in Section 3. For s > 2, define

g1 . 1
(o= s (el (02 TP+ @I +9T). 10D
0<s<t,2<p<oo
Lemma 10.1. Under the assumptions of Theorem 1.2, for all t > 0 for which
a solution v exists with {(t) uniformly bounded by some fixed, sufficiently small
constant, it holds that

¢(1) = Ca(Jwol +2(1)?). (10.2)

LInHS
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1 1
Proof. Following [48], we show in turn that each of |v(-, s)[,, (1 + s)f(l_F) and
[7(s)|(1+ s)% is separately bounded by C(|U0|leH2 + g“(t)z), for some C > 0, all
0 < s <t,solong as ¢(t) remains sufficiently small.
(Jv|Lr bound.) Applying integral equation (5.17)(i) of Proposition 5.6, we find
that v may be split into the sum of an interior term

vr(x,s)

oo s o0
= f G(x,s; y)vo(y)dy +/ / G(x,s —1; y)Is(y, T)dydr
00 0 —00

= [ Gtsymmay+ [ [ 76,0 = ma(mo o)+ NGz, o) )dze
00 0 J-oo

+f/ H(x,s—t;z)(n,vy(z,r)-i—Nl(v(z,t))y)dzdr
0 J—o0

s o0 0
+/o /m Gl s =1 y) (Nz(v(y, r))) dydr

+ /;Y [G(x, s —T; ,)<n,v(-, T) + Ni(v(, t)))]dt

=: v1(x,s) +vpa(x,s) +vi3(x, s) +va(x, s) +vps(x, )
(10.3)

involving the Green kernel G and a boundary term

vp(x,s) = /S K(x,s —t)Bs(r)dt (10.4)
0

involving the boundary kernel K, where [-] as elsewhere denotes jump at y = 0.
Noting by Lemma 8.2 that G satisfies exactly the same LY — L” estimates as
the corresponding kernel in the smooth case [48], and that interior source terms /g
have the same form, we find by the same computations as in [48, proof of Thm.

1 1
1.2] that |v71 (-, s) + v72(, 5) + 013G 8) 4+ viaC, )| (1 + 5)2977) is bounded
by C(|U0|L1ﬁH2 +¢(7)?). The L? norm of the additional term vy5(-, s) arising from
integration by parts may be estimated as

/os :C_;(x, s —T; ')<77tU(', ) + Ny (v(-, T)))]dt

LP(x)

< fs G@x,s —1: 0—)<n,u(o—, o) 4 N (w(0~, r)))dr
0

LP(x)

+ / Glx,s —1: 0+)<n,v(0+, )+ Ny (w(0™, r)))dr
0

LP(x)

Using the pointwise estimate on C_}(x, t;y) =S 14 R Theorem 7.1, we thus have®

6 Notably, there is no scattering term S! when taking y = 0+,
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/S Gx,s —1: 0—)(n,v(0—, )+ N (00, t)))dr
0

LP(x)

/S R(x.s —1: O_)(ntv(O_, )+ N @O, t)))dt
0

LP(x)

< / C+s— r)_l+$§2(t)(1 + 1) lde
0

< CeX(1+9) % log(1 + %) < Co(t)(1 +5) FwtY,

1 1
Therefore, |vy5(-, s)|zr (1 + s)f(l_ﬁ) is also bounded by C(Jvol,, ., + (). It
remains only to treat the new boundary portion vp. Recalling from (4.1) that

Bs(ni, v) = —mi[v] = N1 (v, 0)] = O((mi| + [0(05))?),

wehaveby ([v(-, T)|r> + |7:(T)]) (147)7 < ¢(1)that|Bs(v)| < CZ(02(14+1) 7.
By Lemma 8.3 we thus get |vp (s)|r < Ie’ﬁ(x")BS|L1(0,S)—I—Ie’ﬁ(“'")BSle(o,s) <
C{(t)z(l +5)7L giving the result.

(|] bound.) Similarly, by integral equation (8.1) of Lemma 8.1, we have that n

may be split into the sum of an interior term

n1(s)
- [ Gie(s: y)vo()dy + / G1(0; ) Is(s; y)dy

—0Q —00

s o0
+/ / G (s —7; Y)Is(y, T)dydr
0 —00
oo

_ / Gie(s: y)vo(y)dy

—00

[ 60 e + N )i

% . 0
+/_OO G1(0; y) (Nz(v(y, S))) @

[ Gt = ma(mot o)+ Nitwiz, o) )dzae
0 J—oo

s oo ) O
+/0 /_oo Gu(s—r15y) (Nz(v(y, T))>dydr

+/ / Hi(s —7; Z)(mvy(z, 7) + Ni(v(z, ‘L’))y)dZdT
0 J-o0
+G10: 9 (mwe. 9 + M)

+ [ [6u6 = wa(nat. o) + Nt o) Jor
0
=: np1(s) + 0r2(s) + 113(s) + 114(s) + 1015(5) + 016(s) + 117(s) + 718(5)
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and a boundary term

i (s) = K1(0)Bs(s) + /0 Kis(s — 1) Bs(v)dr.

For 171(s), n74(s), n75(s), and 16 (s) in the interior term 7 (¢), both the estimates
given in Lemma 8.4 and the form of the interior source term Ig are identical to
those given for the smooth case in [48]. Thus, we have by the same computations
as in [48, proof of Thm. 1.2] that

(1+ )2 (011 )]+ 746 + lirs©)] + lires))

is bounded by C(|vol ., + ¢(1)?). Applying Lemma 8.7 with t = 0, g = oo, we
find

1r2()| =+ 1723 < [0 )v(s, e + (s, HFe < 200 +5)7"

The trace term 7;77(s) and 17g(s) arising from integration by part may be treated
by using the fact that G is uniformly bounded in space and time (8.16) together
with the pointwise estimate on G + = S1 + Ry in Theorem 7.3 to obtain |7;6(s)| <
Ce()>(1 +s)"Vand [777(s)] < Cz(t)>(1 + s)~'. Combining, we get that (1 +
)il (s) is bounded by C(|vol .. +£(0)?).

Likewise, using the fact that K (0) is a constantrow vector, the bound | Bg(t)| <
Ct(1)*(1+1)7", and Lemma 8.5, we find that |7z(s)| < CZ(1)*(1 +s)~ ", giving
the result. O

Proof of Theorem 1.2. (v and n bounds) (following [48, proof of Thm. 1.2]). From
Lemma 10.1, it follows by continuous induction that, provided |vg| <1/ 4C§,
it holds that

LInH2

(1) = 2C2fvol (10.5)

for all + > 0 such that ¢ remains small. For, by Proposition 1.1, there exists a
solution v (-, #) € H® on the open time-interval for which |v|gs remains bounded
and sufficiently small, and thus ¢ is well-defined and continuous. Now, let [0, T")
be the maximal interval on which |v[,, remains strictly bounded by some fixed,
sufficiently small constant § > 0. By Proposition 9.3, we have

LinHS

t
O, < ClO) e +C f e D (P, + ) (0)de
0 L (10.6)

< C(POP, + ) +072,

and so the solution continues so long as ¢ (#) remains small, with bound (10.5), at
once yielding existence and the claimed bounds on |v|zrngs,2 < p < 0o, and |9|.

(Auxiliary (vertical) v bound.) At this point, we have established asymptotic
orbital stability, with sharp decay rates for |v| and the derivative |7| of the phase. To
obtain estimates on the phase |n| and get full nonlinear stability, we first establish
the vertical estimate

t
/ (1492, s)|ds<C, ¥V 1>0, x=0. (10.7)
0
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This follows by substituting for v(x, s) the reprentation v(x,s) = v;(x,s) +
vp(x,s) given in (10.3)-(10.4) and applying the bounds of Lemma 8.8, together
with the bounds

s IN2(u (e, 9) 2 = C(fvlre + D]v] g2

771”(', S) + Nl (U(', S)) 12

<C+97,
M) + N@C, )| = Cllvles 1Dl < €A +9)7,

0y (0 $) + N@C )| = Cllole + DIy e = €1+ 974,
(10.8)
following from our previously established estimates on v, 1. Here, we have used
Sobolev embedding to bound |vy |10 < vy < C(1 + s)_1/4.
(n bound.) Continuing, by integral equation (5.17)(ii) of Proposition 5.6, we
have that n may be split into the sum of an interior term

oo

t o0
nz(t)=n0+/ Gl(t;y)vo(y)dy+/0/ Gi(t —s;9)Is(s, y)dyds

—00

o0
= no+f G1(t; y)vo(y)dy
o0

t o0
—i—/ / Gly(t—s;z)(n,v(z,s) +N1(v(z,s)))dzds
0 J—o0

t o0 . 0
+/0 /,oo Gt =3 (Nzw(y, s))) dyds

t
+ [ [are=sia(moe s+ Mo, o) o
=0 +nr1(t) +nr2(0) +nr3@) + n1a(0),
(10.9)
and a boundary term

t
np(t) = / Ki(t — s)Bs(s)ds. (10.10)
0

By the boundedness of |G| (8.16), we find that | (¢)| is bounded by C|vg|; 1. By
estimates (8.17) and (8.18), together with vertical estimate (10.7), boundedness of

[n12()| + [n73(2)| follows from
! 1
C/ 14+t—ys) 2 <|v2|Lq + Ir']vqu)ds

0
t -

+C/ e 1) 1y 4+ Ni(v)] 0 ds
0
! 1

SC/ (I+1—s5) 2(vlre + [9D]v|Leds
0

t -
+C/ e 1) |y] oo (Julpee + 7)) ds
0
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t
< c[ A+t —s) W20 +5)" T2ds
0

t —
—i—C/ e 1) (1 4 5)"ds
0

<C¢@t)? (10.11)

and
/Ol /Z W (@) 7(s)v(z, 8) + Ni(v(z, 5))| dzds,
/Ot /_Z ¥ @I IN2(v(z. 5)| dzds
= Cfot foo e Fe ()1 + )7 |u(z, 5)]dzds (10.12)
- cfoo e e @) /Ot(l + 57 2)u(z, 5)|dsdz

—0o0

< Cc(r)/ e lldz < cr ).

Using the fact that G is uniformly bounded in space and time (8.16), together with
vertical estimate (10.7), we find that

t
@) < [[616 =507 (mo0™.9) + M (w0~ 57)

t
+/
0

t
< c/ 0(O%, )[(J0(0*, 5)] + [i](s) ds
0

ds

Gi(t —s; 0+)<ntv(0+, s) + N1 (v(0T, s))) ’ ds

t
< czm/ (145" 2[u(0%, )[ds < CZ(0).
0

Applying Lemma 8.6 and using vertical estimate (10.7), we find that |np(?)| is
bounded by

t t
C/O |Bs|(S)dSSC/O v (0%, $)|(Jv(0%, 5)| + [7](s)) ds
t
< ccm/ (1452 [u(0%, )[ds < C2(0).
0

Summing, we obtain the claimed bound (1.5)(iv) on |n(?)|, completing the proof.
(n convergence.) Finally, we establish (1.5)(v) and convergence of the phase 7,

by showing convergence as t — oo of each of the terms in the decomposition of n

given in (10.9)—(10.10).

ni2, Ni3:
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Term 717> may be decomposed as

t [e)e]
n12(1)=// 1/f(z)<mv(z,S)+N1(v(z,S)))dzds
0 J-oo (10.13)

t o0
+/0 / (Giy(t —s52) — ¥ (2) (n,v(z, §) + N1 (v(z, s)))dz ds.

By estimate (10.12), the first integral is absolutely convergent and thus converges
to a limit as t — +00. We show now that the remaining part of 1> (#) converges to
zero, completing the proof. The part corresponding to integrating high frequency
term H against /g converges to zero by estimate (10.11). It remains to show con-
vergence to 0 of parts corresponding to integrating Gaussian scattering term S and
faster-decaying R terms with n;v(z, s) + N1(v(z, s). These parts are bounded by

t 0 (!—x+('é.7y)2
/ / e~ Mi-»
0 —00

[o'e) (tfsfall. y)2 t
+/ ¢ M(ti; KXi—s>1 é-( )|v(y’ S)| dy ds
NVt =)L +5)

0
t—1 t—s
[T OOy
R NVt —s)(1+5)
('2v7
—1 =S (t—s+c} _y)? o] (t=s—c]  »?
L R | sl
0 s o t—s)1+s)
(10.14)

where

ff—l / i _EORO DL
N S [t

26,—

t—1 2
1 1 t—s C(1 r—
< / St e {()—s ds
0 26‘1’4_ 26‘2y_ I+s

converges to 0 at rate t=1L

To show convergence to O of the remaining part in (10.14), we establish an
improved “approximate characteristic”” estimate (10.16) on the variable v, giving
different decay rates based on approximate domains of influence of tail and center
contributions of the initial perturbation vg. To this end, motivated by (10.14), it is
convenient to define

Fyi={(,s): —a_(t—s5)/2<y<—ay(t—1s5)/2; 0=<s <t}

(10.15)
yei={y: —a_t/2 <y < —ay1/2},

where ay = —1/c| ,, a_ = 1/c} _, witha_ > 0 > a4. With this definition,
we have that backward characteristics originating outside I'; stay outside the set,
lying strictly in its complement I'f. From this fact, we obtain using our previously
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established bounds on v, 7, and separating out principal, approximate equilibrium
characteristic parts of the Green kernels from remaining, faster-decaying terms, the
more detailed approximate characteristic estimate

G, )2 ) < € +s)—1/4|vo|L1(yf) +CA+5)" Vgl L 1ays. (10.16)

valid for any v > 0, as we shall show further, below.
With the aid of the bound (10.16) and Holder’s inequality, the remaining part
in (10.14) may be estimated as

t—1 —a_(t—s)/2 (t7s+c% 2
/ / e_ M(—s)
0 —00

o0 (tfsfc] y)2
+/ o — c@v(y, s)| dy ds
—ay (t—5)/2 Mt =s)A +s)

t
< c;(t)/o A+1=)" A+ 572, 9200 ds

t

= Cf(t)|UO|Ll(yf)/(; A+t —s5)"Y*1 +5)734ds

'
+ Cs®)|volp1nps / 1+1— S)71/4(1 +s)—]+uds
0
= CeOvolp ) + CEWlvolpings (1 + 7YY 50, ast— oco.

This completes the proof that 17, converges to a limit at arate given by the slower of
|vo| 1 ) and e(141)~1/4+V where ¢ is the L' N H* norm of the initial perturbation
vo. Convergence of 773 can be shown similarly, with the same rate.

To prove (10.16), note in decompositions (10.3)—(10.4) on v(x, t), by previ-
ous estimates, the whole-space L? norms of terms vy3, vy4, vss, and vp decay
at faster rate. That is |v;3(-, s)[;2 < C(1 + s)_3/4|v0|leHx, lvra(-, 8)|2 < C
(1 + )" 2ol pipgss sl < CA 4 5) /4|l L1 ys, and [vp (-, )| 2
<C+s5)" |11Ags- And, by Theorem 7.1, the whole-space L? norms of parts
contribute to vy1, v72 from integrating with S 1 Sl,, and

(s—t=c} _(r=y)? 1 ol
T MGs—-1) —uv|x
X(sff)zl, y<x<0€ M=) 0 s T e

terms decay at slower rate (1 + s)_1/4|v0|LlﬁHs than the rate (1 + s)_1/2|vo|LlﬂHs
of L? norms of parts from integrating with the other terms. So we may focus on
the parts that are contributed from S!, Si, and

1

(s—r—czf(z\’*y))z 1
D L <_e—9|"|> = 0(S)(x.5s — 7. ).
s—T

X(s—r)zl, y<x<0

This leaves us with the task of estimating the scattering part of vy, giving an integral
of form

/ S'(y, 55 2)vo(2) dz, (10.17)
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and the scattering part of vy, giving an integral of form
N o
/ f $y0s =7 ) (O ) + Ni(v(z, 7)) )dz de. (10.18)
0 J—oo

To estimate the Lz(yf_s) norm of (10.17), notice that for (y, s) ¢ I'; a}nd Z €V, !
gives atime-exponentially decaying contribution |S' (y, s; )| < Ce™My=2=axsl/ /5,
hence we may bound

‘ 1S1 (-, 53 2)[wol(2) dz < Ce vl 2.

Yt

L2y

s

Meanwhile, the remaining contribution may be estimated as

| 1s' s alvl@de]

ve L2y

< [ ISCss Dl2lvol(n) dy < C+ )7 ool ey
Y

Summing, we find that the L2(V;‘;s) norm of (10.17) is controlled by the righthand
side of (10.16).

The estimate for (10.18) goes similarly, noting for (y, s) ¢ I'; and contributions
of source n;(t)v(z, ) + N1(v(z, 7)) originating from (z, t) € Iy, the propagator
S; (y, s — 1; 7) is exponentially decaying in s — 7 and |y — z — a4 (s — 7)|, hence,
using our prior bounds on (Jv| + |9])|v|(z, ), the total of such contributions is
bounded by C(1 + 5)~"/2|vg| 1. On the other hand, defining

lv(:, S)|L2(y;‘_x)

() = su : (10.19)
é‘ 0552[ (1 + S)_1/4|UO|LI()/,C) —+ (1 + S)—1/2+U|U()|LIQHS
we obtain that |n,(r)v(z, 7) 4+ Ni(v(z, r))|L2(yf ) may be bounded by

Ce1 4+ e, Dl

= CeOFO(A+0 ool + 1+ ool ).

Applying Young’s convolution inequality yields

/ / S)l;(~, s — 7 2)(n(Dv(z, ) + Ni(v(z, 7)))dzdt
0 Jy

s
S /
0 L2(yEy)

s
< /O 1SyCos = 2| [m (v 0 + NiwE D) 2,0 dr

T

LZ(VII;A')

dr

/ SHes — 1) (m (0 1) + Ni(v(z, 7)))dz
yC

t—1
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< / (45 =7 2cei® (A + D7 ol + 0+ 07 ol g ) de
0

= CeOF O +97 ol + 0497 ol i)
from which we obtain, combining this with our previous estimates,

|U('7s)|L2(y;‘;S)

<C(l+ ;(r)E(r))((l + )7 ol 1y + (1 S)_1/2+U|vo|mm>-

Dividing ((1 +5)" V4 [11 ) +(14s)"1/24v |vo|LlﬁHx) and taking the supremum
over 0 < s < t, we obtain

t@) < C(1+20em),

yielding 7 (1) < 2C for ¢(z), or equivalently, |v| Lings» sufficiently small. By
definition (10.19), this yields the desired bound, (10.16).

Nt :
Integrating (7.12) gives G1(t; y) = G1(0; y) + fé(Hl + 814+ R1)(s; y)ds and
thus

o0 t
nr1(t) =/ <G1(0; y)+/0 (H1+51+R1)(s;y)ds) vo(y)dy.

—00

Applying Theorem 7.3, for | < #; < fp, we have the estimate

e8] 15
() —nn@)| = ’/ / (Hi + S1 4+ R1)(s; Y)vo(y) ds dY‘
—00 J 1

oo
S/
—00

[ee] %)
+/ f (S + R1)(s: )1 ds [vo(»)]dy,
—00 J 11

lvo(y)Idy

n
/ Hi(s: y)ds
1

where

.

< Ce Myl — 0, asty, tp — 400,

%)
/ Hi(s; y)ds
4

wo()Idy < C / e [ug(y)]dy

[y[>cty
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and

o0 %)
/ / (51 + R1)(s: )] ds [vo(»)dy
—o0 J 1

([,

t
. x
scf/ —e—st|vo<y>|dy+c// 1515 )1 ds [vo(»)[dy
Yy Y \/E )/,‘1" 1

| 1 _
C/ erfc W |U0(y)|dy + C|UO|L1()/;") < Ce tl/(ZM)|U()|LI
¥ !

t
+ C|U()|L1(yt(1?),

)/ 15155 )] ds [vo(y)ldy
13

IA

where we have used the estimates erfc(x) < ¢~ for the error function and
/; 1°° 0(y, s)ds < C, Yy foramoving Gaussian kernel. Therefore ;1 (¢) approaches
a limit at rate |vg| 1 o)

nia :
Again using G(t; y) = G1(0; y) + fot(Hl + S1 + R1)(s; y)ds, we have for
1<t <,

n14(t2) — n14(t)

_ / [Gl(o; D ()0 9) + Ni (v, S”)]ds

1 h—s 15) h—s
+ [(/ [+ ) (Hy + 1 + Ri)(x: )d
0 t1—s 1 0

T(nt(S)v(-, s)+ Ni(v(, S))) dS] ;

where the first part is controlled by fttlz (14+5)"12|v(0%, 5)|ds and by vertical esti-
mate (10.7) it converges to 0 as #1, 1, — +00. As for convergence rates, replacing
integrals in Lemma 8.8 by tail integrals ftoo, we find that the convergence rate of
integral (10.7) is (1 4+ 7)~'/4+V, namely

o0
/ 1+, s)ds<CA+n)"Y*Y v r>0 x=0. (10.20)
t

It remains to show that the remaining part converges to 0. Straigntforward compu-
tation shows that f[tlz:ss Hy(t; 0%)dr = 0, with fézﬂ Hi(t;0%)dr = H;(0; 0%)
identically equal to some constant vectors. Thus, the integral of the term involving
Hj can also be controlled by fttf(l + )7V 2|v(0i, s)|ds, hence converges. The

integral of the term involving S; + R; can be controlled by

1 ph—s o rh—s
(/ / +/ f ) 18175 05)lde | (5)0(0%, 5) + Ny (0%, 5))] ds
0 t—s 1 0

oo 1 N
< C/ / X.>1—=e Mdr
0 1n—s - \/?

mEVOF, ) + N @OF, 5))| ds
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nopoo L

+C /n /1 ?e Mdrt

< C/Ot]l erfe(y/(ty — 5)/M)

5]
—l—C/ (1 +5)"2)0(0%, 5)| ds
t1—1

n@VOF,5) + N (@OF, )| ds

mVO%, ) + N @OF, )| ds

n-1 1H-s
< C/ e ()21 +5)" ds
0

n
+c/ (14" Y2 0F, s)|ds — 0, as1,t — +oo.
t1—1

Combining, we find that 174 converges to a limit at rate (1 + p)~1/At,
nB :
Convergence of n;p(t) can be proven similarly by applying Theorem 7.4.
This completes the proof of convergence 1(¢) to a limit 7.,. Collecting esti-
mates, we obtain a total rate of convergence given by the slower of Ce(141)~1/4+V
and C|v0|L1(V;-), verifying (1.5)(v). O

Remark 10.2. For algebraically-decaying initial perturbation |vg(x)| < C(1 +
|[x)™", with vy € H, s > 2, our estimates give convergence of the phase 7 at rate

C(l+nt=r forl <r <5/4,

t) — <
M@ =m0l <4 0 iy 144 forr > 574

forany v > 0. For subalgebraically-decaying perturbations, essentially the same ar-
gument gives rate [1)(t) —noo| < Ce(14+0) ™Y+ Clvol 11 (- (1—vya_r.—(1—v)a, 1)
forv > 0,C = C(v) > 0, arbitrarily close to the expected rate C|vol 11 (—a_s,—a, 1)
described in the introduction.

Remark 10.3. Our argument for phase-convergence, based on approximate char-
acteristic estimate (10.16), though it may appear to be limited to the case of a scalar
equilibrium system for which all equilibrium characteristics approach the shock,
is in principle generalizable to arbitrary relaxation systems of the type studied in
[48], and to the class of systems of viscous conservation laws studied in [50].
For, as noted in [48,50], non-decaying contributions to the phase shift 1 consist of
products of Gaussian scattering-type terms multiplying constant projections, which
projections annihilate vectors in outgoing characteristic modes, “seeing” only in-
coming modes. Thus, to obtain asymptotic phase-convergence, it is sufficient to
prove an approximate characteristic estimate of form (10.16) on incoming charac-
teristic modes only, a task to which the present argument structure is in principle
still suited. To carry out such an estimate and obtain phase-convergence in the gen-
eral system case, assuming only L' boundedness of the initial perturbation with no
algebraic rate of decay, would be a significant advance in the theory.

Remark 10.4. One may deduce from (5.17)(ii) that G1(0; y) = 0 for y # 0, by fi-
nite propagation speed for the linearized problem /s = 0, considering perturbations
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vanishing in a vicinity of y = 0. Similarly, by conservation of mass principles, one
may deduce that lim;_, o, G1(¢; ¥) = («, 0)T for some constant «; see Remark
1.3. However, we neither require nor derive these here.

11. Numerical Verifications

In this section we verify numerically the spectral stability assumptions made in
the analysis.

11.1. Numerical Calculation of the Evans—Lopatinsky Determinant

For robustness of numerical implementation, let

wi,— (A, x) = e =T x)e” =W () = T (A, x)z1,-(A), x <O.
(11.1)
We find that the w; _ solves

w = (A—I(E—u —Ax)—yl,_) . (11.2)
In wy,—, the Evans—Lopatinsky determinant (4.19) becomes
A =det ([AW — R(W)] A0 )wi —(2,07)). (11.3)

11.1.1. Change of Independent Variable Profile H (x) solves (2.14). The fact
that H' < 0 for x < 0 allows us to make the change of independent variable
w(A, H) = w(X, x) for system (11.2), yielding

H' = (A_I(E Al — Ay — yl,_) . (11.4)

The Evans—Lopatinsky determinant (11.3) becomes
AW = det ([AW — ROW)] A(H)w (A, H,) ), (11.5)
with [-] = |y, — ‘|u,. By this change of independent variable, we convert to a

problem on the finite interval [ H,, 1] and introduce H = 1 as a singular point in
ODE (11.4). We then may use the hybrid method introduced in [36] to calculate
mode w(H ), combining power series expansion with numerical ODE solution.

To be specific, we expand w(H) as a power series of in the vicinity of H = 1
to write

o0
(A, H) =Y cy(F, Hg, M)(H — 1)". (11.6)
n=0
Truncating and evaluating the series at some H_ € (H,, 1) gives approximations
N
Wk, H.) ~ch(F, Hg, ) (H — 1) := w_. (11.7)
n=0
We then evolve ODE (11.4) from H_ to H, with initial condition w_ to get an
approximation for w (X, Hy) which is then substituted in (11.5) to obtain an ap-
proximate value of the Evans—Lopatinsky determinant.
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11.2. Numerical Calculation of the Evans Function (Smooth Case)

In this section, we study the spectral stability of small amplitude traveling

waves, as depicted in Fig. 2c, using the Evans function. In the small amplitude

region Hg < Hp < HR]HF2+ VZ]HF, we first see conditions (4.10) become

Ryp—(A) >0, Ny (1) <0, foralMrA >0, F<2,v>1
1+/1+4F (L8

Ry +(A) >0, Ny (X)) <0, forallMr >0, v < —F

We then define the corresponding Evans function, following [1,25,47].

Definition 11.1. Let v; _ (A, x) (v2,+ (A, x)) be decaying mode as x — —o0 (x —
+00) of eigenvalue equation (11.9)

W = (A’I(E—)J—Ax)> . (11.9)
The Evans function D (A, xg) is defined as
D(A, xg) = det(vl,_()\,xo) v2,+(k,xo)). (11.10)
Again for numerical robustness and efficiency, we rescale the modes by

wi (A, x) = e_V'v‘()“)xvl,_()», x), w24+, x)= e_”2*+()‘)xv2,+()», x)
(11.11)
to find that wy _, wy 4 solve

w = (A’I(E Al — Ay — yl,_) w, w = (A’I(E Al —A) — y2,+) w,
(11.12)

respectively. Performing the change of independent variable wi (A, H)
=wi (A, x)and wa + (X, H) = wa +(A, x), we find that w; _, wy 4 satisfy

HW = (A NE-A—A) —y1 )0, H® =(A(E - —Ay) — yo4) D

(11.13)
We then expand w1 —(H), w2, +(H) as power series
[ee)
b1, H) =Y ¢, (F, Hg, W) (H — )",
n=0
~ (11.14)
4 (A, H) =Y ¢F (F. Hg, 2)(H — Hg)".
n=0
Accordingly, in H coordinates, a rescaled Evans function is defined as
D, Hy) := det (W1~ (k, Hy) W2, (X, Hy)) (11.15)

for some H,, Hp < H,, < 1.
Note that |y2 4| > |y1,—|. Thus, it is numerically more robust if we evaluate
D(A, -) at some H,, closer to Hg. (In fact, we find this in practice essential in order
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to do computations for even reasonably sized | 1| of order one.) In the extreme case,
we only evolve (11.12)(i) toward Hg and never evolve (11.12)(ii) towards 1. Thatis,
after evaluating the truncated series (11.14) at some H; , Hr < H, < H; < 1, we
evolve (11.12)(i) from H; to H,. (Note, the numerically calculated Evans function
differs from the defined one by a nonzero analytic function, but this is harmless as
we are searching for roots.)

11.3. High-Frequency Stability

Using the result of Lemma 6.2, we now prove high-frequency stability of both
smooth and discontinuous hydraulic shock waves.

Nonvanishing of Evans—-Lopatinsky determinant (4.19) at high frequency.
Evaluating (6.16) at x = 0~ and substituting in the second column of (4.19), yields

1
A D)wy,—(4,07) = A0)R1(07) + O/|A]) = =————=R1(07) + O(1/|2A]),

n1(07)
(11.16)
where R; is the first column of R.

Proposition 11.2. For any F, Hg, there exists C(F, Hg), such that A()\) does not
vanish for all R, > —n, M| > C(F, HR).

Proof. Substituting (11.16) in the Evans—Lopatinsky determinant (4.19), in the
high frequency regime, we have

A ( Hg — H. —FH,(JHg + 1)
wi(H) — \ Qr = Qs H*(VHg +1) = F(H, — Hg + H.Hg + H.v/Hg))
A (Hg = Hy) (HOP + VHRH + FHg)’

_ o(),
FH, (VHg +1) +om

AR =— >+0(1)

(11.17)
which is nonvanishing. The constant C should be sufficiently large such that 7,
becomes contraction mapping. O

Remark 11.3. The principal, A-order, term in the righthand side of (11.17) can be
recognized as the Lopatinsky condition of Majda [43] for short-time stability/well-
posedness of the component subshock, considered as a solution of the first-order
part of (1.1) with forcing terms set to zero; see [21,34,71] for similar observations
in the context of detonations. As the first-order system in this case coincides with
the equations of isentropic gas dynamics with y-law pressure (see Introduction),
nonvanishing of this principal part is a special case of the theorem of [43,61] that
shock waves of isentropic gas dynamics are Lopatinsky stable for any monotone
pressure function.

Nonvanishing of Evans function (11.10) at high frequency.
The high frequency analysis of Section 6.1 also applies to the smooth case, yielding
the following result:

Proposition 11.4. For any F, Hpg, there exists C(F, Hg), such that D(A, 0) does
not vanish for all A > —n, |A| > C(F, Hg).
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Proof. In the high frequency regime, following Lemma 6.2, we find that the de-
caying modes vi —, vz + in Definition 11.1 are up to a scalar multiple equal to

AN G+ ENT )+ EN120.3) @1 () )dy

v () = e ( (Ri(x) + O(1/IA])

X 1 1 )
b2 Gy = (822030 + £ N2 Gy + N2t ) 2(19) ) dy (Ro(x) + O(1/1A]) .
(11.18)

Evaluating the Evans function 11.10 at xo = 0 yields
D) = det (R1(0) R2(0)) + O(1/|A]), (11.19)

which is nonvanishing. The constant C should be sufficiently large such that 7,
becomes contraction mapping. O

Remark 11.5. High frequency stability restricts the study of spectral stability to in-
vestigation of the bounded domain {). : X\ > —n, |A| < C(F, Hg)}, anumerically
feasible problem.

11.4. Verification of Mid- and Low-Frequency Stability

The hybrid schemes described in Sections 11.1, 11.2 are implemented in Matlab
and show great efficiency (see Tables 1 and 2 in “Appendix C.2” for computation
time). To determine stability, we fix 0 < r < R and a < 1 and examine the
presence of spectrum within the set

Qr, R,a) ={L—a: N\ >0,r <|A| <R}

Atthe end, we compute numerically the winding numbers of contours A(d2(r, R, a))
and D(0Q2(r, R, a)), that is we discretize 0Q2(r, R, a) as Ao, A1, -, Apy Ant1 =
Ao and calculate the winding number by

n(@) = 5= 3 2(800, A0:1), (n(@) =Y (0o, D(A,-H))),
i=0 i=0

where Z(z1, z2) denotes the angle change from z; to z;. Since A(A) (D(})) is
analytic in A, it is clear that n counts its number of zeros of A(A) (D (X)) within the
set €2.

We have verified that all discontinuous hydraulic profiles are mid- and low-
frequency stable. Here “all" is limited to discretized existence domain F' € [0.05 :
0.05 : 1.95], Hr € [0.01 : 0.01 : Hc(F) — 0.01] (1559 points in total) and
mid- and low-stability is checked for Q := (0.1, C(F, Hg), 0.000001) where
C(F, HR) defined in Proposition 11.2 can be estimated by Lemma 6.1. Note that,
exceptionally, there are 191 points in the low F regime requiring C(F, Hg) > 2000
and one parameter (F' = 0.85, Hr = 0.25) even requiring a C(F, Hp) as large as
1.1664 x 10°. It turns out for these values that for that large %, in the power series
evaluation step, the hybrid scheme cannot move enough distance away from the
singular point H = 1, causing problems in the later ODE-evolution step. Numerics
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are then not robust for these pair of F', Hg. We have restricted C(F, Hg) = 2000
for roughly half of these low-F points, and C(F, Hg) = 100 — 1, 000 for the rest.

See Fig. 5a, b for typical images of contours €2 (r, R, a) under function A(}).

We have also verified that all small amplitude smooth hydraulic shock waves are
mid- and low-frequency stable. Here “all" is limited to discretized existence domain
F € [0.05:0.05:1.95], Hg € [0.99 : —0.01 : Hc(F) + 0.01] (2227 points in
total) and mid- and low-stability is checked for Q := Q (0.1, C(F, Hg), 0) where
C(F, HR) defined in Proposition 11.4 can be estimated by Lemma 6.1. Note that,
exceptionally, there are 18 points in the F' ~ 1 regime requiring C (F, Hg) > 2000.
For the same reasoning, numerics is then not robust for these pairs of F, Hg. We
have restricted C (F, Hg) = 2000 for these points.

See Fig. 5c, d for typical images of contours 92 under function D(}).

11.5. Time Evolution of Perturbed Hydraulic Shock Profiles

We have carried out also a time-evolution study using CLAWPACK [13,14],
illustrating stability under perturbations of large amplitude discontinuous hydraulic
shocks and small amplitude smooth hydraulic shocks. In both cases, all evolutions
clearly indicate stability. In Fig. 1, we display the results under two different pertur-
bations of a discontinuous profile. In Fig. 6, we display the results for a perturbed
smooth profile. Note that for the exceptional points for which we were not able
to carry out a winding-number study out to the full theoretical radius provided by
high-frequency asymptotics, these time-evolution studies bridge the gap between
computed (100 — 2, 000) and theoretical (> 2, 000) radius. For, nonstable eigen-
modes A > 0 with |A| > 100 should be clearly visible on the timescale 0 < t < 20
considered, dominating the solution by time ¢ = 20.
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Appendix A. Decomposition Map

The decomposition of Green kernel function G can be summarized as

G=X|x7y|/t<S(I+II+III)’ I = xi<11+ x>11,
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Xi=11 = xes1 (I +17),

T B | | | | 1
I =g+ 1 =1Ig + I+ I3+ Ig + Iy + Igs,
I? = Ig) + Iz, + I3

| 1 1, 1 |
Iy = X%>els2 T Xe (S + IR + Isan') ,

12 12, . 12
Igy = X%>51R2 +X%531R2’

(A.1)

=111+ TIP =TT+ T+ T+ T2+ 1T+ 1112,

112 := g'2,
in which we see

1,2 1,2 1 1
H>" = Xix—yt<sTa" S = Xjx—y|/t<S,t>1,a/p<eS
1,2
R = Xjr_yiji<s (11 L2+ ]

1 I 1 1 2
TXi>1 (ISI,SS,R X lso T, <IS2R1' + ISZRii) +1 )) :

Appendix B. Integral Estimates
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in which we have used that x — y is comparable to ¢ hence is bounded away from

0 and is greater than % Term Igyg;; is then time-exponentially small.
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Table 1. Times to compute a single Evans—Lopatinsky determinant A g g, (1)

x F, Hg
0.1, Ho(0.1) 0.1,0.002(s) 1,Hc(1) 1,02(s) 1.9, Ho(1.9) 1.9,0.5(s)
—1075 (s) —1073 (s) —1075 (s)

0.0I 0.06 0.06 0.02 0.03 0.02 0.02

1 0.19 0.21 0.04 0.04 0.04 0.03

100 4.59 5.45 0.78 0.87 0.02 0.03

Table 2. Times to compute a single Evans determinant Dg g, (A)

x F, Hg
0.1, Hc(0.1) 0.1,0.9 1,Hc(1) 1,09(s) 1.9, He 1.9,0.99 (s)
+1072 (s) +1072 (s) (1.9) + 1072 (s)

0.01 0.11 0.09 0.06 0.06 0.06 0.05

1 0.25 0.43 0.07 0.05 0.12 0.15

100 3.05 4.84 0.32 0.58 0.73 2.36

We then see that all terms are absorbable in R (7.6).

Appendix C. Computational Framework

C.1. Computational Environment

In carrying out our numerical investigations, we have used MacBook Pro 2017 with
16GB memory and Intel Core i7 processor with 2.8 GHz processing speed for coding
and debugging. The main parallelized computation is done in the compute nodes
of IU Karst, a high-throughput computing cluster. It has 228 compute nodes. Each
node is an IBM NeXtScale nx360 M4 server equipped with two Intel Xeon ES-2650
v2 8-core processors and with 32 GB of RAM and 250 GB of local disk storage.

C.2. Computational Time

The computational times displayed in the tables below are times elapsed in a single
processor of U Karst.
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