
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-019-01422-4
Arch. Rational Mech. Anal. 235 (2020) 195–285

Stability of Hydraulic Shock Profiles

Zhao Yang & Kevin Zumbrun

Communicated by A. Bressan

Abstract

We establish nonlinear H2 ∩ L1 → H2 stability with sharp rates of decay
in L p, p ≥ 2, of general hydraulic shock profiles, with or without subshocks, of
the inviscid Saint-Venant equations of shallow water flow, under the assumption
of Evans–Lopatinsky stability of the associated eigenvalue problem. We verify
this assumption numerically for all profiles, giving in particular the first nonlinear
stability results for shock profiles with subshocks of a hyperbolic relaxation system.
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1. Introduction

In this paper, by a combination of rigorous analysis and numerical verification,
we establish nonlinear stability of nondegenerate hydraulic shock profiles of the
inviscid Saint-Venant equations for inclined shallow water flow, across their entire
domain of existence, in particular including large-amplitude profiles containing
subshock discontinuities. Specifically, assuming spectral stability in the sense of
Majda–Erpenbeck [21,22,31,43,70], we prove linear and nonlinear H2 ∩ L1 →
H2 phase asymptotic orbital stability, with sharp rates of decay in L p, p ≥ 2.
We then verify the spectral stability condition numerically, by exhaustive Evans–
Lopatinsky/Evans function computations.

The inviscid Saint-Venant equations

∂t h + ∂xq = 0,

∂t q + ∂x

(
q2

h
+ h2

2F2

)
= h − |q|q

h2
,

(1.1)

here given in nondimensional form, model inclined shallow water flow where h is
fluid height, q = hu is total flowwith being u fluid velocity, and F > 0 is theFroude
number—a nondimensional parameter depending on reference height/velocity and
inclination. Among other applications, they are commonly used in the hydraulic
engineering literature to describe flow in a dam spillway or channel, etc.; see, for
example, [8,10,11,17,32,36] for further discussion.

Equations (1.1) form a hyperbolic system of balance laws [9,16,42], with the
first equation representing conservation of fluid and the second balance between
change of momentum and the opposing forces of gravity (h) and turbulent bottom
friction (−h−2|q|q). More specifically, they compose a 2 × 2 relaxation system
[9,16,40,65], with associated formal equilibrium equation

∂t h + ∂xq∗(h) = 0, (1.2)

where q∗(h) := h3/2 is the value of q for which gravity and bottom forces cancel.
That is, near-equilibrium behavior is formally modeled by a scalar conservation
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law, or generalized (inviscid) Burgers equation. On the other hand, short-time, or
transient, behavior is formally modeled by the first-order part of (1.1), with zero-
order forcing term h − h−2q2 (q > 0) set to zero; for later reference, we note that
this coincides with the equations of isentropic γ -law gas dynamics with γ = 2
[9,16,62].

As discussed, for example, in [33,40,65], the formal approximation (1.2) is
valid for general 2 × 2 relaxation systems in the vicinity of an equilibrium point
(h, q) = (h0, q∗(h0)) provided there holds the subcharacteristic condition that the
characteristic speed q ′∗(h0) of (1.2) lies between the characteristic speeds of (1.1).
This is also the condition for hydrodynamic stability, or stability under perturbation
of a constant equilibrium flow (h, q)(x, t) ≡ (h0, q∗(h0)): for the Saint-Venant
equations, the classical Froude number condition of Jeffreys [32],

F < 2. (1.3)

In this regime, one may expect persistent asymptotically-constant traveling wave
solutions

(h, q)(x, t) = (H, Q)(x − ct), lim
z→−∞(H, Q)(z) = (HL , QL ), lim

z→+∞(H, Q)(z) = (HR, QR),

(1.4)

analogous to shock waves of (1.2), known as relaxation shocks, or relaxation pro-
files; in the context of (1.1), we shall call these hydraulic shock profiles. In the
complementary regime F > 2, one expects, rather, complex behavior and pattern
formation [4,33,36].

Indeed, we have the following description of existence (Section 2); here and
elsewhere, let [h] = h(x+) − h(x−) of a quantity h across a discontinuity located
at x :

Proposition 1.1. Let (HL , HR, c) be a triple for which there exists an entropy-
admissible shock solution in the sense of Lax [42] with speed c of (1.2) connecting
left state HL to right state HR, that is, HL > HR > 0 and c[H ] = [q∗(H)]. Then,
there exists a corresponding hydraulic shock profile (1.4) with QL = q∗(HL) and
QR = q∗(HR) precisely if 0 < F < 2. The profile is smooth for HL > HR >

HL
2F2

1+2F+√
1+4F

, and nondegenerate in the sense that c is not a characteristic

speed of (1.1) at any point along the profile. For 0 < HR < HL
2F2

1+2F+√
1+4F

,

the profile is nondegenerate and piecewise smooth, with a single discontinuity
consisting of an entropy-admissible shock of (1.1). At the critical value HR =
HL

2F2

1+2F+√
1+4F

, HR is characteristic, and there exists a degenerate profile that

is continuous but not smooth, with discontinuous derivative at HR. For F > 2,
there exist smooth “reverse shock” profiles connecting the endstates in the op-

posite direction HR → HL, precisely when HR < HL < HR
1+2F−√

1+4F
2 . In

the degenerate case HL = HR
1+2F−√

1+4F
2 , HL is characteristic and there exists

an uncountable family of degenerate entropy-admissible piecewise smooth homo-
clinic profiles connecting HR to itself, but no smooth profiles. In all cases, these are
the only entropy-admissible piecewise smooth, asymptotically-constant traveling
waves of (1.1), and c, Q > 0.
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This corresponds to the picture for general relaxation systems [40,47,65,68],
wherein smooth relaxation profiles are known to exist for small-amplitude equi-
librium shocks near equilibrium points that are stable as constant solutions, but
larger-amplitude profiles contain discontinuities, or “subshocks”, if they exist at
all. Meanwhile, profiles initiating from an unstable equilibrium typically connect
endstates in a reverse direction corresponding to a non-entropy admissible shock of
(1.2) [68] (and in any case cannot be stable as solutions of the associated relaxation
system [47,48]). Accordingly, we focus hereafter on the case 0 < F < 2 for which
hydraulic shock profiles exist in the proper direction, and examine the stability of
such profiles as solutions of (1.1).

1.1. Main Results

We first recall that system (1.1) is of classical Kawashima class, meaning that
it is of symmetrizable hyperbolic type, with a symmetrizer that simultaneously
symmetrizes the linearized zero-order relaxation (or “balance”) term; see Obser-
vation 4.1. By the analytical results of [47,49], therefore, we obtain immediately
spectral, linearized, and nonlinear stability and asymptotic orbital stability with
sharp rates of smooth hydraulic shock profiles of sufficiently small amplitude, for
any fixed endstate HL . Moreover, by [48], we obtain the same linearized and non-
linear stability results for smooth profiles of arbitrary amplitude, provided they
are spectrally stable in the sense of a standard Evans function condition, and non-
degenerate in the sense that hyperbolic characteristics do not coincide along the
profile with the speed of the wave. Hence, the smooth nondegenerate case may be
treated by existing analysis, reducing to a standard numerical Evans function study
of intermediate-amplitude waves, as carried out for example in [2,3,6,7,27].

We focus here on the complementary large-amplitude case of nondegenerate
shock profiles containing subshocks, or 0 < HR < HL

2F2

1+2F+√
1+4F

. The degen-

erate case HR = HL
2F2

1+2F+√
1+4F

we do not treat. For perturbations satisfying
appropriate compatibility conditions at the shock, in particular for perturbations
supported away from the shock, short-time Hs existence follows by the analysis
of Majda [43,44], as noted in [34]. However, so far as we know, there were no
results up to now on large-time behavior or existence under perturbation of re-
laxation profiles containing subshocks. Our main result is the following theorem
establishing global existence and nonlinear phase-asymptotic orbital stability in
this case, with sharp rates of decay, assuming spectral stability in the sense of an
Evans–Lopatinsky condition analogous to that of the smooth profile case:

Theorem 1.2. For 0 < F < 2 and 0 < HR < HL
2F2

1+2F+√
1+4F

, let W = (H, Q)

be a hydraulic shock profile (1.4), and v0 be an initial perturbation supported away
from the subshock discontinuity of W of norm ε sufficiently small in Hs ∩L1, s ≥ 2.
Moreover, assume that W is spectrally stable in the sense of the Evans–Lopatinsky
condition defined in Section 4. Then, for initial data W̃0 := W 0 + v0, there exists a
global solution of (1.1), with a single shock located at ct − η(t), and Hs to either



Hydraulic Shock Profiles 199

side of the shock, satisfying, for t ≥ 0, 2 ≤ p ≤ ∞ and some limiting phase η∞,

|W̃ (·, t) − W (· − ct + η(t))|Hs ≤ Cε(1 + t)−1/4,

|W̃ (·, t) − W (· − ct + η(t))|L p ≤ Cε(1 + t)−(1/2)(1−1/p),

|η̇(t)| ≤ Cε(1 + t)−(1/2),

|η(t)| ≤ Cε,

|η(t) − η∞| ≤ Cε(1 + t)−1/4+υ + C |v0|L1(|x |≥t/C)

(1.5)

for any υ > 0, and some C = C(υ) > 0. In particular, η(t) → η∞ as t → +∞.

Estimates (1.5)(i)–(iv) may be recognized as exactly the same as those given for
smooth profiles in [48, Thm. 1.2], but with η now an exact shock location forced
by the presence of a discontinuity rather than an approximate location designed
to optimize errors as in the smooth case. Estimate (1.5)(v), upgrading asymptotic
orbital stability to phase-asymptotic orbital stability, is new even in the smooth
case. We complement these results by systematic numerical studies verifying the
Evans–Lopatinsky condition for nondegenerate hydraulic shock profiles contain-
ing subshocks, and the Evans condition for nondegenerate smooth profiles, across
their full domain of existence. Together with our analytical results, this yields both
linearized and nonlinear phase-asymptotic orbital stability of (all) nondegenerate
hydraulic shock profiles of (1.1), that is, asymptotic convergence under pertur-
bation to a nearby translate of the original wave. Note that, due to translation
invariance, this is the strongest possible notion of stability for a traveling wave
[18,41,59,69].

Remark 1.3. As noted in [48] for the smooth case, the rates (1.5) are sharp. In
particular, as noted in [47,48], under the very weak localization v0 ∈ L1 ∩ Hs

assumed on the initial perturbation, it is not possible to give a rate for the con-
vergence η(t) → η∞, even at the linearized level. For by translating the initial
perturbation farther and farther toward infinity, an operation that does not change
its norm, we may by finite propagation speed of the underlying hyperbolic model,
delay indefinitely the interaction of the perturbation with the component subshock
of the traveling wave. However, conservation of mass principles [40,41], applied to
the linearized problem, imply that, to linear order in perturbation norm ε the asymp-
totic shock location depends only on the “total perturbation mass”

∫ +∞
−∞ h0(y) dy,

hence is independent of translation. These two facts together are inconsistent with
convergence at a fixed rate depending only on ε = |v0|L1∩Hs .

1.2. Discussion and Open Problems

Large-amplitude hydraulic shock profiles are physically interesting from the
point of view of dam break or river bore phenomena. Our results bear on the ques-
tion whether the Saint-Venant equations (1.1) typically used in hydraulic engineer-
ing can model such phenomena. An interesting question for further investigation is
whether the modeling of additional physical effects such as viscosity or capillarity
become important at large amplitudes, radically changing behavior, or whether the
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solutions studied here indeed accurately capture behavior even in the discontinuous
regime. We mention also the recent introduction in [54,55] of vorticity to model
(1.1), yielding effectively a 3 × 3 relaxation model with scalar equilibrium sys-
tem. In the unstable, pattern formation regime analogous to F > 2 for (1.1), this
augmented model is seen to give much closer correspondence in wave form for
periodic roll wave patterns to that seen in experiment in [10,11]. A very interesting
open problem would be to study existence and stability of hydraulic shocks for this
more complicated model, in particular comparing results to Saint-Venant profiles
and experiment.

On the mathematical side, our main contribution here is the treatment for the
first time of nonlinear stability of relaxation profiles containing subshocks, a topic
that so far as we know has up until now not been addressed. (Though see [19,20]
for related, contemporary, studies of stability of discontinuous solutions of scalar
balance laws.) Indeed, at the outset it is perhaps not clear what is the proper frame-
work in which this problem should be approached, as smooth and discontinuous
shocks have been treated in the literature by quite different and at first sight incom-
patible techniques. However, a useful bridge between these two (continuous and
discontinuous) domains comes from the study of smooth boundary layer solutions
of initial boundary value problems in [51,67] and the treatment of piecewise smooth
detonation waves in [34], in particular the suggestive use of the “good unknown”
to separate interior and boundary problems in a convenient way.

Combining these two approaches allows us to formulate the linearized problem
by an inverse Laplace transform representation similar to that appearing for smooth
profiles in [47,51,67,69], and thereby to obtain detailed pointwise Green function
bounds by analogous (stationary phase, or Riemann saddlepoint) techniques. This
allows us, as in the smooth profile case, to set up a nonlinear iteration based on
contraction mapping, for which the nonlinear source loses one derivative. The
nonlinear argument is then closed by an energy-based “nonlinear damping” estimate
on the half-line modifying the corresponding large-amplitude estimate of [48])
on the whole line, which controls higher Sobolev norms in terms of L2 and an
exponentially decaying multiple of the initial high norm, thus closing the iteration.

A key new ingredient in the half-line argument is the observation that the hy-
perbolic Friedrichs symmetrizer Ã0

α used in the symmetric hyperbolic part of the
energy estimatesmay be chosen so that the boundary conditions becomemaximally
dissipative, a special feature of the one-dimensional case. A second new ingredi-
ent is the use of “Strichartz-type” bounds (Lemma 8.8) to control new trace terms
arising in phase bounds for the nonsmooth case; the resulting “vertical estimate”
(10.7) controlling time integrals at fixed spatial location seems of interest in its
own right. A further novelty in the analysis is the introduction of a new “approxi-
mate characteristic” argument bywhichwe can roughly decompose tail from center
contributions of the initial perturbation, to obtain convergence of the phase η(t) as
t → +∞. The latter result is new even in the smooth case.

The treatment for discontinuous waves of decay in low norms L p, 1 ≤ p ≤ 2
is an interesting open problem that we expect could be carried out by a suitable
modification of the argument for the smooth case in [48]. A very interesting novelty
in either smooth or nonsmooth case, would be to prove decay in L1 at nonuniform
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rate
∫
[−a−t/2,−a+t/2]c |v0(x)| dx determined by the tail of the initial data, where a±

denote limiting equilibrium characteristic speeds as x → ±∞ for the linearized
equations about the wave. This should be possible using an L1 version of the
approximate characteristic estimate (10.16) developed here. Such a result would at
the same time give an alternative, shorter proof of convergence η(t) → η∞ of the
phase, based on conservation of mass of the unforced first coordinate u, similar to
the classical argument of [41] for shock profiles of viscous conservation laws.

We note that all of our nonlinear arguments extend to nondegenerate piecewise
smooth relaxation shocks of general n×n systems with scalar equlibrium systems,
in particular to the 3 × 3 Richard-Gavrilyuks (RG) model of [54,55]. Thus, the
stability problem in that case reduces to an examination of the existence and spectral
stability problems. For n × n relaxation systems with r × r equilibrium systems,
r > 1, Lax shocks of the equilibrium system admit r−1 > 0 outgoing characteristic
modes, leading to new, algebraically-decaying contributions from G source terms
in the nonlinear Rankine–Hugoniot equations for which our our current L p-based
nonlinear iteration scheme appears not to close. However, this should be treatable
under further localization conditions on the initial perturbation by a more detailed
pointwise analysis as in [29,30,56].

Though we do not show it here, in the present case, for which the equilibrium
behavior corresponds to a scalar shock, given the Hs bounds established inTheorem
1.2, the weighted norm method of Sattinger [59] can be applied in straightforward
fashion to yield exponential decay of |v(t)|L∞ , assuming spatial exponential decay
on the initial perturbation. This yields time-exponential convergence of the phase to
a limiting value, giving the stronger results of time-exponential phase-asymptotic
orbital stability. Similarly, assuming algebraic decay at rate |v0(x)| ≤ C(1+|x |)−r ,
1 < r ≤ 3/2 of the initial data, a pointwise analysis as in [28–30,56] should give
time-algebraic convergence to a limiting phase at rate |v|L∞ ≤ C(1+ t)1−r , reflect-
ing the rate at which “mass”, or integral of the conserved quantity u, is convected
from initial data to the shock center: more precisely, the rate at which residual mass∫
[−a−t,−a+t]c v0(x) dx converges to zero, where a± are the characteristic velocities
of the limiting equilibrium systems at x → ±∞. This rate, if not the precise char-
acteristic description, is obtained in the present analysis for r < 5/4; see Remark
10.2 for further discussion. For r ≥ 5/4, we get the nonsharp rate (1 + t)−1/4+υ

for any υ > 0.
An interesting new issue in the nonsmooth case is compatibility at time t = 0

of Rankine–Hugoniot conditions and initial perturbation. In Fig. 1, we display the
results of numerical time-evolution of a perturbed subshock-type profile, first with
initial perturbation supported away from the subshock (panels (a)–(d)) and second
with piecewise smooth initial perturbation supported at the subshock (panels (e)–
(h)) and incompatible with the Rankine–Hugoniot conditions at time t = 0. In both
cases, stability is clear; however, in the second experiment one can see clearly an
additional shock discontinuity originating from the subshock, generated by initial
incompatibility.

An interesting open problem would be to analyze the second case by the intro-
duction/tracking of this additional shock wave in the nonlinear Ansatz, “relieving”
incompatibility at t = 0.More generally, it would be interesting to treat lower regu-
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larity perturbations than piecewise H2, for example in piecewise Lipshitz class by a
paradifferential damping estimate following [44]. To treat perturbations admitting
shocks would also be interesting, but appears to require new ideas. Likewise, in
the setting of more general balance laws not admitting a damping estimate, it is
not clear how to proceed even for the case of arbitrarily smooth compatible initial
perturbations. As noted in [34], for example, the time-asymptotic stability of piece-
wise smooth Zeldovich–vonNeumann–Doering (ZND) detonations is an important
open problem.

Finally, it would be very interesting to attack by techniques like those used
here the open problem cited in [36] of nonlinear time-asymptotic stability of dis-
continuous periodic “roll wave” solutions of (1.1) or its 3 × 3 analog (RG) in the
hydrodynamically unstable regime F > 2. It would appear that a Bloch wave ana-
log of the linear analysis here would apply also for periodic waves, similar to that
of [35,37] in the viscous periodic case; for the requisite Bloch wave framework
for discontinuous waves, see [36].1 A difficulty is the apparent lack of a nonlin-
ear damping estimate given instability of constant states. However, as suggested
by L. M. Rodrigues [57], one may hope that an “averaged” energy estimate us-
ing “gauge functions”, or specially chosen weights generalizing the Goodman- and
Kawashima-type estimates here, as used to obtain damping estimates in the viscous
case in [58] might yield a nonlinear damping estimate here as well.

NoteOur numerical conclusions have subsequently been verified analytically by
generalized Sturm–Liouville considerations in [63], yielding a complete analytical
proof of stability.

2. Hydraulic Shock Profiles of Saint-Venant Equations

We begin by categorizing the family of hydraulic shock profiles, or piecewise
smooth traveling wave solutions of (1.1) with discontinuities consisting of entropy-
admissible shocks. For closely related analysis, see the study of periodic “Dressler”
waves in [36, §2]; as discussed in Remark 2.3, this corresponds to the degenerate
case Hs = HL , F > 2 in our study here. As the first-order derivative part of (1.1)
comprises the familiar equations of isentropic gas dynamics, entropy-admissble
discontinuities are in this case Lax 1- or 2-shocks satisfying the Rankine–Hugoniot
jump conditions and Lax characteristic conditions [42,62].

Consider the Saint-Venant equations (1.1)

∂t h + ∂xq = 0, ∂t q + ∂x

(
q2

h
+ h2

2F2

)
= h − |q|q

h2
.

We seek a traveling wave solution (h, q) = (H, Q)(x − ct) with c constant and
(H(ξ), Q(ξ)) smooth with

lim
ξ→−∞(H, Q)(ξ) = (HL , QL), lim

ξ→+∞(H, Q)(ξ) = (HR, QR), (2.1)

1 Though, note the degeneracy at λ = 0 of spectral curves of roll wave solutions of (1.1)
described in [36, Rmks. 2.1 and 5.1], making this case more complicated.
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with Lax 1- or 2-shocks at each discontinuity. In smooth regions, we have, therefore,

−cH ′ + (Q)′ = 0, −cQ′ +
(
Q2

H
+ H2

2F2

)′
= H − |Q|Q

H2 , (2.2)

and at sub-shockdiscontinuities ξ j ,wehave theRankine–Hugoniot jumpconditions

−c[H ] + [Q] = 0, −c[Q] +
[
Q2

H
+ H2

2F2

]
= 0, (2.3)

where [ f ] denotes the jump f (ξ+
j ) − f (ξ−

j ) of a quantity f at discontiuity ξ j .
Our first observation is the standard one, true for general n × n relaxation

systems of block structure wt + F(w)x =
(

0
r(w)

)
, that (HL , QL) and (HR, QR)

must necessarily be equilibria, with the triple (HL , HR, c) satisfying the Rankine–
Hugoniot conditions

c[H ] = [q∗(H)] := [H3/2] (2.4)

of the reduced equilibriumsystem (1.2), that is, a (not necessarily entropy-admissible)
shock of (1.2).

Integrating the first equation of (2.2), and combining with the first equation of
(2.3) gives

Q − cH ≡ constant =: −q0. (2.5)

Meanwhile, taking (H ′, Q′) → 0 in (2.2)(ii), we find that HL and HR must be
equilibria of the relaxation system (1.1), satisfying QL ,R = q∗(HL ,R) = H3/2

L ,R :
in particular, note therefore that QL , QR > 0 in the physical regime H > 0
that we consider. Substituting QL ,R = q∗(HL ,R) into (2.5) then gives (2.4). As
q∗(h) = h3/2 is convex, there are at most two such equilibrium solutions of (2.5)
for a given value of q0, hence, for each possible left state (HL , QL) of (2.1), and
choice of speed c, there is at most one possible right state (HR, QR) �= (HL , QL).
Moreover, for such a nontrivial right state to exist, since then c = [q∗(h)]/[h] is
given by the Rankine–Hugoniot conditions for (1.2), c must necessarily be positive;
from now on, therefore, we take c > 0.

Next, substituting (2.5) in the second equation of (2.2), we obtain the scalar
ODE (

−q20
H2 + H

F2

)
H ′ = H − |−q0 + cH | (−q0 + cH)/H2 (2.6)

and, substituting in the second equation of (2.3), the scalar jump condition

[
q20
H

+ H2

2F2

]
= 0. (2.7)

Since −q0 + cH = Q is monotone in H , and (as noted just above) is positive at
equilibria (HL , QL) and (HR, QR), we have that Q is positive on [HL , HR] and
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so we may drop the absolute values in (2.6) in this regime, and in the larger regime
Q > 0, replacing (2.6) by(

−q20
H2 + H

F2

)
H ′ = H3 − (−q0 + cH)2

H2 .

As the righthand side is cubic, with zeros at equilibria HL and HR , it factors as
(H − HR)(H − HL)(H − H3), where H3 is a third root that– since as observed
above, there can be at most two– is not an equilibrium of (1.1). It follows that
Q3 = −q0 + cH3 must be negative, or else we would have a contradiction; thus,
H3 < min{HL , HR}; this gives in passing q0 > 0.

Writing (1.1) in abstract form as wt + F(w)x = (0, r(w))T , so that (2.2)
becomes (dF(w) − cId)W ′ = (0, r(W ))T , we see that (2.2) is singular precisely
when the eigenvalues α± of (dF−cId) take value 0, where (see, for example, [62])
α± = Q/H ± √

H/F2 − c, hence, by (2.5),

α± = −q0/H ± √
H/F (2.8)

along a shock profile. As q0 > 0, this happens precisely at the “sonic point” where
α+ = 0, that is, the shock speed agrees with a characteristic speed of the hyperbolic
relaxation system, or, solving: −q20/H

2 + H/F2 = 0. Comparing with (2.6), we
see that the scalar ODE becomes singular at the same value of H . Following [36],
we denote this point as

Hs := (q0F)2/3. (2.9)

Evidently along the profile, the signs of α± are constant for H to the right and
left of Hs . Taking H → +∞, we see that

α− < 0 < α+ for H > Hs and α−, α+ < 0 for H < Hs . (2.10)

Recalling the Lax characteristic conditions [42,62], we find that the only possible
entropy-admissible shock connections are Lax 2-shocks from points H̃L > Hs

to points H̃R < Hs , that is, shocks for which α−(H̃L) < 0 < α+(H̃L) and
α−(H̃R), α+(H̃R) < 0. In particular, any such discontinuities are decreasing in H ,
with, moreover, H̃R < Hs < H̃L .

We find it convenient to introduce a fifth point H∗, defined as satisfying the
scalar jump condition (2.7) (and thus, along the profile, by (2.5), the full jump
conditions (2.3)) when paired with value HR . Combining all information, we have

HL − Q2
L

H2
L

= 0, HR − Q2
R

H2
R

= 0,

QL − cHL = QR − cHR = −q0,
q20
H∗

+ H2∗
2F2 = q20

HR
+ H2

R

2F2 .

(2.11)

Setting ν :=
√

HL
HR

> 1 and solving for c, q0, H∗ yields

c = ν2 + ν + 1

ν + 1

√
HR , q0 = ν2

ν + 1

√
H3

R,
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H∗ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

HR

−ν − 1 + √
8F2ν4 + ν2 + 2ν + 1

2 (ν + 1)
HR

−ν − 1 − √
8F2ν4 + ν2 + 2ν + 1

2 (ν + 1)
HR,

(2.12)

from which we keep the nontrivial physically relevant (positive) solution

H∗ := −ν − 1 + √
8F2ν4 + ν2 + 2ν + 1

2 (ν + 1)
HR . (2.13)

Substituting c, q0 in (2.6) now yields

H ′ = F2 (H − HL) (H − HR) (H − H3)

(H − Hs)(H2 + HHs + H2
s )

, (2.14)

where

H3 := ν2

ν2 + 2ν + 1
HR, Hs :=

(
Fν2

ν + 1

) 2
3

HR . (2.15)

Since ν > 1, we have H3 < HR < HL , recovering our earlier observation on the
ordering of roots Hj .

Our analysis of hydraulic shock profiles is based on the following case structure:

Lemma 2.1. With the notation above, we have that

i. Hs > HR is equivalent to Fν2 − ν − 1 > 0, or HL > HR
1+2F+√

1+4F
2F2 . It is

always satisfied when F > 2;

ii. Hs < HL is equivalent to F < ν2 + ν, or HL > HR
1+2F−√

1+4F
2 . It is always

satisfied when F < 2, as is H∗ < HL.

Proof. The quadratic conditions in ν follow immediately from (2.15), whence
the boundaries in terms of HL and HR follow by the quadratic formula. Likewise,
applying (2.13), we find that H∗ < HL is equivalent to 2F2 < ν2+ 1

ν2
+2ν+ 2

ν
+2,

which is always satisfied for F < 2, by the inequality z+1/z ≥ 2 for z > 0. (2.13)

�

Lemma 2.2. With the notation above, Hs lies between HR and H∗, and there is an
admissible Lax 2-shock between the larger of H∗, HR and the smaller.

Proof. The function q̃(H) := q20/H + H2/2F2 appearing in the scalar jump
condition [q̃] = 0 is convex, with c′(H) = −q20/H

2+H/F2 equal to the prefactor
in the lefthand side of (2.6), with c′(Hs) = 0 uniquely specifying Hs . By convexity,
c(H∗) = c(HR) implies by Rolle’s theorem that c′(H∗) and c′(HR) have opposite
signs, with c′ > 0 at the larger of the two points, and c′ vanishes somewhere
between, hence Hs ∈ (H∗, HR). Recalling (2.10), we see that there is then an
(entropy-admissible) Lax 2-shock connecting the larger of H∗, HR to the smaller.


�
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Proof of Proposition 1.1. Asnoted in the discussion above, in all cases necessarily
c > 0 for any shock profile, and Q > 0 for H ≥ HR . Since smooth solutions
of (2.14) cannot cross equilibrium HR , and entropy admissible shocks can only
decrease H , we have that connecting profiles must satisfy H > HR , and thus
Q > 0, for any choice of parameters.

(Case F < 2.) When 0 < F < 2, HL > HR
1+2F+√

1+4F
2F2 , then HR <

Hs < H∗, and so, by the factorization (2.14), H ′ < 0 on (Hs, HL), and thus
on (H∗, HL). It follows that there exist discontinuous traveling wave solutions as
depicted in Fig. 2a, consisting of a smooth piece emanating from the equilibrium
of (2.6) at HL and continuing down to H∗, followed by a Lax 2-shock from H∗
to HR . However, there does not exist a smooth profile, as the solution emanating
from HL cannot cross the singular point Hs to reach HR ; indeed, one may see by
the factorization (2.14) that H ′ > 0 on (HR, Hs).

In the limiting case when HL = HR
1+2F+√

1+4F
2F2 , for which Hs = H∗ = HR ,

there exist piecewise smooth traveling wave solutions as depicted in Fig. 2b, with
discontinuous derivative at the endpoint HR = Hs .

In the small amplitude region HR < HL < HR
1+2F+√

1+4F
2F2 , for which H∗ <

Hs < HR , the corresponding smooth traveling wave profile does not pass the
singular point, and so there exist smooth traveling wave solutions as depicted in
Fig. 2c. However, there exist no solutions containing subshocks, as these would
necessarily jump below Hs < HR , and so the solution could never return past
Hs , since H ′ < 0 on (H∗, Hs) blocks approach by smooth solution, and since any
admissible discontinuities can only decrease the value of H . See Fig. 3b for domain
of existence for traveling waves.

(Case F > 2.) The case F > 2 goes similarly. When Hs > HL , we have,
examining the factorization (2.14) and using F > 2, that H ′ > 0 on (HR, HL), and
so there exists a smooth “reverse” connection from HR to HL . As HR < Hs < H∗,
we also have in this case that H∗ > HL , and, since we also have that H ′ < 0 on
(HL , Hs), there is no way to reach H∗ starting from either HR or HL , and so there
can be no discontinuous profile connecting equilibria HL and HR in either direction.
In the degenerate case HL = Hs , we find that the factor (H − Hs) in the singular
prefactor −q20/H

2 + H/F2 on the lefthand side of (2.14) exactly cancels with the
factor (H − HL) on the righthand side, and so (2.14) reduces to the nonsingular
scalar ODE

H ′ = F2 (H − HR) (H − H3)

(H2 + HHs + H2
s )

, (2.16)

from which we find that H ′ > 0 for all H > HR , with no special significance to
the point HL . Noting that H∗ > Hs = HL , we see that there exists an entropy-
admissible piecewise smooth homoclinic profile consisting of a smooth part ini-
tiating from HR and increasing to H∗, followed by a Lax 2-shock from H∗ back
to HR , and finally a constant piece H ≡ HR . As HL is not an equilibrium of
the reduced ODE (2.16), it cannot be an asymptotic limit and there is no profile
connecting to it. Since HR is a repellor, it can only be a limit at +∞ if the profile
is constant there, and so any connecting profile must be a discontinuous solution
starting with a smooth piece from HR at −∞ and ending with a constant piece
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H ≡ HR near +∞. However, there exists an uncountable family of multiple-
discontinuity homoclinic profiles, in which intermediate shocks (H2 j , H2 j+1 with
H∗ > H2 j > Hs > H2 j+1 > HR are arbitrarily placed in between, with smooth
pieces connecting H2 j+1 to H2 j+2, where H2 j+1 < Hs < H2 j+2. In the remain-
ing case HR < Hs < H∗ < HL , we have H ′ > 0 on (Hs, HL) and H ′ < 0 on
(HR, Hs), hence there is no smooth solution leaving either HR or HL , and the only
admissible shock is from H∗ to HR . Thus, there is no admissible piecewise smooth
profile joining the two equilibria HL , HR in either sense. 
�
Remark 2.3. The scenario (2.16) treated in the degenerate case Hs = HL , F > 2
may be recognized as the same one considered in [36, §2]with regard to existence of
periodic entropy-admissible piecewise smooth relaxationprofiles; indeed, existence
of periodic and quasiperiodic profiles follows by essentially the same construction
used here to show existence of homoclinic ones.

Observation 2.4. (Rescaling) By scale-invariance of the Saint-Venant equations
[5,36], we may perform the rescaling

H(x) = HLH(x/HL), HR = HR

HL
= 1

ν2
, HL = 1

to obtain a solution H for which the left limiting water height is 1. From now on,
we omit the underline in H , and simply take HL = 1. After rescaling, the domain
of existence of hydraulic shock profiles with a sub-shock discontinuity is

0 < F < 2, 0 < HR < HC := 2F2

1 + 2F + √
1 + 4F

. (2.17)

Observation 2.5. (Positivity) We have shown that H and Q are positive along
hydraulic shock profilesW , hence also in their vicinity. It follows that for purposes
of investigating stability their stability, we can drop the absolute value in (1.1)(ii)
and write the source term simply as h − q2/h2, as we shall do from now on. We
see, further, that u, c > 0 for steady flow down an incline.

3. Majda’s Type Coordinate Change and Perturbation Equations

We next recall the general framework introduced by Majda [43,44] for the
study of stability of shock waves, converting the original free-boundary problem to
a standard initial boundary-value problem on a fixed domain. Consider a general
system of balance laws

wt + F(w)x − R(w) = 0, w ∈ R
n, (3.1)

admitting a traveling wave solution W (x − ct) = W (ξ) that is smooth and solves
(3.1) on ξ ≷ 0 and at ξ = 0 has a discontinuity satisfying the Rankine–Hugoniot
condition

−c[W ] + [F(W )] = 0, (3.2)
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where [ f (ξ)] = f (0+) − f (0−).
Let w(x, t; s) be a family of perturbed solutions to (3.1) with shock at x =

ζ(t; s) and

w(x, t; 0) = W (x − ct), ζ(t; 0) = ct.

Perform theMajda’s type coordinate change [43] t̃ = t , ξ = ξ(x, t; s) = x−ζ(t; s)
and set

u(ξ, t̃; s) := w(x, t; s)

so that in u the shock front is fixed at ξ = 0. In u(ξ, t̃; s), balance laws (3.1) become

ut̃ + ξt uξ + F(u)ξ − R(u) = 0, (3.3)

and the Rankine–Hugoniot condition (3.2) becomes

ξt

∣∣∣
ξ=0

[u] + [F(u)] = 0. (3.4)

Now substituting

ξ(x, t; s) = x − ct + η(t̃), u(ξ, t̃; s) = W (ξ) + v(ξ, t̃) (3.5)

in the interior equation (3.3) and putting linear order terms on the left and quadratic
order terms on the right, we obtain that perturbations η, v satisfy

vt̃ + ηt̃ W
′ + (

(dF(W ) − c Id)v
)
ξ

− dR(W )v = −ηt̃vξ − N1(v, v)ξ + N2(v, v),

(3.6)
where N j (v, v) = O(|v|2). Likewise, substituting (3.5) in the Rankine–Hugoniot
condition (3.4) and putting linear order terms on the left and quadratic order terms
on the right, we obtain, on the boundary ξ = 0, that perturbations η, v satisfy

ηt̃ [W ] + [(dF(W ) − c Id
)
v] = −ηt̃ [v] − [N1(v, v)]. (3.7)

Observation 3.1. Specialized to theSaint-Venant equations (1.1), N1(v, v), N2(v, v)

are

N1(v, v) =
⎛
⎜⎝

0

vt
∫ 1
0 (1 − s)

(
2 (Q+sv2)2

(H+sv1)3
+ 1

F2 − 2(Q+sv2)
(H+sv1)2

− 2(Q+sv2)
(H+sv1)2

2
H+sv1

)
dsv

⎞
⎟⎠,

N2(v, v) =
⎛
⎜⎝

0

vt
∫ 1
0 (1 − s)

(
− 6(Q+sv2)2

(H+sv1)4
4(Q+sv2)
(H+sv1)3

4(Q+sv2)
(H+sv1)3

−2
(H+sv1)2

)
dsv

⎞
⎟⎠.

(3.8)
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4. The Evans–Lopatinsky Determinant

Continuing, we derive now a generalized spectral stability condition follow-
ing [21,22,34,39,43,44,70,71] in the form of an appropriate “stability function”,
or Evans–Lopatinsky determinant. Combining (3.6) and (3.7), along with initial
conditions, gives

vt̃ + ηt̃ W
′ + (Av)ξ − Ev = −ηt̃vξ − N1(v, v)ξ + N2(v, v) := IS(ηt̃ , v, vξ ),

ηt̃ [W ] + [Av] = −ηt̃ [v] − [N1(v, v)] := BS(ηt̃ , v),

v(0, ξ) = v0(ξ),

η(0) = η0,

(4.1)
or in “good unknown” ṽ := v + ηW

′
[34,36,70,71],

ṽt̃ + (Aṽ)ξ − E ṽ = IS,

ηt̃ [W ] − η[R(W )] + [Aṽ] = BS,

ṽ(0, ξ) = v0(ξ) + η0W
′
,

η(0) = η0,

(4.2)

where A := dF(W ) − c Id and E := dR(W ).

Observation 4.1. Specialized to the Saint-Venant equation (1.1) with hydraulic
shock profile, A and E are

A =
( −c 1

H
F2 − Q2

H2
2Q
H − c

)
, E =

(
0 0

2Q2

H3 + 1 − 2Q
H2

)
. (4.3)

From (4.3), we see in passing that the Saint-Venant equations are simultaneously
symmetrizable in the sense that there exists a positive definite matrix

A0 =
(

2Q
(
F2H3+F2Q2+H3

)
F2H

−H3 − 2Q2

−H3 − 2Q2 2HQ

)

such that A0A and A0E are symmetric, and A0E is negative semidefinite.

Setting ˜̃v = ṽ − η0W
′
and η̃ = η − η0 then yields

˜̃vt̃ +
(
A ˜̃v

)
ξ

− E ˜̃v = IS,

η̃t̃ [W ] − η̃[R(W )] + [A ˜̃v] = BS,

˜̃v(0, ξ) = v0(ξ),

η̃(0) = 0.

(4.4)

Hereafter we use t , x in place of t̃ , ξ .
System (4.4) is essentially the same set of equations studied in [34,70,71] in

the context of detonation waves of the ZND model. As noted in [34], short time
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existence and continuous dependence in Hs , s ≥ 2, is provided by the (much
simpler, one-d version of the multi-d) analysis of Majda and Métivier [43,44] for
general conservation laws; see Section 9 for further details. In particular, we have
for Hs initial data, that a solution exists, is continuous in Hs with respect to time,
and grows in Hs at no more than exponential rateCeαt , so long as |v|H2(R̃)

remains
bounded; that is, the solution is of “exponential type”. It follows from [15] that the
Laplace transform v̌(x, λ) := ∫ +∞

0 e−λs ˜̃v(x, s)ds with respect to t of a bounded

solution ˜̃v ∈ Hs is well-defined in Hs , and that the original solution ˜̃v is recoverable
by the inverse Laplace transform formula

˜̃v(x, t) := 1

2π i
P.V .

∫ a+i∞

a−i∞
eλt v̌(x, λ)dλ,

η̃(t) := 1

2π i
P.V .

∫ a+i∞

a−i∞
eλt η̌(λ)dλ.

(4.5)

We now solve (4.4) using the Laplace transform. Carrying out the Laplace
transform on (4.4)(i)–(ii) and denoting Laplace transform of ˜̃v, η̃, IS, BS as
v̌, η̌, ǏS, B̌S , yields

v̌x = A−1(E − λI − Ax )v̌ + A−1 ǏS(λ) + A−1v0

:= A(λ)v̌ + A−1 ǏS(λ) + A−1v0,

B̌S(λ) = η̌[λW − R(W )] + [Av̌].
(4.6)

Definition 4.2. Dropping the inhomogeneous source terms in (4.6), the associated
eigenvalue equation is defined as

λv̌ + (Av̌)x = E v̌,

η̌[λW − R(W )] + [Av̌] = 0.
(4.7)

To solve (4.6), by the conjugation lemma of [45], we need to calculate eigen-
values of matrices limx→±∞ A(λ) = A−1± (E± − λI ).
At x = −∞, the two eigenvalues are

γ1,−(λ) =
Fν (ν + 1)

(
−2F + Fν + Fν2 − 2Fλ +

√
F2

(
ν2 + ν − 2

)2 + 4λν (ν + 1)
(−F2 + 2ν2 + 2ν

) + 4λ2ν2(ν + 1)2
)

2
(−F2 + ν4 + 2ν3 + ν2

) ,

γ2,−(λ) =
Fν (ν + 1)

(
−2F + Fν + Fν2 − 2Fλ −

√
F2

(
ν2 + ν − 2

)2 + 4λν (ν + 1)
(−F2 + 2ν2 + 2ν

) + 4λ2ν2(ν + 1)2
)

2
(−F2 + ν4 + 2ν3 + ν2

) .

(4.8)
At x = +∞, the two eigenvalues are

γ1,+(λ) =
Fν (ν + 1)

(
Fν + Fν2 − 2Fν3 − 2Fλν2 +

√
F2ν2

(−2ν2 + ν + 1
)2 + 4λν (ν + 1)

(−F2ν2 + 2ν + 2
) + 4λ2(ν + 1)2

)

2
(−F2ν4 + ν2 + 2ν + 1

) ,

γ2,+(λ) =
Fν (ν + 1)

(
Fν + Fν2 − 2Fν3 − 2Fλν2 −

√
F2ν2

(−2ν2 + ν + 1
)2 + 4λν (ν + 1)

(−F2ν2 + 2ν + 2
) + 4λ2(ν + 1)2

)

2
(−F2ν4 + ν2 + 2ν + 1

) .

(4.9)
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It is easy to verify that in the domain (2.17) it holds that

�γ1,−(λ) > 0, �γ2,−(λ) < 0, for all �λ > 0, F < 2, ν > 1,

�γ1,+(λ) > 0, �γ2,+(λ) > 0, for all �λ > 0, ν >
1 + √

1 + 4F

2F
.

(4.10)

Definition 4.3. We define the domain of consistent splitting 
 as


 := {
λ : �γ1,−(λ) > 0, �γ2,−(λ) < 0, �γ1,+(λ) > 0, �γ2,+(λ) > 0

}
.

(4.11)
By (4.10), we see {λ : �λ > 0} ⊂ 
. (See Fig. 3a for an example of domain of
consistent splitting).

By the conjugation lemmaof [45], there exist locally analytic coordinate changes
T±(λ, x) (T+ ≡ I d) on x ≷ 0, converging exponentially to I d as x → ±∞, such
that v̌ = T±z±, A−1( ǏS(λ)+v0) = T±g reduce resolvent equation 4.6(i) to constant
coefficients

zx = A−1± (E± − λI )z + g = A±(λ)z + g. (4.12)

Letting P1,2,±(λ) be the eigenprojections of A±(λ) associated with eigenvalues
γ1,2,±(λ), the solution of (4.6)(i) on x ≷ 0 can be written as

v̌(λ, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T−(λ, x)
(
eγ1,−(λ)x P1,−(λ)T−1− (λ, 0−)v̌(λ, 0−)

+
∫ x

0−
eγ1,−(λ)(x−y)P1,−(λ)T−1− (λ, y)A−1(y)

(
v0(y) + ǏS(λ, y)

)
dy

−
∫ −∞

x
eγ2,−(λ)(x−y)P2,−(λ)T−1− (λ, y)A−1(y)

(
v0(y) + ǏS(λ, y)

)
dy

)
, x < 0,

−
∫ +∞

x
eA+(λ)(x−y)A−1+

(
v0(y) + ǏS(λ, y)

)
dy, x > 0.

(4.13)
Here again P1,−(λ) is the projection onto the unstable subspace of A−(λ) and
P2,−(λ) is the projection onto the stable subspace of A−(λ). Setting x = 0± in
(4.13) yields

v̌(λ, 0+) = −
∫ +∞

0+
e−A+(λ)y A−1+

(
v0(y) + ǏS(λ, y)

)
dy,

T−1− (λ, 0−)v̌(λ, 0−) = P1,−(λ)T−1− (λ, 0−)v̌(λ, 0−)

−
∫ −∞

0−
e−γ2,−(λ)y P2,−(λ)T−1− (λ, y)A−1(y)

(
v0(y) + ǏS(λ, y)

)
dy,

(4.14)

which implies

v̌(λ, 0+) = −
∫ +∞

0+
e−A+(λ)y A−1+

(
v0(y) + ǏS(λ, y)

)
dy,

P2,−(λ)T−1− (λ, 0−)v̌(λ, 0−)

= −
∫ −∞

0−
e−γ2,−(λ)y P2,−(λ)T−1− (λ, y)A−1(y)

(
v0(y) + ǏS(λ, y)

)
dy.

(4.15)
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Now set P1,−(λ)T−1− (λ, 0−)v̌(λ, 0−) = αz1,−(λ)with the scale of z1,−(λ) chosen
such that

T−(0, x)eγ1,−(0)x z1,−(0) = W
′
(x). (4.16)

Then, A(0−)v̌(λ, 0−) can be written as

A(0−)v̌(λ, 0−)

= A(0−)T−(λ, 0−)
(
P1,−(λ) + P2,−(λ)

)
T−1− (λ, 0−)v̌(λ, 0−)

= A(0−)T−(λ, 0−)αz1,−(λ) + A(0−)T−(λ, 0−)P2,−(λ)T−1− (λ, 0−)v̌(λ, 0−)

= A(0−)T−(λ, 0−)αz1,−(λ)

− A(0−)T−(λ, 0−)

∫ −∞

0−
e−γ2,−(λ)y

P2,−(λ)T−1− (λ, y)A−1(y)
(
v0(y) + ǏS(λ, y)

)
dy.

(4.17)
Plugging (4.17) along with (4.14)(i) into the matching condition (4.6)(ii) implies

B̌S(λ) = η̌[λW − R(W )] + A+v̌(λ, 0+) − A(0−)v̌(λ, 0−)

= η̌[λW − R(W )] − αA(0−)T−(λ, 0−)z1,−(λ)

− A+
∫ +∞

0+
e−A+(λ)y A−1+

(
v0(y) + ǏS(λ, y)

)
dy

+ A(0−)T−(λ, 0−)

∫ −∞

0−

e−γ2,−(λ)y P2,−(λ)T−1− (λ, y)A−1(y)
(
v0(y) + ǏS(λ, y)

)
dy.

(4.18)

Definition 4.4. Setting M(λ) :=
[
[λW − R(W )]

∣∣∣ A(0−)T−(λ, 0−)z1,−(λ)
]
, on

the domain of consistent splitting, we define the Evans–Lopatinsky determinant
function �(λ) as

�(λ) := det(M(λ)). (4.19)

By construction, the Evans–Lopatinsky function is analytic on the set of con-
sistent splitting, in particular on {λ : �λ ≥ 0} \ {0}. Moreover, by separation of
eigenvalues of A− at λ = 0, the associated eigenvectors and projections may be
extended analytically to a neighborhood of λ = 0, allowing us to extend � analyt-
ically to a neighborhood of {λ : �λ ≥ 0}. (For origins of this standard argument,
see, for example, [25,53,69].)

Definition 4.5. Following [21,25,34,70,71], we say that a profile W is Evans–
Lopatinsky stable if �(λ) has no zeros on {�λ ≥ 0} save for a single, multiplicity-
one root at λ = 0.

Remark 4.6. Evidently, Evans–Lopatinsky stability is a generalized spectral sta-
bility condition correponding with the usual notion of spectral stability on the set
of consistent splitting, namely, absence of eigenvalues, but also including informa-
tion on the embedded eigenvalue λ = 0 lying on the boundary of the domain of
consistent splitting.
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5. Integral Kernels and Representation Formula

With the defined Evans–Lopatinsky determinant matrix M(λ), equation (4.18)
rewrites as

M(λ)

(
η̌

−α

)

= B̌S(λ) + A+
∫ +∞

0+
e−A+(λ)y A−1+

(
v0(y) + ǏS(λ, y)

)
dy

− A(0−)T−(λ, 0−)∫ −∞

0−
e−γ2,−(λ)y P2,−(λ)T−1− (λ, y)A−1(y)

(
v0(y) + ǏS(λ, y)

)
dy.

(5.1)

When M is invertible (� �= 0), solving for α, η̌ yields solutions for equation (4.4):

v̌(λ, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T−(λ, x)

(
eγ1,−(λ)x z1,−(λ)

(
0 −1

)
M−1(λ)

(
B̌S(λ)

+ A+
∫ +∞

0+
e−A+(λ)y A−1+

(
v0(y) + ǏS(λ, y)

)
dy

− A(0−)T−(λ, 0−)

∫ −∞

0−
e−γ2,−(λ)y P2,−(λ)T−1− (λ, y)A−1(y)

(
v0(y) + ǏS(λ, y)

)
dy

)

+
∫ x

0
eγ1,−(λ)(x−y)P1,−(λ)T−1− (λ, y)A−1(y)

(
v0(y) + ǏS(λ, y)

)
dy

−
∫ −∞

x
eγ2,−(λ)(x−y)P2,−(λ)T−1− (λ, y)A−1(y)

(
v0(y) + ǏS(λ, y)

)
dy

)
, x < 0,

−
∫ +∞

x
eA+(λ)(x−y)A−1+

(
v0(y) + ǏS(λ, y)

)
dy, x > 0,

η̌(λ) = (
1 0

)
M−1(λ)

(
B̌S(λ) + A+

∫ +∞

0
e−A+(λ)y A−1+

(
v0(y) + ǏS(λ, y)

)
dy

− A(0−)T−(λ, 0−)

∫ −∞

0
e−γ2,−(λ)y P2,−(λ)T−1− (λ, y)A−1(y)

(
v0(y) + ǏS(λ, y)

)
dy

)
.

(5.2)
Following the standard analysis in [47,69] , we define the interior source resolvent
kernel functions G̃λ, G1,λ, and Gλ as follows:

Definition 5.1. Setting B̌S(λ) = 0 in (5.2) and gathering terms in different x , y
locations, the interior source v̌-resolvent kernel G̃λ(x; y) is defined as

G̃λ(x; y) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− eA+(λ)(x−y)A−1+ , 0 < x < y,

0, 0 < x, y < x,

T−(λ, x)eγ1,−(λ)x z1,−(λ)
(
0 −1

)
M−1(λ)A+e−A+(λ)y A−1+ , x < 0, y > 0,

− T−(λ, x)eγ1,−(λ)(x−y)P1,−(λ)T−1− (λ, y)A−1(y) + T−(λ, x)eγ1,−(λ)x z1,−(λ)×(
0 −1

)
M−1(λ)A(0−)T−(λ, 0−)e−γ2,− y P2,−(λ)T−1− (λ, y)A−1(y), x < y < 0,

T−(λ, x)eγ2,−(λ)(x−y)P2,−(λ)T−1− (λ, y)A−1(y) + T−(λ, x)eγ1,−(λ)x z1,−(λ)×(
0 −1

)
M−1(λ)A(0−)T−(λ, 0−)e−γ2,− y P2,−(λ)T−1− (λ, y)A−1(y), y < x < 0,

(5.3)



Hydraulic Shock Profiles 217

and the interior source η̌-resolvent kernel G1,λ is defined as

G1,λ(y) :=
{ (

1 0
)
M−1(λ)A+e−A+(λ)y A−1+ , y > 0,(

1 0
)
M−1(λ)A(0−)T−(λ, 0−)e−γ2,− y P2,−(λ)T−1− (λ, y)A−1(y), y < 0.

(5.4)

Let
Gλ(x; y) := G̃λ(x; y) − W

′
(x)G1,λ(y), (5.5)

and split Gλ into two parts Gλ = G1
λ + G2

λ, where G
1
λ, G

2
λ are defined as

G1
λ(x; y) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− eA+(λ)(x−y)A−1+ , 0 < x < y,

− T−(λ, x)eγ1,−(λ)(x−y)P1,−(λ)T−1− (λ, y)A−1(y), x < y < 0,

T−(λ, x)eγ2,−(λ)(x−y)P2,−(λ)T−1− (λ, y)A−1(y), y < x < 0,

0, otherwise,

G2
λ(x; y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T−(λ, x)eγ1,−(λ)x z1,−(λ)
(
0 −1

)
M−1(λ)A+e−A+(λ)y A−1+

− T−(0, x)eγ1,−(0)x z1,−(0)
(
1 0

)
M−1(λ)A+e−A+(λ)y A−1+ , x < 0, y > 0,

T−(λ, x)eγ1,−(λ)x z1,−(λ)
(
0 −1

)
M−1(λ)A(0−)T−(λ, 0−)×

e−γ2,− y P2,−(λ)T−1− (λ, y)A−1(y)

− T−(0, x)eγ1,−(0)x z1,−(0)
(
1 0

)
M−1(λ)A(0−)T−(λ, 0−)×

e−γ2,− y P2,−(λ)T−1− (λ, y)A−1(y), x < 0, y < 0,

0, x > 0.
(5.6)

These can be written alternatively as

G1
λ(x; y) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− F y→x
λ A−1+ , 0 < x < y,

− F y→x
λ �λ,s (y)A

−1(y), x < y < 0,

F y→x
λ �λ,u (y)A

−1(y), y < x < 0,

0, otherwise,

G2
λ(x; y) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
(
F0−→x

λ �λ,s (0
−)

(
0 1

) + W
′
(x)

(
1 0

))
M−1(λ)A+F y→0+

λ A−1+ , x < 0, y > 0,

−
(
F0−→x

λ �λ,s (0
−)

(
0 1

) + W
′
(x)

(
1 0

))
M−1(λ)A(0−)F y→0−

λ �λ,u (y)A
−1(y), x < 0, y < 0,

0, x > 0,

(5.7)
where F y→x

λ is the solution operator from y to x of eigenvalue equation (4.7) and
�λ,s (�λ,u) is the projection onto the stable (unstable) flow as x → −∞.

In addition to these interior source kernels analogous to those of the smooth
profile case [47,69] , we define the boundary source v̌-, η̌-resolvent kernel functions
K̃λ, K1,λ as follows:

Definition 5.2. Setting ǏS(λ, y) = 0, v0(y) = 0 in (5.2) and gathering terms in
different x locations, the boundary source v̌-resolvent kernel K̃λ(x) is defined as

K̃λ(x) =
{
0, x > 0,

T−(λ, x)eγ1,−(λ)x z1,−(λ)
(
0 −1

)
M−1(λ), x < 0,

(5.8)

and the boundary source η̌-resolvent kernel K1,λ is defined as

K1,λ = (
1 0

)
M−1(λ), (5.9)
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and we set

Kλ(x) := K̃λ(x) − W
′
(x)K1,λ. (5.10)

Lemma 5.3. Gλ and Kλ are analytic near λ = 0.

Proof. It suffices to show that
(
1 1

)
M−1(λ) is analytic at 0:

(
1 1

)
M−1(λ) = (

1 1
) 1

det(M(λ))

(
(Aw1,−(λ, 0−))2 −(Aw1,−(λ, 0−))1

(−λQ + (H − Q2

H2 )) (λH)

)
.

(5.11)
Since 0 is a simple root of det(M(λ)), 0 will not be a pole of

(
1 1

)
M−1(λ) if

(
1 1

) ( (AW
′
(0−))2 −(AW

′
(0−))1

(H − Q2

H2 ) 0

)

=
(

(AW
′
(0−))2 − R(W (0−))2 + R(W (0+))2 −(AW

′
(0−))1

) (5.12)

vanishes, but if does vanish because W is a traveling wave solution to (1.1). 
�

Definition 5.4. The corresponding interior/boundary source Green kernels are de-
fined as

G̃(x, t; y) := 1

2π i
P.V .

∫ a+i∞

a−i∞
eλt G̃λ(x; y)dλ,

G1(t; y) := 1

2π i
P.V .

∫ a+i∞

a−i∞
eλtG1,λ(y)dλ,

G(x, t; y) := 1

2π i
P.V .

∫ a+i∞

a−i∞
eλtGλ(x; y)dλ,

G1,2(x, t; y) := 1

2π i
P.V .

∫ a+i∞

a−i∞
eλtG1,2

λ (x; y)dλ,

K̃ (x, t) := 1

2π i
P.V .

∫ a+i∞

a−i∞
eλt K̃λ(x)dλ,

K1(t) := 1

2π i
P.V .

∫ a+i∞

a−i∞
eλt K1,λdλ,

K (x, t) := 1

2π i
P.V .

∫ a+i∞

a−i∞
eλt Kλ(x)dλ,

(5.13)

where a is a sufficiently large number.

Proposition 5.5. The interior/boundary source Green kernels satisfy

K̃ (x, t) − W
′
(x)K1(t) = K (x, t), G̃(x, t; y) − W

′
(x)G1(t; y) = G(x, t; y).

(5.14)
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With these definitions, equations (5.2) can be rewritten in the concise form

v̌(λ, x) = K̃λ(x)B̌S(λ) +
∫ ∞

−∞
G̃λ(x; y)

(
v0(y) + ǏS(λ, y)

)
dy,

η̌(λ) = K1,λ B̌S(λ) +
∫ ∞

−∞
G1,λ(y)

(
v0(y) + ǏS(λ, y)

)
dy.

(5.15)

Formally exchanging the order of integration in the inverse Laplace tranform for-
mula (4.5), we get finally, a formal description of the solution to (4.4) as

˜̃v(x, t) =
∫ t

0
K̃ (x, t − s)BS(s)ds +

∫ ∞

−∞
G̃(x, t; y)v0(y)dy

+
∫ t

0

∫ ∞

−∞
G̃(x, t − s; y)IS(s, y)dyds,

η̃(t) =
∫ t

0
K1(t − s)BS(s)ds +

∫ ∞

−∞
G1(t; y)v0(y)dy

+
∫ t

0

∫ ∞

−∞
G1(t − s; y)IS(s, y)dyds.

(5.16)

Translating from good unknowns back to original coordinates and validating rigor-
ously the formal exchange of integration, we consolidate our results in the following
integral representation:

Proposition 5.6. For v uniformly bounded in H2, the solution of (4.1) may be
written as

v(x, t) =
∫ t

0
K (x, t − s)BS(s)ds +

∫ ∞

−∞
G(x, t; y)v0(y)dy

+
∫ t

0

∫ ∞

−∞
G(x, t − s; y)IS(s, y)dyds,

η(t) = η0 +
∫ t

0
K1(t − s)BS(s)ds +

∫ ∞

−∞
G1(t; y)v0(y)dy

+
∫ t

0

∫ ∞

−∞
G1(t − s; y)IS(s, y)dyds,

(5.17)

where K , G, K1, and G1 defined in (5.13) are distributions of order at most two,
that is, expressible as the sum of at most second-order derivatives of measurable
functions.2

Proof. Using ˜̃v − W
′
η̃ = v and Proposition 5.5, (5.17) follows formally by sub-

tracting W
′
times (5.16)(ii) from (5.16)(i). Thus, the issue is to show that, inter-

preted in the sense of distributions, the order of integration may be exchanged in
the double-integral terms of (4.5) expanded as

2 In fact as we show in the following section, they are precisely of order one.
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˜̃v(x, t) = 1

2π i
P.V .

∫ a+i∞

a−i∞
eλt v̌(x, λ)dλ

= 1

2π i
P.V .

∫ a+i∞

a−i∞
eλt K̃λ(x)B̌S(λ)dλ

+ 1

2π i
P.V .

∫ a+i∞

a−i∞
eλt

∫ +∞

−∞
G̃λ(x, y)v0(y)dy dλ

+ 1

2π i
P.V .

∫ a+i∞

a−i∞
eλt

∫ +∞

−∞
G̃λ(x, y) ǏS(y, λ)dy dλ,

(5.18)

and

η̃(x, t) = 1

2π i
P.V .

∫ a+i∞

a−i∞
eλt η̌(x, λ)dλ

= 1

2π i
P.V .

∫ a+i∞

a−i∞
eλt K1,λ B̌S(λ)dλ

+ 1

2π i
P.V .

∫ a+i∞

a−i∞
eλt

∫ +∞

−∞
G1,λ(y)v0(y)dy dλ

+ 1

2π i
P.V .

∫ a+i∞

a−i∞
eλt

∫ +∞

−∞
G1,λ(y) ǏS(y, λ)dy dλ,

(5.19)

the single-integral terms being treatable by the standard property that the inverse
transform of a product is the convolution of inverse transforms of its factors.

The double-integral terms may be treated similarly as in [47,48,69] by a stan-
dard device used in semigroup theory to validate the inverse Laplace transform rep-
resentation of the solution operator [52, §1.7, pp. 28–29], adapted to the context of
integral kernels.Namely, applying the resolvent kernel identity G̃λ = (LG̃λ+δy)/λ

deriving from the defining property (λ−L)G̃λ = δy of the interior resolvent kernel
G̃λ, we may factor

G̃λ = L2G̃λ/λ
2 + Lδy/λ

2 + δy/λ.

By the crude high-frequency bound

(d/dx)k G̃λ(x, y) ≤ Ce−η|x−y| (5.20)

for k ≥ 0 and�λ ≥ α,α sufficiently large, carried out in Section 6.1, we have there-
fore that term 1

2π i P.V .
∫ a+i∞
a−i∞ eλt

∫ +∞
−∞ G̃λ(x, y) ǏS(y, λ)dy dλ in (5.18)may be ex-

panded as L2 applied to the integral 1
2π i P.V .

∫ a+i∞
a−i∞ eλt

∫ +∞
−∞ G̃λ(x, y)v0(y)/λ2dy

dλ plus two explicitly evaluable terms.
Observing for �λ = a fixed that the integrand eλt G̃λ(·, y)v0(y)/λ2 is abso-

lutely integrable in (y, λ), we have byFubini’s theorem thatwemay switch the order
of integration to obtain instead L2 applied to the limit 1

2π i

∫ +∞
−∞ P.V .

∫ a+i∞
a−i∞ eλt G̃λ

(x, y)v0(y)/λ2dλ dy, which, since limits and derivatives of distributions freely
exchange, is equal to

1

2π i

∫ +∞

−∞
P.V .

∫ a+i∞

a−i∞
eλt L2G̃λ(x, y)v0(y)/λ

2dλ dy.
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We find in passing that the result is a distribution of at most order 2, since it is
expressible as the second-order derivative operator L2 applied to a measurable
function.

Likewise, we find by standard inverse Laplace transform computations that
the order of integration may be exchanged in 1

2π i P.V .
∫ a+i∞
a−i∞ eλt

∫ +∞
−∞ δy/λ

2dy dλ

and 1
2π i P.V .

∫ a+i∞
a−i∞ eλt

∫ +∞
−∞ δy/λ dy dλ, validating the exchange in order for the

entire G̃-term in (5.18). The first term is at most order 2 since expressible as the
first-order operator applied to an order-1 distribution (the delta-function), while the
second is order 1. Thus, the entire term is at most of order 2.

TheG1 term in (5.19) goes similarly, using the defining relation (λ−L)G1,λ =
0. Thus, the order of integrationmay be exchanged also for double-integral terms of
(5.19) may be expanded as L2 applied to the integral (5.17)(ii), justifying (5.17)(ii);
at the same time this shows thatG1 is a distribution of atmost order 2. (Alternatively,
observing that the terms in the representation of η̃ are expressible as functions of
˜̃v(0, t), we may conclude (5.16)(ii) directly from (5.16)(i).)

Similarly, using the property K̃λ = L K̃λ/λ, and the uniformbound |K̃λ|Hs ≤ C
for �λ sufficiently large obtained in Section 6.1, we find that

K̃ (x, t) := 1

2π i
P.V .

∫ a+i∞

a−i∞
eλt K̃λ(x)dλ = L2 1

2π i
P.V .

∫ a+i∞

a−i∞
eλt K̃λ(x)/λ

2dλ

factors as L2 applied to an Hs function defined by the absolutely convergent integral
of

eλt K̃λ(x)/λ
2dλ = O(1/|λ|2),

so is a distribution of order at most 2. Finally, using the large-|λ| bound K1,λ =
Vh/λ + O(1/|λ|2) obtained in (6.25), Section 6.1, we find that K1(t) := 1

2π i P.V .∫ a+i∞
a−i∞ eλt K1,λdλ decomposes into the sum of an explicitly evaluable, constant
term

Vh
1

2π i
P.V .

∫ a+i∞

a−i∞
eλtλ−1dλ = Vh

and an absolutely convergent integral 1
2π i P.V .

∫ a+i∞
a−i∞ eλt O(|λ|−2)dλ, hence is a

C0 function with respect to t . 
�
Remark 5.7. Noting (Section 6.1) that the crude high-frequency estimate (5.20)
holds for�λ ≥ −b and |λ| ≥ R for b > 0 sufficiently small and R > 0 sufficiently
large, we find by the same analysis used to justify exchange of integration order in
the proof of Proposition 5.6 that the contour P.V .

∫ a+i∞
a−i∞ in (5.13), Definition 5.4

(interpreted in distributional sense) may be deformed to

lim
M→∞

( ∫ −b−i R

−b−iM
+

∫ a−i R

−b−i R
+

∫ a+i R

a−i R
+

∫ −b+i R

a+i R
+

∫ −b+iM

−b+i R

)
(5.21)

for b > 0 sufficiently small and R > 0 sufficiently large. This simplifies somewhat
the corresponding analysis of [47] based on more detailed bounds.
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6. Resolvent Estimates

Wenow derive bounds on the various resolvent kernels, on the crucial large- and
small-|λ| regimes, corresponding via the usual frequency/temporal duality for the
Laplace transform to small- and large-t behavior of the associated time-evolutionary
Green kernels. These are obtained with no a priori assumption of spectral stability,
that is, we establish in the course of our analysis rigorous high- and low-frequency
Evans–Lopatinsky stability. Intermediate frequencies 1/C ≤ |λ| ≤ C for C > 0
yield, by construction, immediately uniform exponential estimates

|G̃λ(x, y)| ≤ Ce−η̄|x−y|, η̄ > 0, (6.1)

etc., provided the Evans–Lopatinsky condition is satisfied, hence their analysis is
trivial in this sense. On the other hand, the verification of the Evans–Lopatinsky
condition appears to be quite complicated in this regime, and we find it necessary
to carry this out numerically (see Section 11).

6.1. High Frequency Analysis

We now study behavior of system (4.7)(i) in the high frequency regime. Denote
w = v̌ and write (4.7)(i) as

wx = −λA−1w + A−1(E − Ax )w (6.2)

and perform two diagonalizations U := R̃R−1w similar to procedures in High
Frequency analysis in [36], we reach a 2 by 2 system in which U satisfies

U ′ =
(

λ

(
μ1(x) 0

0 μ2(x)

)
+

(
M11(x) 0

0 M22(x)

)
+ 1

λ
N (λ, x)

)
U

:=
(


(λ, x) + 1

λ
N (λ, x)

)
U (6.3)

where

− A−1 = R

(
μ1 0
0 μ2

)
R−1, M = R−1(A−1E − A−1Ax )R − R−1Rx ,

μ1,2 = FH(
√
HR + 1)

FHR ± H
3
2 (

√
HR + 1)

, R̃ = I d +
(− M12M21

(μ1−μ2)2λ2
M12

μ1−μ2)λ

− M21
(μ1−μ2)λ

0

)
,

R =
( −FH FH
H3/2 − FH

√
HR − F(H−HR)√

HR+1
H3/2 + FH

√
HR + F(H−HR)√

HR+1

)
,

(6.4)

and |N (λ, x)| < C(F, HR) uniformly in |λ| > 1, x ≷ 0.

Lemma 6.1. Let U (x) = (
U1(x) U2(x)

)T
be stable flow (as x → −∞) of (6.3)

and define �1 = U2/U1. Let Ũ (x) = (
Ũ1(x) Ũ2(x)

)T
be unstable flow (as

x → −∞) of (6.3) and define �2 = Ũ1/Ũ2. For �λ > −η̄ (η̄ > 0, η̄ sufficiently
small) and |λ| sufficiently large, we then have �1,2(x, λ) = O(1/|λ|) uniformly in
x < 0.
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Proof. We find after a brief calculation that

�′
1 = (
22 − 
11)�1 + 1

λ

(
N21 + N22�1 − N11�1 − N12�

2
1

)
. (6.5)

For x < 0, let F̃λ denotes the flow of equation �′ = (
22(λ) − 
11(λ))�. For
�λ ≥ −η̄,

�(
22(λ) − 
11(λ)) = (μ2 − μ1) �λ + M22 − M11

≤ 2FH5/2
(√

HR + 1
)2

H3HR + H3 − F2HR
2 + 2H3

√
HR

η̄ + M22 − M11

≤ M22 − M11

2
< −c < 0. (6.6)

Define bounded operator Tλ on Banach space B = Cb((−∞, 0], C)3 by

(Tλ�)(x) :=
∫ x

−∞
F̃ y→x

λ

1

λ
(N21(y) + N22(y)�(y)

−N11(y)�(y) − N12(y)�
2(y)

)
dy.

(6.7)

Claim one: For L > 0, the operator Tλ is a contraction map on {� : ||�||∞ ≤
L ,� ∈ B} provided that |λ| ≥ max{C(1+L)2

cL ,
4C(1+L)

c }. This follows from in-
equalities

|(Tλ�)(x)| ≤
∫ x

−∞
e−c(x−y)C + 2CL + CL2

|λ| dy = C(1 + L)2

c|λ| ≤ L ,

|(Tλ� − Tλ�̃)(x)| ≤
∫ x

−∞
e−c(x−y) 2C(1 + L)||� − �̃||∞

|λ| dy ≤ 1

2
||� − �̃||.

(6.8)
Claim two: For |λ| > 8C

c , Tλ is a contraction map for L := 4C
c|λ| < 1

2 . This is
because

C(1 + L)2

cL
≤ C22

c 4C
c|λ|

= |λ|, 4C(1 + L)

c
<

8C

c
< |λ|.

Claim two then follows from Claim one.
The unique solution to (6.5) guaranteed by the contraction mapping theorem

will be in the ball of radius L = 4C
c|λ| , which is of O(1/|λ|). On the other hand,

�′
2 = (
11 − 
22)�2 + 1

λ

(
N12 + N11�2 − N22�2 − N21�

2
2

)
. (6.9)

3 Here Cb((−∞, 0], C) is the space of bounded continuous function on (−∞, 0] asso-
ciated with the sup norm.
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Let F̃λ now denote the flow of equation�′ = (
11(λ)−
22(λ))�. For�λ ≥ −η,
�(
11(λ) − 
22(λ)) > c > 0, we define bounded operator Tλ on Banach space
Cb((−∞, 0], C)

(Tλ�)(x) :=
∫ x

0
F̃ y→x

λ

1

λ
(N12(y) + N11(y)�(y)

−N22(y)�(y) − N21(y)�
2(y)

)
dy.

(6.10)

Again, inequalities

|(Tλ�)(x)| ≤
∫ 0

x
ec(x−y)C + 2CL + CL2

|λ| dy = C(1 + L)2

c|λ| ≤ L ,

|(Tλ� − Tλ�̃)(x)| ≤
∫ 0

x
ec(x−y) 2C(1 + L)||� − �̃||∞

|λ| dy ≤ 1

2
||� − �̃||

(6.11)
yield claims one and two, completing the lemma. 
�

Lemma 6.2. Writing R in (6.4)as R = (
R1 R2

)
and setting

(
L1
L2

)
= (

R1 R2
)−1

,

for �λ > −η̄ (η̄ > 0, η̄ sufficiently small), |λ| sufficiently large, the solution op-
erator F y→x

λ of system (6.2) on x > 0 is

F y→x
λ = e

(
λμ1,++M11,++ 1

λ
N11,+(λ)+ 1

λ
N12,+(λ)

)
(x−y) (

R1,+L1,+ + O(1/|λ|))

+e

(
λμ2,++M22,++ 1

λ
N22,+(λ)+ 1

λ
N21,+(λ)

)
(x−y) (

R2,+L2,+ + O(1/|λ|)) , 0 < x < y.
(6.12)

Moreover, the stable and unstable flow operators of system (6.2) on x < 0 are

F y→x
λ �λ,s(y) = e

∫ x
y

(
λμ1(z)+M11(z)+ 1

λ
N11(λ,z)+ 1

λ
N12(λ,z)

)
dz

(R1(x)L1(y) + O(1/|λ|)) , x < y < 0,

F y→x
λ �λ,u(y) = e

∫ x
y

(
λμ2(z)+M22(z)+ 1

λ
N22(λ,z)+ 1

λ
N21(λ,z)

)
dz

(R2(x)L2(y) + O(1/|λ|)) , y < x < 0,

(6.13)

where μ1,2, M as in (6.4) are independent of λ, |N (λ, x)| < C(F, HR) uniformly
in |λ| > 1, x ≷ 0, and the bound O(1/|λ|) is independent of x, y.

Proof. By lemma 6.1, the stable flow of (6.3)may bewritten asU = (
U1 �1U1

)T
with �1 = O(1/|λ|). The equation for U1 then reads U ′

1 = (

11 + 1

λ
N11 + 1

λ
N12

�1
)
U1. Integrating from 0 to x yields solution

U1(λ, x) = e
∫ x
0

(

11(λ,y)+ 1

λ
N11(λ,y)+ 1

λ
N12(λ,y)�1(λ,y)

)
dy
U1(0). (6.14)

Hence the full solution to (6.3) is
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(
U1
U2

)
=

(
U1

�1U1

)

= e
∫ x
0

(

11(λ,y)+ 1

λ
N11(λ,y)+ 1

λ
N12(λ,y)�1(λ,y)

)
dy

(
1

�1(λ, x)

)
U1(0).

(6.15)

Transformingback tow coordinates byw = RR̃−1U andusing estimate�1(λ, x) =
O(1/|λ|), R̃−1 = I d + O(1/|λ|), we obtain

w(λ, x) = e
∫ x
0

(

11(λ,y)+ 1

λ
N11(λ,y)+ 1

λ
N12(λ,y)�1(λ,y)

)
dy

(R1(x) + O(1/|λ|)) .

(6.16)
The projection onto the stable manifold �λ,s(y) is approximately R1(y)L1(y) +
O(1/|λ|); following the flow from y to x thus yields (6.13)(i). The unstable flow
operator (6.13)(ii) can be derived similarly. 
�

6.2. Pointwise Estimates on Resolvent Kernels

6.2.1. Large λ ∼ Small Time

Proposition 6.3. For �λ > −η̄ (η̄ > 0, η̄ sufficiently ) and |λ| sufficiently large,
G1

λ, G
2
λ, and Kλ can be written as

G1
λ =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− e

(
λμ1,++M11,++ 1

λ
N11,+(λ)+ 1

λ
N12,+(λ)�1,+(λ)

)
(x−y) (

R1,+L1,+ + O(1/|λ|)) A−1+

− e

(
λμ2,++M22,++ 1

λ
N22,+(λ)+ 1

λ
N21,+(λ)�2,+(λ)

)
(x−y) (

R2,+L2,+ + O(1/|λ|)) A−1+ , 0 < x < y,

− e
∫ x
y

(
λμ1(z)+M11(z)+ 1

λ
N11(λ,z)+ 1

λ
N12(λ,z)�1(λ,z)

)
dz

(R1(x)L1(y) + O(1/|λ|)) A−1(y), x < y < 0,

e
∫ x
y

(
λμ2(z)+M22(z)+ 1

λ
N22(λ,z)+ 1

λ
N21(λ,z)�2(λ,z)

)
dz

(R2(x)L2(y) + O(1/|λ|)) A−1(y), y < x < 0,

(6.17)

G2
λ =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(
e
∫ x
0

(
λμ1(z)+M11(z)+ 1

λ
N11(λ,z)+ 1

λ
N12(λ,z)�1(λ,z)

)
dz (

R1(x)L1(0
−) + O(1/|λ|)) V+

W
′
(x)O(1/|λ|)

)
A+

(
e
−
(
λμ1,++M11,++ 1

λ
N11,+(λ)+ 1

λ
N12,+(λ)�1,+(λ)

)
y (

R1,+L1,+ + O(1/|λ|))

+ e
−
(
λμ2,++M22,++ 1

λ
N22,+(λ)+ 1

λ
N21,+(λ)�2,+(λ)

)
y (

R2,+L2,+ + O(1/|λ|))
)
A−1+ , x < 0, y > 0,

−
(
e
∫ x
0

(
λμ1(z)+M11(z)+ 1

λ
N11(λ,z)+ 1

λ
N12(λ,z)�1(λ,z)

)
dz (

R1(x)L1(0
−) + O(1/|λ|)) V+

W
′
(x)O(1/|λ|)

)
A(0−)×

e
∫ 0
y

(
λμ2(z)+M22(z)+ 1

λ
N22(λ,z)+ 1

λ
N21(λ,z)�2(λ,z)

)
dz (

R2(0
−)L2(y) + O(1/|λ|)) A−1(y), x < 0, y < 0,

(6.18)
Kλ =⎧⎨
⎩
0, x > 0,

− e
∫ x
0

(
λμ1(z)+M11(z)+ 1

λ
N11(λ,z)+ 1

λ
N12(λ,z)�1(λ,z)

)
dz (

R1(x)L1(0
−) + O(1/|λ|)) V + W

′
(x)O(1/|λ|), x < 0,

(6.19)
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where μ1,2, R, L, M11, M22 as in (6.4), V as in (6.22) are explicitly calculable and
independent of λ, �1,2(λ, x) as in Lemma 6.1 are O(1/|λ|) terms uniformly in x,
y. Moreover, they can be decomposed as

G1
λ = H1

λ + (G1
λ − H1

λ ), G2
λ = H2

λ + (G2
λ − H2

λ ), Kλ = HK ,λ + (Kλ − HK ,λ)

(6.20)
where H1,2

λ , HK ,λ are their corresponding lowest order terms defined by

H1
λ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− e(λμ1,++M11,+)(x−y)R1,+L1,+A−1+
− e(λμ2,++M22,+)(x−y)R2,+L2,+A−1+ , 0 < x < y,

− e
∫ x
y (λμ1(z)+M11(z))dz R1(x)L1(y)A

−1(y), x < y < 0,

e
∫ x
y (λμ2(z)+M22(z))dz R2(x)L2(y)A

−1(y), y < x < 0,

H2
λ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− e
∫ x
0 (λμ1(z)+M11(z))dz R1(x)L1(0

−)V A+

×
(
e−(λμ1,++M11,+)y R1,+L1,+ + e−(λμ2,++M22,+)y R2,+L2,+

)
A−1+ , x < 0, y > 0,

− e
∫ x
0 (λμ1(z)+M11(z))dz R1(x)L1(0

−)V A(0−)

× e
∫ 0
y (λμ2(z)+M22(z))dz R2(0

−)L2(y)A
−1(y), x < 0, y < 0,

Hλ =
{
0, x > 0,

− e
∫ x
0 (λμ1(z)+M11(z))dz R1(x)L1(0

−)V, x < 0,
(6.21)

and G1,2
λ − H1,2

λ , Kλ − Hλ are O(1/|λ|) terms.
Proof. As consequences of Lemma 6.2 and using either (5.6) or (5.7), the G1

λ part
(6.17) then follows. As for the G2

λ part, explicit calculation shows that in the high
frequency regime(

1 0
)
M−1(λ) = O(1/|λ|)

(
0 1

)
M−1(λ) =

(
FH∗(HR+√

HR+1)(
H∗3/2+√

HRH∗3/2+FHR
)2 − FH∗(

√
HR+1)(

H∗3/2+√
HRH∗3/2+FHR

)2
)

+ O(1/|λ|)
:= V + O(1/|λ|).

(6.22)
Equation (6.18) then follows. To estimate the error terms, we find, for x < y < 0,
that∣∣∣∣e

∫ x
y

(
λμ1(z)+M11(z)+ 1

λ
N11(λ,z)+ 1

λ
N12(λ,z)�1(λ,z)

)
dz − e

∫ x
y (λμ1(z)+M11(z))dz

∣∣∣∣

=

∣∣∣∣∣∣∣
∞∑
n=1

e
∫ x
y (λμ1(z)+M11(z))dz 1

n!

(∫ x
y (N11(λ, z) + N12(λ, z)�1(λ, z)) dz

)n
λn

∣∣∣∣∣∣∣
≤

∞∑
n=1

ec(x−y) (C(x − y))n

n!|λ|n =
∞∑
n=1

ec(x−y)C(x − y)

n|λ|
(C(x − y))n−1

(n − 1)!|λ|n−1

�
∞∑
n=1

ec(x−y)/2

|λ|
(C(x − y))n−1

(n − 1)!|λ|n−1 = 1

|λ|e
c(x−y)

2 +C(x−y)
|λ| = O(1/|λ|).

(6.23)



Hydraulic Shock Profiles 227

Thus G1
λ − H1

λ is an O(1/|λ|) term on y < x < 0. The other parts can be similarly
estimated. 
�

Desingularizing η̌-resolvent kernels G1,λ, K1,λ by multiplying by a factor λ,
we have the following estimates on λG1,λ, λK1,λ in the high frequency regime:

Proposition 6.4. For �λ > −η̄ (η̄ > 0, η̄ sufficiently small) and |λ| sufficiently
large, λG1,λ, λK1,λ can be written as

λG1,λ =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

e
−
(
λμ1,++M11,++ 1

λ
N11,+(λ)+ 1

λ
N12,+(λ)�1,+(λ)

)
y
(Vh + O(1/|λ|)) A+

(
R1,+L1,+ + O(1/|λ|)) A−1+

e
−
(
λμ2,++M22,++ 1

λ
N22,+(λ)+ 1

λ
N21,+(λ)�2,+(λ)

)
y
(Vh + O(1/|λ|)) A+

(
R2,+L2,+ + O(1/|λ|)) A−1+ , 0 < y,

e
∫ 0−
y

(
λμ2(z)+M22(z)+ 1

λ
N22(λ,z)+ 1

λ
N21(λ,z)�2(λ,z)

)
dz

(Vh + O(1/|λ|)) ×
A(0−)

(
R2(0

−)L2(y) + O(1/|λ|)) A−1(y), y < 0,

(6.24)

λK1,λ = Vh + O(1/|λ|), (6.25)

where μ1,2, R, L, M11, M22 as in (6.4) Vh as in (6.28) are explicitly calculable and
independent of λ, �1,2(λ, x) as in Lemma 6.1 are O(1/|λ|) terms uniformly in x,
y. Moreover, λG1,λ can be decomposed as

λG1,λ = H1,λ + (G1,λ − H1,λ), (6.26)

where H1,λ is its corresponding lowest order term defined by

H1,λ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−(λμ1,++M11,+)yVh A+R1,+L1,+A−1+
e−(λμ2,++M22,+)yVh A+R2,+L2,+A−1+ , 0 < x < y,

e
∫ 0−
y (λμ2(z)+M22(z))dzVh A(0−)R2(0

−)L2(y)A
−1(y), y < x < 0,

(6.27)
and λG1,λ − H1,λ is an O(1/|λ|) term.
Proof. By definition of K1,λ (5.9) and equations (11.16) (11.17), equation (6.25)
follows from the calculation

λK1,λ = (
1 0

)
λM−1(λ)

= λ

�(λ)

(
1 0

) (− 1
μ1(0−)

(R1(0−))2 + O(1/|λ|) 1
μ1(0−)

(R1(0−))1 + O(1/|λ|)
− (

λW − R(W )
)
2

(
λW − R(W )

)
1

)

= (H∗ − HR)
(
FHR + H∗3/2(1 + √

HR)
)

×(−H3/2∗ (
√
HR + 1) + F(H∗ − HR + H∗HR + H∗

√
HR))

−FH∗(
√
HR + 1)) + O(1/|λ|)

:= Vh + O(1/|λ|). (6.28)
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By definition of G1,λ (5.4) and using Lemma 6.2, in the high frequency regime,

G1,λ =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

)
M−1(λ)A+

(
e
−
(
λμ1,++M11,++ 1

λ
N11,+(λ)+ 1

λ
N12,+(λ)�1,+(λ)

)
y (

R1,+L1,+ + O(1/|λ|))

+ e
−
(
λμ2,++M22,++ 1

λ
N22,+(λ)+ 1

λ
N21,+(λ)�2,+(λ)

)
y (

R2,+L2,+ + O(1/|λ|))
)
A−1+ , y > 0,

(
1 0

)
M−1(λ)A(0−)e

∫ 0
y

(
λμ2(z)+M22(z)+ 1

λ
N22(λ,z)+ 1

λ
N21(λ,z)�2(λ,z)

)
dz

(
R2(0

−)L2(y) + O(1/|λ|)) A−1(y), y < 0.
(6.29)

Byequation (6.28), theλG1,λ part (6.24) then follows. Following similar calculation
as in (6.23), we find that λG1,λ − H1,λ is an O(1/|λ|) term. 
�
Proposition 6.5. For �λ > −η̄ (η̄ > 0, η̄ sufficiently small) and |λ| sufficiently
large, the y derivative of G1,λ can be decomposed as

∂yG1,λ = HYλ + (∂yG1,λ − HYλ), (6.30)

where HYλ is its corresponding lowest order term defined by

HYλ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− μ1,+e−(λμ1,++M11,+)yVh A+R1,+L1,+A−1+
− μ2,+e−(λμ2,++M22,+)yVh A+R2,+L2,+A−1+ , 0 < x < y,

− μ2(y)e
∫ 0−
y (λμ2(z)+M22(z))dzVh A(0−)R2(0

−)L2(y)A
−1(y), y < x < 0,

(6.31)
and ∂yG1,λ − HYλ is a O(1/|λ|) term.
Proof. By taking y derivative of G1,λ using (6.29), we see when the y-derivative
falls on the exponential terms, the exponent −λμ1,+ then gives another factor of
λ that cancel the 1

λ
factor in

(
1 0

)
M−1(λ) (6.22), giving HYλ term. When the

y-derivative falls on other terms, it results in terms of order O( 1
|λ| ). 
�

6.2.2. Small λ ∼ Large Time Expanding (4.8)(4.9) near λ = 0 yields

γ1,−(λ) = c01,− + c11,−λ + O(λ2),

γ2,−(λ) = −c12,−λ + c22,−λ2 + O(λ3) := γ̃2,−(λ) + O(λ3),

γ2,+(λ) = c02,+ + c12,+λ + O(λ2),

γ1,+(λ) = c11,+λ − c21,+λ2 + O(λ3) := γ̃1,+(λ) + O(λ3),

(6.32)

where ci1,2,± are positive constant explicitly calculable as functions of F , HR . Since
A+(λ) (A−(λ)) has distinct eigenvalues γ1,2,+ (γ1,2,−) near λ = 0, we have the
following proposition.

Proposition 6.6. The resolvent kernels G1
λ(x; y), G2

λ(x; y), and Kλ(x) can be ex-
tended holomorphically to B(0, r) for sufficiently small r . Moreover G1

λ(x; y) can
be decomposed as

G1
λ = S1λ + R1

λ, (6.33)
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where

S1λ(x; y) :=

⎧⎪⎨
⎪⎩

− eγ̃1,+(λ)(x−y)P1,+(0)A−1+ , 0 < x < y,

eγ̃2,−(λ)(x−y)P2,−(0)A−1− , y < x < 0,

0, otherwise,

(6.34)

and R1
λ is a faster-decaying residual

R1
λ(x; y) :=⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− eγ2,+(λ)(x−y)P2,+(λ)A−1+ +
(
eγ̃1,+(λ)(x−y)P1,+(0) − eγ1,+(λ)(x−y)P1,+(λ)

)
A−1+ , 0 < x < y,

− eγ1,−(λ)(x−y)T−(λ, x)P1,−(λ)T−1− (λ, y)A−1(y), x < y < 0,

− eγ̃2,−(λ)(x−y)P2,−(0)A−1− + eγ2,−(λ)(x−y)T−(λ, x)P2,−(λ)T−1− (λ, y)A−1(y), y < x < 0,

0, otherwise.

(6.35)

Further, G2
λ(x; y) is a faster decaying term which can be estimated as

|G2
λ| =

∣∣∣O(e−r̃1,+y−θ ′|x |)
∣∣∣ , x < 0, y > 0,

|G2
λ| =

∣∣∣O(e−r̃2,−y−θ ′|x |)
∣∣∣ , x < 0, y < 0,

(6.36)

and Kλ(x) is a faster decaying term which can be estimated as

|Kλ| =
∣∣∣O(e−θ ′|x |)

∣∣∣ , x < 0. (6.37)

Proposition 6.7. The desingularized resolvent kernels λG1,λ(y), λK1,λ can be ex-
tended holomorphically to B(0, r) for sufficiently small r . Moreover, defining

Vl = lim
λ→0

λ
(
1 0

)
M−1(λ), (6.38)

it holds that
λK1,λ = Vl + O(|λ|), (6.39)

and λG1,λ(y) can be decomposed as

λG1,λ = S1,λ + R1,λ, (6.40)

where

S1,λ(y) :=
{
e−γ̃1,+(λ)yVl A+P1,+(0)A−1+ , 0 < y,

e−γ̃2,−(λ)yVl A(0−)P2,−(0)A−1− , y < 0,
(6.41)

and R1,λ is a faster-decaying residual.

Proof. By the definition of G1,λ (5.4)

G1,λ =
⎧⎨
⎩

(
1 0

)
M−1(λ)A+

(
e−γ1,+(λ)y P1,+(λ) + e−γ2,+(λ)y P2,+(λ)

)
A−1+ , y > 0,

(
1 0

)
M−1(λ)A(0−)T−(λ, 0−)e−γ2,− y P2,−(λ)T−1− (λ, y)A−1(y), y < 0.

(6.42)
We see in the neighborhood of the origin

(
1 0

)
M−1(λ) is desingularized by the

extra λ factor in λG1,λ. The proposition then follows. 
�
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Proposition 6.8. The y-derivative of G1,λ can be decomposed as

∂yG1,λ = SY1,λ + SY2,λ + RYλ, (6.43)

where

SY1,λ :=
{ − c11,+e−γ̃1,+(λ)yVl A+P1,+(0)A−1+ , 0 < y,

− c12,−e−γ̃2,−(λ)yVl A(0−)P2,−(0)A−1− , y < 0,

SY2,λ :=

⎧⎪⎨
⎪⎩

− (
1 0

)
M−1(λ)A+γ2,+e−γ2,+(λ)y P2,+(λ)A−1+ , y > 0,

(
1 0

)
M−1(λ)A(0−)T−(λ, 0−)e−γ2,− y P2,−(λ)

T−1− (λ, y)A−1(y)

∂y
, y < 0,

(6.44)
and RYλ is a faster-decaying residual that is of order O(|λ SY1,λ|). The term SY2,λ
has a simple pole at the origin and in y it is of order O(e−θ |y|).

Proof. Taking y-derivative of (6.42) yields

∂yG1,λ =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− (
1 0

)
M−1(λ)A+

(
γ1,+e−γ1,+(λ)y P1,+(λ) + γ2,+e−γ2,+(λ)y P2,+(λ)

)
A−1+ , y > 0,

− (
1 0

)
M−1(λ)A(0−)T−(λ, 0−)γ2,−e−γ2,− y P2,−(λ)T−1− (λ, y)A−1(y)

+ (
1 0

)
M−1(λ)A(0−)T−(λ, 0−)e−γ2,− y P2,−(λ)

T−1− (λ, y)A−1(y)

∂y
, y < 0.

(6.45)
By (6.32), we see the terms contain factor γ1,+(λ), γ2,−(λ) will be desingularized,
giving the SY1,λ and RYλ term. The remaining terms are defined to be SY2,λ. 
�

Proposition 6.9. The term G1,λ

(
0
1

)
can be decomposed as

G1,λ

(
0
1

)
= SV1,λ + SV2,λ + RVλ, (6.46)

where

SV1,λ :=

⎧⎪⎪⎨
⎪⎪⎩
e−γ̃1,+(λ)yVl A+

(
∂λP1,+

)
(0)A−1+

(
0
1

)
, 0 < y,

e−γ̃2,−(λ)yVl A(0−)
(
∂λP2,−

)
(0)A−1−

(
0
1

)
, y < 0,

SV2,λ :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 0

)
M−1(λ)A+e−γ2,+(λ)y P2,+(λ)A−1+

(
0
1

)
, y > 0,

(
1 0

)
M−1(λ)A(0−)T−(λ, 0−)

× e−γ2,−y P2,−(λ)
(
T−1− (λ, y)A−1(y) − A−1−

)(
0
1

)
, y < 0,

(6.47)
and RVλ is a faster-decaying residual that is of order O(|λ SV1,λ|). The term SV2,λ
has a simple pole at the origin and in y it is of order O(e−θ |y|).
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Proof. By expansion

P1,+(λ) = P1,+(0) + (
∂λP1,+

)
(0)λ + O(|λ|2),

P2,−(λ) = P2,−(0) + (
∂λP2,−

)
(0)λ + O(|λ|2),

and the special structure on P1,+(0)A−1+ and P2,−(0)A−1− from Observation 7.5,
the proposition follows by a similar argument as for Proposition 6.8. 
�

7. Pointwise Estimates on Green Kernels

With the above preparations, we are now ready to carry out our main linear
estimates, obtaining detailed pointwise bounds on the Green kernels of the time-
evolution problem.

Theorem 7.1. The interior source v-Green kernel function G defined in (5.13)may
be decomposed as

G = H1 + H2 + S1 + R, (7.1)

where, assuming Evans–Lopatinsky stability,

H1(x, t; y) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− e−η̄t+(−η̄μ1,++M11,+)(x−y)R1,+L1,+A−1+ δ
(
t + μ1,+(x − y)

)
− e−η̄t+(−η̄μ2,++M22,+)(x−y)R2,+L2,+A−1+ δ

(
t + μ2,+(x − y)

)
, 0 < x < y,

− e−η̄t+∫ x
y (−η̄μ1(z)+M11(z))dz R1(x)L1(y)A

−1(y)δ
(
t +

∫ x

y
μ1(z)dz

)
, x < y < 0,

e−η̄t+∫ x
y (−η̄μ2(z)+M22(z))dz R2(x)L2(y)A

−1(y)δ
(
t +

∫ x

y
μ2(z)dz

)
, y < x < 0,

(7.2)
H2(x, t; y) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− e−η̄t+∫ x
0 (−η̄μ1(z)+M11(z))dz R1(x)L1(0

−)V A+
(

δ

(
t − μ1,+y +

∫ x

0
μ1(z)dz

)
R1,+L1,+

× e−(−η̄μ1,++M11,+)y + δ

(
t − μ2,+y +

∫ x

0
μ1(z)dz

)
R2,+L2,+e−(−η̄μ2,++M22,+)y

)
A−1+ , x < 0, y > 0,

− e−η̄t+∫ x
0 (−η̄μ1(z)+M11(z))dz+

∫ 0
y (−η̄μ2(z)+M22(z))dz R1(x)L1(0

−)V A(0−)R2(0
−)L2(y)

× A−1(y)δ

(
t +

∫ x

0
μ1(z)dz +

∫ 0

y
μ2(z)dz

)
, x < 0, y < 0,

(7.3)

S1(x, t; y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χt≥1

−
√
c11,+√

4c21,+π t
e
− c11,+(t+c11,+(x−y))2

4c21,+ t P1,+(0)A−1+ , 0 < x < y,

χt≥1

√
c12,−√

4c22,−π t
e
− c12,−(t−c12,−(x−y))2

4c22,− t P2,−(0)A−1− , y < x < 0,

0, otherwise,

(7.4)
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S1y(x, t; y) = χt≥1, 0<x<y e
− (t+c11,+(x−y))2

Mt O

(
1

t

)

+χt≥1, y<x<0e
− (t−c12,−(x−y))2

Mt O

(
1

t

)
, (7.5)

R(x, t; y) = χt≥1, 0<x<y e
− (t+c11,+(x−y))2

Mt O

(
1

t

)

+ χt≥1, y<x<0e
− (t−c12,−(x−y))2

Mt O

(
1

t
+ 1√

t
e−θ |x |

)

+ χt≥1, x<0

1√
t
e−θ ′|x |O

(
χ0<y e

− (t−c11,+ y)2

Mt + χy<0e
− (t+c12,− y)2

Mt

)

+ O(e−η̄(|x−y|+t)),

(7.6)

Ry(x, t; y) = χt≥1, 0<x<y e
− (t+c11,+(x−y))2

Mt O

(
1

t
3
2

)

+ χt≥1, y<x<0e
− (t−c12,−(x−y))2

Mt O

(
1

t
3
2

+ 1

t
e−θ |x |

)

+ χt≥1, x<0

1

t
e−θ ′|x |O

(
χ0<y e

− (t−c11,+ y)2

Mt + χy<0e
− (t+c12,− y)2

Mt

)

+ O(e−η̄(|x−y|+t)),

(7.7)

S1(x, t; y)
(
0
1

)
= 0, (7.8)

and moreover

R(x, t; y)
(
0
1

)
= χt≥1, 0<x<y e

− (t+c11,+(x−y))2

Mt O

(
1

t
3
2

)

+ χt≥1, y<x<0e
− (t−c12,−(x−y))2

Mt O

(
1

t
3
2

)

+ χt≥1, x<0

1

t
e−θ ′|x |O

(
χ0<y e

− (t−c11,+ y)2

Mt + χy<0e
− (t+c12,− y)2

Mt

)

+ O(e−η̄(|x−y|+t)),

(7.9)
where M is some sufficiently big constant and η̄ is a sufficiently small positive
constant.

The interior source kernel estimates of Theorem 7.1 may be recognized as
essentially those of the smooth profile case [47,48]. Namely, as displayed in Fig. 4,
the principal high-frequency component consists of time-decaying delta-functions
moving along hyperbolic characteristics of (1.1) and refracting/reflecting from the
shock, while the principal low-frequency component consists of time-algebraically
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decayingGaussian signalsmoving along characteristics of the reduced, equilibrium
system (1.2).

The behavior of additional, boundary kernels in the discontinuous (subshock)
case is similar.

Theorem 7.2. For x > 0, the boundary source v-Green kernel function K (x, t)
defined in (5.13) is identically 0. For x < 0, it may be decomposed as

K (x, t) = HK + RK , (7.10)

where, assuming Evans–Lopatinsky stability,

HK (x, t) := −e−η̄t+∫ x
0 (−η̄μ1(z)+M11(z))dz

R1(x)L1(0
−)V δ

(
t +

∫ x

0
μ1(z)dz

)
, x < 0,

RK (x, t) = O(e−η̄(|x |+t)), x < 0.

(7.11)

Theorem 7.3. The time derivative of the interior source η-Green kernel function
G1(t; y) defined in (5.13) may be decomposed as

G1t = H1 + S1 + R1, (7.12)

where, assuming Evans–Lopatinsky stability,

H1(t; y)

:=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−η̄t−(−η̄μ1,++M11,+)yVh A+R1,+L1,+A−1+ δ
(
t − μ1,+y

)
+ e−η̄t−(−η̄μ2,++M22,+)yVh A+R2,+L2,+A−1+ δ

(
t − μ2,+y

)
, 0 < y,

e−η̄t+∫ 0
y (−η̄μ2(z)+M22(z))dzVh A(0−)R2(0

−)L2(y)A
−1(y)δ

(
t +

∫ 0

y
μ2(z)dz

)
, y < 0,

(7.13)

S1(t; y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

χt≥1

√
c11,+√

4c21,+π t
e
− c11,+(t−c11,+ y)2

4c21,+ t Vl A+P1,+(0)A−1+ , 0 < y,

χt≥1

√
c12,−√

4c22,−π t
e
− c12,−(t+c12,− y)2

4c22,− t Vl A(0−)P2,−(0)A−1− , y < 0,

(7.14)

S1y(t; y) = χt≥1, 0<y e
− (t−c11,+ y)2

Mt O

(
1

t

)
+ χt≥1, y<0e

− (t+c12,− y)2

Mt O

(
1

t

)
, (7.15)

R1(t; y) = χt≥1, 0<y e
− (t−c11,+ y)2

Mt O

(
1

t

)
+ χt≥1, y<0e

− (t+c12,− y)2

Mt O

(
1

t

)
+ O(e−η̄(|y|+t)), (7.16)

R1,y(t; y) = χt≥1, 0<y e
− (t−c11,+ y)2

Mt O

(
1

t
3
2

)
+ χt≥1, y<0e

− (t+c12,− y)2

Mt O

(
1

t
3
2

)
+ O(e−η̄(|y|+t)),

(7.17)

S1(t; y)
(
0
1

)
= 0, (7.18)
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and moreover

R1(t; y)
(
0
1

)
= χt≥1, 0<y e

− (t−c11,+ y)2

Mt O

(
1

t
3
2

)

+χt≥1, y<0e
− (t+c12,− y)2

Mt O

(
1

t
3
2

)
+ O(e−η̄(|y|+t)), (7.19)

where M is some sufficiently big constant, η̄ is a sufficiently small positive constant,
and Vh, Vl defined in (6.28), (6.38) are constant vectors.

Theorem 7.4. The time derivative of boundary source η-Green kernel function
K1(t) defined in (5.13) may be decomposed as

K1t = HK1 + RK1 , (7.20)

where, assuming Evans–Lopatinsky stability,

HK1(t) = Vhδ(t) and RK1 = O(e−η̄t ). (7.21)

Observation 7.5. (Special structure on P2,−(0)A−1− and P1,+(0)A−1+ ) Thematrices
P2,−(0)A−1− and P1,+(0)A−1+ can be computed symbolically to be

P2,−(0)A−1− =
⎛
⎜⎝

2+2
√
HR

1−2HR+√
HR

0

− 9HR−3+6HR
3/2

1−5HR+4HR
2 0

⎞
⎟⎠ , P1,+(0)A−1+ =

⎛
⎜⎝

2+2
√
HR

HR−2+√
HR

0

− 9HR−3HR
2+6

√
HR

4−5HR+HR
2 0

⎞
⎟⎠ .

In particular, the second columns vanish and equations (7.8) (7.18) follow.

Proof of Theorem 7.1. Case I. |x − y|/t sufficiently large Following [47], we
note, for |x − y|/t > S, S sufficiently large, that G = 0. Taking a sufficiently
large in (5.13), we can use Proposition 6.3 to estimate G1,2(x, t; y). For example
on x < y < 0,

|G1(x, t; y)| =
∣∣∣∣ 1

2π
P.V .

∫ a+i∞

a−i∞
eλt e

∫ x
y (λμ1(z)+M11(z))dz

(
R1(x)L1(y)A

−1(y)

+O(1/|λ|)) dλ|

≤
∣∣∣∣ 1

2π
P.V .

∫ a+i∞

a−i∞
eλt e

∫ x
y (λμ1(z)+M11(z))dz R1(x)L1(y)A

−1(y)dλ

∣∣∣∣
+

∣∣∣∣ 1

2π
P.V .

∫ a+i∞

a−i∞
eλt e

∫ x
y (λμ1(z)+M11(z))dzO(1/|λ|)dλ

∣∣∣∣
�ea(t+∫ x

y μ1(z)dz)+
∫ x
y M11(z)dz

∣∣∣∣P.V .

∫ ∞

−∞
eiξ

(
t+∫ x

y μ1(z)dz
)
dξ

∣∣∣∣
+ ea(t+∫ x

y μ1(z)dz)+
∫ x
y M11(z)dz

∫ ∞

−∞
1√

a2 + ξ2
dξ

= ea
(
t+∫ x

y μ1(z)dz
)
+∫ x

y M11(z)dzδ
(
t +

∫ x

y
μ1(z)dz

)

+ ea
(
t+∫ x

y μ1(z)dz
)
+∫ x

y M11(z)dz
∫ ∞

−∞
1√

a2 + ξ2
dξ.

(7.22)
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In “�” line, the integral can be explicitly computed because μ1, M11, R1, L1, and
A are independent of λ. And, on the next line, using the triangle inequality for the
integral yields the bound. Since there are c, C depending only on F , HR such that

−C < μ2(H(z)) < −c < 0 < c < μ1(z) < C,

δ
(
t + ∫ x

y μ1(z)dz
)
will be 0 provided that |x−y|

t < 1
C or |x−y|

t > C for some C

sufficiently large. As for the term in the last row of (7.22), for |x − y|/t sufficiently
large, t + ∫ x

y μ1(z)dz will be a negative number. Thus by sending a to +∞ this
term also vanishes. The same result holds on y < x < 0 and 0 < x < y. Similarly,
G2(x, t; y) also vanishes.

Case II. |x − y|/t bounded. First, observe that |x − y| ≤ Ct yields for θ > 0
that

e−θ t ≤ e−θ1(t+|x−y|)

for some θ1 > 0, a contribution absorbable in error term R. Thus, in this regime,
it is enough to show that terms are time-exponentially small in order to verify that
they are absorbable in R.

By our construction of resolvent kernels, they are meromorphic on the set of
consistent splitting, with poles precisely at zeros of the Evans–Lopatinsky function
� (4.19). Function� is nonvanishing on {λ : �λ ≥ −a, |λ| > r} by a combination
of Proposition 11.2 and the assumed Evans–Lopatinsky stablity, that is, M is in-
vertible on {λ : �λ ≥ −a, |λ| > r}. As observed in Remark 5.7, we can deform the
contour of integration in (5.13) to (5.21). Since, by Lemma 5.3, Gλ is holomorphic
in a small neighborhood of the origin, we can further deform the contour to the left
of the origin and obtain

G(x, t; y) = 1

2π i

∫ −η̄+ir

−η̄−ir
eλtGλdλ + 1

2π i

(∫ −η̄−ir

−η̄−i R
+

∫ −η̄+i R

−η̄+ir

)
eλtGλdλ

+ P.V .
1

2π i

(∫ −η̄−i R

−η̄−i∞
+

∫ −η̄+i∞

−η̄+i R

)
eλtGλdλ := I + I I + I I I

(7.23)
for η̄ > 0, η̄ sufficiently small. We will use superscript 1, 2 to denote contributions
from G1,2

λ to G.
Intermediate frequency contribution I I . For λ in the intermediate frequency

regime [−η̄−i R,−η̄−ir ] and [−η̄+ir,−η̄+i R], the resolvent kernel is bounded.
Therefore term I I is time-exponentially small of order e−η̄t and absorbable in R.

High frequency contribution I I I . In this regime, we can again use Proposition
6.3. The term I I I 1 can be written as

I I I 1 = 1

2π i
P.V .

∫ −η̄+i∞

−η̄−i∞
eλt H1

λdλ − 1

2π i

∫ −η̄+i R

−η̄−i R
eλt H1

λdλ

+ 1

2π i
P.V .

(∫ −η̄−i R

−η̄−i∞
+

∫ −η̄+i∞

−η̄+i R

)
eλt (G1

λ − H1
λ )dλ

:= I I I 1a + I I I 1b + I I I 1c .

(7.24)
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The term I I I 1a can be explicitly computed to be

I I I 1a = −e−η̄t+∫ x
y (−η̄μ1(z)+M11(z))dz R1(x)L1(y)A

−1(y)
1

2π
P.V .∫ ∞

−∞
eiξ

(
t+∫ x

y μ1(z)dz
)
dξ

= −e−η̄t+∫ x
y (−η̄μ1(z)+M11(z))dz R1(x)L1(y)A

−1(y)δ
(
t +

∫ x

y
μ1(z)dz

)
,

(7.25)
which gives contribution H1 on x < y < 0. As for the term I I I 1b , it can be bounded
by

|I I I 1b | =
∣∣∣∣e−η̄t+∫ x

y (−η̄μ1(z)+M11(z))dz R1(x)L1(y)A
−1(y)

1

2π∫ R

−R
eiξ

(
t+∫ x

y μ1(z)dz
)
dξ

∣∣∣∣
� e−η̄t+∫ x

y (−η̄μ1(z)+M11(z))dz

≤ e−η̄(t+(y−x)),

(7.26)

in which the last inequality follows by −η̄μ1(z) + M11(z) > c > η̄ > 0 for η̄

sufficiently small and all z < 0. Hence I I I 1b is absorbable in R. By Proposition
6.3, G1

λ − H1
λ expands as 1/λ times a bounded function h(x, y) plus an error term

of order O( 1
|λ|2 ) on the contour of integral I I I 1c . Thus,

|I I I 1c | � e−η̄t h(x, y)P.V .

(∫ ∞

R
+

∫ R

−∞

)
λ−1dλ

+ e−η̄t
∫ ∞

R

1

η̄2 + ξ2
dξ � e−η̄t ,

(7.27)

which again is absorbable in R. Similar analysis can be carried out on y < x < 0
and for G2

λ.

Low frequency contribution I .
(Case t ≤ 1). Estimates in the short-time regime t ≤ 1 are trivial. Since then

eλtGλ is uniformly bounded on the compact set [−η̄ − ir,−η̄ + ir ], we have
|I | � e−η̄t is absorbable in R.

(Case t ≥ 1). Next, consider I 1, I 2 on the critical regime t ≥ 1 and y < x < 0.
I 1: Decompose G1

λ = S1λ + R1
λ and write I 1 as

I 1 = 1

2π i

∫ −η̄+ir

−η̄−ir
eλt S1λdλ + 1

2π i

∫ −η̄+ir

−η̄−ir
eλt R1

λdλ := I 1S + I 1R . (7.28)

We then analyze I 1S , I 1R separately.
I 1S : Deform the integral to write I 1S as

I 1S = 1

2π i

(∫ η∗−ir

−η̄−ir
+

∫ η∗+ir

η∗−ir
+

∫ −η̄+ir

η∗+ir

)
eλt Sλdλ := I 1S1 + I 1S2 + I 1S3, (7.29)
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where the saddle point η∗(x, y, t) is defined as

η∗(x, y, t) :=

⎧⎪⎪⎨
⎪⎪⎩

ᾱ

p
, if

∣∣∣∣ ᾱp
∣∣∣∣ ≤ ε,

± ε, if
ᾱ

p
≷ ±ε,

(7.30)

with

ᾱ :=
x − y − 1

c12,−
t

2t
, p := c22,−(x − y)

c12,−t
. (7.31)

A key observation is that when
∣∣∣ ᾱ
p

∣∣∣ ≤ ε, ε sufficiently small, t
c12,−

, x − y are

comparable; that is, we have

1

2
(x − y) <

(
1 − 2c22,−ε

c12,−

)
(x − y) <

t

c12,−

<

(
1 + 2c22,−ε

c12,−

)
(x − y) < 2(x − y). (7.32)


�
Observation 7.6. Assuming the comparability condition (7.32) and y < x < 0,
e−θ ′|y| is time-exponentially decaying.

Proof. By the comparability condition, y < x− t
2c12,−

< − t
2c12,−

, we have e−θ ′|y| <

e
− θ ′

2c12,−
t
. 
�

I 1S2 : i. When
∣∣∣ ᾱ
p

∣∣∣ ≤ ε, I 1S2 can be explicitly computed to be

I 1S2 = 1

2π
e
−

(
t−c12,−(x−y)

)2
4c22,−(x−y)

∫ r

−r
e−c22,−(x−y)ξ2 dξ P2,−(0)A−1−

= 1√
4c22,−π(x − y)

e
− (t−c12,−(x−y))2

4c22,−(x−y) P2,−(0)A−1−

− 1

2π
e
−

(
t−c12,−(x−y)

)2
4c22,−(x−y)

(∫ −r

−∞
+

∫ ∞

r

)
e−c22,−(x−y)ξ2 dξ P2,−(0)A−1−

=
√
c12,−√

4c22,−π t
e
− c12,−(t−c12,−(x−y))2

4c22,− t P2,−(0)A−1−

+
⎛
⎝−

√
c12,−√

4c22,−π t
e
− c12,−(t−c12,−(x−y))2

4c22,− t + 1√
4c22,−π(x − y)

e
− (t−c12,−(x−y))2

4c22,−(x−y)

⎞
⎠ P2,−(0)A−1−

− 1

2π
e
−

(
t−c12,−(x−y)

)2
4c22,−(x−y)

(∫ −r

−∞
+

∫ ∞

r

)
e−c22,−(x−y)ξ2 dξ P2,−(0)A−1−

:= S1 + I 1S2Ri + I 1S2Rii ,

(7.33)
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where S1 gives contribution S1 in (7.1) and I 1S2Ri , I
1
S2Rii are shown in “Appendix

B” to be absorbable in R.
S1y : By direct calculation,

|S1y | =
∣∣∣∣∣∣P2,−(0)A−1−

√
c12,−√

4c22,−π t
e
− c12,−(t−c12,−(x−y))2

4c22,− t
c12,−(t − c12,−(x − y))

2c22,−t

∣∣∣∣∣∣

� 1

t
e
− c12,−(t−c12,−(x−y))2

8c22,− t
.

(7.34)

ii. When ᾱ
p > ε, the term I 1S2 can be bounded by

|I 1S2| � eε(t−c12,−(x−y))+ε2c22,−(x−y)
∫ r

−r
e−c22,−(x−y)ξ2dξ

� eε(t−c12,−(x−y)+εc22,−(x−y))

≤ e
1
2 (t−c12,−(x−y))ε ≤ e−ε′t .

(7.35)

Hence it is absorbable in R. Similarly, when ᾱ
p < −ε, IS2 is also time-exponentially

small.
I 1S1 and I 1S3 : i. When

∣∣∣ ᾱ
p

∣∣∣ ≤ ε, the term I 1S1 and I 1S3 can be estimated as

|I 1S1|, |I 1S3| � e−c22,−r2(x−y)
∣∣∣∣
∫ η∗

−η̄

e

(
t−c12,−(x−y)

)
ξ+c22,−(x−y)ξ2

dξ

∣∣∣∣ . (7.36)

Since η∗ is the critical point of quadratic function
(
t − c12,−(x − y)

)
ξ + c22,−(x −

y)ξ2, we then have

|I 1S1|, |I 1S3| � e−c22,−r2(x−y)e
−
(
t−c12,−(x−y)

)
η̄+c22,−(x−y)η̄2 |η∗ + η̄| . (7.37)

Choosing η̄ sufficiently small with respect to r2 and using comparability of t
c12,−

and x − y, I 1S1, I
1
S3 is then time-exponentially decaying.

ii. When
∣∣∣ ᾱ
p

∣∣∣ > ε, we have

|I 1S1|, |I 1S3|
� e−c22,−r2(x−y)

∣∣∣∣
∫ ±ε

−η̄

e

(
t−c12,−(x−y)

)
ξ+c22,−(x−y)ξ2

dξ

∣∣∣∣
� e−c22,−r2(x−y)

(
e
−
(
t−c12,−(x−y)

)
η̄+c22,−(x−y)η̄2

+e
−
(
t−c12,−(x−y)

)
ε+c22,−(x−y)ε2

)
(ε + η̄)

=
(
e−η̄t+(c12,−η̄+c22,−η̄2−c22,−r2)(x−y)

+e−εt+(c12,−ε+c22,−ε2−c22,−r2)(x−y)
)

(ε + η̄).

(7.38)
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Again choosing η̄, ε sufficiently small with respect to r yields that IS1, IS3 are
time-exponentially small.

I 1R :Using P2,−(λ) = P2,−(0)+O(|λ|),T−(λ, x) = I d+O(e−θ ′|x |),T−1− (λ, y) =
I d + O(e−θ ′|y|), γ2,−(λ) = γ̃2,−(λ) + O(|λ|3), and A−1(y) = A−1− + O(e−θy),
R1

λ can be estimated as

R1
λ = −eγ̃2,−(λ)(x−y)P2,−(0)A−1−

+ eγ2,−(λ)(x−y)T−(λ, x)P2,−(λ)T−1− (λ, y)A−1(y)

= −eγ̃2,−(λ)(x−y)P2,−(0)A−1−
+ eγ̃2,−(λ)(x−y)

(
1 + O(|λ3(x − y)|)

) (
I d + O(e−θ ′|x |)

)

× (
P2,−(0) + O(|λ|)) (I d + O(e−θ ′|y|)

) (
A−1− + O(e−θy)

)

= eγ̃2,−(λ)(x−y)
(
O(|λ3(x − y)|) + O(e−θ |x |)

)
P2,−(0)A−1−

+ eγ̃2,−(λ)(x−y)
(
O(|λ|)A−1−

+P2,−(0)O(e−θ ′|y|)A−1− + P2,−(0)O(e−θ |y|)
)

:= #1 + #2.

(7.39)

Deform the contour as before to write I 1R as

I 1R = 1

2π i

(∫ η∗−ir

−η̄−ir
+

∫ η∗+ir

η∗−ir
+

∫ −η̄+ir

η∗+ir

)
eλt R1

λdλ

:= I 1R1 + I 1R2 + I 1R3. (7.40)

I 1R2: On the contour [η∗ − ir, η∗ + ir ], we notice that

O(|λ|) = O(|η∗|) + O(|ξ |), O(|λ3(x − y)|) =
3∑

i=0

O(|η∗|i ||ξ |3−i |x − y|).
(7.41)

i. When
∣∣∣ ᾱ
p

∣∣∣ ≤ ε, I 1R2 can be estimated as

|I 1R2| � e
−

(
t−c12,−(x−y)

)2
4c22,−(x−y)

∫ r

−r
e−ξ2c22,−(x−y)O (|η∗| + |ξ |

+
3∑

i=0

|η∗|i |ξ |3−i |x − y| + e−θ ′|x | + e−θ ′|y|
)
dξ

� e
−

(
t−c12,−(x−y)

)2
4c22,−(x−y)

∫ r

−r
e−ξ2c22,−(x−y)O (|η∗| + |ξ | (7.42)

+
3∑

i=0

|η∗|i |ξ |3−i |x − y|
)
dξ
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+ 1√
c22,−(x − y)

e
−

(
t−c12,−(x−y)

)2
4c22,−(x−y) O(e−θ ′|x | + e−θ ′|y|)

:= I 1R2i + I 1R2i i .

The I 1R2i i term in the last line of (7.42) is absorbable in R because t
c12,−

and x− y are

comparable so 1√
c22,−(x−y)

e
−

(
t−c12,−(x−y)

)2
4c22,−(x−y) O(e−θ ′|x |) is absorbable in R (7.6) and by

Observation 7.6 the term 1√
c22,−(x−y)

e
−

(
t−c12,−(x−y)

)2
4c22,−(x−y) O(e−θ ′|y|) is time-exponentially

small hence also absorbable. The term I 1R2i is shown in “Appendix B” to be ab-
sorbable in R.

ii. When ᾱ
p > ε, following part ii above in the estimation of I 1S2, we find

that I 1R2 is also time-exponentially decaying. Using (7.39) and imitating the way
of estimating I 1S1 and I 1S3, we find that I 1R1 and I 1R3 are also time-exponentially
decaying.

In the regime t ≥ 1 and x < y < 0, by Proposition 6.6, G1
λ = R1

λ. Because�γ1,−(λ) > c > 0 in a small neighborhoodof the origin,G1
λ(x; y) is thenuniformly

bounded in x < y < 0, and so the term I 1 in (7.23) is time-exponentially decaying.
Following the way of estimating I 1R and using estimates (6.36), I 2 can be

estimated in a similar way and absorbed in R.

R

(
0
1

)
: In R, the terms I I , I I I 1,2b,c , and χt≤1 I are time-exponentially small,

hence absorbable in (7.9).4 By Observation 7.5, any terms in R that has a labeling

“S" will become 0 when right multiplied by

(
0
1

)
. The only term remaining to be

analyzed is I 1R . By (7.39), #1

(
0
1

)
= 0, the other term #2

(
0
1

)
is absorbable in

(7.9) by Observation 7.6.
Finally estimation of Ry can be done by estimating y-derivatives of terms in

(A.2)(iii) separately, that is, for

• I I : The y-derivative of the resolvent kernel is bounded on the intermediate
frequency regime, hence I Iy is time-exponentially small;

• I I I 1,2b,c : Direct computation shows they are time-exponentially small;

• χt≤1 I : eλtGλ,y uniformly bounded, so time-exponentially small;
• I 1S1,S3, χ ᾱ

p >ε I
1
S2:When the y-derivative hits the exponential term, thiswill bring

down only the order-one exponential rate, with no improvement due to differ-
entiation. But, this term is already uniformly bounded for low frequencies. So,

4 Refer to “Appendix A” equation (A.2)(iii) for decomposition of R.
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these terms again are time-exponentially small by following the estimates in
the undifferentiated case;

• χ ᾱ
p≤ε

I 1S2Ri : See “Appendix B”;

• χ ᾱ
p≤ε

I 1S2Rii : See “Appendix B”;

• I 1R : Againwedemonstrate how to estimate
∂ I 1R
∂y on the critical regime y < x < 0.

By direct computation,

∂

∂y

(
−eγ̃2,−(λ)(x−y)P2,−(0)A−1−

+eγ2,−(λ)(x−y)T−(λ, x)P2,−(λ)T−1− (λ, y)A−1(y)
)

= γ̃2,−(λ)eγ̃2,−(λ)(x−y)P2,−(0)A−1−
− γ2,−eγ2,−(λ)(x−y)T−(λ, x)P2,−(λ)T−1− (λ, y)A−1(y)

+ eγ2,−(λ)(x−y)T−(λ, x)P2,−(λ)
∂

∂y

(
T−1− (λ, y)A−1(y)

)

:= #3 + #4,

(7.43)

and

#3 = γ̃2,−(λ)eγ̃2,−(λ)(x−y)P2,−(0)A−1−
−

(
γ̃2,−(λ) + O(|λ|3)

)
eγ̃2,−(λ)(x−y)

(
1 + O(|λ3(x − y)|)

)

×
(
I d + O(e−θ ′|x |)

) (
P2,−(0) + O(|λ|))(

I d + O(e−θ ′|y|)
) (

A−1− + O(e−θ |y|)
)

=
(
O(|λ|3)eγ̃2,−(λ)(x−y) + γ̃2,−(λ)eγ̃2,−(λ)(x−y)

(
O(|λ3(x − y)| + O(e−θ ′|x |)

))
P2,−(0)A−1−

+ γ̃2,−(λ)eγ̃2,−(λ)(x−y)

(
O(|λ|)A−1− + P2,−(0)O(e−θ ′|y|)A−1− + P2,−(0)O(e−θ |y|)

)

=
(
O(|λ|3)eγ̃2,−(λ)(x−y) + O(|λ|)eγ̃2,−(λ)(x−y)

(
O(|λ3(x − y)| + O(e−θ ′|x |)

))
P2,−(0)A−1−

+ O(|λ|)eγ̃2,−(λ)(x−y)

(
O(|λ|)A−1− + P2,−(0)O(e−θ ′|y|)A−1− + P2,−(0)O(e−θ |y|)

)
.

(7.44)

We then see

|#3| = |eγ̃2,−(λ)(x−y)|O
(
|λ|2 + |λ|4|x − y| + |λ|e−θ |x | + |λ|e−θ ′|y|) . (7.45)
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The estimation is then similar to that of I 1R and we gain another 1√
t
from the

extra |λ|. Because
#4 = eγ̃2,−(λ)(x−y)P2,−(0)O(e−θ ′|y|). (7.46)

The estimation is again similar to that of I 1R in particular by Observation 7.6,
this term is time-exponentially small. 
�

Proof of Theorem 7.2. Following a similar analysis as for High frequency con-
tribution III in the estimation of G above and noting the bound (6.37) at low
frequencies, we find that the boundary source v-resolvent kernel Kλ is exponen-
tially decaying in |x |, hence the boundary source v-Green kernel K decomposes
into only an HK part and an R part as written in (7.10). 
�
Proof of Theorems 7.3 and 7.4. Taking time derivatives of K1, G1 in (5.13), we
get an extra λwhich removes the singularity of M−1 at λ = 0. The decompositions
for K1t (7.20), G1t (7.12) then follow by shifting the contour to {λ : �λ = −η̄}
and using Propositions 6.4 and 6.7. 
�

8. Linear Stability

From the pointwise estimates of Theorem 7.1 we obtain the following linear
Lq → L p stability estimates, from which we will ultimately derive nonlinear
stability and asymptotic orbital stability.

8.1. Linear Orbital Stability Estimates

Lemma 8.1. The time derivative of equation (5.17)(ii) is

η̇(t) = K1(0)BS(t) +
∫ t

0
K1t (t − s)BS(s)ds +

∫ ∞

−∞
G1t (t; y)v0(y)dy

+
∫ ∞

−∞
G1(0; y)IS(t; y)dy +

∫ t

0

∫ ∞

−∞
G1t (t − s; y)IS(s, y)dyds.

(8.1)

Proof. Directly by taking time derivative of (5.17)(ii). 
�
Taking BS = 0, IS = 0 in (5.17) and taking the time derivative of the η-

equation yields the linearized integral equations

v(x, t) =
∫ ∞

−∞
G(x, t; y)v0(y)dy, η̇(t) =

∫ ∞

−∞
G1t (t; y)v0(y)dy. (8.2)

Linear asymptotic orbital stability follows immediately fromTheorem7.1. Splitting
G (7.1) into singular part H := H1 + H2 and regular part Ḡ := S1 + R, K (7.10)
into singular part HK and regular part RK , and G1t (7.12) into singular part H1 and
regular part Ḡ1t := S1 + R1, we then have the following lemmas:
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Lemma 8.2. Assuming Evans–Lopatinsky stability, for the splitting G = Ḡ + H,
we have ∣∣∣∣

∫ +∞

−∞
Ḡ(· , t; y) f (y)dy

∣∣∣∣
L p

≤ C(1 + t)−
1
2 (1−1/r)| f |Lq + Ce−η̄t | f |L p , (8.3)∣∣∣∣

∫ +∞

−∞
Ḡ(· , t; y)

(
0

f (y)

)
dy

∣∣∣∣
L p

≤ C(1 + t)−
1
2 (2−1/r)| f |Lq + Ce−η̄t | f |L p , (8.4)∣∣∣∣

∫ +∞

−∞
Ḡ y(· , t; y) f (y)dy

∣∣∣∣
L p

≤ C(1 + t)−
1
2 (2−1/r)| f |Lq + Ce−η̄t | f |L p , (8.5)

and ∣∣∣∣
∫ +∞

−∞
H(· , t; y) f (y)dy

∣∣∣∣
L p

≤ Ce−η̄t | f |L p , (8.6)

for all t ≥ 0, some C, η̄ > 0, for any 1 ≤ r ≤ p and f ∈ Lq (resp. L p), where
1/r + 1/q = 1 + 1/p.

Lemma 8.3. AssumingEvans–Lopatinsky stability, for the splitting K = HK+RK ,
we have ∣∣∣∣

∫ t

0
HK (· , t − s)g(s)ds

∣∣∣∣
L p

≤ C |e−η̄(t−·)g|L p(0,t) (8.7)

and ∣∣∣∣
∫ t

0
RK (· , t − s)g(s)ds

∣∣∣∣
L p

≤ C |e−η̄(t−·)g|L1(0,t), (8.8)

for all t ≥ 0, some C, η̄ > 0, for any 1 ≤ p and g ∈ L p (resp. L1).

Lemma 8.4. Assuming Evans–Lopatinsky stability, for the splitting G1t = Ḡ1t +
H1, we have ∣∣∣∣

∫ ∞

−∞
Ḡ1t (t; y) f (y)dy

∣∣∣∣ ≤ C(1 + t)−
1
2q | f |Lq , (8.9)

∣∣∣∣
∫ ∞

−∞
Ḡ1t (t; y)

(
0

f (y)

)
dy

∣∣∣∣ ≤ C(1 + t)−
1
2− 1

2q | f |Lq , (8.10)
∣∣∣∣
∫ ∞

−∞
Ḡ1t y(t; y) f (y)dy

∣∣∣∣ ≤ C(1 + t)−
1
2− 1

2q | f |Lq , (8.11)

and ∣∣∣∣
∫ ∞

−∞
H1(t; y) f (y)dy

∣∣∣∣ ≤ Ce−η̄t | f |L∞ , (8.12)

for all t ≥ 0, some C, η̄ > 0, for any 1 ≤ q and f ∈ Lq (resp. L∞).
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Lemma 8.5. For K1t , it holds that

∣∣∣∣
∫ t

0
K1t (t − s)g(s)ds

∣∣∣∣ = Vhg(t) + O(

∫ t

0
e−η̄(t−s)|g(s)|ds)

≤ C sup
t/2≤s≤t

|g(s)| + e−η̄t/2|g|L∞(0,t), (8.13)

for all t ≥ 0, some C, η̄ > 0, and g ∈ L∞(0, t).

Proof of Lemmas 8.2–8.5. These follow by direct calculation from our more de-
tailed pointwise Green function bounds, exactly as in the proof of [47, Lemma
7.1].


�

8.2. Linear Phase Estimates

Lemma 8.6. Assuming Evans–Lopatinsky stability, for K1, it holds that

K1(t) = K1(0) + Vh + O(1 − e−η̄t ), (8.14)∣∣∣∣
∫ t

0
K1(t − s)g(s)ds

∣∣∣∣ ≤ C |g|L1(0,t), (8.15)

for all t ≥ 0, some C, η̄ > 0, and any g ∈ L1.

Proof. (8.14) follows by direct computation using Theorem 7.4:

K1(t) = K1(0) +
∫ t

0
K1t (s)ds = K1(0) + Vh +

∫ t

0
O(e−η̄(t−s))ds.

Likewise, (8.15) follows immediately from (8.14), using |K1(0) + Vh + O(1 −
e−η̄t )| ≤ C . 
�

Lemma 8.7. Assuming Evans–Lopatinsky stability, for G1, it holds that

|G1(t; y)| ≤ C, where Cis independent of t, y, (8.16)∣∣∣∣
∫ ∞

−∞
∂yG1(t; z) f (z)dz

∣∣∣∣ ≤ C(1 + t)−
1
2q | f |Lq + e−η̄t | f |L∞

+|e−θ |·| f (·)|L1, (8.17)

and
∣∣∣∣
∫ ∞

−∞
G1(t; z)

(
0
f (z)

)
dz

∣∣∣∣ ≤ C(1 + t)−
1
2q | f |Lq + |e−θ |·| f (·)|L1, (8.18)

for all t ≥ 0, some C, η̄ > 0, for any 1 ≤ q and f ∈ Lq ∩ L∞.
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Proof. By equations (6.29) and (6.22), in the high frequency regime G1,λ =
O( 1

|λ| ), hence there will be no δ-function contribution to G1(t; y). Integrating the
termG1,λ in the high frequency regime will contribute toG1(t; y) a time and space
exponentially decaying term, which is harmless. In the low frequency regime, by
shifting the integral contour to the left of the origin and applying the Residue the-
orem, we get a residue term that is independent of time and decaying in space plus
a time exponentially small term. Therefore (8.16) follows.

By Proposition 6.5, integrating the term HYλ in the high frequency regime will
contribute to ∂yG1(t; y) a term containing a δ-function like H1(t; y) in Theorem
7.3. Integrating such a term in space with f (y) gives a contribution that can be con-
trolled by e−η̄t | f |L∞ . Integrating the term (∂yG1,λ − HYλ) in the high frequency
regime will contribute to ∂yG1(t; y) a time and space exponentially decaying term,
which is harmless. By Proposition 6.8, integrating the term SY1,λ in the low fre-
quency regimewill contribute toG1(t; y) a scattering term like S1(t; y) in Theorem
7.3. Integrating such scattering term with f (z) can be bound similarly as in (8.9).
Integrating the term SY2,λ in the low frequency regime will result in a residue term
that is decaying exponentially in space and independent of time. Hence, integrating
this term with f (z) gives a contribution that can be controlled by |e−θ |·| f (·)|L1 .

By equation (6.29), in the high frequency regime, G1,λ = O( 1
|λ| ), hence there

will be no δ-function contribution to G1(t; y)
(

0
f (z)

)
. The low frequency contri-

bution can be estimated similarly as to (8.17) by applying Proposition 6.9. 
�

8.3. Auxiliary Estimates

Lemma 8.8. Assuming Evans–Lopatinsky stability, for the splitting G = Ḡ + H,
it holds that∫ t

0

∣∣∣∣
∫ +∞

−∞
G(x, s; y) f (y)dy

∣∣∣∣ ds ≤ C | f |L1∩L∞ , (8.19)

∫ t

0
(1 + s)−

1
2

∣∣∣∣
∫ s

0

∫ ∞

−∞
Ḡ(x, s − τ ; y)

(
0

f (y, τ )

)
dy dτ

∣∣∣∣ ds
≤ C

∫ t

0
(1 + s)−

1
2+υ | f (·, s)|L2ds, (8.20)

∫ t

0
(1 + s)−

1
2

∣∣∣∣
∫ s

0

∫ +∞

−∞
Ḡ y(x, s − τ ; y) f (y, τ )dy dτ

∣∣∣∣ ds
≤ C

∫ t

0
(1 + s)−

1
2+υ | f (·, s)|L2ds, (8.21)

∫ t

0
(1 + s)−

1
2

∣∣∣∣
∫ s

0
Ḡ(x, s − τ ; 0±) f (τ ) dτ

∣∣∣∣ ds
≤ C

∫ t

0
(1 + s)−

1
2 | f (s)|ds, (8.22)

∫ t

0
(1 + s)−

1
2

∣∣∣∣
∫ s

0
K (x, s − τ) f (τ ) dτ

∣∣∣∣ ds
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≤ C
∫ t

0
(1 + s)−

1
2 | f (s)|ds, (8.23)

and ∫ t

0
(1 + s)−1/2

∣∣∣∣
∫ s

0

∫ +∞

−∞
H(x, s − τ ; y) f (y, τ )dy dτ

∣∣∣∣ ds
≤ C

∫ t

0
(1 + s)−

1
2 | f (·, s)|L∞ds,

(8.24)

for all t ≥ 0 and x ≷ 0, any υ > 0, and some C = C(υ) > 0.

Proof. For estimate (8.19), we estimate separately the contributions of terms Ḡ
and H in the splitting G = Ḡ+ H . For Ḡ, changing order of integration, and using
the fact that

∫ t
0 |Ḡ(x, s; y)| ds ≤ C , we obtain

∫ t

0

∣∣∣∣
∫ +∞

−∞
Ḡ(x, s; y) f (y)dy

∣∣∣∣ ds
≤

∫ t

0

∫ +∞

−∞
|Ḡ(x, s; y)|| f (y)|dy ds

=
∫ +∞

−∞
| f (y)|

∫ t

0
|Ḡ(x, s; y)| ds dy ≤ C | f |L1 .

In turn, bound
∫ t
0 |Ḡ(x, s; y)| ds ≤ C may be verified as in [64], by integrating a

Gaussian moving with nonzero speed, hence passing transversally to the vertical
line y ≡ constant. Namely, denoting by θ(z, s) the moving Gaussian θ(z, s) :=
(s)−1/2e−(z−as)2/bs with z = x − y, and � = ∫ z

−∞ θ its bounded (error function)
antiderivative, we have

�s = −a�z + b/4�zz = −aθ + b/4θz,

from which we may bound

∫ t

0
|Ḡ(x, s; y)|ds ≤ C

∫ t

0
e−η̄(|z|+s)ds + C

∫ t

0
χs≥1θ(z, s)ds

≤ C + C
∫ t

0
χs≥1θ(z, s)ds

∫ t

0
χs≥1θ(z, s)ds = −1

a

∫ t

0
χs≥1�s(z, s)ds + b

4a

∫ t

0
χs≥1θz(z, s)ds.

The term
∫ t
0 χs≥1�s(z, s)ds = �(z, t) − �(z, 1) is uniformly bounded. The

term
∫ t
0 χs≥1θz(z, s)ds may be reduced by a similar argument to a constant times

�z(z, t) − �z(z, 1) = θ(z, t) − θ(z, 1) plus a multiple of
∫ t
0 χs≥1θzz(z, s)ds; the

latter can be bounded as | ∫ t
0 χs≥1θzz(z, s)ds| ≤ ∫ t

1 (1+s)−3/2ds ≤ C2. The H part
can be directly obtained from taking p = ∞ in estimate (8.6) and then integrating
in time. This completes the proof of (8.19).
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Estimates (8.20) and (8.21) are more delicate, based on the estimate

∣∣∣∣
∫ t

1
s−1−υe− (as−|·|)2

bs ds

∣∣∣∣
L2

≤ C (8.25)

for a �= 0 and some C = C(υ) independent of t . To prove (8.25), by symmetricity,
it suffices to show

(∫ ∞

0

∣∣∣∣
∫ t

1
s−1−υe− (as−z)2

bs ds

∣∣∣∣
2

dz

) 1
2

≤ C. (8.26)

Based on the bound on the integrand function

s−1−υe− (as−z)2
bs ≤ e− (as−z)2

bs
2|as − z|
bs1.5+υ

+ s−1−υχ
2|as−z|<√

sb

= s−υ |θz |(z, s) + s−1−υχ
2|as−z|<√

sb
,

(8.26) follows from

∣∣∣∣
∫ t

1
s−υ |θz |(z, s) ds

∣∣∣∣
L2

≤ C, and

(∫ ∞

0

∣∣∣∣
∫ t

1
χ
2|z−as|<√

sb
s−1−υds

∣∣∣∣
2

dz

) 1
2

≤ C.

(8.27)
Estimate (8.27)[i] follows readily for z �∈ [a, at] by rewriting

∫ t

1
s−υ |θz |(z, s) ds ≤

∫ t

1
|θz |(z, s) ds =

∣∣∣
∫ t

1
θz(z, s) ds

∣∣∣,
then using θs = −aθz + b/4θzz to obtain

∫ t

1
θz(z, s) ds =

∫ t

1

(
−θs

a
+ b

4a
θzz

)
ds = 1

a
θ(z, 1) − 1

a
θ(z, t)

+
∫ t

1

b

4a
θzz(z, s) ds,

where we see |θ(·, t)|L2 , |θ(·, 1)|L2 ≤ C and

∣∣∣∣
∫ t

1
θzz(·, s) ds

∣∣∣∣
L2

≤ C

∣∣∣∣
∫ t

1
s− 3

2 e− (·−as)2

2bs ds

∣∣∣∣
L2

≤ C
∫ t

1

∣∣∣∣s− 3
2 e− (·−as)2

2bs

∣∣∣∣
L2

ds ≤ C
∫ t

1
s− 5

4 ds ≤ C.

For z ∈ [a, at], setting θc(z, s) := (s)−1/2e−(z−as)2/bcs , 1 < c to be a Gaussian
with larger support moving at the same speed as θ , we may estimate |s−υ∂zθ | ≤
C |∂zθ1+2υ

c |, for υ < (c − 1)/2. Calculation shows
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∂s(θ
1+2υ
c ) = −a(θ1+2υ

c )z + bc

4
(θ1+2υ

c )zz

−
bcυ

(
(θ1+2υ

c )z

)2
2(1 + 2υ)θ1+2υ

c
=: −a(θ1+2υ

c )z + F(z, s).

Observing that

∫ t

1
|(θ1+2υ

c )z |(z, s) ds =
∣∣∣∣
( ∫ z/a

1
−

∫ t

z/a

)
(θ1+2υ

c )z(z, s) ds

∣∣∣∣ ,

and hence integrating the principal contribution −1/a∂s(θ
1+2υ
c ), results in terms

bounded by

C
(
θc(z, 1)

1+2υ + (1 + |z|)−1/2−υ + θc(z, t)
1+2υ

)
∈ L2(z).

As for integrating the F term, calculation shows

F(z, s) = e− (z−as)2(1+2υ)
bcs (1 + 2υ)

(
(z − as)2 − bcs

)
2bcs5/2+υ

= O(s− 3
2 e− (z−as)2

2bcs ).

Therefore, by the triangle inequality, we also have that

∣∣∣∣
( ∫ z/a

1
−

∫ t

z/a

)
F(·, s) ds

∣∣∣∣
L2

≤ C.

Estimate (8.27)[ii] follows by direct computation:

∫ ∞

0

∣∣∣∣
∫ t

1
χ
2|z−as|<√

sb
s−1−υds

∣∣∣∣
2

dz

≤
∫ ∞

0

∣∣∣∣
∫ ∞

1
χ
2|z−as|<√

sb
s−1−υds

∣∣∣∣
2

dz

≤ C
∫ ∞

0

(
s1(z) − s2(z)

(1 + s2(z))1+υ

)2

dz ≤ C,

where s1,2 = (8az + b2 ± √
16azb2 + b4)/(8a2) are the two roots of equation

2|z − as| = √
sb and the last inequality follows from

(
s1(z) − s2(z)

(1 + s2(z))1+υ

)2

∼ z−1−2υ for z � 1.
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By the decomposition of Ḡ y = S1y + Ry and bounds on S1y , Ry from Theorem
7.1, we obtain

∫ t

τ

(1 + s)−1/2|Ḡ y(x, s − τ ; y)| ds

≤ (1 + τ)−1/2+υ

∫ t−τ

0
(1 + τ + σ)−υ |Ḡ y(x, σ ; y)| dσ

≤ C(1 + τ)−1/2+υ

∫ t−τ

1
(1 + τ + σ)−υσ−1e− (aσ−|z|)2

bσ dσ

≤ C(1 + τ)−1/2+υ

∫ t−τ

1
σ−1−υe− (aσ−|z|)2

bσ dσ.

(8.28)

Switching orders of integration and applying (8.28), Holder’s inequality and (8.25)
yields

∫ t

0
(1 + s)−1/2

∣∣∣∣
∫ s

0

∫ +∞

−∞
Ḡ y(x, s − τ ; y) f (y, τ ) dy dτ

∣∣∣∣ ds
≤

∫ t

0
(1 + s)−1/2

∫ s

0

∫ +∞

−∞
|Ḡ y(x, s − τ ; y)| | f (y, τ )| dy dτ ds

=
∫ t

0

∫ +∞

−∞
| f (y, τ )|

( ∫ t

τ

(1 + s)−1/2|Ḡ y(x, s − τ ; y)| ds
)
dy dτ

≤ C
∫ t

0
(1 + τ)−1/2+υ

∫ +∞

−∞
| f (x − z, τ )|

∫ t−τ

1
σ−1−υe− (aσ−|z|)2

bσ dσ dz dτ

≤ C
∫ t

0
(1 + τ)−1/2+υ | f (·, τ )|L2 dτ ,

verifying (8.21). By equation (7.8) and estimate (7.9), estimate (8.20) follows sim-
ilarly.

Using
∫ t
0 |Ḡ(x, t; y)| ≤ C , we have, switching the order of integration,

∫ t

0
(1 + s)−1/2

∣∣∣∣
∫ s

0
Ḡ(x, s − τ ; 0±) f (τ ) dτ

∣∣∣∣ ds
≤

∫ t

0

∫ s

0
(1 + s)−1/2

∣∣Ḡ(x, s − τ ; 0±) f (τ )
∣∣ dτ ds

= C
∫ t

0
(1 + τ)−1/2| f (τ )|

∫ t

τ

∣∣Ḡ(x, s − τ ; 0±)
∣∣ ds dτ

≤ C
∫ t

0
(1 + τ)−1/2| f (τ )|

∫ t−τ

0

∣∣Ḡ(x, σ ; 0±)
∣∣ dσ dτ

≤ C
∫ t

0
(1 + τ)−1/2| f (τ )| dτ,

verifying (8.22). The proof of (8.23) goes similarly by applying Lemma 8.3. Like-
wise, applying (8.6) with p = ∞, we have
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∫ t

0
(1 + s)−1/2

∫ s

0

∣∣∣∣
∫ +∞

−∞
H(x, s − τ ; y) f (y, τ )dy

∣∣∣∣ dτ ds

≤ C
∫ t

0
(1 + s)−1/2

∫ s

0
e−η̄(s−τ)| f (·, τ )|L∞ dτ ds,

which, switching the order of integration, yields bound

∫ t

0
(1 + s)−1/2

∫ s

0
e−η̄(s−τ)| f (·, τ )|L∞ dτ ds

=
∫ t

0

∫ t

τ

(1 + s)−1/2e−η̄(s−τ)| f (·, τ )|L∞ ds dτ

=
∫ t

0
(1 + τ)−1/2| f (·, τ )|L∞

∫ t

τ

e−η̄(s−τ) ds dτ

≤ C
∫ t

0
(1 + τ)−

1
2 | f (·, τ )|L∞dτ,

verifying (8.24). 
�

Remark 8.9. The above “Strichartz-type” bounds make crucial use of transverse
propatation and pointwise bounds. By contrast, a straightforward estimation by
Holder’s inequality

∫ t

0

∣∣∣∣
∫ +∞

−∞
Ḡ(x, s; y) f (y)dy

∣∣∣∣ ds
≤

∫ t

0
|Ḡ(x, s; y)|L∞| f |L1 ds ≤ (

∫ t

0
(1 + s)−1/2 ds)| f |L1

yields bound C(1 + t)1/2| f |L1 , poorer by factor (1 + t)1/2 than (8.19). Similarly
for the cases (8.20)–(8.21), straightforward estimates by Holder’s inequality yield
bounds poorer by factor (1 + t)1/4−υ .

9. Short-Time Existence and Nonlinear Damping Estimate

We next establish nonlinear existence and damping estimates, obtained by
Kreiss symmetrizer and Kawashima type energy estimates, respectively. As noted
in [34], short time existence theory may be concluded by the analysis of shock
stability carried out by Kreiss symmetrizer techniques in [43,44]. Denote by R̃a

the punctured real line (−∞, a) ∪ (a,+∞), and R̃ the symmetric version R̃0. We
obtain by the results of [44] immediately the following short time existence theory.5

5 Note that we correct a minor typo in [44, Thm. 4.1.5], which requires data v0 only in
Hs rather than Hs+1/2. (This is not necessary for our later analysis, but only sharpens our
initial regularity assumptions.)
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Proposition 9.1. For 0 < F < 2 and 0 < HR < HL
2F2

1+2F+√
1+4F

, let W =
(H, Q) be a hydraulic shock (1.4), and v0 be a perturbation supported away from
the subshock discontinuity of W and lying in Hs(R̃)), s ≥ 2. Moreover, assume that
W is spectrally stable in the sense of the Evans–Lopatinsky condition defined in
Section 4. Then, for initial data W̃0 := W+v0, there exists a unique solution of (1.1)
defined for 0 ≤ t ≤ T , for some T > 0, with a single shock located at ct−η(t), and
Hs to either side of the shock, such that for v(x, t) := W̃ (x +ct −η(t), t)−W (x),

(v, η) ∈ C0
(
[0, T ]; Hs(R̃)

)
× Cs+1([0, t]). (9.1)

Moreover, the maximal time of existence T∗ defined as the supremum of T > 0 for
which the solution is defined is either +∞ or satisfies limt→T−∗ |v|W 1,∞ = +∞.

Finally, if vr0 → v0, with vr0 ∈ Hr+1/2, r ≥ s, then the corresponding solutions

(vr , ηr ) converge to (v, η) in C0
(
[0, T ]; Hs(R̃)

)
× Cs+1([0, t]).

Proof. Noting that the assumption that the perturbation is supported away from the
subshock implies compatibility to all orders, we have that the first two assertions
follow from Theorems 4.15 and 4.16 of [44], provided that the subshock satisfies
the (shock) Lopatinsky condition ofMajda [43]. But (see Remark 11.3), Lopatinsky
stability of the component subshock is implied in the high-frequency limit by the
Evans–Lopatinsky condition for the full shock profile. The third assertion, though
not explicitly stated in [44, Thm. 4.1.5], is established in the course of its proof.


�
Remark 9.2. In fact, the subshock can be seen directly to satisfy Majda’s Lopatin-
sky condition, independent of Evans–Lopatinsky stability of the associated relax-
ation shock profile, by the fact [43] that shock waves of isentropic gas dynamics are
stable, since the shock Lopatinsky condition depends only on the first-order part of
(1.1).

Our main effort will be devoted to proving the following nonlinear damping
estimate generalizing the one proved for smooth relaxation profiles in [48, Prop.
1.4]:

Proposition 9.3. Under the assumptions of Proposition 9.1, suppose that, for 0 ≤
t ≤ T , |v(·, s)|Hs (R̃)

and |η̇| are bounded by a sufficiently small constant ζ > 0.
Then, for all 0 ≤ t ≤ T and some θ > 0,

|v|2
Hs (t) ≤ Ce−θ t |v0|2Hs + C

∫ t

0
e−θ(t−τ)

(|v|2L2 + |η̇|2)(τ )dτ. (9.2)

Remark 9.4. In the course of the proof, we show using the Rankine–Hugoniot
conditions at the subshock that |η̇|2 is controlled by a bounded linear sum of trace
terms |v(0±)|2 at ξ = 0. By one-dimensional Sobolev embedding, these in turn are
controlled by a lower-order term C |v|2

H1 absorbable in the estimates (9.24) from
which (9.2) is obtained, hence (9.2) could be improved to

|v|2
Hs (t) ≤ Ce−θ t |v0|2Hs + C

∫ t

0
e−θ(t−τ)|v|2L2(τ )dτ, (9.3)
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slightly improving the estimate of the smooth case [48].

Remark 9.5. For clarity, we carry out the proof of Proposition 9.3 for shock pro-
files of (1.1); however, the argument applies more generally to profiles of general
relaxation systems of the class considered in [48], provided they contain a single
subshock. (This allows the freedom to initialize the symmetrizer A0 arbitrarily at
the endstates of the subshock, as we use crucially to arrange maximal dissipativ-
ity with respect to A0 of the associated Rankine–Hugoniot conditions.) A very
interesting open problem would be to develop corresponding damping estimates
in multi-dimensions, perhaps by Kreiss symmetrizer techniques [39]; see Remark
9.12 for related discussion.

9.1. Preliminaries

Under the assumptions of Proposition 9.3, the equations (1.1) and profiles W
satisfy the structural assumptions made for general relaxation systems in [48] along
the smooth portions of W , that is, everywhere except at the subshock at x = 0.
Thus, we have the following results of [48], denoting by �M := 1

2 (M + M∗) the
symmetric part of a matrix M :

Lemma 9.6. Under the assumptions of Proposition 9.3, for some θ > 0, and all
k ≥ 0,

|(d/dx)k(W − W±)| ≤ C |Wx | ≤ Ce−θ |x | as x → ±∞. (9.4)

(Stable manifold theorem, plus hyperbolicity of rest points W± of (2.14).)

Lemma 9.7. ([26,48]) Let D be diagonal, with real entries appearing with pre-
scribed multiplicity in order of increasing size, and let E be arbitrary. Then, there
exists a smooth skew-symmetric matrix-valued function K (D, E) such that

� (E − K D) = � diag E,

where diag E denotes the diagonal part of E.

Lemma 9.8. ([48]) Under the assumptions of Proposition 9.3, there exist diago-
nalizing matrices L±, R±, (L AR)± diagonal, (LR)± = I , such that

� diag (LER)± < 0.

Lemma 9.9. ([48]) There is a correspondence between symmetric positive definite
symmetrizers A0, A0A symmetric, and diagonalizing transformations L, R, L AR

diagonal, given by A0 = L∗L, or equivalently L = O∗(A0)
1
2 , where O is an

orthonormalmatrix diagonalizing the symmetricmatrix (A0)
1
2 A(A0)− 1

2 .Moreover,
the matrix O (or equivalently L) may be chosen with the same degree of smoothness
as A0, on any simply connected domain.
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Following [48], we recall also the relations

〈W, SWx 〉(a,b) = −1

2
〈W, SxW 〉(a,b) + 1

2
W · SW |ba, (9.5)

and

∂t
1

2
〈Wx , KW 〉(a,b) = 〈Wx , KWt 〉(a,b) + 1

2
〈Wx , KtW 〉(a,b)

+1

2
〈W, KxWt 〉(a,b) + 1

2
Wt · KW |ba, (9.6)

here adapted to the case of a domain with boundary, where S is symmetric and
K skew-symmetric, and 〈·, ·〉(a,b) denotes L2 inner product on (a, b). When the
domain (a, b) is clear (as below, where all energy estimates will be carried out on
(−∞, 0) and (0,∞)), we omit the subscript (a, b).

9.1.1. Boundary Dissipativity. A new aspect in the present, discontinuous, case
is boundary dissipativity at the subshock. For a general symmetrizable initial
boundary-value problem on (−∞, 0]

Vt + AVx = F, x ∈ (−∞, 0),

BV = G, x = 0,
(9.7)

with symmetrizer A0 symmetric positive definite and A0
A symmetric, that is non-

characteristic in the sense that det(A) �= 0 at the boundary x = 0−, is Lopatinsky
stable in the sense of Kreiss [39] if B is full rank on the stable subspace of A. It is
maximally dissipativewith respect to the symmetrizerA0 ifA0

A is positive definite
on kerB, which yields readily the following key consequence:

Lemma 9.10. Suppose that (9.7) has maximally dissipative boundary conditions
with respect to symmetrizer A0. Then, for some θ,C > 0,

−V(0−) · A0
AV(0−) ≤ −θ |V(0−)|2 + C |G|2. (9.8)

Proof. Decompose V(0−) = vker + v⊥, where vker ∈ kerB and v⊥ ∈ (kerB)⊥.
Then,

−V(0−) · A0
AV(0−) = −vker · A0

Avker − 2vker · A0
Av⊥ − v⊥ · A0

Av⊥.

Bymaximal dissipativity,−vker ·A0
Avker ≤ −θ1|vker |2. UsingYoung’s inequality,

the middle cross term is bounded by |2vker · A0
Av⊥| ≤ θ1|vker |2/2 + C1|v⊥|2.

The last term is bounded by |v⊥ · A0
Av⊥| ≤ C2|v⊥|2. Summing these estimates,

we obtain

−V(0−) · A0(0−)A(0−)V(0−) ≤ −θ1

2
|vker |2 + (C1 + C2)|v⊥|2. (9.9)

From the fact that B is full rank on (kerB)⊥ and the boundary condition,

θ2|v⊥| ≤ |Bv⊥| = |BV(0−)| = |G|.
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Therefore, −|vker |2 = −(|vker |2 + |v⊥|2) + |v⊥|2 = −|V(0−)|2 + |v⊥|2 ≤
−|V(0−)|2 + |G|2/θ22 . Substituting in (9.9), we obtain

−V(0−) · A0(0−)A(0−)V(0−) ≤ −θ1

2
|V(0−)|2 + C1 + C2 + θ1/2

θ22
|G|2,

which yields (9.8). 
�
The Lopatinsky condition is necessary and sufficient for maximal L2 estimates

[39]. For maximally dissipative boundary conditions, maximal L2 estimates may
be obtained by taking the L2 inner product of v against the symmetrized equation
A0vt + A0Avx = A0 f and applying (9.5), (9.8). Thus, maximally dissipative
boundary conditions are always Lopatinsky stable. The following result shows that
the converse is true as well, for some choice of symmetrizer A0:

Lemma 9.11. For any symmetrizable initial boundary-value problem (9.7) that is
Lopatinsky stable, there exists a symmetrizer A0 with respect to which (9.7) is
maximally dissipative.

Proof. Equivalently, M = b̃T A0Ab̃ is positive definite, where b̃ ∈ R
(n−r)×n is a

matrix whose columns span ker b. Let A = S−1block-diag{
−,
+}S,

− = diag{λ1, . . . , λr }, 
+ = diag{λr+1, . . . , λk},

with λ1 ≤ . . . λr < 0 < λr+1 < · · · ≤ λk , and set A0 = ST diag{a, . . . , a, 1, . . . ,
1}S, a > 0. Then, A0A is symmetric and M = −M1a + M2 with M1 =
b̃T ST E1Sb̃, M2 = b̃T ST E2Sb̃, where E1 := block-diag{−
−, 0} and E2 :=
block-diag{0,
+} are symmetric positive semidefinite. Thus,wemay achieveM >

0 for a sufficiently small if and only if M2 is positive definite, or b̃ ∩ ker E2S = ∅:
equivalently, b is full rank on the stable subspace ker E2S of A. 
�
Remark 9.12. Lemma 9.11 is special to one spatial dimension. A generalization to
multi-dimensions is given by the (pseudodifferential) frequency-dependent sym-
metrizers of Kreiss [12,39].

9.2. Energy Estimates

We are now ready to carry out themain energy estimates, adapting the argument
of [48]. Define the nonlinear perturbation v(x, t) := W̃ (x + ct − η(t), t) − W (x)
as in the statement of Proposition 9.3, where ct − η(t) denotes subshock location;
for definiteness, fix without loss of generality η(0) = 0. As computed in [48, Eq.
(3.1) p. 87] the interior equation (4.1)(i) for v may be put in the alternate quasilinear
form

vt + Ãvx − Ẽv = M1(v)Wx + M2(v) − η̇(t)(Wx + vx ), (9.10)

where Ã := dF(W̃ (x + ct − η(t), t)) − cId, Ẽ := dR(W̃ (x + ct − η(t), t)) and

M1(v) := A(x) − Ã(x, t) = O(|v|), M2(v) =
(

0
O(|v|2)

)
.
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Following [48], let Ã0 := A0(W̃ (x + ct − η(t), t) denote a symmetrizer
of Ã as guaranteed by Lemma 9.9 with values A0(W̃ (0± + ct − η(t), t)) to

be specified later, and factor Ã0 Ã = ( Ã0)
1
2 Õ D̃Õt ( Ã0)

1
2 , or, equivalently, Ã =

( Ã0)− 1
2 Õ D̃Õt ( Ã0)

1
2 , where Õ is orthogonal, Õt = Õ−1, and C3 as a function of

(u, v) (see Lemma 9.9) and D̃ = diag{ã1, ã2}, where ã j denote the eigenvalues of
Ã, indexed in increasing order. Define the weighting matrix α(x) := diag{α1, α2},
where α j > 0 are defined by ODE

(α j )x = −C∗ sgn a j |Wx |α j , α j (0) = 1, (9.11)

C∗ > 0 a sufficiently large constant to be determined later, and set

Ã0
α := ( Ã0)

1
2 ÕαÕt ( Ã0)

1
2 . (9.12)

Let K1 := K
(
2D̃, 2αÕt ( Ã0)

1
2 Ẽ( Ã0)− 1

2 Õ + N
)
, where K (·) is as in Lemma

9.7, and N is an arbitrary matrix with |N |
C1
x,t

≤ C(C∗) and vanishing on diagonal

blocks, to be determined later, and set

K̃α := ( Ã0)
1
2 ÕK1 Õ

t ( Ã0)
1
2 . (9.13)

Finally, define

E(v) := 〈 Ã0
αvxx , vxx 〉 + 〈vxx , K̃αvx 〉 + M |v|2

L2
(9.14)

for M > 0. Since, for v ∈ H2, |vx |L2 can be bounded by C
(
|v|

L2
+ |vxx |L2

)
for

some C > 0, then the functional defined in (9.14) is equivalent to |v|2
H2

if M is
large enough.

Assume without loss of generality that v0 ∈ H3 (since we may pass to the H2

limit by Proposition 9.1). Then, following to the letter the computations of [48],
we obtain using (9.5)–(9.6) the key estimate

dE
dt

≤ −θE+C(|v|2
L2

+|η̇(t)|2)+[vxx · Ã0
α Ãvxx ]+η̇(t)[vxx · Ã0

αvxx ]−[vxt · K̃αvx ]
(9.15)

for some C, θ > 0, where the terms [vxx · Ã0
α Ãvxx ], η̇(t)[vxx · Ã0

αvxx ] and
−[vxt · K̃αvx ] arising through integration by parts at the boundary x = 0 of
〈vxx , Ã0

α Ãvxxx 〉, η̇(t)〈 Ã0
αvxx , vxxx 〉, and 〈vxx , K̃αvx 〉 through (9.5) and (9.6) are

the sole differences from the whole-line estimate of [48].

Proof of Proposition 9.3. For clarity, we carry out the proof for the lowest level
of regularity s = 2; higher orders s > 2 go similarly. Starting with the H2 estimate
(9.15), it remains only to show that the new trace terms [vxx · Ã0

α Ãvxx ], η̇(t)[vxx ·
Ã0

αvxx ] and−[vxt · K̃αvx ] in the righthand sidemay be absorbed in other terms, after
which, multiplying by eθ t and integrating in time from 0 to t as in [48], we obtain
(9.2), completing the proof. To this end, recall the nonlinear boundary condition
(4.1)(ii) at x = 0±, written in the alternative form

ηt [W̃ ] + [ Ãv] = −[N1(v, v)] = O
(|v(0±)|2), (9.16)
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where now N1(v, v) := F(W̃ ) − F(W ) − ( Ã + cId)v.
To obtain boundary conditions for vxx , we may differentiate (9.16) with respect

to t , then convert any t-derivatives of v into x-derivatives using the interior equa-
tions. Namely, we may first differentiate (9.10) with respect to t , x and differentiate
(9.16) with respect to t to get estimates

vt (0
±) = O(|vx (0±)| + |v(0±)| + |ηt |) ≤ Cζ,

vt x (0
±) = − Ãvxx (0

±) + O(|vx (0±)| + |v(0±)| + |ηt (0±)| + ζ |vxx (0±)|),
vt t (0

±) = Ã2vxx (0
±) + O(|vx (0±)| + |v(0±)| + |ηt | + ζ |vxx (0±)|),

ηt t =
[W̃ ]T

(
−ηt [vt ] − [ Ãtv] − [ Ãvt ] −

[
dN1(v,v)

dt

])

[W̃ ]T [W̃ ]
= O(|vx (0±)| + |v(0±)| + |ηt |) ≤ Cζ ,

(9.17)
where ζ is the small constant chosen in Proposition 9.3. Then, by differentiating
(9.16) with respect to t twice and applying estimates (9.17), we get the second-order
boundary conditions

ηt t t [W̃ ] + [ Ã3vxx ] = g = O(|vx (0±)| + |v(0±)| + |ηt | + ζ |vxx (0±)|), x = 0.
(9.18)

As noted in [43,44], a key point in dealing with the transmission problem (9.10)
coupled with boundary condition (9.18) is that one may eliminate the front variable
ηt t t , converting the boundary condition (9.18) to a standard boundary condition

M[ Ã3vxx ] = Mg, x = 0, (9.19)

where M is a row vector which spans the subspace [W̃ ]⊥.
Another key point [43,44] is that onemaydouble the coordinates and convert the

transmission problem to a conventional half-line problem.That is, for x ∈ (−∞, 0),
defining

V(x, t) :=
[

v(x, t)
v(−x, t)

]
, χ(t) :=

[
η(t)I d 0

0 −η(t)I d

]
,

A(x, t) :=
[
Ã(x, t) 0

0 − Ã(−x, t)

]
,

and similarly defining doubling matrices E,W,M1, andM2, in the doubling coor-
dinates, the interior equation (9.10) reduces to a equation on half-line:

Vt+AVx = EV+M1(V)Wx+M2(V)−χ(t)(Wx+Vx ), x ∈ (−∞, 0), (9.20)

from which we deduce

(Vxx )t + A(Vxx )x =
(
EV + M1(V)Wx + M2(V) − χ(t)(Wx + Vx )

)
xx

−2AxVxx − AxxVx . (9.21)



258 Zhao Yang & Kevin Zumbrun

In the doubling coordinates, the second-order boundary conditions (9.19) becomes

BVxx (t, 0
−) = −M[ Ã3vxx ] =: G, (9.22)

whereB := (
M M

)
A
3(t, 0−).We then see that the half line problem (9.21)-(9.22)

is of the form (9.7) with Vxx in the place of V and the previous Kreiss theory [39]
may be applied. 
�
Corollary 9.13. Under the assumptions of Proposition 9.3, there exists a choice of
symmetrizer A0

α(0−) = blockdiag{A0(0−), A0(0+)} such that the half-line prob-
lem (9.21)-(9.22) is maximally dissipative with respect to A0

α .

Proof. As noted previously (see Remark 11.3), Majda’s shock Lopatinsky condi-
tion for the subshock follows in the high-frequency limit from Evans–Lopatinsky
stability of the relaxation profile. From this, it follows in turn that the Lopatin-
sky condition is satisfied for the doubled half-line problem (9.21)–(9.22). Ap-
plying Lemma 9.11, we find that there exists a symmetrizer A0 with respect to
which the half-line problem is maximally dissipative, that is, A0 is positive defi-
nite on the kernel of the boundary condition. Recalling that A is block-diagonal,
we find that the block-diagonal part of A0 must be a symmetrizer as well, and,
moreover, is positive definite whenever the full matrix is, in particular on the
kernel of the boundary condition. Thus, we may take without loss of generality
A
0(0−) = blockdiag{A0(0−), A0(0+)}. Now extend the definition of A0 from 0−

to−∞ and define α by (9.11) andA0
α by (9.12). Because α(0±) = I d,A0

α(0−, t) is
equal to A0(0−, t). Therefore, the half-line problem is maximally dissipative with
respect to A0

α . 
�
Remark 9.14. The step in the proof where we extend the value of A0 from the
boundary 0− to −∞ is the point where we require the property that there is only a
single subshock. If there were subshocks at x0 < 0, then we could not necessarily
simultaneously prescribe dissipative values at x+

0 , 0
− and also achieve smoothness

on (x0, 0).

Applying Lemma 9.10, we have

[vxx · Ã0
α Ãvxx ] = −Vxx (0

−) · A0
αA(0−)Vxx (0

−)

≤ − θ |Vxx (0
−)|2 + O

(
|Vx (0

−)|2

+|V(0−)|2 + |χt |2 + ζ 2|Vxx (0
−)|2

)

≤ − θ

2

(
|vxx (0−)|2 + |vxx (0+)|2

)

+ O
(
|vx (0±)|2 + |v(0±)|2 + |ηt |2

)
,

(9.23)

where in the last inequality we take ζ � θ to eliminate O(ζ 2|Vxx (0−)|2). The
term O(|ηt |2) is evidently absorbable in (9.15), and, by Sobolev embedding,
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|vx (0±)|2 ≤ |v|2H2 ≤ ζ̄ |vxx |2L2 + C(ζ̄ )|v|2L2 ,

|v(0±)|2 ≤ |v|2H1 ≤ ζ̄ |vx |2L2 + C(ζ̄ )|v|2L2 ,

hence O
(|vx (0±)|2 + |v(0±)|2) is controlled by ζ̄E + C(ζ̄ )|v|2

L2
.

Because η̇(t)[vxx · Ã0
αvxx ] = O(ζ |vxx (0±)|2), the trace term η̇(t)[vxx · Ã0

αvxx ]
can be eliminated by taking ζ � θ .

By (9.17) and Young’s inequality, the term [vxt · K̃αvx ] may be estimated as

[vxt · K̃αvx ] = −[ Ãvxx · K̃αvx ]
+O

(
|vx (0±)|2 + |v(0±)|2 + |ηt |2 + ζ 2|vxx (0±)|2

)
.

By our estimates just above, the terms within the “Big-Oh” term O(. . . ) are either
controlled by ζ̄E + C(|v|2

L2
+ |η̇(t)|2) or eliminted by −θ |Vxx (0−)|2.

Moreover, applying Young’s inequality and Sobolev embedding, we have

[ Ãvxx · K̃αvx ] ≤ ζ̃ |vxx (0±)|2 + C(ζ̃ )|vx (0±)|2 ≤ ζ̃ |vxx (0±)|2
+C(ζ̃ )ζ̄ |vxx |2L2 + C(ζ̃ , ζ̄ )|v|2L2 .

Taking ζ̃ � θ and ζ̄ � ζ̃ , the estimate (9.15) thus becomes

dE
dt

≤ − θE + C(|v|2
L2

+ |η̇(t)|2)
+ [vxx · Ã0

α Ãvxx ] + η̇(t)[vxx · Ã0
αvxx ] − [vxt · K̃αvx ]

≤ − θ ′(E + |vxx (0±)|2) + C(|v|2
L2

+ |η̇(t)|2),
(9.24)

implying, and slightly improving, the estimate dE
dt ≤ −θE + C(|v|2

L2
+ |η̇(t)|2)

required to finish the argument (the same one established in the smooth case [48]).
This completes the proof. 
�

10. Nonlinear Stability

With the above preparations, nonlinear orbital asymptotic stability now follows
essentially as in [48]. After, we obtain nonlinear stability/boundedness of the phase
η by a bootstrap argument using the “Strichartz-type” bounds of Section 8.3, a
new aspect of our analysis not present in the smooth case. Finally, by a further,
approximate characteristic estimate, we establish convergence of the phase and full
phase-asymptotic orbital stability. Let v(x, t) = W̃ (x + ct − η(t), t) − W (x) be
the nonlinear perturbation defined in Section 3. For s ≥ 2, define

ζ(t) := sup
0≤s≤t,2≤p≤∞

(
|v(·, s)|

L p
(1 + s)

1
2 (1− 1

p ) + |η̇(s)|(1 + s)
1
2

)
. (10.1)

Lemma 10.1. Under the assumptions of Theorem 1.2, for all t ≥ 0 for which
a solution v exists with ζ(t) uniformly bounded by some fixed, sufficiently small
constant, it holds that

ζ(t) ≤ C2(|v0|L1∩Hs + ζ(t)2). (10.2)



260 Zhao Yang & Kevin Zumbrun

Proof. Following [48], we show in turn that each of |v(·, s)|
L p

(1 + s)
1
2 (1− 1

p ) and

|η̇(s)|(1+ s)
1
2 is separately bounded by C(|v0|L1∩H2 + ζ(t)2), for some C > 0, all

0 ≤ s ≤ t , so long as ζ(t) remains sufficiently small.
(|v|L p bound.) Applying integral equation (5.17)(i) of Proposition 5.6, we find

that v may be split into the sum of an interior term

vI (x, s)

=
∫ ∞

−∞
G(x, s; y)v0(y)dy +

∫ s

0

∫ ∞

−∞
G(x, s − τ ; y)IS(y, τ )dydτ

=
∫ ∞

−∞
G(x, s; y)v0(y)dy +

∫ s

0

∫ ∞

−∞
Ḡ y(x, s − τ ; z)

(
ηtv(z, τ ) + N1(v(z, τ ))

)
dzdτ

+
∫ s

0

∫ ∞

−∞
H(x, s − τ ; z)

(
ηtvy(z, τ ) + N1(v(z, τ ))y

)
dzdτ

+
∫ s

0

∫ ∞

−∞
G(x, s − τ ; y)

(
0

N2(v(y, τ ))

)
dydτ

+
∫ s

0

[
Ḡ(x, s − τ ; ·)

(
ηtv(·, τ ) + N1(v(·, τ ))

)]
dτ

=: vI1(x, s) + vI2(x, s) + vI3(x, s) + vI4(x, s) + vI5(x, s)
(10.3)

involving the Green kernel G and a boundary term

vB(x, s) =
∫ s

0
K (x, s − τ)BS(τ )dτ (10.4)

involving the boundary kernel K , where [·] as elsewhere denotes jump at y = 0.
Noting by Lemma 8.2 that G satisfies exactly the same Lq → L p estimates as
the corresponding kernel in the smooth case [48], and that interior source terms IS
have the same form, we find by the same computations as in [48, proof of Thm.

1.2] that |vI1(·, s) + vI2(·, s) + vI3(·, s) + vI4(·, s)|L p (1 + s)
1
2 (1− 1

p ) is bounded
by C(|v0|L1∩H2 + ζ(t)2). The L p norm of the additional term vI5(·, s) arising from
integration by parts may be estimated as

∣∣∣∣
∫ s

0

[
Ḡ(x, s − τ ; ·)

(
ηtv(·, τ ) + N1(v(·, τ ))

)]
dτ

∣∣∣∣
L p(x)

≤
∣∣∣∣
∫ s

0
Ḡ(x, s − τ ; 0−)

(
ηtv(0−, τ ) + N1(v(0−, τ ))

)
dτ

∣∣∣∣
L p(x)

+
∣∣∣∣
∫ s

0
Ḡ(x, s − τ ; 0+)

(
ηtv(0+, τ ) + N1(v(0+, τ ))

)
dτ

∣∣∣∣
L p(x)

.

Using the pointwise estimate on Ḡ(x, t; y) = S1 + R Theorem 7.1, we thus have6

6 Notably, there is no scattering term S1 when taking y = 0±.
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∣∣∣∣
∫ s

0
Ḡ(x, s − τ ; 0−)

(
ηtv(0−, τ ) + N1(v(0−, τ ))

)
dτ

∣∣∣∣
L p(x)

=
∣∣∣∣
∫ s

0
R(x, s − τ ; 0−)

(
ηtv(0−, τ ) + N1(v(0−, τ ))

)
dτ

∣∣∣∣
L p(x)

≤
∫ s

0
C(1 + s − τ)

−1+ 1
2p ζ 2(t)(1 + τ)−1dτ

≤ Cζ(t)2(1 + s)−1+ 1
2p log(1 + s

2
) ≤ Cζ(t)2(1 + s)−1+ 1

2p +υ
.

Therefore, |vI5(·, s)|L p (1 + s)
1
2 (1− 1

p ) is also bounded by C(|v0|L1∩H2 + ζ(t)2). It
remains only to treat the new boundary portion vB . Recalling from (4.1) that

BS(ηt , v) = −ηt [v] − [N1(v, v)] = O
(
(|ηt | + |v(0±)|)2

)
,

wehaveby (|v(·, τ )|L∞ + |ηt (τ )|) (1+τ)
1
2 < ζ(t) that |BS(τ )| ≤ Cζ(t)2(1+τ)−1.

By Lemma 8.3we thus get |vB(s)|L p ≤ |e−η̄(s−·)BS|L1(0,s)+|e−η̄(s−·)BS|L p(0,s) ≤
Cζ(t)2(1 + s)−1, giving the result.

(|η̇| bound.) Similarly, by integral equation (8.1) of Lemma 8.1, we have that η̇
may be split into the sum of an interior term

η̇I (s)

=
∫ ∞

−∞
G1t (s; y)v0(y)dy +

∫ ∞

−∞
G1(0; y)IS(s; y)dy

+
∫ s

0

∫ ∞

−∞
G1t (s − τ ; y)IS(y, τ )dydτ

=
∫ ∞

−∞
G1t (s; y)v0(y)dy

+
∫ ∞

−∞
G1y(0; z)

(
ηtv(z, s) + N1(v(z, s))

)
dz

+
∫ ∞

−∞
G1(0; y)

(
0

N2(v(y, s))

)
dy

+
∫ s

0

∫ ∞

−∞
Ḡ1t y(s − τ ; z)

(
ηtv(z, τ ) + N1(v(z, τ ))

)
dzdτ

+
∫ s

0

∫ ∞

−∞
G1t (s − τ ; y)

(
0

N2(v(y, τ ))

)
dydτ

+
∫ s

0

∫ ∞

−∞
H1(s − τ ; z)

(
ηtvy(z, τ ) + N1(v(z, τ ))y

)
dzdτ

+
[
G1(0; ·)

(
ηt (s)v(·, s) + N1(v(·, s))

)]

+
∫ s

0

[
Ḡ1t (s − τ ; ·)

(
ηtv(·, τ ) + N1(v(·, τ ))

)]
dτ

=: η̇I1(s) + η̇I2(s) + η̇I3(s) + η̇I4(s) + η̇I5(s) + η̇I6(s) + η̇I7(s) + η̇I8(s)



262 Zhao Yang & Kevin Zumbrun

and a boundary term

η̇B(s) = K1(0)BS(s) +
∫ s

0
K1t (s − τ)BS(τ )dτ.

For η̇I1(s), η̇I4(s), η̇I5(s), and η̇I6(s) in the interior term η̇I (t), both the estimates
given in Lemma 8.4 and the form of the interior source term IS are identical to
those given for the smooth case in [48]. Thus, we have by the same computations
as in [48, proof of Thm. 1.2] that

(1 + s)
1
2 (|η̇I1(s)| + |η̇I4(s)| + |η̇I5(s)| + |η̇I6(s)|)

is bounded by C(|v0|L1∩H2 + ζ(t)2). Applying Lemma 8.7 with t = 0, q = ∞, we
find

|η̇I2(s)| + |η̇I3(s)| ≤ |ηt (s)||v(s, ·)|L∞ + |v(s, ·)|2L∞ ≤ ζ(t)2(1 + s)−1.

The trace term η̇I7(s) and η̇I8(s) arising from integration by part may be treated
by using the fact that G1 is uniformly bounded in space and time (8.16) together
with the pointwise estimate on Ḡ1t = S1 + R1 in Theorem 7.3 to obtain |η̇I6(s)| ≤
Cζ(t)2(1 + s)−1 and |η̇I7(s)| ≤ Cζ(t)2(1 + s)−1. Combining, we get that (1 +
s)

1
2 η̇I (s) is bounded by C(|v0|L1∩H2 + ζ(t)2).
Likewise, using the fact that K1(0) is a constant rowvector, the bound |BS(τ )| ≤

Cζ(t)2(1+ τ)−1, and Lemma 8.5, we find that |η̇B(s)| ≤ Cζ(t)2(1+ s)−1, giving
the result. 
�
Proof of Theorem 1.2. (v and η̇ bounds) (following [48, proof ofThm. 1.2]). From
Lemma 10.1, it follows by continuous induction that, provided |v0|L1∩H2 < 1/4C2

2 ,
it holds that

ζ(t) ≤ 2C2|v0|L1∩Hs (10.5)

for all t ≥ 0 such that ζ remains small. For, by Proposition 1.1, there exists a
solution v(·, t) ∈ Hs on the open time-interval for which |v|Hs remains bounded
and sufficiently small, and thus ζ is well-defined and continuous. Now, let [0, T )

be the maximal interval on which |v|Hs remains strictly bounded by some fixed,
sufficiently small constant δ > 0. By Proposition 9.3, we have

|v(t)|2
Hs ≤ C |v(0)|2

Hs e
−θ t + C

∫ t

0
e−θ2(t−τ)(|v|2

L2
+ |η̇|2)(τ )dτ

≤ C2
(|v(0)|2

Hs + ζ(t)2
)
(1 + t)−

1
2 ,

(10.6)

and so the solution continues so long as ζ(t) remains small, with bound (10.5), at
once yielding existence and the claimed bounds on |v|L p∩Hs , 2 ≤ p ≤ ∞, and |η̇|.

(Auxiliary (vertical) v bound.) At this point, we have established asymptotic
orbital stability, with sharp decay rates for |v| and the derivative |η̇| of the phase. To
obtain estimates on the phase |η| and get full nonlinear stability, we first establish
the vertical estimate∫ t

0
(1 + s)−1/2|v(x, s)| ds ≤ C, ∀ t > 0, x ≷ 0. (10.7)
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This follows by substituting for v(x, s) the reprentation v(x, s) = vI (x, s) +
vB(x, s) given in (10.3)–(10.4) and applying the bounds of Lemma 8.8, together
with the bounds∣∣∣ηtv(·, s) + N1(v(·, s))

∣∣∣
L2

, |N2(v(·, s))|L2 ≤ C(|v|L∞ + |η̇|)|v|L2

≤ C(1 + s)−3/4,∣∣∣ηtv(·, s) + N1(v(·, s))
∣∣∣
L∞ ≤ C(|v|L∞ + |η̇|)|v|L∞ ≤ C(1 + s)−1,∣∣∣∂y(ηtv(·, s) + N1(v(·, s))

∣∣∣
L∞ ≤ C(|v|L∞ + |η̇|)|vy |L∞ ≤ C(1 + s)−3/4,

(10.8)
following from our previously established estimates on v, η̇. Here, we have used
Sobolev embedding to bound |vy |L∞ ≤ |v|H2 ≤ C(1 + s)−1/4.

(η bound.) Continuing, by integral equation (5.17)(ii) of Proposition 5.6, we
have that η may be split into the sum of an interior term

ηI (t) = η0 +
∫ ∞

−∞
G1(t; y)v0(y)dy +

∫ t

0

∫ ∞

−∞
G1(t − s; y)IS(s, y)dyds

= η0 +
∫ ∞

−∞
G1(t; y)v0(y)dy

+
∫ t

0

∫ ∞

−∞
G1y(t − s; z)

(
ηtv(z, s) + N1(v(z, s))

)
dzds

+
∫ t

0

∫ ∞

−∞
G1(t − s; y)

(
0

N2(v(y, s))

)
dyds

+
∫ t

0

[
G1(t − s; ·)

(
ηtv(·, s) + N1(v(·, s))

)]
ds

=: η0 + ηI1(t) + ηI2(t) + ηI3(t) + ηI4(t),
(10.9)

and a boundary term

ηB(t) =
∫ t

0
K1(t − s)BS(s)ds. (10.10)

By the boundedness of |G1| (8.16), we find that |ηI1(t)| is bounded by C |v0|L1 . By
estimates (8.17) and (8.18), together with vertical estimate (10.7), boundedness of
|ηI2(t)| + |ηI3(t)| follows from

C
∫ t

0
(1 + t − s)−

1
2q

(
|v2|Lq + |η̇v|Lq

)
ds

+C
∫ t

0
e−η̄(t−s) |η̇v + N1(v)|L∞ ds

≤ C
∫ t

0
(1 + t − s)−

1
2q (|v|L∞ + |η̇|)|v|Lqds

+C
∫ t

0
e−η̄(t−s)|v|L∞ (|v|L∞ + |η̇|) ds
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≤ C
∫ t

0
(1 + t − s)−

1
2q ζ(t)2(1 + s)−1+ 1

2q ds

+C
∫ t

0
e−η̄(t−s)ζ(t)2(1 + s)−1ds

≤ Cζ(t)2 (10.11)

and ∫ t

0

∫ ∞

−∞
|ψ(z)| |η̇(s)v(z, s) + N1(v(z, s))| dzds,

∫ t

0

∫ ∞

−∞
|ψ̃(z)| |N2(v(z, s))| dzds

≤ C
∫ t

0

∫ ∞

−∞
e−θ |z|ζ(t)(1 + s)−1/2|v(z, s)|dzds

= C
∫ ∞

−∞
e−θ |z|ζ(t)

∫ t

0
(1 + s)−1/2|v(z, s)|dsdz

≤ Cζ(t)
∫ ∞

−∞
e−θ |z|dz ≤ Cζ(t).

(10.12)

Using the fact that G1 is uniformly bounded in space and time (8.16), together with
vertical estimate (10.7), we find that

|ηI4(t)| ≤
∫ t

0

∣∣∣G1(t − s; 0−)
(
ηtv(0−, s) + N1(v(0−, s))

)∣∣∣ ds
+

∫ t

0

∣∣∣G1(t − s; 0+)
(
ηtv(0+, s) + N1(v(0+, s))

)∣∣∣ ds
≤ C

∫ t

0
|v(0±, s)|(|v(0±, s)| + |η̇|(s) ds

≤ Cζ(t)
∫ t

0
(1 + s)−1/2|v(0±, s)|ds ≤ Cζ(t).

Applying Lemma 8.6 and using vertical estimate (10.7), we find that |ηB(t)| is
bounded by

C
∫ t

0
|BS|(s)ds ≤ C

∫ t

0
|v(0±, s)|(|v(0±, s)| + |η̇|(s)) ds

≤ Cζ(t)
∫ t

0
(1 + s)−1/2|v(0±, s)|ds ≤ Cζ(t).

Summing, we obtain the claimed bound (1.5)(iv) on |η(t)|, completing the proof.
(η convergence.) Finally, we establish (1.5)(v) and convergence of the phase η,

by showing convergence as t → ∞ of each of the terms in the decomposition of η

given in (10.9)–(10.10).
ηI2, ηI3:
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Term ηI2 may be decomposed as

ηI2(t) =
∫ t

0

∫ ∞

−∞
ψ(z)

(
ηtv(z, s) + N1(v(z, s))

)
dz ds

+
∫ t

0

∫ ∞

−∞
(
G1y(t − s; z) − ψ(z)

)(
ηtv(z, s) + N1(v(z, s))

)
dz ds.

(10.13)

By estimate (10.12), the first integral is absolutely convergent and thus converges
to a limit as t → +∞. We show now that the remaining part of ηI2(t) converges to
zero, completing the proof. The part corresponding to integrating high frequency
term H against IS converges to zero by estimate (10.11). It remains to show con-
vergence to 0 of parts corresponding to integrating Gaussian scattering term S and
faster-decaying R terms with ηtv(z, s) + N1(v(z, s). These parts are bounded by

∫ t

0

(∫ 0

−∞
e− (t−s+c12,− y)2

M(t−s)

+
∫ ∞

0
e− (t−s−c11,+ y)2

M(t−s)

)
χt−s>1

ζ(t)|v(y, s)|√
(t − s)(1 + s)

dy ds

≤
∫ t−1

0

∫ t−s
2c11,+

− t−s
2c12,−

e− t−s
4M

ζ(t)|v(y, s)|√
(t − s)(1 + s)

dy ds

+
∫ t−1

0

⎛
⎜⎝
∫ − t−s

2c12,−
−∞

e− (t−s+c12,− y)2

M(t−s) +
∫ ∞

t−s
2c11,+

e− (t−s−c11,+ y)2

M(t−s)

⎞
⎟⎠ ζ(t)|v(y, s)|√

(t − s)(1 + s)
dy ds,

(10.14)
where

∫ t−1

0

∫ t−s
2c11,+

− t−s
2c12,−

e− t−s
4M

ζ(t)|v(y, s)|√
(t − s)(1 + s)

dy ds

≤
∫ t−1

0

(
1

2c11,+
+ 1

2c12,−

)
e− t−s

4M
ζ(t)2

√
t − s

1 + s
ds

converges to 0 at rate t−1.
To show convergence to 0 of the remaining part in (10.14), we establish an

improved “approximate characteristic” estimate (10.16) on the variable v, giving
different decay rates based on approximate domains of influence of tail and center
contributions of the initial perturbation v0. To this end, motivated by (10.14), it is
convenient to define

�t := { (y, s) : −a−(t − s)/2 < y < −a+(t − s)/2; 0 ≤ s ≤ t},
γτ := { y : −a−τ/2 < y < −a+τ/2}, (10.15)

where a+ = −1/c11,+, a− = 1/c12,−, with a− > 0 > a+. With this definition,
we have that backward characteristics originating outside �t stay outside the set,
lying strictly in its complement �c

t . From this fact, we obtain using our previously
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established bounds on v, η̇, and separating out principal, approximate equilibrium
characteristic parts of the Green kernels from remaining, faster-decaying terms, the
more detailed approximate characteristic estimate

|v(·, s)|L2(γ c
t−s )

≤ C(1 + s)−1/4|v0|L1(γ c
t ) + C(1 + s)−1/2+υ |v0|L1∩Hs , (10.16)

valid for any υ > 0, as we shall show further, below.
With the aid of the bound (10.16) and Holder’s inequality, the remaining part

in (10.14) may be estimated as

∫ t−1

0

(∫ −a−(t−s)/2

−∞
e− (t−s+c12,− y)2

M(t−s)

+
∫ ∞

−a+(t−s)/2
e− (t−s−c11,+ y)2

M(t−s)

)
ζ(t)|v(y, s)|√
(t − s)(1 + s)

dy ds

≤ Cζ(t)
∫ t

0
(1 + t − s)−1/4(1 + s)−1/2|v(·, s)|L2(γ c

t−s )
ds

≤ Cζ(t)|v0|L1(γ c
t )

∫ t

0
(1 + t − s)−1/4(1 + s)−3/4ds

+ Cζ(t)|v0|L1∩Hs

∫ t

0
(1 + t − s)−1/4(1 + s)−1+υds

≤ Cζ(t)|v0|L1(γ c
t ) + Cζ(t)|v0|L1∩Hs (1 + t)−1/4+υ → 0, as t → ∞.

This completes the proof that ηI2 converges to a limit at a rate given by the slower of
|v0|L1(γ c

t ) and ε(1+t)−1/4+υ , where ε is the L1∩Hs norm of the initial perturbation
v0. Convergence of ηI3 can be shown similarly, with the same rate.

To prove (10.16), note in decompositions (10.3)–(10.4) on v(x, t), by previ-
ous estimates, the whole-space L2 norms of terms vI3, vI4, vI5, and vB decay
at faster rate. That is |vI3(·, s)|L2 ≤ C(1 + s)−3/4|v0|L1∩Hs , |vI4(·, s)|L2 ≤ C
(1 + s)−1/2|v0|L1∩Hs , |vI5(·, s)|L2 ≤ C(1 + s)−3/4+υ |v0|L1∩Hs , and |vB(·, s)|L2

≤ C(1+ s)−1|v0|L1∩Hs . And, by Theorem 7.1, the whole-space L2 norms of parts
contribute to vI1, vI2 from integrating with S1, S1y , and

χ
(s−τ )≥1, y<x<0e

− (s−τ−c12,−(x−y))2

M(s−τ ) O

(
1

s − τ
e−θ |x |

)

terms decay at slower rate (1+ s)−1/4|v0|L1∩Hs than the rate (1+ s)−1/2|v0|L1∩Hs

of L2 norms of parts from integrating with the other terms. So we may focus on
the parts that are contributed from S1, S1y , and

χ
(s−τ )≥1, y<x<0e

− (s−τ−c12,−(x−y))2

M(s−τ ) O

(
1

s − τ
e−θ |x |

)
= O(S1y(x, s − τ, y)).

This leaves uswith the task of estimating the scattering part of vI1, giving an integral
of form ∫ ∞

−∞
S1(y, s; z)v0(z) dz, (10.17)
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and the scattering part of vI2, giving an integral of form

∫ s

0

∫ ∞

−∞
S1y(y, s − τ ; z)

(
ηt (τ )v(z, τ ) + N1(v(z, τ ))

)
dz dτ. (10.18)

To estimate the L2(γ c
t−s) norm of (10.17), notice that for (y, s) �∈ �t and z ∈ γt , S1

gives a time-exponentially decaying contribution |S1(y, s; z)| ≤ Ce−η̄|y−z−a±s|/
√
s,

hence we may bound

∣∣∣
∫

γt

|S1(·, s; z)||v0|(z) dz
∣∣∣
L2(γ c

t−s )
≤ Ce−η′s |v0|L2 .

Meanwhile, the remaining contribution may be estimated as

∣∣∣
∫

γ c
t

|S1(·, s; z)||v0|(z) dz
∣∣∣
L2(γ c

t−s )

≤
∫

γ c
t

|S(·, s; z)|L2 |v0|(y) dy ≤ C(1 + s)−1/4|v0|L1(γ c
t ).

Summing, we find that the L2(γ c
t−s) norm of (10.17) is controlled by the righthand

side of (10.16).
The estimate for (10.18) goes similarly, noting for (y, s) �∈ �t and contributions

of source ηt (τ )v(z, τ ) + N1(v(z, τ )) originating from (z, τ ) ∈ �t , the propagator
S1y(y, s − τ ; z) is exponentially decaying in s − τ and |y − z − a±(s − τ)|, hence,
using our prior bounds on (|v| + |η̇|)|v|(z, τ ), the total of such contributions is
bounded by C(1 + s)−1/2|v0|L1∩Hs . On the other hand, defining

ζ̃ (t) = sup
0≤s≤t

|v(·, s)|L2(γ c
t−s )

(1 + s)−1/4|v0|L1(γ c
t ) + (1 + s)−1/2+υ |v0|L1∩Hs

, (10.19)

we obtain that
∣∣ηt (τ )v(z, τ ) + N1(v(z, τ ))

∣∣
L2(γ c

t−τ )
may be bounded by

Cζ(t)(1 + τ)−1/2|v(·, τ )|L2(γ c
t−τ )

≤ Cζ(t)ζ̃ (t)
(
(1 + τ)−3/4|v0|L1(γ c

t ) + (1 + τ)−1+υ |v0|L1∩Hs

)
.

Applying Young’s convolution inequality yields

∣∣∣∣∣
∫ s

0

∫
γ c
t−τ

S1y(·, s − τ ; z)(ηt (τ )v(z, τ ) + N1(v(z, τ ))
)
dz dτ

∣∣∣∣∣
L2(γ c

t−s )

≤
∫ s

0

∣∣∣∣∣
∫

γ c
t−τ

S1y(·, s − τ ; z)(ηt (τ )v(z, τ ) + N1(v(z, τ ))
)
dz

∣∣∣∣∣
L2(γ c

t−s )

dτ

≤
∫ s

0
|S1y(·, s − τ ; z)|L1

∣∣ηt (τ )v(z, τ ) + N1(v(z, τ ))
∣∣
L2(γ c

t−τ )
dτ
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≤
∫ s

0
(1 + s − τ)−1/2Cζ(t)ζ̃ (t)

(
(1 + τ)−3/4|v0|L1(γ c

t ) + (1 + τ)−1+υ |v0|L1∩Hs

)
dτ

≤ Cζ(t)ζ̃ (t)
(
(1 + s)−1/4|v0|L1(γ c

t ) + (1 + s)−1/2+υ |v0|L1∩Hs

)
,

from which we obtain, combining this with our previous estimates,

|v(·, s)|L2(γ c
t−s )

≤ C
(
1 + ζ(t)ζ̃ (t)

)(
(1 + s)−1/4|v0|L1(γ c

t ) + (1 + s)−1/2+υ |v0|L1∩Hs

)
.

Dividing
(
(1+s)−1/4|v0|L1(γ c

t )+(1+s)−1/2+υ |v0|L1∩Hs

)
and taking the supremum

over 0 ≤ s ≤ t , we obtain

ζ̃ (t) ≤ C
(
1 + ζ̃ (t)ζ(t)

)
,

yielding ζ̃ (t) ≤ 2C for ζ(t), or equivalently, |v0|L1∩Hs , sufficiently small. By
definition (10.19), this yields the desired bound, (10.16).
ηI1 :

Integrating (7.12) gives G1(t; y) = G1(0; y) + ∫ t
0 (H1 + S1 + R1)(s; y)ds and

thus

ηI1(t) =
∫ ∞

−∞

(
G1(0; y) +

∫ t

0
(H1 + S1 + R1)(s; y)ds

)
v0(y)dy.

Applying Theorem 7.3, for 1 < t1 < t2, we have the estimate

|ηI1(t2) − ηI1(t1)| =
∣∣∣∣
∫ ∞

−∞

∫ t2

t1
(H1 + S1 + R1)(s; y)v0(y) ds dy

∣∣∣∣
≤

∫ ∞

−∞

∣∣∣∣
∫ t2

t1
H1(s; y)ds

∣∣∣∣ |v0(y)|dy
+

∫ ∞

−∞

∫ t2

t1
|(S1 + R1)(s; y)| ds |v0(y)|dy,

where

∫ ∞

−∞

∣∣∣∣
∫ t2

t1
H1(s; y)ds

∣∣∣∣ |v0(y)|dy ≤ C
∫

|y|>ct1
e−η̄|y||v0(y)|dy

≤ Ce−cη̄t1 |v0|L1 → 0, as t1, t2 → +∞,
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and∫ ∞

−∞

∫ t2

t1
|(S1 + R1)(s; y)| ds |v0(y)|dy

≤ C

(∫
γt1

+
∫

γ c
t1

)∫ ∞

t1
|S1(s; y)| ds |v0(y)|dy

≤ C
∫

γt1

∫ ∞

t1

1√
s
e− s

4M ds |v0(y)|dy + C
∫

γ c
t1

∫ ∞

1
|S1(s; y)| ds |v0(y)|dy

≤ C
∫

γt1

er f c

(√
t1
2M

)
|v0(y)|dy + C |v0|L1(γ c

t1
) ≤ Ce−t1/(2M)|v0|L1

+ C |v0|L1(γ c
t1

),

where we have used the estimates er f c(x) ≤ e−x2 for the error function and∫ ∞
1 θ(y, s)ds < C, ∀y for amovingGaussian kernel. Therefore ηI1(t) approaches
a limit at rate |v0|L1(γ c

t ).
ηI4 :

Again using G1(t; y) = G1(0; y) + ∫ t
0 (H1 + S1 + R1)(s; y)ds, we have for

1 < t1 < t2,

ηI4(t2) − ηI4(t1)

=
∫ t2

t1

[
G1(0; ·)

(
ηt (s)v(·, s) + N1(v(·, s))

)]
ds

+
[(∫ t1

0

∫ t2−s

t1−s
+

∫ t2

t1

∫ t2−s

0

)
(H1 + S1 + R1)(τ ; ·)d

τ
(
ηt (s)v(·, s) + N1(v(·, s))

)
ds

]
,

where the first part is controlled by
∫ t2
t1

(1+ s)−1/2|v(0±, s)|ds and by vertical esti-
mate (10.7) it converges to 0 as t1, t2 → +∞. As for convergence rates, replacing
integrals in Lemma 8.8 by tail integrals

∫ ∞
t , we find that the convergence rate of

integral (10.7) is (1 + t)−1/4+υ , namely∫ ∞

t
(1 + s)−1/2|v(x, s)| ds ≤ C(1 + t)−1/4+υ, ∀ t > 0, x ≷ 0. (10.20)

It remains to show that the remaining part converges to 0. Straigntforward compu-
tation shows that

∫ t2−s
t1−s H1(τ ; 0±)dτ = 0, with

∫ t2−s
0 H1(τ ; 0±)dτ = H1(0; 0±)

identically equal to some constant vectors. Thus, the integral of the term involving
H1 can also be controlled by

∫ t2
t1

(1 + s)−1/2|v(0±, s)|ds, hence converges. The
integral of the term involving S1 + R1 can be controlled by(∫ t1

0

∫ t2−s

t1−s
+

∫ t2

t1

∫ t2−s

0

)
|S1(τ ; 0±)|dτ

∣∣∣ηt (s)v(0±, s) + N1(v(0±, s))
∣∣∣ ds

≤ C
∫ t1

0

∫ ∞

t1−s
χτ >1

1√
τ
e− τ

M dτ
∣∣∣ηt (s)v(0±, s) + N1(v(0±, s))

∣∣∣ ds
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+C
∫ t2

t1

∫ ∞

1

1√
τ
e− τ

M dτ
∣∣∣ηt (s)v(0±, s) + N1(v(0±, s))

∣∣∣ ds
≤ C

∫ t1−1

0
er f c(

√
(t1 − s)/M)

∣∣∣ηt (s)v(0±, s) + N1(v(0±, s))
∣∣∣ ds

+C
∫ t2

t1−1
(1 + s)−1/2|v(0±, s)| ds

≤ C
∫ t1−1

0
e− t1−s

M ζ(t)2(1 + s)−1 ds

+C
∫ t2

t1−1
(1 + s)−1/2|v(0±, s)| ds → 0, as t1, t2 → +∞.

Combining, we find that ηI4 converges to a limit at rate (1 + t)−1/4+υ .
ηI B :

Convergence of ηI B(t) can be proven similarly by applying Theorem 7.4.
This completes the proof of convergence η(t) to a limit η∞. Collecting esti-

mates, we obtain a total rate of convergence given by the slower ofCε(1+ t)−1/4+υ

and C |v0|L1(γ c
t ), verifying (1.5)(v). 
�

Remark 10.2. For algebraically-decaying initial perturbation |v0(x)| ≤ C(1 +
|x |)−r , with v0 ∈ Hs , s > 2, our estimates give convergence of the phase η at rate

|η(t) − η∞| ≤
{
C(1 + t)1−r for 1 < r < 5/4,

C(1 + t)−1/4+υ for r ≥ 5/4

for anyυ > 0. For subalgebraically-decaying perturbations, essentially the same ar-
gument gives rate |η(t)−η∞| ≤ Cε(1+t)−1/4+υ +C |v0|L1([−(1−υ)a−t,−(1−υ)a+t]c)
forυ > 0,C = C(υ) > 0, arbitrarily close to the expected rateC |v0|L1([−a−t,−a+t]c)
described in the introduction.

Remark 10.3. Our argument for phase-convergence, based on approximate char-
acteristic estimate (10.16), though it may appear to be limited to the case of a scalar
equilibrium system for which all equilibrium characteristics approach the shock,
is in principle generalizable to arbitrary relaxation systems of the type studied in
[48], and to the class of systems of viscous conservation laws studied in [50].
For, as noted in [48,50], non-decaying contributions to the phase shift η consist of
products of Gaussian scattering-type termsmultiplying constant projections, which
projections annihilate vectors in outgoing characteristic modes, “seeing” only in-
coming modes. Thus, to obtain asymptotic phase-convergence, it is sufficient to
prove an approximate characteristic estimate of form (10.16) on incoming charac-
teristic modes only, a task to which the present argument structure is in principle
still suited. To carry out such an estimate and obtain phase-convergence in the gen-
eral system case, assuming only L1 boundedness of the initial perturbation with no
algebraic rate of decay, would be a significant advance in the theory.

Remark 10.4. One may deduce from (5.17)(ii) that G1(0; y) = 0 for y �= 0, by fi-
nite propagation speed for the linearized problem IS = 0, considering perturbations
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vanishing in a vicinity of y = 0. Similarly, by conservation of mass principles, one
may deduce that limt→+∞ G1(t; y) ≡ (α, 0)T for some constant α; see Remark
1.3. However, we neither require nor derive these here.

11. Numerical Verifications

In this section we verify numerically the spectral stability assumptions made in
the analysis.

11.1. Numerical Calculation of the Evans–Lopatinsky Determinant

For robustness of numerical implementation, let

w1,−(λ, x) = e−γ1,−(λ)x T−(λ, x)eγ1,−(λ)x z1,−(λ) = T−(λ, x)z1,−(λ), x < 0.
(11.1)

We find that the w1,− solves

w′ =
(
A−1(E − λI − Ax ) − γ1,−

)
w. (11.2)

In w1,−, the Evans–Lopatinsky determinant (4.19) becomes

�(λ) = det
( [λW − R(W )] A(0−)w1,−(λ, 0−)

)
. (11.3)

11.1.1. Change of Independent Variable Profile H(x) solves (2.14). The fact
that H ′ < 0 for x < 0 allows us to make the change of independent variable
w̃(λ, H) = w(λ, x) for system (11.2), yielding

H ′w̃′ =
(
A−1(E − λI − Ax ) − γ1,−

)
w̃. (11.4)

The Evans–Lopatinsky determinant (11.3) becomes

�(λ) = det
( [λW − R(W )] A(H∗)w̃(λ, H∗)

)
, (11.5)

with [·] = ·|HR − ·|H∗ . By this change of independent variable, we convert to a
problem on the finite interval [H∗, 1] and introduce H = 1 as a singular point in
ODE (11.4). We then may use the hybrid method introduced in [36] to calculate
mode w̃(H), combining power series expansion with numerical ODE solution.

To be specific, we expand w̃(H) as a power series of in the vicinity of H = 1
to write

w̃(λ, H) =
∞∑
n=0

cn(F, HR, λ)(H − 1)n . (11.6)

Truncating and evaluating the series at some H− ∈ (H∗, 1) gives approximations

w̃(λ, H−) ≈
N∑

n=0

cn(F, HR, λ)(H − 1)n := w̃−. (11.7)

We then evolve ODE (11.4) from H− to H∗ with initial condition w̃− to get an
approximation for w̃(λ, H∗) which is then substituted in (11.5) to obtain an ap-
proximate value of the Evans–Lopatinsky determinant.
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11.2. Numerical Calculation of the Evans Function (Smooth Case)

In this section, we study the spectral stability of small amplitude traveling
waves, as depicted in Fig. 2c, using the Evans function. In the small amplitude

region HR < HL < HR
1+2F+√

1+4F
2F2 , we first see conditions (4.10) become

�γ1,−(λ) > 0, �γ2,−(λ) < 0, for all �λ > 0, F < 2, ν > 1

�γ1,+(λ) > 0, �γ2,+(λ) < 0, for all �λ > 0, ν <
1 + √

1 + 4F

2F
.

(11.8)

We then define the corresponding Evans function, following [1,25,47].

Definition 11.1. Let v1,−(λ, x) (v2,+(λ, x)) be decaying mode as x → −∞ (x →
+∞) of eigenvalue equation (11.9)

v′ =
(
A−1(E − λI − Ax )

)
v. (11.9)

The Evans function D(λ, x0) is defined as

D(λ, x0) := det
(
v1,−(λ, x0) v2,+(λ, x0)

)
. (11.10)

Again for numerical robustness and efficiency, we rescale the modes by

w1,−(λ, x) = e−γ1,−(λ)xv1,−(λ, x), w2,+(λ, x) = e−γ2,+(λ)xv2,+(λ, x)
(11.11)

to find that w1,−, w2,+ solve

w′ =
(
A−1(E − λI − Ax ) − γ1,−

)
w, w′ =

(
A−1(E − λI − Ax ) − γ2,+

)
w,

(11.12)
respectively. Performing the change of independent variable w̃1,−(λ, H)

= w1,−(λ, x) and w̃2,+(λ, H) = w2,+(λ, x), we find that w̃1,−, w̃2,+ satisfy

H ′w̃′ = (
A−1(E − λI − Ax ) − γ1,−

)
w̃, H ′w̃′ = (

A−1(E − λI − Ax ) − γ2,+
)
w̃.

(11.13)
We then expand w̃1,−(H), w̃2,+(H) as power series

w̃1,−(λ, H) =
∞∑
n=0

c−
n (F, HR, λ)(H − 1)n,

w̃2,+(λ, H) =
∞∑
n=0

c+
n (F, HR, λ)(H − HR)n .

(11.14)

Accordingly, in H coordinates, a rescaled Evans function is defined as

D(λ, Hm) := det
(
w̃1,−(λ, Hm) w̃2,+(λ, Hm)

)
(11.15)

for some Hm HR < Hm < 1.
Note that |γ2,+| � |γ1,−|. Thus, it is numerically more robust if we evaluate

D(λ, ·) at some Hm closer to HR . (In fact, we find this in practice essential in order
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to do computations for even reasonably sized |λ| of order one.) In the extreme case,
we only evolve (11.12)(i) toward HR and never evolve (11.12)(ii) towards 1. That is,
after evaluating the truncated series (11.14) at some Hl,r HR < Hr < Hl < 1, we
evolve (11.12)(i) from Hl to Hr . (Note, the numerically calculated Evans function
differs from the defined one by a nonzero analytic function, but this is harmless as
we are searching for roots.)

11.3. High-Frequency Stability

Using the result of Lemma 6.2, we now prove high-frequency stability of both
smooth and discontinuous hydraulic shock waves.

Nonvanishing of Evans–Lopatinsky determinant (4.19) at high frequency.
Evaluating (6.16) at x = 0− and substituting in the second column of (4.19), yields

A(0−)w1,−(λ, 0−) = A(0−)R1(0
−) + O(1/|λ|) = − 1

μ1(0−)
R1(0

−) + O(1/|λ|),
(11.16)

where R1 is the first column of R.

Proposition 11.2. For any F, HR, there exists C(F, HR), such that �(λ) does not
vanish for all �λ > −η̄, |λ| > C(F, HR).

Proof. Substituting (11.16) in the Evans–Lopatinsky determinant (4.19), in the
high frequency regime, we have

�(λ) = − λ

μ1(H∗)
det

(
HR − H∗ −FH∗(

√
HR + 1)

QR − Q∗ H3/2∗ (
√
HR + 1) − F(H∗ − HR + H∗HR + H∗

√
HR))

)
+ O(1)

= −λ (HR − H∗)
(
H∗3/2 + √

HRH∗3/2 + FHR
)2

FH∗
(√

HR + 1
) + O(1),

(11.17)
which is nonvanishing. The constant C should be sufficiently large such that Tλ

becomes contraction mapping. 
�
Remark 11.3. The principal, λ-order, term in the righthand side of (11.17) can be
recognized as the Lopatinsky condition of Majda [43] for short-time stability/well-
posedness of the component subshock, considered as a solution of the first-order
part of (1.1) with forcing terms set to zero; see [21,34,71] for similar observations
in the context of detonations. As the first-order system in this case coincides with
the equations of isentropic gas dynamics with γ -law pressure (see Introduction),
nonvanishing of this principal part is a special case of the theorem of [43,61] that
shock waves of isentropic gas dynamics are Lopatinsky stable for any monotone
pressure function.

Nonvanishing of Evans function (11.10) at high frequency.
The high frequency analysis of Section 6.1 also applies to the smooth case, yielding
the following result:

Proposition 11.4. For any F, HR, there exists C(F, HR), such that D(λ, 0) does
not vanish for all �λ > −η̄, |λ| > C(F, HR).
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Proof. In the high frequency regime, following Lemma 6.2, we find that the de-
caying modes v1,−, v2,+ in Definition 11.1 are up to a scalar multiple equal to

v1,−(λ, x) = e
∫ x
0

(

11(λ,y)+ 1

λ
N11(λ,y)+ 1

λ
N12(λ,y)�1(λ,y)

)
dy

(R1(x) + O(1/|λ|)) ,

v2,+(λ, x) = e
∫ x
0

(

22(λ,y)+ 1

λ
N22(λ,y)+ 1

λ
N21(λ,y)�2(λ,y)

)
dy

(R2(x) + O(1/|λ|)) .

(11.18)
Evaluating the Evans function 11.10 at x0 = 0 yields

D(λ) = det
(
R1(0) R2(0)

) + O(1/|λ|), (11.19)

which is nonvanishing. The constant C should be sufficiently large such that Tλ

becomes contraction mapping. 
�
Remark 11.5. High frequency stability restricts the study of spectral stability to in-
vestigation of the bounded domain {λ : �λ > −η̄, |λ| ≤ C(F, HR)}, a numerically
feasible problem.

11.4. Verification of Mid- and Low-Frequency Stability

The hybrid schemes described in Sections 11.1, 11.2 are implemented inMatlab
and show great efficiency (see Tables 1 and 2 in “Appendix C.2” for computation
time). To determine stability, we fix 0 < r < R and a � 1 and examine the
presence of spectrum within the set

�(r, R, a) := {λ − a : �λ > 0, r < |λ| < R}.
At the end,wecompute numerically thewindingnumbers of contours�(∂�(r, R, a))

and D(∂�(r, R, a)), that is we discretize ∂�(r, R, a) as λ0, λ1, · · · , λn, λn+1 =
λ0 and calculate the winding number by

n(�) := 1

2π

n∑
i=0

∠
(
�(λi ),�(λi+1)

)
,

(
n(�) := 1

2π

n∑
i=0

∠
(
D(λi ), D(λi+1)

))
,

where ∠(z1, z2) denotes the angle change from z1 to z2. Since �(λ) (D(λ)) is
analytic in λ, it is clear that n counts its number of zeros of �(λ) (D(λ)) within the
set �.

We have verified that all discontinuous hydraulic profiles are mid- and low-
frequency stable. Here “all" is limited to discretized existence domain F ∈ [0.05 :
0.05 : 1.95], HR ∈ [0.01 : 0.01 : HC (F) − 0.01] (1559 points in total) and
mid- and low-stability is checked for � := �(0.1,C(F, HR), 0.000001) where
C(F, HR) defined in Proposition 11.2 can be estimated by Lemma 6.1. Note that,
exceptionally, there are 191 points in the low F regime requiringC(F, HR) > 2000
and one parameter (F = 0.85, HR = 0.25) even requiring a C(F, HR) as large as
1.1664 × 105. It turns out for these values that for that large λ, in the power series
evaluation step, the hybrid scheme cannot move enough distance away from the
singular point H = 1, causing problems in the later ODE-evolution step. Numerics
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are then not robust for these pair of F, HR . We have restricted C(F, HR) = 2000
for roughly half of these low-F points, and C(F, HR) = 100− 1, 000 for the rest.

See Fig. 5a, b for typical images of contours ∂�(r, R, a) under function �(λ).
We have also verified that all small amplitude smooth hydraulic shockwaves are

mid- and low-frequency stable. Here “all" is limited to discretized existence domain
F ∈ [0.05 : 0.05 : 1.95], HR ∈ [0.99 : −0.01 : HC (F) + 0.01] (2227 points in
total) and mid- and low-stability is checked for � := �(0.1,C(F, HR), 0) where
C(F, HR) defined in Proposition 11.4 can be estimated by Lemma 6.1. Note that,
exceptionally, there are 18 points in the F ≈ 1 regime requiringC(F, HR) > 2000.
For the same reasoning, numerics is then not robust for these pairs of F, HR . We
have restricted C(F, HR) = 2000 for these points.

See Fig. 5c, d for typical images of contours ∂� under function D(λ).

11.5. Time Evolution of Perturbed Hydraulic Shock Profiles

We have carried out also a time-evolution study using CLAWPACK [13,14],
illustrating stability under perturbations of large amplitude discontinuous hydraulic
shocks and small amplitude smooth hydraulic shocks. In both cases, all evolutions
clearly indicate stability. In Fig. 1, we display the results under two different pertur-
bations of a discontinuous profile. In Fig. 6, we display the results for a perturbed
smooth profile. Note that for the exceptional points for which we were not able
to carry out a winding-number study out to the full theoretical radius provided by
high-frequency asymptotics, these time-evolution studies bridge the gap between
computed (100 − 2, 000) and theoretical (> 2, 000) radius. For, nonstable eigen-
modes�λ ≥ 0with |λ| ≥ 100 should be clearly visible on the timescale 0 ≤ t ≤ 20
considered, dominating the solution by time t = 20.
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Appendix A. Decomposition Map

The decomposition of Green kernel function G can be summarized as

G = χ|x−y|/t<S (I + I I + I I I ) , I = χt≤1 I + χt>1 I,
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χt>1 I = χt>1(I
1 + I 2),

I 1 = I 1S + I 1R = I 1S1 + I 1S2 + I 1S3 + I 1R1 + I 1R2 + I 1R3,

I 2 = I 2R1 + I 2R2 + I 2R3,

I 1S2 = χ ᾱ
p >ε

I 1S2 + χ ᾱ
p ≤ε

(
S1 + I 1S2Ri + I 1S2Rii

)
, (A.1)

I 1,2R2 = χ ᾱ
p >ε

I 1,2R2 + χ ᾱ
p ≤ε

I 1,2R2 ,

I I I = I I I 1 + I I I 2 = I I I 1a + I I I 1b + I I I 1c + I I I 2a + I I I 2b + I I I 2c ,

I I I 1,2a := H1,2,

in which we see

H1,2 = χ|x−y|/t<S I I I
1,2
a , S1 = χ|x−y|/t<S,t>1,ᾱ/p≤εS

1,

R = χ|x−y|/t<S

(
I I + I I I 1,2b,c + χt≤1 I

+χt>1

(
I 1S1,S3,R + χ ᾱ

p >ε
I 1S2 + χ ᾱ

p ≤ε

(
I 1S2Ri + I 1S2Rii

)
+ I 2

))
.

(A.2)

Appendix B. Integral Estimates

I 1S2Ri : Setting f (u) = 1√
4c22,−πu

e
− (t−c12,−(x−y))2

4c22,−u , yields I 1S2Ri = f ( t
c12,−

)− f (x− y),

in which by (7.32) t
c12,−

and x − y are comparable. Writing the difference as an

integral yields

|I 1S2Ri | = 1√
4c22,−π

∣∣∣∣∣∣∣∣
∫ t

c12,−
x−y

e
− (t−c12,−(x−y))2

4c22,−u

(t−c12,−(x−y))2

2c22,−
− u

2u
5
2

du

∣∣∣∣∣∣∣∣
. (B.1)

Using that t
c12,−

and x−y are comparable,wehave e
− (t−c12,−(x−y))2

4c22,−u ≤ e
− c12,−(t−c12,−(x−y))2

8c22,− t ,

which, together with xne−x2 � e− x2
2 for any n positive, yields

|I 1S2Ri | �
∫ t

c12,−
x−y

∣∣∣∣∣∣∣∣
e
− (t−c12,−(x−y))2

4c22,−u

(t−c12,−(x−y))2

2c22,−
− u

2u
5
2

∣∣∣∣∣∣∣∣
|du|

� e

− (t−c12,−(x−y))2

4c22,− 2t
c12,− (t − c12,−(x − y))2

∣∣∣∣∣
∫ t

c12,−
x−y

u− 5
2 du

∣∣∣∣∣ + e

− (t−c12,−(x−y))2

4c22,− 2t
c12,−

∣∣∣∣∣
∫ t

c12,−
x−y

u− 3
2 du

∣∣∣∣∣
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� e
− c12,−(t−c12,−(x−y))2

8c22,− t
(t − c12,−(x − y))2

∣∣∣∣∣∣∣∣∣
1(

t
c12,−

)1.5
− 1

(x − y)1.5

∣∣∣∣∣∣∣∣∣

+e
− c12,−(t−c12,−(x−y))2

8c22,− t

∣∣∣∣∣∣∣∣∣
1(

t
c12,−

)0.5
− 1

(x − y)0.5

∣∣∣∣∣∣∣∣∣

� e
− c12,−(t−c12,−(x−y))2

8c22,− t
(t − c12,−(x − y))3

t2.5
+ e

− (t−c12,−(x−y))2

8c22,− t
(t − c12,−(x − y))

t1.5

� e
− c12,−(t−c12,−(x−y))2

16c22,− t 1

t
. (B.2)

∂ I 1S2Ri
∂y :

|∂ I
1
S2Ri

∂y
| = 1√

4c22,−π

∣∣∣∣∣∣∣∣
∂

∂y

∫ t
c12,−

x−y
e
− (t−c12,−(x−y))2

4c22,−u
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− u
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�
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e
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2c22,−
− (x − y)

2(x − y)
5
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4c22,− 2t
c12,− (t − c12,−(x − y))3
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∫ t

c12,−
x−y

u− 7
2 du
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+e

− (t−c12,−(x−y))2

4c22,− 2t
c12,− (t − c12,−(x − y))
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� e
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16c22,−t 1

t1.5
. (B.3)

I 1S2Rii :Using that e
− (t−c12,−(x−y))2

4c22,−(x−y)
< 1 and that for the complementary error function

er f c(x) := 2√
π

∫ ∞
x e−z2dz, there is the estimate er f c(x) ≤ e−x2 , I 1S2Rii can be

bounded by

|I 1S2Rii | �
∫ ∞
r

e−c22,−(x−y)ξ2dξ = 1√
(x − y)c22,−

er f c(
√
c22,−(x − y)r)

� e−r2c22,−(x−y) ≤ e−r2c22,−
t
2 , (B.4)
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in which we have used that x − y is comparable to t hence is bounded away from
0 and is greater than t

2 . Term IS2Rii is then time-exponentially small.
∂ I 1S2Rii

∂y : When the partial derivative hits the exponential outside the integral we

get time- exponentially small terms by following the proof for I 1S2Rii :. When the

partial derivative hits inside the integral we use x2e−x2 � e−x2/2 and again get
time-exponentially small terms by following the proof for I 1S2Rii .

I 1R2i : Using that xe−x2 � e
−x2
2 and that t

c12,−
and x − y are comparable ( t

2c12,−
<

x − y < 2t
c12,−

), we have

e
−

(
t−c12,−(x−y)

)2
4c22,−(x−y)

∫ r

−r
e−ξ2c22,−(x−y)O|η∗|dξ

� e
−

(
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−r
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x − y
dξ

�
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3
2

e
−

(
t−c12,−(x−y)
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4c22,−(x−y) � 1

(x − y)
e
−

(
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)2
8c22,−(x−y)

≤ 1
t

2c12,−

e

−
(
t−c12,−(x−y)

)2
8c22,− 2t

c12,− , (B.5)

e
−
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)2
4c22,−(x−y)
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0
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� 1
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(
t−c12,−(x−y)

)2
4c22,−(x−y)
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−
(
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4c22,−(x−y)
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� 1

(x − y)
e
−

(
t−c12,−(x−y)

)2
8c22,−(x−y) � 1

t
e

−
(
t−c12,−(x−y)

)2
8c22,− 2t

c12,− , (B.7)

e
−

(
t−c12,−(x−y)
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4c22,−(x−y)
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Table 1. Times to compute a single Evans–Lopatinsky determinant �F,HR (λ)

λ F, HR

0.1, HC (0.1) 0.1, 0.002 (s) 1, HC (1) 1, 0.2 (s) 1.9, HC (1.9) 1.9, 0.5 (s)
−10−5 (s) −10−5 (s) −10−5 (s)

0.01 0.06 0.06 0.02 0.03 0.02 0.02
1 0.19 0.21 0.04 0.04 0.04 0.03
100 4.59 5.45 0.78 0.87 0.02 0.03

Table 2. Times to compute a single Evans determinant DF,HR (λ)

λ F, HR

0.1, HC (0.1) 0.1, 0.9 1, HC (1) 1, 0.9 (s) 1.9, HC 1.9, 0.99 (s)
+10−2 (s) +10−2 (s) (1.9) + 10−2 (s)

0.01 0.11 0.09 0.06 0.06 0.06 0.05
1 0.25 0.43 0.07 0.05 0.12 0.15
100 3.05 4.84 0.32 0.58 0.73 2.36

We then see that all terms are absorbable in R (7.6).

Appendix C. Computational Framework

C.1. Computational Environment

In carrying out our numerical investigations, we have usedMacBook Pro 2017 with
16GBmemory and IntelCore i7 processorwith 2.8GHzprocessing speed for coding
and debugging. The main parallelized computation is done in the compute nodes
of IU Karst, a high-throughput computing cluster. It has 228 compute nodes. Each
node is an IBMNeXtScale nx360M4 server equippedwith two Intel Xeon E5-2650
v2 8-core processors and with 32 GB of RAM and 250 GB of local disk storage.

C.2. Computational Time

The computational times displayed in the tables below are times elapsed in a single
processor of IU Karst.
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