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1 Introduction

The census of heavy-quark (c- or b-containing) exotic hadrons has now reached about

40 candidates, with no indication of a slackening in the pace of their discovery. Equally

surprising is that no single theoretical picture has emerged as a global paradigm to describe

their structure. Advocates can point to examples among the exotics for which hadronic

molecules, hybrids, hadroquarkonium, diquark states, or threshold effects are particularly

well suited, while detractors can point to equally compelling counterexamples. The status

of both experimental results and theoretical pictures have been reviewed extensively in a

number of recent reviews [1–11].

From the theoretical point of view, all of the pictures are based upon sound ideas

— phenomena either proven to exist in phenomenology (e.g., atomic nuclei as hadronic

molecules) or as well-studied features of quantum field theory [e.g., the SU(3)color-triplet

diquark attraction; hadronic on-shell threshold-induced singularities in Green’s functions

from chiral Lagrangians]. However, which particular mechanisms are most important to

describe the detailed spectrum and decay modes of the existing exotics remains an un-

settled and hotly disputed question. Even if one specific picture eventually emerges as

the dominant model, very likely the inclusion of modifications due to the other effects

— i.e., full coupled-channel calculations — will be essential in order to obtain a detailed

understanding of the exotics.

In this spirit, it is essential to push any given theoretical picture to its limit, examining

both its successes and shortcomings as a global model for the exotics. The purpose of the

current work is to continue the development of the dynamical diquark picture of exotics [12,

13], which is defined through the color attraction of the channel 3 ⊗ 3 → 3̄ to form

heavy-light diquarks δ ≡ (Qq)3̄ and their antiparticles δ̄ ≡ (Q̄q̄)3 as quasi-bound hadronic

subcomponents. The presence of a heavy quark Q means that δ is more spatially compact

than a typical light-quark hadron, while the large energy release available in the production

processes of exotics (either through b-quark decay [for charmoniumlike states] or collider

production) means that the color-nonsinglet δ and δ̄ can separate a sufficient distance
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to allow the δ-δ̄ state to temporarily evade color recombination (into, e.g., a hadronic

molecule) until the quarks of δ ultimately combine with the antiquarks of δ̄ in the decay

of the state. In other words, ref. [12] argues that when a collection of quarks QQ̄qq̄ forms,

the dominant decay mode is indeed two mesons, with the formation of a di-meson hadronic

molecule being a rare special case. But if Q, q initially lie closer to each other than to

Q̄, q̄, then δ and δ̄ formation is an alternative. If the δ-δ̄ pair were created with low

relative momentum within a typical hadronic volume, then such a state would still exhibit

a large overlap with the two-meson wave function. In that case nothing would impede

a very rapid decay to this mode, obscuring the fact that a δ-δ̄ pair had initially formed.

But if a large relative momentum occurs in the production process to push the diquarks

apart before this recombination can occur, then the two-meson wave-function overlap is

suppressed, the decay is delayed, and the appearance of a δ-δ̄ state becomes perceptible.

Put another way, the momentum-space wave function of the two diquarks overlaps more

strongly with two-meson states in its small-momentum regime, and with δ-δ̄ states in its

large-momentum regime. Moreover, the triplet-channel attraction need not conclude after

just two quarks [14], leading to the proposal of triquarks θ̄ ≡
[
Q̄(q1q2)3̄

]
3

as components

of pentaquark states in the combination θ̄δ [13].

The dynamical diquark picture has been developed into a full model, including a

specific spectroscopy and decay selection rules, in ref. [15]. The key ingredient necessary to

characterize states formed from separated δ-δ̄ or θ̄-δ pairs is the introduction of the Born-

Oppenheimer (BO) approximation [16], which distinguishes the heavy, slowly changing δ

and δ̄ (or θ̄) from the rapidly changing degrees of freedom in the color flux tube connecting

them. The spectrum of flux-tube configurations of nontrivial gluon content has, in turn,

been studied on the lattice for decades; for example, these simulations have been used to

compute heavy-quarkonium hybrid-meson masses [17].

In ref. [18], the results of lattice simulations obtained by two independent collabora-

tions [19, 20] for two separated, color-triplet sources have been input as static-source BO

potentials V (r) for Schrödinger equations of δ-δ̄ and θ̄-δ systems. Any observed exotic

of known mass and JPC quantum numbers may then be identified with a state of the

same JPC appearing in one of the multiplets listed in ref. [15] and selected as a reference

state, its mass serving as a particular eigenvalue of the Schrödinger equations, which for

tetraquarks fixes the diquark mass mδ. But then, with V (r) and mδ specified, the entire

mass spectrum of all tetraquarks is completely determined — at least, ignoring the fine-

structure mass splittings within the levels of each BO potential. If one chooses the 1++

X(3872) to fix the (positive-parity) ground-state multiplet Σ+
g (1S), then ref. [18] shows

that the (negative-parity) first excited levels Σ+
g (1P ) appear at about 4240 MeV, in ex-

cellent agreement with 1−− states such as the Y (4220) appearing nearby, and the next

(positive-parity) excited levels Σ+
g (2S) appear at about 4440 MeV, in excellent agreement

with the appearance of the 1+− state Zc(4430). Pentaquarks can then be studied by using

the value of mδ obtained from the tetraquark fit to select a reference pentaquark state to

fix mθ̄, and hence, predict the rest of the spectrum.

To go further with this analysis, however, one must consider the aforementioned fine-

structure corrections. Just as for quarkonium, one can identify multiple types of such cor-
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rections: spin-spin, spin-orbit, tensor, Darwin terms, etc. . . However, multiquark exotics

offer a much richer possible set of interactions, simply due to the greater combinatorics

available to their constituent particles. Choosing to work with a diquark model simpli-

fies matters somewhat, by clustering the components into identifiable subunits with good

quantum numbers. For example, ref. [21] achieved rather satisfying results in their “Type-

II” diquark model by assuming that the dominant spin-spin interactions are solely those

between the quarks within each diquark; the mass splitting between the two 1+− states

Z0
c (3900) and Z0

c (4020) arises quite naturally in this scheme.

One ingredient that, to our knowledge, has not before been included in previous di-

quark models is isospin dependence in the interaction potential. In the most naive type

of tetraquark model, two quarks and two antiquarks are placed in close proximity, and

(in the limit mu = md) one expects no distinction between tetraquarks differing only in

the light-flavor contents uū, ud̄, dū, and dd̄. That is, one expects completely degenerate

quartets consisting of I = 0 and I = 1 multiplets. But the physical exotics appear to form

ordinary I = 0 and I = 1 multiplets (the experimental absence [22] of a charged partner to

the X(3872) is particularly significant in this respect), so a truly predictive model of ex-

otics must contain isospin-dependent effects at some level. Since the δ-δ̄ pair is connected

strongly by color-nonsinglet interactions, one expects the same for the isospin-exchange

quanta in this model (Such an assumption however is not strictly necessary for the anal-

ysis presented below; the phenomenological consequences of assuming purely color-singlet

isospin exchanges between the component quarks of hadrons have been successfully studied

for quite some time [23]). In the context of dense QCD, a variant of the Nambu-Goldstone

theorem has been demonstrated [24], which means that light pionlike exchange (colored,

in this case) can exist in settings other than that of the zero-density environment between

color-singlet hadrons. If one posits that the interior of the color flux tube connecting the δ-

δ̄ pair is another such environment, then light “pions”, possibly partly colored, could exist

and propagate across the color flux tube, evading the strong color screening that might im-

pede the propagation of ordinary color-singlet mesons, and providing the essential isospin

dependence in these states. We emphasize that such an effect is purely conjectural at this

stage, but discuss later how its existence might be established on the lattice.

In the ground-state multiplet Σ+
g (1S), the 6 possible states [see eq. (3.5) or (3.6) below]

should therefore actually be listed as 6 isosinglets and 6 isotriplets, for a total of 12 mass

eigenstates (when mu = md). Likewise, one finds 28 mass eigenstates for the first excited

[Σ+
g (1P )] multiplet and another 12 for the second excited [Σ+

g (2S)] multiplet. Such large

multiplicities have led to the most frequent criticism of diquark models, that they tend to

overproduce states compared to experiment.

In this regard, however, several points should be noted: first, new exotic states are

still being discovered or resolved — even at relatively low masses — virtually every year,

so it is not at all impossible that the final tally in any flavor sector may turn out to be

well over 100. Second, some of the predicted states have JPC quantum numbers that may

be difficult to probe with available production channels (e.g., the conventional ψ3(1D)

(3−−) charmonium candidate state X(3842) has only been observed for the first time this

year [25]). Third, if a state lies only a modest amount above its fall-apart decay threshold,
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then it can be quite wide, and possibly difficult to distinguish from background (e.g., the

conventional charmonium χc0(2P ) candidate state χc0(3860) lies only about 130 MeV above

the DD̄ threshold but has a width of about 200 MeV [26], which made it challenging to

resolve until relatively recently).

The second common criticism of such models is that the diquark quasiparticles are not

pointlike (estimated radii of a few times 0.1 fm [12]), and if the full exotic states are not too

many times larger, then the δ and δ̄ wave functions must have considerable spatial over-

lap. But then, one expects that the stronger qq̄ color-singlet attractions should lead to a

rearrangement of the quark constituents into a configuration resembling a hadron molecule

or hadroquarkonium (see, e.g., [27]). That is to say, for small δ-δ̄ separations (or small

heavy-meson separations in a molecular model), the QQ̄ pair lie in close proximity within

the cloud of the qq̄ pair, and the nature of the wave function resembles that of hadro-

quarkonium, with these three pictures distinguished only by the specific color correlations

of the quark pairs. In the original dynamical diquark model, such a color reorganization

prior to decay is suppressed by the separation of the δδ̄ pair. One can also develop models

in which this separation is not merely the result of the production process, but is enforced

by a potential barrier [28].

In this work we also explore the effect of finite diquark sizes by modeling the

Schrödinger equations to transition at a chosen distance R from ones describing the in-

teraction of the δδ̄ pair to ones describing just the interaction of the QQ̄ pair. Then the

exotic consists primarily of an interacting QQ̄ pair residing in a shell of constant potential

provided by the light qq̄ pair and glue, which is indeed quite similar to the hadroquarko-

nium picture. We see below that the calculated spectrum is fairly insensitive to changes

of R from zero to physically reasonable values, providing confidence in this aspect of the

modeling of δ-δ̄ states.

This paper is organized as follows. In section 2 we examine the effect of finite diquark

size on the exotics spectrum in the manner just described. The introduction of isospin-

dependent interactions between the δ-δ̄ pair appears in section 3, and we compute the

corresponding expressions for the spectrum of the ground-state Σ+
g (1S) multiplet, including

both isospin and spin-spin dependence. In section 4 we fit the X(3872), Zc(3900), and

Zc(4020) states to the model parameters, and show that natural choices of the unfixed

parameters allow all unconfirmed members of the multiplet to lie higher in mass, and

indeed respect the pattern of Zc(3900)/Zc(4020) closed-charm decay modes. Finally, in

section 5 we indicate the direction of the analogous investigation for excited multiplets,

pentaquarks, and the bb̄ sector, and summarize our findings.

2 Effects due to finite diquark size

The calculations of ref. [18] assume a potential V (r) valid for a δ-δ̄ pair that can assume

any separation r. The functional form V (r) is taken from lattice simulations for a heavy

(hence static) particle pair transforming as 3 and 3̄ under SU(3)color. The specific masses,

spin statistics, flavor, and charge quantum numbers of the heavy sources are considered

immaterial to the results of these calculations, and so one may use the same potentials
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for heavy QQ̄ states (using the ground-state BO potential Σ+
g of the color flux tube)

or their hybrids QQ̄g (using the excited BO potentials such as Π+
u , Σ−u , etc.), or for δδ̄

tetraquark and θ̄δ pentaquark states. Of course, quarks are fundamental, presumably

pointlike constituents, while diquarks and triquarks have a finite spatial extent. One should

not expect that the same potential V (r) as used for interactions between pointlike sources

should hold δ-δ̄ or θ̄-δ pairs at arbitrarily small values of r, in regions where the wave

functions of the quasiparticles strongly overlap.

We present a simple proposal to test the effect of the finite diquark (or triquark) size:

since each such quasiparticle in this model contains exactly one heavy quark or antiquark,

we suppose for simplicity the existence of a critical separation R between the centers of

the δ-δ̄ or θ̄-δ pair, at which point the wave-function overlap between the two is considered

significant. Were the quasiparticles hard spheres, then R would equal the sum of their radii.

At distances r < R, we suppose that the dominant interaction becomes the attraction

between the QQ̄ pair, which uses precisely the same V (r) as for δδ̄ or θ̄δ since it is also

a 3-3̄ pair. However, the masses appearing in the kinetic-energy term of the Schrödinger

equation are no longer mδ or mθ̄, but mQ. We further suppose that, at reasonably small

R, the qq̄ pair simply provides a constant potential in which the QQ̄ pair interact. Since

the state then consists of a QQ̄ pair within a light cloud consisting of the qq̄ pair and glue,

the physical picture becomes quite similar to that of hadroquarkonium [29].

Explicitly, the Hamiltonian used in the Schrödinger equation assumes the usual form

H = p2

2µ + V (r), where p is the relative momentum of the constituents, and V (r) is the

specific lattice-computed 3-3̄ potential chosen for the calculation holding for all r. However,

1

µ
=

{
1

mδ

+
1

mδ̄

for r > R , and
1

mQ
+

1

mQ̄

for r < R

}
, (2.1)

and matching at r = R is accomplished by imposing continuity of the eigenfunction and

its first derivative. The values of mδ , mδ̄ are then adjusted to obtain the physical mass

eigenvalue [e.g., mX(3872)]. One may of course introduce any one of a number of different

methods with a variety of refinements to incorporate the finite size of the diquark, but this

simple ansatz provides a convenient one-parameter (R) method of testing the limitations

of the approach.

At R = 0, the diquark becomes pointlike. One then recovers the results calculated

in ref. [18], specifically the first fits of table 3 (within small numerical tolerances), in

which the Σ+
g (1S) mass eigenvalue is fixed to that of the X(3872), the diquark mass mδ

entering the Schrödinger equation is obtained as an output, and the charm-quark mass is

fixed to a typical value, mc = 1.477 GeV [30]. We have computed modifications to the

spectrum using the above ansatz and a variety of values of R ranging from 0 → 1 fm

(corresponding to a classical hard-sphere diquark radius of 0.5 fm). Sample results are

presented in table 1; the right-hand columns (R = 0.0 fm) reproduce the results of ref. [18],

and the left-hand columns are computed at R = 0.7 fm. The acronyms refer to the results

of lattice simulations by two collaborations, JKM [19, 31] and CPRRW [20].

One immediately notes how little many of the numerical results change. The value of

mδ, for example, decreases by a percent or less. The 2S-1S mass splitting decreases by
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R = 0.7 fm R = 0.0 fm

BO states Potential M mδ 〈1/r〉−1 〈r〉 M mδ 〈1/r〉−1 〈r〉

Σ+
g (1S) JKM 3.8716 1.8556 0.36925 0.32136 3.8716 1.8750 0.27202 0.36461

CPRRW 3.8717 1.8390 0.36780 0.32538 3.8716 1.8532 0.27521 0.36915

Σ+
g (2S) JKM 4.4231 1.8556 0.49495 0.65605 4.4435 1.8750 0.42698 0.69081

CPRRW 4.4256 1.8390 0.49385 0.66085 4.4405 1.8532 0.43064 0.69640

Σ+
g (1P ) JKM 4.2067 1.8556 0.60909 0.50400 4.2462 1.8750 0.48962 0.56613

CPRRW 4.2072 1.8390 0.60589 0.50798 4.2429 1.8532 0.49376 0.57067

Σ+
g (1D) JKM 4.4863 1.8556 0.75652 0.67579 4.5323 1.8750 0.66419 0.73132

CPRRW 4.4881 1.8390 0.75436 0.67993 4.5277 1.8532 0.66931 0.73656

Table 1. Mass eigenvalues M (in GeV) for hidden-charm dynamical diquark states that are eigen-

states (with quantum numbers nL) of a Schrödinger equation in which V (r) is the ground-state

BO potential Σ+
g . The functional form of V (r) is given by lattice simulations JKM [19, 31] or

CPRRW [20]. The eigenvalue for the 1S state is fixed to the X(3872) mass, and the diquark mass

mδ (in GeV) is the parameter that must be used as input for the Schrödinger equation in order to

achieve this constraint. As described in the text, this equation uses mδ as its mass parameter for

r > R, and mc = 1.477 GeV for r < R (the separation between δ and δ̄ centers). Also computed

are the corresponding expectation values for the length scales 〈1/r〉−1
and 〈r〉 (in fm).

only 15–20 MeV in going from R = 0.0 fm to R = 0.7 fm, the 1P -1S splitting decreases

by 36–40 MeV, and even the 1D-1S splitting decreases by no more than 46 MeV. These

changes amount to roughly 3–12% decreases in the overall size of the splittings, with the

largest effect occurring in the 1P -1S splitting. It is only for R > 0.8 fm that one begins

to see the results changing more dramatically, so we take 0.4 fm as an indication of the

largest diquark radius one may reasonably use as quasiparticles in these calculations. The

length-scale expectation values, on the other hand, change quite drastically with R; but

since 〈r〉, for example, is a convolution of the average distance between the δ-δ̄ pair (for

r > R) with the average distance between the QQ̄ pair (for r < R), it is not surprising that

〈r〉 is sensitive to changing the mass parameter in the Schrödinger equation from mδ to mQ.

3 Isospin interactions between diquarks

The one-pion exchange potential between two spin- 1
2 nucleons (with corresponding spin σ

and isospin τ operators), separated by a relative position vector r, has been known for

many decades (arguably, as early as 1938 [32, 33]). In modern notation, it reads:

Vπ(r) =

(
gA√
2fπ

)2

τ1 · τ2

[
m2
π

12π

e−mπr

r

(
σ1 · σ2 + S12

[
1 +

3

mπr
+

3

(mπr)2

])
− 1

3
σ1 · σ2 δ

(3)(r)

]
, (3.1)

where the tensor operator S12 is defined by

S12 ≡ 3σ1 · r σ2 · r/r2 − σ1 · σ2 . (3.2)
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In particular, each term depends upon isospin exchange (τ1 · τ2), as well as upon spin

exchange, between the nucleons. S12 is a rank-2 tensor operator in both spin and position

space, and therefore by the Wigner-Eckart theorem all states in an S wave connect through

S12 only to D-wave states, which are expected to lie much higher in energy [18]. P -wave

states, on the other hand, have nonvanishing diagonal S12 matrix elements. The contact

term δ(3)(r) is included for formal reasons, but the one-pion exchange potential has long

been known [34] to require major modifications at separations below about 2 fm, so that

the δ(3)(r) term should actually be replaced by explicit short-distance effects. In any case,

this term still carries the same spin and isospin dependence as the long-distance potential.

Since the ∼ 2 fm range approximately equals the sum of two nucleon radii (as indicated

by, e.g., their ≈ 0.86 fm magnetic radii [35]), one may suppose that a major factor in

the transition from the one-pion-exchange region to that of heavier-meson or multi-pion

exchanges is the appearance of a substantial overlap of nucleon wave functions.

In eq. (3.1), the experimental value of the axial nucleon-pion coupling is gA =

1.2732(23), and the pion decay constant (in this normalization) is fπ = 130.2(1.7) MeV [35].

Using an isospin-averaged pion mass, we find(
gA√
2fπ

)2 m2
π

12π
= 4.72 MeV · fm , (3.3)

a value to be used below as a comparison with the strength of the isospin exchange between

diquarks.

The exchange of pions (and other mesons) between color-singlet hadrons to bind

hadronic molecules, both in the form of potential exchanges such in as the NNπ inter-

action discussed above, and in calculations employing chiral Lagrangians, has long been

one of the primary mechanisms used to study multiquark exotic hadrons [5]. The long

range of pion interactions of course stems from its status as the lightest meson, which in

turn follows from its role as a Nambu-Goldstone boson of chiral symmetry breaking. The

long-distance isospin dependence of the interactions in molecular models follows primarily

from the isospin content of exchanged pions.

We now turn to the analogous interaction for diquarks. In the eigenstates of the dy-

namical diquark model, the δ-δ̄ pair assume a nonzero separation, and each of δ , δ̄ contains

a light quark that carries isospin I = 1
2 . However, δ and δ̄ are color nonsinglets, and they

are connected by a color flux tube. The question then becomes whether isospin-dependent

exchanges can occur in the environment of nonzero color charge. In fact, a related question

was addressed some time ago in the context of high-density QCD. As shown in the context

of color-flavor locking, the Nambu-Goldstone theorem of chiral-symmetry breaking remains

valid even within this environment of high quark density, so that colored analogues of pions

have been shown to exist in this case [24]. In this work we propose that a similar effect

arises along an extended color flux tube: in this dense, colored environment of extended

spatial size, gluons remain the dominant component, but the formation of a partly colored

quark condensate subcomponent in this non-vacuum environment is a very real physical

possibility. An analogue to pion exchange would then exist between the δ-δ̄ pair, providing

a natural source of isospin dependence in the exotics spectrum of the dynamical diquark
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model. To be clear, we do not take this effect in the current scenario of the δ-δ̄ interaction

in any sense to be proven to exist, but we do consider such an isospin-dependent interaction

with pionlike couplings to be a plausible physical phenomenon. Lattice simulations could

provide evidence for such an effect: one could, for example, fix in space two heavy diquarks

carrying nontrivial isospin quantum numbers, calculate their interaction potential energy,

and examine whether any part of it is flavor non-universal.

Assuming then that the color flux tube connecting the δ-δ̄ pair supports exchanges of

a Nambu-Goldstone boson, one expects a potential interaction between the light flavors

within the diquarks similar in form to eq. (3.1). In this paper we ignore the S12 term, since

the fit is confined to the lowest S-wave multiplet. However, nothing in principle prevents an

analysis of the P -wave (or higher) states; only a paucity of confirmed states in this multiplet

discourages such a study at this time, and we provide a few relevant comments on a P -

or higher-wave analysis in section 5. Neglecting S12, the remaining terms of eq. (3.1) are

proportional to τq · τq̄ σq · σq̄. In the current model, we simply label the coefficient of this

operator as V0.

One may take the phenomenology a step further in order to compare to ordinary one-

pion exchange. As discussed above, we strike the contact term δ(3)(r) from the exchange

potential, since at short distances the diquark wave functions must overlap, necessarily

leading to a more complicated interaction. Next, since the calculations of ref. [18] show

how to compute any expectation value without the need of calculating explicit wave func-

tions, one may obtain an explicit expectation value for the Yukawa part of the potential,

〈e−mπr/r〉, and from this result, extract a coefficient called Ṽ0 that may be compared

with the combination in eq. (3.3). Explicitly, we write the full isospin-dependent potential

VI(r) as

VI(r) = Ṽ0 ×
e−mπr

r
× τq · τq̄ σq · σq̄ ,

V0 ≡ Ṽ0

〈
e−mπr

r

〉
. (3.4)

It bears mentioning that the Yukawa potential expectation value decreases for excited

states, and so while one may suppose that Ṽ0 should be approximately the same constant

for all multiplets, the particular value of V0 obtained below [eq. (4.7)] holds only for the

Σ+
g (1S) multiplet. An analogous effect explains why fine-structure splittings in ordinary

quarkonium decrease for higher multiplets. A direct comparison with eq. (3.3) is also

difficult because the relation between the observed (vacuum) pion mass mπ and the mass

parameter for the corresponding in-medium exchange quantum (the “partly colored pion”)

along the color flux tube is unknown, not to mention the size of its coupling to the diquark

(the analogue to gA/fπ). Purely for sake of comparison, we take the mass of the “partly

colored pion” in eq. (3.4) to equal mπ, even the true mechanism of isospin exchange might

be quite different. One may expect on the basis of ordinary hadronic phenomenology that

the proper mass scale of the colored exchange is rather larger (at least several hundred

MeV), but using such a value does not radically alter our numerical results.
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The states in the ground-state multiplet Σ+
g (1S), prior to introducing isospin, are

defined as [21]

JPC = 0++ : X0 ≡
∣∣0δ, 0δ̄〉0

, X ′0 ≡
∣∣1δ, 1δ̄〉0

,

JPC = 1++ : X1 ≡
1√
2

(∣∣1δ, 0δ̄〉1
+
∣∣0δ, 1δ̄〉1

)
,

JPC = 1+− : Z ≡ 1√
2

(∣∣1δ, 0δ̄〉1
−
∣∣0δ, 1δ̄〉1

)
,

Z ′ ≡
∣∣1δ, 1δ̄〉1

,

JPC = 2++ : X2 ≡
∣∣1δ, 1δ̄〉2

, (3.5)

where the number preceding each δ(δ̄) subscript is the diquark (antidiquark) spin (sδ and

sδ̄, respectively), while the outer subscript on each ket is the total quark spin J . In terms

of the basis of good qq̄ and QQ̄ spin quantum numbers (sqq̄ and sQQ̄, respectively), the

corresponding eigenstates are

X̃0 ≡
∣∣0qq̄, 0QQ̄〉0

= +
1

2
X0 +

√
3

2
X ′0 ,

X̃ ′0 ≡
∣∣1qq̄, 1QQ̄〉0

= +

√
3

2
X0 −

1

2
X ′0 ,

Z̃ ≡
∣∣1qq̄, 0QQ̄〉1

=
1√
2

(
Z ′ + Z

)
,

Z̃ ′ ≡
∣∣0qq̄, 1QQ̄〉1

=
1√
2

(
Z ′ − Z

)
. (3.6)

Expressing the basis change between eqs. (3.5) and (3.6) in terms of rotation matrices, one

finds

JPC = 0++ :

(
X0

X ′0

)
=

(
cos π3 sin π

3

sin π
3 − cos π3

)(
X̃0

X̃ ′0

)
,

JPC = 1++ : X1 =
∣∣1qq̄, 1QQ̄〉1

,

JPC = 1+− :

(
Z

Z ′

)
=

(
cos π4 − sin π

4

sin π
4 cos π4

)(
Z̃

Z̃ ′

)
,

JPC = 2++ : X2 =
∣∣1qq̄, 1QQ̄〉2

, (3.7)

where outer subscripts again indicate total quark spin J .

This nomenclature (adapted from ref. [21]) applies to both I = 0 and I = 1 states.

However, its use may cause confusion because the label Z is usually understood to mean

only I = 1 states, whereas we use Z to mean 1+− states exclusively. The naming scheme

adopted by the Particle Data Group [35] labels the I = 0 J++ states as χJ and the I = 0

1+− state as h, exactly as for conventional quarkonium, while the label Z is reserved for

I = 1 1+− states, and the yet-unobserved I = 1 J++ states are called WJ .
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The mass eigenstates formed from the states of degenerate JPC in eq. (3.5) are de-

fined as (
X̄0

X̄ ′0

)
=

(
cos θX sin θX
− sin θX cos θX

)(
X0

X ′0

)
,(

Z̄

Z̄ ′

)
=

(
cos θZ sin θZ
− sin θZ cos θZ

)(
Z

Z ′

)
. (3.8)

While it is not logically necessary to require the mixing angles θX and θZ for these systems

to assume the same values in both the I = 0 and I = 1 channels, to do so is a reasonable

minimal ansatz. As shown below, this ansatz does not conflict with current experimental

findings. In particular, each occurrence of the label Z below is understood to apply equally

well to the I = 0 or I = 1 state, unless a particular I eigenvalue is explicitly appended.

The full model Hamiltonian reads

H = M0 + 2κqQ(sq · sQ + sq̄ · sQ̄) + V0 τq · τq̄ σq · σq̄ , (3.9)

where M0 is the common multiplet mass, computed in ref. [18] using spin- and isospin-blind

Schrödinger equations that depend only upon the diquark (or also, in the pentaquark case,

triquark) mass and a central potential computed on the lattice from pure-glue configura-

tions. The second term of eq. (3.9) represents the primary interaction of the “Type-II”

diquark model [21], with the parameter κqQ representing the strength of the spin-spin cou-

plings within diquarks (q only to Q, q̄ only to Q̄). Note particularly the assumption that

the dominant isospin-dependent potential in eq. (3.9) depends only upon the light-quark

spins, rather than the diquark spins; were the diquarks truly pointlike, then the q(q̄) would

still carry all the isospin of δ(δ̄), but the V0 interaction would be replaced with

∆H = V1 τq · τq̄ σδ · σδ̄ . (3.10)

The particular form of the Hamiltonian eq. (3.9) [or (3.10)] deserves further comment.

The original spin-dependent diquark model for heavy-quark exotics (called “Type I” [36]),

which emerged when only a few such exotics were known, allows for couplings between all

four quarks. As exotics data improved with time, it became apparent that the “Type-I”

model was unsuited to describing the full observed spectrum. The ansatz of the “Type-

II” model [21] takes the dominant spin couplings to be just those within each diquark

(since the diquarks are believed to be more compact than the full hadron), and the model

provides a satisfactory understanding of the masses of the states X(3872), Zc(3900), and

Zc(4020) — but not, by construction, their isospins. The “Type-II” ansatz is simplest

to justify if one appeals to the kinematically induced separation of the δ-δ̄ pair in the

dynamical diquark picture [12], but one could just as easily suppose the existence of a

potential barrier separating the δ-δ̄ pair [28]. A comparison of the spectra of the “Type-II”

and molecular models forms the basis of a dedicated study in ref. [37]. The V0 term of

eq. (3.9) or V1 term of eq. (3.10) introduces isospin dependence into the model, and under

the assumption of chiral-type couplings, the isospin exchange is linked to additional spin
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dependence. Certainly one could also incorporate, for example, isospin-dependent, spin-

independent Hamiltonian operators, but for this initial study the V0 and V1 operators are

designed to assume the most familiar form from chiral dynamics.

The matrix elements of the symmetry-breaking operators in eq. (3.9) are computed

easily using standard square-completion tricks. The second term evaluates to

κqQ
[
sδ(sδ + 1) + sδ̄(sδ̄ + 1)− 3

]
, (3.11)

which is trivially computed for states expressed in the diquark basis of eq. (3.5), for which

the operator is diagonal. The third term of eq. (3.9) evaluates to

V0 [2I(I + 1)− 3] [2sqq̄(sqq̄ + 1)− 3] , (3.12)

which is trivially computed for states expressed in the total light-quark spin (sqq̄) basis of

eq. (3.6). In the alternative form of eq. (3.10), one obtains instead the contribution

2V1 [2I (I + 1)− 3] [J (J + 1)− sδ (sδ + 1)− sδ̄ (sδ̄ + 1)] , (3.13)

which again is easily computed in the diquark-spin basis of eq. (3.5).

Using the mass eigenstates defined in eq. (3.8) and the Hamiltonian of eq. (3.9), one

immediately computes the masses for the 12 physical states in the Σ+
g (1S) multiplet:

M I=0
X̄0

= M0 − κqQ [1 + 2 cos(2θX)] + 3V0

[
1− 2 cos

(
2θX +

π

3

)]
,

M I=0
X̄′0

= M0 − κqQ [1− 2 cos(2θX)] + 3V0

[
1 + 2 cos

(
2θX +

π

3

)]
,

M I=1
X̄0

= M0 − κqQ [1 + 2 cos(2θX)]− V0

[
1− 2 cos

(
2θX +

π

3

)]
,

M I=1
X̄′0

= M0 − κqQ [1− 2 cos(2θX)]− V0

[
1 + 2 cos

(
2θX +

π

3

)]
,

M I=0
X1

= M0 − κqQ − 3V0 ,

M I=1
X1

= M0 − κqQ + V0 ,

M I=0
X2

= M0 + κqQ − 3V0 ,

M I=1
X2

= M0 + κqQ + V0 ,

M I=0
Z̄ = M0 − κqQ cos(2θZ) + 3V0 [1− 2 sin(2θZ)] ,

M I=0
Z̄′ = M0 + κqQ cos(2θZ) + 3V0 [1 + 2 sin(2θZ)] ,

M I=1
Z̄ = M0 − κqQ cos(2θZ)− V0 [1− 2 sin(2θZ)] ,

M I=1
Z̄′ = M0 + κqQ cos(2θZ)− V0 [1 + 2 sin(2θZ)] . (3.14)

These 12 masses depend upon a common multiplet mass M0, two Hamiltonian param-

eters (κqQ and V0), and the mixing angles θX,Z . At this point, eqs. (3.14) are equally valid
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for cc̄ and bb̄ tetraquarks, as well as Bc tetraquarks if one includes distinct κqc and κqb
couplings. Note that the primed and unprimed states interchange under a trivial shift of

the mixing angles: X̄0 ↔ X̄ ′0 when θX → θX + π
2 , and similarly Z̄ ↔ Z̄ ′ when θZ → θZ + π

2 .

Therefore, the unprimed and primed states are equally valid for purposes of parametric

fitting to the mass spectrum. However, these states remain inequivalent in terms of their

content according to sqq̄ and sQQ̄ eigenvalues, a distinction that can be probed through

their decay modes.

If eq. (3.10) is used instead, then the V0 terms of eqs. (3.14) are replaced by the V1 terms

∆M I=0
X̄0

= +12V1 [1− cos (2θX)] ,

∆M I=0
X̄′0

= +12V1 [1 + cos (2θX)] ,

∆M I=1
X̄0

= −4V1 [1− 2 cos (2θX)] ,

∆M I=1
X̄′0

= −4V1 [1 + 2 cos (2θX)] ,

∆M I=0
X1

= +0 ,

∆M I=1
X1

= +0 ,

∆M I=0
X2

= −12V1 ,

∆M I=1
X2

= +4V1 ,

∆M I=0
Z̄ = +6V1 [1− cos (2θZ)] ,

∆M I=0
Z̄′ = +6V1 [1 + cos (2θZ)] ,

∆M I=1
Z̄ = −2V1 [1− cos (2θZ)] ,

∆M I=1
Z̄′ = −2V1 [1 + cos (2θZ)] . (3.15)

The invariance of X̄0 ↔ X̄ ′0 under θX → θX + π
2 , and Z̄ ↔ Z̄ ′ under θZ → θZ + π

2 also

holds in this case. However, the most conspicuous feature of eqs. (3.15) is the degeneracy

of XI=0
1 and XI=1

1 . As these states represent the X(3872) candidate and its yet-unseen

charged partner [22], one finds that a model in which the diquarks exchange isospin only

in their pointlike form as in eq. (3.10) runs afoul of known phenomenology. That these two

V1 contributions are not just equal but indeed zero follows immediately from eq. (3.13) and

the fact [eq. (3.5)] that the X1 states (J = 1) contain only components in which sδ = 0 and

sδ̄ = 1, or vice versa. We therefore analyze as our minimal model the Hamiltonian given

by eq. (3.9), which leads to the spectrum given by eq. (3.14). In addition, if one neglects

all isospin-independent couplings (κqQ = 0), then eq. (3.14) shows that the isoscalar,

spin-2 state XI=0
2 would be degenerate with the X(3872), again in opposition to known

phenomenology.

4 Results and analysis

We now test whether this model can accommodate what is known about the ground-state

[Σ+
g (1S)] hidden-charm exotics, the JPC = 1++ X(3872), and the 1+− states Zc(3900)

and Zc(4020) (the C parity eigenvalue referring to the neutral states). The Particle Data
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Group [35] averages for their masses are

mX(3872) = 3871.69± 0.17 MeV ,

mZc(3900) = 3887.2± 2.3 MeV ,

mZc(4020) = 4024.1± 1.9 MeV . (4.1)

The Zc states have been observed in both charged and neutral variants, which decay in their

closed-charm modes to π± and π0, respectively, meaning that they have I = 1 [and hence

G = C(−1)I = +]. The dominant decays of these states have open charm: Zc(3900) →
D̄∗D and Zc(4020) → D̄∗D∗ [35], making an analysis based solely upon isospin not as

incisive. On the other hand, we noted above that no charged partner of the X(3872) has

been observed despite a dedicated search [22], which suggests I = 0. However, the X(3872)

is widely believed to be unique among all known hadrons in possessing a valence quark

content (more cc̄uū than cc̄dd̄) not corresponding to just one I eigenvalue. Its mass is

almost precisely equal that of D̄∗0D0 (in fact, its dominant decay mode is D̄∗0D0 [35]) but

about 8 MeV below that of D̄∗+D−, while the idealized I = 0 and I = 1 combinations

of these states are equal admixtures. Likewise, X(3872) has been observed to decay to

both the G = − (hence I = 1) final state π+π−J/ψ and the G = + final states ωJ/ψ

(I = 0) and (very recently [38]) π0χc0 (G = −, I = 1). The mere facts that mu < md (and

qu 6= qd) and that X(3872) lies in the close proximity to the threshold for one particular

charge combination appear to be responsible for these fascinating results. In the current

model, however, we take mu = md, ignore electromagnetic effects, and treat X(3872) as

the unique I = 0 1++ state in Σ+
g (1S), XI=0

1 . Indeed, the same analysis below holds even

if the X(3872) is an exact I = 0 state (an equal admixture of cc̄uū and cc̄dd̄), and its

isospin-violating decays are purely the result of the kinematical blocking of the dd̄ channel.

Without performing a detailed accounting of every significant source of fine-structure

splitting expected to appear in these states, a precise estimate of the numerical uncertainties

on our mass predictions is impossible. Nevertheless, if the model is to have any validity,

it must incorporate basic phenomenological facts such as the ∼ 20 MeV mass difference

mZc(3900)−mX(3872). One may therefore take 20 MeV as a reasonable upper limit for mass

uncertainties in this model.

Using the values in eqs. (4.1) (with uncertainties suppressed) in eqs. (3.14), one obtains

1

2

(
mZc(4020) +mZc(3900)

)
= M0 − V0 = 3955.65 MeV ,

1

2

(
mZc(4020) +mZc(3900)

)
−mX(3872) = κqc + 2V0 = 83.96 MeV , (4.2)

1

2

(
mZc(4020) −mZc(3900)

)
= |κqc cos 2θZ − 2V0 sin 2θZ | = 68.45 MeV .

The absolute value in the third expression reflects the fact, noted above, that Zc(3900)

and Zc(4020) may be identified with Z̄I=1 or Z̄ ′I=1 in either order, under the replacement

θZ → θZ+ π
2 . According to eqs. (3.6)–(3.8), this substitution exchanges the relative amounts

of the sQQ̄ = 0 and sQQ̄ = 1 components in the mass eigenstates. In particular, θZ = π
4

takes Z̄ to the pure sQQ̄ = 0 eigenstate Z̃ and takes Z̄ ′ to the pure sQQ̄ = 1 eigenstate
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Z̃ ′, while θZ = 3π
4 takes Z̄ → Z̃ ′ and Z̄ ′ → Z̃. Since Zc(3900) has been observed to decay

to πJ/ψ and not πhc, while the reverse is true for Zc(4020) [35], identifying Z̄I=1 with

Zc(3900), and Z̄ ′I=1 with Zc(4020), is best achieved through values θZ ≈ 3π
4 . Even so, we

do not impose this constraint on the fit, focusing initially only upon the mass spectrum.

First, even without information on θZ , we predict

M I=1
X2

= mZc(4020) +mZc(3900) −mX(3872) = 4039.61 MeV. (4.3)

Should a charged, JPC = 2++ exotic state fail to occur in the vicinity of 4040 MeV, then

the validity of this simplified model must be reassessed. Note that the XI=1
2 has G = −1

and, according to eq. (3.7), preferentially decays to J/ψ, which also carries G = −1. This

state would therefore most easily be seen in the channel ππJ/ψ.

Imposing the constraints of eqs. (4.2) on the last 8 mass expressions in eq. (3.14) leaves

the remaining four non-scalar states, M I=1
X1

, M I=0
X2

, M I=0
Z̄

, and M I=0
Z̄′

, as functions of the

single parameter θZ . Taking θZ → θZ + π simply changes the normalization sign of both

Z̄ and Z̄ ′, so one may consider only the range θZ ∈ [0, π]. The most important constraint

from a phenomenological perspective is that the “charged partner” to the X(3872), XI=1
1 ,

must be substantially heavier, at least 20 MeV [22], than the X(3872). From eqs. (3.14),

one notes that this constraint simply reads V0 > 5 MeV. While V0 is not yet fixed at this

stage of the fit, one notes that

1

2

(
M I=1
X1

+M I=0
X2

)
= M0 − V0 = 3955.65 MeV , (4.4)

meaning that allowing XI=1
1 to be excessively heavy forces the spin-2 isoscalar XI=0

2 to be so

light that it would already have been observed. θZ can only be allowed in certain numerical

ranges to avoid this problem, but fortunately, these ranges are substantial: the lighter of

{XI=1
1 , XI=0

2 } exceeds the X(3872) mass for θZ/π ∈ [0, 0.10], [0.65, 0.85], and [0.90, 1.00].

XI=1
1 is the heavier of these two states in the middle interval and the lighter in the other

two intervals. Within these ranges, M I=1
X1
−mX(3872) > 20 MeV for the restricted ranges

θZ/π ∈ [0, 0.04], [0.65, 0.85], and [0.91, 1.00]. The masses of the two isoscalar partners

{Z̄I=0, Z̄
′
I=0} to the Zc(3900) and Zc(4020) exceed mX(3872) over these full ranges, and the

lighter of the two exceeds mZc(3900) over the restricted ranges except for the small interval

θZ/π ∈ [0.71, 0.75], where even there it is never more than about 2 MeV below mZc(3900);

indeed, precisely at the ideal mixing angle θZ = 3π
4 , eqs. (3.14) show that the isoscalar Z̄ ′I=0

becomes degenerate with Z̄I=1 = Zc(3900). One finds, therefore, that rather large ranges

of θZ appear to all satisfy spectroscopic constraints.

The possibility of an isoscalar 1+− state quasi-degenerate with the Zc(3900) is inter-

esting in light of phenomenological mystery: mZc(3900) as determined via its πJ/ψ decay

channel (pure I = 1) tends to lie several MeV above its value as determined through

(DD̄∗)0 (a mixture of I = 0, 1) [35]. If the latter resonance turns out to be a mixture of

Z̄ ′I=0 and Z̄I=1, then a shifted mass — an average of the two mass eigenvalues — might

be expected. In addition, if Z̄I=1 is nearly ideally mixed to decay to scc̄ = 1 charmonium,

then Z̄ ′I=0 is nearly ideally mixed to decay to scc̄ = 0 charmonium, meaning that one

would have a mixture of both components in this scenario. However, since the Zc(3900)±
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mass measured through the channel (DD̄∗)± (a pure I = 1 combination) is also low, this

resolution is not entirely satisfactory. Nevertheless, such mixing should be kept in mind as

a possibility, should the Zc(3900) mass discrepancy persist.

Turning to the decay properties, we have already noted the preferential coupling of

Zc(3900) to J/ψ and Zc(4020) to hc. As easily seen from combining eqs. (3.6)–(3.8), the

scc̄ = 1 content of Z̄I=1 = Zc(3900) is given by

Pscc̄=1[Zc(3900)] = sin2

(
θZ −

π

4

)
. (4.5)

In the restricted allowed ranges for θZ/π listed above, we find Pscc̄=1[Zc(3900)] ∈ [0.36, 0.50],

[0.91, 1.00], and [0.50, 0.76], respectively. In light of the preference for Zc(3900)→ J/ψ and

Zc(4020) → hc, the second region, θZ/π ∈ [0.65, 0.85], appears to be favored. Note a very

recent result [39], the observation of Zc(3900)± → ρ±ηc, indicating that Zc(3900) is not a

perfect scc̄ = 1 state.

We now consider the scalar sector. Recalling that X̄0 ↔ X̄ ′0 when θX → θX + π
2 for

both the I = 0, 1 channels, one need consider only the range θX/π ∈ [0, 1
2 ]. One then finds,

over the preferred range θZ/π ∈ [0.65, 0.85] that all four of the X̄0 states are heavier than

the X(3872) over the full range of θX except in the interval θX/π ∈ [0.29, 0.42], and in that

range only the state X̄ ′I=0
0 is too light. The other scalar states tend to be much heavier,

ranging from at least 3900 MeV to well over 4200 MeV. In summary, mixing angles in

the ranges
θX
π
∈ [0, 0.29], [0.42, 0.79], [0.92, 1] ,

θZ
π
∈ [0.65, 0.85] , (4.6)

appear to produce no conflicts with experiment.

In order to demonstrate the full predictive power of the model, we now choose one

allowed set of {θX , θZ} and present the complete set of mass eigenvalues for all 12 states

in the ground-state Σ+
g (1S) multiplet. We fix θZ/π = 0.80, in which case [by eq. (4.5)] the

Zc(3900) is over 97% scc̄ = 1, and the original model parameters of eq. (3.9) are determined

separately as

M0 = 3988.75 MeV, κqc = 17.76 MeV, V0 = 33.10 MeV. (4.7)

Since 〈e−mr/r〉 ≈ 3.1 fm−1 for the Σ+
g (1S) states using m = mπ (while for m = 0.5 GeV,

the value is ≈ 2.0 fm−1), eq. (3.4) gives

Ṽ0 = 11.0 MeV · fm , (4.8)

comparable in magnitude to, but a factor 2.3 larger than, the color-singlet NNπ coupling

of eq. (3.3). The numerical value obtained for κqc in eq. (4.7) is also interesting in light of

the much larger corresponding value 67 MeV obtained from a fit to exotics in the (isospin-

independent) “Type-II” model [21]. Clearly, much of the strength of the coupling κcq in

the current fit has migrated to the coupling V0. Indeed, ref. [21] notes that a fit to κqc
from the Σc-Λc mass difference [36] gives κqc = 22 MeV, which agrees much better with

the result in eq. (4.7). Additionally setting θX/π = 0.49 to fix the scalar sector, we obtain
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M I=0
X̄0

= 4215.7 M I=0
X1

= 3871.7 M I=0
Z̄

= 4271.5

M I=0
X̄′

0
= 3924.9 M I=1

X1
= 4004.1 M I=0

Z̄′ = 3904.7

M I=1
X̄0

= 3936.7 M I=0
X2

= 3907.2 M I=1
Z̄

= 3887.2

M I=1
X̄′

0
= 3939.1 M I=1

X2
= 4039.6 M I=1

Z̄′ = 4024.1

Table 2. Masses (in MeV) of the 12 ground-state multiplet [Σ+
g (1S)] states in the dynamical

diquark model for the choice of mixing parameters θX = 0.49π and θZ = 0.80π. Experimental

inputs [eqs. (4.1)] are in boldface.

the full results presented in table 2. If M0 in eq. (4.7) is used instead of mX(3872) for the

Σ+
g (1S) mass eigenvalue in a fit such as in ref. [18] or the right-hand columns of table 1,

one obtains a diquark mass mδ = 1.92–1.94 GeV, about 3% larger, while the length scales

〈1/r〉−1 or 〈r〉 are about 1.5% smaller.

As promised, the lowest state in this multiplet is the X(3872). Its “charged partner”

XI=1
1 lies a full 130 MeV higher in mass, and therefore would be expected to be quite wide,

possibly unobservably so. The price for achieving this gap was noted in eq. (4.4), that the

XI=0
2 mass must be pushed lower, in our example to 3907.2 MeV. In fact, the χc2(3930)

has the same quantum numbers, and while expected to be the conventional charmonium

χc2(2P ) state, its most recent mass measurement by LHCb [25] of 3921.9± 0.6± 0.2 MeV

is rather lower than earlier determinations [35], possibly pointing to a more complicated

configuration such as two peaks, or a mixture of χc2(2P ) with a tetraquark state. The

possible quasi-degeneracy of Z̄ ′I=0 with Zc(3900) has been noted above. The 2++ stateXI=1
2

lies near the unconfirmed C = + state Zc(4055)±, as well as the unconfirmed charged [40]

and neutral [41] “charmoniumlike structures” around 4035 MeV.

In this particular fit, the scalar mixing angle θX was chosen to make the 0++ state

X̄ ′ I=0
0 light, so as to identify it with the χc0(3915). The nature of this state remains

quite controversial [42]; for instance, it might even be the lowest cc̄ss̄ state [43]. Indeed,

a very recent determination of the mass of this state as an ωJ/ψ resonance [44] gives

3926.4± 2.2 MeV. Meanwhile, the states X̄
(′) I=1
0 are quasi-degenerate, appearing near the

unconfirmed state X(3940). The candidate states above 4200 MeV are very possibly too

wide to resolve experimentally. Other choices of θX can push up all of the scalar states to

at least 3950 MeV, or seek to accommodate the Z±c (4100) or X(4160), neither of which has

been confirmed, let alone confirmed to have positive parity. The only other positive-parity

states in this range, Y (4140) and Y (4274), are ignored in this analysis since they have only

been observed as φJ/ψ resonances and therefore are very possibly cc̄ss̄ [18, 43].

The dominant decay modes for exotics of these JPC quantum numbers [37] are expected

to be the S-wave open-charm combinations DD̄ and D∗D̄∗ for 0++, DD̄∗ for 1++, DD̄∗

and D∗D̄∗ for 1+−, and D∗D̄∗ for 2++ (plus charge-conjugate modes, and for both I = 0

and I = 1). Since 2mD ≈ 3860 MeV, mD+mD∗ ≈ 3875 MeV, and 2mD∗ ≈ 4020 MeV, most

of these channels are open for the corresponding states in table 2. The dominant closed-

charm modes are easily determined from eqs. (3.6) and (3.7) plus G-parity conservation.
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For example, XI=0
2 lies below the D∗D̄∗ threshold, and thus decays into ωJ/ψ, but the

D-wave decay into DD̄ is also possible, just as for the χc2(3930).

Lastly, we note from table 2 that the full fine-structure splitting of the Σ+
g (1S) multiplet

can be much larger than the crude estimate of 150 MeV given in ref. [18]. However, if the

states heavier than 4200 MeV turn out to be unobservably wide, then the spectrum of

observable Σ+
g (1S) states does indeed turn out to be about 170 MeV.

5 Discussion and conclusions

In this paper we have developed a variant of the dynamical diquark model in which isospin

dependence is explicitly incorporated. We also developed a simple modification of our

calculation to test for effects on the exotics spectrum due to finite diquark size.

Allowing for the potential to transition from one describing the interaction of diquarks

at large separations r to one dominated by the QQ̄ interaction at separations below a

chosen value r = R effectively introduces an effective diquark radius of R/2. We find

by explicit calculation that the exotics spectrum changes very little until R is as large as

0.8 fm, meaning that results obtained by treating the diquarks as pointlike are reliable even

for compact diquarks with radii as large as 0.4 fm.

The existence of an isospin-dependent interaction between separated diquarks, a type of

(partly) colored pion exchange, is inspired by the existence of a Nambu-Goldstone theorem

of chiral-symmetry breaking shown to occur in dense QCD. Isospin dependence is clearly

evident in the observation of exotic states to appear in isosinglets and isotriplets, rather

than quartets. We applied this ansatz of isospin dependence to the 12 states in the ground-

state multiplet Σ+
g (1S), takingX(3872), Zc(3900), and Zc(4020) as members, and predicted

the masses of the others.

The X(3872) in this model naturally emerges over large portions of the allowed pa-

rameter space as the lightest exotic state, and its “charged partner”, the JPC = 1++ I = 1

member of the multiplet, is much heavier. Moreover, the decay preferences Zc(3900)→ J/ψ

and Zc(4020) → hc emerge directly from the analysis of the mass spectrum. We have ob-

tained fits in which several of the ill-characterized low-lying exotics naturally appear as

members of the Σ+
g (1S) multiplet, and some of the predicted mass eigenvalues lie so high

above the dominant “fall-apart” decay mode of the corresponding state that they may be

too wide to discern easily.

The natural next step is to consider the first excited multiplet, Σ+
g (1P ), whose states all

carry negative parity. A number of states have been assigned to this multiplet [18], such as

Y (4220) and Y (4360). However, both experimental and theoretical issues complicate this

analysis. This mass region includes the expected location of the lightest hybrid charmonium

states [17], which lie outside this analysis. Additionally, no P = −, I = 1 exotic states

have yet been confirmed. From the perspective of modeling, several other operators not

included in eq. (3.9) need to be considered, not least of which are the tensor operator

S12 of eq. (3.2) (both isospin-dependent and independent) and the spin-orbit operator. In

the second excited multiplet [including states such as Zc(4430)], one expects the range

of masses of states in either Σ+
g (2S) or Σ+

g (1D) to overlap [18], or even for the states
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themselves in the two multiplets to mix via tensor terms, again complicating the analysis.

In short, not enough states have been fully characterized in the excited multiplets of this

model to perform a reliable analysis.

Nevertheless, one basic feature is expected to hold for the excited multiplets: with

reference to eq. (3.4), excited states are spatially larger, meaning that 〈e−mπr/r〉 is smaller

in higher levels, and so one expects smaller mass splittings within the higher multiplets in

this model (an analogous effect occurs for fine-structure splittings in ordinary quarkonium).

Multiplets of exotics with excited glue fields, such as Π+
u (1P )-Σ−u (1P ), have not even

been mentioned in this paper, since as was shown in ref. [18], they are expected to lie about

1 GeV above the Σ+
g (1S) ground states (just like the gap between quarkonium hybrids and

conventional quarkonium states). Nevertheless, were they to be considered in a model

analogous to the one described here, yet further operators would need to be included, such

as ones dependent upon not only quark spin, but the spin of the nontrivial glue degrees of

freedom as well [45].

Lastly, all of the phenomenology presented here refers to the sector of hidden-charm

tetraquarks. In the pentaquark sector, the states according to the model of ref. [13] contain

triquarks of the form θ̄ = [c̄(ud)3̄]3, where the ud pair is an I = 0 diquark inherited from

the initial Λb decay process from which all pentaquarks to date have been produced. But in

that case, the θ̄-δ pair does not exchange isospin, and only simple I = 1
2 pentaquarks occur.

Likewise, if the ud diquark carries spin 0 like that in Λb, then the triquark uniquely carries

spin 1
2 . Transitions to the higher-mass “bad” (I = 1, spin-1) light diquark are certainly

possible, but are expected to be suppressed. One may then study the pentaquarks in a

spin-only formulation of the model, as in, e.g., ref. [46], or using a different diquark-triquark

formulation as in ref. [47].

Nor has the b sector been discussed in this paper. Again, not enough states have

been observed to attempt a reliable fit to the full spectrum, but in this case the best-

characterized exotic candidates are isotriplets, the Zb(10610) and Zb(10650). The relative

spacings of B(∗)B̄(∗) thresholds and conventional bottomonium levels are different from

those in the cc̄ system, leading to a rather different phenomenology. The bottom analogue

to the X(3872), the I = 0 1++ state Xb (see refs. [48, 49] for nice discussions of its expected

properties) has not yet been observed. While X(3872) emerged naturally as the lightest

state among the hidden-charm tetraquarks in this model, there exist alternate portions of

the parameter space where the I = 0 1++ state is not the lightest, and this observation

may turn out to be relevant for the b system.
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