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h. modes, respectively, in accord with experiment. We explore implications of this model
for the excited tetraquark multiplets and the pentaquarks.
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1 Introduction

The census of heavy-quark (c¢- or b-containing) exotic hadrons has now reached about
40 candidates, with no indication of a slackening in the pace of their discovery. Equally
surprising is that no single theoretical picture has emerged as a global paradigm to describe
their structure. Advocates can point to examples among the exotics for which hadronic
molecules, hybrids, hadroquarkonium, diquark states, or threshold effects are particularly
well suited, while detractors can point to equally compelling counterexamples. The status
of both experimental results and theoretical pictures have been reviewed extensively in a
number of recent reviews [1-11].

From the theoretical point of view, all of the pictures are based upon sound ideas
— phenomena either proven to exist in phenomenology (e.g., atomic nuclei as hadronic
molecules) or as well-studied features of quantum field theory [e.g., the SU(3)color-triplet
diquark attraction; hadronic on-shell threshold-induced singularities in Green’s functions
from chiral Lagrangians]. However, which particular mechanisms are most important to
describe the detailed spectrum and decay modes of the existing exotics remains an un-
settled and hotly disputed question. Even if one specific picture eventually emerges as
the dominant model, very likely the inclusion of modifications due to the other effects
— i.e., full coupled-channel calculations — will be essential in order to obtain a detailed
understanding of the exotics.

In this spirit, it is essential to push any given theoretical picture to its limit, examining
both its successes and shortcomings as a global model for the exotics. The purpose of the
current work is to continue the development of the dynamical diquark picture of exotics [12,
13], which is defined through the color attraction of the channel 3 ® 3 — 3 to form
heavy-light diquarks 6 = (Qq)5 and their antiparticles § = (Qq)s as quasi-bound hadronic
subcomponents. The presence of a heavy quark ) means that ¢ is more spatially compact
than a typical light-quark hadron, while the large energy release available in the production
processes of exotics (either through b-quark decay [for charmoniumlike states| or collider
production) means that the color-nonsinglet 6 and J can separate a sufficient distance



to allow the 8- state to temporarily evade color recombination (into, e.g., a hadronic
molecule) until the quarks of & ultimately combine with the antiquarks of & in the decay
of the state. In other words, ref. [12] argues that when a collection of quarks QQqg forms,
the dominant decay mode is indeed two mesons, with the formation of a di-meson hadronic
molecule being a rare special case. But if @, q initially lie closer to each other than to
Q,q, then § and § formation is an alternative. If the §-§ pair were created with low
relative momentum within a typical hadronic volume, then such a state would still exhibit
a large overlap with the two-meson wave function. In that case nothing would impede
a very rapid decay to this mode, obscuring the fact that a 6-6 pair had initially formed.
But if a large relative momentum occurs in the production process to push the diquarks
apart before this recombination can occur, then the two-meson wave-function overlap is
suppressed, the decay is delayed, and the appearance of a §-0 state becomes perceptible.
Put another way, the momentum-space wave function of the two diquarks overlaps more
strongly with two-meson states in its small-momentum regime, and with §-6 states in its
large-momentum regime. Moreover, the triplet-channel attraction need not conclude after
just two quarks [14], leading to the proposal of triquarks 0 = [Q(Q1QQ)3]3 as components
of pentaquark states in the combination 69 [13].

The dynamical diquark picture has been developed into a full model, including a
specific spectroscopy and decay selection rules, in ref. [15]. The key ingredient necessary to
characterize states formed from separated §-6 or #-§ pairs is the introduction of the Born-
Oppenheimer (BO) approximation [16], which distinguishes the heavy, slowly changing &
and § (or 0) from the rapidly changing degrees of freedom in the color flux tube connecting
them. The spectrum of flux-tube configurations of nontrivial gluon content has, in turn,
been studied on the lattice for decades; for example, these simulations have been used to
compute heavy-quarkonium hybrid-meson masses [17].

In ref. [18], the results of lattice simulations obtained by two independent collabora-
tions [19, 20] for two separated, color-triplet sources have been input as static-source BO
potentials V(r) for Schrédinger equations of -6 and #-§ systems. Any observed exotic
of known mass and JFC quantum numbers may then be identified with a state of the
same JUC appearing in one of the multiplets listed in ref. [15] and selected as a reference
state, its mass serving as a particular eigenvalue of the Schrodinger equations, which for
tetraquarks fixes the diquark mass mgz. But then, with V(r) and my specified, the entire
mass spectrum of all tetraquarks is completely determined — at least, ignoring the fine-
structure mass splittings within the levels of each BO potential. If one chooses the 17"
X (3872) to fix the (positive-parity) ground-state multiplet X (15), then ref. [18] shows
that the (negative-parity) first excited levels E;(lP) appear at about 4240 MeV, in ex-
cellent agreement with 17~ states such as the Y (4220) appearing nearby, and the next
(positive-parity) excited levels ¥ (2S) appear at about 4440 MeV, in excellent agreement
with the appearance of the 17~ state Z.(4430). Pentaquarks can then be studied by using
the value of ms obtained from the tetraquark fit to select a reference pentaquark state to
fix mg, and hence, predict the rest of the spectrum.

To go further with this analysis, however, one must consider the aforementioned fine-
structure corrections. Just as for quarkonium, one can identify multiple types of such cor-



rections: spin-spin, spin-orbit, tensor, Darwin terms, etc...However, multiquark exotics
offer a much richer possible set of interactions, simply due to the greater combinatorics
available to their constituent particles. Choosing to work with a diquark model simpli-
fies matters somewhat, by clustering the components into identifiable subunits with good
quantum numbers. For example, ref. [21] achieved rather satisfying results in their “Type-
II” diquark model by assuming that the dominant spin-spin interactions are solely those
between the quarks within each diquark; the mass splitting between the two 17~ states
Z9(3900) and Z?2(4020) arises quite naturally in this scheme.

One ingredient that, to our knowledge, has not before been included in previous di-
quark models is isospin dependence in the interaction potential. In the most naive type
of tetraquark model, two quarks and two antiquarks are placed in close proximity, and
(in the limit m, = mg) one expects no distinction between tetraquarks differing only in
the light-flavor contents wii, ud, d@, and dd. That is, one expects completely degenerate
quartets consisting of I = 0 and I = 1 multiplets. But the physical exotics appear to form
ordinary I = 0 and I = 1 multiplets (the experimental absence [22] of a charged partner to
the X (3872) is particularly significant in this respect), so a truly predictive model of ex-
otics must contain isospin-dependent effects at some level. Since the 6-9 pair is connected
strongly by color-nonsinglet interactions, one expects the same for the isospin-exchange
quanta in this model (Such an assumption however is not strictly necessary for the anal-
ysis presented below; the phenomenological consequences of assuming purely color-singlet
isospin exchanges between the component quarks of hadrons have been successfully studied
for quite some time [23]). In the context of dense QCD, a variant of the Nambu-Goldstone
theorem has been demonstrated [24], which means that light pionlike exchange (colored,
in this case) can exist in settings other than that of the zero-density environment between
color-singlet hadrons. If one posits that the interior of the color flux tube connecting the J-
§ pair is another such environment, then light “pions”, possibly partly colored, could exist
and propagate across the color flux tube, evading the strong color screening that might im-
pede the propagation of ordinary color-singlet mesons, and providing the essential isospin
dependence in these states. We emphasize that such an effect is purely conjectural at this
stage, but discuss later how its existence might be established on the lattice.

In the ground-state multiplet ¥/ (15), the 6 possible states [see eq. (3.5) or (3.6) below]
should therefore actually be listed as 6 isosinglets and 6 isotriplets, for a total of 12 mass
eigenstates (when m, = my). Likewise, one finds 28 mass eigenstates for the first excited
X4 (1P)] multiplet and another 12 for the second excited [¥] (25)] multiplet. Such large
multiplicities have led to the most frequent criticism of diquark models, that they tend to
overproduce states compared to experiment.

In this regard, however, several points should be noted: first, new exotic states are
still being discovered or resolved — even at relatively low masses — virtually every year,
so it is not at all impossible that the final tally in any flavor sector may turn out to be
well over 100. Second, some of the predicted states have J'C quantum numbers that may
be difficult to probe with available production channels (e.g., the conventional 3(1D)
(377) charmonium candidate state X (3842) has only been observed for the first time this
year [25]). Third, if a state lies only a modest amount above its fall-apart decay threshold,



then it can be quite wide, and possibly difficult to distinguish from background (e.g., the
conventional charmonium x.(2P) candidate state x.o(3860) lies only about 130 MeV above
the DD threshold but has a width of about 200 MeV [26], which made it challenging to
resolve until relatively recently).

The second common criticism of such models is that the diquark quasiparticles are not
pointlike (estimated radii of a few times 0.1 fm [12]), and if the full exotic states are not too
many times larger, then the § and § wave functions must have considerable spatial over-
lap. But then, one expects that the stronger ¢g color-singlet attractions should lead to a
rearrangement of the quark constituents into a configuration resembling a hadron molecule
or hadroquarkonium (see, e.g., [27]). That is to say, for small -6 separations (or small
heavy-meson separations in a molecular model), the QQ pair lie in close proximity within
the cloud of the gg pair, and the nature of the wave function resembles that of hadro-
quarkonium, with these three pictures distinguished only by the specific color correlations
of the quark pairs. In the original dynamical diquark model, such a color reorganization
prior to decay is suppressed by the separation of the 66 pair. One can also develop models
in which this separation is not merely the result of the production process, but is enforced
by a potential barrier [28].

In this work we also explore the effect of finite diquark sizes by modeling the
Schrodinger equations to transition at a chosen distance R from ones describing the in-
teraction of the 6 pair to ones describing just the interaction of the QQ pair. Then the
exotic consists primarily of an interacting QQ pair residing in a shell of constant potential
provided by the light ¢¢ pair and glue, which is indeed quite similar to the hadroquarko-
nium picture. We see below that the calculated spectrum is fairly insensitive to changes
of R from zero to physically reasonable values, providing confidence in this aspect of the
modeling of §-0 states.

This paper is organized as follows. In section 2 we examine the effect of finite diquark
size on the exotics spectrum in the manner just described. The introduction of isospin-
dependent interactions between the §-0 pair appears in section 3, and we compute the
corresponding expressions for the spectrum of the ground-state Z;(lS ) multiplet, including
both isospin and spin-spin dependence. In section 4 we fit the X (3872), Z.(3900), and
Z.(4020) states to the model parameters, and show that natural choices of the unfixed
parameters allow all unconfirmed members of the multiplet to lie higher in mass, and
indeed respect the pattern of Z.(3900)/Z.(4020) closed-charm decay modes. Finally, in
section 5 we indicate the direction of the analogous investigation for excited multiplets,
pentaquarks, and the bb sector, and summarize our findings.

2 Effects due to finite diquark size

The calculations of ref. [18] assume a potential V (r) valid for a §-0 pair that can assume
any separation r. The functional form V(r) is taken from lattice simulations for a heavy
(hence static) particle pair transforming as 3 and 3 under SU(3)¢olor- The specific masses,
spin statistics, flavor, and charge quantum numbers of the heavy sources are considered
immaterial to the results of these calculations, and so one may use the same potentials



for heavy QQ states (using the ground-state BO potential E; of the color flux tube)
or their hybrids QQg (using the excited BO potentials such as IT}, X, etc.), or for §§
tetraquark and 66 pentaquark states. Of course, quarks are fundamental, presumably
pointlike constituents, while diquarks and triquarks have a finite spatial extent. One should
not expect that the same potential V' (r) as used for interactions between pointlike sources
should hold 6-8 or #-§ pairs at arbitrarily small values of r, in regions where the wave
functions of the quasiparticles strongly overlap.

We present a simple proposal to test the effect of the finite diquark (or triquark) size:
since each such quasiparticle in this model contains exactly one heavy quark or antiquark,
we suppose for simplicity the existence of a critical separation R between the centers of
the §-6 or -9 pair, at which point the wave-function overlap between the two is considered
significant. Were the quasiparticles hard spheres, then R would equal the sum of their radii.
At distances » < R, we suppose that the dominant interaction becomes the attraction
between the QQ pair, which uses precisely the same V(r) as for 60 or 6§ since it is also
a 3-3 pair. However, the masses appearing in the kinetic-energy term of the Schrodinger
equation are no longer my or mg, but mg. We further suppose that, at reasonably small
R, the ¢ pair simply provides a constant potential in which the QQ pair interact. Since
the state then consists of a QQ pair within a light cloud consisting of the ¢g pair and glue,
the physical picture becomes quite similar to that of hadroquarkonium [29].

Explicitly, the Hamiltonian used in the Schrodinger equation assumes the usual form
H = % + V(r), where p is the relative momentum of the constituents, and V(r) is the
specific lattice-computed 3-3 potential chosen for the calculation holding for all ». However,

1% m5 mg mQ mQ

1 1 1 1 1
:{+forr>R,and+forr<R}7 (2.1)

and matching at r = R is accomplished by imposing continuity of the eigenfunction and
its first derivative. The values of mg, ms are then adjusted to obtain the physical mass
eigenvalue [e.g., mx (3872)]- One may of course introduce any one of a number of different
methods with a variety of refinements to incorporate the finite size of the diquark, but this
simple ansatz provides a convenient one-parameter (R) method of testing the limitations
of the approach.

At R = 0, the diquark becomes pointlike. One then recovers the results calculated
in ref. [18], specifically the first fits of table 3 (within small numerical tolerances), in
which the X} (15) mass eigenvalue is fixed to that of the X (3872), the diquark mass mg
entering the Schrodinger equation is obtained as an output, and the charm-quark mass is
fixed to a typical value, m. = 1.477GeV [30]. We have computed modifications to the
spectrum using the above ansatz and a variety of values of R ranging from 0 — 1fm
(corresponding to a classical hard-sphere diquark radius of 0.5fm). Sample results are
presented in table 1; the right-hand columns (R = 0.0 fm) reproduce the results of ref. [18],
and the left-hand columns are computed at R = 0.7 fm. The acronyms refer to the results
of lattice simulations by two collaborations, JKM [19, 31] and CPRRW [20].

One immediately notes how little many of the numerical results change. The value of
my, for example, decreases by a percent or less. The 25-15 mass splitting decreases by



R =0.7fm R =0.0fm

BO states Potential | M ms (1m0 () M ms (/e ()

E;(IS) JKM 3.8716 1.8556 0.36925 0.32136 | 3.8716 1.8750 0.27202 0.36461
CPRRW | 3.8717 1.8390 0.36780 0.32538 | 3.8716 1.8532 0.27521 0.36915
23(25) JKM 4.4231 1.8556 0.49495 0.65605 | 4.4435 1.8750 0.42698 0.69081
CPRRW | 4.4256 1.8390 0.49385 0.66085 | 4.4405 1.8532 0.43064 0.69640
E_;]“(lP) JKM 4.2067 1.8556 0.60909 0.50400 | 4.2462 1.8750 0.48962 0.56613
CPRRW | 4.2072 1.8390 0.60589 0.50798 | 4.2429 1.8532 0.49376 0.57067
E;‘(lD) JKM 4.4863 1.8556 0.75652 0.67579 | 4.5323 1.8750 0.66419 0.73132

CPRRW | 4.4881 1.8390 0.75436 0.67993 | 4.5277 1.8532 0.66931 0.73656

Table 1. Mass eigenvalues M (in GeV) for hidden-charm dynamical diquark states that are eigen-
states (with quantum numbers nL) of a Schrodinger equation in which V(r) is the ground-state
BO potential X}. The functional form of V(r) is given by lattice simulations JKM [19, 31] or
CPRRW [20]. The eigenvalue for the 15 state is fixed to the X (3872) mass, and the diquark mass
ms (in GeV) is the parameter that must be used as input for the Schréodinger equation in order to
achieve this constraint. As described in the text, this equation uses mg as its mass parameter for
r > R, and m, = 1.477GeV for » < R (the separation between § and & centers). Also computed
are the corresponding expectation values for the length scales (1/7)~" and (r) (infm).

only 1520 MeV in going from R = 0.0fm to R = 0.7fm, the 1P-15 splitting decreases
by 36-40 MeV, and even the 1D-1S splitting decreases by no more than 46 MeV. These
changes amount to roughly 3-12% decreases in the overall size of the splittings, with the
largest effect occurring in the 1P-15 splitting. It is only for R > 0.8fm that one begins
to see the results changing more dramatically, so we take 0.4fm as an indication of the
largest diquark radius one may reasonably use as quasiparticles in these calculations. The
length-scale expectation values, on the other hand, change quite drastically with R; but
since (r), for example, is a convolution of the average distance between the 6-6 pair (for
r > R) with the average distance between the QQ pair (for 7 < R), it is not surprising that
(r) is sensitive to changing the mass parameter in the Schrédinger equation from mg to mq.

3 Isospin interactions between diquarks

The one-pion exchange potential between two spin—% nucleons (with corresponding spin o
and isospin 7T operators), separated by a relative position vector r, has been known for
many decades (arguably, as early as 1938 [32, 33]). In modern notation, it reads:

2 2
mz e~ Ma" 3 3
v = () momli S (o enrsa e o )
1

— 5010 6G) (r)] . (3.1)

where the tensor operator Sio is defined by

5’125301~r0'2~r/r2—0'1~a'2. (3.2)



In particular, each term depends upon isospin exchange (71 - 72), as well as upon spin
exchange, between the nucleons. S92 is a rank-2 tensor operator in both spin and position
space, and therefore by the Wigner-Eckart theorem all states in an .S wave connect through
Si2 only to D-wave states, which are expected to lie much higher in energy [18]. P-wave
states, on the other hand, have nonvanishing diagonal S75 matrix elements. The contact
term 0 () is included for formal reasons, but the one-pion exchange potential has long
been known [34] to require major modifications at separations below about 2fm, so that
the 5(3)(7“) term should actually be replaced by explicit short-distance effects. In any case,
this term still carries the same spin and isospin dependence as the long-distance potential.

Since the ~ 2 fm range approximately equals the sum of two nucleon radii (as indicated
by, e.g., their ~ 0.86fm magnetic radii [35]), one may suppose that a major factor in
the transition from the one-pion-exchange region to that of heavier-meson or multi-pion
exchanges is the appearance of a substantial overlap of nucleon wave functions.

In eq. (3.1), the experimental value of the axial nucleon-pion coupling is g4 =
1.2732(23), and the pion decay constant (in this normalization) is fr = 130.2(1.7) MeV [35].
Using an isospin-averaged pion mass, we find

2

( 94 ) T 479 M6V - fm, (3.3)
V2f.) 12w

a value to be used below as a comparison with the strength of the isospin exchange between

diquarks.

The exchange of pions (and other mesons) between color-singlet hadrons to bind
hadronic molecules, both in the form of potential exchanges such in as the NN inter-
action discussed above, and in calculations employing chiral Lagrangians, has long been
one of the primary mechanisms used to study multiquark exotic hadrons [5]. The long
range of pion interactions of course stems from its status as the lightest meson, which in
turn follows from its role as a Nambu-Goldstone boson of chiral symmetry breaking. The
long-distance isospin dependence of the interactions in molecular models follows primarily
from the isospin content of exchanged pions.

We now turn to the analogous interaction for diquarks. In the eigenstates of the dy-
namical diquark model, the - pair assume a nonzero separation, and each of §, § contains
a light quark that carries isospin I = % However, § and 6 are color nonsinglets, and they
are connected by a color flux tube. The question then becomes whether isospin-dependent
exchanges can occur in the environment of nonzero color charge. In fact, a related question
was addressed some time ago in the context of high-density QCD. As shown in the context
of color-flavor locking, the Nambu-Goldstone theorem of chiral-symmetry breaking remains
valid even within this environment of high quark density, so that colored analogues of pions
have been shown to exist in this case [24]. In this work we propose that a similar effect
arises along an extended color flux tube: in this dense, colored environment of extended
spatial size, gluons remain the dominant component, but the formation of a partly colored
quark condensate subcomponent in this non-vacuum environment is a very real physical
possibility. An analogue to pion exchange would then exist between the 6-9 pair, providing
a natural source of isospin dependence in the exotics spectrum of the dynamical diquark



model. To be clear, we do not take this effect in the current scenario of the §-4 interaction
in any sense to be proven to exist, but we do consider such an isospin-dependent interaction
with pionlike couplings to be a plausible physical phenomenon. Lattice simulations could
provide evidence for such an effect: one could, for example, fix in space two heavy diquarks
carrying nontrivial isospin quantum numbers, calculate their interaction potential energy,

and examine whether any part of it is flavor non-universal.

Assuming then that the color flux tube connecting the §-6 pair supports exchanges of
a Nambu-Goldstone boson, one expects a potential interaction between the light flavors
within the diquarks similar in form to eq. (3.1). In this paper we ignore the Si3 term, since
the fit is confined to the lowest S-wave multiplet. However, nothing in principle prevents an
analysis of the P-wave (or higher) states; only a paucity of confirmed states in this multiplet
discourages such a study at this time, and we provide a few relevant comments on a P-
or higher-wave analysis in section 5. Neglecting Sj2, the remaining terms of eq. (3.1) are
proportional to 1, - T 04 - 05. In the current model, we simply label the coefficient of this
operator as Vj.

One may take the phenomenology a step further in order to compare to ordinary one-
pion exchange. As discussed above, we strike the contact term 6 (r) from the exchange
potential, since at short distances the diquark wave functions must overlap, necessarily
leading to a more complicated interaction. Next, since the calculations of ref. [18] show
how to compute any expectation value without the need of calculating explicit wave func-
tions, one may obtain an explicit expectation value for the Yukawa part of the potential,
(e=™="/r), and from this result, extract a coefficient called V; that may be compared
with the combination in eq. (3.3). Explicitly, we write the full isospin-dependent potential
Vi(r) as

‘/I(T):%X rﬂ XTq TqgOq 0Oq,
5 e~ MmaT
VOEVO< " > (3.4)

It bears mentioning that the Yukawa potential expectation value decreases for excited
states, and so while one may suppose that V; should be approximately the same constant
for all multiplets, the particular value of Vj obtained below [eq. (4.7)] holds only for the
Z;(lS) multiplet. An analogous effect explains why fine-structure splittings in ordinary
quarkonium decrease for higher multiplets. A direct comparison with eq. (3.3) is also
difficult because the relation between the observed (vacuum) pion mass m, and the mass
parameter for the corresponding in-medium exchange quantum (the “partly colored pion”)
along the color flux tube is unknown, not to mention the size of its coupling to the diquark
(the analogue to ga/fr). Purely for sake of comparison, we take the mass of the “partly
colored pion” in eq. (3.4) to equal m , even the true mechanism of isospin exchange might
be quite different. One may expect on the basis of ordinary hadronic phenomenology that
the proper mass scale of the colored exchange is rather larger (at least several hundred
MeV), but using such a value does not radically alter our numerical results.



The states in the ground-state multiplet E;(lS), prior to introducing isospin, are
defined as [21]

JPC=0"1 X0 =105,05), , X0 =15 15), -
1

JPC =1t x, = ﬁ (‘15703>1 + ‘057 15>1) g
B 1
JPC =1+ ZE%(‘15a05>1_‘06’15>1) ,
Z'= }16715>1 )
JPC =2t Xy =1y, 14), (3.5)

where the number preceding each ¢(0) subscript is the diquark (antidiquark) spin (s; and
s5, respectively), while the outer subscript on each ket is the total quark spin J. In terms
of the basis of good ¢g and QQ spin quantum numbers (s,; and 80g- respectively), the
corresponding eigenstates are
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Expressing the basis change between egs. (3.5) and (3.6) in terms of rotation matrices, one

finds
JPC _ g+ . Xo\ _ [cosy sing ):(0
X} sin§ —cos g X))

JPC =11t X1 = |lgz.10g), -
e (2)-(2E 2D ()
A sin§  cos % VAN
JPC =27t X2 = 143,100, » (3.7)

where outer subscripts again indicate total quark spin J.

This nomenclature (adapted from ref. [21]) applies to both I = 0 and I = 1 states.
However, its use may cause confusion because the label Z is usually understood to mean
only I = 1 states, whereas we use Z to mean 11~ states exclusively. The naming scheme
adopted by the Particle Data Group [35] labels the I = 0 J* states as x ; and the I =0
17~ state as h, exactly as for conventional quarkonium, while the label Z is reserved for
I =1 1% states, and the yet-unobserved I =1 JT states are called W.



The mass eigenstates formed from the states of degenerate J¥C in eq. (3.5) are de-

Xo _ cos Oy sin by Xo

X, )\ —sinfx cosfx X))

A cos 0y sin Oz Z

g . 3.8
(Z’) <—sinc92 cos@z> (Z’) (3:8)

While it is not logically necessary to require the mixing angles fx and 67 for these systems

fined as

to assume the same values in both the I = 0 and I = 1 channels, to do so is a reasonable

minimal ansatz. As shown below, this ansatz does not conflict with current experimental

findings. In particular, each occurrence of the label Z below is understood to apply equally

well to the I = 0 or I = 1 state, unless a particular I eigenvalue is explicitly appended.
The full model Hamiltonian reads

H:Mo—i—QKZqQ(Sq'SQ+Sq~SQ)+V()Tq~TqO'q-0'(7, (3.9)

where M) is the common multiplet mass, computed in ref. [18] using spin- and isospin-blind
Schrodinger equations that depend only upon the diquark (or also, in the pentaquark case,
triquark) mass and a central potential computed on the lattice from pure-glue configura-
tions. The second term of eq. (3.9) represents the primary interaction of the “Type-IT"
diquark model [21], with the parameter s, representing the strength of the spin-spin cou-
plings within diquarks (q only to @, g only to Q). Note particularly the assumption that
the dominant isospin-dependent potential in eq. (3.9) depends only upon the light-quark
spins, rather than the diquark spins; were the diquarks truly pointlike, then the ¢(¢) would

still carry all the isospin of 6(d), but the Vj interaction would be replaced with
AH=Vi1, - 1505 05. (3.10)

The particular form of the Hamiltonian eq. (3.9) [or (3.10)] deserves further comment.
The original spin-dependent diquark model for heavy-quark exotics (called “Type I” [36]),
which emerged when only a few such exotics were known, allows for couplings between all
four quarks. As exotics data improved with time, it became apparent that the “Type-1”
model was unsuited to describing the full observed spectrum. The ansatz of the “Type-
IT” model [21] takes the dominant spin couplings to be just those within each diquark
(since the diquarks are believed to be more compact than the full hadron), and the model
provides a satisfactory understanding of the masses of the states X (3872), Z.(3900), and
Z.(4020) — but not, by construction, their isospins. The “Type-II” ansatz is simplest
to justify if one appeals to the kinematically induced separation of the 6-8 pair in the
dynamical diquark picture [12], but one could just as easily suppose the existence of a
potential barrier separating the 6-6 pair [28]. A comparison of the spectra of the “Type-I1”
and molecular models forms the basis of a dedicated study in ref. [37]. The Vj term of
eq. (3.9) or V; term of eq. (3.10) introduces isospin dependence into the model, and under
the assumption of chiral-type couplings, the isospin exchange is linked to additional spin
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dependence. Certainly one could also incorporate, for example, isospin-dependent, spin-
independent Hamiltonian operators, but for this initial study the V4 and V; operators are
designed to assume the most familiar form from chiral dynamics.

The matrix elements of the symmetry-breaking operators in eq. (3.9) are computed
easily using standard square-completion tricks. The second term evaluates to

kqQ [ss5(ss +1) +s5(s5+1) = 3] , (3.11)

which is trivially computed for states expressed in the diquark basis of eq. (3.5), for which
the operator is diagonal. The third term of eq. (3.9) evaluates to

Vo [2I(1 +1) — 3] [2s4g(sqg + 1) — 3] , (3.12)

which is trivially computed for states expressed in the total light-quark spin (sqq) basis of
eq. (3.6). In the alternative form of eq. (3.10), one obtains instead the contribution

Wi [21 (I41) — 3] [J(J+1) —s5(ss +1) — s5(s5+1)] , (3.13)

which again is easily computed in the diquark-spin basis of eq. (3.5).
Using the mass eigenstates defined in eq. (3.8) and the Hamiltonian of eq. (3.9), one
immediately computes the masses for the 12 physical states in the Z;(lS ) multiplet:

M}fiﬂ = My — kg [1 + 2cos(20x)] + 3V} [1 — 2cos <2HX + g)] ,

MY = My — kyg [1+2cos(20x)] — Vo [1 — 2cos (29X +

Mg = My — rgq [1 — 2 cos(20x)] — Vo [1 +2cos <29X * g
M3" = Mo — kg = 3V0,

M)Iil = Moy — ke + Vo,

MIZ0 = My + keg — 3V,

MG = Mo+ kg + Vo,

ML= = My — kgq cos(207) + 3Vp [1 — 25sin(267)] ,

ML = My + kgg cos(207) + 3Vp [1 + 25sin(267)] ,

Mézl = Moy — kqq cos(26z) — Vo [1 — 2sin(267)] ,

ML = My + kyg cos(207) — Vo [1 + 2sin(267)] - (3.14)

These 12 masses depend upon a common multiplet mass My, two Hamiltonian param-
eters (kqg and Vp), and the mixing angles 6x z. At this point, egs. (3.14) are equally valid
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for c¢ and bb tetraquarks, as well as B, tetraquarks if one includes distinct Kge and Kgp
couplings. Note that the primed and unprimed states interchange under a trivial shift of
the mixing angles: Xo > X, when 0x — 0x + 5, and similarly 7 < 7' when 0 — 0, + 5
Therefore, the unprimed and primed states are equally valid for purposes of parametric
fitting to the mass spectrum. However, these states remain inequivalent in terms of their
content according to sqz and sgg eigenvalues, a distinction that can be probed through
their decay modes.

If eq. (3.10) is used instead, then the V} terms of egs. (3.14) are replaced by the V; terms

AMI—ZO = 412V [1 4 cos (26x

X} ’
AM)Igjl = —4V1 [1 — 2cos (20x)] ,
AM)Iil = —4V; [1 + 2cos (20x)] ,
AMfO = 140,

AMEE" = 10,

AME o —12v3,

AMG' = +4V7,

AMéZO = 46V [1 — cos (267)] ,

AMé/ZO = +6V1 [1 + cos (267)] ,

AM%Zl = —2V; [1 — cos (267)] ,

AMLTY = —2V3 [1 + cos (26,)] . (3.15)

The invariance of Xy <> X, under 0y — Ox + 7, and 7 < Z' under 0, — 05 + 5 also
holds in this case. However, the most conspicuous feature of egs. (3.15) is the degeneracy
of X{=0 and X{=!. As these states represent the X(3872) candidate and its yet-unseen
charged partner [22], one finds that a model in which the diquarks exchange isospin only
in their pointlike form as in eq. (3.10) runs afoul of known phenomenology. That these two
V1 contributions are not just equal but indeed zero follows immediately from eq. (3.13) and
the fact [eq. (3.5)] that the X states (J = 1) contain only components in which s; = 0 and
s5 = 1, or vice versa. We therefore analyze as our minimal model the Hamiltonian given
by eq. (3.9), which leads to the spectrum given by eq. (3.14). In addition, if one neglects
all isospin-independent couplings (kg = 0), then eq. (3.14) shows that the isoscalar,
spin-2 state X1=0 would be degenerate with the X (3872), again in opposition to known
phenomenology.

4 Results and analysis
We now test whether this model can accommodate what is known about the ground-state

[27(19)] hidden-charm exotics, the J'¢ = 17 X(3872), and the 17~ states Z.(3900)
and Z.(4020) (the C parity eigenvalue referring to the neutral states). The Particle Data
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Group [35] averages for their masses are

mX(3872) = 3871.69 £ 0.17 MGV,
mZC(3900) = 3887.2+2.3 MeV,
mzc(4020) = 40241 +1.9 MeV . (41)

The Z. states have been observed in both charged and neutral variants, which decay in their
closed-charm modes to 7+ and 7°, respectively, meaning that they have I = 1 [and hence
G = C(-1)! = 4]. The dominant decays of these states have open charm: Z.(3900) —
D*D and Z.(4020) — D*D* [35], making an analysis based solely upon isospin not as
incisive. On the other hand, we noted above that no charged partner of the X (3872) has
been observed despite a dedicated search [22], which suggests I = 0. However, the X (3872)
is widely believed to be unique among all known hadrons in possessing a valence quark
content (more ccuti than cédd) not corresponding to just one I eigenvalue. Its mass is
almost precisely equal that of D**D? (in fact, its dominant decay mode is D*Y DV [35]) but
about 8 MeV below that of D*t D~ while the idealized I = 0 and I = 1 combinations
of these states are equal admixtures. Likewise, X (3872) has been observed to decay to
both the G = — (hence I = 1) final state 77~ J/¢ and the G = + final states wJ/v
(I =0) and (very recently [38]) ¥xc0 (G = —, I = 1). The mere facts that m, < mqy (and
qu 7 qq) and that X (3872) lies in the close proximity to the threshold for one particular
charge combination appear to be responsible for these fascinating results. In the current
model, however, we take m, = mg, ignore electromagnetic effects, and treat X (3872) as
the unique I = 0 1*7 state in X1 (15), X I=0_ Indeed, the same analysis below holds even
if the X (3872) is an exact I = 0 state (an equal admixture of ccuu and cedd), and its
isospin-violating decays are purely the result of the kinematical blocking of the dd channel.

Without performing a detailed accounting of every significant source of fine-structure
splitting expected to appear in these states, a precise estimate of the numerical uncertainties
on our mass predictions is impossible. Nevertheless, if the model is to have any validity,
it must incorporate basic phenomenological facts such as the ~ 20 MeV mass difference
Mz, (3900) — Mx(3872)- One may therefore take 20 MeV as a reasonable upper limit for mass
uncertainties in this model.

Using the values in egs. (4.1) (with uncertainties suppressed) in egs. (3.14), one obtains

(mz,(1020) + Mz, (3000)) = Mo — Vo = 3955.65 MeV ,

DN | =

1
B (M2, (1020) + M7, (3000)) — Mx(3872) = Fge +2Vo = 83.96 MeV (4.2)

(M2, (4020) — M2z, (3000)) = |Kige cO8 207 — 2V sin 207| = 68.45 MeV .

N

The absolute value in the third expression reflects the fact, noted above, that Z.(3900)
and Z.(4020) may be identified with Z;—; or Z}:l in either order, under the replacement
07 — 0z+7%. According to egs. (3.6)—(3.8), this substitution exchanges the relative amounts
z

of the 5QQ = 0 and sgg = 1 components in the mass eigenstates. In particular, 67 =
takes Z to the pure sgo = 0 eigenstate Z and takes Z' to the pure sgo =1 elgenstate
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Z', while 67 = 3T takes Z — Z' and Z' — Z. Since Z.(3900) has been observed to decay
to mJ/v¢ and not mh,, while the reverse is true for Z.(4020) [35], identifying Z;—; with
Z(3900), and Zj_, with Z.(4020), is best achieved through values 67 ~ 3T. Even so, we
do not impose this constraint on the fit, focusing initially only upon the mass spectrum.

First, even without information on 67, we predict
MG = mg,a000) + Mz, (3000) — Mx(3s72) = 4039.61 MeV. (4.3)

Should a charged, JPC¢ = 27+ exotic state fail to occur in the vicinity of 4040 MeV, then
the validity of this simplified model must be reassessed. Note that the X{ =l has G = —1
and, according to eq. (3.7), preferentially decays to .J/1, which also carries G = —1. This
state would therefore most easily be seen in the channel 77.J/%.

Imposing the constraints of eqs. (4.2) on the last 8 mass expressions in eq. (3.14) leaves
the remaining four non-scalar states, M )151, M &jo, M ézo, and M é/:o’ as functions of the
single parameter 6. Taking 6; — 67 + 7 simply changes the normalization sign of both
Z and Z', so one may consider only the range 7 € [0, 7]. The most important constraint
from a phenomenological perspective is that the “charged partner” to the X (3872), X 1I =t
must be substantially heavier, at least 20 MeV [22], than the X (3872). From eqs. (3.14),
one notes that this constraint simply reads V5 > 5MeV. While 1} is not yet fixed at this
stage of the fit, one notes that

1

5 (MET + ME®) = My — Vo = 8055.65 MeV (4.4)

meaning that allowing X 1[ =1 to be excessively heavy forces the spin-2 isoscalar XQI =0 to be so
light that it would already have been observed. 6 can only be allowed in certain numerical
ranges to avoid this problem, but fortunately, these ranges are substantial: the lighter of
{XI=1 XI=9} exceeds the X (3872) mass for 6z /m € [0,0.10], [0.65,0.85], and [0.90, 1.00].
X{=1 is the heavier of these two states in the middle interval and the lighter in the other
two intervals. Within these ranges, M 5’;1 — My 3s72) > 20MeV for the restricted ranges
0z/m € [0,0.04], [0.65,0.85], and [0.91,1.00]. The masses of the two isoscalar partners
{Z,_y, Z}_y} to the Z,(3900) and Z.(4020) exceed mx (3372) over these full ranges, and the
lighter of the two exceeds mz,_(3900) over the restricted ranges except for the small interval
0z/m € [0.71,0.75], where even there it is never more than about 2MeV below mz,_(3900);
indeed, precisely at the ideal mixing angle 6, = %r, egs. (3.14) show that the isoscalar Z}:o
becomes degenerate with Z;—; = Z.(3900). One finds, therefore, that rather large ranges
of 07 appear to all satisfy spectroscopic constraints.

The possibility of an isoscalar 17~ state quasi-degenerate with the Z.(3900) is inter-
esting in light of phenomenological mystery: mz_(3900) as determined via its 7.J /1 decay
channel (pure I = 1) tends to lie several MeV above its value as determined through
(DD*)? (a mixture of I = 0,1) [35]. If the latter resonance turns out to be a mixture of
Z 1_o and Zr—1, then a shifted mass — an average of the two mass eigenvalues — might
be expected. In addition, if Z7—; is nearly ideally mixed to decay to s.z = 1 charmonium,
then Z}:O is nearly ideally mixed to decay to s,z = 0 charmonium, meaning that one
would have a mixture of both components in this scenario. However, since the Z.(3900)*
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mass measured through the channel (DD*)* (a pure I = 1 combination) is also low, this
resolution is not entirely satisfactory. Nevertheless, such mixing should be kept in mind as
a possibility, should the Z.(3900) mass discrepancy persist.

Turning to the decay properties, we have already noted the preferential coupling of
Z:(3900) to J/v¢ and Z.(4020) to h.. As easily seen from combining egs. (3.6)—(3.8), the
sez = 1 content of Z;—1 = Z.(3900) is given by

Py,.—1]Z.(3900)] = sin? <92 - D . (4.5)
In the restricted allowed ranges for 67 /7 listed above, we find Ps_,—1[Z.(3900)] € [0.36, 0.50],
[0.91,1.00], and [0.50, 0.76], respectively. In light of the preference for Z.(3900) — J/v and
Z:(4020) — h,, the second region, 6z /m € [0.65,0.85], appears to be favored. Note a very
recent result [39], the observation of Z.(3900)T — p*7., indicating that Z.(3900) is not a
perfect s.z = 1 state.

We now consider the scalar sector. Recalling that Xy «» X} when 6x — 6x + g for
both the I = 0,1 channels, one need consider only the range x /7 € [0, %] One then finds,
over the preferred range /7 € [0.65,0.85] that all four of the Xy states are heavier than
the X (3872) over the full range of y except in the interval y /7 € [0.29,0.42], and in that
range only the state X5/~ is too light. The other scalar states tend to be much heavier,
ranging from at least 3900 MeV to well over 4200 MeV. In summary, mixing angles in

the ranges
Ox bz
— €1[0,0.29], [0.42,0.79], [0.92,1], = € [0.65,0.85], (4.6)
T T
appear to produce no conflicts with experiment.

In order to demonstrate the full predictive power of the model, we now choose one
allowed set of {fx,07} and present the complete set of mass eigenvalues for all 12 states
in the ground-state X} (1) multiplet. We fix 67 /7 = 0.80, in which case [by eq. (4.5)] the
Z:(3900) is over 97% s.z = 1, and the original model parameters of eq. (3.9) are determined

separately as
My = 3988.75 MeV, kg = 17.76 MeV, Vi = 33.10 MeV. (4.7)

Since (e7™ /r) ~ 3.1fm ™! for the X} (15) states using m = my (while for m = 0.5 GeV,
the value is ~ 2.0 fm™1), eq. (3.4) gives

Vo =11.0 MeV - fm, (4.8)

comparable in magnitude to, but a factor 2.3 larger than, the color-singlet N N7 coupling
of eq. (3.3). The numerical value obtained for kg in eq. (4.7) is also interesting in light of
the much larger corresponding value 67 MeV obtained from a fit to exotics in the (isospin-
independent) “Type-II” model [21]. Clearly, much of the strength of the coupling k., in
the current fit has migrated to the coupling V. Indeed, ref. [21] notes that a fit to kg
from the ¥.-A. mass difference [36] gives k4 = 22MeV, which agrees much better with
the result in eq. (4.7). Additionally setting fx /7 = 0.49 to fix the scalar sector, we obtain
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=0 _ I1=0 _ I=0 _
MX(, = 4215.7 My 7" =3871.7 M7=" =4271.5

ME=39249  MIT'=40041 ML =3904.7

I=1 _ I1=0 _ I=1 _
MI=t=39367  ME0=39072  ML'=3887.2

I=1 _ I=1 _ I=1 _
M)—((,) =3939.1 My~ = 4039.6 M7= =4024.1

Table 2. Masses (in MeV) of the 12 ground-state multiplet [X}(15)] states in the dynamical
diquark model for the choice of mixing parameters 6x = 0.497 and 67 = 0.80 7. Experimental
inputs [egs. (4.1)] are in boldface.

the full results presented in table 2. If My in eq. (4.7) is used instead of m x (3g7g) for the
¥ (18) mass eigenvalue in a fit such as in ref. [18] or the right-hand columns of table 1,
one obtains a diquark mass my; = 1.92-1.94 GeV, about 3% larger, while the length scales
(1/r)~! or (r) are about 1.5% smaller.

As promised, the lowest state in this multiplet is the X (3872). Its “charged partner”
X 1[ =1 Jies a full 130 MeV higher in mass, and therefore would be expected to be quite wide,
possibly unobservably so. The price for achieving this gap was noted in eq. (4.4), that the
X179 mass must be pushed lower, in our example to 3907.2MeV. In fact, the x.2(3930)
has the same quantum numbers, and while expected to be the conventional charmonium
Xc2(2P) state, its most recent mass measurement by LHCb [25] of 3921.9 £ 0.6 £ 0.2 MeV
is rather lower than earlier determinations [35], possibly pointing to a more complicated
configuration such as two peaks, or a mixture of x.2(2P) with a tetraquark state. The
possible quasi-degeneracy of Z I_o with Z.(3900) has been noted above. The 27+ state XQI =1
lies near the unconfirmed C = + state Z.(4055)%, as well as the unconfirmed charged [40]
and neutral [41] “charmoniumlike structures” around 4035 MeV.

In this particular fit, the scalar mixing angle 6y was chosen to make the 01+ state
X170 light, so as to identify it with the x.0(3915). The nature of this state remains
quite controversial [42]; for instance, it might even be the lowest céss state [43]. Indeed,
a very recent determination of the mass of this state as an wJ/1 resonance [44] gives
3926.4 + 2.2 MeV. Meanwhile, the states X'(g/) =1 are quasi-degenerate, appearing near the
unconfirmed state X (3940). The candidate states above 4200 MeV are very possibly too
wide to resolve experimentally. Other choices of fx can push up all of the scalar states to
at least 3950 MeV, or seek to accommodate the ZF(4100) or X (4160), neither of which has
been confirmed, let alone confirmed to have positive parity. The only other positive-parity
states in this range, Y (4140) and Y (4274), are ignored in this analysis since they have only
been observed as ¢J/1 resonances and therefore are very possibly ccss [18, 43].

The dominant decay modes for exotics of these JF¢ quantum numbers [37] are expected
to be the S-wave open-charm combinations DD and D*D* for 0t+, DD* for 1*+, DD*
and D*D* for 17~ and D*D* for 27+ (plus charge-conjugate modes, and for both I = 0
and I = 1). Since 2mp ~ 3860 MeV, mp+mp- ~ 3875 MeV, and 2mp- ~ 4020 MeV, most
of these channels are open for the corresponding states in table 2. The dominant closed-
charm modes are easily determined from egs. (3.6) and (3.7) plus G-parity conservation.
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For example, XQIZO lies below the D*D* threshold, and thus decays into w.J/1, but the
D-wave decay into DD is also possible, just as for the x.2(3930).

Lastly, we note from table 2 that the full fine-structure splitting of the E;r( 1.5) multiplet
can be much larger than the crude estimate of 150 MeV given in ref. [18]. However, if the
states heavier than 4200 MeV turn out to be unobservably wide, then the spectrum of
observable E;(lS) states does indeed turn out to be about 170 MeV.

5 Discussion and conclusions

In this paper we have developed a variant of the dynamical diquark model in which isospin
dependence is explicitly incorporated. We also developed a simple modification of our
calculation to test for effects on the exotics spectrum due to finite diquark size.

Allowing for the potential to transition from one describing the interaction of diquarks
at large separations 7 to one dominated by the QQ interaction at separations below a
chosen value r = R effectively introduces an effective diquark radius of R/2. We find
by explicit calculation that the exotics spectrum changes very little until R is as large as
0.8 fm, meaning that results obtained by treating the diquarks as pointlike are reliable even
for compact diquarks with radii as large as 0.4 fm.

The existence of an isospin-dependent interaction between separated diquarks, a type of
(partly) colored pion exchange, is inspired by the existence of a Nambu-Goldstone theorem
of chiral-symmetry breaking shown to occur in dense QCD. Isospin dependence is clearly
evident in the observation of exotic states to appear in isosinglets and isotriplets, rather
than quartets. We applied this ansatz of isospin dependence to the 12 states in the ground-
state multiplet X7 (15), taking X (3872), Z.(3900), and Z.(4020) as members, and predicted
the masses of the others.

The X (3872) in this model naturally emerges over large portions of the allowed pa-
rameter space as the lightest exotic state, and its “charged partner”, the J'¢ =11+ 1 =1
member of the multiplet, is much heavier. Moreover, the decay preferences Z.(3900) — J/4
and Z.(4020) — h. emerge directly from the analysis of the mass spectrum. We have ob-
tained fits in which several of the ill-characterized low-lying exotics naturally appear as
members of the E;(IS ) multiplet, and some of the predicted mass eigenvalues lie so high
above the dominant “fall-apart” decay mode of the corresponding state that they may be
too wide to discern easily.

The natural next step is to consider the first excited multiplet, E;(lP), whose states all
carry negative parity. A number of states have been assigned to this multiplet [18], such as
Y (4220) and Y (4360). However, both experimental and theoretical issues complicate this
analysis. This mass region includes the expected location of the lightest hybrid charmonium
states [17], which lie outside this analysis. Additionally, no P = —, I = 1 exotic states
have yet been confirmed. From the perspective of modeling, several other operators not
included in eq. (3.9) need to be considered, not least of which are the tensor operator
Si2 of eq. (3.2) (both isospin-dependent and independent) and the spin-orbit operator. In
the second excited multiplet [including states such as Z.(4430)], one expects the range
of masses of states in either ¥1(25) or X} (1D) to overlap [18], or even for the states
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themselves in the two multiplets to mix via tensor terms, again complicating the analysis.
In short, not enough states have been fully characterized in the excited multiplets of this
model to perform a reliable analysis.

Nevertheless, one basic feature is expected to hold for the excited multiplets: with
reference to eq. (3.4), excited states are spatially larger, meaning that (e="~"/r) is smaller
in higher levels, and so one expects smaller mass splittings within the higher multiplets in
this model (an analogous effect occurs for fine-structure splittings in ordinary quarkonium).

Multiplets of exotics with excited glue fields, such as II;7 (1P)-X; (1P), have not even
been mentioned in this paper, since as was shown in ref. [18], they are expected to lie about
1 GeV above the Z;(IS ) ground states (just like the gap between quarkonium hybrids and
conventional quarkonium states). Nevertheless, were they to be considered in a model
analogous to the one described here, yet further operators would need to be included, such
as ones dependent upon not only quark spin, but the spin of the nontrivial glue degrees of
freedom as well [45].

Lastly, all of the phenomenology presented here refers to the sector of hidden-charm
tetraquarks. In the pentaquark sector, the states according to the model of ref. [13] contain
triquarks of the form 6 = [¢(ud)5]s, where the ud pair is an I = 0 diquark inherited from
the initial Ay decay process from which all pentaquarks to date have been produced. But in

1

that case, the -0 pair does not exchange isospin, and only simple I = 5 pentaquarks occur.

Likewise, if the ud diquark carries spin 0 like that in A, then the triquark uniquely carries
spin % Transitions to the higher-mass “bad” (I = 1, spin-1) light diquark are certainly
possible, but are expected to be suppressed. One may then study the pentaquarks in a
spin-only formulation of the model, as in, e.g., ref. [46], or using a different diquark-triquark
formulation as in ref. [47].

Nor has the b sector been discussed in this paper. Again, not enough states have
been observed to attempt a reliable fit to the full spectrum, but in this case the best-
characterized exotic candidates are isotriplets, the Z;,(10610) and Z,(10650). The relative
spacings of B*) B®) thresholds and conventional bottomonium levels are different from
those in the c¢ system, leading to a rather different phenomenology. The bottom analogue
to the X (3872), the I = 0 17 state X, (see refs. [48, 49] for nice discussions of its expected
properties) has not yet been observed. While X (3872) emerged naturally as the lightest
state among the hidden-charm tetraquarks in this model, there exist alternate portions of
the parameter space where the I = 0 11+ state is not the lightest, and this observation
may turn out to be relevant for the b system.
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