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Plant immune receptors perceive microbial molecules and

initiate an array of biochemical responses that are effective

against most invaders. The role of the plant immune system in

detecting and controlling pathogenic microorganism has been

well described. In contrast, much less is known about plant

immunity in the context of the wealth of commensals that inhabit

plants. Recent research indicates that, just like pathogens,

commensals in the plant microbiome can suppress or evade host

immune responses. Moreover, the plant immune system has an

active role in microbiome assembly and controls microbial

homeostasis in response to environmental variation. We propose

that the plant immune system shapes the microbiome, and that

the microbiome expands plant immunity and acts as an

additional layer of defense against pathogenic organisms.
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Introduction
Scientists have studied the molecular aspects of plant

immunity since the mid-1980s. Investigation of how plants
www.sciencedirect.com 
recognize, respond, and limit the growth of invading

organisms, and the strategies used by pathogens to counter-

act plant immunity led to a conceptual framework of the

plant immune system [1]. Briefly, plants possess receptors

that recognize non-self or modified-self molecules which

indicate the presence of potential invaders. A first layer of

pattern recognition receptors (PRRs) located in the plasma

membrane perceives the presence of extracellular

molecules, which are often conserved across whole classes

of microbes (e.g. fungal chitin or bacterial flagellin) and are

thus known as Microbe-Associated Molecular Patterns

(MAMPs). Recognition of MAMPs leads to an immune

response known as MAMP-triggered immunity (MTI),

which is sufficient to halt the proliferation of most microbes.

However, adapted pathogens have evolved effector

molecules to interfere with MTI and host physiology.

The clear dichotomy between extracellular MAMPS and

intracellulareffectors is,however, increasinglyblurred[2]. In

turn, plants deploy a second level of receptors to counteract

adapted pathogens. These receptors belong to the family of

NLR proteins (Nucleotide-binding Leucine-rich Repeat)

and function as intracellular sensors that recognize the

presence of specific effector proteins. Direct or indirect

perception of pathogen effectors by a correspondingly

specific host NLR protein activates the Effector-triggered

immunity (ETI), which is a robust disease-resistance

response that often includes localized host cell death and

systemic defense signaling. Complex interplay between

plant hormones that control defense versus growth trade-

offs are a major part of the plant immune system [3].

Though this model provides a good overview of the funda-

mental principles governing plant immunity, it is based on

the interaction of plants with pathogenic microbes. How-

ever, it is clear that plants establish intimate relationships

with diverse commensal microorganisms, forming complex

communities in both above-ground and below-ground

tissues (i.e. microbiomes), which vary across host plants

and environments. In fact, most microbes with which plants

interact are non-pathogenic [4], yet many of them express

molecules that are potentially recognized by the plant

immune system. Thus, one major question of plant

microbiome research is whether and how the plant immune

system distinguishes commensals from pathogens during

microbiome assembly. Are the strategies used by pathogenic

microbes to evade plant immunity applicable in the context

of microbiomes? Can the microbiome contribute to plant

immunity? How does environmental variation shape the

interaction  between plant immunity and the microbiome?
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8 Environmental microbiology
These are some of the key questions in an emerging field

that has gained increasing attention recently [5��]. Here, we

review the most recent studies and novel concepts referring

to the interaction between the plant immune system and the

microbiome, focusing largely on the utility of Arabidopsis

and its relatives as a tractable model for these studies.

Evidence for the participation of the plant
immune system in microbiome assembly
Plants host microbiomes whose composition differs from the

surrounding environment [6–9], yet the mechanisms

governing the recruitment of these microbes are largely

unknown. The holobiont framework proposes that plants

and their collective microbiome form a single entity subject

to evolutionary processes [10,11], which implies that plants

have adapted ways to distinguish their evolutionary partners

from other microorganisms. Alternatively, the assembly of at

least some of the plant microbiome may represent mere

niche filling, a process influenced by plant traits but of minor

adaptive importance for the plant host. Regardless of the

proposed adaptive value of the plant microbiome as a whole,
Figure 1
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it is obvious that some fraction of the commensal community

has adaptive value to the host. It is also commonly hypothe-

sized that plants can distinguish between pathogenic and

commensal microbes. In fact, in an analysis of closely related

commensal and pathogenic Pseudomonas strains, the

transition between lifestyles is based on the gain/loss of only

a very few virulence islands [12�]. Additionally, inspection of

627 bacterial genomes derived from healthy Arabidopsis

roots and leaves revealed that 608 bacteria (97%) have the

potential to produce putatively immunogenic  MAMPs

(Figure 1a). Many of these bacteria share identical MAMP

variants to known pathogens, indicating that the MTI

response shown to repress the growth of pathogens [13] is

potentiallyactivated inresponsetocommensalsaswell.This

begs the question of how commensals avoid or suppress

MTI. It is plausible that MTI can both inhibitpathogensand

maintain microbiome homeostasis by gating microbes ‘in’ or

‘out’ upon intimate contact with the host. In this view, MTI

functions as a general mechanism used by plants to control

the assembly of their microbiota. In support, Arabidopsis

multi-mutants defective in MAMP recognition and
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Microbiota interactions with the plant immune system Teixeira et al. 9
downstream MTI signaling exhibit reduced defense against

an avirulent mutant of a normally pathogenic Pseudomonas
syringae strain and are unable to maintain normal leaf

endophytic bacterial communities under high humidity.

Inability to regulate the growth of endophytic bacterial

communities led to mild chlorosis and necrosis in some

leaves, resembling dysbiosis [14��]. This indicates that

plants control the growth of microbial populations with their

immune system in order to maintain their own health.

Strategies used by the microbiome to evade
or suppress plant immunity
Plant immunereceptorsdonotdistinguishbetweenmicrobial

lifestyles and recognize ligands that can be present in both

pathogens and commensals [15�]. Evasion or suppression of

host immune responses is a hallmark of successful pathogens.

Likewise, colonization by individual members of the plant

microbiome, the essence of community assembly, likely

requires strategies to avoid or interfere with plant immunity

[16]. Recent work highlights differences and similarities

between commensals and pathogens in the strategies used

to suppress or evade the plant immune system.

MTI suppression is used by pathogenic microbes to bypass

the plant immune system [1] but has also recently been

reported for non-pathogenic microbes [17�,18–20]. The

beneficial rhizobacterium Pseudomonas simiae WCS417

promotes plant growth and suppresses part of the

transcriptional response that is triggered by the bacterial

MAMP flg22 [15�,21]. Similarly, specific Rhizobiales strains

that colonize Arabidopsis roots are able to prevent

responses that are triggered by the same MAMP [22��].
Endophytes can also prevent MAMP-triggered cytosolic

calcium influx in Arabidopsis [23�]. A recent study found

that the plant growth-promoting bacterium Pseudomonas
capeferrum WCS358 produces organic acids that lower the

extracellular pH and interfere with the response to flg22

[24�]. Recent research also indicates that mutualistic fungi

gain access to plant tissues by manipulating innate plant

immunity [25]. Yet, the mechanisms involved in the

suppression of immune responses by commensals and

mutualists are still largely unexplored. The type III

secretion system (T3SS) is a common feature among

pathogenic bacteria and it can also be found in non-

pathogenic strains [26–28]. Nevertheless, genes encoding

this effector-delivery machinery are rare in the genomes of

plant-associated commensal bacteria [29�]. This may

reflect the apparently weak host specialization of most

plant-associated commensals [30]. Thus, a diversity of

alternative strategies to interfere with the host immune

responses, particularly on the extracellular battleground of

MTI, are expected to be found in plant microbiomes.

MTI evasion is another strategy used by both pathogenic

and commensal microbes to colonize the plant. Microbes

have evolved at least three mechanisms to evade MTI: I)
www.sciencedirect.com 
MAMP divergence, II) MAMP degradation/sequestra-

tion, and III) MAMP modification.

MAMP divergence

Microbes might evade MTI by evolving MAMP variants

that no longer bind to or activate the corresponding plant

PRR (Figure 1b). This evasion is at face value likely to be

counter-adaptive, sincealteration of MAMP sequencesand

structures may impair the positive function of the microbial

MAMP-containing molecule. For example, some flg22

variants that lose immunogenicity also lose motility [31].

Nevertheless, diverse, potentially immune evasive MAMP

variants are widespread in certain bacterial taxa. This

distribution is likely to be MAMP-dependent

(Figure 1a): 26% of the flg22 peptide epitopes found in

Arabidopsis-associated bacterial isolates have at least 50%

sequence divergence from the canonical active sequence,

while less than 1% of elf18 variants identified diverge from

the canonical epitope by at least 50%. This suggests that

flg22 recognition imposes stronger bacterial fitness defects

and/or that the flg22 region is more amenable to variation

than elf18, and/or that there are differential stringencies in

the requirements for MAMP recognition. Consistent with

the first hypothesis, theelf18 receptorEFR isnotexpressed

in Arabidopsis roots, while FLS2 is [21,32]. The MTI

response produced by MAMP sequences divergent from

the respective canonical sequences is still relatively

unknown. In parallel to the MAMP sequence diversity

found across plant-associated bacteria, Arabidopsis and

tomato lines display large variation in their response to

different MAMPs and even to the same MAMP variant,

indicating that MAMP recognition across plant populations

is evolving [33–35]. Thus, recognition may be driven by the

MAMP repertoire of local commensal and beneficial

microbes, not just pathogens [15�,22��,36]. Tolerance for

the former must be balanced by intolerance of the latter.

MAMP degradation/sequestration

Even if microbes express an immunogenic MAMP, they

may have mechanisms to evade MTI. Microbes have

evolved proteases that digest their MAMPs or proteins

that sequester MAMPs to hide them from plant receptors

(Figure 1b). The plant pathogen P. syringae DC3000

secretes a protease that, through the degradation of

flagellin, decreased MTI and increased this strain’s growth

in Arabidopsis and tomato leaves [37]. Chitin, a conserved

component of the cell wall in fungi, is another potent

inducer of MTI. Several fungal pathogens have evolved

chitin-binding proteins (LysM or inactive chitinases)

capable of sequestering free chitin fragments to prevent

the activation of plant PRRs [38–40]. Although this

mechanism has been only demonstrated for pathogens thus

far, LysM and presumably inactive chitinases are found

throughout the fungal kingdom and, therefore,

commensals may apply this method of evasion as well.
Current Opinion in Microbiology 2019, 49:7–17
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MAMP modification

Another strategy used by microbes to prevent the

elicitation of MTI is MAMP modification

(Figure 1c). For example, Nicotiana benthamiana
secretes glycosidases that strip the glycan shield from

the bacterial flagellum, allowing plant proteases to

release the immunogenic flg22 peptide for recognition

by the FLS2 receptor [41��]. In turn, pathogens can

evade flg22 recognition by either inhibiting plant

glycosidases or by modifying the glycan moieties that

cover their flagellum [41��]. Similarly, fungi can escape

the plant immune system by deacetylating the chitin in

their cell wall into chitosan, which is a weaker inducer

of immunity [39]. Because both flg22 and chitin are

ubiquitous in plant microbiomes, it is likely that

commensals have evolved analogous MAMP modifica-

tion strategies to evade MTI.
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The microbiome functions as an extension of
the plant immune system
Plant diseases have been traditionally studied as binary

associations between a host and a pathogen. In recent

years, however, it has become evident that the

microbiome can expand plant defensive capabilities

and often influences the outcome of plant–pathogen

interactions, preventing/mitigating the establishment of

diseases by largely unknown mechanisms encompassing

the term ‘biocontrol’ [42,43�,44–49,50�,51]. Importantly,

this seems to be largely determined by only two main

mechanisms thus far: (I) direct microbe–microbe

interactions and (II) stimulation or priming of the plant

immune system (Figure 2).
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Microbiota interactions with the plant immune system Teixeira et al. 11
serve as a first line of defense against invading organisms

in plants. For instance, a molecule secreted by the

Pseudomonas piscium ZJU60 strain, which was isolated

from infected wheat head, antagonizes the fungus

Fusarium graminearum by inhibiting one of its histone

acetyltransferases [50�]. Furthermore, a comprehensive

study recently demonstrated that the ability to antagonize

other microbes, including pathogens, is a common trait in

bacteria isolated from the Arabidopsis leaf microbiome

[52]. Genome mining further revealed a high prevalence

of a wide variety of unknown biosynthetic gene clusters

among inhibitory strains and allowed for the identification

of two novel antibiotics [52]. These and other studies

show that plant microbiomes are a rich source of pathogen

antagonists that work via direct inhibition [53]. Yet, it is

likely that many other factors contribute to the direct

control of pathogens by the microbiome. In particular,

resource competition (niche overlap) with resident

microbes has been proposed as an important factor that

limits pathogen invasion in plants [54�]. This is analogous

to the protective role that commensal microbes play in the

animal gut, where invading harmful microbes are out-

competed and their growth repressed by the already-

established host microbiome [55–57]. Interestingly,

Arabidopsis roots are naturally colonized by potentially

harmful filamentous eukaryotes that are nevertheless

controlled by multiple co-resident bacteria in the context

of a multi-kingdom microbiome [58��]. Removal of

protective bacteria results in disease, underscoring

the importance of microbiome homeostasis and

microbe–microbe interactions to plant health.

In addition to the direct inhibition of pathogens described

above, commensal microbes can promote host health by

stimulating the plant immune system, thus acting indi-

rectly in the suppression of diseases. A well-known form of

microbiome-mediated immunity in plants is induced

systemic resistance (ISR), a defense response against foliar

pathogens and pests triggered by root-associated microor-

ganisms [59]. Required host genetic components of ISR

have been uncovered [60–62] and a number of phyloge-

netically unrelated microbes have been shown to trigger

ISR in many different plant species [59]. A hallmark of ISR

is the enhanced sensitization rather than the constitutive

activation of defense genes [59]. This means that ISR

promotes a faster and stronger systemic immune response,

but only upon stimulation. Microbiome-mediated disease

resistance involving constitutive activation of the plant

immune system (a state of alert) has also been reported.

A Sphingomonas melonis strain isolated from Arabidopsis

activates a subset of plant defense genes and promotes

immunity against the bacterial pathogen P. syringae
DC3000 [42,43�]. This protection is lost in the bak1/bkk1
mutant, indicating that this commensal likely stimulates

plant immunity through MAMP recognition by PRRs that

rely on BAK1 as a co-receptor [43�]. These studies

demonstrate that disease suppression by commensal
www.sciencedirect.com 
microbes can require an intact plant immune system,

highlighting the participation of the microbiome in

determining the outcome of plant–pathogen interactions.

Recent studies indicate that the plant microbiome is

dynamic and responds to the presence of pathogens

and pests, supporting the exciting hypothesis that plants

actively select protective commensals to fight off diseases

under certain circumstances. Arabidopsis grown in native

soil from a Dutch field promoted the proliferation of three

specific ISR-inducing bacteria in the rhizosphere upon

leaf infection with the downy mildew pathogen

Hyaloperonospora arabidopsidis. Remarkably, these pro-

tective bacteria seem to have persisted in the soil and

conferred enhanced protection against downy mildew to a

subsequent population of plants [63�]. Infection of Ara-

bidopsis leaves with P. syringae also resulted in a similar

soil-borne legacy that protected a subsequent generation

of plants. Supporting the active role of the host in reshap-

ing its microbiome, infected plants displayed altered root

exudation profiles that presumably selected for beneficial

bacteria [64]. Changes in the microbiome composition

and enrichment of potentially beneficial microorganisms

have also been observed in barley roots infected with

F. graminearum [65] and in pepper seedlings infested with

whiteflies [66]. Importantly, enrichment of protective

microbes in the rhizosphere is associated with the

development of disease-suppressive soils, in which plants

remain healthy even in the presence of pathogens

[67–70]. Thus, microbiome alterations have the potential

to affect subsequent generations of plants that germinate

in the same soil with consequences for ecological and

agricultural processes [71–73].

In sharp contrast to ISR, some root-associated bacteria can

make the host plant more susceptible to foliar pathogens.

Pseudomonas strains that promote resistance against

herbivores in Arabidopsis also cause induced systemic

susceptibility (ISS) against a hemibiotrophic pathogen

[74]. This involves the bacterial production of spermidine,

but how this molecule modulates plant immunity is still

unclear [75]. Furthermore, arbuscular mycorrhiza fungi

also increases the susceptibility of the legume Astragalus
adsurgens to the foliar pathogen Erysiphe pisi, which causes

powdery mildew [76]. These studies show that commensal

microbes can have pleiotropic effects on the plant immune

system, demonstrating that the efficient deployment of

immunity-modulating microbes in agriculture will depend

on a full understanding of the microbiome effect on plants

and both pathogens and other commensals in the context of

different environments.

Context-dependent immune modulation
shapes the plant microbiome across
environments
Since their colonization of terrestrial environments,

plants have faced heterogeneous environments that vary
Current Opinion in Microbiology 2019, 49:7–17
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in temperature, water and nutrient availability, and

chemical attributes such as salinity, pH and the presence

of heavy metals. Plant responses to environmental varia-

tion are interconnected with plant immunity [77,78],

driven in part by the need for plants to optimally respond

to combinations of abiotic stress and pathogen invasion.

However, the resultant effects of this interconnectedness

on the assembly and function of the plant microbiome are

only just being explored.

Environmental variation can modulate plant immunity

through a number of non-exclusive mechanisms (Figure 3).

First, different environments can directly modulate the

expression of plant immune outputs [79,80�,81]. For

example, exposure to environmental stress can modulate

the expression of MTI and ETI-related genes [82–84] and

under increased temperature several NLR receptors lose

function [85]. Second, hormonal regulators of plant

responses to abiotic stress, such as drought and nutrient
Figure 3
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availability, typically have an antagonistic effect on plant

immunity through thesuppression of the jasmonic acid (JA)

and salicylic acid (SA) defense pathways [78,86]. Indeed,

such effects are so potent that microbial pathogens hijack

this interplay to facilitate their invasion [87]. Recent work

demonstrates that the antagonistic effect of abiotic

responses on plant immunity depends on factors such as

plant age and the magnitude and temporal sequence of

stressors [88�,89,90]. Lastly, shared signaling components

can jointly coordinate plant responses to abiotic stress and

plant immunity [91��,92��]. For example, the PRR chitin

elicitor receptor kinase 1 (CERK1), is responsible for

mounting a plant defense against fungal pathogens but

also strongly regulates the expression of genes required for

salt stress [93].

Microorganisms may also contribute to the modulation of

plant immunity across environments. Translocation of

bacterial effectors into the host increases at higher
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derived
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Microbiota interactions with the plant immune system Teixeira et al. 13
temperatures, which contributes to the suppression of

plant immunity [80�]. Furthermore, colonization by the

fungal endophyte Colletotrichum tofieldiae represses plant

immunity but only when host plants are grown under low

phosphate conditions [94��]. Finally, members of the

g-proteobacteria eject their polar flagella under nutrient

depletion, likely in an attempt to conserve energy under

unfavorable conditions [95]. However, because flagellin is

an important trigger of plant immunity [36], loss of

flagella under particular environments may also lead to

modulation of MTI with potential consequences for

subsequent microbial colonization. Interestingly,

persistence of the endosymbiont Vibrio fischeri in the light

organ of the Hawaiian bobtail squid, Euprymna scolopes, is

accompanied by the loss of flagella [96,97], suggesting

that environment-dependent modulation of host immu-

nity through MAMP modification may be a signature of

associated microorganisms across plant and animal hosts.

The modulation of plant immunity under conditions of

environmental or nutrient stress can reshape plant micro-

biota. In low phosphate conditions, plant immune-related

compounds, specifically tryptophan-derived secondary

metabolites, are required for the controlled recruitment

of the fungal endophyte C. tofieldiae [94��]. Additionally,

PHR1, the master transcriptional regulator of the plant

phosphate starvation response, directly modulates plant

immunity via targeting genes in the SA and JA pathways.

This crosstalk leads to a dampening of plant immune

responses and a perturbed root microbiome [92��]. A root-

exuded coumarin that is produced by Arabidopsis during

iron starvation or in the presence of ISR-inducing bacteria

[75] exerts a selective antimicrobial effect in the

rhizosphere, suppressing fungal pathogens and reshaping

the microbiome to possibly select beneficial microbes

[67,76]. In response to iron starvation, plants synthesize

and exude coumarins into the rhizosphere, which not only

help mobilize iron in soil [98] but also reshape the

composition of the root microbiome through their

antimicrobial activity [91��,99��]. PBS3, which modulates

plant immunity under abiotic stress in an age-dependent

manner, also reshapes the composition leaf bacterial

communities [88�].

While growing evidence supports the idea that context-

dependent immune modulation can reshape plant micro-

biota, the consequences, whether positive or negative, of

such microbiome reshaping for plant performance remain

relatively untested. Coumarins exuded by plants under

iron depletion selectively inhibit the growth of

pathogenic fungi while maintaining plant-growth

promoting Pseudomonas species and other microbes

[91��]. These coumarin-selected microbes may benefit

plants by increasing plant tolerance to iron starvation.

Similarly, plants may benefit from the alterations to their

microbiota under stresses such as herbivory [66], drought

[100] and pathogen attack [63�]. Though in these
www.sciencedirect.com 
examples the mechanism underlying microbiome

alterations was not determined. Under low phosphate

conditions, recruitment of the fungal endophyte

C. tofieldiae increased the biomass of Arabidopsis plants

[94��]. However, synthetic community experiments

showed that a bacterial taxon enriched in Arabidopsis

roots under phosphate starvation reduced plant perfor-

mance as measured by shoot phosphate accumulation

[101]. A recent study demonstrated that triterpenes pro-

duced by Arabidopsis are major determinants of the root

bacterial microbiome [102��]. These molecules act as

antibiotics or proliferation agents depending on the bac-

teria taxa and selectively regulate the composition of the

root microbiota. Importantly, triterpene biosynthesis can

be induced in response to abiotic stresses as well as during

pathogen and herbivore attack [103]. These examples

highlight that microbiome alteration across environments,

mediated in part by plant immune modulation, can have

both positive and negative effects on plant performance.

Conclusions
Our knowledge of the plant immune system has been

primarily built based on decades of study of plant–

pathogen interactions. This knowledge is now being

revisited, tested and structured in the context of micro-

biomes, revealing exciting differences and similarities.

Research thus far indicates that the plant immune system

mediates interactions with pathogenic and commensal

microbes alike. Most MAMPs that are recognized by

plant immune receptors are commonly found in

pathogens and commensals, indicating that colonization

of plant tissues by microorganisms involves suppression

and/or evasion of the host immune system, regardless of

their lifestyle. Indeed, recent work demonstrates that

many commensal bacteria can suppress MTI. Future

research should focus on determining the mechanisms

of this suppression and its significance to microbiome

assembly. Equally important is the interaction between

pathogens and the community of commensals that inhabit

plants. We propose that the microbiome functions as an

additional layer of the plant immune system and can

suppress diseases directly via microbe–microbe interac-

tions or indirectly via stimulation of plant immunity. We

predict that pathogens must have evolved strategies to

overcome the immune barrier imposed by the

microbiome. Finally, the plant immune system is intri-

cately linked with environmental and nutrient responses,

and altered microbial communities are often seen in the

face of environmental changes [71,92��,104]. A relevant

direction is to investigate how context-dependent

immune modulation shifts the composition of plant

microbiota and how this helps plants to thrive under

stress conditions across various environments. Determin-

ing the underlying mechanisms and the resultant plant

effects of the complex interplay between plant immunity

and microbiota are important goals to advance the field of

plant–microbe interactions.
Current Opinion in Microbiology 2019, 49:7–17
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