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Oil spills are a major threat to the marine ecosystem, requiring immediate solutions to remove spilled oil from
oceanic environments. In this study, we report a superhydrophobic molybdenum disulfide (MoS;) coated
polydimethylsiloxane (PDMS) sponge and demonstrate its high proficiency in spilled oil recovery and oil spill
detection based on oil-water separation ability. This novel oil sorbent is fabricated by a simple dip-coating to
incorporate MoS, flakes into PDMS sponge. The optimized MoS,-sponge displays a water contact angle

of > 152°, demonstrating excellent superhydrophobicity and high oil absorption (> 97 wt%) for a variety of
oils, including vegetable oil and fuel waste. Moreover, the material retains excellent oil absorption capability
upon repetitive compression cycles. The versatility of this novel sorbent has been extended for the real-time
spontaneous detection of oils by taking advantage of electrically conductive MoS, layers.

1. Introduction

Oil spills can occur as a result of various incidents involved in its
transportation [1-3] and can be particularly detrimental to marine
environments [4-6]. Current methods of oil spill remediation typically
fall under three categories; mechanical removal (using sorbents, skim-
ming), in-situ burning, and usage of chemical dispersants [7,8].
Amongst them, direct burning and usage of chemical dispersants are a
highly effective method in responding to a wide range of oil spills, but it
often produces secondary pollution [9-12]. Despite the environmental
benignity, the mechanical removal approach suffers from low separa-
tion efficiency of spilled oil from contaminated water. So, development
of absorbent materials which can efficiently select oil in a non-chemical
manner should be pursued [13], which incorporates the following as-
pects: 1) high hydrophobicity and oleophilicity for oil-water selectivity,
2) a highly porous structure for increased oil absorption capacity, 3)
high mechanical stability for repeated use, and 4) low production cost.
Over the past decades, a variety of oil-absorbing natural materials with
intrinsic structural porosity have been proposed [15-17]. Simulta-
neously, substantial efforts have been made to develop oil-absorbing
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functional materials such as polypropylene and aerogels via chemical
routes to achieve lower production cost and improved hydrophobicity
[18-20]. To this end, a variety of nano-engineering approaches have
been employed, including surface modification and coating techniques
[14,21-26]; for instance, various oil-absorbing sponges coated with
functional nanomaterials such as magnetite (Fe30,4), titanium dioxide
(TiO,) nanoparticles, graphdiyne, and graphene were reported [27-31].
Furthermore, a graphene-based sponge with high thermal conductivity
was explored, and its intrinsic Joule heating was utilized for enhancing
oil removal efficiency [32]. As a new functional nanomaterial to
achieve the desired hydrophobicity, two-dimensional (2D) transition
metal dichalcogenides (TMDs) have attracted lots of attention due to
their intrinsically layered crystallinity which can be tailored toward
optimized properties. Particularly, 2D molybdenum disulfide (MoS,)
layers possess a wide range of intrinsic hydrophobicity varying with
their layer orientation [33] as well as tunable surface energy that varies
upon exposure to airborne moisture and hydrocarbon contamination
[34]. Previous studies have reported that 2D MoS, layers-coated oil
sorbents have a superior oil-water separation by utilizing super-
hydrophobicity (water contact angle > 150°) and superoleophilicity
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(oil contact angle < 10°) [35,36]. While these successful demonstra-
tions benefit from the structural uniqueness of 2D MoS, layers, further
studies on the modification of fabrication procedures for simple sponge
preparation, improvement of hydrophobicity, and expanded tests with
various oily wastes are required to advance the technology into effec-
tive operational responses for oil spill events. In addition, their other
excellent properties such as high electrical conductivity have never
been utilized [37]. Therefore, their full potential for further advanced
oil spill management has remained largely unexplored.

Herein, we developed the oil spill managing MoS,-coated PDMS
sponge (MoS>-sponge) with superior multifunctionality by
corporating hydrophobic 2D MoS, layers into a structurally engineered
PDMS of high porosity and oleophilicity. PDMS, which is a widely used
silicone-based elastic polymer due to non-toxic, inert, and highly elastic
properties, was employed as a template to achieve the targeted por-
osity, while MoS, layers were incorporated via a simple solution pro-
cess [28,38,39]. Also, the PDMS presents excellent mechanical elasti-
city and resilience, which are essential considerations to achieve the
desired reusability of the sponges upon their repeated squeezing/re-
laxing for oil absorption/extraction. Amongst various template methods
to fabricate porous structures in PDMS sponges [38,40-44], sugar cubes
offer a distinguishable advantage of having a low cost, environmental
benignity, and simple fabrication [39]. The MoS,-sponge exhibit
highly-efficient selective absorption and recovery of oil with a si-
multaneous repulsion of water as well as high recyclability. Moreover,
the high intrinsic electrical conductivity of MoS, layers allows for real-
time in-situ detection of oil penetration kinetics, greatly broadening the
versatility of the sponges for advanced oil spill remediation applica-
tions.

in-

2. Materials and methods
2.1. Fabrication of PDMS sponges

Porous PDMS sponges were fabricated using commercially available
cube sugars as a template material in the following process; elastomer
(Dow Corning Sylgard 184 A) and curing agent (Dow Corning Sylgard
184 B) were mixed at a mass ratio of 10:1, followed by the mixture
being poured into a sugar cube template (1 X 1 x 1 cm?). Then, the
mixture of the solution with the sugar was placed on a hotplate and
cured at 80 °C for 2 h, which results in elastic PDMS. The prepared
PDMS/sugar composite was immersed in deionized (DI) water under
ultrasonication with 40 kHz at 70 °C for 2 h to dissolve the sugar par-
ticles. Upon dissolution of the sugar particles, the PDMS was taken out
from the water bath and allowed for natural drying yielding a porous
PDMS sponge.

2.2. MoS; flakes coating on the PDMS sponge

MoS, flakes, which are stacks of the 2D layered structure, were
coated on PDMS sponges via a dip-drying method. Commercially
available MoS, flakes (CAS No. 1317-33-5, super-fine grade, > 99%,
Climax Molybdenum, AZ, USA) were dispersed in isopropyl alcohol
(IPA) solution followed by sonication. The separately prepared PDMS
sponge was dipped into the IPA solution containing the MoS, flakes
with designated mixing ratios of IPA:MoS, (from 200:1 to 25:1) and
was ultrasonicated for 2 h with 40 kHz. Subsequently, the PDMS/MoS,
composite was heated up to 70 °C to evaporate IPA, which ensures the
direct/robust attachment of MoS, flakes to the PDMS surface.

2.3. Material characterization of MoS,-sponges

The porous structures of the MoS,-sponge were observed using an
optical microscope (BX60M, Olympus, Japan) and a scanning electron
microscope (SEM, Nova NanoSEM 200, FEL, USA) at a 5 kV electron
accelerating voltage. Also, energy-dispersive X-ray spectroscopy (EDS,
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Apollo X, EDAX Inc., USA) was utilized to analyze the chemical com-
position change before and after coating MoS, flakes. The hydro-
phobicity of the MoS,-sponge was identified by measuring the water
contact angle (CA) of DI water through a sessile drop test. 4 uL of water
droplets were gently deposited on the MoS,-sponge surface using a
microsyringe, and the CA was measured by a goniometer (Model 90,
Rame-Hart, USA) in ambient air at room temperature under 20-35% of
relative humidity. The CA was determined from at least four different
spots in each sample, and the average value was calculated. The me-
chanical property of MoS,-sponge was measured using a universal
testing machine (MTS Exceed E42, MTS Systems Corporation, USA)
equipped with 500 N load cell. A cuboid-shaped MoS,-sponge with a
size of 6 X 6 x 10 mm> was placed between two flat stages designed
for compression test. Compression and release rates were set to
0.2 mm/s. The compressive and release behaviors were recorded with
digital camera (EOS 60D, Canon Inc., Japan).

2.4. Oil absorption and recovery tests

A variety of oils and organic solvents, including shipboard standard
bilge mix (SBM), canola oil, toluene, hexane, and polyethylene glycol,
were utilized to evaluate the oil absorption and recovery performance
of the MoS,-sponge. Transparent organic solvents such as hexane, to-
luene, and polyethylene glycol were dyed with Sudan IV (dye con-
tent = 80%, Sigma-Aldrich, USA) for improved visualization of oil
absorption. For absorption capacity measurements, a MoS,-sponge of
1 x 1 x 1 cm® in volume and the oil/organic solvent of 10 mL were
used. The kinetics of oil absorption were identified by measuring the
weight of the oil absorbed by the MoS,-sponge (wt%) as a function of
absorption duration. The recyclability of the MoS,-sponge in repeatedly
absorbing and releasing oil was tested by manually squeezing the oil-
absorbed MoS,-sponge, which was subsequently dried for 10 min. The
completely dried MoS,-sponge was reused to absorb the oil/organic
solvent up to 8 cycles. For a continuous oil collection test, an oil-ab-
sorbed MoS,-sponge connected to a peristaltic liquid pump (12 V DC
dosing pump, Gikfun, China) by a Teflon tube was placed in a beaker
containing water and hexane mixture. The pumping rate was main-
tained to 1.15 mL/s for 4 h. The pumping flux was obtained by mea-
suring the oil collection rate of every 15 min. Following each mea-
surement, the collected oil was recycled back to the starting point so
that the initial volume of liquid remained constant.

2.5. Electrical measurement

The electrical characterization of the MoS,-sponge for a real-time oil
detection was carried out using a semiconductor parameter analyzer
(HP 4156A, Hewlett-Packard, USA) connected to a home-built probe
station. Conductance values were extracted by the linear fitting of the
current-voltage (I-V) plots (Conductance (G) = 1/Resistance (R)) at a
voltage range from —5.0 to 5.0 V. The kinetics of oil absorption into the
MoS,-sponge was manifested by monitoring the variation of current as
a function of time.

3. Results and discussion
3.1. Morphology & element analysis of MoS,-sponge

The fabrication procedure of MoS,-sponge using a sugar cube tem-
plate is illustrated in Fig. 1a. The sugar cube constitutes of individual
sugar particles of about 100 pm was employed as a template replicating
a PDMS sponge of corresponding porosity, as shown in Fig. 1b. Then,
commercially available MoS flakes of about 1 pm in size (Fig. 1c) were
incorporated on the surface and interior of the PDMS sponge by a dip-
drying method; MoS, flakes dispersed in IPA were directly injected into
the sponge where IPA efficiently prevents their van der Waals attrac-
tion-driven agglomeration owing to its low surface energy [45].
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Fig. 1. (a) Fabrication process of MoS,-sponge. (b—d) Photo images of (b) a PDMS sponge, (c) MoS, flakes, and (d) a MoS,-sponge, respectively. The insets show the

optical microscopy images of the corresponding photo images.

Heating and ultrasonication were also applied in dispersing MoS, flakes
in IPA to further improve their spatial homogeneity throughout the
entire PDMS sponge [36,46]. As shown in Fig. 1d, the color of the
sponge becomes darker with increasing the concentration of MoS,
flakes.

The morphological and chemical integrity of PDMS sponges
throughout their fabrication process and MoS, flakes incorporation
were identified using SEM and EDS. As-prepared PDMS sponges in their
pristine form are highly porous, constituting a large density of pores of
various sizes (Fig. 2a) while their exposed surfaces are highly smooth
(Fig. 2b). MoS, flakes were separately prepared by ultrasonication
(Fig. 2c) and incorporated into the PDMS sponges without altering their

intrinsic porosity (Fig. 2d). Note that dimension of individual 2D MoS,
flakes (typically < 1 pm) is much smaller than that of PDMS pores
(typically in a range of ~10 um to 1 mm). Upon incorporation of MoS,
flakes, the PDMS surface turns rough owing to their exposure on it, as
shown in Fig. 2e. The chemical composition of the MoS, sponge was
characterized by EDS to examine the spatial distribution of constituent
elements. Fig. 2f shows EDS secondary electron image and elemental
mapping image revealing their distributions, i.e., Mo, S from MoS,
flakes, and Si from PDMS. The SEM images and EDS mapping images
confirm that MoS, flakes are homogeneously dispersed and attached on
the surface of PDMS via strong van der Waals force. Moreover, Mo and
S signals were localized within PDMS undetected in the porous regions,

Fig. 2. (a-c) SEM images showing (a) porosity of a PDMS sponge at low magnification, (b) surface smoothness of the sponge, (c) morphology of MoS, flakes. (d) SEM
image of a MoS,-sponge at the magnification identical to (a). () SEM image showing the hierarchical surface roughness of the sponge after MoS, coating. (f) SEM
image and EDS elemental mapping images of the MoS,-sponge surface presenting its constituent elements of Si (from PDMS), Mo, and S (from MoS, flake).
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Fig. 3. (a) Water contact angle measurements of MoS,-sponges prepared with
different mixing ratios of IPA:MoS,. (b) Demonstration of oil absorption and
water repulsion. (c) Formation of underwater air-pocket evidencing the repul-
sion of water. (d) No observation of water on the MoS,-sponge surface after
immersion into the water.

indicating the intrinsic porosity of PDMS was not altered throughout
the dip-drying process.

3.2. Wettability of MoSz-sponge
We investigated the water wettability of MoS,-sponges responsible

for selective oil absorption and optimized it for highly efficient oil spill
recovery. PDMS itself is known to be hydrophobic in its pristine state
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with no porosity and exhibit an intrinsic water contact angle of 108°
and surface tension of 23.9 mN/m [47]. This intrinsic hydrophobicity
can be drastically increased by incorporating MoS, flakes, as below
verified; We adjusted the mixing ratio of IPA:MoS, and measured re-
sulting water contact angles (CAs) in order to determine the optimum
concentration of MoS, flakes. If the MoS, flakes concentration is too
low, they would not entirely cover the surface of the PDMS porous
sponge undermining hydrophobicity. If the concentration is too high,
the pores will clog, leading to a decrease in oil absorption capacity (see
Fig. S1 in Supporting Information). Fig. 3a shows the water CAs of
MoS,-sponges as a function of the mixing ratio of IPA: MoS, revealing
their increase with an increasing concentration of MoS, flakes, e.g., as
the mixing ratio changes from 200:1 to 100:1, the CA value increases
from 129.3° to 135.5°. With a further increase in the mixing ratio from
50:1 to 25:1, the CA value slightly increases from 151.3° to 151.6°,
achieving the desired superhydrophobicity. Having confirmed the su-
perhydrophobicity of MoS,-sponges, we then investigated their selec-
tive oil absorption ability or superoleophilicity. As shown in Fig. 3b, the
water droplet prepared with the 50:1 mixing deposited to the sponge
surface retained its spherical shape without being absorbed owing to
excellent superhydrophobicity. Such superhydrophobicity was well
maintained even when the MoS,-sponge was completely immersed in
water, as shown in Fig. 3c. Upon water immersion, the MoS,-sponge
surface instantly and uniformly turns glossy, which is due to the for-
mation of air pockets - numerous pores or cavities containing air. The
MoS,-sponge exhibited no visible sign of wetting once taken out of the
water, indicating that it in the Cassie-Baxter state which is a regime of
superhydrophobic water wetting [48]. The air pockets formed in the
pores effectively repel penetrating water while keeping them dry, as
shown in Fig. 3d. Meanwhile, when an oil droplet was deposited to the
MoS,-sponge surface (e.g., olive oil in Fig. 3b), it was instantly and
entirely absorbed into the interior of the MoS,-sponge.

3.3. Oil recovery capacity & efficiency

Various oils and organic solvents which are widely used in world-
wide were tested, including petroleum products, hydrocarbon solvents,
and vegetable oil. The oil absorption efficiency was quantified by cal-
culating the weight gain (wt%), which is defined as the weight ratio of a
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Fig. 4. (a) Sequential images demonstrating the oil collection process from water containing spilled oil - SBM dyed with Sudan IV red. (b) Plots of absorption kinetics
for a variety of tested oils with respect to absorption duration. (c, d) Schematics to illustrate; (c) absorption of spilled oil, and (d) desorption of the collected oil by
manual squeezing/releasing. (e) Plots of absorption capacity and recyclability for a variety of tested oils. (f) Schematic of the experimental apparatus for the
continuous collection of oil from the surface of the water into the recovery vessel. (g) Prolonged stable operation of continuous collection and recovery of oil. The
insets show the demonstration image of continuous collection of hexane for 4 h from the water with the pumping apparatus. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 5. (a) (top) Sequential photos showing the MoS,-sponge deformation
during a cyclic compression test. (bottom) The compressive stress curve of
MoS,-sponge under 80% of compressive strain for 100 cycles. (b) (top)
Sequential photos showing the water contact angle after multiple times of
compression test. (bottom) The water CA of MoS,-sponge during the cyclic
compression test. (¢) Oil absorption capacity demonstrated in various harsh
conditions simulating the real sea environment. (d) Photos of demonstrating the
recovery of hexane from algae-containing water using the pumping apparatus.

MoS,-sponge before/after oil absorption at a given time. As shown in
Fig. 4a, once a piece of MoS,-sponge (1cm®) was dropped into water
containing a layer of canola oil (dyed with Sudan IV), it rapidly ab-
sorbed the oil only leaving clean water behind within a few seconds.
The oil-soaked MoS,-sponge was removed from each test baths at
specific times, and the oil absorption capacity (K) was determined by
the difference between the initial weight of the MoS,-sponge (W,) and
oil-soaked state (W,) divided by the initial weight (W,) of the MoS,-
sponge, multiplied by 100;

W — W)
W

0

K(%) = X 100

The oil absorption kinetics for a variety of tested oils as a function of
oil absorption time is presented in Fig. 4b. Within 60 s of absorption,
the MoS,-sponges exhibited high absorption efficiencies for all the
tested oils including SBM, canola oil, and chemicals (toluene, hexane,
polyethylene glycol) as manifested by K of ~97.3-114.6 wt%. It took
less than 5 s to reach an equilibrium state absorbing hexane which
possesses the lowest viscosity (0.3 mPa s at 25 °C). Meanwhile, at least
50 s were required to fully absorb highly viscous oils such as canola oil
(46.2 mPa s at 30 °C) owing to the high shear force needed for their
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penetration into the pores inside the MoS,-sponge [49,50].

To further test the repeatability of MoS,-sponges for prolonged oil-
spill management, we investigated their oil absorption capacity change
for repeated oil absorption/desorption. Upon full oil saturation, the
MoS,-sponges were mechanically squeezed desorbing the collected oils,
as shown in Fig. 4c and d. Due to their elastic nature (Fig. S2), the
MoS,-sponges fully recover their initial forms upon releasing the oil and
are ready for subsequent oil absorption. Fig. 4e shows the repeatable
use of the MoS,-sponges for absorbing various types of oils. After eight
cycles of absorption/desorption, the absorption capability was observed
to slight decrease (average: 12.7 *= 5.5%), which is possibly due to
some residual oil, which was not entirely come out by squeezing during
each cycle. This observed repeatability, i.e., absorption capability given
the identical cycle number is superior to the performance of previously
developed sponges such as copper nanoparticles-coated sponges or
graphite-based sponges, which drastically deteriorated after two cycles
[51,52].

To demonstrate the continuous collection of oil from a water surface
with a lab-scale simulated oil spill event, we have prepared a batch-
scale pumping apparatus, as shown in Fig. 4f (Movie S1). It is known
that collecting spilled oil by pumping through a porous sorbent in a
continuous manner can greatly simplify the oil recovery process and
reduce materials consumption [23,32]. In the initial pumping test,
15 mL of hexane was collected from the oil-water mixture, and no water
was found in the collection tank (shown in the insets of Fig. 4g), de-
monstrating high oil-water separation ability and spilled oil recovery
efficiency. The long-term continuity of oil extraction under a constant
supply of oil has been demonstrated for 4 h (Movie S2), achieving full
recovery of hexane from oil-water mixture without significant de-
gradation of recovery efficiency, as shown in Fig. 4g. Notably, the op-
timized balance of capillary pressure and suction power prevents the
penetration of water and air into the pores in the MoS,-sponge, and
only the oil is absorbed into the MoS,-sponge and flows through the
tube to the collection tank, allowing the MoS,-sponge can uptake the
supplied oil persistently [23].

Supplementary data related to this article can be found at https://
doi.org/10.1016/j.cap.2019.12.001.

We also investigated the mechanical properties of the MoS»-sponge
with a cyclic compression test. Recently, as the awareness that the
disposal of used oil sorbents can cause secondary environmental pol-
lution is spreads, the importance of reusability and recyclability of oil
sorbents has been increasing. However, it is known that the mechanical
compression for recovery of absorbed oil through the squeezing can
destroy internal fiber-based porous structures, as a result of which the
oil absorption capacity is significantly reduced. As an example, con-
ventional oil sorbents made from natural or synthetic fibers such as
polypropylene fibers exhibit very low reusability of fewer than 10 times
[53]. In order to utilize the oil sorbent multiple times, the sorbent
material requires high mechanical resilience during the physical
squeezing in the oil recovery process. With this in mind, we tested the
cyclic resilience by measuring the compressive stress of the MoS,-
sponge [54]. Fig. 5a shows the MoS,-sponge during the cyclic com-
pression test at 80% strain for 100 cycles. It was found that the shape
and the volume of MoS,-sponge fully recover even after 100 cycles of
compression, which indicates that the MoS,-sponge has high mechan-
ical resilience under compression. The bottom graph in Fig. 5a exhibits
the compressive stress value of the MoS,-sponge during the cyclic
compression test. The compressive stress almost linearly decreased by
8.8% with increasing of the number of cycles during 20 cycles of
compression, and the value further decreased by 11.4% after 40 cycles
of compression. With further compression cycles, the reduction of the
compressive stress has been saturated, maintaining 13.8% reduction
after 100 cycles. This reduction tendency is supposed to be induced by
breakage of a few skeletons inside of the sponge at the initial stage of
compression cycles. But the internal pore structures were well pre-
served due to high elasticity of PDMS (base material), therefore, the
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Fig. 6. (a) Schematics to illustrate the electrical detection of conductive oil. (b) Electrical conductance measurement of MoS,-sponges prepared with varying mixing
ratios of IPA:MoS,. (c) I-V characteristics from a MoS,-sponge before and after oil absorption. (d,e) Real-time electrical detection of SBM; (d) Sequential images to
show the electrical oil monitoring process, and (e) Current change following by the oil absorption which is shown in (d).

MoS,-sponge shows high resiliency against multiple cycles of com-
pression. Additionally, the water CA during the cyclic compression tests
is also evaluated, which is essential to render robust oil-water separa-
tion. As shown in Fig. 5b, the water CA remained above 150° during the
100 cycles of compression, indicating the oil-water separation ability
based on superhydrophobicity is also well maintained. Overall, the
MoS,-sponge displays high reusability due to its durability and ro-
bustness.

We also studied the oil absorption capability of the MoS,-sponge in
a harsh condition by simulating an actual sea environment in terms of
salinity and turbulence. For that, we prepared for brine (3.5% NaCl)
and simulated waves in it using a stirrer to examine the effect of salinity
and external pressure, respectively. The oil recovery test was carried
out for 50 s under the brine condition with and without the simulated
waves and the resulting recovery capabilities were compared. As shown
in Fig. 5c¢, the oil absorption capacities of the MoS,-sponge showed no
decrease regardless of the brine conditions, indicating its reliable op-
eration even under high salinity and turbulence. It is noted that the
MoS,-sponge floats well on the water surface even under agitation due
to its low density and high buoyancy. Additionally, the continuous oil
recovery capability of the MoS,-sponge was tested with algae-con-
taining water using the pumping apparatus. As shown in Fig. 5d, only
hexane was absorbed into the MoS,-sponge and the absorbed hexane
was fully recovered by being transported to a secondary container
through the tube connected to the pump. This result presents that water
even in its algae-containing state becomes efficiently repelled from the
MoS,-sponge due to its excellent superhydrophobicity.

3.4. Real-time electrical detection of spilled oil

After the successful development of high-efficiency oil clean-up
using MoS,-sponge in their pristine form, we extend their versatility for
the electrical detection of spilled oil and the real-time monitoring of oil
absorption kinetics. We propose a new type of oil-detecting platform
which benefits from the intrinsic oil-water separation ability of the
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MoS,-sponge as well as its electrical conductivity resulting from the
incorporated MoS,. This device is particularly more functional for de-
tecting oils of intrinsic electrical conductivity — e.g., SBM, crude oil.
Fig. 6a illustrates the proposed concept comparing two situations of;
(top) before oil absorption, (bottom) after oil absorption. The MoS,-
sponge floating on DI water without any oil absorption (top) exhibits a
low electrical response. However, when it becomes saturated with
conductive oils (bottom), it exhibits an increase of electrical con-
ductance as the conductive components in the oil fill in the pores within
it. It is known that the conductivity of air and the crude oil are about
3-8 pS/m and 10-45 nS/m at room temperature, respectively [55]. In
addition, the conductivity of SBM used in our demonstration was
measured at 24.4 * 3.7 nS/m, which was comparable to that of crude
oil. When the MoS,-sponge contacts with oil, it spontaneously absorbs
the oil, which easily penetrates through its porous channels, thus
electrical conductance increases. Before the actual demonstration of
electrical sensing, we first characterized the electrical conductivity of
MoS,-sponges prepared with varying IPA:MoS, mixing ratios. As shown
in Fig. 6b, the electrical conductivity significantly increases with in-
creasing the concentration of MoS, flakes. The conductivity of a pristine
PDMS sponge without incorporating MoS, flakes was 6.3 pS/m, and it
increases to 1.5 nS/m after incorporating them with IPA:MoS, = 200:1.
With the mixing ratio of 50:1 and 25:1, the conductivity further in-
creases to 5.6 and 18 nS/m, respectively, corresponding to ~1000 times
than that of the bare PDMS. Fig. 6¢ shows the current-voltage (I-V)
characteristics of a MoS,-sponge prepared with 50:1 mixing ratio before
and after oil absorption. As above predicted, upon absorbing the oil
(SBM, in this case), the current value increases nearly two times in the
tested range of —4 V to 4 V; e.g., 0.24 nA increases to 0.47 nA at 4 V.
Based on this confirmation, the proof-of-concept demonstration of real-
time oil detection was achieved by monitoring the current change with
respect to time at a constant voltage of 4 V as shown in Fig. 6d and e.
When the MoS,-sponge was initially in contact with water only, no
significant current change was detected indicating there was no ab-
sorption of water due to its superhydrophobicity. However, upon
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dripping the oil to the water (at 11 s in Fig. 6e), a drastic increase of
current was observed, indicating its significant absorption. As shown in
the first image of Fig. 6d, the MoS,-sponge was initially covered with
air-pockets due to its superhydrophobicity when it was only in contact
with water, resulting in a no electrical response. However, once the
MoS,-sponge was exposed to the oil, the air-pockets instantly dis-
appeared and were replaced with it forming various pathways for the
transport of charged particles within the MoS,-sponge. The schematics
in the insets of Fig. 6¢ and e illustrate this distinction.

4. Conclusion

In this study, we developed multifunctional MoS,-sponges and de-
monstrated their rapid and efficient recovery and detection of spilled oil
in water. This novel oil absorbent material realized by the simple
template-replicated fabrication of porous PDMS sponges and the in-
corporation of MoS, flakes by a dip-coating method exhibits essential
attributes to selective oil absorption and water repulsion. The MoS,-
sponge exhibits excellent superhydrophobicity (water CA > 152°) and
high oil absorption (> 97 wt%) through the tests with a variety of oils,
including vegetable oil and fuel waste such as SBM. Also, the material
can be recycled more than eight times preserving its excellent oil ab-
sorption capacity upon a repetitive absorption/desorption of the oils
enabled by its elastic deformation. The versatility of this sorbent ma-
terial has been further extended for the real-time electrical detection of
conductive oil in a simulated situation. The study suggests a massive
technological implication of this new sorbent material for managing oil
spill incidents in real-world situations.
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