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Scale invariance of the homentropic inviscid Euler equations with application to the Noh problem
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We investigate the inviscid compressible flow (Euler) equations constrained by an “isentropic” equation
of state (EOS), whose functional form in pressure is an arbitrary function of density alone. Under the
aforementioned condition, we interrogate using symmetry methods the scale-invariance of the homentropic
inviscid Euler equations. We find that under general conditions, we can reduce the inviscid Euler equations into
a system of two coupled ordinary differential equations. To exemplify the utility of these results, we formulate
two example scale-invariant, self-similar solutions. The first example includes a shock-free expanding bubble
scenario, featuring a modified Tait EOS. The second example features the classical Noh problem, coupled to an
arbitrary isentropic EOS. In this case, to satisfy the conditions set forth in the classical Noh problem, we find
that the solution for the flow is given by a transcendental algebraic equation in the shocked density.

DOI: 10.1103/PhysRevE.101.053101

I. INTRODUCTION

The inviscid compressible flow (Euler) equations are a
powerful tool in the analytical modeling of shock wave
propagation. These equations host a number of well-known,
canonical shock solutions, including the Sedov-Taylor-von
Neumann blast wave [1,2], the Guderley converging shock
[3], Noh’s stagnation shock problem [4] (and more generally,
a wide variety of Riemann solutions [5]), and other, less
well-known solutions owing to Coggeshall [6], among others.
These generally semianalytical and sometimes closed-form
solutions are valuable for a variety of purposes, including as
code verification test problems [7,8], intermediate asymptotic
entities [9,10], and tools to help understand related but more
general or application-specific flows [11,12].

Many of the aforementioned solutions of the inviscid Euler
equations share two common features: (1) they rely on the
assumption of an ideal gas equation of state (EOS) closure
law in addition to conservation principles for mass, momen-
tum, and total energy, and (2) they are a direct consequence
of invariance of the inviscid Euler equations under various
sub-groups of the canonical three-parameter scaling group.
Explicit discussion of the latter property is approached to
varying degrees by Sedov [1], Meyer-ter-Vehn and Schalk
[13], and Coggeshall [6,14,15].

Indeed, the only means for systematically approaching
scale or other invariance of the inviscid Euler equations (as
opposed to using dimensional analysis or ad hoc methods)
is symmetry analysis, also variously referred to as Lie group
or group-theoretic techniques. Following the pioneering con-
siderations of Birkhoff [16], formal symmetry analysis of
the invscid Euler equations was carried out by Ovsiannkov
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[17] (see also Holm [18], Hutchens [19], and Coggeshall
[6]), from which the existence of numerous scaling and other
symmetries was rigorously verified. A powerful outcome of
the analysis is the generalization beyond the ideal gas law
of the included EOS so as to enable the continued presence
of scaling or other transformations, and hence their various
dependent canonical solutions. For example, for scaling trans-
formations, the most general admissible EOS “is. . .of the
Mie-Gruneisen type” [19].

Contained within this class of admissible EOS models
are the so-called “isentropic” (also known as “adiabatic”)
EOS models as discussed by (for example) Anderson [20] or
Leveque [21]. An EOS of this form is interpreted as being
valid along a flow’s isentropes. As a result, the relations of
pressure P = f (ρ, S) → P = f (ρ) such that internal energy
I = g(ρ), where f and g are arbitrary functions of the fluid
density ρ, and S is the fluid entropy. A canonical example of
an isentropic EOS is the modified Tait EOS, given by

P(ρ) = B

[(
ρ

ρref

)γ

− 1

]
, (1)

for constant B, γ , and ρref , as discussed by Zel’dovich and
Raizer [22].

The applications of isentropic EOS classes such as the
modified Tait form appear in numerous practical contexts.
In general, Stanyukovich [23] notes that EOS classes of this
form assume “. . .a great deal of accuracy” for “. . .purely
adiabatic processes in substances of low compressibility.”
Notably included in these scenarios are a variety of processes
in water or other liquids [24]. For example, both Ridah [25]
and Baum et al. [26] discuss relevant scenarios including
shock propagation in liquids, and liquid propellant problems.
Baum et al. [26], Wardlaw and Mair [27], and Cole [28] pro-
vide extensive treatises on underwater explosion processes, in
which the invocation of modified Tait or other “generalized
isentropic” EOS forms play no small part. The assumption
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of an isentropic EOS is also central to numerous studies
associated with bubble collapse, cavitation and cavitation-
induced damage, and sonoluminesence [29,30]. In general,
Stanyukovich [23], Baum et al. [26], and Zel’dovich and
Raizer [22] note that isentropic EOS models are useful from
the standpoint of intermediate-pressure (e.g., 10 atm < P <

100,000 atm or 1.0 × 10−5 Mbar < P < 1.0 × 10−1 Mbar)
scenarios in condensed materials; in addition to processes in
liquids, these regimes also include detonating explosives, the
impact of detonation products against metallic surfaces, and
projectile impacts against the ground.

Moreover, when coupled to the inviscid Euler equations,
an isentropic EOS can obviate the need for an energy conser-
vation law;1 as such, the structure of the inviscid Euler equa-
tions is simpler than their traditional counterparts explicitly
featuring a total energy conservation relation. In addition, the
assumption of an isentropic EOS also includes homentropic
flow (i.e., the fluid entropy is explicitly constant in all space
and time) as a subcase; though the presence of discontinuous
shock waves is still possible through the presence of piecewise
constant entropy solutions.

Given the broad and important application space of com-
pressible flows featuring isentropic EOS classes, the goal of
this work is to provide a dedicated symmetry analysis of the
(piecewise) homentropic inviscid Euler equations, coupled to
an arbitrary isentropic EOS. The outcomes of this analysis are
complementary to those of Ovsiannikov [17], Holm [18], and
others, in that conditions for the presence of scale-invariance
on the isentropic EOS can be derived and compared to existing
results in other contexts. Any such comparison will thus
illuminate what symmetries are lost, preserved, or gained
in moving between the traditional and homentropic inviscid
Euler equation settings.

Furthermore, a second goal of this work is to leverage the
symmetry analysis results to construct analogs of classical
solutions of the inviscid Euler equations, for example, the
Noh stagnation shock problem. Some work along these lines
has recently been performed by Ramsey et al. [31], Burnett
et al. [8], Velikovich et al. [32], and Deschner et al. [33].
The motivation for selecting a Noh problem for demonstration
purposes is thus to enable comparison to this wide body of
existing work.

In support of these goals, Sec. II includes a review of the
salient mathematical model, including the reduction of the
inviscid Euler equations to homentropic form following inclu-
sion of an isentropic EOS, and construction of the associated
shock jump conditions. Section III provides a brief review of
the differential form or “isovector” formalism for conducting
symmetry analysis of differential equations. Section IV fea-
tures a symmetry analysis of the homentropic inviscid Euler
equations and shock jump conditions, with an emphasis on
scaling phenomena. Section V provides two example scale-
invariant solutions of the underlying mathematical model;
notably including further symmetry analysis of the conditions
unique to the Noh stagnation shock problem, an associated

1As will be shown in Sec. II C, total energy conservation is still
included in the inviscid Euler system, but becomes a redundant
condition under the assumption of an isentropic EOS.

reduction of the homentropic inviscid Euler equations to ordi-
nary differential equations (ODEs), an analysis of the remain-
ing conditions for obtaining a physically relevant solution,
and an example solution for the modified Tait EOS. Finally,
a summary and recommendation for future work is provided
in Sec. VI.

II. MATHEMATICAL MODEL

A. Euler equations

As shown by numerous authors [34,35], we can write
the one-dimensional (1D) inviscid compressible flow (Euler)
equations as follows:

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

[
∂u

∂r
+ nu

r

]
= 0, (2)

∂u

∂t
+ u

∂u

∂r
+ 1

ρ

∂P

∂r
= 0, (3)

∂E

∂t
+ u

∂E

∂r
+ P

ρ

[
∂u

∂r
+ nu

r

]
= 0, (4)

where the mass density ρ(r, t ), radial flow velocity u(r, t ),
pressure P(r, t ), and total energy per unit mass E (r, t ) are
functions of the position coordinate r and time t . The space
index n = 0, 1, or 2 corresponds to 1D planar, cylindrical,
or spherical geometries, respectively. In addition, E (r, t ) is a
function of the specific internal energy I (SIE; internal energy
per unit mass), that is

E (r, t ) = I (r, t ) + 1
2 [u(r, t )]2. (5)

Equations (2)–(4) represent conservation of mass, momen-
tum, and total energy. Using Eqs. (2), (3), and (5), Eq. (4)
may be rewritten as

∂I

∂t
+ u

∂I

∂r
− u

ρ

∂P

∂r
− P

ρ2

[
∂ρ

∂t
+ u

∂ρ

∂r

]
= 0, (6)

and it may be further simplified using the fundamental ther-
modynamic relation [36–40] between ρ, P, I , the fluid tem-
perature T , and the fluid entropy S,

dI = T dS + P

ρ2
dρ. (7)

Using the chain rule in conjunction with Eq. (7), Eq. (6)
becomes

∂S

∂t
+ u

∂S

∂r
= 0, (8)

the equation for isentropic flow; this result is expected as
dissipative processes (e.g., viscosity and heat conduction) are
absent from Eqs. (2)–(4). If the entropy S is assumed to be
a function of the fluid density ρ and pressure P, then Eq. (8)
may be expanded to yield

∂S

∂ρ

∣∣∣∣
P

[
∂ρ

∂t
+ u

∂ρ

∂r

]
+ ∂S

∂P

∣∣∣∣
ρ

[
∂P

∂t
+ u

∂P

∂r

]
= 0, (9)

or substituting Eq. (2)

∂P

∂t
+ u

∂P

∂r
+ KS

[
∂u

∂r
+ nu

r

]
= 0, (10)
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where the adiabatic bulk modulus KS (ρ, P) is defined by

KS (ρ, P) = −ρ

∂S
∂ρ

∣∣
P

∂S
∂P

∣∣
ρ

, (11)

or, as shown by Axford [41],

KS (ρ, P) = P

ρ

∂P

∂I

∣∣∣∣
ρ

+ ρ
∂P

∂ρ

∣∣∣∣
I

. (12)

The adiabatic bulk modulus appears only in the total energy
(or entropy) conservation relation given by Eq. (10) and is a
measure of the fluid’s resistance to uniform, constant entropy
compression. It is obtained from an incomplete EOS of the
form P = P(ρ, I ) via Eq. (12) and is also related to the fluid
sound speed c by

KS = ρc2. (13)

B. Isentropic equation of state

To further simplify the inviscid Euler equations, we will
consider the following “isentropic” EOS:

P = f (ρ), (14)

where f is an arbitrary function of the fluid density. An
example of an isentropic EOS is the modified Tait EOS
as discussed in Sec. I. In this relation, the parameters B
and γ ostensibly depend on the entropy S but are taken to
be material-dependent constants over the pressure regime of
interest.

The adiabatic bulk modulus corresponding to an isentropic
EOS can be determined using Eq. (12):

KS (ρ) = ρ f ′(ρ), (15)

where the prime denotes the derivative with respect to the
indicated argument. Then, with Eq. (11), the corresponding
fluid entropy may be determined from

f ′(ρ)
∂S

∂P
+ ∂S

∂ρ
= 0, (16)

which may be solved using the method of characteristics to
yield

S = F [P − f (ρ)], (17)

where F is an arbitrary function of the indicated argument.
Given Eq. (14), any bounded, nontrivial (i.e., giving S �= 0)
parametrization of F yields

S = S0, (18)

where S0 is a constant [an example of F that yields Eq. (18)
is F = S0]. Since the entropy associated with Eq. (14) is
constant, flows featuring this EOS are referred to as isentropic.
For the case where S is also independent of r and t (i.e.,
constant everywhere, and not just along streamlines; physi-
cally, this phenomenon may originate through the judicious
selection of initial or boundary conditions), the resulting flows
are referred to as homentropic. The homentropic subcase will
be emphasized throughout the remainder of this work.

With this result, the specific internal energy I of the fluid
may be calculated using Eqs. (7) and (14),

dI = f (ρ)

ρ2
dρ, (19)

such that

I = g(ρ) + I0, (20)

where g is related to f via

g =
∫

f (ρ)

ρ2
dρ, (21)

→ f = ρ2g′, (22)

and I0 is a constant set by an initial condition [e.g., I (ρinitial ) =
0, for some reference density ρinitial].

C. Reduced inviscid Euler equations

We can first take advantage of Eq. (12) to rewrite Eqs. (3)
and (4), that is,

KS (ρ) = P

ρ

∂P

∂I

∣∣∣∣
ρ

+ ρ
∂P

∂ρ

∣∣∣∣
I

, (23)

= P

ρ

∂ f

∂I

∣∣∣∣
ρ

+ ρ
∂ f

∂ρ

∣∣∣∣
I

, (24)

= 0 + ρ
∂ f

∂ρ

∣∣∣∣
I

, (25)

→ ∂ f

∂ρ

∣∣∣∣
I

= KS (ρ)

ρ
. (26)

Substituting Eqs. (14) and (26) into Eq. (10) gives

r
df

dρ

∂ρ

∂t
+ ru

df

dρ

∂ρ

∂r
+ rρ

df

dρ

∂u

∂r
+ nρu

df

dρ
= 0. (27)

Dividing by df
dρ

yields Eq. (2). Therefore, conservation of en-
ergy is automatically satisfied and is a redundant condition for
an isentropic EOS. Therefore, the resulting Euler equations
collapse to

r
∂ρ

∂t
+ ru

∂ρ

∂r
+ ρr

∂u

∂r
+ nρu = 0, (28)

ρ
∂u

∂t
+ ρu

∂u

∂r
+ df

dρ

∂ρ

∂r
= 0. (29)

Substituting Eq. (26) into Eq. (29) yields

ρ2 ∂u

∂t
+ ρ2u

∂u

∂r
+ KS (ρ)

∂ρ

∂r
= 0. (30)

As a result, given a specific form of Eq. (14), Eqs. (28) and
(30) are a closed system of two partial differential equations
(PDEs) with respect to ρ and u.

D. Piecewise homentropic flows

Like their more general counterparts, the homentropic
inviscid Euler equations may admit discontinuous solutions.
These solutions are possible provided that mass and mo-
mentum are conserved across any discontinuities. This is the
case as Eqs. (2) and (3) contain no sources or sinks of these
quantities.
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Equations ensuring conservation of mass and momentum
across a discontinuity are derived in numerous sources (e.g.,
Zel’dovich and Raizer [22]). In the current case, they may be
written as

(u1 − D)ρ1 = (u2 − D)ρ2, (31)

P1 + ρ1(u1 − D)u1 = P2 + ρ2(u2 − D)u2. (32)

In Eqs. (31) and (32), the subscripts 1 and 2 denote the fluid
state immediately adjacent to either side of the discontinu-
ity that propagates with an arbitrary time-dependent veloc-
ity D(t ). Equations (31) and (32) are the general Rankine-
Hugoniot discontinuity “jump conditions” corresponding to
Eqs. (28) and (30). While Eqs. (2) and (3) are separately
valid on either side of the discontinuity, Eqs. (28) and (30)
are essentially internal boundary conditions that are applied
at the interface position to connect the regional solutions of
Eqs. (28) and (30) into a global solution.

As was the case with the inviscid Euler equations them-
selves, the isentropic EOS may be used to further reduce the
jump conditions given by Eqs. (31) and (32). In particular,
with Eq. (14), Eqs. (31) and (32) become

(u1 − D)ρ1 = (u2 − D)ρ2, (33)

f (ρ1) + ρ1(u1 − D)u1 = f (ρ2) + ρ2(u2 − D)u2. (34)

These relations represent a general result for an isentropic
EOS. Of particular interest to this work are scenarios where
Eqs. (33) and (34) characterize the propagation of a shock
wave. As discussed by Zel’dovich and Raizer [22], physical
assumptions relevant to shock waves are

ρ2 > ρ1, (35)

u2 �= u1, (36)

P2 > P1, (37)

where the subscripts 1 and 2 denote the unshocked and
shocked states, respectively.

In addition to these relations, Eq. (18) sets the entropy of
a flow associated with an isentropic EOS. As discussed in
Sec. II B, the assumption of Eq. (14) results in Eq. (18). When
a shock wave is present, any otherwise homentropic flow is
instead piecewise homentropic, with the entropy assuming
piecewise constant values on either side of the discontinuity.
In this scenario the entropy jump across the shock wave
must be strictly positive, as required by the second law of
thermodynamics.

III. SYMMETRY ANALYSIS

A. Differential forms

A goal of this work is to subject Eqs. (28) and (30) to sym-
metry analysis, with an emphasis on invariance under scaling
transformations in all variables. To affect this procedure, we
will employ the “isovector” approach of Harrison and Es-
tabrook [42], which requires all relevant differential equations
be recast as an equivalent exterior differential system (EDS).

For scaling transformations, there are of course several
ways to determine invariance of structures such as Eqs. (28)
and (30): direct substitution of global transformations, exe-
cution of Lie’s [43–48] “classical” method (see, for example,
Ovsiannikov [17], Bluman and collaborators [49,50], Olver
[51], or Cantwell [52]), or the isovector method (see, for
example, Edelen [53], Suhubi [54], and Stephani [55]). This
last method possesses several advantages:

(1) The isovector method is a more intuitive geometric
setting for differential equations.

(2) The isovector method obviates the need for sometimes
cumbersome prolongation formulas associated with extending
infinitesimal group generators to a higher-dimensional mani-
fold.

(3) Using the isovector method, relatively simple symme-
try analysis results (e.g., invariance under scaling) are readily
extended to analyses featuring more general transformations.

The drawback of the isovector formalism is that it requires
the relevant differential equations to be equivalently express-
ible as a first-order system. This condition is already met in
the case of the homentropic inviscid Euler equations.

To express Eqs. (28) and (30) as an EDS, they may first be
multiplied by the differential volume element dt ∧ dr to yield

rdρ ∧ dr − rudρ ∧ dt − ρrdu ∧ dt + nρudt ∧ dr ≡ μ1,

(38)

ρ2du ∧ dr − ρ2udu ∧ dt − KS (ρ)dρ ∧ dt ≡ μ2, (39)

where Eqs. (38) and (39) are referred to as a system of “2-
forms.”2 In constructing these expressions, it has been implic-
itly assumed that all partial derivatives may be regarded as
quotients of differentials identified by the exterior derivative
operator d . The operator ∧ used to multiply differentials is
known as a wedge product, which has the properties

dqi ∧ dq j = −dq j ∧ dqi, (40)

dqi ∧ dqi = 0, (41)

for all general coordinates qi. More comprehensive overviews
of differential geometry are provided in Edelen [53], Suhubi
[54], Bryant et al. [56], and Bourbaki [57].

As written, Eqs. (38) and (39) indicate that previously
independent and dependent variables are interpreted as en-
tirely independent of each other and represent differential
objects in a higher-dimensional manifold. To establish the
equivalence between Eqs. (38) and (39) and their PDE coun-
terparts Eqs. (28) and (30), we must enforce the relationship
between independent and dependent variables. This process is
referred to as “sectioning” by Harrison and Estabrook [42]. In
this process, the solution submanifold is chosen by selecting
independent and dependent variables; as such, the exterior

2A “0-form” is any function, while a “1-form” includes only single
differentials denoted by d . 2-forms are collections of products of two
1-forms, as indicated. Forms of arbitrary order can also in general be
defined as necessary.
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derivatives of the selected dependent variables become total
derivatives in the independent variables:

dρ = ∂ρ

∂r
dr + ∂ρ

∂t
dt, (42)

du = ∂u

∂r
dr + ∂u

∂t
dt . (43)

Substituting Eqs. (42) and (43) into Eqs. (38) and (39) yields

r

[
∂ρ

∂r
dr + ∂ρ

∂t
dt

]
∧ dr − ru

[
∂ρ

∂r
dr + ∂ρ

∂t
dt

]
∧ dt

− ρr

[
∂u

∂r
dr + ∂u

∂t
dt

]
∧ dt + nρudt ∧ dr, (44)

and

ρ2

[
∂u

∂r
dr + ∂u

∂t
dt

]
∧ dr − ρ2u

[
∂u

∂r
dr + ∂u

∂t
dt

]
∧ dt

− KS

[
∂ρ

∂r
dr + ∂ρ

∂t
dt

]
∧ dt . (45)

Using the properties from Eqs. (40) and (41) we have[
r
∂ρ

∂t
+ ru

∂ρ

∂r
+ ρr

∂u

∂r
+ nρu

]
dt ∧ dr, (46)[

ρ2 ∂u

∂t
+ ρ2u

∂u

∂r
+ KS (ρ)

∂ρ

∂r

]
dt ∧ dr. (47)

By setting these relations equal to zero, the nontrivial solution
(i.e., dt ∧ dr �= 0) that follows is Eqs. (28) and (30). This
is process is referred to as “annulling” by Harrison and
Estabrook [42].

Given the equivalence between Eqs. (28) and (30) and
Eqs. (38) and (39), the latter will be the system of 2-forms
subjected to symmetry analysis in the developments to follow.

B. Invariance

For a continuously variable transformation parameter ε

with identity element ε = 0, an objective of this work is to
determine for what values of the constants a1–a6 the global
scaling transformations given by

tnew = eεa1t, (48)

rnew = eεa2 r, (49)

ρnew = eεa3ρ, (50)

unew = eεa4 u, (51)

Pnew = eεa5 P, (52)

Inew = eεa6 I, (53)

leave invariant the EDS representation of the homentropic
inviscid Euler equations.

The identification of all admissible point-groups associ-
ated with the more general inviscid Euler equations [i.e.,
Eqs. (2), (3), and (10)] coupled to an arbitrary EOS has
been performed by Ovsiannikov [17] and numerous other
authors. As summarized by, for example, Axford [41], the

admissible point-groups of Eqs. (2), (3), and (10) condition-
ally include time translation, space translation, three sepa-
rate scalings, and a Galilean boost. Projective symmetries
are also available under severely restricted geometries and
EOS instantiations [6]. In conjunction with these analyses,
Ovsiannikov [17] demonstrates that the time translation and
one of the scaling symmetries are always present in Eqs. (2),
(3), and (10), regardless of geometry and the form of the
EOS.

In addition to these general studies, Ramsey and Baty
[34] provide a complementary discussion centered on the
conditions under which Eqs. (2), (3), and (10) are invari-
ant under all three possible scaling groups. As discussed
extensively by Barenblatt [9,10], scaling phenonena are of
particular importance for numerous reasons: including as
manifestations of “phenomenon of basic importance,” inter-
mediate asymptotic entities, or guides for the construction of
scaled experiments in the appropriate contexts. As such, in
the sprit of the work of Barenblatt [9,10], Ramsey and Baty
[34], and Albright et al. [58], the emphasis of this work is
restricted from the broader symmetry classes discussed above
to invariance under the scaling transformations indicated by
Eqs. (48)–(53).

Put simply, if we substitute Eqs. (48)–(53) into Eqs. (38)
and (39), invariance demands that the resulting relations are
unchanged aside from the indexing from the original variable
to the “new” variable. For example, the invariance condition
for the homentropic inviscid Euler EDS is expressed as

μ1(tnew, rnew, ρnew, unew, Pnew, Inew) = μ1(t, r, ρ, u, P, I ),

(54)

μ2(tnew, rnew, ρnew, unew, Pnew, Inew) = μ2(t, r, ρ, u, P, I ).

(55)

As originally demonstrated by Sophus Lie [43–48], this global
concept of invariance may be equivalently realized in terms
of a local (or infinitesimal) representation in terms of a Lie
derivative operation. While potentially not immediately rec-
ognizable as advantageous in the context of Eqs. (48)–(53),
as was the case with the EDS representation discussed in
Sec. III A, Lie’s formalism is host to distinct advantages.
Namely, when generalized to arbitrary transformations, the
equations that determine the form of Eqs. (48)–(53) leaving
Eqs. (54) and (55) invariant are typically nonlinear, and thus
may be difficult if not impossible to solve. The infinitesimal
framework reduces all determining equations for a1–a6 (or
their generalization to arbitrary transformations) to linear
equations.

To construct the infinitesimal analog of Eqs. (54) and (55),
the left-hand sides of these relations are expanded in a Taylor
series about the identity element ε = 0:

μi,new = μi + ε
∂μi

∂ε

∣∣∣∣
ε=0

+ 1

2
ε2 ∂2μi

∂ε2

∣∣∣∣
ε=0

+ · · · . (56)

Using the chain rule, we find the ε-derivative may be
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re-expressed as

∂

∂ε
= ∂tnew

∂ε

∣∣∣∣
ε=0

∂

∂t
+ ∂rnew

∂ε

∣∣∣∣
ε=0

∂

∂r
+ ∂ρnew

∂ε

∣∣∣∣
ε=0

∂

∂ρ

+ ∂unew

∂ε

∣∣∣∣
ε=0

∂

∂u
+ ∂Pnew

∂ε

∣∣∣∣
ε=0

∂

∂P
+ ∂Inew

∂ε

∣∣∣∣
ε=0

∂

∂I
. (57)

Applying the appropriate derivatives to Eqs. (48)–(53) and
substituting them into Eq. (57) we find

∂

∂ε
= χ = a1t

∂

∂t
+ a2r

∂

∂r
+ a3ρ

∂

∂ρ

+ a4u
∂

∂u
+ a5P

∂

∂P
+ a6I

∂

∂I
. (58)

Using the results from Eq. (58), Eq. (56) becomes

μi,new = μi + εχμi + 1

2
ε2χχμi + · · · , (59)

and using Eq. (54) and (55) (i.e., the global invariance condi-
tion), we find

εχμi + 1

2
ε2χχμi + · · · = 0. (60)

Therefore, the nontrivial (i.e., ε �= 0) solution of Eq. (60) is

a1t
∂μi

∂t
+ a2r

∂μi

∂r
+ a3ρ

∂μi

∂ρ

+ a4u
∂μi

∂u
+ a5P

∂μi

∂P
+ a6I

∂μi

∂I
= 0, (61)

if and only if

μi = 0, (62)

for all i. This infinitesimal invariance condition is en-
tirely equivalent to the global invariance condition given by
Eqs. (54) and (55).

Finally, while Eq. (61) represents invariance only of the
EDS system, any ancillary conditions appearing in a problem
formulation must similarly be invariant under the operation of
the Lie derivative or “group generator” χ .

IV. SCALING ANALYSIS

Having constructed the scaling group generator χ given by
Eq. (58), all features of a given problem must be simultane-
ously invariant under its operation for the entire problem to be
invariant under the indicated group of scaling transformations.
For a problem featuring a shock wave in a fluid characterized
by an isentropic EOS, not only must Eqs. (38) and (39) be
invariant [as indicated by Eqs. (61) and (62)], but so must:

(1) The shock jump conditions given by Eqs. (31) and
(32),

(2) The conditions on the isentropic EOS given by
Eqs. (14), (20), and (7),

(3) Any other conditions specific to a problem under in-
vestigation.

If at least one of the scaling constants ai appearing in
Eq. (58) is revealed to be nonzero as an outcome of the
analysis, then the problem is invariant under a scaling trans-
formation.

A. Reduced inviscid Euler equations

In evaluating Eq. (61) with Eq. (62), it is necessary to
understand the interaction of the group generator χ with both
the exterior derivative d and wedge product ∧ operators.
As noted in Sec. III B, the group generator χ is actually a
Lie derivative, which is itself a generalization in a space of
arbitrary dimension of the more familiar directional derivative
as appearing in elementary vector calculus. As discussed by
Edelen [53], Suhubi [54], and many others, Lie and exterior
derivatives commute:

χd (qi ) = dχ (qi ), (63)

where qi retains its previous definition. Moreover, the Lie
derivative applied to an arbitrary 2-form obeys the product
rule for derivatives:

χ (dq1 ∧ dq2) = dχq1 ∧ q2 + q1 ∧ dχq2, (64)

and easily generalizes to forms of arbitrary order. These two
important properties are another example of of an advantage
of the isovector formalism: group generator operations on
differential forms are simple to evaluate.

Using the properties from Eqs. (63) and (64), Eq. (38), with
Eq. (62) for i = 1, becomes

χμ1 = (χr)dρ ∧ dr + rd (χρ) ∧ dr + rdρ ∧ d (χr)

− (χr)udρ ∧ dt − r(χu)dρ ∧ dt − rud (χρ) ∧ dt

− rudρ ∧ d (χt ) − (χρ)rdu ∧ dt − ρ(χr)du ∧ dt

− ρrd (χu) ∧ dt − ρrdu ∧ d (χt )

+ n(χρ)udt ∧ dr + nρ(χu)dt ∧ dr

+ nρud (χt ) ∧ dr + nρudt ∧ d (χr) = 0. (65)

Applying each derivative of the group generator leads to

(a2 + a3 + a2)rdρ ∧ dr − (a2 + a4 + a3 + a1)rudρ ∧ dt

− (a2 + a3 + a4 + a1)rρdu ∧ dt

+ (a3 + a4 + a1 + a2)nρudt ∧ dr = 0, (66)

which, using Eq. (38), simplifies to

(a2 + a3 + a2)(rudρ ∧ dt + rρdu ∧ dt − rρudt ∧ dr)

− (a2 + a4 + a3 + a1)rudρ ∧ dt

− (a2 + a3 + a4 + a1)rρdu ∧ dt

+ (a3 + a4 + a1 + a2)nρudt ∧ dr = 0. (67)

Multiplying each term and simplifying, we have

(a2 + a3 + a2 − a2 − a4 − a3 − a1)rudρ ∧ dt

+ (a2 + a3 + a2 − a3 − a4 − a1 − a2)rρdu ∧ dt

+ (a3 + a4 + a1 + a2 − a2 − a3 − a2)nρudt ∧ dr = 0.

(68)

For Eq. (68) to be nontrivially satisfied, the coefficient of
each unique 2-form appearing within it must be zero. This
procedure yields three redundant conditions:

a4 = a2 − a1, (69)

which encapsulates the dimensionally correct statement that
the fluid velocity u scales as r

t .
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We can perform a similar analysis on Eq. (39):

χμ2 = (χρ2)du ∧ dr + ρ2d (χu) ∧ dr + ρ2du ∧ d (χr)

− (χρ2)udu ∧ dt − ρ2(χu)du ∧ dt

− ρ2ud (χu) ∧ dt − ρ2udu ∧ d (χt ) − [χKS (ρ)]

× dρ ∧ dt − KSdρ ∧ d (χt ) = 0. (70)

Simplifying, as we have done above, we have

(−a2 + a4 + a1)ρ2du ∧ dr

+
[

KS (−a3 − 2a4) + a3ρ
dKS

dρ

]
dρ ∧ dt = 0. (71)

Again, for Eq. (71) to be nontrivially satisfied, the coefficient
of each unique 2-form appearing within it must be zero. The
coefficient of the du ∧ dr term is identically zero by Eq. (69),
leaving for the dρ ∧ dt term:

a3ρ
dKS

dρ
− (a3 + 2a2 − 2a1)KS = 0, (72)

which is an ordinary differential equation (ODE) for KS that
has multiple solutions.

Given Eq. (69), Eq. (61) becomes

χ = a1t
∂

∂t
+ a2r

∂

∂r
+ a3ρ

∂

∂ρ
+ (a2 − a1)u

∂

∂u

+ a5P
∂

∂P
+ a6I

∂

∂I
. (73)

This result is the most general group generator associated with
invariance of the homentropic inviscid Euler equations. How-
ever, this generator may assume different forms depending on
the choice of KS .

B. Rankine-Hugoniot jump conditions

We now perform the same analysis as we did in Sec. IV A
for Eqs. (31) and (32) by applying Eq. (73).3 First we rewrite
Eqs. (31) and (32) as follows:

μ3 ≡ (u1 − D)ρ1 − (u2 − D)ρ2, (74)

μ4 ≡ P1 − P2 + ρ1(u1 − D)u1 − ρ2(u2 − D)u2. (75)

Applying Eq. (73) to Eq. (74) we have

χμ3 = (a3 + a2 − a1)(ρ1u1 − ρ2u2)
(76)

+
(

a1t
dD

dt
+ a3D

)
ρ2 −

(
a1t

dD

dt
+ a3D

)
ρ1 = 0.

Using Eq. (74) we have[
a1t

dD

dt
+ (a3 − a3 − a2 + a1)D

]
ρ2

−
[

a1t
dD

dt
+ (a3 − a3 − a2 + a1)D

]
ρ1 = 0. (77)

3For completeness, we use Eq. (73) to find the constraints on all
variables.

To satisfy this invariance condition, we must solve the
following differential equation:

a1t
dD

dt
+ (a1 − a2)D = 0, (78)

whose nontrivial (i.e., a1 �= 0) solution is

D(t ) = D0tσ , (79)

where σ = a2−a1
a1

, and D0 is an arbitrary integration constant.
We now apply Eq. (73) to Eq. (75) which results in

χμ4 = a5(P1 − P2) + (a3 + 2a2 − 2a1)ρ1u2
1

−
[

(a3 + a2 − a1)D + a1t
dD

dt

]

+ (a3 + 2a2 − 2a1)ρ1u2
1

−
[

(a3 + a2 − a1)D + a1t
dD

dt

]
. (80)

Using Eq. (75) and collecting like terms, we have the follow-
ing determining equations:

a5 − a3 − 2a2 + 2a1 = 0, (81)

a1t
dD

dt
+ (a1 − a2)D = 0. (82)

Since Eq. (82) has been satisfied by Eq. (79) we find that

a5 = a3 + 2a2 − 2a1, (83)

which further reduces Eq. (73) to

χ = a1t
∂

∂t
+ a2r

∂

∂r
+ a3ρ

∂

∂ρ
+ (a2 − a1)u

∂

∂u

+ (a3 + 2a2 − 2a1)P
∂

∂P
+ a6I

∂

∂I
. (84)

Like Eq. (69), Eq. (83) encapsulates the dimensionally correct
statement that pressure P scales like the density ρ times a
specific energy, which has units of r2/t2.

C. Thermodynamic constraints

In addition to the dynamical equations, the thermodynamic
constraints encoded in the homentropic inviscid Euler system
must likewise be invariant, as has already been partially
established in the construction of Eq. (72). Further constraints
include the fundamental thermodynamic relation given by
Eq. (7) with dS = 0 and the isentropic definitions of P and
I given by Eqs. (14) and (20):

μ5 = dI − P

ρ2
dρ, (85)

μ6 = P − f (ρ), (86)

μ7 = I − g(ρ) − I0. (87)

We first conduct our symmetry analysis on Eq. (85) with the
understanding that the fundamental thermodynamic relation is
in fact a 1-form, and the total derivatives appearing within it
may be regarded as exterior derivatives. As such, invariance
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of this relation under χ demands

χμ5 = a6dI − (2a2 − 2a1)
P

ρ2
dρ = 0, (88)

when μ5 = 0, which yields

a6 = 2a2 − 2a1. (89)

Again, this reinforces our prior understanding that specific
energy I scales in units of r2/t2.

As a result, Eq. (84) can now be written entirely in terms
of the scaling constants a1, a2, and a3:

χ = a1t
∂

∂t
+ a2r

∂

∂r
+ a3ρ

∂

∂ρ
+ (a2 − a1)u

∂

∂u

+ (a3 + 2a2 − 2a1)P
∂

∂P
+ (2a2 − 2a1)I

∂

∂I
. (90)

With Eq. (90), invariance of the isentropic definition of the
pressure P [i.e., Eq. (86)] demands

χ [P − f (ρ)] = (a3 + 2a2 − 2a1)P − a3 f ′(ρ) = 0, (91)

when μ6 = 0, which yields an ODE that f must satisfy

(a3 + 2a2 − 2a1) f (ρ) − a3ρ f ′(ρ) = 0. (92)

Likewise, with Eq. (90), invariance of the isentropic defi-
nition of the SIE I [i.e., Eq. (87)] demands

χ [I − g(ρ) − I0] = (2a2 − 2a1)I − a3g′(ρ) = 0, (93)

when μ7 = 0, which yields an ODE that g must satisfy:

(2a2 − 2a1)[g(ρ) + I0] − a3ρg′(ρ) = 0. (94)

The EOS functions f and g are connected through satisfac-
tion of the (isentropic) fundamental thermodynamic relation
represented by Eq. (21), and must also be consistent with an
associated adiabatic bulk modulus KS calculated via Eq. (15).
As a result, the solutions of the ODEs given by Eqs. (72),
(92), and (94) must be mutually consistent so as to enable
the presence of various scaling symmetries. The possible
solutions of these three ODEs fall under four cases.

1. Case I: a1 �= a2 �= a3 �= 0

The solution to Eq. (72) is

KS (ρ) = A1ρ
ψ, (95)

where A1 is an arbitrary integration constant, and ψ ≡
a3+2a2−2a1

a3
. With Eqs. (15) and (20), the associated EOS for

P and I is given by

P = A1

ψ
ρψ + P0, (96)

I = A1

ψ (ψ − 1)
ρψ−1 − P0

ρ
+ I0, (97)

where P0 is an arbitrary integration constant. Inserting these
results into Eqs. (92) and (94) results in the requirements
P0 = I0 = 0 for these constraints to be satisfied; A1 and ψ

are otherwise unconstrained (aside from assuming values that
yield positive P and I , on the grounds of physical realism).

Moreover, with P0 = I0 = 0, Eqs. (96) and (97) may be
combined to yield an EOS of the form P = P(ρ, I ):

P = (ψ − 1)ρI, (98)

which is of the ideal gas type. This case is thus associated with
the wide body of existing literature associated with scaling
solutions in the context of an ideal gas EOS [1,22].

In this case, Eq. (90) is as indicated.

2. Case II: a1 = a2 and a3 �= 0

We can rewrite Eq. (72) as follows:

a3ρ
∂KS

∂ρ
− a3KS = 0, (99)

whose solution is

KS (ρ) = A2ρ, (100)

where A2 is an arbitrary integration constant. With Eqs. (15)
and (20), the associated EOS for P and I is given by

P = A2ρ + P0, (101)

I = A2 ln(ρ) − P0

ρ
+ I0, (102)

where P0 is an arbitrary integration constant. Inserting these
results into Eqs. (92) and (94) results in the requirements
A2 = 0 and P0 = 0 for these constraints to be satisfied; I0 is
otherwise unconstrained. This case is thus trivial; as it features
P = 0 for any ρ and I .

In this case, Eq. (90) reduces to

χ = a1t
∂

∂t
+ a1r

∂

∂r
+ a3ρ

∂

∂ρ
+ a3P

∂

∂P
. (103)

3. Case III: a1 �= a2 and a3 = 0

We can rewrite Eq. (72) as follows:

(a1 − a2)KS = 0, (104)

whose solution is KS (ρ) = 0. With Eqs. (15) and (20), the
associated EOS for P and I is given by

P = P0, (105)

I = −P0

ρ
+ I0, (106)

where P0 is an arbitrary integration constant. Inserting these
results into Eqs. (92) and (94) results in the requirements P0 =
I0 = 0 for these constraints to be satisfied. Like the previous
case, this case is trivial as it features P = I = 0 for any ρ.

In this case, Eq. (90) reduces to

χ = a1t
∂

∂t
+ a2r

∂

∂r
+ (a2 − a1)u

∂

∂u

+ (2a2 − 2a1)P
∂

∂P
+ (2a2 − 2a1)I

∂

∂I
. (107)

4. Case IV: a1 = a2 and a3 = 0

We can see that Eq. (72) is solved identically, allowing
the adiabatic bulk modulus and associated EOS to be uncon-
strained aside from the thermodynamic requirements given by
Eqs. (15) and (20). This case is thus a direct manifestation of
the “universal” scaling symmetry as discussed by Ovsiannkov
[17] and Ramsey and Baty [34]; physically, this symmetry is
associated with purely kinematic (i.e., r − t only) scaling of
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TABLE I. Summary of possible scale-invariant isentropic EOS
classes and associated shock trajectories. Both f (ρ ) and g(ρ ) are
replaced with their physical variables P(ρ ) and I (ρ ), respectively.

KS (ρ ) P(ρ ) I (ρ ) D(t )

a1 �= a2 �= a3 �= 0 A1ρ
ψ A1

ψ
ρψ A1

ψ (ψ−1) ρ
ψ−1 + I0 D0tσ

a1 = a2, a3 �= 0 0 0 I0 D0

a1 �= a2, a3 = 0 0 0 0 D0tσ

a1 = a2, a3 = 0 Arbitrary Arbitrary Arbitrary D0

the space and time variables, and not any dependent variables.
As such, on physical grounds the EOS is necessarily uncon-
strained.

In this case, Eq. (90) becomes

χ = a1t
∂

∂t
+ a1r

∂

∂r
. (108)

To summarize, the four possible EOS cases appearing in
Secs. IV C 1–IV C 4 are reported in Table I.

D. Similarity variables

In addition to providing a convenient means for interro-
gating the group invariance properties of various algebraic
structures, infinitesimal group generators can also be used to
construct changes of coordinates in terms of which invariant
differential equations may be reduced to simpler structures
(e.g., from PDEs to ODEs). In particular, for an arbitrary
function H of all independent and dependent variables span-
ning a problem formulation (in the current case, composed of
r, t, ρ, u, P, and I), the PDE condition

χH (r, t, ρ, u, P, I ) = 0 (109)

indicates that H is invariant under the group of transforma-
tions generated by χ . The PDE given by Eq. (109) may
be solved using the method of characteristics. The arbitrary
constants of integration arising from this solution are invariant
by construction under the action of χ , and thus may be used
to develop similarity variables in terms of which the original
system of PDEs may be reformulated and simplified.

The characteristic equations associated with Eq. (90) are
given by

dt

a1t
= dr

a2r
= dρ

a3ρ
= du

(a2 − a1)u
= dP

(a3 + 2a2 − 2a1)P

= dI

(2a2 − 2a1)I
= dH

0
, (110)

or, H = const. along the characteristic curves defined by

dt

a1t
= dr

a2r
, (111)

dρ

a3ρ
= dr

a2r
, (112)

du

(a2 − a1)u
= dr

a2r
, (113)

dP

(a3 + 2a2 − 2a1)P
= dr

a2r
, (114)

TABLE II. Summary of variable definitions involving scaling
constants.

Power-law variable Scaling constants

σ
a2−a1

a1

ψ
a3+2a2−2a1

a3

α
a2
a1

ζ
a3
a2

λ
a3+2a2−2a1

a2

β
a2−a1

a2

τ
2a2−2a1

a2

dI

(2a2 − 2a1)I
= dr

a2r
. (115)

The solutions of Eqs. (111)–(115) are

ξ = r

tα
, (116)

ρ = rζw(ξ ), (117)

P = rλm(ξ ), (118)

u = rβ j(ξ ), (119)

I = rτ h(ξ ), (120)

where ξ , w, m, j, and h are the constants of integration (i.e.,
the invariants of the group) that may be interpreted as a change
of variables, and α ≡ a2

a1
, ζ ≡ a3

a2
, τ ≡ 2a2−2a1

a2
, λ ≡ a3+2a2−2a1

a2
,

and β ≡ a2−a1
a2

(as summarized in Table II, along with other
constants appearing elsewhere). As detailed in the Appendix,
we now substitute Eqs. (117) and (119) into Eqs. (28) and (30)
and find the following coupled, reduced system of equations:

w′ = ξw j′ + (ζ + β + n) jw

ξ
(
αξ

1
α − j

) , (121)

j′ = r−ζ−2βKS[rζw](ζw + ξw′) + βw2 j2

ξw2
(
αξ

1
α − j

) , (122)

where the primes indicate ordinary derivatives with respect
to the new independent variable ξ , and KS is a function of
the indicated argument in square brackets. Equation (121) is
an ODE in w(ξ ) and j(ξ ). As written, Eq. (122) is not, but
it reduces further for each of the four cases outlined in
Secs. IV C 1–IV C 4.

1. Case I: a1 �= a2 �= a3 �= 0

In this case, ζ , β, and α are as previously indicated, KS

is given by Eq. (95), and Eq. (121) is as indicated. Equation
(122) becomes

j′ = A1w
ψ (ζw + ξw′) + βw2 j2

ξw2
(
αξ

1
α − j

) . (123)

As noted in Sec. IV C 1, this case is consistent with an ideal
gas EOS. As noted in the wide body of existing literature for
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this case [1,22], Eqs. (121) and (123) may be further reduced.
In particular, with the change of variables

j(ξ ) = ξ
a1
a2 J (ξ ), (124)

w(ξ ) = ξ
a1a3

(a2−a1 )a2 W (ξ ), (125)

Equations (121) and (123) may be solved as an algebraic
system for the derivatives W ′(ξ ) and J ′(ξ ) to yield

ξW ′ = �1

�
, (126)

ξJ ′ = �2

�
, (127)

where

�1 = a2
1(a3 + na2)J2W

2a1
a3

+1 − a2(a2 − a1 + a3 + na2)

× JW
2a1
a3

+1 − A1a2
1a3W

2a1
a3

+1

+ a3
[
(a2 − a1J )2W

2a1
a3 − A1a2

1W
2a2
a3

]
a1 − a2

W, (128)

�2 = a1(a1 − a2)J2(a1J − a2)W
2a1
a3

− A1a1{a1[a1 − a2(1 + n)]}
× JW

2a2
a3 + A1a1a2a3W

2a2
a3

+ a1
[
(a2 − a1J )2W

2a1
a3 − A1a2

1W
2a2
a3

]
J, (129)

� = a2(a2 − a1J )2W
2a1
a2 − A1a2

1a2W
2a2
a3 . (130)

Equations (126) and (127) are an autonomous system of first
order ODEs, and may thus be rewritten as a single ODE

dW

dJ
= �1

�2
, (131)

supplemented by a quadrature

1

ξ

dξ

dJ
= �

�2
, (132)

which may be evaluated subsequently once W (J ) has been
determined from Eq. (131).

2. Cases II and III: a1 = a2 and a3 �= 0 or a1 �= a2 and a3 = 0

In either of these cases, P = 0 as discussed in Secs. IV C 2
and IV C 3. Physically, in this scenario, the absence of driving
pressure constrains each fluid particle to move with its initial
velocity. In the context of Eqs. (28) and (30), this behavior
manifests through the momentum conservation collapsing to
the inviscid Burgers’ equation, which in general may be
solved in isolation for the velocity field; the associated density
field may then be constructed through sequential solution of
the mass conservation relation, with the velocity solution as
input.

If in this zero-pressure EOS case it is further prescribed
that the associated solutions possess either the Case II or III
scaling symmetries, then the mass density and velocity fields

must satisfy Eqs. (121) and (122) with KS = 0 and ζ = 0. In
this case, Eqs. (121) and (122) become

w′ = ξw j′ + (β + n) jw

ξ
(
αξ

1
α − j

) , (133)

j′ = βw2 j2

ξw2
(
αξ

1
α − j

) . (134)

As expected given the aforementioned physical arguments,
Eq. (134) may be solved independently for j (and thus the
velocity field), and the resulting solution used to sequentially
solve Eq. (133).

Following this procedure for Case II (featuring α = 1 and
β = 0), Eqs. (133) and (134) may be further reduced, and
solved exactly to yield

w(ξ ) = w0(ξ − j0)nξ−n, (135)

j = j0, (136)

where j0 and w0 are arbitrary constants of integration.
For Case III, α and β are unconstrained, and Eqs. (133) and

(134) as written have no known closed-form solution.

3. Case IV: a1 = a2 and a3 = 0

In this case, ζ = 0, β = 0, and α = 1, KS is arbitrary, and
Eq. (121) becomes

w′ = ξw j′ + n jw

ξ (ξ − j)
. (137)

Equation (122) becomes

j′ = KS[w]w′

w2(ξ − j)
. (138)

Equations (137) and (138) are ODEs in w(ξ ) and j(ξ ), which
may be further reduced under perscription of the adiabatic
bulk modulus KS[w].

V. EXAMPLE SOLUTIONS

The utility of the the preceding calculations is demon-
strated through their application in constructing exact or semi-
analytical solutions of the underlying mathematical model.
We provide two examples: (1) a shock-free solution featuring
a variety of prescribed properties, and (2) the classical Noh
problem, featuring a stagnation shock propagating outward
from a rigid wall into a gas infalling with constant velocity.

A. Shock-free solution

For an arbitrary isentropic EOS, scale-invariant compress-
ible flow solutions must originate from Eqs. (137) and (138).
By construction any such solution of these equations is in-
variant only under the universal scaling group generated by
Eq. (108), as discussed in Sec. IV C 4.

To construct a purely homentropic (i.e., shock-free or
smooth) solution of Eqs. (137) and (138), consider a flow
featuring

j(ξ ) = −ξ . (139)
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In the physical variables associated with Case IV, this assump-
tion corresponds to

u(r, t ) = − r

t
(140)

and resembles some of the shock-free flow scenarios dis-
seminated by, for example, Coggeshall [6]. With Eq. (139),
Eqs. (137) and (138) become, respectively,

w′ = − (n + 1)ξw

2ξ 2
, (141)

−1 = KSw
′

2w2ξ
, (142)

indicating that the problem geometry (represented by n) and
the EOS (represented by KS) must be mutually constrained to
enable a nontrivial solution for w(ξ ). The exact form of this
constraint will depend on the exact form the EOS assumes.

To further illustrate this phenomenon, an example isen-
tropic EOS is the modified Tait EOS given by Eq. (1). This
results in, with Eq. (12),

KS = Bγ

(
ρ

ρref

)γ

(143)

= Bγ

ρ
γ

ref

wγ , (144)

which may then be substituted into Eq. (142) to yield

−1 = ωwγ−2w′

2ξ
, (145)

where

ω = Bγ

ρ
γ

ref

. (146)

Otherwise, Eq. (141) remains unchanged. The solutions of
Eqs. (141) and (145) are, respectively,

w(ξ ) = w0ξ
− n+1

2 , (147)

w(ξ ) =
[

(1 − γ )

(
ξ 2

ω
− w1

)] 1
γ−1

, (148)

where w0 and w1 are arbitrary constants of integration. Simul-
taneous satisfaction of both forms of w then requires

w1 = 0, (149)

w0 =
(

1 − γ

ω

) 1
γ−1

, (150)

γ = n − 3

n + 1
, (151)

thus yielding a constraint involving both n and the material-
dependent parameter γ . Given that the problem geometry
factor n may only assume the values n = 0, 1, or 2, only
specific modified Tait EOS forms give rise to shock-free,
homentropic flows featuring density fields of the form given
by Eq. (140). Equation (151) indicates that γ < 0 in all cases.
With Eq. (146), this constraint then indicates B < 0 for ω to
be positive definite, and thus w0 given by Eq. (150) to be
real-valued.

When all of above conditions are satisfied, for Case IV ξ =
r
t and w(ξ ) = ρ(r, t ); moreover, P(r, t ) and I (r, t ) are given
by Eqs. (1) and (20), respectively. The solution in this case is
thus comprised of u(r, t ) given by Eq. (140), and

ρ(r, t ) = w0

( r

t

) 2
γ−1

, (152)

P(r, t ) = B

[(
w0

ρref

)γ ( r

t

) 2γ

γ−1 − 1

]
, (153)

I (r, t ) = I0 + B

ρref

[
w0

ρref

( r

t

) 2
γ−1

]−1

×
{

1 + 1

γ − 1

[(
w0

ρref

)γ ( r

t

) 2γ

γ−1

]}
. (154)

For the notional parametrization ρref = 1.0 g
cm3 and B =

−10−3 Mbar, Eqs. (140) and (152)–(154) are plotted in Fig. 1
as functions of ξ for all three choices of n. Plotting these
solutions as functions of ξ clearly reveals the self-similar
nature of the flow field: the various shapes depicted in Fig. 1
will hold for any choice of r and t (except t = 0, when
the flow field is unbounded), aside from a change of scale.
Furthermore, as previously discussed for this solution, the
geometry factor n sets a unique choice of γ in the modified
Tait EOS, thus controlling the shape of the density, pressure,
and SIE profiles in each case.

Figure 1 also depicts the pressure field reaching a zero
value at a different ξ -position for each value of n (or γ );
beyond these points the solution ceases to have physical mean-
ing. The flow field given by Eqs. (140) and (152)–(154) may
thus be interpreted to terminate when P = 0. With Eq. (153),
the ξ -position ξ0 where this phenomenon occurs is given by

ξ0 =
(

ρref

w0

) γ−1
2γ

. (155)

With the Case IV definition of ξ = r
t , ξ0 may be alternatively

realized as the space-time trajectory of the zero-pressure
surface r0(t ):

r0(t ) = ξ0t . (156)

Since by construction ξ0 > 0, Eqs. (140) and (152)–(154)
terminated at r = r0(t ) may thus be interpreted as an expand-
ing bubble solution. Inside of the bubble, the flow field is
constrianed to obey Eqs. (140) and (152)–(154).

B. The classical Noh problem

First introduced by Noh in 1987 [4], the Noh prob-
lem has become “the workhorse of compressible hydrocode
verification for over three decades” [32]. Its distinguishing
features, potential uses, advantages, disadvantages, physical
implications, connections to other physical scenarios, possible
generalizations, and a variety of related topics have been
extensively documented; see Ramsey et al. [31], Velikovich
and Giuliani [32], and references therein for additional details.

Of principal interest to this work is the Noh problem
formulation as depicted in Fig. 2. The distinguishing features
of this scenario are:

(1) A constant inflow velocity for all times,
(2) An initially constant inflow density.
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FIG. 1. Flow field for example shock-free, homentropic solution with modified Tait EOS. Black, blue, and gray lines denote n = 0, 1, and
2, respectively. The figures show the speed (u), density (ρ), pressure (P), and SIE (I) as a function of similarity variable (ξ = r/t).

A less restrictive variant of the Noh problem allowing the
inflow velocity to vary in space and time has recently been
investigated by Velikovich and Giuliani [32], so we will refer
to the traditional scenario as the “classical” Noh problem.

In this scenario, the impingement of the inflow against the
rigid wall at r = 0 (or origin in 1D curvlinear geometries)
gives rise to a shock wave that propagates outward into the
still-incoming fluid. This shock wave brings the fluid behind
it to rest. If the impingement at r = 0 occurs at t = 0, then for
t > 0 the global velocity field u(r, t ) may be written as

u(r, t ) = u1 = −u0, rs < r < ∞, (157)

u(r, t ) = u2 = 0, 0 < r < rs, (158)

FIG. 2. Notional depiction of the Noh problem.

where the subscripts 1 and 2 again denote the unshocked
and shocked regions separated by the time-dependent shock
position rs(t ), and u0 is a positive constant. The only other
constraint featured in the problem formulation is that given
by the second distinguishing feature noted above, i.e.,

ρ(r, t = 0) = ρ0, (159)

where ρ0 is a positive constant.
Conditions for the existence of semianalytic or even

closed-form solutions to the classical Noh problem in any of
the 1D geometries (i.e., n = 0, 1, or 2) have been discussed
at length by Axford [41], Ramsey et al. [31], Burnett et al.
[8], and Velikovich and Giuliani [32]. The existence of the 1D
planar (n = 0) solutions is a direct consequence of arguments
advanced by Courant and Friedrichs [59] and Menikoff and
Plohr [5] for generalized Riemann problems (including shock-
piston problems as a special case), though these arguments
can also be cast in terms of the universal symmetries inherent
Eqs. (2)–(4). Similar conditions in 1D cylindrical or spherical
geometries (n = 1 or 2, respectively) are more complicated,
and require tighter constraints on the EOS closure models
coupled to Eqs. (2)–(4).

Existing mathematical arguments regarding the matter are
further illuminated by an intuitive physical interpretation: in
the curvilinear geometries, the constant velocity inflow within
the unshocked region carries fluid parcels of constant mass
into progressively smaller volumes. As time evolves, the fluid
density in the unshocked region must therefore increase with
decreasing r. This variable density field ostensibly gives rise
to a variable pressure field, which through momentum con-
servation would invalidate the constant velocity assumption.
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The only means through which a self-consistent curvilinear
solution can be restored are:

(i) Relax the constant velocity assumption inherent to the
classical Noh problem, as done by Velikovich and Giuliani
[32],

(ii) Employ an EOS allowing for a simultaneous constant
pressure and nonconstant density state. Several examples of
EOS closure laws featuring this property are provided by
Axford [41], Ramsey et al. [31], and Burnett et al. [8].

To temporarily obviate these complications in proceeding
with the construction of an example solution, we restrict our
attention to 1D planar geometry. As discussed in Sec. IV,
for a classical Noh problem to exist as a manifestation of
the scaling group represented by Eq. (90), any conditions
particular to it [i.e., Eqs. (158) and (159)] must be invariant
under the action of the group generator χ . To begin, we can
rewrite Eqs. (157) and (159) as

ϒ1 ≡ u + u0 = 0, (160)

ϒ2 ≡ ρ − ρ0 = 0. (161)

Applying Eq. (90) to Eq. (160) (when Eq. (160) is itself
satisfied) yields

(a2 − a1)u0 = 0. (162)

This condition can only be satisfied nontrivially when a2 =
a1. It follows that applying Eq. (90) to Eq. (161) [when
Eq. (161) is itself satisfied] yields

a3ρ0 = 0. (163)

The only nontrivial solution of this condition is a3 = 0.
As a result of the invariance of the classical 1D planar Noh

problem’s distinguishing conditions, Eq. (90) reduces to

χ = a1t
∂

∂t
+ a1r

∂

∂r
, (164)

corresponding to Case 4 as disseminated in Secs. IV C 4
and IV D 3. The fact that an arbitrary KS (and thus EOS)
is admissible for the classical 1D planar Noh problem is
thus immediately evident from symmetry considerations. The
similarity variables associated with this scenario are given
by Eqs. (116)–(120) with ζ = 0, β = 0, and α = 1, and the
relevant ODEs for use in the construction of a piecewise
solution are given by Eqs. (137) and (138).

1. The unshocked region

For the classical Noh problem, the unshocked region is
constrained to obey Eq. (157). With this condition j(ξ ) =
−u0, and Eq. (137) becomes

w′ = 0, (165)

the solution of which is w(ξ ) = ρ(r, t ) = const. Given
Eq. (159), this solution yields ρ(r, t ) = ρ0 throughout the un-
shocked region. With this result, Eq. (138) is then identically
satisfied.

Finally, the pressure and SIE in the unshocked region are
then given by Eqs. (14) and (20) with ρ = ρ0. Like the fluid
density and velocity, these properties are constant throughout
the unshocked region.

2. The shocked region

For the classical Noh problem, the shocked region is
constrained to obey Eq. (158). With this condition j(ξ ) = 0,
and Eq. (137) again becomes Eq. (165). The solution of this
equation is again w(ξ ) = ρ(r, t ) = const. However, unlike the
unshocked region, there is no initial condition on the fluid
density of the shocked region. As such, the density throughout
this region will be denoted w(ξ ) = ρ(r, t ) = ρ2, where ρ2 is a
constant to be determined. With this result, Eq. (138) is once
again identically satisfied.

As before, the pressure and SIE in the shocked region are
then given by Eqs. (14) and (20) with ρ = ρ2. Like the fluid
density and velocity, these properties are constant throughout
the shocked region.

3. Rankine-Hugoniot jump conditions

Symmetry analysis of the Rankine-Hugoniot jump con-
ditions provided in Sec. IV B yields Eq. (79) as the scale-
invariant shock speed. With a2 = a1 for the classical 1D
planar Noh problem, Eq. (79) becomes

D(t ) = D0, (166)

i.e., the classical 1D planar Noh problem features a constant
shock velocity (which is to be determined). This outcome
is also intuitive on physical grounds, as the constant inflow
velocity in the unshocked region must give rise to a constant
speed stagnation shock.

With this result, Eq. (158), knowledge of the constant state
throughout the entire unshocked region, and the isentropic
EOS given by Eq. (14), Eqs. (31) and (32) themselves become
two algebraic equations in the two unknowns given by the
post-shock density ρ2 and constant shock speed D0:

D0 = ρ0u0

ρ2 − ρ0
, (167)

f (ρ2) = f (ρ0) + ρ0(u0 + D0)u0. (168)

Inserting Eq. (167) into Eq. (168) then yields an algebraic
equation exclusively in terms of ρ2:

f (ρ2) = f (ρ0) + ρ0u2
0

(
1

1 − ρ0

ρ2

)
, (169)

which, depending on the form of the isentropic EOS f (ρ), is
potentially a transcendental algebraic equation for ρ2. With a
solution to this equation, the shock velocity may be computed
via Eq. (167), the post-shock pressure via Eq. (14), and the
post-shock SIE via Eq. (20). While this solution provides only
the immediate post-shock state, given the developments of
Sec. V B 2 it also represents the constant state of the entire
shocked region for the classical Noh problem.

4. Modified Tait EOS and the Noh problem

As discussed in Sec. I, a canonical example of an isentropic
EOS is the modified Tait EOS given by Eq. (1). The modified
Tait form for f (ρ) given by Eq. (1) may be substituted into
all of the otherwise arbitrary developments of Sec. V B to
construct an example solution for the classical Noh problem.
As discussed in Sec. V B, the construction of a 1D planar in-
stantitation of this problem for an isentropic EOS is piecewise

053101-13



GIRON, RAMSEY, AND BATY PHYSICAL REVIEW E 101, 053101 (2020)

FIG. 3. Shocked state of the classical 1D planar Noh problem for the modified Tait EOS. For a given value of u0, the indicated value of
each state variable holds throughout the entire shocked region, and the constant shock speed is as indicated. The dashed horizontal line near
the top of each panel corresponds to the maximum pressure at which the modified Tait EOS is assumed to be valid (see Zel’dovich and Raizer
[22]). The figures show the shocked density (ρ2), speed (D0), pressure (P2), and SIE (I2) as a function of inflow velocity (u0).

constant, and is essentially encapsulated in a ρ2 > ρ0 solution
of Eq. (169). For the modified Tait EOS, this relation becomes

B

[(
ρ2

ρref

)γ

−
(

ρ0

ρref

)γ ]
= ρ0u2

0

(
1

1 − ρ0

ρ2

)
, (170)

which, given numerical values for the inflow velocity u0,
unshocked density ρ0, and the material-dependent constants
ρref , B, and γ , can be solved using a root extraction technique.

As an example, Zel’dovich and Raizer [22] give the follow-
ing modified Tait parametrization for water:

ρref = 1.0
g

cm3
,

B = 3.214 × 10−3 Mbar,

γ = 7.0.

Assuming ρ = ρ0 = ρref throughout the unshocked region,
the resulting numerical solution of Eq. (170) is given in
Fig. 3(a) for a range of u0 values. The associated shock speed
and shocked fluid pressure, calculated using Eqs. (167) and
(1), are depicted in Figs. 3(b) and 3(c), respectively. The
shocked fluid SIE is calculated using Eqs. (1) and (20), which
yield

I = f (ρ2) + γ B

(γ − 1)ρ2
+ I0, (171)

and is depicted in Fig. 3(d) for I0 = − γ B
(γ−1)ρ0

, so that
I (ρ0) = 0.

Analysis of Eq. (170) shows that a ρ2 > ρ0 solution is
obtained for any u0 > 0. When u0 satisfies this condition,
ρ2 increases from ρ0 monotonically and without limit with
increasing u0, as depicted in Fig. 3(a). The shock velocity
likewise increases monotonically and without limit with in-
creasing u0, but as u0 → 0 it limits to the sound speed c in the
unshocked region, which may be calculated using Eqs. (1),
(12), (13), and ρ = ρref as

c =
√

KS

ρ
, =

√
γ B

ρref
. (172)

The shocked pressure and shocked SIE likewise increase from
zero monotonically and without limit with increasing u0.

The reason for these behaviors is associated with the
modified Tait EOS entropy. Using Eqs. (1), (11), and (12), the
entropy in the shocked region may be calculated as

S = F [(P + B)ρ−γ ] + const.,

= F
(
Bρ

γ

ref

) + const., (173)

which is explicitly constant for any function F of the indicated
argument. In particular, the entropy in the shocked region
assumes this value for any inflow velocity u0, and thus is
independent of shock strength. Equation (173) thus indicates
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that given a constant entropy in the shocked region, increasing
u0 must always be counterbalanced by increasing ρ2.

This behavior is distinct from that encountered in the
classical ideal gas Noh problem, which features a maximum
shock compression limit independent of u0. Following from
the definition of the ideal gas entropy given by Zel’dovich
and Raizer [22], and the classical 1D planar ideal gas solution
disseminated by Ramsey et al. [31], the entropy in the shocked
region for this case is given by

S = cv ln(Pρ−γ ) + const.,

= cv ln

[
1

2
u2

0ρ
1−γ

0 (γ + 1)

(
γ + 1

γ − 1

)−γ
]

+ const., (174)

where cv and γ are interpreted as the constant specific heat
capacity at constant volume and constant adiabatic index,
respectively. This result clearly depends on u0 and is thus
not explicitly constant with respect to that parameter. The
difference in behavior of ρ2(u0) between these two cases is
thus clearly revealed to be one consequence of invoking an
isentropic EOS assumption in the construction of a classical
1D planar Noh problem.

VI. DISCUSSION AND CONCLUSION

Under the assumption of an isentropic EOS of the form
given by Eq. (14), the 1D inviscid Euler equations may be col-
lapsed to a set of two coupled, nonlinear PDEs. In this formu-
lation total energy conservation is automatically ensured, as is
isentropic flow. A special case of this phenomenon involving
explicitly constant entropy is referred to as homentropic flow.
Piecewise isentropic or homentropic flows featuring shock
waves may also exist in these scenarios, with the shocked
and unshocked states connected by an appropriate form of the
Rankine-Hugoniot jump conditions.

Moreover, the equations governing any of the aforemen-
tioned flows may be subjected to symmetry analysis, in the
interest of reducing the PDEs and any ancillary conditions to
simpler structures (e.g., ODEs) more easily amenable to either
exact or semianalytical solution. For cases where the included
isentropic EOS (encoded in an adibatic bulk modulus KS) is
left as an arbitrary function of the fluid density ρ, symmetry
analysis yields conditional forms the EOS may assume so as
to ensure the presence of various symmetries (e.g., scaling
transformations). When the isentropic EOS assumes one of
these forms, the PDEs governing the associated fluid motion
may be reduced to ODEs.

The ODEs obtained via symmetry analysis are likely easier
to solve than their PDE counterparts, and thus may be used
to construct a variety of exact or semianalytical solutions
with desired properties. Under scaling transformations, one
such example is the classical Noh problem featuring a con-
stant velocity inflow directed against a rigid wall (1D planar
geometry) or curvilinear origin (1D cylindrical or spherical
geometries), giving rise to an outward propagating, constant
velocity stagnation shock. For the case of an arbitrary isen-
tropic EOS, the solution of this problem essentially reduces
to a transcendental solve in the shocked density ρ2, which
may then be used to reconstruct the shock trajectory and entire
shocked flow field.

A. Recommendations for future work

The modified Tait EOS given by Eq. (1) is similar in form
to the ideal gas EOS, namely,

P = (γ − 1)ρI, (175)

in that the adibatic bulk moduli calculated from them are
only slightly different in form. A potentially fruitful avenue
for future work would be to further assess the consequences
these differences manifest in solutions of various Noh-like
problems, and to investigate the conditions under which one of
the result sets can be obtained from the other. Similar efforts
could be performed with respect to the recent work of both
Deschner et al. [33] and Velikovich and Giuliani [32].

Additional natural extensions of this work include (but are
not limited to):

(1) Extension of the current results for the modified Tait
EOS to other, similar EOS examples with validity in a variety
of regimes and contexts. One such example is given by the
Birch-Murnaghan EOS, as reported by Birch [60].

(2) Determination of the conditions for scale-invariance of
the homentropic Euler equations in other coordinate systems
(e.g., 2D or 3D). Such an analysis should follow easily from
that performed in Sec. IV, and can also be connected to
various outcomes reported by Ovsiannkov [17] or Holm [18].

(3) Determination of conditions for the presence of any
symmetries (i.e., not limited to scaling transformations) in the
homentropic Euler equations, in any coordinate system. For
example, in addition to the kinematic scaling (r − t) trans-
formation indicated by Eq. (164), the 1D planar instantiation
of Eqs. (28) and (30) is for any EOS invariant under time
translation, space translation, and Galilean boost transforma-
tions (see, for example, Axford [41]). The association with
and interplay of these various transformations with canonical
solutions remains to be rigorously assessed.

(4) Construction of Sedov, Guderley, or other analogous
test problems featuring shock waves in the piecewise homen-
tropic setting, following from the presence of any symmetries.

(5) Construction of additional shock-free solutions (e.g.,
in the style of Coggeshall [6] or McHardy et al. [61]) of the
homentropic Euler equations in any coordinate system.

(6) Establishment of the connections between any of the
symmetries or associated new solutions described above, and
their ideal gas counterparts (if they exist).

Given the wide scope of potential work available in the
context of the isentropic Euler equations, this work may serve
as a foundation for any future developments and applications
along these lines.
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APPENDIX: SIMILARITY VARIABLES SUBSTITUTION
INTO THE EULER EQUATIONS

The following relations will be useful in the calculation of
Eqs. (121) and (122) which are:

β = 1 − 1

α
, (A1)

and

t−1 = ξ
1
α r− 1

α = ξ
1
α rβ−1, (A2)

and

∂ξ

∂t
= −αrt−α−1, (A3)

∂ξ

∂r
= tα. (A4)

Taking each respective time and space derivative of Eqs. (117)
and (119), we have

∂ρ

∂t
= rζ ∂ξ

∂t

dw

dξ
= −αrζ+1t−α−1 dw

dξ
, (A5)

∂ρ

∂r
= ζ rζ−1w + rζ ∂ξ

∂r

dw

dξ
= ζ rζ−1w + rζ t−α dw

dξ
, (A6)

∂u

∂t
= rβ ∂ξ

∂t

d j

dξ
= −αrβ+1t−α−1 d j

dξ
, (A7)

∂u

∂r
= βrβ−1 j + rβ ∂ξ

∂r

d j

dξ
= βrβ−1 j + rβt−α d j

dξ
. (A8)

We first perform the substitution for Eq. (28), that is

0 = r
∂ρ

∂t
+ ru

∂ρ

∂r
+ rρ

∂u

∂r
+ nρu, (A9)

0 = r

[
−αrζ+1t−α−1 dw

dξ

]
+ rrβ j

[
ζ rζ−1w + rζ t−α dw

dξ

]

+ rrζw

[
βrβ−1 j + rβt−α d j

dξ

]
+ nrζ rβw j, (A10)

0 = −αrζ+1t−1ξ
dw

dξ
+ ζ rζ+β jw + rζ+βξ j

dw

dξ

+βrζ+β jw + rζ+βξw
d j

dξ
+ nrζ+βw j, (A11)

using Eq. (A2) we have

0 = −αrζ+βξ 1+ 1
α

dw

dξ
+ [ζ + β + n]rζ+β jw

+ rζ+βξ

[
w

d j

dξ
+ j

dw

dξ

]
, (A12)

0 = [−αξ 1+ 1
α + ξ j]

dw

dξ
+ [ζ + β + n] jw + ξw

d j

dξ
,

(A13)

dw

dξ
=

ξw(ξ ) d j
dξ

+ (ζ + β + n) j(ξ )w(ξ )

ξ (αξ
1
α − j)

, (A14)

which is Eq. (121).
Finally, we perform the substitution for Eq. (30). It follows,

0 = ρ2 ∂u

∂t
+ ρ2u

∂u

∂r
+ KS (ρ)

∂ρ

∂r
, (A15)

0 = ρ2ζ w2

[
−αrβ+1t−α−1 d j

dξ

]

+ r2ζ rβ jw2

[
βrβ−1 j + rβt−α d j

dξ

]

+ KS[rζw]

[
ζ rζ−1w + rζ t−α dw

dξ

]
, (A16)

0 = −αr2ζ+βt−1ξw2 d j

dξ
+ βr2ζ+2β−1w2 j2

+ r2ζ+2βt−αw2 j
d j

dξ
+ ζKS[rζw]rζ−1w

+ Ks(r
ζw)rζ−1ξ

dw

dξ
, (A17)

using Eq. (A2) we have

0 = −αr2ζ+2β−1ξ 1+ 1
α w2 d j

dξ
+ βr2ζ+2β−1w2 j2

+ r2ζ+2β−1ξw2 j
d j

dξ
+ ζKS[rζw]rζ−1w

+ KS[rζw]rζ−1ξ
dw

dξ
, (A18)

0 = [−αw2ξ 1+ 1
α + ξw2]

d j

dξ
+ βw2 j2

+ r−ζ−2βKS[rζw]

(
ζw + ξ

dw

dξ

)
, (A19)

d j

dξ
=

r−ζ−2βKS[rζw(ξ )]
(
ζw + ξ dw

dξ

) + βw2 j2

ξw2(αξ
1
α − j)

, (A20)

which is Eq. (122).
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