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Real-Time Change Point Detection with
application to Smart Home Time Series Data
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Abstract—Change Point Detection (CPD) is the problem of discovering time points at which the behavior of a time series
changes abruptly. In this paper, we present a novel real-time nonparametric change point detection algorithm called SEP, which
uses Separation distance as a divergence measure to detect change points in high-dimensional time series. Through
experiments on artificial and real-world datasets, we demonstrate the usefulness of the proposed method in comparison with

existing methods
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1 INTRODUCTION

hange Point Detection (CPD) is the problem of discov-

ering time points at which the behavior of a time series
changes abruptly. CPD is a well-established area and has
been studied over the past several decades in the fields of
data mining, statistics, and computer science. CPD finds ap-
plication in a broad range of real-world problems such as
medical condition monitoring [1], climate change detection
[2][3], speech recognition [4][5], image analysis [6], and hu-
man activity analysis [7][8][9]. Many algorithms have been
designed, enhanced, and adapted for change point detec-
tion. These techniques include both supervised and unsu-
pervised methods, chosen based on the desired outcome of
the algorithm. While change point detection is a well-inves-
tigated field, research on real-time CPD is more recent and
rare. In contrast with traditional CPD approaches, real-time
CPD algorithms run concurrently with the processes they
are monitoring, processing each data point as it becomes
available. The goal is to detect a change point as soon as pos-
sible after it occurs, ideally before the next data point arrives
[10]. However, online algorithms place different require-
ments on the amount of new data that must be viewed be-
fore a change can be detected.

Recently, direct density ratio change point detection al-
gorithms have been introduced which address these chal-
lenges [11]. These algorithms detect change points between
two consecutive windows of data by estimating their prob-
ability density ratio based on the assumption that the prob-
ability densities of two consecutive windows are the same if
they belong to the same state. The goal of this paper is to
further advance this line of research by improving the cur-
rent start-of-the-art method and introducing a new unsuper-
vised algorithm for change point detection in time-series
data which we call SEParation change point detection, or
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SEP. The proposed approach can be applied to data of arbi-
trary dimensionality and detects change points in near real
time. Our novel SEP change point detection method em-
ploys new probability metrics and improves the perfor-
mance of existing density ratio-based change point detec-
tion algorithms by providing a more sensitive change score.
As we demonstrate, this method results in detection of more
subtle and a greater variety of changes.

This paper offers several contributions to change point
detection. We first introduce a new CPD method built on the
notion of SEParation distance and contrast the approach
with existing CPD methodologies. Second, we further com-
plete the set of relationships that have been defined between
existing probability metrics by relating the Separation dis-
tance and Pearson metrics. Finally, we evaluate and imple-
ment SEP using artificial datasets and benchmark datasets.
We also evaluate SEP on a complex multidimensional real-
world application, namely detecting changes in sensor-
based human behavior data. CPD offers several valuable op-
portunities in such a setting, including health event detec-
tion, breakpoint detection, and activity segmentation
[12][13]. Detecting change points in smart home sensor data
is valuable for detecting health events and identifying activ-
ity transition points. Our experimental results on real and
synthetic data indicate that SEP performs as well or better
than existing methods at classical CPD and offers new fea-
tures that are valuable for complex real-time problems such
as smart home-based human behavior analysis.

2 BACKGROUND

In order to introduce our SEP method, we first present def-
initions of key terms with a formulation of the change
point detection problem and probability functions that we
use throughout the paper. We also review existing change
point detection methods, focusing primarily on those that
employ density ratio methods.

2.1 Definitions and Problem Formulation

We begin this discussion with definitions of time series
data and change points.
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Definition 1. A time series data stream is an infinite se-
quence of elements S={x;,...,x;...}, where x; is a d-dimen-
sional data vector arriving at time stamp i [14].

Time series data reflects the current status of a process
or system. When the parameters governing the process do
not change for a period of time, the process and corre-
sponding time series subsequence remains in a single state.
Two consecutive distinct states are distinguished by a
change point. Indeed, a change point represents a transi-
tion between different states in a process that generates the
time series data.

Definition 2. If X is a random variable defined on R, for
every subset B of R we can define a measure ux that reflects
the probability density function of the subset. This func-
tion, shown in Equation 1, is used by some methods to
compare data distributions and detect change points.

ux(B) = P(X) Q)

where (R, B, ux) is a probability space and P is the prob-

ability of X in B. If X is continuous, we can define proba-
bility density function f: R— [0, ) such that

Pla<X<b}= f: f(x)dx 2)

Definition 3. Given a time series S, we assume time
stamp ¢ is a change point if the probability density function
f created from sliding-window data observed before and
after t are different either in terms of the type of the func-
tion or the parameters characterizing the function change.
Let {xy,,...,xx ..., xs} be a sequence of time series data points
that are observed as part of times series S. Change point
detection (CPD) can be defined as the problem of hypoth-
esis testing between two alternatives consisting of the null
hypothesis Hy: “No change occurs in time series S at time
stamp k*” and the alternative hypothesis Ha: “A change
occurs in time series S at time stamp k*” [15][16].

HO-’fxm =L, R f;k*w zﬁm
Hy: There exists m<k*<n such that

where f,; is the probability density function of the slid-
ing window starting at point x; and k*is a time in the series
where the process is changing states.

A change point detection algorithm is an algorithm that
utilizes information about time series data to determine if
and where change points occur. Change point detection al-
gorithms typically need to consider data before and after
potential change points to make this determination. As a
result, we also want to consider the efficiency with which
these decisions can be made. This leads us to the next def-
inition.

Definition 4. A change point detection algorithm can be said
to perform in e-real time when the algorithm makes a deci-
sion about a change point occurring at time k* after a delay
of ¢ time points. In other words, the e-real time algorithm
needs to examine data points xy+, Xi+1,.., Xk in order to de-
cide whether or not k* is a change point. An offline algo-
rithm can then be viewed as co-real time and a completely-
online algorithm is O-real time because for every data
point, it can predict whether or not a change point occurs
before the new data point. Because of their increased de-
tection efficiency, algorithms that operate with smaller &
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values may lead to more responsive change point detection
applications.

2.2 Existing CPD Methods

Change point detection algorithms have been studied for
decades and there are multiple techniques described in the
literature. Figure 1 provides an overview of existing
change point detection algorithms. Both supervised and
unsupervised methods have been used to solve CPD prob-
lems. When a supervised approach is employed for change
point detection, machine learning algorithms can be
trained as either binary or multi-class classifiers. If the
number of possible process states is specified, the change
point detection algorithm may be trained to find each state
boundary, making it a multi-class problem. A sliding win-
dow moves through the data, considering each possible di-
vision between two data points as a possible state bound-
ary or change point [17][18][19]. While this approach has a
simpler training phase, a sufficient amount and diversity
of training data needs to be provided to represent not only
each individual state class but also all possible transitions
from one state to another. On the other hand, detecting
each state separately may provide sufficient information to
find both the nature and the amount of detected change.

An alternative is to treat change point detection as a bi-
nary classification problem, where all of the possible state
transition (change point) sequences represent one class
and all of the within-state sequences represent a second
class. While only two classes need to be learned in this case,
this is a much more complex learning problem if the num-
ber of possible types of transitions is large [7][20][21]. In
addition to detecting changes, a virtual classifier can be
used to also interpret the change that occurs between two
consecutive windows [22]. For each pair of consecutive
windows, the virtual classifier attaches a hypothetical label
(+1) to samples from the first window and (-1) to samples
from the second window. The algorithm then trains a vir-
tual classifier (VC) using any supervised method that gen-
erates human-interpretable rules (e.g., a decision tree)
based on the labeled data points. If there is a change point
between two windows, the classifier should correctly clas-
sify it and the classification accuracy should be signifi-
cantly higher than random noise. Once the change point is
detected, the classifier is re-trained using all of the samples
in the two neighboring windows. If some features play a
dominant role in the classifier, then they are the ones that
characterize the difference.

Unsupervised learning algorithms are typically used to
discover patterns (and pattern changes) in unlabeled data.
In the context of change point detection, such algorithms
can be used to segment time series data by finding change
points based on statistical features of the data. Unsuper-
vised segmentation is attractive because it may handle a
variety of different situations without requiring prior
training for each state and state change. One traditional so-
lution is subspace modelling, which represents a time se-
ries using state spaces and detects change points by iden-
tifying the state space distances. This approach has a
strong connection with a system identification method,
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which has been thoroughly studied in control theory. As-
suming we have two consecutive sliding windows, Sub-
space Identification (SI) [23] estimates an extended observ-
ability matrix based on a state space model that is gener-
ated for each sliding window and calculates the gap be-
tween subspaces as a measure of the change. Singular
Spectrum Transformation (SST) [24] is another similar ap-
proach which calculates distance-based change point
scores by comparing singular spectrums of two trajectory
matrices for consecutive windows.
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Fig. 1. Overview of change point detection algorithms.
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Probabilistic methods estimate probability distributions
for each new window based on the data that has been ob-
served since the previous candidate change point. As an
example, the Bayesian algorithm designed by Adams and
McKay [25] uses Bayes’ theorem to estimate a current
state’s run-length (r;) which represents the time that has
elapsed in the time series since the last change point. Given
the run length at a time point ¢, the run length at the next
time point t+1 can either reset back to 0 (if a change point
occurs at time #) or increase by 1 (if the current state con-
tinues for one more time unit). Using a different type of
probabilistic approach, the Gaussian Process (GP) algo-
rithm by Saatci, et al. [26] defines a time series data point
as noisy Gaussian distribution function values. Given a
time series, the GP function will make a normal distribu-
tion-based prediction of the data point at time f. Change
points are detected by comparing the predicted and actual
data point values.

Clustering methods, which are very popular for change
point detection, group time series data into clusters of sim-
ilar data points that represent their respective states and
find changes by identifying differences between features
of the cluster states. Although it was designed as a time
series segmentation algorithm, SWAB (Sliding Window
and Bottom-up) [27] exemplies this approach and can be

used for change detection. SWAB detects change points by
combining sliding window and bottom-up methods. The
original bottom-up approach first treats each data point as
a separate subsequence, then merges subsequences with
an associated merge cost until the stopping criteria is met.
Extending this further, SWAB also maintains a buffer of
size w to store enough data for 5-6 clusters. The bottom-up
method is applied to the data in the buffer as well as the
leftmost resulting cluster and any corresponding detected
change point is reported. The data corresponding to the re-
ported subsequence are removed from the buffer and re-
placed with the next data in the series. In contrast, the
MDL-based change point detection [28] is a bottom-up
greedy search over the space of clusters which can include
subsequences of different lengths and does not require the
number of clusters to be specified. The Shapelet-based
clustering method [29] is a greedy search algorithm which
attempts to cluster the data based on the shape of the entire
time series. This method searches for a u-shapelet which
can separate and remove a time series state from the rest of
the dataset. The algorithm iteratively repeats this search
among the remaining data until no data remains to be sep-
arated.

Kernel-based methods [30] map observations onto a
higher-dimensional feature space and detect change points
by comparing the homogeneity of each subsequence.
Graph-based techniques have been used as well. The
graph-based technique of Chen and Zhang [15] is a non-
parametric approach that represents time series as a graph
in which its nodes are time series data points. This algo-
rithm then applies a two-sample statistical test to detect
change points based on the graph representation.

In this research, we focus on density ratio change point
detection techniques. We narrow our approach to these
methods because they are unsupervised, can detect change
points in near-real time, and have demonstrated good per-
formance in the literature. These CPD techniques utilize
density ratios based on the observation that the probability
density of two consecutive windows are the same if they
belong to the same state. A typical statistical analysis of
change-point detection analyzes the probability distribu-
tions of data before and after a candidate change point, and
identifies the candidate as a change point if the two distri-
butions are significantly different. One of the early re-
ported density ratio methods is cumulative sum (CUSUM)
[31] which accumulates deviations relative to a specified
target of incoming measurements and indicates that a
change point exists when the cumulative sum exceeds a
specified threshold. The Change Finder (CF) algorithm [32]
reduces the problem of change point detection into time
series-based outlier detection. Since these methods rely on
pre-designed parametric models and they are less flexible
in real-world change point detection scenarios, some re-
cent studies introduce more flexible non-parametric varia-
tions by estimating the ratio of probability densities di-
rectly without needing to perform the actual density esti-
mations. These density ratio-based approaches to change
point detection are among the most popular approaches
and form the basis of our SEP method described in the next
section. The rationale of this density-ratio estimation idea



is that knowing the two densities implies knowing the den-
sity ratio. However, the inverse is not true: knowing the
ratio does not necessarily imply knowing the two densities
because such decomposition is not unique. Thus, direct
density-ratio estimation is substantially simpler than den-
sity estimation. Following this idea, methods of direct den-
sity-ratio estimation have been developed [33][11].

3 SEP CHANGE POINT DETECTION

Recent studies show compared with other change-point
detection methods, density ratio based algorithms offer
several advantages for real world problems [11][34]. As-
suming two probability densities, fi(x) and fi.i(x), corre-
sponding to two consecutive windows, each with length 7,
density ratio-based CPD methods use dissimilarity
measures as a measure of difference between them to de-
termine whether or not there exists a change point between
these two windows. These methods model the density ra-
tio by a non-parametric Gaussian kernel model, shown in
Equations 3 and 4.

fe-1(x)
90 =75 Z ]_[K(xt ) 5
—_ 2

In these equations, 8=(0,...,0,)T represents the set of pa-
rameters for the ratio function to be learned from existing
data points in the current windows, and 0>0 represents the
kernel parameter. In the training phase, the parameters 0
are determined for each window so that a chosen dissimi-
larity measure is minimized. Given a density-ratio estima-
tor gi(x), a dissimilarity measure between windows is cal-
culated during the test phase as a change point score. Since
the higher the change point score is, the more likely the
point is a change point [33][11], these methods identify
change points by comparing scores to a threshold. Existing
direct density ratio change point detection algorithms use
different dissimilarity measures. This means each method
uses different models and optimization processes, thus the
change point score calculation will change based on these
choices.

One of the first direct density ratio CPD methods, the
Kullback-Leibler ~importance estimation procedure
(KLIEP) [35], estimates the density ratio using Kullback-
Leibler (KL) divergence. KL divergence, defined in Equa-
tion 5, is a popular choice for the dissimilarity measure.

fia®
felx )

This problem is a convex optimization problem, so the
unique global optimal solution 0 can be obtained, for ex-
ample, by a gradient projection method. The resulting ap-
proximation of KL divergence is given in Equation 6 [35].
The notation KL and § represent the estimator of KL and g,
respectively.
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Another direct density ratio estimator is uLSIF (Uncon-
strained Least-Squares Importance Fitting) [36], which
uses Pearson (PE) divergence as a dissimilarity measure,
as shown in Equation 7.

ft @
-1)d 7
oY) @ @
As part of the uLSIF training criterion, the density-ratio
model is fitted to the true density ratio under the squared
loss. An approximator of the PE divergence is shown in
Equation 8.

pE= [ £ (

n

Y G+ Y G~ ®)
i=1 i=1

Depending on the value of the second window density
function, the density-ratio value can be unbounded. To
overcome this problem, a-relative PE divergence for 0<o<1
is used as a dissimilarity measure in an approach known
as Relative uLSIF (RuLSIF) [11]. The RuLSIF dissimilarity
measure is defined in Equation 9.

PEy = PE(fiea(¥), afe1 () + (1 — ) fe (%)) (€)

The a-relative density ratio is reduced to a plain density
ratio if a=0 [11][37].

As mentioned, one of the key elements for density ratio-
based methods is the choice of dissimilarity or divergence
measure function. This function computes the difference
between the probability density functions for two consec-
utive windows of data.

A function d(:, ‘) provides an appropriate measure of
difference if and only if the following four conditions are
satisfied [38]:

¢ Non-negativity: ¥ x, y, d(x, y) 20

e Non-degeneracy: d(x, y) =0« x=y

e Symmetry: Vx, y, d(x, y) = d(y, x)

e Triangle inequality: V' x, y, z, d(x, z) <d(x, y) + d(y, z)

A dissimilarity / divergence is a pseudo-difference if it
violates some of the above conditions. There are several
metrics available to quantify the difference between prob-
ability density functions in change point detection algo-
rithms. For example, the KLIEP change point detection al-
gorithm [35] uses the Kullback-Leibler divergence for its
metric, while both uLSIF [36] and RuLSIF [11] use Pearson
divergence. The question is, how does one choose an opti-
mal metric? Alternatively, what are the issues that affect a
metric’s desirability? To answer these questions and deter-
mine if there is another potential metric that can further
improve change point detection, we start by investigating
existing metrics and their relationships.

Table 1 lists different probability metrics found in the
literature. In this table, 4 and v represent two probability
measures while fand g represent their corresponding prob-
ability density functions based on Definition 2. Figure 2
pictorially describes the relationship between these met-
rics. A directed edge from node A to node B annotated by
h(x) means that da < h(dg), where d, is the difference calcu-
lated by dissimilarity measure A. For example, comparing
Kullback-Leibler and Pearson we can see a directed edge
from KL to PE annotated with dx; < log(1+dpr), which
means the difference calculated by Kullback-Leibler metric
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is bounded by the one Pearson metric calculates [39].

When detecting change points, one goal is to generate
change point scores that are maximally sensitive to subtle
changes in the data, because this will offer the greatest po-
tential to identify both subtle and dramatic changes in the
time series. In terms of difference values, this sensitivity
results in a larger range of difference values. Because the
metrics that appear at the end of a chain in Figure 2 have
the largest value, we hypothesize that metrics at the top of
the graph such as Kullback-Leibler divergence, Pearson di-
vergence, and Separation distance are preferable for CPD
algorithms. This hypothesis is supported by a study com-
paring uLSIF and KLIEP change point detection algo-
rithms. Liu et al. [11] showed that both uLSIF and RuLSIF
(using the Pearson metric) outperformed KLIEP (using the
Kullback-Leibler metric). Sugiyama [40] also showed that
the Pearson divergence has higher numerical stability and
is more robust against outliers than Kullback-Leibler di-
vergence. These are the only metrics in Figure 2 that have
been utilized to date in CPD algorithms.

Another metric that provides a large difference is the
Separation distance metric (S). While the graph in Figure 2
indicates that Separation distance has a greater value range
than Total Variation distance (TV), information is not
available about its relationship with the Pearson (PE) or
Kullback-Leibler (KL) metrics. Furthermore, it has nott

TABLE 1
PROBABILITY METRICS [39]

Abbreviation Metric Definition
D Discrepancy SUP|u—v|
H Hellinger distance f WF - Ja)2dx

Kullback-Leibler divergence f
KL f flog(=dx

(relative entropy) q
P Prokhorov metric inf {e:p <v+e}
PE Pearson divergence (x2 dis- f (f — q)? "

tance) q
S Separation distance Max(1 — g)
vV Total variation distance %Z lu—v|

. Kullback-  |log(1 +x)
Separation . Pearson
| Lei bler
1 VX Vx/2
x Vx/2 Tl/4
Total x
. Hellinger
variation —
V2x
X X
. x + ¢(x
Discrepancy $(x) Prokhorov

Fig. 2. Relationships among probability metrics [39].

been investigated for use as a sensitive CPD measure. One
of the unique contributions of this work is to use the Sepa-
ration distance metric to develop a new density ratio-based
change point detection algorithm. To the best of our
knowledge there is not any change point detection algo-
rithm using this metric. We also further complete Figure 2
by adding edges that relate Separation distance to other
known metrics.

We start by deriving the metric for our SEParation dis-
tance CPD algorithm, called SEP. As with the previous
methods, we compare the probability densities of fi(x) and
fra1(x) corresponding to two consecutive windows in the
time series data, each with length n. We model the density
ratio between these probability densities without estimat-
ing the densities f(x) and f.1(x) using Equation 10.

00 =120 %, Bk(xé.xi_l)

i=1

(10)

The parameters 0 in the model g will be determined
from data samples and K is a non-negative basis function.
One appropriate basis function choice is Kernel functions.
We determine the parameters 0 in the model such that the
difference between the actual and estimated ratios is mini-
mized, as shown in Equation 11.

[
169 = [ |22 - 0.0 fie) ax
I
{(f @ -awrele 20w Y
| f (i) = e )f (0] dx, f}zg)zézt(x)

Since the first term in Equation 11 is constant in each
window and does not relate to the estimated ratio, we will
remove it from the minimization process and only use the
second term. By substituting g«(x) in Equation 11 with the
model from Equation 10, we can generate the optimization
problem as shown in Equation 12.

(
| Jawnwa, BE8<gm
J) = [ fiar®)
—9: () fe(x) dx, T = g,(x)
W o (12)
Yoo [ [rGhal)reax,  EE< g0
_ )= j=1 ¢
fr-1(%)

T = g¢(x)

‘i"if li[K(xélxi_l)n(x»dx,
i=1 j=1

Approximating the integrals using empirical averages,
we obtain Equation 13.
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where £ is the n-dimensional vector given by Equation
14.

DN ICCED

i=1 j=1

(14)

Next, we will add the penalty term for the purpose of
regularization and convergence and generate the optimi-
zation problem shown in Equation 15. Here, A>0 denotes
the regularization parameter, which is chosen empirically
by cross-validation [11].

~ A
. T 2T
ming [lh 9|+29 6] (15)

When solving the optimization by setting the first-order
differential to zero, parameter § can be analytically ob-
tained as shown in Equation 16.

1.
6= _Zh (16)

Given a density-ratio estimator g(x), an approximator of
the SEP change point score can finally be constructed as
shown in Equation 17.

SEP = max(0, (% - %Zl g(xi)>)

Similar to RuLSIF and ulSIF method, SEP change detec-
tion offers an analytical solution and is stable. We can then
use SEP scores to detect change points. Considering the
fact that a greater SEP score means that the probability of
a change point is greater, as with the other methods in this
category we reject all candidate points whose SEP values
are lower than a threshold value. To reduce the chance of
false alarms and avoid double change points, we only con-
sider the peak score value as a change point. The threshold
value (Th) will be chosen based on optimal performance
for a particular time series. In our experiments, we identify
a threshold value that optimizes a tradeoff between TPR
and FPR for a subset of the data. Another important pa-
rameter in the SEP algorithm is the length of window ().
As with the threshold value, we vary the window size for
each dataset in order to find the best window length in
terms of both acceptable accuracy and real-time detection.

In the next step, we need to compare the SEP score ap-
proximation from Equation 17 to the Pearson score ap-
proximation in Equation 8. To find the relation between
SEP and PE, we can rewrite Equation 8 as Equation 18.

(17

S|

(18)

n
i=1

IS SV

90 = PE+3. > §69)* +3
j=1

Assuming function g in both equations represents the

ratio between probability densities, we can substitute
Equation 18 into Equation 17, yielding Equation 19.

h 1o, L1
SEP = E—PE—ng(xj) -3 (19)
=

Considering the third term on the right hand side as a
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new parameter k, we can rewrite the relation as given in
Equation 20.

SEP = |k — PE| (20)

Since k is non-positive, from Equation 20 we know that
the SEP score is always greater than or equal to the PE
score. Thus, we can complete the relationship for metric S
in Figure 2, yielding the graph shown in Figure 3. Based on
our earlier claim that metrics at the end of the chain pro-
vide the most useful metrics for CPD algorithms, we hy-
pothesize that change point detection using Separation dis-
tance (S) will generally outperform Pearson divergence for
change point detection. Because the arrow from TV to S is
annotated with a function that is asymptotically larger
than the function annotating the arrow from TV to KL, we
postulate that S will also generally outperform Kullback-
Leibler divergence for change point detection as well.

.

[ Separation ] [

Fig. 3. Relationships among Separation and Pearson metrics.
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4 REsSuULTS AND DISCUSSION

In this section, we evaluate our proposed SEP change point
detection and compare results with other popular CPD
methods. First, we introduce performance measures that
are used to evaluate aspects of the CPD process. Next, we
summarize results for artificial and real-world datasets in-
cluding smart home activity data, ECG data, and hand out-
line data.

4.1 Performance Measures

A number of measures are commonly used to evaluate the
performance of change point detection methods. We use
four different performance measures to evaluate the ability
of our proposed SEP change point detection algorithm to
detect both change points and non-change points in time
series.

Sensitivity, also referred to as Recall or the True Posi-
tive Rate (TP Rate). This refers to the portion of a class of
interest (in this case, change points) that was recognized
correctly. Here TP denotes the number of change points
that were correctly detected and FN denotes the number of
change points that were not detected. This measure pro-
vides an indication of how effectively a CPD algorithm will
detect true state changes.

TP (1)
TP +FN
False Positive Rate (FP Rate). This refers to the ratio of

negative examples (in this case, the number of data points
in a time series which are not change points) which are rec-
ognized as change points to the total number of negative
examples. Here FP denotes the number of non-change
points that were incorrectly identified as change points
and TN denotes the number of non-change points that
were not labeled as change points. This measure reflects

Sensitivity = Recall = TP Rate =
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how many false alarms would be generated by a CPD al-
gorithm.
FP
FP Rate = ——— 22)

G-mean. A supervised learning algorithm that attempts
to perform change point detection typically faces an imbal-
anced class distribution because the ratio of changes to to-
tal data is usually small. As a result, G-mean is commonly
used as an indicator of CPD performance. This utilizes
both Sensitivity and Specificity measures to assess the per-
formance of the algorithm in terms of the ratio of positive
accuracy (Sensitivity) and the ratio of negative accuracy
(Specificity).

G —mean = \/Sensitivity X Specificity
TP TN 23)

= TP FN “FPF TN

Detection Delay. This directly measures how close the
time value of each correctly-predicted CP is to the actual
CP time value in the series. The absolute value of the time
difference between the true predicted and actual CP time
points is summed and normalized over the total number of
change points.

#P|Predicted (CP) — Actual(CP)|
#CP
Following the strategy found in previous research

[7][11], we assume a detected change point is correct if
there exists a change point in the data that occurs soon be-
fore or after the detected change point. In other words, a
detected change point at time t* is correct if a true change
point occurs in the time interval [t* — A, t* + A]. In our ex-
periments, we consider A=1 second for the evaluation of
exact change point detection and A=5 and 10 seconds for
evaluation of change point detection with a small time off-
set.

4.2 Artificial Dataset

We use the following three artificial time-series datasets
[11] that contain manually inserted change points to show
the effectiveness of SEP method in detecting different
changes and compare the performance to existing similar
methods.

Dataset 1(Jumping mean). The following 1-dimensional
auto-regressive model is used to generate 1000 samples:

25

24

Delay =

y(t) = 0.6y(t —1) — 0.5y(t —2) + €,

where ¢; is Gaussian noise with mean p and standard

deviation 0.5. The initial values are set as y(1) = y(2) = 0. A

change point is inserted at every 100 time steps by increas-
ing the noise mean y by 2.

Dataset 2 (Scaling variance). The same auto-regressive
model as Dataset 1 is used, but a change point is inserted
at every 100 time steps by infusing origin-centered noise
with a random standard deviation between 0.01 and 1.

Dataset 3 (Changing frequency). 1-dimensional samples
of size 1000 are generated as:

y(t) = sin(wt) + €, (26)
Where ¢, is origin-centered Gaussian noise with stand-
ard deviation 0.8. A change point is inserted at every 100
points by multiplying the frequency o by 5.

To investigate the sensitivity of SEP performance on
different choices of window size (1) and threshold value
(Th), we calculate G-mean values because these reflect the
ability of the algorithm to detect both change and non-
change points. Figures 4 through 6 show the sensitivity
analysis of SEP using the artificial datasets for exact,
within-5-seconds and within-10-seconds CPD. For each
case, the top figure shows the 3d plot of G-mean values for
different threshold and window length values and the bot-
tom figure shows the corresponding filled contour plot.
The color bar demonstrates the value range of each color.
As we can see from the graphs, by increasing the accepta-
ble delay value the overall performance will improve for
all datasets. We observe an almost flawless performance of
SEP with no delay for the Jumping Mean and Scaling Var-
iance datasets. In the case of the Changing Frequency da-
taset some detection delay is observed. Based on the results
of this sensitivity analysis, the selected window lengths for
Datasets 1, 2, and 3 are 30, 20, and 20, respectively. The
threshold values are selected as 0.5 for Datasets 1 and 2 and
0.2 of the maximum score for Dataset 3.

Figures 7-9 visualize examples of these datasets as well
as the corresponding change point score obtained by SEP,
RuLSIF, and uLSIF. When there is a change in mean value,
the change-point score obtained by all methods increases
rapidly, but the value of the score is different for each
method. The RuLSIF algorithm generates the same value
regardless of the degree of change in the mean. In contrast,
the SEP change score is more sensitive to these changes.
For example, the largest SEP score occurs at time 900 where
the mean increases from 10 to 50 while the smallest score
occurs at time 100, 200 , and 700 where the mean increases
only 5. But RuLSIF score is constant for all of these changes.
When the data variance changes, both SEP and RuLSIF
catch these changes in addition to capturing false positive
changes. When the data frequency changes, all CPD meth-
ods increase the change scores because the mean is also
changing. As Figure 9 shows, SEP can generative the small-
est number of false positive change points. In summary,
SEP is more robust than the other methods against noise
and outliers. We can see when there is no change and the
data contains noise, the SEP score changes minimallywhile
RuLSIF and uLSIF exhibit much larger change in their
scores. This reflects the sensitivity of RuLSIF and uLSIF to
noise and thus the change points are not consistently de-
tected. On the other hand, the SEP method detects the ex-
istence of true change points in these complex situations.

Next, we compare the performance of SEP with both
RuLSIF and uLSIF in detecting within-10-seconds CPs us-
ing the TPR, FPR and G-mean measures. We also compare
these methods with a simple baseline change detection.
The baseline method performs a t-test comparison be-
tween two windows and reports a CP if the change in data
is significant (p<.05). Table 2 summarizes these results. The
window length for uLSIF and RuLSIF algorithm was set to
30, 20, and 60 for Datasets 1, 2, and 3, respectively, based
on the highest performance we can achieve for this
method. For the t-test these values are 40, 70, and 70 for
each dataset because these values generated the best re-
sults for this baseline method.
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change points, SEP is significantly better than RuLSIF in
detecting non-change points (the FPR value is almost half
that of RuLSIF). In summary, we conclude that the SEP
change point detection algorithm can detect changes in the
mean, variance, and frequency of time series data. Further-
more, when detecting frequency changes SEP significantly
outperforms the current state-of-the-art CPD algorithms.
In addition, SEP can detect changes in frequency much
faster than RuLSIF because of its smaller window length.
TABLE 2

PERFORMANCE OF CPD ALGORITHM FOR ARTIFICIAL DA-
TASETS.

Dataset 1 - Jumping Mean

SEP RuLSIF uLSIF T test
TPR 1.00 1.00 0.56 1.00
FPR 0.03 0.05 0.01 0.14
G-mean 0.99 0.98 0.74 0.93

Dataset 2 - Scaling Variance

SEP RuLSIF uLSIF T test
TPR 1.00 1.00 1.00 0.11
FPR 0.14 0.14 0.15 0.01
G-mean 0.93 0.93 0.92 0.33

Dataset 3 - Changing Frequency

SEP RuLSIF  uLSIF T test
TPR 1.00 1.00 0.44 0.22
FPR 0.13 0.25 0.01 0.06
G-mean 0.93 0.87 0.66 0.46

4.3 Smart Home Activity Transition Detection

Next, we apply the proposed change-point detection
method to the real-world data. For this task, we select the
CASAS smart home dataset [41]. This experiment allows
us to validate our SEP algorithm on unscripted activity-la-
beled smart home data to determine if it can detect changes
between activity states. Detecting transitions between ac-
tivities in real time is useful for many applications. First,
transition detection can be used to segment smart home
sensor data into non-overlapping activity sequences and
provide insights on the start time, stop time, and duration
of activities performed in the home [42]. This segmentation
can also boost the performance of activity recognition be-
cause the feature vector does not contain information from
more than one activity and can include features such as ac-
tivity start time and duration so far. Second, detection of
activity transitions facilitates activity-aware delivery of no-
tifications, automation and behavioral intervention tech-
nologies. Receiving notifications at inopportune times is
not only annoying, but can increase a resident’s cognitive
load [43], introduce task errors [44], and reduce acceptance
of the technology [45]. Timing prompts and notifications
during activity transitions can improve user response rates
and support independent living [46].

4.3.1 CASAS Smart Home

The data used during this research was collected by the
CASAS (Center for Advanced Studies in Adaptive Sys-
tems) smart home system [41] [47] developed at Washing-
ton State University. Using embedded sensors, the CASAS

smart homes collect information about the state of the
home and the resident(s) to monitor and analyze daily ac-
tivities. Sensors generate “events” to report their state. An
event contains a date, time, sensor identifier, and message
sent from the sensor.

Each of the CASAS smart homes has at least one bed-
room, a kitchen, a dining area, a living area, and at least
one bathroom. All of the CASAS smart homes have differ-
ent sizes and layouts, yet they all include the standard sen-
sor setup. Each of the smart apartments is equipped with a
network of wireless motion and door sensors and houses a
single older adult resident who performs normal daily rou-
tines. Figure 10 shows the layout of one of the smart homes
we analyze in this paper. Sensor labels starting with “M”
indicate motion sensors and “D” indicates door sensors.

The primary sensor found in CASAS smart homes is an
overhead motion sensor. The motion sensors are used to
determine when motion is occurring in the area covered by
the sensor. The motion sensor reports an ON message
when motion is detected, followed by an OFF message
when the movement stops. In cases when the resident is
walking under the motion sensor to some other location,
the motion sensor has a gap between the ON and OFF mes-
sages that is roughly 1.25 seconds. However, if the activity
results in continuous movement under the motion sensor,
(e.g., dancing near the motion sensor), the sensor will not
generate an OFF message until 1.25 seconds after the activ-
ity has stopped.

There are two types of motion sensors configurations
utilized in the CASAS smart home system. The most com-
mon motion sensors used are the narrow-field motion sen-
sors. In the case of narrow-field motion sensors, the sen-
sor’s field of view is limited to a radius of a few feet. These
sensors are placed on the ceiling of the home and detect
movement within the sensor’s field of view. The other mo-
tion sensor configuration that is used throughout the smart
home system is the wide-field motion sensor; the wide-
field motion sensor has a much larger field of view. These
area sensors are usually placed on the walls to determine
whether there has been movement anywhere in an entire
room. The wide-field motion sensor can only detect motion
in the room, not localize where the resident is located in-
side the room. In contrast, the narrow-field motion sensors
provides a finer-resolution localization of the resident.

L [m =
~ =

-4 — -
)
=

= (8,

Fig. 10. Smart home floorplan and positions of motion/light sensors
(red) and door/temperature sensors (green).
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Another sensor used in the CASAS smart home system
is the magnetic door sensor. Door sensors use a magnetic
switch to determine whether the doors are opened or
closed. These are usually mounted on the external doors of
the smart home to indicate when the resident enters or
leaves the home, though some door sensors are also placed
in strategic locations such as doors to cabinets that hold
medicine dispensers.

We evaluate our SEP algorithm using data collected
over two months in smart home testbeds that were in-
stalled in six apartments [41]. Each of the apartments house
a single older adult (age 75+) resident who performs a nor-
mal daily routine while sensors in the apartment generate
and store events. To provide ground truth activity labels,
annotators are given the house floor plan, the positions of
the sensors, a resident-completed form indicating when
and where they typically perform daily activities, and the
sequence of sensor events. Multiple annotators are used to
provide consistent labels and the inter-annotator agree-
ment is k=0.80. The activity classes that we use for our
analyses are Bathe, Enter Home, Wash Dishes, Personal
Hygiene, Relax, Work, Sleep, Leave Home, Cook, Bed Toi-
let Transition, Eat, and Other Activity. Because all events
that do not fit into the 11 predefined activity classes are la-
beled as “Other Activity”, the activities are skewed toward
this activity class. Activity transitions are time in the sensor
event data sequence when the activity changes from one
label to a different label. These represent the change points
we want to detect using our CPD algorithms. Distribution
of transitions between all activities in six apartments are
described in supplementary material section.

4.3.2 CASAS Smart Home Activity Transition Detection

For detecting activity transitions, our time series data was
created in the following manner using continuous sensor
events collected from CASAS smart homes. We slide a
window over the sensor data that looks at 30 events and
extract a corresponding feature vector. These features in-
clude general information such as window time duration,
event time, and the most dominant sensor in the window
which is most frequent triggered sensor, number of occur-
rence of each sensor in current window, the time when
each sensor last fired till the end of current window, etc.
Thus, the feature vector dimension varies depending on
home floorplans and sensor placements.

The feature space is then updated when a new event oc-
curs to yield our time series data. The raw data we collect
in smart homes together with the features we use to learn
activity models from smart home data are summarized in
Table 3. Figure 12 plots a subset of CASAS smart home fea-
tures (5 out of the 51 features) which comprises our multi
dimensional time series. This figure contains seven differ-
ent activities which are separated by vertical black lines.

For the smart home data, we again investigate the sen-
sitivity of SEP’s G-Mean performance for different choices
of window size (n) and threshold value (Th). We perform
the sensitivity analysis for one of the CASAS homes over
two months of data and then use the chosen parameters for
the other smart home sites to show the generality of the
model. Figure 13 shows the sensitivity analysis of SEP-
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TABLE 3
RAW SMART HOME DATA, FEATURES, AND ACTIVITY CLASS DE-
SCRIPTORS.
Domain Number Types of Features
Raw  Sensor]3  sensor|infrared motion (ON/OFF), magnetic door
data types (OPEN/CLOSE), ambient light (continuous)
Timing  fea-| 3 features d:ay of week, hour of day, seconds past mid-|
tures night
most recent sensor in window, first sensor in|
window, window duration, most frequent|
. sensors from previous two windows, last]
Window  fea- Lo .
9 features |sensor location in window, last motion sen-|
tures L .
sor location in window, entropy-based data
complexity of window, time elapsed since
last sensor event in window
Sensor  fea- count of events for each sensor in window,
tures (n sen-|2*n features| . .
. elapsed time for each sensor since last event
sors in home)

s —Time duration
—Time since last sensor event
Last sensor event ID
—Complexity of window
—SamFIe sensor cmlmt

CASAS Smart Home Features

680 80 100 120 140 180 180
Sensor Event

Fig. 12. Sample CASAS smart home features. The true activity transi-
tions are marked by black vertical lines.
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Fig. 13. SEP algorithm sensitivity analysis for activity transition detec-
tion in Apartment 1. The top row of graphs contains the 3d plots of G-
mean values and the bottom contains the corresponding contour plots.
based activity transition detection in Apartment 1 for ex-
act, within 5 seconds, and within 10 seconds CP detection.
As we can see from the graphs, by increasing the accepta-
ble delay the overall performance improves and SEP can
detect more transitions. There is not a significant difference
in performance for a small window length (less than 20
sensor events) but increasing the window length can de-
crease the ability of SEP to find activity transitions. Based
on the results of this preprocessing step, the selected value
of n for all apartments was 2 sensor events which means
our algorithm is 2-real time. Finally, the threshold value
was set to 0.1.

Next, we compare the performance of SEP with two
other density ratio based methods, RuLSIF and uLSIF [11].
Figure 14 plots the within-10-second change detection
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ROC curves for these methods over different threshold
values for two of the apartments. The experimental results
show that the ROC curves of all of these methods exhibit
similar behavior when changing the threshold value.
Overall, the SEP algorithm outperforms the other methods
with the largest area under ROC curve (AUC) value. Since
the experimental conditions are similar for the alternative
CPD algorithms, we can conclude the difference is because
of the SEP dissimilarity measure that we introduce. As Fig-
ure 14 indicates, the Separation distance is more successful
than the Pearson measure in detecting activity transitions.

Figure 15 plots the sensitivity of the Detection Delay
value to the threshold value for our selected direct density
ratio CPD methods. When increasing the threshold value,
there is a subsequent increase in both TPR and FPR. Addi-
tionally, the average distance between detected change
points and the actual change point increases for all algo-
rithms. However, as we can see in the figure SEP has the
smallest Detection Delay value and lowest sensitivity to
the threshold. This provides evidence not only that SEP
can detect transitions closer to their actual occurrence, but
also that changing the threshold value does not greatly af-
fect this performance. Since all of these algorithms are 2-
real time and as we demonstrated, SEP outperforms RuL-
SIF and uLSIF in terms of both AUC and Detection Delay,
we can conclude that the SEP algorithm offers superior
performance for detecting activity change points in real
time.

Figure 16 through Figure 18 show the TPR, FPR, and G-
Mean values for the SEP, RuLSIF, uLSIF, Bayesian, and t-
test methods [25] based on exact CP and CP within 10 sec-
onds, respectively. The figures show that as expected, ex-
cept for the t-test baseline, change point detection within
10 seconds exhibits better performance than exact change
point detection. This is because all of the CPD algorithms
experience a delay in detecting changes or transitions. SEP
outperforms all other methods in detecting activity transi-
tions with an average True Positive Rate = 0.89 for a
within-10-seconds detection. As we can see in figure, the
result indicates the difference is significant at the (p <.05)
level.

SEP algorithm has a lower False Positive Rate (average
= 0.12) than RuLSIF and uLSIF, but its FPR is higher than
the Bayesian algorithm. Recalling that the Bayesian CPD
has a very low TPR and thus it cannot detect changes con-
sistently, we conclude the small FPR value in this method
is because of its overall low detection rate. This result is
consistant with our previous finding that SEP is more ro-
bust against noise or outliers than the other methods. Be-
cause human behavior (and therefore smart home sensor
data) is noisy, SEP performs better in this case and detects
fewer false alarms. The one-way ANOVA test indicates the
difference between FPR values for SEP and the other algo-
rithms is significant at the (p < .05) level. The G-Mean re-
sults are similar to those for TPR and show in summary
that SEP outperforms all other algorithms in detecting both
transitions and non-transitions with an average of 0.88.
The one-way ANOVA test indicates the difference be-
tween G-Mean performances is significant at the (p < .05)
level. In summary, the baseline t-test experiment between

apt 1 - CP within 10 secs

TPR
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—RuLSIF
—uLsIF

ans 01 015 0z 075 05
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apt 2 - CP within 10 secs

nos o1 15 0p 075
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Fig. 14. ROC curve and AUC values for activity transition detection
based on two smart homes.

MAE

Apt1

S~

a4 s 1)
Threshold

Fig. 15. Detection Delay value for activity transition detection.

0.8

0.6

TPR

0.4

0.2

Exact CP

Hl

SEP RuLSIF uLSIF Bayesian T-Test

0.8

0.8

0.4

0.2

CP within 10 secs
=
= B
<« P=0.009 |

L P00

N

SEFP RuLSIF ulLSIF Bayesian T-Test

Fig. 16. TPR scores for activity transition detection.
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Fig. 17. FPR scores for activity transition detection.
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two consecutive windows reveals that a simple t-test de-
tects almost all windows as transitions, so both TPR and
FPR values are 1 and the G-Mean is 0. This result indicates
that using change point detection algorithms is necessary
for detecting activity transitions. Although the Bayesian al-
gorithm exhibits better performance than baseline, it is not
a promising tool for detecting activity transitions. One pos-
sible explanation is that the nature of human behavior data
is highly variable and thus is difficult to predict using
purely Bayesian methods with relatively small amounts of
data.

Finally, the Detection Delay for all algorithms is plotted
in Figure 19. The Detection Delay can be thought of as the
average time between when a transition occurs and when
the transition is detected. For the SEP algorithm, the aver-
age value is close to 60.5 seconds, or 1.01 minutes, which is
lower than all other methods. The delay values for the
RuLSIF, uLSIF, and Bayesian methods are 1.76, 1.83, and
6.00 minutes, respectively. Ideally, we would like to mini-
mize these times to have more accurate activity bounda-
ries. By considering the length of activities in the real world
(12 minutes is the average for our datasets), we determine
all density ratio based methods have an acceptable Detec-
tion Delay for many automation and notification applica-
tions, but still have room for improved responsiveness.
From the above results, we can see that the best perfor-
mance for activity transition detection results from apply-
ing the SEP algorithm. The baseline t-test Detection Delay
was not calculated due its poor performance based on FPR
and G-mean measures.
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Fig. 18. G-Mean scores for activity transition detection.
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Fig. 19. Detection Delay scores for activity transition detection.
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4.4 Other Real-World Datasets

To show the generality of SEP change point detection, we
evaluate the performance of SEP and other existing
change-point detection methods using two additional real-
world datasets: ECG and hand outline. Both datasets are
drawn from the UCR Time Series Data Mining Archive
[48].

The ECG dataset is a respiration dataset which records
patients’ respiration measured by thorax extension as they
wake up. The series is manually segmented by a medical
expert. Table 4 shows the results of ECG change point de-
tection using the SEP, RuLSIF, and Bayesian algorithms.
The results again show both SEP and RuLSIF yield supe-
rior performance to the Bayesian method. We can see SEP
has a high FPR which can be because of the periodic nature
of this time series. Thus, although it has a slightly better
TPR than RulSIF, the G-Mean score is lower. In terms of
the distance between actual and detected change points,
SEP exhibits the lowest Detection Delay. The one-way
ANOVA test indicates that the difference between alterna-
tive algorithm performances is not significant at the (p <
.05) level. Performing a t-test to compare the performance
of algorithms shows that SEP and RuLSIF have similar per-
formances for this dataset but both of them have signifi-
cantly better performances than uLSIF and the Bayesian
method at the (p < .05) level.

TABLE 4
ECG DATASET RESULT.

SEP  RuLSIF  uLSIF  Bayesian
TPR 0.80 0.75 0.02 0.24
FPR 0.24 0.12 0.00 0.01
G-Mean 0.78 0.81 0.14 0.49
Detection Delay 13 55 - 87

Next, we apply the alternative CPD methods to the
hand outline dataset. Table 5 shows the results for the SEP,
RuLSIF, uLSIF, and Bayesian algorithms. Again, we can
see from the results that SEP outperforms the other meth-
ods in terms of TPR, G-Mean, and Detection Delay, but still
has a slightly higher FPR than the other approaches. The
one-way ANOVA test indicates the difference between al-
ternative algorithm TPR and G-mean value is significant at
the (p < .05) level.

In summary, the results show that our SEP change point
detection method outperforms other methods for many
time series datasets. The results also indicate that although
the performance of change point detection algorithm is
highly dependent upon the nature of the data set, the uL-
SIF and Bayesian algorithms are not useful for these types
of real-world change point detection problems.

TABLE 5
HAND OUTLINE DATASET RESULT.
SEP  RuLSIF  uLSIF  Bayesian
TPR 0.72 0.50 0.04 0.02
FPR 0.14 0.03 0.00 0.00
G-Mean 0.79 0.70 0.21 0.15
Detection Delay 52 154 1227

With respect to other direct density ratio methods
(KLIEP, uLSIF, RuLSIF) as well as the well-known Bayes-
ian method, these methods are also s-real time, however,
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as we demonstrated, SEP outperforms them in terms of
TPR, G-Mean, and Detection Delay, which provides evi-
dence that the SEP algorithm can detect changes more ac-
curately and with less detection delay.

With respect to other unsupervised CPD methods (in-
cluding SWAB, CF, MDL, kernel-based, and graph-based
approaches), SEP is preferable because it is nonparametric,
closer to real time, and handles arbitrary dimensionality.
In contrast, CF [32], CUSUM [31], SI [23], and SST [24] are
parametric methods. Clustering change point detection
methods such as SWAB [27], MDL [28], and Shapelet [29]
are offline or near offline, and both kernel-based methods
[30] and graph-based methods [15] can only handle inde-
pendent and identically distributed (i.i.d.) time series.

5 CONCLUSION

In this paper, we formulate the problem of change point
detection. Based on a review of existing change point de-
tection methods and difference measures used in density
ratio-based approaches, we hypothesized that metrics with
larger range of difference value perform better for consist-
ently detecting change points in complex data. In response,
we introduce a change point algorithm based on Separa-
tion distance for real-time detection of change points. From
the experimental validation of artificial and real-world da-
tasets, we observe that the proposed algorithm outper-
forms existing methods such as smart home activity tran-
sition detection. However, the method does not always
outperform other approaches, as observed in the case of
the ECG dataset. Our proposed SEP algorithm hands high-
dimensional data and detects change points in near-real
time using most commonly a 2-data point look ahead. Alt-
hough other density ratio based methods also address
these situations, our experimental results show in many
cases SEP demonstrates superior performance.

Although the proposed method was shown to work
well in most cases, its performance may improve further
by adding the effect of previous windows to the CP score
calculation. We will experiment with these enhancements
in future work. Additionally, the selection of a threshold
value has a great impact on the performance of density ra-
tio-based change point detection algorithms. In this work
we used constant increments when we were testing thresh-
old values. Using other methods like gradient descent or a
Gaussian approach may result in a more optimal threshold
value. Another limitation of SEP and all of density ratio
change point detection methods is their computational
cost. One important direction for future work is to improve
the computational efficiency of this algorithm. Decreasing
computational cost will aid our integration of the SEP al-
gorithm into real-world applications such as activity seg-
mentation and delivery of behavioral interventions. We
can then elicit user feedback on the appropriate determi-
nation of change points and their use in interventions.
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