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Abstract— Ecological Momentary Assessment (EMA) is an in-
the-moment data collection method which avoids retrospective 
biases and maximizes ecological validity. A challenge in designing 
EMA systems is finding a time to ask EMA questions that increases 
participant engagement and improves the quality of data collection. 
In this work, we introduce SEP-EMA, a machine learning-based 
method for providing transition-based context-aware EMA prompt 
timings. We compare our proposed technique with traditional time-
based prompting with for 19 individuals living in smart homes. 
Results reveal that SEP-EMA increased participant response rate 
by 7.19% compared to time-based prompting. Our findings suggest 
that prompting during activity transitions makes the EMA process 
more usable and effective by increasing EMA response rates and 
mitigating loss of data due to low response rates. 

 
Index Terms— Activity recognition, Activity transition, Change 

detection algorithms, Ecological Momentary Assessment (EMA). 

I. INTRODUCTION 

ETROSPECTIVE self-reports are the most common 
assessment method found in clinical psychology [1]. 
Traditionally, self-report information is gathered through 

questionnaires which are limited because the details of previous 
experiences cannot be consistently recalled via retrospective 
memory [2]. Ecological Momentary Assessment (EMA), or 
experience sampling, addresses these issues by collecting 
information about daily experiences at the moment they occur. 
Advances in smart devices and pervasive computing has made 
EMA more practical and commonplace in recent years. App-
based EMA systems have been designed that allow participants 
to enter data directly and record the time delay between the 
EMA question and participant response [2].   

Although app-based EMA enables data collection to be 
simpler and more ecologically valid, participants need to 
repeatedly respond to prompts and questions which may reduce 
the overall response rate and number of individuals willing to 
participate in the study [2][3]. Typical response rates vary 
depending on the EMA questions and participant groups. 
Examples are 55% for patients preparing for bariatric surgery 
[4], 75% when assessing a novel evaluation tool for curricular 
change in an internal medicine residency program [5], and 78% 
for effects of Alcohol-Tobacco Co-Use [6]. 

To overcome an EMA response rate barrier, researchers try 
to encourage participants to achieve a specified threshold value 
(75% [7] and 80% [8]) with monetary rewards as an incentive. 
Yet, some participants do not reach the threshold level and 
researchers must eliminate part of the collected data in their  
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analysis to reach the predefined response rate. Finding the best 
time to send prompts and reduce interruption of an individual’s 
normal activity routine is a primary challenge in designing 
EMA technologies. Receiving notifications at inopportune 
times is not only annoying, but such interruptions can increase 
a person’s cognitive load [9], distract people from what they are 
doing, and reduce willingness to interact with the technology 
[10][11]. Additionally, these difficulties may make participants 
more hesitant to initiate EMA responses and reduce acceptance 
of the EMA by decreasing response rates. 

To increase the EMA response rate and avoid overwhelming 
individuals with notifications at unwanted moments, an EMA 
notification system needs to be aware of the person’s behavioral 
context and detect opportune moments to deliver information 
and questions [12]. A suitable time to deliver prompts is the 
time in which they cause minimal interruptions to the user’s 
engaged task [9]. We hypothesize that sending notifications and 
prompts during activity transitions, or the period of time 
between the end of one activity and the beginning of the next, 
can improve response rates, reduce cognitive load, and increase 
user acceptance of EMA technology. Furthermore, we 
hypothesize that these activity transitions can be identified 
independently of the specific activities that are performed, 
using unsupervised change point detection algorithms.  

In this paper, we propose a context-aware machine learning 
technology, SEP-EMA, to identify the best time to deliver 
prompts to individuals and ask them to respond to ecological 
momentary assessment questions. The main objective of SEP-
EMA is increasing the response rate to EMA questions 
regardless of phenomenon of interest and question type. To 
accomplish this objective, SEP-EMA detects activity 
transitions in real time and combines transition detection with 
other contextual information to select prompt times. We 
validate our hypotheses as part of an in-home study in 
participant smart homes. A controlled user study with 19 
participants shows providing queries at context-sensitive times 
via SEP-EMA resulted in a 7.1% increase in response rate, 
compared with queries presented at random times.  

A. Ecological Momentary Assessment (EMA) 

Ecological momentary assessment (EMA) is a real-time and 
real-world data collection method which tries to avoid 
retrospective biases and maximize ecological validity. In recent 
years, many studies employ EMA methods to characterize 
individual differences, describe natural history, assess 
contextual associations, and document temporal sequences [1]. 

To collect more accurate and ecologically-valid data, EMA 
asks participants about their experiences closer to the time or 
event of interest. EMA data sampling can be 1) event-based or 
event contingent (e.g. after physical activity), 2) interval-based 
or interval contingent (such as once-a-day diaries), and 3) fixed 

Context-Aware Delivery of Ecological 
Momentary Assessment 

Samaneh Aminikhanghahi,  Maureen Schmitter-Edgecombe, and Diane J. Cook, Member, IEEE 

R 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2 

or random time-based prompting (sometimes also called signal 
contingent) [13]. 

  When delivering EMA questions, researchers often utilize 
existing app-based platforms or custom software. While these 
apps are powerful, most of these, such as iHabit [14] and 
ULTEMAT [15], do not yet provide contextual guidance to 
improve EMA response rates. iHabit [14] is an iOS-based 
platform to support EMA data collection. The app sends alerts 
randomly during study-specified hours. App users respond by 
answering a series of ‘‘check-in’’ questions. Similarly, 
ULTEMAT [15] is an Android EMA platform which delivers 
EMA questions at either pre-scheduled or random times. 

Existing app-based platforms require clinicians to define the 
timing of prompts at the beginning of the study, rather than 
letting the app adapt to an individual’s own routine. Here, we 
introduce SEP-EMA, a new EMA app which partners with the 
CASAS smart home [16] developed at Washington State 
University. The EMA app provides prompts to the user on an 
iPad device within a smart home.  Screen shots of the app are 
shown in Figure 1. The app communicates with the smart home 
through the CASAS server infrastructure and can send queries 
at context-sensitive times as well as random times. 

When a prompt is requested, the server sends a command to 
the EMA iPad app to prompt the user.  When this occurs, the 
iPad will display the first prompt question and play an alert tone 
to get the user's attention.  This tone is repeated over the course 
of ten minutes while the same prompt is continuously displayed 
on the iPad.  If the user does not interact with the iPad during 
the ten minutes (or starts interacting, but then does not finish 
the prompt within the following ten minutes), the prompt times 
out and we record this as a no-response prompt. 

When the user is prompted, the iPad shows three pages of 
questions and brings up a cognitive exercise to complete (i.e., a 
45 second n-back test [17]). These EMA queries, shown in 
Figure 1, include: 1) Prompt timing question: This prompt asks 
the user whether the timing of the EMA questions was 
Convenient, Neutral, or Poor and used to compare the random 
and EMA-detected prompt conditions, and 2) EMA assessment 
questions: This app page consists of seven EMA questions to 
understand the subject's current mental and physical state. For 
each question, the user is given a choice of five responses from 
"Not at all" to "Very much".   

In addition to these two pages of questions, SEP-EMA asks 
participants to label the activity they were recently performing 
(for validation of activity recognition) and brings up a n-back 
test (i.e., indicating whether a shape was the same or different 
from the prior presented shape by quickly pressing a “yes” or 
“no” button) to measure the individual's cognitive functioning. 
In this paper, we do not focus on the outcome of the EMA 
assessment, activity validation, or the n-back test. Instead, we 
focus on the prompt timing question to understand whether our 
proposed algorithm increases the response rate of a participant 
by being sensitive to their activity patterns and current context.  

B. Related Work 

A growing body of work documents use of EMA for 
assessment as well as a need for techniques that improve design 
of the timing and delivery for EMA queries. Researchers have 
developed software applications for collecting ecological 
momentary data that analyze different psychological behavior 

such as depressive symptoms [18][19], alcohol use disorder 
[20][21], physical activity [22][23], and smoking [24][25]. 

 

 
To reduce the burden on participants and encourage them to 

answer EMA questions more frequently, study designers need 
to carefully define the times that the EMA queries are posed to 
individuals. A majority of approaches employ fixed time-
triggered scheduling. A time-triggered EMA app delivers 
prompts based on a pre-specified, inflexible time or a random 
time within a predefined time window. For example, 
Ballegooijen et al. [18] sent one to three notifications through 
an individual’s smartphone at a random time point between ten 
o’clock in the morning and ten o’clock in the evening asking 
participants about their depressive symptoms. Similarly, Mundi 
et al. [4] sent questions to pre-bariatric surgery patients that 
asked about lifestyle based on key patterns entered by the 
subject at enrollment: wake-up time; breakfast, lunch, and 
dinner times (weekday and weekend); and sleep time.  

Time-triggered scheduling notifications may be delivered 
when the individual is engaged in another important task. 
Receiving prompts, notifications, or questions during such 
times can increase a person’s cognitive load and introduce 
errors into their current task errors [26]. Furthermore, sending 
messages on predefined timeframe may preclude participants 
responding to a signal when it occurs (e.g., if they are taking a 
shower when the prompt arrives). To overcome these issues and 
improve the performance of EMA, context-aware triggering 
can be used. A context-aware EMA delivers prompts and 
messages to individuals at times that are sensitive to the 
person’s status, activity, and environment.  

Because of increased awareness of the need for context 
sensitivity, researchers are now starting to consider context-
aware prompting for smartphone information notification 
management. Smartphone technology has become ubiquitous. 
The escalated dependence on these devices causes an increase 
in interruptions due to phone calls, texts, reminders, prompts, 
and notifications. In response, app designers attempt to defer 
notifications to times that maximize the probability of 
responding. To identify the proper time, study designers 
manually create complex timing rules based on current activity, 
the transition between activities, contextual data, or a 
combination of these factors [27].  

As evidence of the relationship between a person’s activity 
and their ability to process and respond to interruptions, Gillie 

Fig. 1.  EMA app prompt timing and assessment question page.  
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et al. [28] found that interruptions are particularly harmful if the 
user’s current activity is similar to the topic of the interruption. 
This may occur, for example, when both the current task and 
the interruption involve processing numeric information. The 
nature of the current activity is also important: interruptions 
may be worse when the person is taking part in a more 
distractible activity. Activities that require frequent access to 
working memory such as paying bills are considered 
distractible activities [29]. Rosenthal et al. [30] demonstrated 
that smartphone users also exhibit varying preferences and 
costs associated with interruptions, even while performing a 
similar activity. 

This amount of change in response to interruptions indicates 
the need for personalized interruption management. 
Researchers have effectively applied machine learning 
techniques to a variety of biomedical informatics challenges 
[31][32]. Machine learning-based personalization has also been 
considered as described by Aminikhanghahi et al. [33], but this 
supervised learning approach requires a substantial amount of 
labeled training data for each individual.  

On the other hand, there is evidence that people are more 
accepting of notification interruptions when they have finished 
one task and have not yet started another [34]. Fischer et al. [35] 
suggested that notifications which are delivered at the endings 
of episodes of mobile interaction (making voice calls or texting) 
have a higher chance of eliciting a response. Similarly, Okoshi 
et al. [36] proposed “Attelia” as a smartphone middleware to 
detect breakpoints of a user’s mobile interactions in real time 
and defer notifications until such a breakpoint occurs.  

Pejovic et al. [10] developed an interruption management 
library called InterruptMe for Android-based mobile devices. 
InterruptMe constructs intelligent interruption models based on 
a series of machine learning algorithms for interruptibility 
prediction. Here, smartphone sensors collect contextual 
information and InterruptMe then performs experience 
sampling to ask users about their interruptibility at different 
moments and contexts. As an example of another such 
management tool, Park et al. [37] introduced SCAN, a social 
context-aware smartphone notification management system 
which delivers notifications at appropriate breakpoints.  SCAN 
uses beacons (Bluetooth radio transmitters) and a microphone 
to detect the presence of conversations as well as the current 
activity. Then the method employs a decision tree to identify 
opportune breakpoints for delivering all queued notifications. 

However, all of these notification management systems 
incorporate smart phone data and consider only the interaction 
of individuals and their phones as the context for detecting 
breakpoints. In this paper, we introduce SEP-EMA, a context-
aware EMA delivery system that partners a mobile device-
based EMA delivery mechanism with smart home-based 
awareness of an individual’s activities to find natural breaks in 
a person’s entire daily routine. SEP-EMA uses activity 
breakpoints (transitions between daily activities) as candidate 
times for prompting. We then finalize the decision by 
considering the contextual data together with the current time 
and current activity.  

II. METHODS 

A. Design 

SEP-EMA is an intelligent prompting model that takes 
advantage of pervasive computing, signal processing, and 
machine learning techniques to provide personalized, activity 
context-aware EMA prompt timings in smart homes. Using 
embedded sensors, smart homes collect information about the 
state of the home and the resident(s) to monitor and analyze 
daily activities. Sensors generate “events” to report their state. 
These events are triggered, or generated, whenever the sensor 
detects a change in its state. Each sensor event, e, takes the form 
e=< t, s, m > where t denotes the timestamp when the sensor 
message was collected, s denotes the identifier of the sensor 
generating the message, and m denotes the sensor message. 

Figure 2 provides an overview of our proposed EMA question 
delivery model. When a sensor event is triggered, the 
information is sent as an input to the feature extraction 
algorithm. The feature extraction algorithm slides a window 
over the sensor data that looks at 30 consecutive events (ending 
with the most recent event) and extracts a corresponding feature 
vector. These features include window time duration, most 
recent event time, the entropy-based complexity of events 
within the window, the number of transitions between areas of 
the home, the change in overall activity level between the first 
and second halves of the window, the most frequently-triggered 
sensor, the number of events for each sensor in the current 
window, and the elapsed time since each sensor fired. Thus, the 
feature vector dimension varies depending on home floorplans 
and number of sensors placed in the home. The extracted 
feature vector is then fed to both the activity transition detection 
and the activity recognition algorithms. The full set of features 
that are extracted for activity recognition and activity transition 
detection is shown in Table I.  

 
After completing feature extraction, we apply the change 

detection algorithm to determine whether there is an activity 
transition or breakpoint within a sequence of sensor data. 
Change point detection (CPD) is the problem of identifying 
each time point t when the probability density function f created 
from sensor data observed before t is sufficiently different from 
the data observed immediately after t, based on a change in the 
type of the function or the parameters characterizing the 
function. We use an approach introduced in our previous work 
for activity transition detection called SEP [38]. SEP is a non-
parametric sequential change detection algorithm which 
calculates a change score between two consecutive windows of 
data (sequences of sensor events) to indicate the amount of 
change that occurs from the first window to the next. To 
distinguish this window from one used for feature extraction, 
which may be different sizes, we will refer to the window used 
in SEP as a change point view. SEP utilizes separation distance 

Fig. 2.  A system component overview of SEP-EMA.  
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as the CPD dissimilarity measure and estimates the probability 
distribution ratio between the two views surrounding a 
candidate change point. The separation distance S can be 
calculated as shown in (1). 

𝑆 ൌ 𝑀𝑎𝑥௜ሺ1 െ
௙೟షభ
೔ ሺ௫ሻ

௙೟
೔ሺ௫ሻ

ሻ                              (1) 

𝑓௧ିଵ
௜ ሺ𝑥ሻ and 𝑓௧

௜ሺ𝑥ሻ are the estimated probability densities of 
the first and second view, with length n. The variable i iterates 
over all data points in each view. To estimate the probability 
densities, we use cross-validation over data points within each 
change point view. The maximum of these estimated 
probability density ratios is then computed. In order to calculate 
separation distance as a change point score, we estimate the 
ratio of the two probability densities by a kernel function gi(x) 
and calculate the change point score, 𝑆𝐸𝑃,෣  as shown in (2)  [38]. 
The result is compared with 0 to avoid negative values. 

𝑆𝐸𝑃෢ ൌ Max ൬0, ቀ1 െ
ଵ

௡
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௡
௜ୀଵ ቁ൰             (2) 

The score calculated by (2) can be used to detect change 
points. Since a larger SEP score means that the probability of a 
change point is greater, we reject all candidate points whose 
SEP values are lower than a threshold value. To reduce the 
chance of false alarms and avoid double change points (two 
change points in quick succession that are part of the same 
transition), we only consider local peak score values as change 
points. SEP-based transitions are not detected exactly in real 
time because the algorithm requires access to two sensor events 
at future times ti+1 and ti+2 to decide if there is a transition at 
time ti. We therefore refer to this algorithm as operating in 2-
real time. Here, =2 denotes the number of sensor events after 
the candidate change point that must be processed. The output 
of the algorithm is a tag attached to each sensor event indicating 
whether the event is a transition or not.  

The extracted feature vector is also used for activity 
recognition. We employ the AR algorithm [39] that utilizes a 
Random Forest (RF) classifier with 100 decision trees to label 
sensor events. To establish the performance of AR, we evaluate 
it using data collected in 30 smart home testbeds from a 
previous study [16]. We use these testbed smart homes for 
evaluation of the activity recognition and change point 
detection components used in SEP-EMA because ground truth 
activity labels were available for these testbed homes. 
Performance on these testbed sites provides an indication of 
how well we can detect activity transitions in general, including 
the EMA testbed smart homes. Each of the 30 apartments house 
1-2 older adult (age 75+) residents who perform daily routines 
while sensors in the apartment generate and store events. To 
provide ground truth activity labels, annotators are given the 
house floor plan, the positions of the sensors, a resident-
completed form indicating when and where they typically 
perform daily activities, and the sequence of sensor events. 
Multiple annotators provide labels with the beginning and 
ending of activity occurrences and an inter-annotator agreement 
of =0.80. The activity classes that we use for our analyses are 
Bathe, Enter Home, Wash Dishes, Personal Hygiene, Relax, 
Work, Sleep, Leave Home, Cook, Bed Toilet Transition, Eat, 
and Other Activity. The output of the algorithm is a tag attached 
to each sensor event indicating the performed activity label. 

Finally, we use a semantic reasoner to analyze activity 
transitions and the activity label tags assigned to sensor events 

to decide whether time t is an appropriate time to send a prompt. 
To make the final decision, EMA-SEP verifies that 1) the 
activity transition tag indicates t is an activity breakpoint, 2) 
there was no Leave Home activity in the previous 15 minutes 
(to ensure the participant is home), 3) there was no Sleep 
activity in the previous 15 minutes (to avoid waking up the 
participant), and 4) there was no time gap more than an hour in 
length between two recent sensor events (which may further 
indicate the participant is out of the home). 

B. Experiment Setup 

We tested two versions of the SEP-EMA system over two 
testing iterations in smart home testbeds. In the first iteration, 
we identified time t as a change point if the corresponding 
change score is larger than a threshold value. To further reduce 
the number of false positives, in the second iteration we only 
considered t as a change point if the corresponding change score 
not only has a value larger than the threshold but also represents 
a local maximum. Table II shows a summary of participant 
demographics and the average number of residents for each 
iteration. The SEP-EMA algorithm described in Section A is 
based on the Iteration 2 design. The Iteration 1 design did not 
include the filtering of double change points. 

In this study, we installed smart home sensors (including 
passive infrared motion, and door sensors) in participant homes 
and collected data while they performed their regular daily 
activities for three to four months. They received automated 
information requests via a mobile device for a one-week period 
on two occasions spaced about one month apart. Each day is 
segmented into four prompt windows and participants receive 
one prompt in each window. The window times were typically 

three-hour periods between 8:00am and 9:30pm with a half 
hour between each window. One week of prompting was used 
as a baseline and therefore employed random time prompting. 
This means a time was randomly selected during each prompt 
window on each day for EMA questioning. During the other 
week of prompting, we used SEP-EMA to prompt participants 
during their activity transitions. In this condition, SEP-EMA 
selected the first acceptable change point t during each prompt 
window on each day to ask the EMA questions. To offer a fair 
comparison between random prompting and transition-aware 
prompting, we only send random time prompts if the participant 
is in the home.  To control for order effects, the data was 
counterbalanced. Half of the participants received random time 
prompting first and the other half first received prompts based 
on the SEP-EMA method. 

To evaluate the performance of SEP-EMA prompting we 
analyze participant responses to the prompt timing question. 
We hypothesize that CPD-based prompting will increase 
participant response rate over random time prompting and 
result in higher endorsement of conveniently timed prompts. If 

TABLE II 
PARTICIPANTS’ DEMOGRAPHICS FOR EACH SEP-EMA ITERATION 

 Iteration 1 Iteration 2 

Number of participants N=9 N=10 
Mean age in years 65.55 73.70 
Gender 9 f, 0 m 8 f, 1 m 
Education range (years) 12-20 14-20 

Number of residents 
2 single, 5 double  

2 3+ residents 
7 single, 2 double  

1 3+ residents 
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the hypothesis is validated, this provides an indication of app 
usability as well as decreased activity interruption. 

III. RESULTS  

The results of SEP-EMA prompting depend to a large extent 
on the ability of the activity recognition algorithm to correctly 
identify the performed activity and the ability of SEP to 
correctly identify activity transitions. We therefore evaluate the 
performance of these two algorithms on data collected from 30 
smart homes and analyze the impact of random time and SEP-
EMA prompting on response rate and participant satisfaction. 

A. Evaluation of Activity Recognition 

We evaluate the performance of activity recognition based 
on 3-fold cross-validation. Cross validation is performed 
separately for each participant and the results are averaged over 
the 30 testbed homes. As shown in Figure 3, activity 
recognition achieves an average of 0.98 accuracy. In addition 
to accuracy, we also report F1-measure which is calculated as 
the square root of the product of sensitivity and specificity for 
a particular class label as shown in (3). Here, TP, FP, TN, and 
FN refer to true positive, false positive, true negative, and false 
negative of a specific activity class label. The results are 
averaged over the classes, providing a macro-average. The F1-
measure is particularly valuable when reporting classifier 
performance on imbalanced datasets. As shown in Figure 3, 
activity recognition achieved an average F1-measure of 0.98. 

𝐹1 െ𝑀𝑒𝑎𝑠𝑢𝑟𝑒 ൌ 2ඨ
೅ು

೅ುశಷಿ
ൈ

೅ು
೅ುశಷು

೅ು
೅ುశಷಿ

ൈ
೅ು

೅ುశಷು

 (3) 

 

B. Evaluation of Activity Transition Detection 

To analyze the performance of our transition detection 
algorithm, we assume a detected change point is correct if there 
exists a ground truth change point in the data that occurs soon 
before or after the detected change point. Here, an “actual” or 
ground truth change point is based on manually-annotated 
activity labels. In other words, a detected change point at time 
t* is correct if an actual change point occurs in the time interval 
[t* − λ, t* + λ]. In our experiments, we consider λ=5 seconds 
for evaluation of change point detection with a small time 
offset. In our experiments, we identified a threshold value of 
0.5 that optimizes a tradeoff between the true positive rate 
(TPR) and false positive rate (FPR) based on a sample of the 
sensor data. 

Figure 4 shows the TPR and FPR for activity transition 
detection of the 30 testbed homes. These are compared for 
theSEP, unconstrained least-squares importance fitting (uLSIF) 
[40], relative unconstrained least-squares importance fitting 

(RuLSIF) [41], and Bayesian change detection methods based 
on change points within 10 seconds. Since transition detection 
is the heart of our prompting management model, its accuracy 
has a large impact on the response rate. As we can see, SEP 
outperforms all other methods in detecting activity transitions 
with an average TPR = 87.93%. The difference is significant at 
the (p < .05) level. 

The SEP algorithm exhibits a lower FPR (average = 11.52%) 
than RuLSIF and uLSIF, but its FPR is higher than the Bayesian 
algorithm. Recalling that the Bayesian CPD has a very low TPR 
and thus does not detect changes consistently, we conclude the 
small FPR value in this method is because of its overall low 
detection rate. This result indicates that SEP is more robust 
against noise or outliers than the other compared methods. 
Because human behavior (and therefore smart home sensor 
data) is dynamic, SEP performs better on this data and detects 
fewer false alarms. The one-way ANOVA test indicates the 
difference between FPR values for SEP and the other 
algorithms is significant at the (p < .05) level. A larger false 
positive rate has a net effect of splitting the data into more 
segments. Because some activities such as cooking are 
complex, splitting the data into more segments likely results in 
some EMA prompts occurring between phases of these more 
complex activities. Because activity recognition and change 
point detection are the foundation of our EMA prompt timing, 
these results provide support that the change point detection-
based prompts will be given close to the actual transition points 
for individuals in the EMA study. 

 

C. Evaluation of Prompt Timing 

To evaluate SEP-EMA, we calculate user response rate by 
computing the ratio of the number of answered prompts to the 
total number of prompts. We begin by comparing the user EMA 
question response rate for random timing and SEP-EMA 
notification delivery. A total of 536 prompts were sent across 
all 19 participants using random timing method and 537 
prompts were sent using the SEP-EMA delivery method 
throughout the study. Figures 5 and 6 show the box plots of the 
response rates and per home response rate, for both random 
timing and SEP-EMA. Using SEP-EMA to deliver notifications 
to participants increased the average response rate from 
78.62±0.34% to 84.26±9.54%. According to a paired t-test, the 
difference is significant (p<0.05). The response rate in 15 out 
of 19 homes increased when we used SEP-EMA, but in the 
remaining 4 homes the response rate decreased.  

 
Fig. 3.  The accuracy and F1-measure of the AR activity recognition algorithm.

 
Fig. 4.  Activity transition detection TPR and FPR. 
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Table III shows the results of 2×2 mixed model ANOVA 

with delivery method as a within factor, iteration as a between 
factor, and response rate as a dependent value. The goal of this 
evaluation is to determine if there is a significant change in 
response rate due to the changing delivery method and 
refinement of the algorithm design in two iterations. Based on 
the first iteration of the EMA app, the average response rate 
increased from 78.85±10.28% to 83.22±7.70% over random-
time prompting. However, based on iteration 2, the average 
increased from 78.40±8.97% to 85.19±11.29%. As we can see, 
the effect of notification delivery method is significant (p<0. 
05), but the difference between two iterations of SEP-EMA and 
the interactions are not significant. In this table, generalized η2 
is a measure of effect size which is the ratio of effect to total 
variance. 

  In addition to evaluating response rates, we investigate the 
subjects’ responses to the question regarding prompt timing. 
Table IV demonstrates the average percentage of different 
timing prompt responses for both iterations and in total. The 
percentage was calculated by dividing the number of answers 
in each category by the total number of answered prompts. Most 
participants considered the Neutral and Convenient responses 
to be similar and used just one of these categories consistently, 
rather than indicating Neutral on some occasions and 
Convenient on others. Thus, here we combine Convenient and 
Neutral answers. Considering all responses, there is no 
significant difference between random timing and SEP-EMA in 
terms of percentage of choosing the Convenient/Neutral or Poor 
answers at p<0.05. The most likely explanation is that when 
prompt timing is not convenient, participants do not answer the 
prompts at all and we do not include the lack of responses in the 

totals. Thus, one alternative way to calculating response rate 
would be considering the Poor timing answer as lack of answer. 
In this case, similar to previous result, the average of subjective 
responses increased from 73.61±13.69% to 79.99±12.39% 
when we use SEP-EMA instead of random timing. 

Next, we perform an analysis to understand the role that a 
person’s current activity plays in responding to an EMA 
prompt. Specifically, we calculate the number of total prompts 
and number of answered prompts for each automatically-
detected activity. In the case of random-timing prompts, the 
detected activity is the one that is occurring at the time of the 
prompt. For SEP-based prompt timing, the prompt occurs 
between activities. As a result, we look two time periods: 1) five 
minutes before the prompt and 2) five minutes after the prompt 
response. The most commonly-occurring activity within this 
combined time period is used as the detected activity.  

Aligning detected activities with EMA responses is more 
challenging in multi-resident homes because the activity 
recognition algorithm does not identify the specific resident that 
is performing the activity. To eliminate the impact of multi-
resident homes, we only consider the nine single-resident 
homes in this study. Figure 7 shows the overall per-activity 
response rate. As we can see there is a statistically-significant 
relationship between current activity and response rate 
(p<0.01). Activities Cook and Relax yield the highest response 
rates. The Cook activity is typically complex with multiple 
subtasks, so one explanation for the increased response rate 
here is that it is easier for residents to answer the notifications 
during the transitions between phases of the activity. In the case 
of Relax, the activity is not critical, so interruptions are likely 
not disruptive. On the other hand, no participant responded to 
any prompt during Enter Home or Wash dishes which is logical 
due to the nature of these activities. 

 

IV. DISCUSSION  

Advances in smart environments have enhanced the 
development of EMA by enabling them to collect more accurate 
data at desired times. Although app-based EMA is becoming 
ubiquitous, current approaches employ rule-based methods to 
time the sending of prompts. The present study investigated the 
direct relationship between EMA response rates and prompt 

 
Fig. 5.  Response rate of random timing and SEP-EMA for all participants. 

 
Fig. 6.  The response rate of each home summed over all days. 

 
Fig. 7.  Overall per-activity response rate for single-resident homes. Numbers 
before activity labels indicate the number of times individuals were prompted 
when these activities occurred. 

TABLE IV 
THE AVERAGE PERCENTAGE OF DIFFERENT TIMING PROMPT RESPONSE  

 
Convenient/Neutral Poor 

Random SEP-EMA Random SEP-EMA 
Iteration 1 96.79 95.06 3.21 4.94 
Iteration 2   90.39 94.51 9.61 5.49 
Total 93.43 94.77 6.57 5.23 

 

TABLE III 
MIXED ANOVA RESULTS TO COMPARE ITERATIONS OF SEP-EMA 

 F P Generalized η2  

Iteration 0.0011 0.9737 5.22e-05 
Delivery method    5.3548 0.0343 7.89e-02 
Iteration : Delivery method 0.2086 0.6540 3.33e-03 
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delivery methods. We proposed a new EMA method that 
utilizes activity recognition and change point detection to 
provide prompt timings. We hypothesized that such context-
aware EMA delivery would increase the response rate of EMA 
questions in comparison with a random-time method.   

Consistent with our hypothesis, transition-based context-
aware delivery of EMA notifications did offer benefits for 
increasing response rate compared to the random time-based 
delivery - participants were more likely to respond to prompts 
sent based on SEP-EMA timing than based on random timing. 
As mentioned earlier, in existing EMA systems, researchers 
often use additional incentives to encourage the participant to 
answer questions to reach the minimum 75% or 80% response 
rate. For example, Fritz et al. [42] assigned an assistant to each 
participant who was responsible for monitoring the real-time 
data collection, contacting the participant if they did not 
respond, and conducting additional troubleshooting and 
training as needed. On the other hand, Maher et al. [43] paid 
$80 to participants to answer at least 80% of the EMA prompts. 
In contrast, SEP-EMA alone, without additional assistance, 
increases response rates for EMA data collection by almost 7%. 
Only 68% of participants demonstrated a response rate greater 
than the threshold based on randomly-timed prompts (75%), but 
after using SEP-EMA, 100% of the participants demonstrated 
response rates over 75%. 

While earlier work revealed the connection between a 
person’s current activity and their interruptibility [28][29], in 
this study, we analyze this relationship in terms of 
automatically-detected activities and actual EMA responses. 
The current study shows participants are more willing to answer 
prompts when they are performing complex multistep activities 
like Cooking because there may be natural breaking points 
within the activity itself. We also observe that residents are 
more willing to respond to prompts when they are in the middle 
of activities that appear to be non-critical like Relax. However, 
further investigation is required to understand the relationship 
between response rates and Work, Personal Hygiene, and Eat. 

Although our experimental results show that a transition-
based context-aware prompting system can be useful in many 
ways, there are some limitations in the study that need to be 
addressed. Data collection in the current study was limited to 
only 19 participants and these individuals are midlife or older 
adults, therefore we do not know how well transition-based 
prompting works for younger individuals. Since the younger 
generation are regular mobile phone users and spend more time 
near their smart phones, prompting them during transitions 
between activities may not provoke as large a difference as for 
older adults. The future work could replicate this study with a 
larger study population for a longer study duration. 

Although the current experiment was performed in 
partnership with a smart home platform and activity transitions 
and labels were identified using smart home sensor data, the 
proposed method can be implemented using virtually any type 
of activity monitoring sensor platform, such as smartphone or 
smartwatch. Delivering SEP-EMA to an individual’s mobile 
device allows the EMA platform to assess phenomenon of 
interest at any location, both inside and outside the home. It 
would also avoid the difficulties that accompany activity 
monitoring in smart homes with multiple residents. 

Finally, effective EMA delivery needs to consider be 

effective for multiple types of sensor data. Because smart home 
systems can cost hundreds or thousands of dollars, the usability 
may be limited to those who can afford the technology and the 
increase in response rate may not consistently justify the cost of 
installing smart home sensors. We are currently enhancing 
SEP-EMA to process multiple types of sensor data, which will 
generalize its benefit to mobile platforms as well as smart home 
settings. 

V. CONCLUSIONS  

In this paper, we introduce a context-aware algorithm, SEP-
EMA, to improve the performance of EMA in managing 
prompts and notifications. SEP-EMA combines traditional 
EMA technology with knowledge about a person’s current 
activity, activity transitions, and other contextual information to 
find the best time to ask EMA questions. Experimental results, 
obtained from a set of participants answering EMA queries 
while in their smart homes, indicate that the proposed algorithm 
outperforms traditional random time-based prompting. We 
therefore conclude that using SEP-EMA increases response 
rates and decreases activity interruptions. The resulting 
approach is useful for presenting information, interacting with 
individuals without creating interruption overload, and 
boosting EMA data collection process.   
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