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Abstract— Ecological Momentary Assessment (EMA) is an in-
the-moment data collection method which avoids retrospective
biases and maximizes ecological validity. A challenge in designing
EMA systems is finding a time to ask EMA questions that increases
participant engagement and improves the quality of data collection.
In this work, we introduce SEP-EMA, a machine learning-based
method for providing transition-based context-aware EMA prompt
timings. We compare our proposed technique with traditional time-
based prompting with for 19 individuals living in smart homes.
Results reveal that SEP-EMA increased participant response rate
by 7.19% compared to time-based prompting. Our findings suggest
that prompting during activity transitions makes the EMA process
more usable and effective by increasing EMA response rates and
mitigating loss of data due to low response rates.

Index Terms— Activity recognition, Activity transition, Change
detection algorithms, Ecological Momentary Assessment (EMA).

I. INTRODUCTION

ETROSPECTIVE self-reports are the most common

assessment method found in clinical psychology [1].

Traditionally, self-report information is gathered through
questionnaires which are limited because the details of previous
experiences cannot be consistently recalled via retrospective
memory [2]. Ecological Momentary Assessment (EMA), or
experience sampling, addresses these issues by collecting
information about daily experiences at the moment they occur.
Advances in smart devices and pervasive computing has made
EMA more practical and commonplace in recent years. App-
based EMA systems have been designed that allow participants
to enter data directly and record the time delay between the
EMA question and participant response [2].

Although app-based EMA enables data collection to be
simpler and more ecologically valid, participants need to
repeatedly respond to prompts and questions which may reduce
the overall response rate and number of individuals willing to
participate in the study [2][3]. Typical response rates vary
depending on the EMA questions and participant groups.
Examples are 55% for patients preparing for bariatric surgery
[4], 75% when assessing a novel evaluation tool for curricular
change in an internal medicine residency program [5], and 78%
for effects of Alcohol-Tobacco Co-Use [6].

To overcome an EMA response rate barrier, researchers try
to encourage participants to achieve a specified threshold value
(75% [7] and 80% [8]) with monetary rewards as an incentive.
Yet, some participants do not reach the threshold level and

researchers must eliminate part of the collected data in their
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analysis to reach the predefined response rate. Finding the best
time to send prompts and reduce interruption of an individual’s
normal activity routine is a primary challenge in designing
EMA technologies. Receiving notifications at inopportune
times is not only annoying, but such interruptions can increase
a person’s cognitive load [9], distract people from what they are
doing, and reduce willingness to interact with the technology
[10][11]. Additionally, these difficulties may make participants
more hesitant to initiate EMA responses and reduce acceptance
of the EMA by decreasing response rates.

To increase the EMA response rate and avoid overwhelming
individuals with notifications at unwanted moments, an EMA
notification system needs to be aware of the person’s behavioral
context and detect opportune moments to deliver information
and questions [12]. A suitable time to deliver prompts is the
time in which they cause minimal interruptions to the user’s
engaged task [9]. We hypothesize that sending notifications and
prompts during activity transitions, or the period of time
between the end of one activity and the beginning of the next,
can improve response rates, reduce cognitive load, and increase
user acceptance of EMA technology. Furthermore, we
hypothesize that these activity transitions can be identified
independently of the specific activities that are performed,
using unsupervised change point detection algorithms.

In this paper, we propose a context-aware machine learning
technology, SEP-EMA, to identify the best time to deliver
prompts to individuals and ask them to respond to ecological
momentary assessment questions. The main objective of SEP-
EMA is increasing the response rate to EMA questions
regardless of phenomenon of interest and question type. To
accomplish this objective, SEP-EMA detects activity
transitions in real time and combines transition detection with
other contextual information to select prompt times. We
validate our hypotheses as part of an in-home study in
participant smart homes. A controlled user study with 19
participants shows providing queries at context-sensitive times
via SEP-EMA resulted in a 7.1% increase in response rate,
compared with queries presented at random times.

A. Ecological Momentary Assessment (EMA)

Ecological momentary assessment (EMA) is a real-time and
real-world data collection method which tries to avoid
retrospective biases and maximize ecological validity. In recent
years, many studies employ EMA methods to characterize
individual differences, describe natural history, assess
contextual associations, and document temporal sequences [1].

To collect more accurate and ecologically-valid data, EMA
asks participants about their experiences closer to the time or
event of interest. EMA data sampling can be 1) event-based or
event contingent (e.g. after physical activity), 2) interval-based
or interval contingent (such as once-a-day diaries), and 3) fixed
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or random time-based prompting (sometimes also called signal
contingent) [13].

When delivering EMA questions, researchers often utilize
existing app-based platforms or custom software. While these
apps are powerful, most of these, such as iHabit [14] and
ULTEMAT [15], do not yet provide contextual guidance to
improve EMA response rates. iHabit [14] is an iOS-based
platform to support EMA data collection. The app sends alerts
randomly during study-specified hours. App users respond by
answering a series of ‘‘check-in”’ questions. Similarly,
ULTEMAT [15] is an Android EMA platform which delivers
EMA questions at either pre-scheduled or random times.

Existing app-based platforms require clinicians to define the
timing of prompts at the beginning of the study, rather than
letting the app adapt to an individual’s own routine. Here, we
introduce SEP-EMA, a new EMA app which partners with the
CASAS smart home [16] developed at Washington State
University. The EMA app provides prompts to the user on an
iPad device within a smart home. Screen shots of the app are
shown in Figure 1. The app communicates with the smart home
through the CASAS server infrastructure and can send queries
at context-sensitive times as well as random times.

When a prompt is requested, the server sends a command to
the EMA iPad app to prompt the user. When this occurs, the
iPad will display the first prompt question and play an alert tone
to get the user's attention. This tone is repeated over the course
of ten minutes while the same prompt is continuously displayed
on the iPad. If the user does not interact with the iPad during
the ten minutes (or starts interacting, but then does not finish
the prompt within the following ten minutes), the prompt times
out and we record this as a no-response prompt.

When the user is prompted, the iPad shows three pages of
questions and brings up a cognitive exercise to complete (i.e., a
45 second n-back test [17]). These EMA queries, shown in
Figure 1, include: 1) Prompt timing question: This prompt asks
the user whether the timing of the EMA questions was
Convenient, Neutral, or Poor and used to compare the random
and EMA-detected prompt conditions, and 2) EMA assessment
questions: This app page consists of seven EMA questions to
understand the subject's current mental and physical state. For
each question, the user is given a choice of five responses from
"Not at all" to "Very much".

In addition to these two pages of questions, SEP-EMA asks
participants to label the activity they were recently performing
(for validation of activity recognition) and brings up a n-back
test (i.e., indicating whether a shape was the same or different
from the prior presented shape by quickly pressing a “yes” or
“no” button) to measure the individual's cognitive functioning.
In this paper, we do not focus on the outcome of the EMA
assessment, activity validation, or the n-back test. Instead, we
focus on the prompt timing question to understand whether our
proposed algorithm increases the response rate of a participant
by being sensitive to their activity patterns and current context.

B. Related Work

A growing body of work documents use of EMA for
assessment as well as a need for techniques that improve design
of the timing and delivery for EMA queries. Researchers have
developed software applications for collecting ecological
momentary data that analyze different psychological behavior

such as depressive symptoms [18][19], alcohol use disorder
[20][21], physical activity [22][23], and smoking [24][25].
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Fig. 1. EMA app prompt timing and assessment question page.

To reduce the burden on participants and encourage them to
answer EMA questions more frequently, study designers need
to carefully define the times that the EMA queries are posed to
individuals. A majority of approaches employ fixed time-
triggered scheduling. A time-triggered EMA app delivers
prompts based on a pre-specified, inflexible time or a random
time within a predefined time window. For example,
Ballegooijen et al. [18] sent one to three notifications through
an individual’s smartphone at a random time point between ten
o’clock in the morning and ten o’clock in the evening asking
participants about their depressive symptoms. Similarly, Mundi
et al. [4] sent questions to pre-bariatric surgery patients that
asked about lifestyle based on key patterns entered by the
subject at enrollment: wake-up time; breakfast, lunch, and
dinner times (weekday and weekend); and sleep time.

Time-triggered scheduling notifications may be delivered
when the individual is engaged in another important task.
Receiving prompts, notifications, or questions during such
times can increase a person’s cognitive load and introduce
errors into their current task errors [26]. Furthermore, sending
messages on predefined timeframe may preclude participants
responding to a signal when it occurs (e.g., if they are taking a
shower when the prompt arrives). To overcome these issues and
improve the performance of EMA, context-aware triggering
can be used. A context-aware EMA delivers prompts and
messages to individuals at times that are sensitive to the
person’s status, activity, and environment.

Because of increased awareness of the need for context
sensitivity, researchers are now starting to consider context-
aware prompting for smartphone information notification
management. Smartphone technology has become ubiquitous.
The escalated dependence on these devices causes an increase
in interruptions due to phone calls, texts, reminders, prompts,
and notifications. In response, app designers attempt to defer
notifications to times that maximize the probability of
responding. To identify the proper time, study designers
manually create complex timing rules based on current activity,
the transition between activities, contextual data, or a
combination of these factors [27].

As evidence of the relationship between a person’s activity
and their ability to process and respond to interruptions, Gillie
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et al. [28] found that interruptions are particularly harmful if the
user’s current activity is similar to the topic of the interruption.
This may occur, for example, when both the current task and
the interruption involve processing numeric information. The
nature of the current activity is also important: interruptions
may be worse when the person is taking part in a more
distractible activity. Activities that require frequent access to
working memory such as paying bills are considered
distractible activities [29]. Rosenthal et al. [30] demonstrated
that smartphone users also exhibit varying preferences and
costs associated with interruptions, even while performing a
similar activity.

This amount of change in response to interruptions indicates
the need for personalized interruption management.
Researchers have effectively applied machine learning
techniques to a variety of biomedical informatics challenges
[31][32]. Machine learning-based personalization has also been
considered as described by Aminikhanghahi et al. [33], but this
supervised learning approach requires a substantial amount of
labeled training data for each individual.

On the other hand, there is evidence that people are more
accepting of notification interruptions when they have finished
one task and have not yet started another [34]. Fischer et al. [35]
suggested that notifications which are delivered at the endings
of episodes of mobile interaction (making voice calls or texting)
have a higher chance of eliciting a response. Similarly, Okoshi
et al. [36] proposed “Attelia” as a smartphone middleware to
detect breakpoints of a user’s mobile interactions in real time
and defer notifications until such a breakpoint occurs.

Pejovic et al. [10] developed an interruption management
library called InterruptMe for Android-based mobile devices.
InterruptMe constructs intelligent interruption models based on
a series of machine learning algorithms for interruptibility
prediction. Here, smartphone sensors collect contextual
information and InterruptMe then performs experience
sampling to ask users about their interruptibility at different
moments and contexts. As an example of another such
management tool, Park et al. [37] introduced SCAN, a social
context-aware smartphone notification management system
which delivers notifications at appropriate breakpoints. SCAN
uses beacons (Bluetooth radio transmitters) and a microphone
to detect the presence of conversations as well as the current
activity. Then the method employs a decision tree to identify
opportune breakpoints for delivering all queued notifications.

However, all of these notification management systems
incorporate smart phone data and consider only the interaction
of individuals and their phones as the context for detecting
breakpoints. In this paper, we introduce SEP-EMA, a context-
aware EMA delivery system that partners a mobile device-
based EMA delivery mechanism with smart home-based
awareness of an individual’s activities to find natural breaks in
a person’s entire daily routine. SEP-EMA wuses activity
breakpoints (transitions between daily activities) as candidate
times for prompting. We then finalize the decision by
considering the contextual data together with the current time
and current activity.

II. METHODS

A. Design

SEP-EMA is an intelligent prompting model that takes
advantage of pervasive computing, signal processing, and
machine learning techniques to provide personalized, activity
context-aware EMA prompt timings in smart homes. Using
embedded sensors, smart homes collect information about the
state of the home and the resident(s) to monitor and analyze
daily activities. Sensors generate “events” to report their state.
These events are triggered, or generated, whenever the sensor
detects a change in its state. Each sensor event, e, takes the form
e=<t, s, m > where ¢ denotes the timestamp when the sensor
message was collected, s denotes the identifier of the sensor
generating the message, and m denotes the sensor message.

Figure 2 provides an overview of our proposed EMA question
delivery model. When a sensor event is triggered, the
information is sent as an input to the feature extraction
algorithm. The feature extraction algorithm slides a window
over the sensor data that looks at 30 consecutive events (ending
with the most recent event) and extracts a corresponding feature
vector. These features include window time duration, most
recent event time, the entropy-based complexity of events
within the window, the number of transitions between areas of
the home, the change in overall activity level between the first
and second halves of the window, the most frequently-triggered
sensor, the number of events for each sensor in the current
window, and the elapsed time since each sensor fired. Thus, the
feature vector dimension varies depending on home floorplans
and number of sensors placed in the home. The extracted
feature vector is then fed to both the activity transition detection
and the activity recognition algorithms. The full set of features
that are extracted for activity recognition and activity transition

detection is shown in Table I.
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Fig. 2. A system component overview of SEP-EMA.

After completing feature extraction, we apply the change
detection algorithm to determine whether there is an activity
transition or breakpoint within a sequence of sensor data.
Change point detection (CPD) is the problem of identifying
each time point ¢ when the probability density function f'created
from sensor data observed before ¢ is sufficiently different from
the data observed immediately after 7, based on a change in the
type of the function or the parameters characterizing the
function. We use an approach introduced in our previous work
for activity transition detection called SEP [38]. SEP is a non-
parametric sequential change detection algorithm which
calculates a change score between two consecutive windows of
data (sequences of sensor events) to indicate the amount of
change that occurs from the first window to the next. To
distinguish this window from one used for feature extraction,
which may be different sizes, we will refer to the window used
in SEP as a change point view. SEP utilizes separation distance
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as the CPD dissimilarity measure and estimates the probability
distribution ratio between the two views surrounding a
candidate change point. The separation distance S can be
calculated as shown in (1).
S = Max;(1 — =29 1)
f1(0

fir1(x) and fi(x) are the estimated probability densities of
the first and second view, with length n. The variable i iterates
over all data points in each view. To estimate the probability
densities, we use cross-validation over data points within each
change point view. The maximum of these estimated
probability density ratios is then computed. In order to calculate
separation distance as a change point score, we estimate the
ratio of the two probability densities by a kernel function g;(x)
and calculate the change point score, SEP, as shown in (2) [38].
The result is compared with 0 to avoid negative values.

SEP = Max (0, (1 —ayn, gi(x))) Q)

The score calculated by (2) can be used to detect change
points. Since a larger SEP score means that the probability of a
change point is greater, we reject all candidate points whose
SEP values are lower than a threshold value. To reduce the
chance of false alarms and avoid double change points (two
change points in quick succession that are part of the same
transition), we only consider local peak score values as change
points. SEP-based transitions are not detected exactly in real
time because the algorithm requires access to two sensor events
at future times #+; and #+, to decide if there is a transition at
time #. We therefore refer to this algorithm as operating in 2-
real time. Here, e=2 denotes the number of sensor events after
the candidate change point that must be processed. The output
of the algorithm is a tag attached to each sensor event indicating
whether the event is a transition or not.

The extracted feature vector is also used for activity
recognition. We employ the AR algorithm [39] that utilizes a
Random Forest (RF) classifier with 100 decision trees to label
sensor events. To establish the performance of AR, we evaluate
it using data collected in 30 smart home testbeds from a
previous study [16]. We use these testbed smart homes for
evaluation of the activity recognition and change point
detection components used in SEP-EMA because ground truth
activity labels were available for these testbed homes.
Performance on these testbed sites provides an indication of
how well we can detect activity transitions in general, including
the EMA testbed smart homes. Each of the 30 apartments house
1-2 older adult (age 75+) residents who perform daily routines
while sensors in the apartment generate and store events. To
provide ground truth activity labels, annotators are given the
house floor plan, the positions of the sensors, a resident-
completed form indicating when and where they typically
perform daily activities, and the sequence of sensor events.
Multiple annotators provide labels with the beginning and
ending of activity occurrences and an inter-annotator agreement
of k=0.80. The activity classes that we use for our analyses are
Bathe, Enter Home, Wash Dishes, Personal Hygiene, Relax,
Work, Sleep, Leave Home, Cook, Bed Toilet Transition, Eat,
and Other Activity. The output of the algorithm is a tag attached
to each sensor event indicating the performed activity label.

Finally, we use a semantic reasoner to analyze activity
transitions and the activity label tags assigned to sensor events

to decide whether time ¢ is an appropriate time to send a prompt.
To make the final decision, EMA-SEP verifies that 1) the
activity transition tag indicates ¢ is an activity breakpoint, 2)
there was no Leave Home activity in the previous 15 minutes
(to ensure the participant is home), 3) there was no Sleep
activity in the previous 15 minutes (to avoid waking up the
participant), and 4) there was no time gap more than an hour in
length between two recent sensor events (which may further
indicate the participant is out of the home).

B. Experiment Setup

We tested two versions of the SEP-EMA system over two
testing iterations in smart home testbeds. In the first iteration,
we identified time ¢ as a change point if the corresponding
change score is larger than a threshold value. To further reduce
the number of false positives, in the second iteration we only
considered t as a change point if the corresponding change score
not only has a value larger than the threshold but also represents
a local maximum. Table II shows a summary of participant
demographics and the average number of residents for each
iteration. The SEP-EMA algorithm described in Section A is
based on the Iteration 2 design. The Iteration 1 design did not
include the filtering of double change points.

In this study, we installed smart home sensors (including
passive infrared motion, and door sensors) in participant homes
and collected data while they performed their regular daily
activities for three to four months. They received automated
information requests via a mobile device for a one-week period
on two occasions spaced about one month apart. Each day is
segmented into four prompt windows and participants receive
one prompt in each window. The window times were typically

TABLE II
PARTICIPANTS’ DEMOGRAPHICS FOR EACH SEP-EMA ITERATION

Iteration 1 Iteration 2

Number of participants N=9 N=10
Mean age in years 65.55 73.70
Gender 9f,0m 8f,Im
Education range (years) 12-20 14-20

2 single, 5 double
2 3+ residents

7 single, 2 double

Number of residents 1 3+ residents

three-hour periods between 8:00am and 9:30pm with a half
hour between each window. One week of prompting was used
as a baseline and therefore employed random time prompting.
This means a time was randomly selected during each prompt
window on each day for EMA questioning. During the other
week of prompting, we used SEP-EMA to prompt participants
during their activity transitions. In this condition, SEP-EMA
selected the first acceptable change point ¢ during each prompt
window on each day to ask the EMA questions. To offer a fair
comparison between random prompting and transition-aware
prompting, we only send random time prompts if the participant
is in the home. To control for order effects, the data was
counterbalanced. Half of the participants received random time
prompting first and the other half first received prompts based
on the SEP-EMA method.

To evaluate the performance of SEP-EMA prompting we
analyze participant responses to the prompt timing question.
We hypothesize that CPD-based prompting will increase
participant response rate over random time prompting and
result in higher endorsement of conveniently timed prompts. If
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the hypothesis is validated, this provides an indication of app
usability as well as decreased activity interruption.

III. RESULTS

The results of SEP-EMA prompting depend to a large extent
on the ability of the activity recognition algorithm to correctly
identify the performed activity and the ability of SEP to
correctly identify activity transitions. We therefore evaluate the
performance of these two algorithms on data collected from 30
smart homes and analyze the impact of random time and SEP-
EMA prompting on response rate and participant satisfaction.

A. Evaluation of Activity Recognition

We evaluate the performance of activity recognition based
on 3-fold cross-validation. Cross validation is performed
separately for each participant and the results are averaged over
the 30 testbed homes. As shown in Figure 3, activity
recognition achieves an average of 0.98 accuracy. In addition
to accuracy, we also report F1-measure which is calculated as
the square root of the product of sensitivity and specificity for
a particular class label as shown in (3). Here, TP, FP, TN, and
FN refer to true positive, false positive, true negative, and false
negative of a specific activity class label. The results are
averaged over the classes, providing a macro-average. The F1-
measure is particularly valuable when reporting classifier
performance on imbalanced datasets. As shown in Figure 3,
activity recognition achieved an average F1-measure of 0.98.

TP « TP
F1 — Measure = 2 % 3)
TP+FN" TP+FP

1
L —
0.96 —— —
0.94 Average =0.9756 Average =0.9751
0.92

0.9

Accuracy F1-Measure
Fig. 3. The accuracy and F1-measure of the AR activity recognition algorithm.

B. Evaluation of Activity Transition Detection

To analyze the performance of our transition detection
algorithm, we assume a detected change point is correct if there
exists a ground truth change point in the data that occurs soon
before or after the detected change point. Here, an “actual” or
ground truth change point is based on manually-annotated
activity labels. In other words, a detected change point at time
t* is correct if an actual change point occurs in the time interval
[t* — A, t* + A]. In our experiments, we consider A=5 seconds
for evaluation of change point detection with a small time
offset. In our experiments, we identified a threshold value of
0.5 that optimizes a tradeoff between the true positive rate
(TPR) and false positive rate (FPR) based on a sample of the
sensor data.

Figure 4 shows the TPR and FPR for activity transition
detection of the 30 testbed homes. These are compared for
theSEP, unconstrained least-squares importance fitting (uLSIF)
[40], relative unconstrained least-squares importance fitting

(RuLSIF) [41], and Bayesian change detection methods based
on change points within 10 seconds. Since transition detection
is the heart of our prompting management model, its accuracy
has a large impact on the response rate. As we can see, SEP
outperforms all other methods in detecting activity transitions
with an average TPR = 87.93%. The difference is significant at
the (p <.05) level.

The SEP algorithm exhibits a lower FPR (average = 11.52%)
than RuLSIF and uLSIF, but its FPR is higher than the Bayesian
algorithm. Recalling that the Bayesian CPD has a very low TPR
and thus does not detect changes consistently, we conclude the
small FPR value in this method is because of its overall low
detection rate. This result indicates that SEP is more robust
against noise or outliers than the other compared methods.
Because human behavior (and therefore smart home sensor
data) is dynamic, SEP performs better on this data and detects
fewer false alarms. The one-way ANOVA test indicates the
difference between FPR values for SEP and the other
algorithms is significant at the (p < .05) level. A larger false
positive rate has a net effect of splitting the data into more
segments. Because some activities such as cooking are
complex, splitting the data into more segments likely results in
some EMA prompts occurring between phases of these more
complex activities. Because activity recognition and change
point detection are the foundation of our EMA prompt timing,
these results provide support that the change point detection-
based prompts will be given close to the actual transition points
for individuals in the EMA study.
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Fig. 4. Activity transition detection TPR and FPR.

C. Evaluation of Prompt Timing

To evaluate SEP-EMA, we calculate user response rate by
computing the ratio of the number of answered prompts to the
total number of prompts. We begin by comparing the user EMA
question response rate for random timing and SEP-EMA
notification delivery. A total of 536 prompts were sent across
all 19 participants using random timing method and 537
prompts were sent using the SEP-EMA delivery method
throughout the study. Figures 5 and 6 show the box plots of the
response rates and per home response rate, for both random
timing and SEP-EMA. Using SEP-EMA to deliver notifications
to participants increased the average response rate from
78.62+0.34% to 84.26+9.54%. According to a paired t-test, the
difference is significant (p<0.05). The response rate in 15 out
of 19 homes increased when we used SEP-EMA, but in the
remaining 4 homes the response rate decreased.
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Table III shows the results of 2x2 mixed model ANOVA
with delivery method as a within factor, iteration as a between
factor, and response rate as a dependent value. The goal of this
evaluation is to determine if there is a significant change in
response rate due to the changing delivery method and
refinement of the algorithm design in two iterations. Based on
the first iteration of the EMA app, the average response rate
increased from 78.85+£10.28% to 83.22+7.70% over random-
time prompting. However, based on iteration 2, the average
increased from 78.404£8.97% to 85.19+11.29%. As we can see,
the effect of notification delivery method is significant (p<0.
05), but the difference between two iterations of SEP-EMA and
the interactions are not significant. In this table, generalized n?
is a measure of effect size which is the ratio of effect to total
variance.

TABLE III
MIXED ANOVA RESULTS TO COMPARE ITERATIONS OF SEP-EMA
F P Generalized n?
Iteration 0.0011  0.9737 5.22e-05
Delivery method 53548  0.0343 7.89¢-02
Iteration : Delivery method ~ 0.2086  0.6540 3.33e-03

In addition to evaluating response rates, we investigate the
subjects’ responses to the question regarding prompt timing.
Table IV demonstrates the average percentage of different
timing prompt responses for both iterations and in total. The
percentage was calculated by dividing the number of answers
in each category by the total number of answered prompts. Most
participants considered the Neutral and Convenient responses
to be similar and used just one of these categories consistently,
rather than indicating Neutral on some occasions and
Convenient on others. Thus, here we combine Convenient and
Neutral answers. Considering all responses, there is no
significant difference between random timing and SEP-EMA in
terms of percentage of choosing the Convenient/Neutral or Poor
answers at p<0.05. The most likely explanation is that when
prompt timing is not convenient, participants do not answer the
prompts at all and we do not include the lack of responses in the

TABLE IV
THE AVERAGE PERCENTAGE OF DIFFERENT TIMING PROMPT RESPONSE
Convenient/Neutral Poor
Random  SEP-EMA  Random SEP-EMA
Iteration 1 96.79 95.06 3.21 4.94
Iteration 2 90.39 94.51 9.61 5.49
Total 93.43 94.77 6.57 5.23

totals. Thus, one alternative way to calculating response rate
would be considering the Poor timing answer as lack of answer.
In this case, similar to previous result, the average of subjective
responses increased from 73.61£13.69% to 79.99+12.39%
when we use SEP-EMA instead of random timing.

Next, we perform an analysis to understand the role that a
person’s current activity plays in responding to an EMA
prompt. Specifically, we calculate the number of total prompts
and number of answered prompts for each automatically-
detected activity. In the case of random-timing prompts, the
detected activity is the one that is occurring at the time of the
prompt. For SEP-based prompt timing, the prompt occurs
between activities. As a result, we look two time periods: 1) five
minutes before the prompt and 2) five minutes after the prompt
response. The most commonly-occurring activity within this
combined time period is used as the detected activity.

Aligning detected activities with EMA responses is more
challenging in multi-resident homes because the activity
recognition algorithm does not identify the specific resident that
is performing the activity. To eliminate the impact of multi-
resident homes, we only consider the nine single-resident
homes in this study. Figure 7 shows the overall per-activity
response rate. As we can see there is a statistically-significant
relationship between current activity and response rate
(p<0.01). Activities Cook and Relax yield the highest response
rates. The Cook activity is typically complex with multiple
subtasks, so one explanation for the increased response rate
here is that it is easier for residents to answer the notifications
during the transitions between phases of the activity. In the case
of Relax, the activity is not critical, so interruptions are likely
not disruptive. On the other hand, no participant responded to
any prompt during Enter Home or Wash dishes which is logical
due to the nature of these activities.

(3) Enter-Home -0 I 0.98
ey —
(269) Otner-Acivity |, -
P
(20) work | N 0 <5
(2) Wash-Dishes -0 1

(12) coor |

(1) et [ N 0 7>
(1) Leave-Home 10
(0) Sleep -0 i
0 0.2 04 0.6 0.8 1

Fig. 7. Overall per-activity response rate for single-resident homes. Numbers
before activity labels indicate the number of times individuals were prompted
when these activities occurred.

IV. DISCUSSION

Advances in smart environments have enhanced the
development of EMA by enabling them to collect more accurate
data at desired times. Although app-based EMA is becoming
ubiquitous, current approaches employ rule-based methods to
time the sending of prompts. The present study investigated the
direct relationship between EMA response rates and prompt
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delivery methods. We proposed a new EMA method that
utilizes activity recognition and change point detection to
provide prompt timings. We hypothesized that such context-
aware EMA delivery would increase the response rate of EMA
questions in comparison with a random-time method.

Consistent with our hypothesis, transition-based context-
aware delivery of EMA notifications did offer benefits for
increasing response rate compared to the random time-based
delivery - participants were more likely to respond to prompts
sent based on SEP-EMA timing than based on random timing.
As mentioned earlier, in existing EMA systems, researchers
often use additional incentives to encourage the participant to
answer questions to reach the minimum 75% or 80% response
rate. For example, Fritz et al. [42] assigned an assistant to each
participant who was responsible for monitoring the real-time
data collection, contacting the participant if they did not
respond, and conducting additional troubleshooting and
training as needed. On the other hand, Maher et al. [43] paid
$80 to participants to answer at least 80% of the EMA prompts.
In contrast, SEP-EMA alone, without additional assistance,
increases response rates for EMA data collection by almost 7%.
Only 68% of participants demonstrated a response rate greater
than the threshold based on randomly-timed prompts (75%), but
after using SEP-EMA, 100% of the participants demonstrated
response rates over 75%.

While earlier work revealed the connection between a
person’s current activity and their interruptibility [28][29], in
this study, we analyze this relationship in terms of
automatically-detected activities and actual EMA responses.
The current study shows participants are more willing to answer
prompts when they are performing complex multistep activities
like Cooking because there may be natural breaking points
within the activity itself. We also observe that residents are
more willing to respond to prompts when they are in the middle
of activities that appear to be non-critical like Relax. However,
further investigation is required to understand the relationship
between response rates and Work, Personal Hygiene, and Eat.

Although our experimental results show that a transition-
based context-aware prompting system can be useful in many
ways, there are some limitations in the study that need to be
addressed. Data collection in the current study was limited to
only 19 participants and these individuals are midlife or older
adults, therefore we do not know how well transition-based
prompting works for younger individuals. Since the younger
generation are regular mobile phone users and spend more time
near their smart phones, prompting them during transitions
between activities may not provoke as large a difference as for
older adults. The future work could replicate this study with a
larger study population for a longer study duration.

Although the current experiment was performed in
partnership with a smart home platform and activity transitions
and labels were identified using smart home sensor data, the
proposed method can be implemented using virtually any type
of activity monitoring sensor platform, such as smartphone or
smartwatch. Delivering SEP-EMA to an individual’s mobile
device allows the EMA platform to assess phenomenon of
interest at any location, both inside and outside the home. It
would also avoid the difficulties that accompany activity
monitoring in smart homes with multiple residents.

Finally, effective EMA delivery needs to consider be

effective for multiple types of sensor data. Because smart home
systems can cost hundreds or thousands of dollars, the usability
may be limited to those who can afford the technology and the
increase in response rate may not consistently justify the cost of
installing smart home sensors. We are currently enhancing
SEP-EMA to process multiple types of sensor data, which will
generalize its benefit to mobile platforms as well as smart home
settings.

V. CONCLUSIONS

In this paper, we introduce a context-aware algorithm, SEP-
EMA, to improve the performance of EMA in managing
prompts and notifications. SEP-EMA combines traditional
EMA technology with knowledge about a person’s current
activity, activity transitions, and other contextual information to
find the best time to ask EMA questions. Experimental results,
obtained from a set of participants answering EMA queries
while in their smart homes, indicate that the proposed algorithm
outperforms traditional random time-based prompting. We
therefore conclude that using SEP-EMA increases response
rates and decreases activity interruptions. The resulting
approach is useful for presenting information, interacting with
individuals without creating interruption overload, and
boosting EMA data collection process.
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