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Abstract

We analyze the quantization of a system consisting of a particle in an external Yang—
Mills field within a C*-algebraic framework. We show that in both the classical and
quantum theories of such a system, the kinematical algebra of physical quantities can
be obtained by restricting attention to symmetry-invariant states on a C*-algebra. We
use this to show that symmetry-invariant quantum states correspond to symmetry-
invariant classical states in the classical limit.
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1 Introduction

The purpose of this paper is to investigate the classical limits of quantum states of a
particle moving in an external Yang-Mills (gauge) field. We use the framework for
analyzing the classical limit of such a system provided by Landsman [23] in terms of
a strict deformation quantization. Our results demonstrate a correspondence between
gauge-invariant states in the quantum theory and gauge-invariant states in the classical
limit. Furthermore, we show that in both the classical and quantum theories, one can
understand the choice of appropriate algebra for formulating the theory in terms of
analogous algebraic constructions for limiting attention to a particular collection of
states—namely the gauge-invariant ones—when one has started from the full theory
containing both gauge-variant and gauge-invariant states. This construction yields the
kinematical algebras of both the universal phase-space formulation of the reduced
classical system and the superselection structure of the quantum system. These results
illustrate the success of a general procedure outlined in Feintzeig [10,11] for choosing
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an appropriate algebra for quantization by restricting attention to a privileged class of
physical states whose classical limits are well behaved.

Our approach to the classical limit follows the tradition of strict deformation quan-
tization initiated by Rieffel [39—41] and Landsman [26,30,31], in which one defines a
C*-algebra for each possible value of Planck’s constant /. This is in contrast to formal
deformation quantization in which 7 is treated as a parameter in formal power series
[7,9,46,47]. We hope that our work demonstrates the applicability of the tools of strict
deformation quantization to a range of foundational issues.

Our results provide a different perspective on the well-known classical and quantum
reduction procedures. (For classical reduction, see Marsden and Weinstein [33]; for
quantum reduction, see Rieffel [37,38]; and for the relation between the two, see
Landsman [24,25].) Our investigation is somewhat related to the question of whether
quantization commutes with reduction [17], but this question is typically approached
in the framework of geometric quantization (although see Landsman [28,29]). We will
provide an analogous result for a particular model within the C*-algebraic approach to
quantization, but we will not comment further on the relation to geometric quantization.

We proceed as follows. In Sect. 2, we review the mathematical model for the
theory of a particle moving in an external Yang—Mills field and the strict deformation
quantization for this system as constructed by Landsman [23]. In Sects. 3 and 4, we
investigate the classical and quantum kinematics separately, establishing the existence
of an algebraic “reduction procedure” in each case that restricts attention to only gauge-
invariant states. In Sect. 5, we then establish that the quantization maps commute with
our reduction procedure, from which it follows as an immediate corollary that the
classical limit of a gauge-invariant quantum state (understood in a certain sense) is
gauge-invariant. In Sect. 6, we discuss some possible interpretations of the significance
of these results. Our results contain little, if any, novel mathematics, but we believe
they are interesting for the perspective they provide on quantization.

2 Model for a particle in a Yang-Mills field

The classical theory of a particle moving in an external Yang—Mills field is specified in
the geometrical background of a principal fiber bundle (P, Q, H, pr) with total space
given by a smooth, paracompact manifold P, base space given by a smooth manifold
0, typical fiber given by a compact Lie group H, and projection pr : P — Q.
A principal connection on this space represents a Yang—Mills field [49], and our
particle is assumed to move through this background space in the presence of such
a field. Further, we assume the external Yang—Mills field determines an H -invariant
Riemannian metric on the total space P, which is assumed to be geodesically complete
with respect to this structure.

We will work with two possible Hamiltonian formulations describing the phase
space of particle positions and momenta. The first naive formulation of such a phase
space is T* P, the cotangent bundle over P. In this phase space, pure states for the
particle are represented by points in 7* P and we specify a class of bounded physical
magnitudes by the C*-algebra Co(7* P), the continuous functions on 7* P that vanish
at infinity. It follows then that the collection of states (including both pure and mixed
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states) on this algebra consists precisely in the collection of countably additive proba-
bility measures on 7* P [14,31]. We call this a naive formulation because it takes the
total space at face value as the space of possible configurations for the particle rather
than identifying points contained in the same fiber. As such, this first formulation
contains a considerable redundancy.

Our second formulation of the phase space of the particle system is given by
(T*P)/H, the so-called universal phase space of the system. This manifold is well
studied [45,48], and it is known to be a vector bundle over T* Q. As before, we will
take points in this phase space to represent pure states of the particle, and we will
specify a class of bounded physical magnitudes in this formulation by the C*-algebra
Co((T*P)/H). We interpret this phase space as representing the states of a particle
moving through Q with the redundancy of the total space for particle configurations
removed. Notice that this algebra is isomorphic to the algebra Co(T*P)" of H-
invariant continuous functions on the phase space T* P vanishing at infinity. So the
universal phase space is a kind of subtheory of the naive phase space in which we
restrict attention to a particular class of magnitudes.

Next, we specify a kinematical framework for the quantum theories constructed
from each of the above classical phase spaces. Actually, we will only need to specify
this framework for the first naive formulation above. The framework for the universal
phase-space formulation will then follow once we have defined quantization maps
sending classical magnitudes to quantum magnitudes. In the naive formulation, the
pure state space of the quantum theory corresponding to the naive classical phase space
T* P is given by L2 (P), the square integrable functions on P with respect to the metric.
We define a corresponding class of bounded quantum magnitudes specified by the
algebra K(L3(P)) of compact operators on L2(P). 1t follows then that the collection
of all states on this algebra is the collection of all normalized density operators on
L2(P) [36, §VL6].

It is not universally agreed that we should use the C*-algebra of compact operators
to represent the physical magnitudes of a quantum system. Feintzeig et al. [12] and
Feintzeig and Weatherall [13] have argued, however, that this is an appropriate algebra,
at least for systems with finitely many degrees of freedom. The construction of the
algebra can also be generalized to settings with constraints [20-22] or infinitely many
degrees of freedom, see [15,16]. Still, it is worth mentioning that there are alternative
options for C*-algebras of physical magnitudes for quantum systems, including the
so-called Weyl or CCR algebra [1,32,35] and, more recently, the resolvent algebra
[3-6]. In what follows, we set aside these alternatives.

Now, we recall the strict deformation quantization provided by Landsman [23]
for the particle moving in an external Yang—Mills field. For background on strict
deformation quantization, see Landsman [26,30,31]. We note here that the construction
we work with is closely related to the strict deformation quantization of systems with
constraints [27].

Some preliminaries: In what follows, we let dz denote the normalized Haar measure
on H [44]. Further, the H-invariant Riemannian metric on P induces H-invariant
measures £ on P,y on Ty P and i, on T;* P for each x € P. We define the fiberwise
Fourier transform F as follows. If f : T*P — C is measurable and integrable over
each fiber, then we define 7 f : TP — C by
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(F)X) = / ¢ OX) F0)di, (0)

*
X

for each X € Ty P. Recall that the Paley—Weiner functions [36, p. 333] on T*P,
denoted by PW (T* P), are precisely those functions whose fiberwise Fourier transform
is smooth and compactly supported on 7 P.

We define a generalized Weyl quantization map on the norm dense domain
PW(T*P) C Co(T*P). For each x € P, let B(x) be the largest open ball on which
the exponential map exp, : 7, P — P is a diffeomorphism. Let Vi = U,cp B(x),
and let V, be the image of V| under the map ¢ : Vi — P x P defined by
o(X) = (exp, (X /2), exp,(—X/2)) for X € T P. Consider f € PW(T*P), where
Ff € CX(T P) has compact support K. Let ip > 0 be such that kK C V; for all
h € (0, ho). Then for each h € (0, hg), we first define a kernel k5 (f) € C2°(P x P)
for an integral operator by:

W(FHX) Y = @hX),

kr(fN(Y) = {0 Y € (P x P)\Va.

Then, we define an integral operator on L?(P) for each kernel through a quantization
map Qp, : PW(T*P) — K(L*(P)) given by

(Qr(NHY)(x) == /P(kh(f))(x,X’)lﬁ(x/)du(x/)-

As we will note later, each integral operator Qp(f) is Hilbert-Schmidt and so is
compact as claimed. Note that Qp, is a linear *-preserving map for each / on which
it is defined. Landsman [23, p. 105] has shown that this family of quantization maps
Qyp, provides a strict deformation quantization.

On this definition, if f € Co(T*P), then Qx(f) € K(L*(P))¥, where H acts
by a unitary representation on L?(P) defined later and K(L?(P))" consists in the
H-invariant compact operators. We thus take /C(L2(P))" to specify the physical
magnitudes of our quantum theory in the universal phase- space formulation [23, p.
99]. Furthermore, it is known that the algebra KC(L?(P)) has unitarily inequivalent
representations, which gives rise to the superselection structure of the quantum theory
[23, p. 108].

It is worth mentioning that we make a substantive choice in using the quantization
defined here. On the one hand, we have made the substantive choice to work within
the framework of strict deformation quantization rather than, for example, geometric
quantization. Others have treated this and related systems from the perspective of
geometric quantization [42,43,50]. Further, we have made a choice by using these
particular quantization maps; it is known that one can construct a strict deformation
quantization using alternative C*-algebras [2,18,19]. In the remainder of the paper,
we will use the tools of the strict deformation quantization defined here to investigate
the classical limits of gauge-invariant states.
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3 Classical reduction by gauge-invariant states

In this section, we will work only in the framework of the classical theory defined
by the domain of the quantization maps. Our naive theory is given by the C*-algebra
Co(T*P). Note that we have a smooth right action of H on T*P defined by the
pullback of the given right action of H on P. Further, we define a left action of H on
Co(T*P) by (hf)(0) := f(Oh). Then, Co(T*P) is defined as the collection of all
f € Co(T*P) such that hf = f. The reduced theory is modeled by the C*-algebra
Co((T*P)/H) = Co(T*P)H . For most of our results in this section, we only need
to use the fact that 7* P is a locally compact Hausdorff space with a continuous right
action by the compact Hausdorff unimodular group H. At only a few stages will we
need to know that 7* P is a smooth manifold, H is a Lie group, and the group action
is smooth. We will not need to use the further structure of the cotangent bundle in this
section. Our goal will be to understand the reduction process as a map from Co(7T* P)
to Co(T* P)H that restricts the collection of physical states.

We define a privileged collection of H-invariant linear functionals on the naive
theory Co(T* P) by

Ve = {w € Co(T*P)* | w(hf) = w(f) forall f € Co(T*P)and h € H}.

Clearly, V¢ is a weak™* closed subspace. We will show that restricting attention to the
states in V¢ by forming the quotient with the annihilator N(V¢) of V¢ leads to the
reduced algebra.

In this case, we can explicitly define a projection 1 : Co(T*P) — Co(T*P)H by

(o (f))(0) !=/Hf(9h)dh

for each f € Co(T*P). We must first establish that the codomain of 7 is as claimed
and that it is indeed a projection. Then, we will use the projection to show how
Co(T*P)" can be constructed as a quotient space.

Lemma 1 If f € Co(T*P), then mo(f) € Co(T*P).

Proof Let € > 0. Then, there exists a compact set K C T*P such that | f(0)]| < ¢
forall € T*P\K. Define KH := {#h |0 € K, h € H}. Note that K H is the
image of the compact set K x H under the map T*P x H — T*P. Since the action
of H is continuous, we know K H is compact. If 8 € T*P\KH and h € H, then
Oh € T*P\K,so |f(0h)| < €. As a consequence, if 0 € T*P\K H, then

[0 ()O)] = I/ f(Oh)dh| = / |f(@h)|dh < / edh =e.
H H H

Thus, mo(f) vanishes at infinity.

Next, we show 7o (f) is continuous at each point 6y € T*P. Again, let ¢ > 0 and
choose hg € H.Defineg : T*Px H — Rby g(@, h) := | f(0Oh)— f(6ph)|. We know
g is continuous because the action of H is continuous, and we have g (6o, hg) = 0. It
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follows that there are open neighborhoods Uy, € H of kg and Vj,, € T* P of 6y such
that |g(0, h)| < € for all h € Uy, and 6 € Vj,. This holds for each hy € H, so we
can construct an open cover {Up, }noen 0f H, and since H is compact, there is a finite
subcover {Uh/.}’}=1 of H. Now, V = ﬂ;f:th_/. isopen in T*P, and |g(0, h)| < € for
allé € Vand h € H. As a consequence, for any 6 € V,

[0 (f))(0) — (o () (G0)] = /Hlf(Qh) — f(6oh)|dn

=/ Ig(G,h)ldhsf edh = e.
H H

Since this holds at each 8y € T* P, o(f) is continuous. O

Proposition1 If f € Co(T*P), then hmo(f) = mo(f) and mo(hf) = mo(f) for all
heH.

Proof For any f € Co(T*P), hy € H,and 6 € T*P, we have

(horo(f))(O) = (o (f))(Oho) = /H f©@hoh)dh = /H JfOh)dh = (o(f))(O)

by the left invariance of the Haar measure. Further,

(ﬂo(hof))(G)Z/H(hof)(@h)dhZ/Hf(9hho)dh=/Hf(9h)dh= (o (f))(O)

by the right invariance of the Haar measure. O
Proposition 2 For any f € Co(T*P)?, 7o (f) = f.
Proof Suppose f € Co(T*P)!. Then forany @ € T*P,

(10(/)(6) = / FOhydh = / (hf)©@)dh = / FO)dh = £6)
H H H

which shows that mo(f) = f. O

Notice that Proposition 1 shows that if f € Co(T*P), then mo(f) € Co(T*P)¥
as claimed. Then, Proposition 2 shows that 7 is surjective and a projection, i.e.,

mo(o(f)) = o (f).
Proposition 3 m is linear, *-preserving, and norm continuous (in the sup norm).

Proof For any f € Co(T*P) and any 6 € T*P,

[(o(fNO)] < / |f(©h)|dh S/ Iflldh =11 £,
H H

so lmo()II < |l f|l. Further, mp is linear and *-preserving because the Lebesgue
integral is linear and *-preserving. Since g is a bounded linear operator, it is norm
continuous. O
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Next, we establish that mo preserves the subalgebra of functions that are smooth
and compactly supported.

Lemma2 If K C T*P is compact and U € T*P is open, then {h € H | Kh C U}
is open.

Proof Since the group action is continuous, we know that
{O,h) e K x H|0h € U}

is a closed subset of the compact space K x H and so is compact. The image of this
set under the continuous projection K x H — H is

{he H|Oh e U forsomed € K}={he H|KhC U}

which is a compact subset of the Hausdorff space H and so is closed. O

Lemma 3 Consider 6y € TiP, and define f : H — T by f(h) = 6ph. For any open
subsets U,V C T*P withV C U, there is a neighborhood W of 6y such that Oh € U
forallh € f~Y(V)and 6 € W.

Proof Since T* P is first countable, locally compact, and Hausdorff, we can consider
a nested neighborhood basis {W; } 2, at Gy consisting of precompact open sets with
W,+1 C W;forall j > 1.IfOph € U,then W;_1h € U forsome j > 2,s0 W]h cuU
for some j > 1. By the previous lemma, we know {h € H | th C U}‘]?":1 is an
increasing open coverof {4 € H |ph € V} = f~1(V), whichis a closed subset of the
compact space H and so is compact. Thus, {h € H |6ph € V} C {h € H | W h Cc U}
for some integer j > 1.Ifh € f~'(V)and & € W;, then 6oh € V C V, so
Oh e Wih C W,h C U as desired. O

Proposition4 If f € CX°(T*P), then mo(f) € C°(T*P).

Proof First, we show that 7 ( f) is compactly supported. Let K € T* P be the compact
supportof f.Let KH ={6h |60 € K,h € H}.Forany0 € T*P\KH and h € H,
0h € T*P\K,so f(0h) = 0. As a consequence, if 0 € T*P\K H, then

(o (f))(O) :f f(h)dh :/ 0dh = 0.
H H

Since the group action is continuous, K H is compact, so o ( f) is compactly supported.

Next, we show that 7o (f) is smooth at each 6y € T*P. Let (U, ¢) be a chart at 6.
Since the integral expression for 7 ( f) may depend on the value of f outside U, we
proceed in two steps: First, we break down o ( f) into a sum of components depending
only on regions no larger than U, and second, we show that each of these components
varies smoothly.

To begin, consider a precompact set V with @y € V € V C U. Define g : H —
T*P by g(h) = 6ph, and let 6oH = {g(h) | h € H}. Letting § = g_1 (V), and
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applying the previous lemma, there is a neighborhood W of 6y such that 64 € U for
all@ € Wand h € S. Now, {Vh},en is an open cover of the compact set 6y H since
0o € V, and so there exists a finite subcover {V i };f: 1~ We have

n n n )
Ush=Us™vmy=Us " vap = (Uva) = 4.
j=1 j=1 j=1 j=1

Thus, the inclusion—exclusion formula implies that for any 6 € T*P,
(o (fNO) = / f(©h)dh
H

= / fOh)dh
UL_, Shj

D L / FOn)dh.
ﬂjejshj

JC{L,...n}; J#D

We will show that for each non-empty J C {1, ..., n}, letting I = Njc;Sh;, the
map6 — |, ; S (©@h)dh is smooth on W. Since the group action is smooth, we know that
for each h € H, the map 6 +— f(0h) is smooth, which implies that the composition
t— f ((p‘l(t)h) is smooth for each t € ¢(W). The Leibniz integral rule can be
applied to the domain (W) € R™, which shows that 8 +— f ; f(©@h)dh is smooth on
W. This implies along with the above formula that 7o ( /) is smooth on a neighborhood
of 1y, and since this holds for each point 6y € T* P, it follows that 7o ( f) is smooth. O

Note that the previous proposition only relies on the fact that 7* P is a smooth
manifold with a smooth right action by H. As such, we can apply this proposition
even to functions on 7 P, which also carries a smooth right action by H, when these
functions are obtained as the Fourier transform of functions on 7* P. Once we show
that 779 commutes with the Fourier transform, this will show that the map m¢ preserves
the subalgebra of Paley—Weiner functions. We will use this fact later on.

We will have occasion to use a particular class of linear functionals in V. For any
6 € T*P, define

o (f) = (o(f)(0) = /H F(0m)dh

forall f € Co(T*P).
Proposition 5 For each 6 € T*P, o}l € V.

Proof Forallhg € Hand f € Co(T*P),wf! (hof) = (mo(ho [))(0) = (mo(f))(O) =
H
g (f). O

Now, let N (V) be the annihilator of V¢ in Co(T*P).
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Theorem 1 There is a *-preserving vector space isomorphism between
Co(T*P)/N(V¢) and Co(T*P)H.

Proof We will show that ker(;tg) = N (V¢).
Suppose f € N(V¢). Then foreach§ € T*P,

(o (f)O) = /H fOhdh = o (f) =0,

so f € ker(mp).

On the other hand, suppose f € ker(mp) and consider w € Vc. By the Riesz—
Markov representation theorem [36, p. 107], there is a complete regular finite measure
e on T* P such that

w(g) = / g(0) duw(9)
T*P

for all g € Co(T*P). It follows that

0=/ (o (f))(0)dpe ()
T*P

- / / £ (Oh)dhdpi, (6)
T*P JH

=// (hf)(0)dupe,(0)dh
HJT*P
= / w(hf)dh

H

:/ w(f)dh
H
=w(f).

Here, the use of the Fubini—Tonelli theorem [36, p. 21] in the third line is justified
because both measures in question are finite and f is bounded. This shows that f €
N (V). We conclude that ker(rg) = N (V).

It follows that mp induces a *-preserving vector space isomorphism from
Co(T*P)/N(Vc) to Co(T*P)H. o

Notice that it follows immediately that the map w +— ® o 7 is a vector space
isomorphism between (Co(7* P)™)* and V. This shows that 7y can be thought of as
implementing the classical reduction by restricting attention to the states in V.

It may be of interest to note that g is not in general a *-homomorphism. The
following proposition, for example, establishes that m( fails to be a homomorphism
when H is finite and acts non-trivially. For more on quotients and ideals in C*-algebras,
see [8,34].

Proposition 6 If g is a *-homomorphism, then for each f € N(V¢) and each 6 €
T*P, the map h — f(0h) is zero almost everywhere on H.
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Proof Suppose 7 is a *~homomorphism. Then, N (V) is an ideal [31, p. 675]. Sup-
pose f € N(V¢). It follows that |f| = f*f € N(V¢). Forany 6 € T*P, we
have

/H \F@mdh = ol (F* 1) = 0.

Now, since h +— | f(0h)| and the Haar measure are both nonnegative, it follows that
f(6h) is zero almost everywhere on H. O

4 Quantum reduction by gauge-invariant states

We work now with the framework of the quantum theory defined by the codomain
of the quantization map OQp. That is, our naive theory is given by the C*-algebra
KC(L2(P)). In this section, we will only need to use the fact that H is a compact
Hausdorff unimodular group acting continuously on P on the right and that P also
has an H-invariant measure. For current purposes, H need not even be a Lie group.
For each h € H, define a unitary operator U (k) on L?(P) by

U)Y)(x) == ¥ (xh)

for all ¥ € L2(P). Let K(L%(P))" be the C*-algebra of compact operators that
commute with U (h) forevery h € H.This will be the C*-algebra of the reduced theory.
We will proceed in analogy to the classical case. Our goal will be to understand the
reduction process as a map from K(L2(P)) to K(L2(P))* that restricts the collection
of physical states.

We define a privileged collection of H-invariant linear functionals on the naive
theory IC(L?(P)) by

Vo = {w € K(L*(P))* | @(U (k) AU (h)*)
= w(A) forall A € K(L*(P))and h € H}.

In analogy with the classical case, we will show that restricting attention to the states
in Vg by forming the quotient with the annihilator N (V) of Vg leads to the reduced
algebra.

We begin with some preliminary facts about V. Clearly, Vo is a weak* closed
subspace. Further, if w € (L%(P))*, then there is a unique trace class operator p,, €
T(L2(P)) such that w(A) = Tr(p,A) forall A € IC(LZ(P)) [36, p. 213]. We can
characterize the functionals belonging to V by reference to their corresponding trace
class operators as follows. Let T(L*(P))" be the collection of trace class operators
that commute with U (h) for every h € H.

Lemma4 o € Vg iff pw € T(L*(P))".
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Proof If we suppose w € Vg and h € H, we have

Tr(U(h)poU (h)*A) = Tr(p,U(h)* AU (h))) = o(U(h~ AU (h™1)")
= w(A) = Tr(p,A)

for all A € K(L?(P)). It follows from the uniqueness clause above that p, =
U (h)puU (h)*.
On the other hand, if p,, = U(h)p,U (h)* for all h € H, then

(UWAU (0)*) = Tr(p,Uh)AU (h)*) = TrUh~")p,U(h~")*A)
=Tr(poA) = w(A),

sow € Vg. O

Notice it follows that w € Vg ift w* € Vp, where w*(A) := Tr(p}A) for all
A € K(L*(P)).

Now, consider the norm dense subspace of KC(L2(P)) given by the collection
HS(L2(P)) of Hilbert—Schmidt operators with Hilbert—Schmidt inner product and
norm denoted by (-, -)gs and ||-||gs, respectively. Let HS(L2(P))*¥ denote the collec-
tion of Hilbert—Schmidt operators that commute with U (h) for every h € H.

Recall that we have

T(L*(P)) € HS(L*(P)) € K(L*(P))
which implies
TPy cHS(L* (P! < K@ (P).
We now establish some basic facts concerning HS(L2(P)H.

Lemma5 HS(L*(P)" is a |- ||lus-closed subspace of HS(L?(P)).

Proof Clearly, HS(L2(P)" is a subspace. Consider a net Bg € HS(L?(P))" such
that || Bg — Bllus — 0 for some B € HS(L2(P)). Then for any h € H,

IB — U(h)BU(h)*|lus = (B — Bg) + (Bg — U(W)BU (W)*) |lus
< |1B — Bgllus + U (W) BgU (h)* — U (h) BU (h)* s
< B — Bgllus
+ [Tr(U(h)(Bg — B)*U (h)*U(h)(Bg — B)U (h)*)]"/?
< ||B — Bgllus + [Tr((Bg — B)*(Bg — B)]"/*
<2||B - Bgllns

and since the latter approaches zero, it follows that B = U (h) BU (h)*. m|
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We define 71 : HS(L2(P)) — HS(L2(P))H as the orthogonal projection (with
respect to the Hilbert—Schmidt inner product) onto the subspace of H-invariant
Hilbert—Schmidt operators. We first provide an explicit representation of the map
1. Recall that for any A € HS(L?(P)), there is a function k4 € L>(P x P), called
the kernel of A, such that A can be expressed as the integral operator [36, p. 210]:

(AY)(x) = fP kaCxe, ) (y)du(y)
for any ¢ € L2(P).
Lemma6 ky € L2(P x P) is the kernel of A € HS(L2(P)" if and only if

ka(xh, yh) = ka(x,y)
almost everywhere on P x P foreachh € H.

Proof Suppose ka(xh, yh) = ka(x,y) for all h € H. Then for any » € H and
¥ € L*(P),

(AU (M) (x) = fP ka (s ) (U WW) ()R (y)
_ fP ka(xh, yh) (yh)du(y)

_ /P kaCeh, YV 0)An()
= (AY)(xh) = (Uh)AY)(x),
so A € HS(L2(P))~.

On the other hand, suppose that A € HS(L%(P))". Then for any h € H and
¥ € L*(P),

fP k(e Y NAR() = (AP ()

= (Un)AU (h)*y)(x)
= (AU (h)*y)(xh)

- fP kaGeh, )0 (vh™di(y)
- /P kaGeh, YU (A (y).
It follows that for any ¥ € L%(P),
/P (ka(x, ) — ka(eh, Y)W ()dp(y) = 0
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and hence k4 (x, y) = ka(xh, yh) almost everywhere. O

Proposition 7 Let k4 be the kernel of A € HS(L2(P)). Then, 1(A) has kernel

k(x, y) ::/ ka(xh, yh)dh,
H

(T (AP (x) = fP ke, My )d(y).
Proof Let us denote the integral operator with kernel & by B, i.e.,
(BY)(x) == /P ke, MY du(y).

Our task is to show that B = w1 (A). First, we show that B belongs to HS(L2(P)H.
For any hg € H, we have

R(xho, yho) = / ka(ehoh, yhoh)dh = / ka(xh, yh)dh = B(x, y)
H H

and hence it follows from the previous lemma that B € HS(L2(P)H.

Next, we show that A — B is orthogonal to HS(L2(P))" with respect to (-, -)ys-
Consider any C € HS (L2(P))H with kernel kc. We know from the previous lemma
that

kc(xh, yh) = kc(x, y)

almost everywhere. Then, we have

(B, C)ps = /P R ke (e, )

_ / / FaGeh, yioke (x, y)dhdu (x)du(y)
PxP JH

_ / / FaGeh, yike (v, y)du () dp(y)dh
HJpxP

_ / / Fale. ke (ch™", yh™Ddp(n)du(y)dh
HJPxP

_ / / FaCr ke G, »)du(x)du () dh
HJPxP

= /;) . ka(x, ke (x, y)du(x)du(y) = (A, C)ys.
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The use of the Fubini—Tonelli theorem in the third line is justified because the Cauchy—
Schwarz inequality implies

/ / lea (e, yhRC G, D Idp (O d ()
HJPxP

2 2 172
< sup (f lka(xh, yh)| du(x)du(y)/ lkc(x, y) du(x)du(y)dh)
heH PxP PxP

and each of the factors on the right is finite because k4, k¢ € L2(P x P).
Hence, it follows that (A — B, C)us = 0 for all C € HS(L?(P))". This implies
that B is the orthogonal projection of A onto HS(L?(P))" and hence B = 71(A). O

We will now aim to extend 771 continuously from the dense subset HS(L?(P)) to
all of K (L2(P)). To do so, we need to know that 7} is already continuous in norm on
its domain.

Proposition 8 1 is operator norm continuous.

Proof Forany A € HS(L?(P)) withkernel k4 € L>(P x P), and for any ¢ € L(P),

(T (A (x) = /P /H kaCeh, y)y () dhda(y)
_ / / ka(xh, yh)w () dhdp(y)
HJP
=/H(U(h)AU(h)*1/f)(x)dh.

The use of the Fubini—Tonelli theorem in the second line is justified because the
Cauchy—Schwarz inequality implies

/ /IkA(xh,yh)lﬂ(y)ldhdM(y)
HJP

2 2 172
< sup (/PlkA(xh,yh)I du(y)/le(y)l du(y))

heH

and each of the factors on the right-hand side is square integrable. It follows that

Il (A = fP /H |(U (W) AU (h)*yr) (x)|2du (x)dh

=/H/P|(U(h)AU(h)*1/f)(x)pdhde)
< sup |U(WAU()*¢ ||

heH
< IAIPIw 12
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Thus, ||z (A < [1A]. o

We now consider the norm-continuous extension of 7| as a map K(L2(P)) —
IC(L2(P))H, which we will continue to denote simply by ;. We must establish that
1 does indeed have the range just specified.

Lemma7 K(L2(P) is operator norm closed.
Proof Suppose Ag € IC(L%(P))H is a net converging to A in operator norm. Then,
UmAU(h)* — Al = U AU(h)* — U AgU (h)* + U(h)AgU (h)* — Al
< UM)AU (h)* — Uh)AgU W)™ || + U (W) AgU (h)* — Al
= |U(h)(A = Ap)UW)*|| + ||Ap — Al
<2||A - Agll
and since the latter approaches zero, it follows that A = U (h) AU (h)*. O
Lemma 8 HS(L?(P))" is operator norm dense in K(L*(P))H.

Proof Suppose A € IC(L*(P))". We know that for each h € H, U(h)AU (h)* = A
and it follows since the Haar measure is normalized that for any ¢ € L2(P),

(Allf)(x)=/H(Al/f)(X)dh =/H(U(h)AU(h)*1/f)(x)dh.

Further, there is anet Ag € HS(L2(P)) such that |Ag — Al — 0. Now, consider the
net 1 (Ag) € HS(L?(P))" . For any ¥ € L?(P), using the representation of 1 (A)y
from the above, it follows that

(A —m (Ap)yl? = /P|(A¢)(x) — (11 (A ) (1) Pdpa(x)
= [ [ 1w@mavm e - wamagy i P
= fP le(U(h)(A — Ap)U (hy*yr)(x)[*dhdpu(x)
- /H /P“U(’”(A — Ag)U (h)*y) ()P dpa(x)dh

= /H U (h)(A — Ag)U (h)* v || *dh

<A - A2y

Here, the use of the Fubini—Tonelli theorem in the fourth line is justified because the
integrand is nonnegative. Hence, it follows that [|A — 1 (Ap)|| < [|[A — Agll — 0.0

Proposition 9 If A € IC(L2(P)), then 1 (A) = A.
Proof Suppose A € K(L*(P))!. Then, there is anet Ag € HS(L?(P)) converging
to A in operator norm. It follows that 11 (A) = limg 71 (Ag) = limg Ag = A. O
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It follows that m is surjective and hence a projection, i.e., 71 (w1 (A)) = w1 (A).
We will have occasion to use a particular class of linear functionals in V. For any
@, € L?(P), define

ol (A) = /H (@, U AU (h)*yr)dh

forall A € K(L?(P)).

Proposition 10 For each ¢,y € L*(P), o/, € Vp.
Proof For any hg € H and A € KC(L%(P)),
wgw(U(ho)AU(ho)*) =/ (@, U(h)U (ho) AU (ho)*U (h)*r)dh
H
= [ to. Uty AU GhoY )0
H

= /H<‘0’ U AU ()*§)dh = o], (A).

O
Now, let N (V) be the annihilator of Vg in K(L2(P)).
Proposition 11 If A € N(Vp), then A* € N(Vp).
Proof Suppose A € N(Vp). Then for any w € Vy, since o™ € Vg, we have
w(A*) = Tr(p,A*) = Tr(pjA) =0,
so A* € N(Vp). O

Theorem2 There is a *-preserving vector space isomorphism between
K(L%(P))/N(Vg) and K(L*(P)H.

Proof We show ker(rr1) = N(Vp).
Suppose A € IC(L?(P)), and let Ag € HS(L?(P)) be a net converging to A in
operator norm. Suppose first that 771 (A) = 0. Then for any w € Vg, we have
0=w(m(A) = liénw(m (Ap)) = lién Tr(mwi(Ap)pw)
= li/gn(p:f), 1 (Ag))Hs
= lim/ / ko, (x, Y)kag(xh, yh)dhdu(x)du(y)
B JpxpJH

= lim / f K, ch ™1 yh™Dka, (e, y)dhdp(x)dp(y)
B JpxpJH
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=tim [ [ o G030k G 0B )
B JpxpJH

= lim(o, Ap)us = lim Tr(pyAp) = limw(Ag) = w(A).

Hence, A € N(Vp).
On the other hand, suppose A € N (V). Then for any ¢, ¢ € L?(P), using the
form for 1 (A)y from a previous lemma, we have that

(o, T (A)Y) = fP /H @) (U R) AU (h)* ) (x)dp(x)
= /H fp @) (U (W) AU (h)*yr) (x)dp(x)
=/H<<p, U(h)AU (hy*y)dh = o}, (A) = 0.

The use of the Fubini—Tonelli theorem in the second line is justified again by the
Cauchy—Schwarz inequality because both vectors are square integrable. Hence, it
follows that 771 (A) = 0, and we conclude that ker(m1) = N(Vp).

It follows that m; induces a *-preserving vector space isomorphism from
K(L?(P))/N (V) to K(L*(P)). u]

Notice that it follows immediately that the map w — ® o 7 is a vector space
isomorphism between (K(L?(P))H)* and V. This shows that 71 can be thought of
as implementing the quantum reduction by restricting attention to the states in V.

As in the classical case, it may be of interest to note that m; is not in general a
*-homomorphism. The following proposition, for example, establishes that iy fails to
be a homomorphism when H is finite and acts non-trivially.

Proposition 12 Ifmy is a *-homomorphism, then foreach A € N(Vg) and € L%(P),
the map h — AU (h){ is zero almost everywhere on H.

Proof Suppose 71 is a *-homomorphism. Then, N (V) is an ideal. Suppose A €
N(Vp). It follows that A*A € N(Vp). For any ¢ € LZ(P), we have

/ AU (h)*||dh = / (Y, U(h)A*AU (h)*yr)dh
H H
= o} ,(A*A) =0,
but since & +— ||AU (h)*y| and the Haar measure are both nonnegative, it follows

that || AU (h)*/|| is zero almost everywhere on H. The invariance of the Haar measure
under inversion in H then yields the result. O

5 Equivalence of quantizations and limits of states

Recall that in the strict deformation quantization of our system, we have a classical
C*-algebra 2 := Co(T*P) and a family of quantum C*-algebras 2, := IC(L2(P))
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for each i > 0, each of which carries a group action by H. Our task now is to show
that Qp o mg = w1 o Qp or in other words that the following diagram commutes:

Ao Qn A
70 sl
A Al

0 o h

We need to take some care in interpreting the diagram, however, because Qj, is defined
only on the dense subalgebra PW (T* P) C 2. Since O, fails to be norm continuous,
it cannot be extended uniquely to all of 2. Further, for each f € g, O (f) will
only be defined for certain values of /. So we aim to show that the diagram commutes
when both Qf(f) and Qp (7o(f)) are well defined. Once this result is established,
we will be able to show immediately that the classical limit, understood in a certain
sense, of any quantum state in V¢ belongs to V.

We establish that the diagram commutes in two steps: first, we show the projection
maps commute with the Fourier transform, and second, we show the projection maps
commute with the construction of the kernel k.

To begin, note that we have a smooth right action of H on T P given by the push-
forward of the given right action of H on P.

Lemma 9 Suppose f : T*P — C is measurable and integrable over each fiber. If
h € H and X € Ty P, then (F f)(Xh) = (F(h™" [))(X).

Proof Forany h € H and X € T\ P, we know Xh € Ty, P, so

(F)(Xh) = / e OXN) £ (0)dfin(0)
xh

- f XN £ (o1 )dji, (0)
Ty P
= / X0 ©0)dj (6)
Iy p
= (Fh™ ' HX)
as desired. O

Lemma 10 Suppose f € PW(T*P). Then for each x € P, the map h +>
fo*hP | f(O)|dfixn(0) is bounded.

Proof Our strategy is to rehearse the proof of one direction of the classical Paley—
Wiener theorem [36, Thm. IX.11, p. 333], which establishes bounds on the decay of
f on each fiber. We show that these bounds vary continuously across fibers, which
yields the result.
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We work in a neighborhood U of x € P admitting an orthonormal frame so that
we can identify 7*U and TU with U x R™. For any y € U and 6 € TP, since
F f € C(T P), integration by parts yields

/T e X @ F N, X)duy(X) = i6; / e 0Ky, X)dpy (X).

yP Ty

Further, by induction we have that for any multi-index o,

/T Pe*”@’“(a“(ff))(y,X)duy()o=(i9)“ /T Pe*"w”“ff(y, X)dpy (X)

and so the Fourier inversion theorem [36, Thm. IX.1, p. 320] implies that

@F N, X) = FW(G)* )H(y, X)

forany y € U and X e T, P. The Hausdorff—Young inequality [36, Thm. IX.8, p.
328] implies that

sup [(i0)* f(y,0)| = C(y) :=/ 1@ (F NG, 0lduy (X).

OeTy P TP
Moreover, C(y) is continuous on U by the dominated convergence theorem [36, Thm.
1.16, p. 24], and hence, C(y) is bounded on some open set V C U.

Furthermore, since the above argument does not depend on the choice of x € P, it
follows that there is similarly a neighborhood V), of xh for each h € H on which

sup sup [(i0)* f(y,0)| < sup|C(y)| < oo.
YEVH 0T P YEV)

Since {Vj}nen is an open cover of x H, which is compact, there is a finite subcover
{Vk} of x H, which implies

sup sup [(i0)* f(xh,0)| < sup|C(y)| < oo.
heH 0eT}, P t YEVK

It now follows that sup,,. fT*’ pl @), (0) < oo, as desired. O

Proposition 13 Suppose f € PW(T*P). Then for any X € T, P,

(Fro(f))(X) = fH (F ) (Xhydh.

Proof The preceding lemma implies that for each x € P,
/ / 1e!9%) £ dfy (0)dh < oo.
HJTyP

@ Springer



T. L. Browning, B. H. Feintzeig

This justifies applying the Fubini—Tonelli theorem in calculating
/ (F ) (Xh)dh = / Fh X)dh
H H
= / / X fOn~")dfiy (0)dh
HJT:P
= / e / £(©Oh~)dhdj (0)
TxP H
=/ ei“’!’“/ f(Oh)dhdfi, (0)
TxP H

_ / &0 (0 (1)) (0)djs (0)dh
TFP
— (Fro())(X)

where the fourth line follows from the invariance of the Haar measure under inversion.
[m}

Note that we also have a smooth right action of H on P x P given by (x, x")h =
(xh,x'h) for all x,x" € P and h € H. We know that forany X € T, P and h € H,
we have ¢(Xh) = ¢(X)h because exp, (X)h = exp,, (Xh).

Proposition 14 Suppose f € PW(T*P) and K C T P is the compact support of F f.
Let h > 0 be such that hK H C Vy. Then for any Y € (P x P),

(kn(ro(f))(¥) = /H kn(£)(Yh)dh.

Proof If Y € (P x P)\V, then both sides of the equality are zero. Suppose, on the
other hand, that ¥ = ¢(hX) for some X € Ty P. Then for any # € H, we have
hXh € Vy, so

/H kn(£)(Yhydh = /H kn () (@(hX)h)dh
_ fH kn(f) (@ (hXh))dh

= / R (F £)(Xh)dh
H

= " (F (o (SINX)
= kp(mo(fN)

as desired. O

Theorem 3 Suppose f € PW(T*P) and K C T P is the compact support of F f. Let
h > 0 be such that hK H € Vy. Then, Qp(mo(f)) = m1(Qr(f)).
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Proof For any v € L2(P),

(Qr(mo(fNY)(x) = /P(kn(no(f)))(x,x’)t/f(x’)dM(X’)

:/P/H(kh(f))()ch’X/h)W(X/)dM(x/)
= (M (Lr(NY)(x)

which shows that Qp (o (f)) = 71 (Qr(f)). o

Now, we can consider classical limits of states in V. We say that a family of
functionals {wp, € 2} }reo,¢) 18 a continuous field of linear functionals if for each f €
PW(T*P), the map h — wpr(Qr(f)) is continuous for all i € [0, €) on which OQp (f)
is defined (cf. Landsman’s classical germs [23, p. 103]). The intended interpretation
is that wp may be thought of as a classical limit of {wp } 5[0, ¢). Of course, there may be
many distinct continuous fields of functionals converging to the same classical state, so
we understand these classical limits to only be specified relative to a given continuous
field of functionals. We now show that each classical state in V¢ can be thought of as
a classical limit of quantum states in V¢ and that each continuous family of quantum
states {wg}relo,¢) that all belong to Vp has a classical limit in V.

We will need to use the fact that for any wg € Q[(";, we have wy o my € V¢, and
similarly, for any wy € Ql’;L we have wp o m1 € V. In the same vein, we will need
the following result:

Proposition 15 If wy € V¢, then wg o my = wy. Similarly, if wp € Vo, then wpomy =
wF.

Proof Suppose wg € V. Then, the Riesz—Markov representation theorem entails the
existence of a regular, finite measure (., on 7* P such that

wo(f) = / FO)dbtan ©)
T*P
for all f € Co(T*P). It follows that for any f € Co(T*P),
wo(mo(f)) = f / FOh)dhdptay (6)
T*P JH
- f / (hF)(O)dbtan (0)dh
HJT*P
_ f wo(hf)dh
H
=/ wo(f) = wo(f).
H

Here, the application of the Fubini—Tonelli theorem in the second line is justified
because both measures are finite and the integrand is bounded.
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On the other hand, suppose wy, € Vg. Then, there is a trace class operator p,, such
that

wr(A) = Tr(pw,A)
forall A € KK(L%(P)). It follows that for all A € HS(L2(P)),

wp(m1(A)) = Tr(pw,1(A))

_ / / pu, (6 VK (eh, y)dhdp(0)di(y)
PxP JH

_ / / Ky, (6 Yk (eh, yh)dja (x)dpa ()
HJPxP

:/ Tr(,oth(h)AU(h)*)dh
H

=/ (U ) AU (h)*)dh
H

=/ on(A) = wp(A).
H

Here, the application of the Fubini—Tonelli theorem in the third line is justified by
a now familiar application of the Cauchy—Schwarz inequality. Since wp, agrees with
wpomy onanorm dense subset of IC (L2 (P)) and both are continuous linear functionals,
Wh = Wk O IT]. m}

We now have the resources to prove our main result.

Theorem 4 wy € V¢ if and only if there is a continuous field of linear functionals
{wn}re0,e) Such that wy, € Vo forall h € (0, €).

Proof First, suppose that wy € Vc. Then, it follows from a result of Landsman [23,
p. 105] that there is a continuous field of functionals {wp}re[0,e) converging to wy.
Now, consider the family of functionals w; = wo and w) = wp o my. Clearly, for
each 7o € (0, €), we have w}, € Vp. We claim that {w},}re[0,¢) is a continuous field
of functionals. This follows immediately from the previous theorem because for all
h € (0,¢)and f € PW(T*P) for which Qp(f) is defined, we have

@ (Qr(f) = wp o T (Qn(f)) = wr(Qr(o(f)))

and so since wp(Qo(f)) = wo(Qo(mo(f))), the fact that {wn}nefo,¢) is a continuous
field of functionals implies that i — wp (Qp (7o (f))) = w%(Qh(f)) is continuous.

On the other hand, suppose {wp}re(o,¢) 1S @ continuous field of linear functionals
and wy € Vg forall i € (0, €). Then for any f € PW(T*P) and sufficiently small
€’ < e for which Qp( f) is defined for all i € [0, €'),

wo(f) = wo(Qo(f)) = %igbwh(gh(f))
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= %1_1)110 wp o w1 (Qr(f))

= %i_I)I})wh(Qh(ﬂo(f))) = wo(Qo(0(f))) = wo(mmo(f)).

Since wq agrees with wg o mp on a norm dense subset, this implies that wg € V. O

Notice that we do not specify a particular way of taking the classical limit of any
given quantum state wp, € Vo because we do not determine a unique continuous field
of functionals for a given wp, € V. Instead, we make just one interpretive assumption:
we assume that one interprets the classical limit as “zooming out” or “looking at wy on
larger scales” without changing the physical content of the state wp. We implement this
interpretation mathematically by requiring as a necessary condition for a continuous
field of functionals {wr }re(0,¢) to represent the classical limit of wy € Vo that for each
N e, e),wy € V. On this interpretation, then, the preceding theorem establishes
that the classical limit of any quantum state in Vy belongs to V.

6 Conclusion

In this paper, we have analyzed the classical limits of quantum states for particles
moving in an external Yang—Mills field. We have shown in Theorem 4 by using the
framework of C*-algebraic strict quantization that the classical limit of a gauge- invari-
ant quantum state is a gauge-invariant classical state. Further, we have shown how to
construct reduction mappings in the C*-algebraic formulation of both the classical and
quantum theories. We established in Theorem 1 that the classical reduction mapping
produces a C*-algebra whose states consist precisely in the gauge-invariant classical
states, corresponding to the universal phase-space formulation of the classical the-
ory. We analogously established in Theorem 2 that the quantum reduction mapping
produces a C*-algebra whose states consist precisely in the gauge-invariant quan-
tum states, corresponding to the superselection structure on the quantum theory. We
conclude by commenting briefly on the significance of these results.

First, the results in this paper can be understood to provide a kind of justification for
use of the universal phase-space formulation of the classical theory when one makes
assumptions about the quantum theory. Suppose one already knows the quantum theory
of such a system to have the superselection structure represented by the C*-algebra
IC(L*(P))H with physical states belonging to V. Suppose we make the interpretive
assumption that a classical state is physical only if it is the classical limit of a physical
quantum state. Under this assumption, it follows that the only physical classical states
belong to V¢ and hence are states on the C*-algebra Co(7* P)* of the universal phase-
space formulation. Thus, if one already believes the physical quantum states belong
to Vg, one will have reason to believe the physical classical states belong to V¢ and
so reason to choose the classical C*-algebra Co(T* P)! of the universal phase-space
formulation.

Second, and conversely, the results of this paper can be understood to provide a
partial justification for the superselection structure of the quantum theory when one
makes assumptions about the classical theory. Suppose one already knows the classical
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theory of such a system to be represented by the universal phase-space formulation
with the C*-algebra Co(T*P)" and physical states belonging to Vc. Suppose we
make the analogous interpretive assumption that a quantum state is physical only if
its classical limit is a physical classical state. In this case, it does not follow that only
quantum states in V¢ are physical because in general there may be distinct continuous
fields of functionals having the same classical state as their classical limit. Rather,
it follows only that the quantum states in Vp meet a necessary condition for being
physical states. Still, this might give some reason to prefer the quantum states in Vg
and hence to use the reduced quantum algebra /C (L32(P)H.

Finally, we make a more general remark about the strategy used in this paper. We
believe the results obtained here demonstrate the usefulness of the classical limit in
constraining the construction of quantum theories. Our results establish how to transfer
from classical to quantum theories both (i) information about which states are physical
and (ii) reduction procedures for limiting the state space of a theory. This promising
avenue gives further reason to investigate the classical limit in the context of strict
quantization.
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