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[...] in our philosophical reflections upon
science, we should by now have learned
explicitly—that successful scientific
theories are to be taken very seriously as
clues to the deeper understanding of
phenomena: i.e., clues in the search for

better and more fundamental theories.

— H. Stein ([1989], p. 57)

1 Introduction

It is common to require that a newly constructed physical theory be able to explain the suc-
cess of the theory it supersedes. In the context of quantization, or the construction of quantum
theories, this becomes the requirement that a quantum theory explain the success of its corre-
sponding classical theory in the classical limit. But this requirement is vague as it stands—what
could count as an explanation of past success? And how could this guide us in the construction
of new theories? The purpose of this article is to make a part of this requirement precise and to
show that it puts substantive constraints on theory construction.

I will focus on just one aspect of explaining the success of a past physical theory: the state
space. The state space of a physical theory often contains states that are not used to represent
genuine physical possibilities. I will call these states, which are sometimes said to be ‘mere
artifacts’, unphysical states. As I see it, an explanation of the state space involves explaining
why only certain parts of the mathematical structure of the theory—the physical states—are
required for successful application of the theory. I will not be concerned with the ontologi-
cal status of the physical and unphysical states, but rather their methodological role in these
successful applications. I will assume that there is at least a normative ideal, whether or not
it is actually achievable, to construct physical theories that allow only for physical states and
rule out unphysical states. A general procedure for adapting quantum theories to allow for
only physical states once a physical state space has been specified is established in (Feintzeig

[2018a]), but leaves open how one might go about figuring out which states to deem physical.
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I will argue that what I call the requirement of reductive explanations provides a way of filling
this gap and deciding which states to consider as physical.

The central contribution of this article is thus the proposal of a philosophically significant
heuristic method for constructing quantum theories. The proposal is, roughly, that we should
aim to construct quantum theories in which the classical limits of physical quantum states are
physical classical states. In Section 2, I will provide some background to the proposal from
discussions of physical possibility and reductive explanations in the literature. In Section 3, I
will state the central proposal in a schematic form and provide a general, context-independent
argument in an attempt to justify it. However, I will argue that the general formulation of the
proposal is significantly limited and one should instead take up the proposal on a case by case
basis. This motivates further discussion of two context-specific applications in the following
sections. In Section 4, I discuss (Feintzeig [2018b]), showing that the proposal leads to the
appropriate answer for systems of finitely many free particles, in which the quantum theory
can be understood through a regular representation of the Weyl algebra. In Section 5, I discuss
(Browning and Feintzeig [unpublished]), showing that the proposal leads to the appropriate
answer for systems of particles moving in an external gauge field, in which the quantum theory
can be understood through the charge superselection structure of an algebra of observables.
Finally, in Section 6 I will draw some conclusions from what has been said for discussions in

philosophy of science concerning heuristics and scientific discovery.

2 Background

To begin, I introduce the conceptual issues that play a role in the main proposal of the article:

the notion of ‘physical reasonableness’ and the ‘requirement of reductive explanations’.

2.1 Physical states

This article aims to leverage the following fact: we often do not treat all states allowed by
a physical theory as physically possible in the same way.! For example, it is common prac-

tice in general relativity to rule out as physically unreasonable models of spacetime that have

T will use the terms ‘physical’, ‘physically possible’, and ‘physically reasonable’ synonymously.
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certain kinds of singularities, extensions, or violations of determinism. 2 Similarly, in quan-
tum theories a variety of necessary conditions have been proposed for a quantum state to be
physically reasonable—for example, we might restrict attention to locally definite states (Ara-
georgis [1995], p. 168), states accessible from Fock states (Petz [1990], p. 29), DHR states
(Haag [1992]; Halvorson [2007]), normal states (Halvorson [2001]; Ruetsche [2011b]; Ara-
georgis et al. [unpublished]), locally normal states (Dell’ Antonio et al. [1966]; Hugenholtz and
Wieringa [1969]; Takesaki and Winnink [1973]), or regular states (Halvorson [2004]; Feintzeig
et al. [2019]; Feintzeig and Weatherall [2019]). The details of the last condition will play a role
in what follows, but before discussing any particular cases, I want to first try to make sense of
this somewhat curious practice.

The practice of restricting what we consider the physically reasonable states is particularly
puzzling when viewed from the perspective of what Ruetsche ([2011a], p. 6) calls ‘the standard
account’ of interpreting physical theories. According to the standard account, the content of a
physical theory is a specification of the worlds it deems physically possible, as distinguished
from the vast background of logical or metaphysical possibilities. If a physical theory, by
specifying a collection of states that satisfy its laws, already fixes what it deems physically
possible, one might wonder what further we might be doing when restricting to a collection
of physical states that form a subset of those allowed by a physical theory. On the standard
account, the collection of states allowed by a physical theory already specifies the physical
possibilities, so what further restriction could be required?

I believe one can understand the practice of restricting attention to a collection of physical
states through an alternative to ‘the standard account’ proposed by Ruetsche ([2003], [2011a])
herself. Ruetsche opposes the standard account by arguing that the notion of physical possibil-
ity is context-dependent, which implies that the collection of worlds a theory deems possible
cannot be specified once and for all.> This leaves room for one to restrict attention to a sub-
space of physical states if the context calls for it. [ won’t commit to Ruetsche’s particular view

of physical possibility, but I will argue later that the way we apply heuristics for theory con-

2 For an overview, see (Earman [1995]; Manchak ([2013])); for a sampling of recent work, see (Manchak
[2009], [2011], [2014], [2016]).

3 Similar themes are familiar from elsewhere in the literature—for example, (Wilson [2006], [2013]). For other
reasons to reject the standard account, see, for example, (Williams [2018]).
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struction based on physical state spaces should be sensitive to contextual details. So it is worth
exploring a view like Ruetsche’s in some detail to start.

On Ruetsche’s view, one can associate many different notions of physical possibility with a
given theory. One notion of physical possibility might be the most general kind compatible with
the kinematics of the theory, while another notion of physical possibility might be specific to
a class of states that we think the actual world lies in. For example, we might think that while
certain singular spacetimes are possible in the most general sense, they are not in the more
specific sense of possibility governing cosmological models with a well-defined time evolution.
Or, while we might think that distinct ground states breaking the electroweak symmetry in the
standard model of particle physics are equipossible in a general sense, only one of these states
is possible in the more specific sense of being dynamically accessible from the actual world. On
Ruetsche’s alternative view, then, it makes sense to distinguish a class of physical states from
all of the states allowed by a physical theory because the physical states are possible according
to a more specific notion of possibility than the notion of possibility for all states of the theory.

In the rest of this article, I hope to understand the vague phrase ‘physically reasonable state’
in a way that at least allows it to be made precise in various context-dependent ways. This
should not be taken to mean that I endorse Ruetsche’s controversial arguments for her conclu-
sion, although I do find the conclusion attractive. Instead, I hope to remain agnostic about what
it means in general for a state to be physically reasonable. I will do so by allowing the notion
to be specified in a variety of context-dependent ways.

One might wonder whether one can say anything interesting in general about physical states
prior to focusing on a specific context. I think one can, with the aim of discovering what
kinds of tools or strategies one might employ in the context-specific cases, as I will do in the
examples of Section 4 and Section 5. Ultimately, the central proposal of this article aims at
describing how considerations about physical states provide a heuristic for theory construction.
As a heuristic, the best we can hope for is an understanding of how and why it might be applied
in possibly different ways in different contexts to yield fruitful, but defeasible results.

In fact, the results of (Feintzeig [2018a]) show us one way in which a choice of physical

states might be employed to aid theory construction. Feintzeig shows that if one is given a
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physical theory formulated in an algebraic framework, and then one specifies a subspace of the
state space corresponding to the physical states, there is a general procedure for constructing
a new theory that allows for only physical states. I will describe this procedure in some detail
because I refer to it throughout this article.

The background to the procedure for restricting state spaces is the algebraic framework for
physical theories. A theory formulated in the algebraic framework specifies a C*-algebra A
of physical quantities.* This framework is flexible enough to encompass both classical and
quantum theories. In classical theories, we use commutative C*-algebras corresponding to col-
lections of functions on a system’s phase space with pointwise algebraic operations. In quantum
theories, we use non-commutative C*-algebras corresponding to collections of operators on a
Hilbert space. States in both theories can be understood as positive, normalized linear function-
als on the C*-algebra of physical quantities. The state space S(U) forms a subset of the dual
space UA* of bounded linear functionals on 2.

Suppose that one has reason to take only a subset of S(2) to represent the physically reason-
able states. The subset of physically reasonable states will generate a subspace V of the space
A* of linear functionals. (Feintzeig [2018a]) shows that under very general conditions on V
(namely, V is weak* closed, and its annihilator N(V) forms a closed two-sided ideal in %),> one
can construct another C*-algebra A/N(V) that allows for a natural identification of the physical
states in V with the entire state space of this new algebra. This construction is indeed employed
in mathematical physics when dealing with constrained systems (Grundling and Hurst [1998];
Grundling [2006]).

The construction Feintzeig describes leads to a new kinematical framework of physical quan-
tities in the C*-algebra A/N(V) and a new, restricted collection of possible states in the dual
space (A/N(V))* = V, corresponding to precisely the states that were initially deemed physi-
cally reasonable. This construction provides a tool that one can employ in quite general circum-

stances for the construction of quantum theories. Thus, even without a definitive statement of

4 For mathematical background on C*-algebras, see, for example, (Kadison and Ringrose [1997]; Sakai
[1971]). For applications of C*-algebraic tools to quantum theory, see, for example, (Emch [1972]; Haag [1992];
Bratteli and Robinson [1987]; Bratteli and Robinson [1996]). For philosophical introductions to algebraic quan-
tum theory, see, for example, (Arageorgis [1995]; Halvorson [2007]; Ruetsche [2011a]).

3 Actually, the second example in Section 5 demonstrates that these conditions on V just stated need not even
be satisfied for this construction to be possible.
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what counts as a physically reasonable state, we know that however one specifies a collection
of physical states (subject to a few technical restrictions), one can use this information to aid

theory construction.

2.2 Reductive explanations

Now that we’ve narrowed our goal to discerning a collection of physically reasonable states,
the next task is to investigate what kind of information might help us achieve this goal. For
this, I turn to constraints of intertheoretic reduction.

Although some classical accounts (for example, Nagel ([1961], [1998])) present intertheo-
retic reduction as a relation deriving a higher level theory from a lower level theory, Nickles
([1973]) argues that there is a different notion of reduction at play when previous theories are
obtained as limiting cases of new theories. One example of this kind of limiting relation ap-
pears in the reduction of general relativity to Newtonian gravitation in the limit where v/c << 1.
According to Nickles, these limiting reductions ‘might be said to explain why the predecessor
theory worked as well as it did” (Nickles [1973], p. 185, Footnote 4). Although Nickles (p.
201) is sceptical of the significance of limiting relations in which physical constants vary (of
which the classical 7 — 0 limit analysed in this article is one example), Fletcher ([forthcom-
ing]) argues to the contrary that the ¢ — oo limit of general relativity may be interpreted as
the same approximation of low relative velocities just mentioned (see also Ehlers [1998]). On
Fletcher’s account, limiting relations can be understood to capture a sense in which the reduced
theory approximates the reducing theory.5

In these limiting explanations, the phenomenon to be explained is the success of the prede-
cessor theory. If we desire that newly constructed theories have explanatory power, it is natural
to hope that new theories have the ability to explain this success; that is, one might consider
it a constraint on any proposed successor theory that it explain the success of its predecessor
theory. I call this constraint the ‘requirement of reductive explanations’.

Some authors have explicitly proposed principles for theory construction that resemble this

requirement of reductive explanations. For example, Post ([1971], p. 228-35) proposes this

6 Cf. (Nickles [1973], pp. 194-6; Schaffner [1967]).
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requirement as the heuristic he calls the ‘generalized correspondence principle’. And Hesse
([1961], [1970]) argues for the necessity of correspondences between new and old theories
in terms of analogies between models. In the case at hand, the # — O limit provides one
kind of analogy or correspondence between classical and quantum theories by establishing that
the theoretical or mathematical structures are similar with respect to the notion of similarity
implicitly encoded in the limit (cf. Fletcher [2016]).

There is ambiguity, however, regarding what it means to understand the requirement of re-
ductive explanations as a heuristic for theory construction. On the one hand, this means that we
can and ought to use the principle to guide the construction of new theories. But Hesse ([1961],
pp- 55-6) argues that the existence of an appropriate analogy or correspondence is not suffi-
cient to justify the newly constructed theory. One reason is that any procedure for constructing
new theories is fallible; if a new theory makes a prediction that is not borne out by experiment,
then this could overrule the heuristics that led to the theory. However, I think we have some
reason to prefer or pursue theories that satisfy the requirement of reductive explanations, even
if these reasons are defeasible. To capture the heuristic value of the requirement of reductive
explanations, I'll say that satisfying the requirement makes a candidate theory more plausible.’

These ideas about reductive explanations, correspondence, and analogies have also been
taken up in the literature already specifically in connection with the construction of quantum
theories. For example, Hesse ([1952]) uses analogies between quantum mechanics and classical
physics to illustrate her ideas about models and contrast her view with operationalism. Further,
Post’s ideas about correspondence are taken up by Radder ([1991]) in connection with the
construction of quantum theories. Since explanations of the success of previous theories might
take many different forms in different domains or different contexts, we learn something by
analysing whether and how quantum theories explain the success of their classical predecessors.

One can attempt to explain the success of a classical theory from a quantum theory by em-
ploying the 7 — 0 limit.® In order to satisfy the requirement of reductive explanations, this

limit would need to give rise to explanations of the success of the mathematical and theoretical

7 See (Bertolaso and Sterpetti [2017]) for discussion of plausibility and evidence, and see (Fraser [forthcom-
ing], p. 12) for discussion of plausibility and analogies.

8 1 analyse the 7 — 0 limit, but there are other limits that may also be relevant—for example, N — oo.
Landsman ([2007]) argues that multiple limits might be required to explain the success of classical physics.
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structure of the classical theory (more in Section 3). Radder argues that the 7 — 0 limit cannot
accomplish this task because it gives rise to a merely formal correspondence. In the same spirit,
Rosaler ([2015b], [2015a], [2016]) has argued that quantum theories should only be thought of
as explaining the empirical success of classical theories in a roughly instrumentalist fashion.
If Radder and Rosaler were correct, then one might worry about whether the requirement of
reductive explanations could or should be used as a heuristic tool to obtain substantive con-
straints on the construction of new theories. However, in my (Feintzeig [forthcoming]), I argue
that one can explain some aspects of the theoretical structure of classical theories from quantum
theories by employing the tools of strict deformation quantization to analyse the 7 — 0 limit.
Thus, while historically there is little doubt that the 7 — O limit has been employed during the
construction of quantum theories, there is some disagreement about its significance.’

In this article, I follow (Feintzeig [forthcoming]) and pursue the requirement of reductive
explanations in quantum theories under the assumption that the # — 0 limit can be used to
provide explanations of the theoretical or mathematical structure of corresponding classical
theories by using strict deformation quantization. Although many of the technical details will
not be relevant to the discussion of this article, it is important to know that a strict deformation
quantization provides precisely the mathematical tools needed to analyse the classical limits of
quantities and states in quantum theories in the C*-algebraic framework.'°

A ‘strict deformation quantization’ consists in a family {2 }xe0,1) of C*-algebras and a fam-
ily of quantization maps {Q; : P — W }nepo.1; on a dense (Poisson) subalgebra # of Ay, which
is required to be commutative. Here, the algebra 2 represents the collection of quantities in
a classical theory while the (non-commutative) algebras 2; for # > 0 represent the collection
of quantities in a corresponding quantum theory. Furthermore, for such a structure to be a
strict deformation quantization, the quantization maps are required to satisfy axioms that en-
sure the continuity of algebraic operations as 7 — 0 and encode the approximate satisfaction
of the canonical commutation relations. Within this framework, the classical limit of a family

of quantities {Q;(A)}xej0.1; Will be understood to be the classical quantity A € . In (Feintzeig

9 A recent reference that discusses the history of the construction of quantum theories with attention to the role
and context-dependence of scientific understanding is (De Regt [2017], especially Chapters 4 and 7).

10 For a mathematical introduction to strict deformation quantization, see (Rieffel [1989], [1993], [1994];
Landsman [1993a], [1998], [2007], [2017]).
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[forthcoming]), I argue that this understanding of the classical limits of quantities is appropriate
for explaining the success of classical theories. Moreover, this notion of classical limits of quan-
tities gives rise to a notion of classical limits of states. A family of states {w; € S(Up)}rer0.17, 1S
called a ‘continuous fields of states” when for each A € U, the map 7% — w;(Q;(A)) is contin-
uous. The classical limit of a continuous field of states will be understood to be the classical
state wy.

In what follows, I will take on this framework for analysing the classical 7 — 0 limit in
quantum theories via strict deformation quantization, and I will assume that the classical limit,
when understood in this way, can provide genuine explanations of the mathematical and the-
oretical structures of classical physics. The remaining task is now to investigate the extent
of the theoretical structures in classical physics that one can explain, and how requiring such
explanations constrains theory construction.

This at last puts us in a position to bring together the two philosophical strands of background
that are required to state the main proposal of the article. One of the theoretical structures in
a classical theory is its collection of physically reasonable states, understood as a subset of
the entire state space. A reductive explanation of the success of a classical theory from a
quantum theory ought to explain why the classical theory contains the physical state space
that it does. Enforcing the requirement of reductive explanations as a heuristic for theory
construction places the constraint that a newly constructed quantum theory give an explanation
of the physical state space of its preceding classical theory. The central proposal of the article,
which we state next in the following section, is an analysis of the conditions under which one
can give such an explanation of the physical state space of a classical theory from a quantum

theory using the 7 — 0 limit.

3 The Proposed ‘Correspondence Principle’

The central proposal of this article provides necessary (but not sufficient) conditions for a quan-

tum theory to be able to explain the success of its predecessor:

Proposal: A necessary condition for a quantum theory to explain the success of its clas-

sical predecessor is that

10
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(1) every physical classical state is the classical limit of some appropriate family of

physical quantum states; and

(2) the classical limit of every appropriate family of physical quantum states is a phys-

ical classical state.

I claim only that Conditions 1 and 2 are required for a quantum theory to explain the success of
one theoretical structure in the classical theory—its collection of physically reasonable states.
Further resources may be required to explain other aspects of the theory.

I will attempt to provide a general argument to motivate each of these conditions in this
section; however, I do not believe this general motivation suffices. Instead, I will argue it is
best to take up the proposal in specified contexts where further information helps determine
what is meant by a physically reasonable state and an appropriate family of states. I think it is
worth first considering the motivation for Conditions 1 and 2 in a context-independent manner.
But it is even more important to analyse these conditions in the context of specific examples,
as I will do in the following sections.

Condition 1 is the more familiar constraint, stating that for a quantum theory to explain the
success of its classical predecessor, it must be able to recover every physical classical state as
the classical limit of some physical quantum state. To motivate this condition, notice that part of
the explanatory burden of the newly constructed quantum theory is to show why the predictions
and explanations given using each physical classical state are at least approximately accurate.
If Conditions 1 were not satisfied, then the quantum theory would not be able to discharge this
explanatory burden—there would be physical classical states that could not be recovered even
approximately in the 7 — 0 limit from physical quantum states. The quantum theory would
not be able to explain why the predictions and explanations given using those missing physical
classical states were successful, and hence, would not be able to explain the success of the
classical theory. Therefore, Condition 1 is required for a quantum theory to explain the success
of its classical predecessor.

The perhaps more controversial Condition 2 states that for a quantum theory to explain the
success of its classical predecessor, it must recover no more than the physical classical states

as the classical limits of physical quantum states. Condition 2 has a different character; it is

11
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not concerned with whether the quantum theory can provide local explanations of the success
of individual physical classical states. Instead, Condition 2 is motivated by considering how a
quantum theory might give a global explanation of why a certain subcollection of states in the
classical theory is deemed physically reasonable. I think that for a quantum theory to give an
explanation of the success of its classical predecessor, it must explain why the classical theory
employed the mathematical and theoretical structure it did. Part of the theoretical structure of
the classical theory is the collection of states it deems physically reasonable. Thus, it is incum-
bent upon the quantum theory to explain why the classical theory has the physical state space
it has. If the quantum theory could recover unphysical classical states—ones lying outside the
physical state space—as the classical limit of physical quantum states, then the quantum theory
would seem to allow these states as approximations to the states the quantum theory deems
physically possible. In order to explain why the classical theory has the physical state space
it has, the quantum theory must only allow the physical classical states to be obtainable as
approximations to physical quantum states in the classical limit.

One might object to Condition 2 on the grounds that once one has recovered from a new the-
ory all of the empirical predictions of the old theory, one has captured all one needs to explain.
If this were correct, Condition 1 would suffice on its own. I believe, however, that Condition
2 is necessary because there are more phenomena the new theory needs to capture than just
the predictions of the old theory. It is also an empirical phenomenon that researchers using the
mathematical and theoretical framework of the old theory have arrived at accurate predictions
and useful applications. I believe this phenomenon—that scientists using the theoretical tools
of the old theory have been successful—also ought to be explained. The particular tools that
scientists used as part of the old theory may be historically contingent, and the explanation may
involve appeal to pragmatic features, but nonetheless I think an explanation is needed of why
these tools have been successful. One of the theoretical tools of the old theory whose success
must be explained is the splitting of the state space into physical and unphysical states. Satis-
fying Condition 2 amounts to providing an explanation of why scientists have been successful
when employing the theoretical tool of a physical subspace of the state space of the old theory.

For this motivation of Condition 2 to be plausible, one must already accept the assumption

12
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made in Section 2.2 that explanations of the success of classical theories involve the explanation
of the theoretical structure of those theories. Only on this assumption does it make sense to
require that a quantum theory be able to explain the success of the theoretical structure given
by the physical state space of a classical theory. If one thought to the contrary that quantum
theories could only explain the empirical predictions of their corresponding classical theories,
as Rosaler ([2015a]) seems to, then such a requirement would not make sense. However, on
the assumption that genuine explanations of the theoretical structure of classical theories are
possible and desirable, I believe Condition 2 is well motivated.

Before proceeding, it is worth dealing with an apparent objection to Condition 2.!' One
might worry that there is an obvious counterexample in the case of spontaneous symmetry
breaking in many-body spin systems or in the analogous case of the measurement problem.
Landsman ([2013], [2017]) discusses models for each of these examples, and at first glance,
the classical or thermodynamic limit of the physical quantum ground state may appear to be
an unphysical classical state. In the case of a many-body spin system on a one-dimensional
lattice, there are two states of broken symmetry in which the spins all align pointing ‘up’ or
all align pointing ‘down’, but the ground state is a superposition of these two aligned states.
The thermodynamic limit of this pure quantum state is, however, the mixture of the two cor-
responding states with aligned spins. Similarly, in the simple model for measurement with a
double-well potential, there are two states in which the wavefunction is centered in the left and
right potential wells, respectively, but the ground state is a superposition of the wavefunctions
in each well. Further, the classical limit of this pure quantum state is again the mixture of the
two classical states located at the minima of each potential well. If one thought these mixtures
obtained in the limit were unphysical, then one might have reason to reject Condition 2 of the
proposal because they are classical limits of physical states.

I do not believe, however, that this objection succeeds. First, as far as I can tell, this ob-
jection relies on the premise that a mixture of two physical states is not a physical state. This
assumption seems, at least to me, to be very counterintuitive. Of course, whether one accepts

this premise may depend on how exactly one makes precise the notion of a physical state, but

"' T am grateful to an anonymous referee for pointing out this objection.
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I believe that, at least in some contexts, mixed states should be countenanced as physical be-
cause of their usefulness in both classical and quantum statistical mechanics. Moreover, in
all of the examples and results discussed in this article, I focus only on the linear space V
generated by the physical states, which of course contains all mixtures of the physical states.
Second, Landsman and Reuvers ([2013]) and Landsman ([2013], [2017]) establish that almost
any small external perturbation will force an ‘effective collapse’ of these systems into one of the
symmetry breaking states on the way to the limit, which results in a pure state at the limit. This
further technical result shows that the limit of the physical ground states can, when understood
with external perturbations, lead to a physical state. This shows the importance of thinking of
the classical limit as a limit of an entire family of states. The appropriate family of states is
influenced by contextual details including the possibility of external perturbations. It is only
when one thinks of appropriate families of states with external perturbations that one can see
the instability of the mixed ground state in the limit. Thus, when one takes into account further
contextual information about the systems of interest to determine the appropriate families of
states, one finds that that the central proposal is vindicated. Indeed, this same point is a theme
I hope to illustrate and emphasize in the examples of the following sections.

My contention in this article is that the central proposal stated above can and should be used
to constrain the construction of quantum theories, as follows. Suppose we have constructed
a quantum theory whose algebra of quantities is given by 2. Let V c UA* be the subspace
generated by the collection of states whose classical limits are physical states according to
the corresponding classical theory. These are the states of the quantum theory that should be
deemed physical quantum states in order to explain the success of the classical theory, accord-
ing to the central proposal. So with the aim of constructing a quantum theory whose entire
state space consists in physical states, we should replace the original algebra of quantities 2
with A/N(V) in order to restrict attention to physical states.

Notice that using the central proposal in this way to constrain theory construction is only
possible if we have antecedent knowledge of what states in the corresponding classical theory
are physically reasonable. This is acceptable because we typically have a better grasp on the

interpretation and significance of states in classical theories than in quantum theories, or new
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theories we are constructing. But if we do not antecedently know which classical states are
physically reasonable, we might discern this by deeming a classical state physical when it is
obtained as the classical limit of a physical quantum state. Likewise, we might decide that
a classical state is unphysical when it cannot be obtained as the classical limit of a physical
quantum state. This is another genuine function of the classical limit—to help us better un-
derstand existing classical theories. However, this function of the classical limit in informing
interpretations of classical physics is distinct from the role the classical limit can play in theory
construction. The use of the central proposal in theory construction projects forward an under-
standing of which states are physically reasonable in an existing classical theory. Projecting
forward in this fashion, as the quote from Stein ([1989]) in the epigraph of this article suggests,
makes sense only when we are more confident about our understanding of the existing classical
theory than the quantum theory we are in the process of constructing.

Recognizing this helps us see one way in which using the central proposal to constrain the-
ory construction is defeasible. Our confidence in this heuristic can at best be as high as our
confidence that we have picked out the appropriate collection of physically reasonable states
in the existing classical theory. To the extent that the classical states we consider physically
reasonable might be revised, the procedure for constructing a quantum theory based on the
existing classical theory might also be revised. In this sense, the requirement of reductive ex-
planations, when applied to explanations of physical state spaces, should not be understood to
produce certainty in the theories we construct.

This form of the requirement of reductive explanations is also subject to the subtleties men-
tioned in Section 2—namely, it is a heuristic principle whose satisfaction does not justify a
new theory, but rather makes it more plausible. Further, the notion of physical reasonableness
in both classical and quantum theories should be understood contextually. Thus, the proposal
should be understood to provide a defeasible tool that might be applied in different context-
sensitive ways.

It might be surprising, then, that the arguments I have just provided for Conditions 1 and 2
are completely context-independent. I think this shows a severe limitation of those arguments

because they do not take into account the context-specific details concerning why certain states
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are deemed physically reasonable for certain systems. For the proposal to be well motivated,
the 7 — O limit must teach us that unphysical quantum states fail to be physically reasonable
for the same reasons the corresponding classical states fail to be physically reasonable. The
success of the proposal thus depends on context-specific notions of physical possibility. As
such, the main proposal and the arguments for it should be understood only schematically, so
that they are to be filled in for specific systems of interest.

I will now take up two such specific examples in the remainder of this article. The exam-
ples illustrate the main proposal, and how further contextual information helps us make sense
of when certain collections of states are deemed physically reasonable. In the two examples
presented in Section 4 and Section 5, when the requirement of reductive explanations is imple-
mented in conjunction with the main proposal, it gives rise to the construction of an appropriate
quantum theory for the system of interest. These successful results provide some evidence in
favour of the main proposal and its heuristic use for theory construction. This evidence should
not be understood as underlying an inductive inference because I will only consider two exam-
ples, which forms a sample size that is much too small. Instead, I take the examples to show

the promise of the main proposal when it is treated with care in specific contexts.

4 Example: Regularity

My first example to illustrate the usefulness of the main proposal is the quantization of the
theory of a finite collection of free particles via the Weyl algebra (Manuceau et al. [1974];
Petz [1990]; Clifton and Halvorson [2001]). In this case, it is standard practice in mathematical
physics to restrict attention to regular states on the Weyl algebra to represent physically reason-
able quantum states. However, this orthodoxy has been challenged, for example, by Halvorson
([2004]), and some have even pursued the construction of physical theories involving non-
regular states (Corichi et al. [2007]; Ashtekar [2009])."> Here, I will argue that (Feintzeig
[2018Db]) illustrates an application of the main proposal to rule out non-regular states in quan-
tum theories, motivating the construction of quantum theories that allow for only regular states

by using a different algebra than the Weyl algebra.

12 For mathematical investigations of non-regular states, see also (Beaume et al. [1974]; Fannes et al. [1974];
Acerbi et al. [1993)).
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We aim to construct a quantum theory corresponding to a classical system whose Hamilto-
nian formulation is given by the phase space R?", understood as a symplectic vector space with
the standard symplectic form o. The algebra of quantities for the corresponding quantum the-
ory is specified by the Weyl algebra ‘W(R?", /o), defined as the smallest C*-algebra containing

the elements Wj(x) for each x € R*" with

Wi()Wa(y) := e 27 Wy(x + y),

Wi(x)* := Wy(=x),

for all x,y € R*". It is known that there is a unique C*-algebra picked out by these condi-
tions that corresponds to the completion of the algebra generated by the linearly independent
elements Wy(x) in the so-called minimal regular norm (Manuceau et al. [1974]). The algebra
Ay := WR?, ho) specifies the kinematical framework of a quantum theory for each numerical
value 7 € [0, 1] of Planck’s constant.

The classical limit of this quantum theory is specified by the algebra 2, := W(R?", 0), which
is known to be *-isomorphic to the collection of almost periodic functions on R*" (Binz et al.
[2004a]). The C*-algebra of almost periodic functions is the uniform closure of the collection
of all finite linear combinations of functions of the form Wy(x) : R** — C for each x € R*"

defined by
Wo(x)(y) := €™,

for all y € R?", where - signifies the standard inner product on R?".

That 2, should be understood as the classical limit of a quantum theory specified by the Weyl
algebra is justified by the fact that the family of algebras {2y }(0.1; forms a strict deformation
quantization (Binz et al. [2004b]; Honegger and Rieckers [2005]; Honegger et al. [2008]) with

the quantization maps {Q; : Ao — Wy }sep0,17 defined as the norm continuous linear extension of

Qu(Wo(x)) := e 41 W(x),
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where ||x||> := x-x.!3 These maps define the restriction of Berezin quantization to the almost pe-
riodic functions (Berezin [1975]; Berger and Coburn [1986]). Since this structure forms a strict
deformation quantization, we can analyse classical limits of states by specifying continuous
fields of states. There is a natural way to specify a continuous field of states given a quantum
state wy; € S(A). Namely, wy := w; o @, defines a classical state on 2 since Q; is positive.
And further, the map wy : Ay — C defined as the continuous extension of wy (@ (A)) = wy(A)
for all A € P specifies a quantum state for any alternative numerical value 7’ # # of Planck’s
constant. The collection {wy}rep0,1) then forms a continuous field of states, which we will call
the ‘constant field” defined by wy, and so the classical state w, can be understood as the classi-
cal limit of the quantum state wy. Of course, one might define other classical limits of the state
wy, through different continuous fields of states, and one hopes that the results below generalize
to other such classical limits.

In this setup, the algebra %, of the classical theory has a plethora of states that would ordi-
narily be considered unphysical classical states. The countably additive probability measures
on the phase space R?" form a natural collection of physical states that can be treated using the
ordinary methods of classical Hamiltonian mechanics. These states represent either definite
positions and momenta specified by a single point in the phase space, or else probabilistic mix-
tures of such definite phase space points. However, there are other states on 2 called ‘states
at infinity’ that cannot be represented by any countably additive probability measure on R?". 1
think it is natural to call the countably additive probability measures the physically reasonable
states and deem all other states unphysical. For example, one indication the classical states
at infinity are unphysical is that it is not clear how to understand their dynamical evolution.
Given that these states cannot be represented as countably additive probability measures on
phase space, one cannot use them as initial conditions for the standard differential equations of
Hamiltonian mechanics.

Given this collection of physical states, we can apply the procedure of Section 2.1 to reduce

the state space of the classical theory. Let Vi C U7 consist in the subspace generated by the

13 There is actually a mistake in (Feintzeig [2018b]), which is missing the exponential factor, which makes the
quantization maps positive, and hence norm continuous, as claimed. Positivity allows for the continuous extension
of the quantization map to the domain 2, and for the analysis of classical limits of states below.
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collection of states that can be represented as countably additive probability measures on R>".
For technical reasons, one needs to first enlarge the algebra 2, to the universal enveloping
W*-algebra or bidual 23", which can be understood as its bounded completion in the weak*
topology (Feintzeig [2019]). Then the algebra A" /N(V) obtained by restricting attention to
the collection of physical states is *-isomorphic to the collection of all bounded measurable
functionson R?*, which is a W*-algebra whose normal state space consists in all and only
the countably additive probability measures on R?".!* The algebra of measurable functions
is itself the bidual or bounded completion of the algebra Co(R*") of continuous functions on
R?" vanishing at infinity. Every state on this algebra can be represented by a countably additive
probability measure on R?". Thus, there is an alternative algebra of classical quantities in which
we can understand the standard formulation of the theory allowing for only the physical states,
which are the countably additive probability measures.

We can use the collection V¢ of physical classical states to constrain the construction of our
quantum theory. Let V, C A be the subspace of the dual to the algebra of quantities for the
quantum theory generated by the quantum states whose classical limits, understood in the sense
of the constant fields of states defined above, lie in V. In (Feintzeig [2018b]), I proved that
when we take the classical limit via a constant field of states, the classical limit of a quantum
state w; on Ay, lies in Vi if and only if wy, is regular. For fixed 7, a state w;, € S(Ay,) is defined

to be regular just in case the map

t € R > wyp(Wi(tx))

is continuous for each x € R?". Regular states may be familiar from the Stone—von Neumann
theorem (see, for example, Summers [1999]; Ruetsche [2011a]), which states that the GNS
representation of any regular state is quasi-equivalent to the Schrodinger representation on the
Hilbert space 4 = L*(R"). Since the classical limit of a state on 2 is physical just in case that
state is regular, the central proposal suggests that to explain the success of the physical state

space of the classical theory, we should understand the physical states on the Weyl algebra to

14 Specifically, one must consider functions that are measurable with respect to the o-algebra of universally
Radon measurable sets (Fremlin [2003]).
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be precisely the regular states.

This constrains theory construction by guiding us to use a different algebra whose irreducible
representations are all unitarily equivalent to the Schrodinger representation. As in the classi-
cal case, for technical reasons we first need to enlarge the algebra 2; to the bidual or bounded
completion A*. Then restricting attention to regular quantum states, we find %;*/N(Vy) is
*-isomorphic to the W*-algebra B(H), which is the bidual or bounded completion of the al-
gebra K'(H) of compact operators. Every normal state on B(H), or equivalently every state
on K(H), can be represented by a density operator on H. Thus, restricting our attention to
regular states leads us to an alternative algebra, which specifies the standard formulation of
the quantum theory of a finite number of free particles in terms of density operators in the
Schrodinger representation. In other words, the requirement of reductive explanations and the
central proposal of this article lead to the appropriate theory.

I believe that in this example, there is additional contextual information that helps us under-
stand why the collection of regular states, whose classical limits are countably additive prob-
ability measures, should be understood as the physical quantum states. As I will now argue,
the central proposal draws our attention to analogies between states in classical and quantum
theories, so that we can understand non-regular quantum states as unphysical in the same way
we understand classical states at infinity as unphysical.

Since there are challenges to understanding the dynamical evolution of classical states out-
side Ve, the result that non-regular quantum states lying outside V,, have these unphysical
classical states at infinity as their limits suggests there may be challenges to understanding the
dynamical evolution of non-regular quantum states. Indeed, this is borne out by the fact that
one cannot straightforwardly apply the dynamics of the Schrodinger equation to non-regular
states. There have been suggestions concerning how to extend the Schrédinger dynamics to
non-regular states on the Weyl algebra (see, for example, Fannes and Verbeure [1974]; Narn-
hofer and Thirring [1993]), but Feintzeig et al. ([2019]) argue that any such attempt to deal
with dynamics for non-regular states will face interpretive difficulties. Thus, looking at the
classical limit helps us see that non-regular quantum states should be considered unphysical

for essentially the same reasons that classical states at infinity are considered unphysical. It
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also helps us understand what we might mean by our notion of physical reasonableness in this
context: physical reasonableness in this case involves at least that dynamical evolution makes
sense (both mathematically and interpretively).

There is more to say about the boundaries of physical reasonableness in this case. Physi-
cal reasonableness cannot be solely about making accurate predictions within the error bounds
specified by our measuring devices. What I mean by this is that if one only cares about having
states that make accurate predictions, then classical states at infinity are, in a sense, just as good
as classical countably additive probability measures. And likewise, regular quantum states are,
in a sense, just as good as non-regular quantum states. The reason is that in each case the phys-
ical states are dense in the unphysical states in a relevant topology (Feintzeig and Weatherall
[2019]). Every classical state at infinity can be approximated within specified error bounds for
a finite number of measurements—that is, with the weak™* topology given by 5" /N(Vc)—by
countably additive probability measures. Similarly, every non-regular quantum state can be
approximated within specified error bounds for a finite number of measurements—that is, with
the weak™ topology given by A;:*/N(V)—by regular states. This shows a sense in which no fi-
nite number of experiments can verify whether a system is in a physical or unphysical state, and
so one cannot infer from a finite set of data that the system is in a physical or unphysical state.
Thus, I believe we are left with the alternative that the notion of physical reasonableness that
distinguishes regular from non-regular states concerns their theoretical role rather than their
empirical predictions.

One way to understand what distinguishes physical from unphysical states in this case is that
states at infinity and non-regular states are unphysical in the sense that they are idealizations
from the physical states (Feintzeig and Weatherall [2019]). While the normal state space of
A" /N(Vc), which is the state space of Co(R*"), consists in only countably additive probability
measures, states at infinity can arise as weak™ limits of these states. Similarly, while the normal
state space of W;*/N(Vy), which is the state space of K(H), consists in only regular states,
non-regular states can arise as weak*-limits of these states. These approximations are weak
enough that if our system is in a regular state and we use a non-regular state to make predic-

tions about future measurements, we have no guarantee that these predictions will be accurate
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(see Summers [1999]; Ruetsche [2011a]). This connects to my previous worries about the dy-
namical evolution of non-regular states; if we use a non-regular state to model the dynamical
evolution of a system, we may be led to inaccurate results and predictions. This justifies our
interpretation of states at infinity and non-regular states as idealizations—specifically idealiza-
tions that are inappropriate for analysing dynamical evolution. This illustrates how contextual
details about a system lead to a better understanding of what we mean by calling some states
physically reasonable.

We can also see in this example how the requirement of reductive explanations is a defea-
sible heuristic principle. Some have proposed (Corichi et al. [2007]; Ashtekar [2009]) that
non-regular states are important in the construction of quantum theories of gravity. Everything
that I have said so far in this section only applies to systems containing a finite number of par-
ticles and so does not strictly have implications for the gravitational field. Still, the arguments
of this section suggest that treating non-regular states as physical would be a somewhat radi-
cal change of perspective in the sense that one does not have antecedent reason to think that
the quantum theories constructed with non-regular states are plausible just from considering
the classical theory they are constructed from. I think one would need further information,
such as confirming empirical evidence or other theoretical virtues, to make these theories with
non-regular states plausible. In fact, Ashtekar ([2009]) has argued that non-regular states are
plausible in quantum gravity because they are required to ensure consistency with another the-
oretical principle in general relativity, the principle of ‘background independence’. If this is
correct and the theories involving non-regular states are successful, then we may have reason
to revise our understanding of non-regular states, and consequently to revise our understanding
of the classical states at infinity that we obtain as their classical limits. Thus, the conception
of physically reasonable states that I have argued for in this section—and the role it plays in
the construction of new theories—is defeasible. It can be overruled by other theoretical or
evidential considerations. I think that our current understanding of the classical physics of
finite collections of particles gives us good reason to interpret classical states at infinity and
non-regular quantum states as unphysical, but I recognize that this understanding is fallible.

In the next section, I will take to heart the lesson that we should aim to construct quantum
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theories that do not allow for non-regular states, and thus we should not use the Weyl algebra.
It is well known how to implement this proposal for systems with finitely many degrees of
freedom using the compact operators,'> which form a C*-algebra whose bidual is the algebra
A /N(Vy) recommended above. For this reason, I will use the algebra of compact operators in

what follows as a solution to the problem of non-regular states.

5 Example: Symmetry-Invariance

The next example I consider is the quantization of the theory of a particle moving in an ex-
ternal field with gauge symmetry. In this case, the quantum theory has charge superselection
structure, which prevents coherent superpositions of different charges. This is encoded in the
theory mathematically by the presence of unitarily inequivalent representations of the algebra
of quantities for the quantum theory.!® Unlike some other cases of unitarily inequivalent rep-
resentations, I think the interpretation of charge superselection is somewhat straightforward:
states with different charges are all physically possible (in a quite general sense) and genuinely
distinct. So the inequivalent representations are all part of the theory and physically inequiva-
lent in an appropriate sense.

But why do charge superselection rules appear for even a single particle system? The stan-
dard lore is that the Stone—von Neumann theorem rules out the existence of inequivalent rep-
resentations for systems with finitely many degrees of freedom, so one might wonder how
superselection rules are possible for a single particle. One way to understand the appearance
of these superselection rules is through analysis of how the quantum theory is constructed. The
superselection structure is made plausible by an application of the requirement of reductive
explanations with my central proposal. In this case, the physical states turn out to be precisely
those states that are invariant under gauge symmetry transformations.

We begin by formulating the classical theory for a single particle moving in an external
gauge field. This theory contains the geometrical background of a principal fiber bundle with

total space P, base space Q, and typical fiber given by a compact Lie group G, which acts

15 Further work has been done to extend similar constructions to systems even with infinitely many degrees of
freedom (Grundling [1997]; Grundling and Neeb [2009]).

16 For more on superselection rules in the algebraic approach, see (Landsman [1990b], [1990c]; Earman
[2008]).
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smoothly on P on the right by R, for g € G. The base space Q represents the configuration
space of the particle, while the symmetries of the field are encoded in G. Formulating the
theory in the total space P allows one to understand how the particle couples to the external
field (Sternberg [1977]). One could provide a Hamiltonian formulation of the theory using as
phase space the cotangent bundle of the total space 7P, but one typically instead formulates
the theory by applying the Marsden—Weinstein reduction procedure (Marsden and Weinstein
[1974]; Belot [2003]; Butterfield [2007]) to construct the universal phase space (T*P)/G, where
G acts smoothly on 7*P by the pullback R;. The idea of symplectic reduction is that P con-
tains redundant degrees of freedom that are eliminated by moving to the universal phase space.
Once these redundant degrees of freedom are removed, the universal phase space (T*P)/G is
merely a Poisson space, but not a symplectic space; it foliates into a collection of disjoint sym-
plectic leaves describing different possible charges (see Weinstein [1978]; Landsman [1993b],

[1998])."

To put this geometrical theory into an algebraic framework, one employs the algebra Co((T*P)/G)

of continuous functions vanishing at infinity on the universal phase space. The classical state
space corresponding to this algebra of quantities consists in the countably additive probability
measures on the universal phase space. This algebraic formulation does not allow for states at
infinity and so is compatible with the conclusions of the previous section. However, the space
(T*P)/G has a somewhat complicated structure, and it is useful to formulate the construction
of the quantum theory by starting from the space 7*P. Thus, we will take Ay := Co(T*P) as
the algebra of quantities for our classical theory. If one starts with the space 7*P and uses the
algebra Cy(T*P) then one generally allows for far more states corresponding to all countably
additive probability measures on 7P. It is natural to call a state on Cy(7T*P) physical just in
case it is determined from a state on Cy((T*P)/G) in the universal phase space. The states
wo on Cy(T*P) that are determined by states on Co((7*P)/G) are precisely the states that are

symmetry-invariant in the sense that

wo(f o R;) = wo(f),

I7 This setup allows for more generality than the previous section because the phase space is a manifold and
not necessarily a linear space.
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for all f € Co(T*P) and g € G. Let V¢ be the collection of all symmetry-invariant states on
Co(T™ P); this will form the collection of physical classical states. Applying the construction
from Section 2.1 to restrict attention to physical states produces the algebra U,/N(V), which
Browning and Feintzeig ([unpublished]) show is *-isomorphic to Cy((T*P)/G) and thus allows
for only states corresponding to countably additive probability measures on the universal phase
space.'® Thus, Ay/N(V¢) provides the desired kinematical framework for the classical theory
with only physical states.

We can construct a quantum theory for this system by applying a generalized Weyl quantiza-
tion procedure developed by Landsman ([1993b], [1998]). We define the algebra of quantities
for our quantum theory to be A; := K(L*(P)), the compact operators on the Hilbert space
L*(P), for all /i € (0, 1]. Landsman defines a family of quantization maps @Q; : P — K(L*(P))
on a dense subalgebra P of Co(T*P). Using K(L*(P)) as the algebra of physical quantities
for the quantum theory is also compatible with the conclusions of the previous section as this
algebra does not allow for analogues of non-regular states; all states on this algebra are density
operators on L*(P). The family of algebras {Ws}sero.17 and quantization maps {Qy }rejo,1; forms
a strict deformation quantization, and so provides a way of taking the classical limit of the
quantum theory of a particle in an external gauge field.

We can use the collection V¢ of physical classical states to constrain the construction of our
quantum theory, just as in the previous example in Section 4. The key is to identify which
quantum states have classical limits in V. Towards this end, consider quantum states that
satisfy a condition of symmetry-invariance in analogy with the physical states of the classical
theory. The symmetry group G has a natural unitary representation U(g) for each g € G on the

Hilbert space L*(P) of the quantum theory given by

(U@W)(x) = Y(Ry(x)),

18 In this case, the procedure can be applied even though the technical conditions specified in (Feintzeig
[2018a]) are not satisfied. N(V() is not a two-sided ideal and consequently the canonical quotient projection
Ay — Ay /N(V¢) is not a *-homomorphism, but Uy /N(Vc) is still a C*-algebra.
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for all ¢ € L2(P). We will call a quantum state wy, on 2 symmetry-invariant when

wn(U(9)AU(g)") = wr(A),

forall A € A, and g € G. Let V be the subspace of U; generated by the symmetry-invariant
quantum states on y.

In considering the classical limits of states of this system, we face a complication that did not
arise in the previous example; since @ is neither positive nor continuous in the current case,
there is no natural way to define the classical limit of a quantum state wy on 2; via a constant
field of states. So instead of specifying a unique classical limit, we will consider all possible
classical limits given by continuous fields of states {ws }re[0.1] Subject to just one condition. If wy
1s a symmetry-invariant state, then {ws}xej0.17 1s an appropriate family for specifying the classical
limit of wy only if wy is symmetry-invariant for each 72’ € (0, 1]. The motivation for this
requirement is that we interpret the classical limit along the lines of (Feintzeig [forthcoming]),
who understands changing the numerical value % of Planck’s constant in a quantum theory
(where 7i > 0) as implementing a change of units and thereby changing the extent to which
states approximate one another numerically. On this interpretation, changing the value of 7
otherwise leaves the physical interpretation of states and quantities the same. Thus, on this
interpretation the quantum states wy and wy for fi,#" € (0,1] and 7i # K’ should represent
the same physical situation in different systems of units. Our constraint then requires that a
quantum state wy can represent the same physical situation as a symmetry-invariant state wy,
only if wy 1s also symmetry-invariant.

Notice that this constraint only explicitly governs the quantum states on the way to the limit
because it deals only with states wy for 7 > 0 and leaves open how the classical limits w, of
these states behave at 7 = 0. Thus, the constraint just mentioned only fills in some of the
context of this application of the main proposal by stating when a family of quantum states is
appropriate for representing the classical limit. However, with this constraint, Browning and
Feintzeig ([unpublished]) prove that the classical limit of an appropriate family of symmetry-
invariant quantum states in V, must be a symmetry-invariant classical state in V¢. Moreover,

quantum states that fail to be symmetry-invariant will in general have classical limits that fall
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outside of V. The requirement of reductive explanations and the central proposal of this article
suggest that we consider only states in V|, to be physical quantum states.

We restrict attention to physical states in Vj in our quantum theory by replacing the algebra
of quantities A with A /N(Vp). The results of Browning and Feintzeig ([unpublished]) and
Landsman ([1993b]) together show that the algebra U /N(V) is *-isomorphic to KL*(Q)) ®
C*(G), where C*(G) is the group algebra of G. This algebra has unitarily inequivalent represen-
tations, which are in one-to-one correspondence with the unitary representations of G (Lands-
man [1993b], pp. 107-10 ). The algebra A;/N(Vy) is the one advocated for by Landsman
because it captures the superselection structure of the quantum theory. Thus, we should under-
stand the algebra ;/N(V,) to afford an appropriate mathematical formulation of the theory,
which again illustrates the successful application of the requirement of reductive explanations
according to the central proposal of this article.

In this context, what it means for classical states in V¢ or quantum states in V, to be physical
is rather different from what it meant in the previous example of Section 4. What makes a
classical state unphysical when it fails to be symmetry-invariant (and hence lies outside of V()
is that its expectation values depend on degrees of freedom that themselves do not represent
genuine physical properties. For example, a classical state that fails to be symmetry-invariant
for a particle moving in an external electromagnetic field with G = U(1) is one that depends
on the values of the electromagnetic potential over and above the values of the electromagnetic
field. States that fail to be symmetry-invariant are not consistent with our understanding of the
forces classical gauge fields produce on particles. A quantum state that fails to be symmetry-
invariant is unphysical in the same sense that it depends on degrees of freedom that do not
represent genuine physical properties.

One might worry that this understanding would rule out the dependence of quantum states
on the classical electromagnetic potential. This would be undesirable because it is known that
we can observe the dependence of quantum states on the classical electromagnetic potential in
the Aharanov—Bohm effect (Aharonov and Bohm [1959])." Certainly, it would be a problem

for my approach if it led to a theory inconsistent with empirical observations.

19 For philosophical discussions of the Aharanov—Bohm effect, see (Nounou [2003]; Shech [2017]; Earman
[2019)).
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However, restricting attention to symmetry-invariant states in the sense of restricting atten-
tion to Vy does not immediately appear to rule out this possibility. Landsman ([1990a], [1990b],
[1990c]) takes up the Aharanov—Bohm effect in a model containing the topological idealization
that the solenoid in the Aharanov—Bohm effect is infinitely long and its interior is inaccessible
to the electron. He shows the kinematical algebra one obtains by implementing this constraint
in the configuration space of the electron results in an algebra of the form A;/N(V,) with su-
perselection sectors. Moreover, he shows that this provides a natural setting for understanding
the dynamics of the Aharanov—Bohm effect because when the free dynamics is implemented
in each superselection sector, the Hamiltonian generating time translations contains so-called
‘topological terms’ that give rise to interference depending on the strength of the electromag-
netic potential. Thus, restricting attention to physical states in Vp might actually be understood
to give rise to novel predictions (through changes in the dynamics) for experiments like the
Aharanov-Bohm setup.

More work is required here to understand the relationship between the Aharanov—Bohm
effect and symmetry-invariant states; one would, for example, like to construct a model that
does not contain the topological idealization of an impenetrable solenoid and instead represents
the experiment with a non-trivial electromagnetic field in the interior of the solenoid. It should
be possible to analyse such a model with the quantization procedure discussed above. It is also
worth noting that historically the prediction of the Aharanov—Bohm effect was, of course, not
generated by thinking about reductive explanations and restricting the collection of physically
reasonable states. Still, I believe it is worth further investigation to see the extent to which
the foundation of the Aharanov—Bohm effect may be recovered from the considerations of this
article.

Notice that the sense in which quantum states lying outside V, are unphysical is different
than the sense in which non-regular quantum states were understood to be unphysical in Section
4. Quantum states that fail to be symmetry-invariant should not be understood as idealizations,
but rather as states involving a dependence on artifactual or redundant degrees of freedom.
This demonstrates that what we mean when we call states physical or unphysical depends on

the context of the system under consideration. This does not imply that the requirement of
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reductive explanations and the central proposal are idle, but shows that they must be applied
with care depending on the details of the situation at hand.

Moreover, this example demonstrates another way in which the procedure recommended
here for constructing quantum theories is defeasible. In this example, the construction proce-
dure leads to the use of a distinct dynamics in the quantum theory for setups like the Aharanov—
Bohm effect, which leads to novel predictions. If those predictions were not confirmed by ex-
periments, we would have reason to revise the kinematical framework of the quantum theory.
Thus, the requirement of reductive explanations serves only as a heuristic to make theories
plausible, but does not produce certainty. Still, when the requirement of reductive explana-
tions is understood as a heuristic and applied in a context-sensitive way, it can lead to a deeper

understanding of the foundation for the quantum theories we construct.

6 Conclusion: Heuristics and Discovery

I hope to have demonstrated that work on heuristics, like the requirement of reductive explana-
tions, can be of philosophical interest and of great importance to real scientific examples. But
little recent work in philosophy of science discusses heuristics and scientific discovery. (For
notable exceptions, see Crowther [forthcoming], [2018]; Crowther and Linnemann [2019].) In
fact, there is some history in the philosophical community of scepticism about whether heuris-
tics and discovery are appropriate topics for philosophical investigation. The distinction made
by Reichenbach ([1938]) between the contexts of discovery and justification led many posi-
tivists and empiricists to focus on justification as the only concept of epistemic relevance. This
trend is exemplified by the work of Popper ([1959]), whose view implies that the epistemic
attitude we should take toward theories is in some sense independent of the methods used to
generate them. Thus, it is worth closing with some remarks to situate my conclusions within
the recent history of philosophical discussions of heuristics.

Some aimed to revive issues concerning discovery and heuristics in the 1980s (for example,
Nickles [1980]), but lingering doubts about the possibility of a philosophy of discovery seem to
have overwhelmed these discussions by focusing on the question of whether theory generation

is epistemically relevant (for example, Laudan [1980]). Nickles ([1985]) responds by arguing
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for a connection between theory generation and justification, in part through considerations of
efficiency in the generation of knowledge; he argues that philosophers should be interested in
a logical relation he calls ‘discoverability’, rather than the contingent way in which a theory
was actually discovered. Similarly, Zahar ([1983]) focuses on defending the concept of rational
heuristics from the challenges posed by Popper, arguing that discovery is not merely subject to
psychological or descriptive analysis. These defenders of the philosophical relevance of theory
construction distance themselves from the idea of a ‘logic of discovery’ leading us to new
theories once and for all, but still attempt to give a general defence of the epistemic relevance
of methods for construction as forming something other than a logic.

In some sense, I am friendly to the ideas of Zahar and Nickles (among others) in their at-
tempts to revive philosophy of scientific discovery. I agree that heuristics can have normative
force, and I agree that the value of methods for theory construction can be understood sepa-
rately from historical contingencies associated with how theories were actually generated. For
example, my own investigation has taken place solely on the basis of mathematical analysis
with no consideration of history. However, I also differ in my approach from these writers
because I think that the philosophy of scientific discovery is best served by analysing the status
of heuristics in particular cases, and I am sceptical that general considerations can provide the
kind of insight that is needed. Rather than attempting to give a general defence of the epistemic
relevance of methods for theory construction, I have focused on how particular methods can
be employed in particular contexts in the construction of quantum theories. My reason is that
the normative force of heuristic principles depends on details of the context one is interested
in, and I worry that one may miss philosophically relevant considerations if one attempts to
discuss theory construction at too high a level of generality.

My approach aligns even more closely with that of Post ([1971]) and Hesse ([1961], [1970]),
who consider specifically the heuristic role of correspondences between new and old theories.
I have argued that one can make at least one aspect of a ‘correspondence principle’ precise
for the construction of new quantum theories as the requirement that a quantum theory give
a reductive explanation of the success of its classical predecessor. I have argued that in order

to achieve such an explanation, one must explain the structure of the physical state space in
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the classical theory. I have shown that this requirement places nontrivial constraints on the
construction of new quantum theories, and in at least two examples leads to the appropriate
construction of the quantum theory. I think that the heuristic role of the requirement of re-
ductive explanations is epistemically relevant in the sense that we have good reason to pursue
theories that can explain the success of their predecessors. However, I prefer to think of these
reasons slightly differently than the evidential reasons for accepting hypotheses that come from
empirical confirmation. I have argued along the lines of Hesse that satisfaction of the require-
ment of reductive explanations makes newly constructed theories more plausible, but that this
plausibility can be overruled by other considerations including new empirical results. The
defeasibility of the epistemic and normative force of heuristics may not be so different from
empirical evidence, but I think it is worth emphasizing.

I think there are many open questions concerning the role of heuristics in theory construc-
tion that are worth investigating. For example, in what ways can the requirement of reductive
explanations extend beyond considerations of physical state spaces? Does the requirement of
reductive explanations make a difference in other examples besides the models I have con-
sidered? And can we understand the normative force behind other heuristics besides those
involving reductive explanations? These questions strike me as important in part because they
provide guides toward ways in which philosophical work might aid scientific progress. This
is especially true in quantum physics, where there is much ongoing and open-ended work on
constructing quantum field theories and quantum theories of gravity. I hope more philosophers
will take up the task of investigating the methods used in theory construction because they have

the potential to make a real impact in these areas.
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