
BJP
S Fina

l D
raf

t
Reductive Explanation and the Construction of

Quantum Theories

Benjamin H. Feintzeig

Abstract

I argue that philosophical issues concerning reductive explanations help constrain the con-

struction of quantum theories with appropriate state spaces. I illustrate this general pro-

posal with two examples of restricting attention to physical states in quantum theories:

regular states and symmetry-invariant states.
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[...] in our philosophical reflections upon

science, we should by now have learned

explicitly—that successful scientific

theories are to be taken very seriously as

clues to the deeper understanding of

phenomena: i.e., clues in the search for

better and more fundamental theories.

— H. Stein ([1989], p. 57)

1 Introduction

It is common to require that a newly constructed physical theory be able to explain the suc-

cess of the theory it supersedes. In the context of quantization, or the construction of quantum

theories, this becomes the requirement that a quantum theory explain the success of its corre-

sponding classical theory in the classical limit. But this requirement is vague as it stands—what

could count as an explanation of past success? And how could this guide us in the construction

of new theories? The purpose of this article is to make a part of this requirement precise and to

show that it puts substantive constraints on theory construction.

I will focus on just one aspect of explaining the success of a past physical theory: the state

space. The state space of a physical theory often contains states that are not used to represent

genuine physical possibilities. I will call these states, which are sometimes said to be ‘mere

artifacts’, unphysical states. As I see it, an explanation of the state space involves explaining

why only certain parts of the mathematical structure of the theory—the physical states—are

required for successful application of the theory. I will not be concerned with the ontologi-

cal status of the physical and unphysical states, but rather their methodological role in these

successful applications. I will assume that there is at least a normative ideal, whether or not

it is actually achievable, to construct physical theories that allow only for physical states and

rule out unphysical states. A general procedure for adapting quantum theories to allow for

only physical states once a physical state space has been specified is established in (Feintzeig

[2018a]), but leaves open how one might go about figuring out which states to deem physical.
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I will argue that what I call the requirement of reductive explanations provides a way of filling

this gap and deciding which states to consider as physical.

The central contribution of this article is thus the proposal of a philosophically significant

heuristic method for constructing quantum theories. The proposal is, roughly, that we should

aim to construct quantum theories in which the classical limits of physical quantum states are

physical classical states. In Section 2, I will provide some background to the proposal from

discussions of physical possibility and reductive explanations in the literature. In Section 3, I

will state the central proposal in a schematic form and provide a general, context-independent

argument in an attempt to justify it. However, I will argue that the general formulation of the

proposal is significantly limited and one should instead take up the proposal on a case by case

basis. This motivates further discussion of two context-specific applications in the following

sections. In Section 4, I discuss (Feintzeig [2018b]), showing that the proposal leads to the

appropriate answer for systems of finitely many free particles, in which the quantum theory

can be understood through a regular representation of the Weyl algebra. In Section 5, I discuss

(Browning and Feintzeig [unpublished]), showing that the proposal leads to the appropriate

answer for systems of particles moving in an external gauge field, in which the quantum theory

can be understood through the charge superselection structure of an algebra of observables.

Finally, in Section 6 I will draw some conclusions from what has been said for discussions in

philosophy of science concerning heuristics and scientific discovery.

2 Background

To begin, I introduce the conceptual issues that play a role in the main proposal of the article:

the notion of ‘physical reasonableness’ and the ‘requirement of reductive explanations’.

2.1 Physical states

This article aims to leverage the following fact: we often do not treat all states allowed by

a physical theory as physically possible in the same way.1 For example, it is common prac-

tice in general relativity to rule out as physically unreasonable models of spacetime that have

1 I will use the terms ‘physical’, ‘physically possible’, and ‘physically reasonable’ synonymously.

3

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/advance-article-abstract/doi/10.1093/bjps/axz051/5644347 by 81225740 user on 02 June 2020



BJP
S Fina

l D
raf

t

Benjamin H. Feintzeig The Construction of Quantum Theories

certain kinds of singularities, extensions, or violations of determinism. 2 Similarly, in quan-

tum theories a variety of necessary conditions have been proposed for a quantum state to be

physically reasonable—for example, we might restrict attention to locally definite states (Ara-

georgis [1995], p. 168), states accessible from Fock states (Petz [1990], p. 29), DHR states

(Haag [1992]; Halvorson [2007]), normal states (Halvorson [2001]; Ruetsche [2011b]; Ara-

georgis et al. [unpublished]), locally normal states (Dell’Antonio et al. [1966]; Hugenholtz and

Wieringa [1969]; Takesaki and Winnink [1973]), or regular states (Halvorson [2004]; Feintzeig

et al. [2019]; Feintzeig and Weatherall [2019]). The details of the last condition will play a role

in what follows, but before discussing any particular cases, I want to first try to make sense of

this somewhat curious practice.

The practice of restricting what we consider the physically reasonable states is particularly

puzzling when viewed from the perspective of what Ruetsche ([2011a], p. 6) calls ‘the standard

account’ of interpreting physical theories. According to the standard account, the content of a

physical theory is a specification of the worlds it deems physically possible, as distinguished

from the vast background of logical or metaphysical possibilities. If a physical theory, by

specifying a collection of states that satisfy its laws, already fixes what it deems physically

possible, one might wonder what further we might be doing when restricting to a collection

of physical states that form a subset of those allowed by a physical theory. On the standard

account, the collection of states allowed by a physical theory already specifies the physical

possibilities, so what further restriction could be required?

I believe one can understand the practice of restricting attention to a collection of physical

states through an alternative to ‘the standard account’ proposed by Ruetsche ([2003], [2011a])

herself. Ruetsche opposes the standard account by arguing that the notion of physical possibil-

ity is context-dependent, which implies that the collection of worlds a theory deems possible

cannot be specified once and for all.3 This leaves room for one to restrict attention to a sub-

space of physical states if the context calls for it. I won’t commit to Ruetsche’s particular view

of physical possibility, but I will argue later that the way we apply heuristics for theory con-

2 For an overview, see (Earman [1995]; Manchak ([2013])); for a sampling of recent work, see (Manchak
[2009], [2011], [2014], [2016]).

3 Similar themes are familiar from elsewhere in the literature—for example, (Wilson [2006], [2013]). For other
reasons to reject the standard account, see, for example, (Williams [2018]).
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struction based on physical state spaces should be sensitive to contextual details. So it is worth

exploring a view like Ruetsche’s in some detail to start.

On Ruetsche’s view, one can associate many different notions of physical possibility with a

given theory. One notion of physical possibility might be the most general kind compatible with

the kinematics of the theory, while another notion of physical possibility might be specific to

a class of states that we think the actual world lies in. For example, we might think that while

certain singular spacetimes are possible in the most general sense, they are not in the more

specific sense of possibility governing cosmological models with a well-defined time evolution.

Or, while we might think that distinct ground states breaking the electroweak symmetry in the

standard model of particle physics are equipossible in a general sense, only one of these states

is possible in the more specific sense of being dynamically accessible from the actual world. On

Ruetsche’s alternative view, then, it makes sense to distinguish a class of physical states from

all of the states allowed by a physical theory because the physical states are possible according

to a more specific notion of possibility than the notion of possibility for all states of the theory.

In the rest of this article, I hope to understand the vague phrase ‘physically reasonable state’

in a way that at least allows it to be made precise in various context-dependent ways. This

should not be taken to mean that I endorse Ruetsche’s controversial arguments for her conclu-

sion, although I do find the conclusion attractive. Instead, I hope to remain agnostic about what

it means in general for a state to be physically reasonable. I will do so by allowing the notion

to be specified in a variety of context-dependent ways.

One might wonder whether one can say anything interesting in general about physical states

prior to focusing on a specific context. I think one can, with the aim of discovering what

kinds of tools or strategies one might employ in the context-specific cases, as I will do in the

examples of Section 4 and Section 5. Ultimately, the central proposal of this article aims at

describing how considerations about physical states provide a heuristic for theory construction.

As a heuristic, the best we can hope for is an understanding of how and why it might be applied

in possibly different ways in different contexts to yield fruitful, but defeasible results.

In fact, the results of (Feintzeig [2018a]) show us one way in which a choice of physical

states might be employed to aid theory construction. Feintzeig shows that if one is given a

5

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/advance-article-abstract/doi/10.1093/bjps/axz051/5644347 by 81225740 user on 02 June 2020



BJP
S Fina

l D
raf

t

Benjamin H. Feintzeig The Construction of Quantum Theories

physical theory formulated in an algebraic framework, and then one specifies a subspace of the

state space corresponding to the physical states, there is a general procedure for constructing

a new theory that allows for only physical states. I will describe this procedure in some detail

because I refer to it throughout this article.

The background to the procedure for restricting state spaces is the algebraic framework for

physical theories. A theory formulated in the algebraic framework specifies a C*-algebra A

of physical quantities.4 This framework is flexible enough to encompass both classical and

quantum theories. In classical theories, we use commutative C*-algebras corresponding to col-

lections of functions on a system’s phase space with pointwise algebraic operations. In quantum

theories, we use non-commutative C*-algebras corresponding to collections of operators on a

Hilbert space. States in both theories can be understood as positive, normalized linear function-

als on the C*-algebra of physical quantities. The state space S(A) forms a subset of the dual

space A∗ of bounded linear functionals on A.

Suppose that one has reason to take only a subset of S(A) to represent the physically reason-

able states. The subset of physically reasonable states will generate a subspace V of the space

A∗ of linear functionals. (Feintzeig [2018a]) shows that under very general conditions on V

(namely, V is weak* closed, and its annihilator N(V) forms a closed two-sided ideal in A),5 one

can construct another C*-algebra A/N(V) that allows for a natural identification of the physical

states in V with the entire state space of this new algebra. This construction is indeed employed

in mathematical physics when dealing with constrained systems (Grundling and Hurst [1998];

Grundling [2006]).

The construction Feintzeig describes leads to a new kinematical framework of physical quan-

tities in the C*-algebra A/N(V) and a new, restricted collection of possible states in the dual

space (A/N(V))∗ � V , corresponding to precisely the states that were initially deemed physi-

cally reasonable. This construction provides a tool that one can employ in quite general circum-

stances for the construction of quantum theories. Thus, even without a definitive statement of

4 For mathematical background on C*-algebras, see, for example, (Kadison and Ringrose [1997]; Sakai
[1971]). For applications of C*-algebraic tools to quantum theory, see, for example, (Emch [1972]; Haag [1992];
Bratteli and Robinson [1987]; Bratteli and Robinson [1996]). For philosophical introductions to algebraic quan-
tum theory, see, for example, (Arageorgis [1995]; Halvorson [2007]; Ruetsche [2011a]).

5Actually, the second example in Section 5 demonstrates that these conditions on V just stated need not even
be satisfied for this construction to be possible.
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what counts as a physically reasonable state, we know that however one specifies a collection

of physical states (subject to a few technical restrictions), one can use this information to aid

theory construction.

2.2 Reductive explanations

Now that we’ve narrowed our goal to discerning a collection of physically reasonable states,

the next task is to investigate what kind of information might help us achieve this goal. For

this, I turn to constraints of intertheoretic reduction.

Although some classical accounts (for example, Nagel ([1961], [1998])) present intertheo-

retic reduction as a relation deriving a higher level theory from a lower level theory, Nickles

([1973]) argues that there is a different notion of reduction at play when previous theories are

obtained as limiting cases of new theories. One example of this kind of limiting relation ap-

pears in the reduction of general relativity to Newtonian gravitation in the limit where v/c << 1.

According to Nickles, these limiting reductions ‘might be said to explain why the predecessor

theory worked as well as it did’ (Nickles [1973], p. 185, Footnote 4). Although Nickles (p.

201) is sceptical of the significance of limiting relations in which physical constants vary (of

which the classical ~ → 0 limit analysed in this article is one example), Fletcher ([forthcom-

ing]) argues to the contrary that the c → ∞ limit of general relativity may be interpreted as

the same approximation of low relative velocities just mentioned (see also Ehlers [1998]). On

Fletcher’s account, limiting relations can be understood to capture a sense in which the reduced

theory approximates the reducing theory.6

In these limiting explanations, the phenomenon to be explained is the success of the prede-

cessor theory. If we desire that newly constructed theories have explanatory power, it is natural

to hope that new theories have the ability to explain this success; that is, one might consider

it a constraint on any proposed successor theory that it explain the success of its predecessor

theory. I call this constraint the ‘requirement of reductive explanations’.

Some authors have explicitly proposed principles for theory construction that resemble this

requirement of reductive explanations. For example, Post ([1971], p. 228–35) proposes this

6 Cf. (Nickles [1973], pp. 194–6; Schaffner [1967]).
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requirement as the heuristic he calls the ‘generalized correspondence principle’. And Hesse

([1961], [1970]) argues for the necessity of correspondences between new and old theories

in terms of analogies between models. In the case at hand, the ~ → 0 limit provides one

kind of analogy or correspondence between classical and quantum theories by establishing that

the theoretical or mathematical structures are similar with respect to the notion of similarity

implicitly encoded in the limit (cf. Fletcher [2016]).

There is ambiguity, however, regarding what it means to understand the requirement of re-

ductive explanations as a heuristic for theory construction. On the one hand, this means that we

can and ought to use the principle to guide the construction of new theories. But Hesse ([1961],

pp. 55–6) argues that the existence of an appropriate analogy or correspondence is not suffi-

cient to justify the newly constructed theory. One reason is that any procedure for constructing

new theories is fallible; if a new theory makes a prediction that is not borne out by experiment,

then this could overrule the heuristics that led to the theory. However, I think we have some

reason to prefer or pursue theories that satisfy the requirement of reductive explanations, even

if these reasons are defeasible. To capture the heuristic value of the requirement of reductive

explanations, I’ll say that satisfying the requirement makes a candidate theory more plausible.7

These ideas about reductive explanations, correspondence, and analogies have also been

taken up in the literature already specifically in connection with the construction of quantum

theories. For example, Hesse ([1952]) uses analogies between quantum mechanics and classical

physics to illustrate her ideas about models and contrast her view with operationalism. Further,

Post’s ideas about correspondence are taken up by Radder ([1991]) in connection with the

construction of quantum theories. Since explanations of the success of previous theories might

take many different forms in different domains or different contexts, we learn something by

analysing whether and how quantum theories explain the success of their classical predecessors.

One can attempt to explain the success of a classical theory from a quantum theory by em-

ploying the ~ → 0 limit.8 In order to satisfy the requirement of reductive explanations, this

limit would need to give rise to explanations of the success of the mathematical and theoretical

7 See (Bertolaso and Sterpetti [2017]) for discussion of plausibility and evidence, and see (Fraser [forthcom-
ing], p. 12) for discussion of plausibility and analogies.

8 I analyse the ~ → 0 limit, but there are other limits that may also be relevant—for example, N → ∞.
Landsman ([2007]) argues that multiple limits might be required to explain the success of classical physics.
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structure of the classical theory (more in Section 3). Radder argues that the ~→ 0 limit cannot

accomplish this task because it gives rise to a merely formal correspondence. In the same spirit,

Rosaler ([2015b], [2015a], [2016]) has argued that quantum theories should only be thought of

as explaining the empirical success of classical theories in a roughly instrumentalist fashion.

If Radder and Rosaler were correct, then one might worry about whether the requirement of

reductive explanations could or should be used as a heuristic tool to obtain substantive con-

straints on the construction of new theories. However, in my (Feintzeig [forthcoming]), I argue

that one can explain some aspects of the theoretical structure of classical theories from quantum

theories by employing the tools of strict deformation quantization to analyse the ~ → 0 limit.

Thus, while historically there is little doubt that the ~ → 0 limit has been employed during the

construction of quantum theories, there is some disagreement about its significance.9

In this article, I follow (Feintzeig [forthcoming]) and pursue the requirement of reductive

explanations in quantum theories under the assumption that the ~ → 0 limit can be used to

provide explanations of the theoretical or mathematical structure of corresponding classical

theories by using strict deformation quantization. Although many of the technical details will

not be relevant to the discussion of this article, it is important to know that a strict deformation

quantization provides precisely the mathematical tools needed to analyse the classical limits of

quantities and states in quantum theories in the C*-algebraic framework.10

A ‘strict deformation quantization’ consists in a family {A~}~∈[0,1] of C*-algebras and a fam-

ily of quantization maps {Q~ : P → A~}~∈[0,1] on a dense (Poisson) subalgebra P of A0, which

is required to be commutative. Here, the algebra A0 represents the collection of quantities in

a classical theory while the (non-commutative) algebras A~ for ~ > 0 represent the collection

of quantities in a corresponding quantum theory. Furthermore, for such a structure to be a

strict deformation quantization, the quantization maps are required to satisfy axioms that en-

sure the continuity of algebraic operations as ~ → 0 and encode the approximate satisfaction

of the canonical commutation relations. Within this framework, the classical limit of a family

of quantities {Q~(A)}~∈[0,1] will be understood to be the classical quantity A ∈ A0. In (Feintzeig

9 A recent reference that discusses the history of the construction of quantum theories with attention to the role
and context-dependence of scientific understanding is (De Regt [2017], especially Chapters 4 and 7).

10 For a mathematical introduction to strict deformation quantization, see (Rieffel [1989], [1993], [1994];
Landsman [1993a], [1998], [2007], [2017]).
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[forthcoming]), I argue that this understanding of the classical limits of quantities is appropriate

for explaining the success of classical theories. Moreover, this notion of classical limits of quan-

tities gives rise to a notion of classical limits of states. A family of states {ω~ ∈ S(A~)}~∈[0,1], is

called a ‘continuous fields of states’ when for each A ∈ A0, the map ~ 7→ ω~(Q~(A)) is contin-

uous. The classical limit of a continuous field of states will be understood to be the classical

state ω0.

In what follows, I will take on this framework for analysing the classical ~ → 0 limit in

quantum theories via strict deformation quantization, and I will assume that the classical limit,

when understood in this way, can provide genuine explanations of the mathematical and the-

oretical structures of classical physics. The remaining task is now to investigate the extent

of the theoretical structures in classical physics that one can explain, and how requiring such

explanations constrains theory construction.

This at last puts us in a position to bring together the two philosophical strands of background

that are required to state the main proposal of the article. One of the theoretical structures in

a classical theory is its collection of physically reasonable states, understood as a subset of

the entire state space. A reductive explanation of the success of a classical theory from a

quantum theory ought to explain why the classical theory contains the physical state space

that it does. Enforcing the requirement of reductive explanations as a heuristic for theory

construction places the constraint that a newly constructed quantum theory give an explanation

of the physical state space of its preceding classical theory. The central proposal of the article,

which we state next in the following section, is an analysis of the conditions under which one

can give such an explanation of the physical state space of a classical theory from a quantum

theory using the ~→ 0 limit.

3 The Proposed ‘Correspondence Principle’

The central proposal of this article provides necessary (but not sufficient) conditions for a quan-

tum theory to be able to explain the success of its predecessor:

Proposal: A necessary condition for a quantum theory to explain the success of its clas-

sical predecessor is that
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(1) every physical classical state is the classical limit of some appropriate family of

physical quantum states; and

(2) the classical limit of every appropriate family of physical quantum states is a phys-

ical classical state.

I claim only that Conditions 1 and 2 are required for a quantum theory to explain the success of

one theoretical structure in the classical theory—its collection of physically reasonable states.

Further resources may be required to explain other aspects of the theory.

I will attempt to provide a general argument to motivate each of these conditions in this

section; however, I do not believe this general motivation suffices. Instead, I will argue it is

best to take up the proposal in specified contexts where further information helps determine

what is meant by a physically reasonable state and an appropriate family of states. I think it is

worth first considering the motivation for Conditions 1 and 2 in a context-independent manner.

But it is even more important to analyse these conditions in the context of specific examples,

as I will do in the following sections.

Condition 1 is the more familiar constraint, stating that for a quantum theory to explain the

success of its classical predecessor, it must be able to recover every physical classical state as

the classical limit of some physical quantum state. To motivate this condition, notice that part of

the explanatory burden of the newly constructed quantum theory is to show why the predictions

and explanations given using each physical classical state are at least approximately accurate.

If Conditions 1 were not satisfied, then the quantum theory would not be able to discharge this

explanatory burden—there would be physical classical states that could not be recovered even

approximately in the ~ → 0 limit from physical quantum states. The quantum theory would

not be able to explain why the predictions and explanations given using those missing physical

classical states were successful, and hence, would not be able to explain the success of the

classical theory. Therefore, Condition 1 is required for a quantum theory to explain the success

of its classical predecessor.

The perhaps more controversial Condition 2 states that for a quantum theory to explain the

success of its classical predecessor, it must recover no more than the physical classical states

as the classical limits of physical quantum states. Condition 2 has a different character; it is
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not concerned with whether the quantum theory can provide local explanations of the success

of individual physical classical states. Instead, Condition 2 is motivated by considering how a

quantum theory might give a global explanation of why a certain subcollection of states in the

classical theory is deemed physically reasonable. I think that for a quantum theory to give an

explanation of the success of its classical predecessor, it must explain why the classical theory

employed the mathematical and theoretical structure it did. Part of the theoretical structure of

the classical theory is the collection of states it deems physically reasonable. Thus, it is incum-

bent upon the quantum theory to explain why the classical theory has the physical state space

it has. If the quantum theory could recover unphysical classical states—ones lying outside the

physical state space—as the classical limit of physical quantum states, then the quantum theory

would seem to allow these states as approximations to the states the quantum theory deems

physically possible. In order to explain why the classical theory has the physical state space

it has, the quantum theory must only allow the physical classical states to be obtainable as

approximations to physical quantum states in the classical limit.

One might object to Condition 2 on the grounds that once one has recovered from a new the-

ory all of the empirical predictions of the old theory, one has captured all one needs to explain.

If this were correct, Condition 1 would suffice on its own. I believe, however, that Condition

2 is necessary because there are more phenomena the new theory needs to capture than just

the predictions of the old theory. It is also an empirical phenomenon that researchers using the

mathematical and theoretical framework of the old theory have arrived at accurate predictions

and useful applications. I believe this phenomenon—that scientists using the theoretical tools

of the old theory have been successful—also ought to be explained. The particular tools that

scientists used as part of the old theory may be historically contingent, and the explanation may

involve appeal to pragmatic features, but nonetheless I think an explanation is needed of why

these tools have been successful. One of the theoretical tools of the old theory whose success

must be explained is the splitting of the state space into physical and unphysical states. Satis-

fying Condition 2 amounts to providing an explanation of why scientists have been successful

when employing the theoretical tool of a physical subspace of the state space of the old theory.

For this motivation of Condition 2 to be plausible, one must already accept the assumption
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made in Section 2.2 that explanations of the success of classical theories involve the explanation

of the theoretical structure of those theories. Only on this assumption does it make sense to

require that a quantum theory be able to explain the success of the theoretical structure given

by the physical state space of a classical theory. If one thought to the contrary that quantum

theories could only explain the empirical predictions of their corresponding classical theories,

as Rosaler ([2015a]) seems to, then such a requirement would not make sense. However, on

the assumption that genuine explanations of the theoretical structure of classical theories are

possible and desirable, I believe Condition 2 is well motivated.

Before proceeding, it is worth dealing with an apparent objection to Condition 2.11 One

might worry that there is an obvious counterexample in the case of spontaneous symmetry

breaking in many-body spin systems or in the analogous case of the measurement problem.

Landsman ([2013], [2017]) discusses models for each of these examples, and at first glance,

the classical or thermodynamic limit of the physical quantum ground state may appear to be

an unphysical classical state. In the case of a many-body spin system on a one-dimensional

lattice, there are two states of broken symmetry in which the spins all align pointing ‘up’ or

all align pointing ‘down’, but the ground state is a superposition of these two aligned states.

The thermodynamic limit of this pure quantum state is, however, the mixture of the two cor-

responding states with aligned spins. Similarly, in the simple model for measurement with a

double-well potential, there are two states in which the wavefunction is centered in the left and

right potential wells, respectively, but the ground state is a superposition of the wavefunctions

in each well. Further, the classical limit of this pure quantum state is again the mixture of the

two classical states located at the minima of each potential well. If one thought these mixtures

obtained in the limit were unphysical, then one might have reason to reject Condition 2 of the

proposal because they are classical limits of physical states.

I do not believe, however, that this objection succeeds. First, as far as I can tell, this ob-

jection relies on the premise that a mixture of two physical states is not a physical state. This

assumption seems, at least to me, to be very counterintuitive. Of course, whether one accepts

this premise may depend on how exactly one makes precise the notion of a physical state, but

11 I am grateful to an anonymous referee for pointing out this objection.
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I believe that, at least in some contexts, mixed states should be countenanced as physical be-

cause of their usefulness in both classical and quantum statistical mechanics. Moreover, in

all of the examples and results discussed in this article, I focus only on the linear space V

generated by the physical states, which of course contains all mixtures of the physical states.

Second, Landsman and Reuvers ([2013]) and Landsman ([2013], [2017]) establish that almost

any small external perturbation will force an ‘effective collapse’ of these systems into one of the

symmetry breaking states on the way to the limit, which results in a pure state at the limit. This

further technical result shows that the limit of the physical ground states can, when understood

with external perturbations, lead to a physical state. This shows the importance of thinking of

the classical limit as a limit of an entire family of states. The appropriate family of states is

influenced by contextual details including the possibility of external perturbations. It is only

when one thinks of appropriate families of states with external perturbations that one can see

the instability of the mixed ground state in the limit. Thus, when one takes into account further

contextual information about the systems of interest to determine the appropriate families of

states, one finds that that the central proposal is vindicated. Indeed, this same point is a theme

I hope to illustrate and emphasize in the examples of the following sections.

My contention in this article is that the central proposal stated above can and should be used

to constrain the construction of quantum theories, as follows. Suppose we have constructed

a quantum theory whose algebra of quantities is given by A. Let V ⊂ A∗ be the subspace

generated by the collection of states whose classical limits are physical states according to

the corresponding classical theory. These are the states of the quantum theory that should be

deemed physical quantum states in order to explain the success of the classical theory, accord-

ing to the central proposal. So with the aim of constructing a quantum theory whose entire

state space consists in physical states, we should replace the original algebra of quantities A

with A/N(V) in order to restrict attention to physical states.

Notice that using the central proposal in this way to constrain theory construction is only

possible if we have antecedent knowledge of what states in the corresponding classical theory

are physically reasonable. This is acceptable because we typically have a better grasp on the

interpretation and significance of states in classical theories than in quantum theories, or new
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theories we are constructing. But if we do not antecedently know which classical states are

physically reasonable, we might discern this by deeming a classical state physical when it is

obtained as the classical limit of a physical quantum state. Likewise, we might decide that

a classical state is unphysical when it cannot be obtained as the classical limit of a physical

quantum state. This is another genuine function of the classical limit—to help us better un-

derstand existing classical theories. However, this function of the classical limit in informing

interpretations of classical physics is distinct from the role the classical limit can play in theory

construction. The use of the central proposal in theory construction projects forward an under-

standing of which states are physically reasonable in an existing classical theory. Projecting

forward in this fashion, as the quote from Stein ([1989]) in the epigraph of this article suggests,

makes sense only when we are more confident about our understanding of the existing classical

theory than the quantum theory we are in the process of constructing.

Recognizing this helps us see one way in which using the central proposal to constrain the-

ory construction is defeasible. Our confidence in this heuristic can at best be as high as our

confidence that we have picked out the appropriate collection of physically reasonable states

in the existing classical theory. To the extent that the classical states we consider physically

reasonable might be revised, the procedure for constructing a quantum theory based on the

existing classical theory might also be revised. In this sense, the requirement of reductive ex-

planations, when applied to explanations of physical state spaces, should not be understood to

produce certainty in the theories we construct.

This form of the requirement of reductive explanations is also subject to the subtleties men-

tioned in Section 2—namely, it is a heuristic principle whose satisfaction does not justify a

new theory, but rather makes it more plausible. Further, the notion of physical reasonableness

in both classical and quantum theories should be understood contextually. Thus, the proposal

should be understood to provide a defeasible tool that might be applied in different context-

sensitive ways.

It might be surprising, then, that the arguments I have just provided for Conditions 1 and 2

are completely context-independent. I think this shows a severe limitation of those arguments

because they do not take into account the context-specific details concerning why certain states
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are deemed physically reasonable for certain systems. For the proposal to be well motivated,

the ~ → 0 limit must teach us that unphysical quantum states fail to be physically reasonable

for the same reasons the corresponding classical states fail to be physically reasonable. The

success of the proposal thus depends on context-specific notions of physical possibility. As

such, the main proposal and the arguments for it should be understood only schematically, so

that they are to be filled in for specific systems of interest.

I will now take up two such specific examples in the remainder of this article. The exam-

ples illustrate the main proposal, and how further contextual information helps us make sense

of when certain collections of states are deemed physically reasonable. In the two examples

presented in Section 4 and Section 5, when the requirement of reductive explanations is imple-

mented in conjunction with the main proposal, it gives rise to the construction of an appropriate

quantum theory for the system of interest. These successful results provide some evidence in

favour of the main proposal and its heuristic use for theory construction. This evidence should

not be understood as underlying an inductive inference because I will only consider two exam-

ples, which forms a sample size that is much too small. Instead, I take the examples to show

the promise of the main proposal when it is treated with care in specific contexts.

4 Example: Regularity

My first example to illustrate the usefulness of the main proposal is the quantization of the

theory of a finite collection of free particles via the Weyl algebra (Manuceau et al. [1974];

Petz [1990]; Clifton and Halvorson [2001]). In this case, it is standard practice in mathematical

physics to restrict attention to regular states on the Weyl algebra to represent physically reason-

able quantum states. However, this orthodoxy has been challenged, for example, by Halvorson

([2004]), and some have even pursued the construction of physical theories involving non-

regular states (Corichi et al. [2007]; Ashtekar [2009]).12 Here, I will argue that (Feintzeig

[2018b]) illustrates an application of the main proposal to rule out non-regular states in quan-

tum theories, motivating the construction of quantum theories that allow for only regular states

by using a different algebra than the Weyl algebra.
12 For mathematical investigations of non-regular states, see also (Beaume et al. [1974]; Fannes et al. [1974];

Acerbi et al. [1993]).
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We aim to construct a quantum theory corresponding to a classical system whose Hamilto-

nian formulation is given by the phase space R2n, understood as a symplectic vector space with

the standard symplectic form σ. The algebra of quantities for the corresponding quantum the-

ory is specified by the Weyl algebraW(R2n, ~σ), defined as the smallest C*-algebra containing

the elements W~(x) for each x ∈ R2n with

W~(x)W~(y) := e−
i~
2 σ(x,y)W~(x + y),

W~(x)∗ := W~(−x),

for all x, y ∈ R2n. It is known that there is a unique C*-algebra picked out by these condi-

tions that corresponds to the completion of the algebra generated by the linearly independent

elements W~(x) in the so-called minimal regular norm (Manuceau et al. [1974]). The algebra

A~ :=W(R2n, ~σ) specifies the kinematical framework of a quantum theory for each numerical

value ~ ∈ [0, 1] of Planck’s constant.

The classical limit of this quantum theory is specified by the algebra A0 :=W(R2n, 0), which

is known to be *-isomorphic to the collection of almost periodic functions on R2n (Binz et al.

[2004a]). The C*-algebra of almost periodic functions is the uniform closure of the collection

of all finite linear combinations of functions of the form W0(x) : R2n → C for each x ∈ R2n

defined by

W0(x)(y) := eix·y,

for all y ∈ R2n, where · signifies the standard inner product on R2n.

That A0 should be understood as the classical limit of a quantum theory specified by the Weyl

algebra is justified by the fact that the family of algebras {A~}~∈[0,1] forms a strict deformation

quantization (Binz et al. [2004b]; Honegger and Rieckers [2005]; Honegger et al. [2008]) with

the quantization maps {Q~ : A0 → A~}~∈[0,1] defined as the norm continuous linear extension of

Q~(W0(x)) := e−
~
4 ‖x‖

2
W~(x),
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where ‖x‖2 := x·x.13 These maps define the restriction of Berezin quantization to the almost pe-

riodic functions (Berezin [1975]; Berger and Coburn [1986]). Since this structure forms a strict

deformation quantization, we can analyse classical limits of states by specifying continuous

fields of states. There is a natural way to specify a continuous field of states given a quantum

state ω~ ∈ S(A~). Namely, ω0 := ω~ ◦ Q~ defines a classical state on A0 since Q~ is positive.

And further, the map ω~′ : A~′ → C defined as the continuous extension of ω~′(Q~′(A)) = ω0(A)

for all A ∈ P specifies a quantum state for any alternative numerical value ~′ , ~ of Planck’s

constant. The collection {ω~}~∈[0,1] then forms a continuous field of states, which we will call

the ‘constant field’ defined by ω~, and so the classical state ω0 can be understood as the classi-

cal limit of the quantum state ω~. Of course, one might define other classical limits of the state

ω~ through different continuous fields of states, and one hopes that the results below generalize

to other such classical limits.

In this setup, the algebra A0 of the classical theory has a plethora of states that would ordi-

narily be considered unphysical classical states. The countably additive probability measures

on the phase space R2n form a natural collection of physical states that can be treated using the

ordinary methods of classical Hamiltonian mechanics. These states represent either definite

positions and momenta specified by a single point in the phase space, or else probabilistic mix-

tures of such definite phase space points. However, there are other states on A0 called ‘states

at infinity’ that cannot be represented by any countably additive probability measure on R2n. I

think it is natural to call the countably additive probability measures the physically reasonable

states and deem all other states unphysical. For example, one indication the classical states

at infinity are unphysical is that it is not clear how to understand their dynamical evolution.

Given that these states cannot be represented as countably additive probability measures on

phase space, one cannot use them as initial conditions for the standard differential equations of

Hamiltonian mechanics.

Given this collection of physical states, we can apply the procedure of Section 2.1 to reduce

the state space of the classical theory. Let VC ⊆ A
∗
0 consist in the subspace generated by the

13 There is actually a mistake in (Feintzeig [2018b]), which is missing the exponential factor, which makes the
quantization maps positive, and hence norm continuous, as claimed. Positivity allows for the continuous extension
of the quantization map to the domain A0 and for the analysis of classical limits of states below.
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collection of states that can be represented as countably additive probability measures on R2n.

For technical reasons, one needs to first enlarge the algebra A0 to the universal enveloping

W*-algebra or bidual A∗∗0 , which can be understood as its bounded completion in the weak*

topology (Feintzeig [2019]). Then the algebra A∗∗0 /N(VC) obtained by restricting attention to

the collection of physical states is *-isomorphic to the collection of all bounded measurable

functionson R2n, which is a W*-algebra whose normal state space consists in all and only

the countably additive probability measures on R2n.14 The algebra of measurable functions

is itself the bidual or bounded completion of the algebra C0(R2n) of continuous functions on

R2n vanishing at infinity. Every state on this algebra can be represented by a countably additive

probability measure on R2n. Thus, there is an alternative algebra of classical quantities in which

we can understand the standard formulation of the theory allowing for only the physical states,

which are the countably additive probability measures.

We can use the collection VC of physical classical states to constrain the construction of our

quantum theory. Let VQ ⊆ A
∗
~ be the subspace of the dual to the algebra of quantities for the

quantum theory generated by the quantum states whose classical limits, understood in the sense

of the constant fields of states defined above, lie in VC. In (Feintzeig [2018b]), I proved that

when we take the classical limit via a constant field of states, the classical limit of a quantum

state ω~ on A~ lies in VC if and only if ω~ is regular. For fixed ~, a state ω~ ∈ S(A~) is defined

to be regular just in case the map

t ∈ R 7→ ω~(W~(tx))

is continuous for each x ∈ R2n. Regular states may be familiar from the Stone–von Neumann

theorem (see, for example, Summers [1999]; Ruetsche [2011a]), which states that the GNS

representation of any regular state is quasi-equivalent to the Schrödinger representation on the

Hilbert spaceH = L2(Rn). Since the classical limit of a state on A~ is physical just in case that

state is regular, the central proposal suggests that to explain the success of the physical state

space of the classical theory, we should understand the physical states on the Weyl algebra to

14 Specifically, one must consider functions that are measurable with respect to the σ-algebra of universally
Radon measurable sets (Fremlin [2003]).
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be precisely the regular states.

This constrains theory construction by guiding us to use a different algebra whose irreducible

representations are all unitarily equivalent to the Schrödinger representation. As in the classi-

cal case, for technical reasons we first need to enlarge the algebra A~ to the bidual or bounded

completion A∗∗~ . Then restricting attention to regular quantum states, we find A∗∗~ /N(VQ) is

*-isomorphic to the W*-algebra B(H), which is the bidual or bounded completion of the al-

gebra K(H) of compact operators. Every normal state on B(H), or equivalently every state

on K(H), can be represented by a density operator on H . Thus, restricting our attention to

regular states leads us to an alternative algebra, which specifies the standard formulation of

the quantum theory of a finite number of free particles in terms of density operators in the

Schrödinger representation. In other words, the requirement of reductive explanations and the

central proposal of this article lead to the appropriate theory.

I believe that in this example, there is additional contextual information that helps us under-

stand why the collection of regular states, whose classical limits are countably additive prob-

ability measures, should be understood as the physical quantum states. As I will now argue,

the central proposal draws our attention to analogies between states in classical and quantum

theories, so that we can understand non-regular quantum states as unphysical in the same way

we understand classical states at infinity as unphysical.

Since there are challenges to understanding the dynamical evolution of classical states out-

side VC, the result that non-regular quantum states lying outside VQ have these unphysical

classical states at infinity as their limits suggests there may be challenges to understanding the

dynamical evolution of non-regular quantum states. Indeed, this is borne out by the fact that

one cannot straightforwardly apply the dynamics of the Schrödinger equation to non-regular

states. There have been suggestions concerning how to extend the Schrödinger dynamics to

non-regular states on the Weyl algebra (see, for example, Fannes and Verbeure [1974]; Narn-

hofer and Thirring [1993]), but Feintzeig et al. ([2019]) argue that any such attempt to deal

with dynamics for non-regular states will face interpretive difficulties. Thus, looking at the

classical limit helps us see that non-regular quantum states should be considered unphysical

for essentially the same reasons that classical states at infinity are considered unphysical. It
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also helps us understand what we might mean by our notion of physical reasonableness in this

context: physical reasonableness in this case involves at least that dynamical evolution makes

sense (both mathematically and interpretively).

There is more to say about the boundaries of physical reasonableness in this case. Physi-

cal reasonableness cannot be solely about making accurate predictions within the error bounds

specified by our measuring devices. What I mean by this is that if one only cares about having

states that make accurate predictions, then classical states at infinity are, in a sense, just as good

as classical countably additive probability measures. And likewise, regular quantum states are,

in a sense, just as good as non-regular quantum states. The reason is that in each case the phys-

ical states are dense in the unphysical states in a relevant topology (Feintzeig and Weatherall

[2019]). Every classical state at infinity can be approximated within specified error bounds for

a finite number of measurements—that is, with the weak* topology given by A∗∗0 /N(VC)—by

countably additive probability measures. Similarly, every non-regular quantum state can be

approximated within specified error bounds for a finite number of measurements—that is, with

the weak* topology given by A∗∗~ /N(VQ)—by regular states. This shows a sense in which no fi-

nite number of experiments can verify whether a system is in a physical or unphysical state, and

so one cannot infer from a finite set of data that the system is in a physical or unphysical state.

Thus, I believe we are left with the alternative that the notion of physical reasonableness that

distinguishes regular from non-regular states concerns their theoretical role rather than their

empirical predictions.

One way to understand what distinguishes physical from unphysical states in this case is that

states at infinity and non-regular states are unphysical in the sense that they are idealizations

from the physical states (Feintzeig and Weatherall [2019]). While the normal state space of

A∗∗0 /N(VC), which is the state space of C0(R2n), consists in only countably additive probability

measures, states at infinity can arise as weak* limits of these states. Similarly, while the normal

state space of A∗∗~ /N(VQ), which is the state space of K(H), consists in only regular states,

non-regular states can arise as weak*-limits of these states. These approximations are weak

enough that if our system is in a regular state and we use a non-regular state to make predic-

tions about future measurements, we have no guarantee that these predictions will be accurate
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(see Summers [1999]; Ruetsche [2011a]). This connects to my previous worries about the dy-

namical evolution of non-regular states; if we use a non-regular state to model the dynamical

evolution of a system, we may be led to inaccurate results and predictions. This justifies our

interpretation of states at infinity and non-regular states as idealizations—specifically idealiza-

tions that are inappropriate for analysing dynamical evolution. This illustrates how contextual

details about a system lead to a better understanding of what we mean by calling some states

physically reasonable.

We can also see in this example how the requirement of reductive explanations is a defea-

sible heuristic principle. Some have proposed (Corichi et al. [2007]; Ashtekar [2009]) that

non-regular states are important in the construction of quantum theories of gravity. Everything

that I have said so far in this section only applies to systems containing a finite number of par-

ticles and so does not strictly have implications for the gravitational field. Still, the arguments

of this section suggest that treating non-regular states as physical would be a somewhat radi-

cal change of perspective in the sense that one does not have antecedent reason to think that

the quantum theories constructed with non-regular states are plausible just from considering

the classical theory they are constructed from. I think one would need further information,

such as confirming empirical evidence or other theoretical virtues, to make these theories with

non-regular states plausible. In fact, Ashtekar ([2009]) has argued that non-regular states are

plausible in quantum gravity because they are required to ensure consistency with another the-

oretical principle in general relativity, the principle of ‘background independence’. If this is

correct and the theories involving non-regular states are successful, then we may have reason

to revise our understanding of non-regular states, and consequently to revise our understanding

of the classical states at infinity that we obtain as their classical limits. Thus, the conception

of physically reasonable states that I have argued for in this section—and the role it plays in

the construction of new theories—is defeasible. It can be overruled by other theoretical or

evidential considerations. I think that our current understanding of the classical physics of

finite collections of particles gives us good reason to interpret classical states at infinity and

non-regular quantum states as unphysical, but I recognize that this understanding is fallible.

In the next section, I will take to heart the lesson that we should aim to construct quantum
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theories that do not allow for non-regular states, and thus we should not use the Weyl algebra.

It is well known how to implement this proposal for systems with finitely many degrees of

freedom using the compact operators,15 which form a C*-algebra whose bidual is the algebra

A∗∗~ /N(VQ) recommended above. For this reason, I will use the algebra of compact operators in

what follows as a solution to the problem of non-regular states.

5 Example: Symmetry-Invariance

The next example I consider is the quantization of the theory of a particle moving in an ex-

ternal field with gauge symmetry. In this case, the quantum theory has charge superselection

structure, which prevents coherent superpositions of different charges. This is encoded in the

theory mathematically by the presence of unitarily inequivalent representations of the algebra

of quantities for the quantum theory.16 Unlike some other cases of unitarily inequivalent rep-

resentations, I think the interpretation of charge superselection is somewhat straightforward:

states with different charges are all physically possible (in a quite general sense) and genuinely

distinct. So the inequivalent representations are all part of the theory and physically inequiva-

lent in an appropriate sense.

But why do charge superselection rules appear for even a single particle system? The stan-

dard lore is that the Stone–von Neumann theorem rules out the existence of inequivalent rep-

resentations for systems with finitely many degrees of freedom, so one might wonder how

superselection rules are possible for a single particle. One way to understand the appearance

of these superselection rules is through analysis of how the quantum theory is constructed. The

superselection structure is made plausible by an application of the requirement of reductive

explanations with my central proposal. In this case, the physical states turn out to be precisely

those states that are invariant under gauge symmetry transformations.

We begin by formulating the classical theory for a single particle moving in an external

gauge field. This theory contains the geometrical background of a principal fiber bundle with

total space P, base space Q, and typical fiber given by a compact Lie group G, which acts
15 Further work has been done to extend similar constructions to systems even with infinitely many degrees of

freedom (Grundling [1997]; Grundling and Neeb [2009]).
16 For more on superselection rules in the algebraic approach, see (Landsman [1990b], [1990c]; Earman

[2008]).
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smoothly on P on the right by Rg for g ∈ G. The base space Q represents the configuration

space of the particle, while the symmetries of the field are encoded in G. Formulating the

theory in the total space P allows one to understand how the particle couples to the external

field (Sternberg [1977]). One could provide a Hamiltonian formulation of the theory using as

phase space the cotangent bundle of the total space T ∗P, but one typically instead formulates

the theory by applying the Marsden–Weinstein reduction procedure (Marsden and Weinstein

[1974]; Belot [2003]; Butterfield [2007]) to construct the universal phase space (T ∗P)/G, where

G acts smoothly on T ∗P by the pullback R∗g. The idea of symplectic reduction is that P con-

tains redundant degrees of freedom that are eliminated by moving to the universal phase space.

Once these redundant degrees of freedom are removed, the universal phase space (T ∗P)/G is

merely a Poisson space, but not a symplectic space; it foliates into a collection of disjoint sym-

plectic leaves describing different possible charges (see Weinstein [1978]; Landsman [1993b],

[1998]).17

To put this geometrical theory into an algebraic framework, one employs the algebra C0((T ∗P)/G)

of continuous functions vanishing at infinity on the universal phase space. The classical state

space corresponding to this algebra of quantities consists in the countably additive probability

measures on the universal phase space. This algebraic formulation does not allow for states at

infinity and so is compatible with the conclusions of the previous section. However, the space

(T ∗P)/G has a somewhat complicated structure, and it is useful to formulate the construction

of the quantum theory by starting from the space T ∗P. Thus, we will take A0 := C0(T ∗P) as

the algebra of quantities for our classical theory. If one starts with the space T ∗P and uses the

algebra C0(T ∗P) then one generally allows for far more states corresponding to all countably

additive probability measures on T ∗P. It is natural to call a state on C0(T ∗P) physical just in

case it is determined from a state on C0((T ∗P)/G) in the universal phase space. The states

ω0 on C0(T ∗P) that are determined by states on C0((T ∗P)/G) are precisely the states that are

symmetry-invariant in the sense that

ω0( f ◦ R∗g) = ω0( f ),

17 This setup allows for more generality than the previous section because the phase space is a manifold and
not necessarily a linear space.
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for all f ∈ C0(T ∗P) and g ∈ G. Let VC be the collection of all symmetry-invariant states on

C0(T ∗P); this will form the collection of physical classical states. Applying the construction

from Section 2.1 to restrict attention to physical states produces the algebra A0/N(VC), which

Browning and Feintzeig ([unpublished]) show is *-isomorphic to C0((T ∗P)/G) and thus allows

for only states corresponding to countably additive probability measures on the universal phase

space.18 Thus, A0/N(VC) provides the desired kinematical framework for the classical theory

with only physical states.

We can construct a quantum theory for this system by applying a generalized Weyl quantiza-

tion procedure developed by Landsman ([1993b], [1998]). We define the algebra of quantities

for our quantum theory to be A~ := K(L2(P)), the compact operators on the Hilbert space

L2(P), for all ~ ∈ (0, 1]. Landsman defines a family of quantization maps Q~ : P → K(L2(P))

on a dense subalgebra P of C0(T ∗P). Using K(L2(P)) as the algebra of physical quantities

for the quantum theory is also compatible with the conclusions of the previous section as this

algebra does not allow for analogues of non-regular states; all states on this algebra are density

operators on L2(P). The family of algebras {A~}~∈[0,1] and quantization maps {Q~}~∈[0,1] forms

a strict deformation quantization, and so provides a way of taking the classical limit of the

quantum theory of a particle in an external gauge field.

We can use the collection VC of physical classical states to constrain the construction of our

quantum theory, just as in the previous example in Section 4. The key is to identify which

quantum states have classical limits in VC. Towards this end, consider quantum states that

satisfy a condition of symmetry-invariance in analogy with the physical states of the classical

theory. The symmetry group G has a natural unitary representation U(g) for each g ∈ G on the

Hilbert space L2(P) of the quantum theory given by

(U(g)ψ)(x) = ψ(Rg(x)),

18 In this case, the procedure can be applied even though the technical conditions specified in (Feintzeig
[2018a]) are not satisfied. N(VC) is not a two-sided ideal and consequently the canonical quotient projection
A0 → A0/N(VC) is not a *-homomorphism, but A0/N(VC) is still a C*-algebra.
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for all ψ ∈ L2(P). We will call a quantum state ω~ on A~ symmetry-invariant when

ω~(U(g)AU(g)∗) = ω~(A),

for all A ∈ A~ and g ∈ G. Let VQ be the subspace of A∗~ generated by the symmetry-invariant

quantum states on A~.

In considering the classical limits of states of this system, we face a complication that did not

arise in the previous example; since Q~ is neither positive nor continuous in the current case,

there is no natural way to define the classical limit of a quantum state ω~ on A~ via a constant

field of states. So instead of specifying a unique classical limit, we will consider all possible

classical limits given by continuous fields of states {ω~}~∈[0,1] subject to just one condition. If ω~

is a symmetry-invariant state, then {ω~}~∈[0,1] is an appropriate family for specifying the classical

limit of ω~ only if ω~′ is symmetry-invariant for each ~′ ∈ (0, 1]. The motivation for this

requirement is that we interpret the classical limit along the lines of (Feintzeig [forthcoming]),

who understands changing the numerical value ~ of Planck’s constant in a quantum theory

(where ~ > 0) as implementing a change of units and thereby changing the extent to which

states approximate one another numerically. On this interpretation, changing the value of ~

otherwise leaves the physical interpretation of states and quantities the same. Thus, on this

interpretation the quantum states ω~ and ω~′ for ~, ~′ ∈ (0, 1] and ~ , ~′ should represent

the same physical situation in different systems of units. Our constraint then requires that a

quantum state ω~′ can represent the same physical situation as a symmetry-invariant state ω~

only if ω~′ is also symmetry-invariant.

Notice that this constraint only explicitly governs the quantum states on the way to the limit

because it deals only with states ω~ for ~ > 0 and leaves open how the classical limits ω0 of

these states behave at ~ = 0. Thus, the constraint just mentioned only fills in some of the

context of this application of the main proposal by stating when a family of quantum states is

appropriate for representing the classical limit. However, with this constraint, Browning and

Feintzeig ([unpublished]) prove that the classical limit of an appropriate family of symmetry-

invariant quantum states in VQ must be a symmetry-invariant classical state in VC. Moreover,

quantum states that fail to be symmetry-invariant will in general have classical limits that fall
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outside of VC. The requirement of reductive explanations and the central proposal of this article

suggest that we consider only states in VQ to be physical quantum states.

We restrict attention to physical states in VQ in our quantum theory by replacing the algebra

of quantities A~ with A~/N(VQ). The results of Browning and Feintzeig ([unpublished]) and

Landsman ([1993b]) together show that the algebra A~/N(VQ) is *-isomorphic to K(L2(Q)) ⊗

C∗(G), where C∗(G) is the group algebra of G. This algebra has unitarily inequivalent represen-

tations, which are in one-to-one correspondence with the unitary representations of G (Lands-

man [1993b], pp. 107–10 ). The algebra A~/N(VQ) is the one advocated for by Landsman

because it captures the superselection structure of the quantum theory. Thus, we should under-

stand the algebra A~/N(VQ) to afford an appropriate mathematical formulation of the theory,

which again illustrates the successful application of the requirement of reductive explanations

according to the central proposal of this article.

In this context, what it means for classical states in VC or quantum states in VQ to be physical

is rather different from what it meant in the previous example of Section 4. What makes a

classical state unphysical when it fails to be symmetry-invariant (and hence lies outside of VC)

is that its expectation values depend on degrees of freedom that themselves do not represent

genuine physical properties. For example, a classical state that fails to be symmetry-invariant

for a particle moving in an external electromagnetic field with G = U(1) is one that depends

on the values of the electromagnetic potential over and above the values of the electromagnetic

field. States that fail to be symmetry-invariant are not consistent with our understanding of the

forces classical gauge fields produce on particles. A quantum state that fails to be symmetry-

invariant is unphysical in the same sense that it depends on degrees of freedom that do not

represent genuine physical properties.

One might worry that this understanding would rule out the dependence of quantum states

on the classical electromagnetic potential. This would be undesirable because it is known that

we can observe the dependence of quantum states on the classical electromagnetic potential in

the Aharanov–Bohm effect (Aharonov and Bohm [1959]).19 Certainly, it would be a problem

for my approach if it led to a theory inconsistent with empirical observations.

19 For philosophical discussions of the Aharanov–Bohm effect, see (Nounou [2003]; Shech [2017]; Earman
[2019]).

27

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/advance-article-abstract/doi/10.1093/bjps/axz051/5644347 by 81225740 user on 02 June 2020



BJP
S Fina

l D
raf

t

Benjamin H. Feintzeig The Construction of Quantum Theories

However, restricting attention to symmetry-invariant states in the sense of restricting atten-

tion to VQ does not immediately appear to rule out this possibility. Landsman ([1990a], [1990b],

[1990c]) takes up the Aharanov–Bohm effect in a model containing the topological idealization

that the solenoid in the Aharanov–Bohm effect is infinitely long and its interior is inaccessible

to the electron. He shows the kinematical algebra one obtains by implementing this constraint

in the configuration space of the electron results in an algebra of the form A~/N(VQ) with su-

perselection sectors. Moreover, he shows that this provides a natural setting for understanding

the dynamics of the Aharanov–Bohm effect because when the free dynamics is implemented

in each superselection sector, the Hamiltonian generating time translations contains so-called

‘topological terms’ that give rise to interference depending on the strength of the electromag-

netic potential. Thus, restricting attention to physical states in VQ might actually be understood

to give rise to novel predictions (through changes in the dynamics) for experiments like the

Aharanov–Bohm setup.

More work is required here to understand the relationship between the Aharanov–Bohm

effect and symmetry-invariant states; one would, for example, like to construct a model that

does not contain the topological idealization of an impenetrable solenoid and instead represents

the experiment with a non-trivial electromagnetic field in the interior of the solenoid. It should

be possible to analyse such a model with the quantization procedure discussed above. It is also

worth noting that historically the prediction of the Aharanov–Bohm effect was, of course, not

generated by thinking about reductive explanations and restricting the collection of physically

reasonable states. Still, I believe it is worth further investigation to see the extent to which

the foundation of the Aharanov–Bohm effect may be recovered from the considerations of this

article.

Notice that the sense in which quantum states lying outside VQ are unphysical is different

than the sense in which non-regular quantum states were understood to be unphysical in Section

4. Quantum states that fail to be symmetry-invariant should not be understood as idealizations,

but rather as states involving a dependence on artifactual or redundant degrees of freedom.

This demonstrates that what we mean when we call states physical or unphysical depends on

the context of the system under consideration. This does not imply that the requirement of
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reductive explanations and the central proposal are idle, but shows that they must be applied

with care depending on the details of the situation at hand.

Moreover, this example demonstrates another way in which the procedure recommended

here for constructing quantum theories is defeasible. In this example, the construction proce-

dure leads to the use of a distinct dynamics in the quantum theory for setups like the Aharanov–

Bohm effect, which leads to novel predictions. If those predictions were not confirmed by ex-

periments, we would have reason to revise the kinematical framework of the quantum theory.

Thus, the requirement of reductive explanations serves only as a heuristic to make theories

plausible, but does not produce certainty. Still, when the requirement of reductive explana-

tions is understood as a heuristic and applied in a context-sensitive way, it can lead to a deeper

understanding of the foundation for the quantum theories we construct.

6 Conclusion: Heuristics and Discovery

I hope to have demonstrated that work on heuristics, like the requirement of reductive explana-

tions, can be of philosophical interest and of great importance to real scientific examples. But

little recent work in philosophy of science discusses heuristics and scientific discovery. (For

notable exceptions, see Crowther [forthcoming], [2018]; Crowther and Linnemann [2019].) In

fact, there is some history in the philosophical community of scepticism about whether heuris-

tics and discovery are appropriate topics for philosophical investigation. The distinction made

by Reichenbach ([1938]) between the contexts of discovery and justification led many posi-

tivists and empiricists to focus on justification as the only concept of epistemic relevance. This

trend is exemplified by the work of Popper ([1959]), whose view implies that the epistemic

attitude we should take toward theories is in some sense independent of the methods used to

generate them. Thus, it is worth closing with some remarks to situate my conclusions within

the recent history of philosophical discussions of heuristics.

Some aimed to revive issues concerning discovery and heuristics in the 1980s (for example,

Nickles [1980]), but lingering doubts about the possibility of a philosophy of discovery seem to

have overwhelmed these discussions by focusing on the question of whether theory generation

is epistemically relevant (for example, Laudan [1980]). Nickles ([1985]) responds by arguing
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for a connection between theory generation and justification, in part through considerations of

efficiency in the generation of knowledge; he argues that philosophers should be interested in

a logical relation he calls ‘discoverability’, rather than the contingent way in which a theory

was actually discovered. Similarly, Zahar ([1983]) focuses on defending the concept of rational

heuristics from the challenges posed by Popper, arguing that discovery is not merely subject to

psychological or descriptive analysis. These defenders of the philosophical relevance of theory

construction distance themselves from the idea of a ‘logic of discovery’ leading us to new

theories once and for all, but still attempt to give a general defence of the epistemic relevance

of methods for construction as forming something other than a logic.

In some sense, I am friendly to the ideas of Zahar and Nickles (among others) in their at-

tempts to revive philosophy of scientific discovery. I agree that heuristics can have normative

force, and I agree that the value of methods for theory construction can be understood sepa-

rately from historical contingencies associated with how theories were actually generated. For

example, my own investigation has taken place solely on the basis of mathematical analysis

with no consideration of history. However, I also differ in my approach from these writers

because I think that the philosophy of scientific discovery is best served by analysing the status

of heuristics in particular cases, and I am sceptical that general considerations can provide the

kind of insight that is needed. Rather than attempting to give a general defence of the epistemic

relevance of methods for theory construction, I have focused on how particular methods can

be employed in particular contexts in the construction of quantum theories. My reason is that

the normative force of heuristic principles depends on details of the context one is interested

in, and I worry that one may miss philosophically relevant considerations if one attempts to

discuss theory construction at too high a level of generality.

My approach aligns even more closely with that of Post ([1971]) and Hesse ([1961], [1970]),

who consider specifically the heuristic role of correspondences between new and old theories.

I have argued that one can make at least one aspect of a ‘correspondence principle’ precise

for the construction of new quantum theories as the requirement that a quantum theory give

a reductive explanation of the success of its classical predecessor. I have argued that in order

to achieve such an explanation, one must explain the structure of the physical state space in

30

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/advance-article-abstract/doi/10.1093/bjps/axz051/5644347 by 81225740 user on 02 June 2020



BJP
S Fina

l D
raf

t

Benjamin H. Feintzeig The Construction of Quantum Theories

the classical theory. I have shown that this requirement places nontrivial constraints on the

construction of new quantum theories, and in at least two examples leads to the appropriate

construction of the quantum theory. I think that the heuristic role of the requirement of re-

ductive explanations is epistemically relevant in the sense that we have good reason to pursue

theories that can explain the success of their predecessors. However, I prefer to think of these

reasons slightly differently than the evidential reasons for accepting hypotheses that come from

empirical confirmation. I have argued along the lines of Hesse that satisfaction of the require-

ment of reductive explanations makes newly constructed theories more plausible, but that this

plausibility can be overruled by other considerations including new empirical results. The

defeasibility of the epistemic and normative force of heuristics may not be so different from

empirical evidence, but I think it is worth emphasizing.

I think there are many open questions concerning the role of heuristics in theory construc-

tion that are worth investigating. For example, in what ways can the requirement of reductive

explanations extend beyond considerations of physical state spaces? Does the requirement of

reductive explanations make a difference in other examples besides the models I have con-

sidered? And can we understand the normative force behind other heuristics besides those

involving reductive explanations? These questions strike me as important in part because they

provide guides toward ways in which philosophical work might aid scientific progress. This

is especially true in quantum physics, where there is much ongoing and open-ended work on

constructing quantum field theories and quantum theories of gravity. I hope more philosophers

will take up the task of investigating the methods used in theory construction because they have

the potential to make a real impact in these areas.
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