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Abstract Traveling waves on the surface of the ocean play an important role
in many oceanographic processes which necessitates a detailed quantitative
understanding of their properties. The water wave equations, which govern
the free—surface evolution of an ideal fluid, are the most successful model for
this phenomena, but are exceedingly difficult to analyze due to their strongly
nonlinear character and the fact that they are posed on a domain with moving
boundary. For this reason weakly nonlinear dispersive models are an essential
tool for practitioners, and in this contribution we study traveling wave solu-
tions of a broad class of such models. The simplest family of traveling wave
solutions are the Stokes waves which can be characterized as simple bifurcation
(one dimensional null space of the linearized operator) from the trivial (flat—
water) branch of solutions. We focus our analysis on the much less studied
non-simple case of Wilton ripples which have linear behavior characterized by
two co—propagating harmonics (a two—dimensional null space of the linearized
operator). More specifically, we show that such branches of solutions exist for
a class of nonlinear dispersive model equations, and that they are analytic
with respect to a natural wave height/slope parameter.
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1 Introduction

The motion of waves on the surface of a large body of water (e.g., a lake or
ocean) plays an important role in applications from many branches of science
and engineering. For instance, from the design of oil rigs [31], to following the
motion of underwater sandbars [44,43], to the propagation of tsunamis across
the ocean [10], examples abound. The most successful model for the motion
of these surface water waves are the water wave equations [1,47,29] which are
a challenging system of partial differential equations of both theoretical and
practical interest. Despite their compelling modeling capabilities, the water
wave equations are extremely difficult to solve due not only to the property
that the upper boundary of the problem domain is free (moving), but also that
the governing equations of this motion are strongly nonlinear. For this reason
model equations valid in various scaling regimes have played an important role
in the study of water waves for well over a century. The Korteweg-de Vries
(KdV) and Nonlinear Schrédinger Equation (NLS) are well-known examples
[57], but many others exist and in this contribution we will utilize several of
these.

Among solutions to the water wave equations, the traveling waves are dis-
tinguished by their practical importance in efficiently transporting energy,
momentum, and pollutants across great distances [26,54,50]. Any reasonable
model of these equations also accommodates traveling wave solutions and our
purpose in this work is to study families of such solutions in the presence of
resonance. It is well known that spatially periodic families of traveling water
waves exist whose interface shape features a single wavelength in the linear
limit [48]. These “Stokes waves” have been found in many model equations
as well, and constitute a readily analyzed instance of simple bifurcation [15]
(one—dimensional null space of the linearized operator) from the trivial (flat—
interface) solution.

Stokes waves have a significant history of both asymptotic [48,20,14,32]
and numerical study [45,46,37,12,39,5]. The rigorous treatment of Stokes
waves is also well developed: They are known to exist [30,49] and, in par-
ticular connection to the current contribution, be parametrically analytic in
amplitude/slope [11,38]. The global bifurcation problem has been described
and extreme waves on branches have been characterized [51,6].

Given the existence of such solution branches one can ponder the existence
of bifurcation in the context of a two (or higher) dimensional null space. Par-
ticular examples of this are the “Wilton ripples” [58] which have been found
in the water wave equations with non—zero surface tension at critical values,
and exist for some of their model equations. At these critical values of the
surface tension the linear operator has a two—dimensional kernel and the lin-
ear problem supports two co—propagating harmonics of the form cos(nz) and
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cos(max). Continuous branches of small amplitude waves exist about special
ratios of these harmonics, and these Wilton ripples have been studied for over
a century now, including asymptotic [58,34,21,24], numerical [3,55,9,7], and
experimental work [33,22,40].

The rigorous treatment of the Wilton ripple problem is less complete than
that of the Stokes wave. Most studies treat the resonant (one of n and m
is an integer multiple of the other) and non-resonant (neither n nor m is
an integer multiple of the other) two—dimensional null space separately, due
to the change in form of the wave’s asymptotics. The bifurcation structure
has been described in the absence of harmonic resonance for both potential
flow [2] and the hydroelastic water wave problem [23], while the corresponding
description for the Whitham equation has recently appeared in [16]. Of greatest
relevance to the current study is the work of Reeder and Shinbrot. These
authors informally discussed the phenomena of resonant Wilton ripples for the
full water wave problem in [41], while rigorously demonstrating their existence
and analyticity in [42] using an iteration scheme in a Banach space. This is
the only work of which we are aware on the resonant configuration we address
here. The stability of these ripples has been investigated in the hydroelastic
[53] and water wave problems [52].

In contrast to this, in the current contribution we produce a proof of exis-
tence and analyticity by the “Method of Majorants” [18,39] which justifies the
perturbative approach to the problem in the spirit of the author and Reitich
in [38] for the full water wave equations for Stokes waves. While we cannot
yet accomplish this analysis for the full water wave system, we do present a
rigorous analysis for a class of weakly nonlinear model equations which in-
clude the Kawahara [25], Benjamin [8], Whitham [35], and Akers—Milewski [4]
equations. With this in place we postulate that a similar result for the full set
of equations is within reach, and this is the object of current investigation by
the authors.

The rest of the paper is organized as follows. We present the governing
equations in § 2 and define relevant function spaces in § 3. We make a careful
study of the linearized problem in § 4 which is central to our bifurcation theory.
We study the existence and analyticity of branches of Stokes waves in § 5 and
their Wilton ripple counterparts in § 6. We close with concluding remarks in
§ 7.

2 Governing Equations

As we mentioned above, in this work we focus on laterally () periodic solutions
of weakly nonlinear dispersive wave equations, e.g.,

Ou+ LOyu — N(u) =0, wu(z+ 2w, t) = u(x,t),

meant to be model equations for the full water wave equations in the limit of
long wavelengths and weak nonlinearity. While many famous equations fit into
this generic framework, we focus upon those which support co—propagating
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traveling wave solutions in the linear limit. Examples of this are the Kawahara
[25],

1 1
Oyu + [DQ — 5D4} gt — §u8xu =0,

Benjamin [8],

1 1
8tu—|- |:|D| — 5 |D|2:| 81” — §’U/81u = O,

(Deep Water) Whitham [35],

_ 1 1
\/IDIH + 3 D] Do — Sudyu =0,

3tu -+

and Akers—Milewski [4]
1 1
o+ ||D|” + 3 |D|| Opu — §u8$u =0,

equations. In these the Fourier multiplier m(D) is understood from the defi-
nition

m(D) [u(z,t)] == m(p)i(t)e™”,
p=—00

where

O ) 1 27 )

we) = 3 O (0= 5 | e ay
So, e.g., O, = iD as
Opu(w,t) = Y (ip)iy(t)e™” = iDu(z,t).
p=—00

All of these equations share a common nonlinearity,

1
N(u) = §u8xu =0, [u*],
whose form is convenient, but not essential, for our developments. For simplic-

ity we focus on weakly nonlinear dispersive equations of the form

Ou + LOzu — 9, [uﬂ =0, (1la)
where
D? — (1/5)D*, Kawahara,
D|—(1/3 DQ, Benjamin,
L) - [D| = (1/3) D] (1b)

\/IDI_1 +(1/2)|D|, Whitham,
ID|™" +(1/2)|D|,  Akers-Milewski,
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and, from above,
o0

IDlu(z,t) = > |p|iy(t)e™”.

p=—00

At this point we turn to the object of our study, traveling wave solutions of
(1)

u(e,t) = f(z—ct),
which satisfy
—cOxf + LOf — 0x [f2] =0.

Upon integrating once with respect to z it is easy to see that traveling wave
solutions satisfy

[+ L] f=f (2)

We have dropped the arbitrary constant of integration which constitutes a
zero—mean assumption.

3 Function Spaces

Before beginning our rigorous analysis we recall the relevant function spaces
we require. For any real ¢ > 0 we have the classical L?-based Sobolev norm
[27]

fol @2 =1+p,

e = > 0

p=—00

which gives rise to the periodic Sobolev space [27]

H([0,27]) = {f(z) € L*([0,2]) | [|f]l - < oo}

The dual of H? is H~7 which can be equivalently defined with the negative
index norm above. With sufficient regularity these Sobolev spaces satisfy a
well-known algebra property [28,17].

Lemma 1 If o > 1/2 and f,g € H° then fg € H° and there is a constant
M such that

19l e < MFN o N9l 2o -

To close we note the following mapping properties of the linearized opera-
tors [—c + L] which are readily verified:

[~c+L]: H°'T — H, (3a)
where
4, Kawahara,
. 2, Benjamin, (3b)

1/2, Whitham,
1, Akers—Milewski.
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These operators have inverses for functions in their ranges
Y7 = {f € H" | f €ran(j—c+ L))},
and they “give back” T—many derivatives
[—c+ L)' YT - HOHT. (4)

4 The Linearized Problem

Bifurcation theory [15] tells us that non-trivial branches of solutions bifur-
cate from the trivial (flat—interface) branch at values of the parameter ¢ where
the linearized operator [—c + L] has a non—trivial null space. We are partic-
ularly interested in the case of non—simple bifurcation where the null space
has dimension greater than one. More specifically, for the four equations listed
above, it is the case that there exists a ¢y such that

N([=co + L]) = span(¢1(x), ¢2(x)),  dm(x) = cos(maz),
and
N([—co + £]") = span(¢1 (x),¥2(x)), P (x) = cos(mz),
so that each supports two (m = 1,2) co—propagating harmonics in the lin-

earized problem. It is not difficult to see that the appropriate choices of c¢g

are
4/5, Kawahara,

2/3, Benjamin,
3/2, Whitham,
3/2, Akers—Milewski.

We now rewrite (2) a little

[~co+ L] f = (c—co)f + ()

and seek small solutions f = O(e) and (¢ — ¢p) = O(g) as functions of the
height /slope parameter . At order O(e) we find that (5) demands

[—co+ L] f1 =0,

where f = ef; +O(£?). As we mentioned above, in order to make any progress
it must be the case that the “resolvent”

R:=—co+ L=0(1),

has a non—trivial null space and we will choose f; to lie here. Finally we note
that, for the inner product

(o) = [ T u(e)o() de,

Co =

we have

<¢’m7 ¢é> = W(Sm,b <¢m7 ¢Z> = W(Sm,éa <¢m7 ¢Z> = 7T6m757

where d,, ¢ is the Kronecker delta function.
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5 Stokes Waves

In order to introduce notation and our methodology we begin our develop-
ments with the well-understood Stokes waves. This also serves to describe a
straightforward machinery against which to contrast the more subtle develop-
ments required for the Wilton ripples in § 6. The scenario of Stokes waves is
one of simple bifurcation [15] with a one-dimensional null space

N(R) =span(¢), N(R*)=span(v)), ¢(x)=1p(x)= cos(z).

With these we specify
fl = ad) = (b?

where we have set a = 1 without loss of generality.
We identify our unknowns: The correction of the speed and interface profile,

s:=c—co=0(e), (6a)
Fi:=f—cfi =0(?), (6b)
and write the governing equations, (5), as
RIf] =sf+[*=(s+ . (7)
Using the fact that ¢ € AM(R), this simplifies to
R[F|=(s+ep+F)(ep+F)={e’¢” +egs} + {2e¢F + sF} + {F*}, (8)

which groups terms of orders O(g?), O(e?), and O(g*), respectively. We make
the expansions

s(e) = Z Sne™, (9a)
F(xz;e) = Z F,(z)e™, (9b)

and insert these into (8) to find

R [Fn] - 5n,2¢2 + (bsn—l + Qna (10)
where
n—2 n—2
Q=020+ 5)Fu 1+ Y snoFot+ Y FucFe. (11)

(=2 (=2
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5.1 Second Order

To initiate our perturbation approach we begin with the special case at order
O(e?) where the governing equations (10) become

RI[F] = s1¢ + ¢*.

The unknowns are { F, s1} and to resolve this equation we begin by demanding
solvability. We can ensure this by projecting onto ¥,

0= <R[F2] 71/}> = <51¢+¢2a1/}> = S1 <¢37/}> + <¢27’¢)>’
so that
§1 = — <¢27¢> / <¢7 11Z)> = - <¢27¢> = 07

where we have used the readily computed facts that <(;52., 1,’)> = 0and (¢, ¢) = 1.
One can now discover F5 from

RI[F) = ¢* = (6*,¢) ¢,
coupled to the demand that (Fs, ¢) = 0.

5.2 Analyticity

We are now in a position to move on to the existence of traveling wave solutions
and the analyticity of the branch of these solutions with respect to the wave
height/slope parameter, . The key to this effort is the following generic elliptic
estimate.

Lemma 2 For any real o > 0, given Q € H there exists a unique solution
pair {F,s} of
RF — 56 = Q, (12)

satisfying
max {[|Fl go+-» 5]} < Ce [|Qll o »

for some universal constant C, > 0.

Proof We begin by ensuring solvability which we guarantee by choosing s
appropriately. Taking the inner product of (12) with 1 yields

—S <¢,1/1> - <RF - 5¢7¢> - <Q37/}>3

so that )
s=—(Q.0)/(6:0) = —— (Q.9).

Using the Cauchy—Schwartz inequality we find

1 1 1
sl < —[Q,¥)] < N 1@l < —= 1Rl - -

VL
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With this definition of s we readily discover that
RF =Q + s¢ € ran(R),

so that the estimate on F' is clearly true from the mapping properties of R,
(3) and (4). O

With this we can establish a recursive estimate which is fundamental to
our analyticity result.

Lemma 3 For any real o > 1/2, if

Dn—2
1 E o - SCF(HH)Q, 2<n<N-1,
Dn72

n— <Csia 2§ SN_]-v

[sn1] < (n+1)2 "

for N > 3, then we have
B DN—3
e <CpC———=, N >3,
HQN”H = VF (N+1)2 =

c.f. (11), for some C > 0.
Proof We begin with the simple estimate (which requires o > 1/2)

198 1o < CM |l o + [52]) [FN—1ll o
N-—2 N—2

+ D Isn—el 1Pl o + > MIFN—ell o [|Fll 1o
=2 =2

DN—3
< (2M - —_—
< @M [6ll0r + b)) Or 17
— DN—Z—I Dl—2
Cs C
+ ; (N—t+1)2 " (t+1)?
2
DN7£72 D572
M
L CriN i T e
N-3
< -
<Cr (2‘]\4H¢HHGr + |81D (N— 1+ 1)2
N-3 DN—4
MS—
+CFCF S(N"‘l)Q,

N-1

Z o~

~

+CrC,S

(N +1)2

and we are done provided that

C = 2M ||| o + |51] + CuS + CpMS.
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Now we can state and prove our existence and analyticity result for Stokes
waves.

Theorem 1 For any real o > 1/2

Dn72 Dn72

|Fnll otz < Cr |sn—1] < Csmv

< m, n >3, (13)

for some Cp,Cs > 0.

Proof We work by induction in n. The base case n = 2 is straightforward, and
we now suppose that (13) is true for all n < N, for N > 3. Using Lemma 2
we estimate

max{||FN||HU+T 7SN71} S Ce ||QN||HU 9

and from Lemma 3 we find

DN—3

maX{||FN||HU+T 7SN71} S CSOFCW

The estimate on Fly requires

~ DN—3 DN—2
< _—_
CeCFC(NJr 12~ Cr (N +1)2

which we can guarantee if

D> C.C.
Meanwhile, the bound on |sy_1| demands that

N-3 DN—2

. D
- < -
CeCFC(N+1)2 <G (N +1)2

which is possible if
D > C.(Cp/Cy)C.

For emphasis we state the implication of this theorem as a corollary.

Corollary 1 The functions s(e) and F(x;€) of (6) are real analytic functions
of € in a sufficiently small neighborhood of the origin in the complex plane.
More precisely, for any 0 < p < 1, the Taylor series expansions

s(e) = Z spe™, F(z;e) = Z Fo(x)e™,
n=1 n=2

c.f. (9), converge for all € such that De < p, i.e., e < p/D.
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6 Wilton Ripples

We are now in a position to prove our primary result, the existence and ana-
lyticity of branches of Wilton ripple solutions. In this case we recall that

N(R) = span(¢1, ¢2), N(R") = span(y1,12),
bm(z) = hm(z) = cos(mz).

Here we build upon the success of the Stokes wave case and choose

si=c—cog=0(), fi=¢1+PBp2 BeER; (14a)
f(z;e) = efi(x) + B(z;e) + F(x;e); B, F = O(e?); (14b)
where
B(x;e) = b(5)¢2(x)a <F7 ¢1> = <F) ¢2> =0.

We point out that this approach requires a slightly different mindset as the
correction of the linear solution now involves both a member of the null space,
B(x;¢e), as well as a component in its orthogonal complement, F(x;¢).

We recall our governing equations, (7),

RIfl=sf+f*=(s+ /),
and insert our form above into this giving

RIF|=(s+efi+B+F)efi+B+F)
={efi(s +ef)} +{eh(2B +2F) +s(B+ F)} + {(B+ F)’},
where we have used the fact that f; and B are both in the null space of R, and

grouped terms which are O(g?), O(e®) and O(e?), respectively. Upon inserting
our expansions, (9) supplemented with

B(z;e) = Y Bu(w)e" =) buda(x)e™,
n=2 n=2
we have, for n = 2,
RIF] = f{ +s1f1. (15)
and, for n > 3,
R [Fn] = flsnfl + (2f1 + 31) anl + Qna (16)
c.f., (10),
n—2
Q= (2fi+51) Fac1+ Y (Sn—t+ Bnt+ Fue)(Be + Fo), (17)
£=2

c.f., (11).
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6.1 Second Order

As before, to begin our perturbative method, we examine the second order
term where we have

RI[F] = sifi+ ff,
c.f. (15). Here the unknowns are {F», s1, 8} and we determine the latter two
by demanding solvability. This we accomplish by projecting onto 1 and 9
resulting in

0= (R[F], 1) = (s1(¢1 + Bda) + (¢1 + Be2)?, ¢1)
0= (R[F2],¥2) = (s1(d1 + Bo2) + (1 + B2), ¥2) ,

or

C1181 + Ca1518 + Cii1 + 2C1218 + Ca21 82 = 0,
Ca151 + Ca2518 + Criz + 2C1228 + Ca228° = 0,
where
ij = <¢jvwm>v lem = <¢j¢lvwm>'
The solvability of these nonlinear equations appears highly nontrivial, how-
ever, due to the simple form of the ¢,, and ,,, we can make quite a bit of

progress. For this we state the following result whose proof is an elementary
exercise in Calculus.

Lemma 4 Consider the functions
¢dm () = cos(mz), Y, () = cos(ma),
if we define
ij = <¢ja ¢m> y Cjém = <¢j¢€7¢m> 5
the following are true
Cni=Cyp=m, Ci2=0Cn=0

and
T

0112 = C'121 = 0211 = 5)

Cr11 = Caz1 = Ca12 = Cr22 = Ca22 = 0.
With this we can simplify the previous to the following.

ws1 + 2(w/2)8 =0,
ws18 4 (w/2) = 0.
The first equation can be solved to give s; = —f3, which can be inserted into
the second equation to give
1
f=xt—7 = =s1=7F

V2

Please compare with the results found in [56].

Sl
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6.2 Analyticity

We are now in a position to establish the existence and analyticity of branches
of Wilton ripple solutions. In order to estimate solutions of (16) we require
the following theorem.

Lemma 5 For any real o > 0, given Q € H? there exists a unique solution
triple {F, s, B} of
RF —sf—2f+v)B=Q, (F,¢1)=(F,¢2)=0, (18)
where
f:¢1+ﬂ¢27 B:b¢27 UERv
satisfying
max {||F|| gosr |8, [ Bllgos-} < Cel|Ql o »

for some universal constant C. > 0.

Proof We begin by ensuring solvability which we guarantee by choosing {s, b}
appropriately. Taking the inner product of (18) with v, j = 1,2, yields

(C1j + BC2j)s + (2C125 + 28C22; + vCa5)b = —(Q, ;) -
These lead to the linear system

(Cn + BC21 2C121 + 28C521 + 0021> (8> _ ((Qﬂ/ﬁ))
C12 + BC22 2C122 + 28C222 + vC2 b (Q,12))

From Lemma 4 this simplifies to

r o\ (s\ _ ((Q)
3w ) \b (Q:1h2))
Using the Cauchy—Schwartz inequality we find

1
max {|s|, [b[} < max [(Q,¢;)] < N 1@z -

J=1,2
With these choices of {s,b} we readily discover that
RF=Q+sf+ (2f +v)B € ran(R),

so that the estimate on F' is clearly true from the mapping properties of R,
(3) and (4). |

We now prove our crucial recursive estimate with an eye towards our in-
ductive proof. As we will see, while the recursion for the case of Stokes waves
begins at order n = 2, for Wilton ripples we must wait until n = 3. Thus
we assume our estimates for 3 < n < N — 1 and examine 9Oy for N > 4.
We point out that this relegates the quantities (F», s1) “before” the scope of
our recursion and it is important that they not be confused with the terms
(Fny Sn—1,Bn-1), n > 3, which are estimated by our Theorem.
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Lemma 6 For any real o > 1/2, if

Dn73
HFTLHHU-%—T SCFm, 3<n<N-1,
Dn—3
|Sn—l|SCsWa 3<n<N-—-1,
n
Dn—S
|‘Bn71||HU+T§CB(n+1)2, 3§’I’L§N_1,

for N > 4, then we have

~ DN—4
9Nl e < max{CF,Cp, ||F2||Ho+7}0ma N >4,
c.f. (17), for some C > 0.

Proof We begin with the case N = 4 as this requires special attention. We
recall that

Qu = (2f1 +51)F3 + (s2 + By + F2) (B + F)
= 2f1F3 + 51F3 + 598y + Ba By + Fo By + 50F5 + BoFy + Fo Iy,
and estimate (requiring o > 1/2)
1Qall e < 2M [ f1ll o 1 F5ll o + Is1l [1F5ll o + [s2] | B2l 17
+ M || Ba|l e + M | Fall o || B2l o + [52] [ P2l o
+ M |Bal o |1 Fell g + M || Pl -

We can use our recursive estimate on the terms so, Bs, F3 leading to the
estimate

Cr C,Cgp C?
19l <221l OF + s 1|—+4—24—2+M42§2
C Cgp
+ M ||yl g0 1z 42 > Fall o + M —5 2 1Bl o + M || P2l 30

< max {Cr,Cg, | P2 4.} C,
provided that

G2 2M [ fillge 35+ 151l 5 + o + Moy
1 O
+M|F2l g 5+ 2 + M~ 2 12l e + M| ol o
We now examine the case N > 5 and recall that
N-2 N-2
Ov = (2f1+s1)Fno1+ ) sa—eBe+ ) ButBe
=2 =2

N-—-2 N-—-2 N-—-2 N-—-2
+ > FaiBi+ Y suiFe+ > BuiFo+ > FuiFy.
(=2 (=2 (=2 (=2
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The only terms which cause any issue are those involving F, and so we separate
these out

N-—-2 N-—-2

Ov=02fi+s1)Fn_1+ Z Sn—¢DBy + Z B, By
=2 =2

N-3 N-2 N-2 N-3
+ Z Fo_¢Be + Z Sn—eFy + Z By _oFy + Z Fn_oF,
=2 =3 =3 (=3

+ (sN—2 +2BN_2 +2FN_2) F>.
Now we estimate

DN—4
(N-1+1)
N-2 DN—t—2 D2
(N—£+2)2CB(£+2)2

19N Ige < @M (| fill o + [51]) Cr

N-2 pN—£-2 D2
(N—€+2)QCB(€+2)2

N-3
DN7€73 D272
C C
+ F B +2)2

(N —0+1)2
N-2 DN—t—2 D3
(N—é+2)2CF(€+1)2

N-2 pN—t-2 D=3
(N—£+2)20F(€+ 1)2

N-3 DN—(-3 . D3
TN =12 0+ 1)?

DN—4 DN—4
(CS(N—2+2)2 +QCB(N—2+2)2

+
Q

N-5
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We continue

DN—4
19w1lke < €M Ifillye + 1) Cr (732
DN-4 pDN-—4
+ CBSCSW + CBSCBW
DN75 DN*5
+ CFSCBW + CSSCFW
N-5 N-6
O e O e
N—-4 N—-4 pDN-5
/ — -_—

for some C’ > 0 which bounds terms like (N + 1)2/N?, and we are done
provided

C > C @M ||fillyo + |s1]) + S(2C, + 3C5 + Cr) + C'(Cs + 2C5 + 2Cr).

O

At last we can state and prove our main theorem on existence and para-
metric analyticity of Wilton ripples.

Theorem 2 For any real 0 > 1/2

Dn73
[Fnll o < OFm, n >3, (19a)
Dn—3
n-1] £ Cs——3, >3, 19b
|3 1| = (n+ 1)2 n ( )
n—3
| Br-1ll o+ < CBW, n >3, (19¢)

for some Cp,Cs,Cp > 0.

Proof We work by induction in n. The base case n = 3 is straightforward, and

we now suppose that (19) is true for all n < N for N > 4. Using Lemma 5 we
estimate

max {[|Fn | o [sn—1], 1B -1l gosr} < Ce QN o

and from Lemma 6 we find

max {|[Fn || gosr s [sn—1l s [ BN -1l o}
DN—4

< C.max {Cp,Cp, ||F2||H0+T}ém'
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The estimate for Fy follows if

N DN—4 DN—S
Ce maX{CF, CB, ||F2HH<’+7'} Cm S C’Fm7

which is possible by choosing
D > C.Cmax {Cr,Cp, || Fa| goir} /Cr.

The estimate for sy_1 proceeds provided

N—-4 DN73

- D
) . CB, | Fal os- < Cs ’
Cemax {Cr,Cp, || F2|| go+ }O(N+1)2 c (N +1)2

which is possible by choosing
D > C.Cmax{Cr,Cg, || Fa| goir} /Cs.

Finally, the bound on By_ is verified if

N—4 DN73

-~ D
< U]
C.max {Cp,Cp, ||F2||H0+’}C(N+ 1)2 — Cp (N +1)2’

which is possible by choosing
D> C.Cmax {Cr, Cp, | Balyyor } /C,
and we are done. O

Once again, we state the implication of this theorem as a corollary for
additional emphasis.

Corollary 2 The functions s(e), B(x;€), and F(x;e) of (14) are real analytic
functions of € in a sufficiently small neighborhood of the origin in the complex
plane. More precisely, for any 0 < p < 1, the Taylor series expansions

s(e) = Z spe™,  B(zie) = Z By (z)e", F(x;e) = Z F,(z)e",

c.f. (9), converge for all € such that De < p, i.e., € < p/D.
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7 Conclusions

In this contribution we have examined the existence and parametric analyt-
icity of branches of Wilton ripples which bifurcate from the trivial branch of
solutions for a family of weakly nonlinear wave equations of the form (1). Our
method of proof is quite direct (the “Method of Majorants” [18]) and justifies a
spectrally convergent High—Order Perturbation scheme for the numerical sim-
ulation of these traveling waves [3]. This is in contrast to the proof of Reeder
& Shinbrot [41,42] whose iterative approach to the full water wave equations
would not justify our numerical scheme. We point out that our main result,
Theorem 2, and its corollary, Corollary 2, can be generalized in a number of
ways which should be of interest to the community. While it is required that
the linear operator £ possess a two—dimensional null space, otherwise it can
be quite general, even permitting non—polynomial forms (e.g., those of the
Benjamin, Whitham, and Akers-Milewski equations; see (1b)). Regarding the
nonlinearity, N(u), provided that it is an analytic function, our entire proof
can be repeated with minor, though tedious, modifications. An immediate goal
of the authors is to extend the present approach to the full water wave problem
which, while quite intricate and complicated, now appears to be in view.

Dedication

The work of Walter Craig has been deeply influential in a number of fields
of Mathematics and Physics scattered about Analysis, Ordinary and Partial
Differential Equations, Fluid Mechanics, Mathematical Physics, and Numeri-
cal Analysis. One can consult the volume of papers summarizing talks given
at his sixtieth birthday conference at the Fields Institute for ample evidence
of this [19]. However, nowhere has his work been more important than in the
problem of modeling the free—surface evolution of surface water waves under
the influence of gravity and surface tension. In particular, his view of this sys-
tem as a Hamiltonian system (following the ground-breaking contribution of
Zakharov [59]) has been profoundly important in the field and will likely guide
researchers for many decades to come.

Walter was the Ph.D. supervisor of one of us (D.P.N.) [36] and an important
mentor to the other (B.F.A.). He was an insightful and generous teacher to
both of us, and we valued his opinion highly. It was with great sadness that
we learned of his death in January of 2019 and he is greatly missed by the
large and diverse group of friends and collaborators that he gathered over the
years.

Walter was both a leader and friend in the early stages of my (B.F.A.)
career. I visited McMaster in the months after receiving my Ph.D. at Walter’s
invitation, and found myself invited not only to his seminar but also his home.
In later years he found time to join me, and fellow young researchers, for many
a conference lunch, or dinner, or even a bit of punting. In each instance he
brought a contagious air of excitement and style that made the occasion more
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than it might have been; we weren’t just working, we were part of something.
Perhaps an adventure.

Before I (D.P.N.) visited Brown University in the Spring of 1993 to inves-
tigate the generous Graduate Assistantship which I had been offered by the
Division of Applied Mathematics, I discussed the department with my under-
graduate advisor (Paul Newton then at Illinois) who is also an alumnus. We
examined every faculty member listed on the Peterson’s Guide profile and I
dutifully recorded every pearl of wisdom. He then told me that I should defi-
nitely make a special visit over to the Mathematics Department to talk with
someone he knew from his days as a Post—Doctoral Fellow at Stanford: Walter
Craig. During that meeting Walter handed me a preprint of his recent paper
with Catherine Sulem, “Numerical Simulation of Gravity Waves” [13]. Read-
ing that paper constituted a seminal moment in my career, and it makes me
a little sad that never again will I be able to wander over to Kassar House to
ask Walter for a hint (or answer!) to my latest mathematical puzzle.
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