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Abstract. The interaction of linear waves with periodic structures arises in a broad

range of scientific and engineering applications. For such problems it is often mandatory

that numerical simulations be rapid, robust, and highly accurate. With such qualities in

mind High–Order Spectral methods are often utilized, and in this paper we describe and

test a perturbative method which fits into this class. Here we view the inhomogeneous

(but laterally periodic) permittivity as a perturbation of a constant value and pursue

(regular) perturbation theory. We demonstrate that not only does this lead to a fast and

accurate numerical method, but also that the expansion of the field in this geometric

parameter is valid for large deformations (up to topological obstruction). Finally, we show

that, if the permittivity deformation is spatially analytic, then so is the field scattered

by it.

1. Introduction. The interaction of linear waves with periodic structures arises in

applications from across the engineering and physical sciences. Examples can readily be

found in acoustics (e.g., underwater acoustics [9], remote sensing [49], and nondestructive

testing [47]), electromagnetics (e.g., surface enhanced spectroscopy [32], extraordinary

optical transmission [14], cancer therapy [15], and surface plasmon resonance (SPR)

biosensing [23, 26, 30, 39]), and elastodynamics (e.g., hazard assessment [20] and full

waveform inversion [50]).

Due to the technological importance of these models, all of the classical numerical

algorithms have been used to simulate solutions of the governing partial differential equa-

tions. This includes the Finite Difference [48, 29], Finite Element [25, 24], Discontinuous

Galerkin [22], Spectral Element [11], and Spectral [21, 45, 46] methods. While these are

compelling choices, due to their fully volumetric character they feature a large number

of unknowns (N = NxNyNz for a three–dimensional simulation) and the need to invert
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enormous, non–symmetric positive definite (SPD) matrices (of dimension N ×N). Such

characteristics are still challenging the most sophisticated research groups; see, e.g., the

discussion in [16, 31].

Turning to SPR sensors, their utility stems from two characteristics of an SPR, namely

(i.) its extremely strong response and (ii.) its quite sensitive nature. Indeed, over the

range of 10–50 nanometers in incident wavelength the reflected energy can fall from nearly

100 % to 10 % (or even 1 %) before returning to almost 100 %. Clearly, to simulate such

configurations with fidelity a numerical algorithm should be not only extremely accurate,

but also robust and rapid. For this reason we will focus upon High–Order Spectral (HOS)

methods [21, 45, 46] which can deliver precisely this behavior.

For the problem of scattering by homogeneous layers it is clearly wasteful to discretize

the full bulk of each layer and sophisticated solvers settle for interfacial unknowns with the

knowledge that information inside the layers can readily be computed from appropriate

integral formulas. Boundary element (BEM) [44] and boundary integral (BIM) [10, 27]

methods are foremost among such methodologies and can produce spectrally accurate

solutions in a fraction of the time of their volumetric competitors.

The author has investigated a related class of algorithms (“High–Order Perturbation of

Surfaces”–HOPS) where the (periodic) layer interfaces, {z = am + gm(x, z)}, are viewed

as perturbations, gm(x, y) = εfm(x, y), of flat interfaces, {z = am}, and the governing

equations are treated by (regular) perturbation theory. This viewpoint has the advantage

that the (single) dense, non–SPD BEM/BIM solve (requiring sophisticated quadrature

rules, singularity treatment, and Green function quasiperiodization) is replaced by a

sequence of trivial flat–interface solves. In addition, once the perturbation calculation is

completed, the scattering of waves by a family of structures, parameterized by εm, can

be rapidly computed by simple summation.

However, such surface approaches are not applicable for structures with more general

permittivities, ε(x, y, z), which do not have layered structure. In this work we follow the

approach of Feng, Lin, and Lorton [18, 19] and adopt a perturbative philosophy akin to

that of the HOPS algorithm in that we consider such a permittivity as a perturbation of

a trivial one, e.g.,

ε(x, y, z) = ε̄+ δ̃E(x, y, z), ε̄ ∈ R, E(x+ dx, y + dy, z) = E(x, y, z),

where E is a permittivity “envelope,” and again conduct (regular) perturbation theory.

With this point of view we denote the resulting algorithm a “High–Order Perturbation of

Envelopes” (HOPE) scheme. Feng, Lin, and Lorton focused upon strongly elliptic equa-

tions [18] and the Helmholtz problem in Transverse Electric (TE) polarization [19], each

with stochastic perturbations, E. In contrast, we consider both TE and TM (Trans-

verse Magnetic) polarization with deterministic envelopes in order to provide a novel

methodology which should have computational advantages over general–purpose volu-

metric solvers in certain configurations, e.g., where the support of E is small or where

the set on which E significantly changes is small. One choice which we pursue in this

work is an approximate indicator function which is nearly zero/unity to denote the ab-

sence/presence of a material. For brevity and clarity of presentation, we focus upon the

two–dimensional setting of TE or TM polarization governed by the Helmholtz equation.
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We leave the nontrivial details of extending our approach to the fully three–dimensional

setting governed by the Maxwell equations for future investigations.

The contribution of the current work is not only a detailed description of the algorithm

for both TE and TM polarization supplemented with illuminating computations (very

much in the spirit of [18, 19]), but also a new, extensive, and rigorous analysis which

justifies the implementation we employ. More specifically, we prove not only that the

domain of analyticity of the scattered field in δ can be extended to a neighborhood of the

entire real axis (up to topological obstruction), but also that this field is jointly analytic

in parametric and spatial variables provided that E(x, y, z) is spatially analytic.

The rest of the paper is organized as follows. In § 2 we recall the governing equations

complete with a discussion of transparent boundary conditions in § 3. We describe the

HOPE algorithm in § 4 and begin our theoretical developments with a description of the

relevant function spaces in § 5. We state and prove our analytic continuation results in

§ 6 and our joint analyticity results in § 7. Finally, we describe numerical results in § 8,

complete with implementation details in § 8.1 and results for layered media scattering in

§ 8.2. In Appendix A we record the proof of an involved joint analyticity result, while in

Appendix B we give the proof of an intricate elliptic estimate.

2. Governing Equations. We assume a constant permeability equal to that of the

vacuum µ = µ0 and that there are no currents or sources so that the time–harmonic

Maxwell equations become

curl[E]− iωµ0H = 0, curl[H] + iωεE = 0, (2.1)

where (E,H) are the electric and magnetic field vectors, respectively, and time depen-

dence of the form exp(−iωt) has been factored out [43, 4]. The d–periodic permittivity

is specified as

ε = ε(x, z) =


ε(u), z > h,

ε(v)(x, z), −h < z < h,

ε(w), z < −h,

ε(u), ε(w) ∈ R, and ε(v)(x+ d, z) = ε(v)(x, z). We further specify that

lim
z→h−

ε(v)(x, z) = ε(u), lim
z→(−h)+

ε(v)(x, z) = ε(w),

and typically ε(u) = ε(w). With the permittivity of the vacuum ε0 we can define

k2
0 = ω2ε0µ0 = ω2/c20, (k(m))2 = ε(m)k2

0, m ∈ {u, v, w},

which also introduces the speed of light, c0 = 1/
√
ε0µ0.

This structure is illuminated from above by y–independent plane–wave incident radi-

ation of the form

Einc(x, z) = A exp(i(αx− γ(u)z)), H inc(x, z) = B exp(i(αx− γ(u)z)),

α = k(u) sin(θ), γ(u) = k(u) cos(θ), (2.2)
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where |A| = |B| = 1. If this is incident upon a y–invariant structure and the radiation is

appropriately polarized, then the fully vectorial Maxwell equations (2.1) can be reduced

to one of two scalar, two–dimensional Helmholtz problems. For instance, if

A =

0

1

0

 , B =
1

iωµ0

iγ(u)

0

iα

 ,

then the transverse component v = v(x, z) of the electric field satisfies the Transverse

Electric (TE) Helmholtz equation

1

ε
div [∇v] + k2

0v = 0.

By contrast, if

A = − 1

iωε

iγ(u)

0

iα

 , B =

0

1

0

 ,

then the transverse component v = v(x, z) of the magnetic field satisfies the Transverse

Magnetic (TM) Helmholtz equation

div

[
1

ε
∇v
]

+ k2
0v = 0.

In each case we will seek quasiperiodic solutions satisfying [51]

v(x+ d, z) = exp(iαd)v(x, z).

3. Transparent Boundary Conditions. We now seek to not only rigorously spec-

ify the appropriate boundary conditions on solutions in the far–field, but also reduce the

infinite domain to one of finite extent. Happily, both can be accomplished with the same

formalism [5, 6]. In the upper domain {z > h} we ask for solutions which are the sum of

the incident radiation and an upward propagating (reflected) component, e.g.,

v = vinc + vrefl

= exp(iαx− iγ(u)z) + c0 exp(iαx+ iγ(u)(z − h)) +
∑
p 6=0

ûp exp(iαpx+ iγ(u)
p (z − h)),

[43, 51] where

αp = α+ (2π/d)p, γ(m)
p =

√
ε(m)k2

0 − α2
p, Im{γ(m)

p } ≥ 0, m ∈ {u,w}.

If we set c0 = û0 − exp(−iγ(u)h), implying û0 = c0 + exp(−iγ(u)h), then

v = exp(iαx− iγ(u)z)− exp(iαx+ iγ(u)(z − 2h)) +
∞∑

p=−∞
ûp exp(iαpx+ iγ(u)

p (z − h)),

and v(x, h) = u(x). It is a simple matter to show that

∂zv = (−iγ(u)) exp(iαx− iγ(u)z)− (iγ(u)) exp(iαx+ iγ(u)(z − 2h))

+
∞∑

p=−∞
(iγ(u)

p )ûp exp(iαpx+ iγ(u)
p (z − h)),
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so that

− ∂zv(x, h) = (iγ(u)) exp(iαx− iγ(u)h) + (iγ(u)) exp(iαx+ iγ(u)(−h))

+
∞∑

p=−∞
(−iγ(u)

p )ûp exp(iαpx).

If we define the function

φ(x) :=
(

2iγ(u) exp(−iγ(u)h)
)

exp(iαx), (3.1)

and the order–one Fourier multiplier (the externally directed Dirichlet–Neumann opera-

tor for the Helmholtz equation on {z > h})

Tu[ψ] :=
∞∑

p=−∞
(−iγ(u)

p )ψ̂p exp(iαpx),

then we see that we can express the Upward Propagating Condition (UPC) [1] exactly

with the boundary condition

−∂zv(x, h)− Tu[v(x, h)] = φ(x).

By contrast, in the domain {z < −h} we seek a solution which is purely downward

propagating (transmitted)

v = vtrans =
∞∑

p=−∞
ŵp exp(iαpx− iγ(w)

p (z + h)),

[43, 51]. Clearly v(x, h) = w(x) and, with the calculation

∂zv(x,−h) =
∞∑

p=−∞
(−iγ(w)

p )ŵp exp(iαpx),

and the analogous order–one Fourier multiplier (again, the externally directed Dirichlet–

Neumann operator for the Helmholtz equation on {z < −h})

Tw[ψ] :=
∞∑

p=−∞
(−iγ(w)

p )ψ̂p exp(iαpx),

we can state the Downward Propagating Condition (DPC) [1] transparently using

∂zv(x,−h)− Tw[v(x,−h)] = 0.

Summarizing all of our conclusions thus far, we settle upon the following problems to

solve. In TE polarization we must find a unique solution of

1

ε(v)(x, z)
∆v + k2

0v = 0, − h < z < h, (3.2a)

− ∂zv − Tu[v] = φ, z = h, (3.2b)

∂zv − Tw[v] = 0, z = −h, (3.2c)

v(x+ d, z) = exp(iαd)v(x, z). (3.2d)
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In TM polarization we seek a unique solution of

div

[
1

ε(v)(x, z)
∇v
]

+ k2
0v = 0, − h < z < h, (3.3a)

− ∂zv − Tu[v] = φ, z = h, (3.3b)

∂zv − Tw[v] = 0, z = −h, (3.3c)

v(x+ d, z) = exp(iαd)v(x, z). (3.3d)

4. A High–Order Perturbation of Envelopes Method. At this point there are

many approaches available to us for the numerical simulation of solutions to the TE, (3.2),

and TM, (3.3), problems stated above. Among these are the classical Finite Difference

[48, 29], Finite Element [25, 13, 5, 6], Spectral Element [11], and Spectral Methods

[21, 45, 46]. For more details about these and other approaches one can consult one of

the many surveys on the topic, e.g. [3].

Rather than pursue one of these standard volumetric approaches, we follow the lead

of Feng, Lin, and Lorton [18, 19] and view the problem perturbatively. More specifically,

we think of our configuration as a small deviation from a trivial, constant–permittivity,

structure,

ε(v) = ε̄ (1− δE) = ε̄− δ(ε̄E),

where ε̄ ∈ R is a constant, and δ � 1 (initially). For future reference (TM polarization)

we note that, in this case,

1

ε(v)
=

1

ε̄

∞∑
`=0

E`δ`.

In the case of TE polarization it was shown by Feng, Lin, and Lorton [19] that, provided

that E(x, z) is smooth enough, the field v = v(x, z; δ) depends analytically upon δ so

that

v = v(x, z; δ) =

∞∑
`=0

v`(x, z)δ`, (4.1)

converges strongly in a Sobolev space. It is not difficult to show that, upon multiplication

of the Helmholtz equation by ε(v), in TE polarization these v` satisfy

∆v` + ε̄k2
0v` = F

(TE)
` , − h < z < h, (4.2a)

− ∂zv` − Tu[v`] = δ`,0φ, z = h, (4.2b)

∂zv` − Tw[v`] = 0, z = −h, (4.2c)

v`(x+ d, z) = exp(iαd)v`(x, z), (4.2d)

where δ`,q is the Kronecker delta function, and

F
(TE)
` (x, z) := ε̄E(x, z)k2

0v`−1(x, z).
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The situation is not much more difficult in TM polarization where, using the fact that ε̄

is constant, the v` must verify

∆v` + ε̄k2
0v` = F

(TM)
` , − h < z < h, (4.3a)

− ∂zv` − Tu[v`] = δ`,0φ, z = h, (4.3b)

∂zv` − Tw[v`] = 0, z = −h, (4.3c)

v`(x+ d, z) = exp(iαd)v`(x, z), (4.3d)

where

F
(TM)
` (x, z) := −

`−1∑
q=0

div
[
E(x, z)`−q∇vq(x, z)

]
.

It is easy to see [51] that the unique solution at order ` = 0, in either polarization, is

v0(x, z) = exp(i(αx− γ(v)z)),

and a “High–Order Perturbation” scheme can be built upon this where we make the

approximation

v(x, z) ≈ vL(x, z) :=
L∑
`=0

v`(x, z)δ`.

This is pursued in detail in Section 8.

In making the nature of the perturbation more precise we can formulate the particular

algorithm we pursue in this contribution. We consider an envelope function, E = E(x, z),

which indicates the support of the domain inside {−h < z < h} where the permittivity

is not equal to ε̄. For instance, we may choose

E = Ea,b(z) = E0

{
tanh(w(z − a))− tanh(w(z − b))

2

}
, (4.4)

with transition sharpness parameter w, which is nearly zero for −h < z < a − ε and

b+ ε < z < h, but is almost E0 on the interval a+ ε < z < b− ε. This function and the

resulting permittivity are depicted in Figure 1 (left and right, respectively).

Fig. 1. Plot of E(x, z) (left) and ε(v)(x, z) (right).
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With this form of perturbation we classify our approach as a “High–Order Perturba-

tion of Envelopes” (HOPE) scheme [33] to distinguish it from the High–Order Pertur-

bation of Surfaces (HOPS) algorithms which the author has advocated in previous work

[34, 37, 38, 42, 41].

5. Function Spaces. Before pursuing our theoretical results we specify the function

spaces we require for the analysis. For any real s ≥ 0 we have the classical interfacial

quasiperiodic L2–based Sobolev norm [27]

‖U‖2Hs :=
∞∑

p=−∞
〈p〉2s

∣∣∣Ûp∣∣∣2 , 〈p〉2 := 1 + |p|2 , Ûp :=
1

d

∫ d

0

U(x)eiαpx dx,

which gives rise to the quasiperiodic Sobolev space [27]

Hs([0, d]) =
{
U(x) ∈ L2([0, 2π]) | ‖U‖Hs <∞

}
.

The dual of Hs is H−s which can be equivalently defined by the norm above with

negative index. We also recall, for any integer s ≥ 0, the space of s–times continuously

differentiable functions with the Hölder norm

|f |Cs := max
0≤`≤s

∣∣∂`xf ∣∣L∞ .

We also require, for any integer s ≥ 0, the volumetric quasiperiodic L2–based Sobolev

norm

‖u‖2Hs =

s∑
j=0

∞∑
p=−∞

〈p〉2s−2j

∫ h

−h

∣∣∂jz ûp(z)∣∣2 dz,

which defines the quasiperiodic Sobolev class

Hs([0, d]× [−h, h]) =
{
u(x, z) ∈ L2([0, 2π]× [−h, h]) | ‖U‖Hs <∞

}
.

As we shall see, the following algebra property will be crucial for our subsequent

developments [28, 17, 34].

Lemma 5.1. For any integer s ≥ 0 and any set Ω ⊂ Rm, if {f, u} : Ω → C, f ∈ Cs(Ω),

u ∈ Hs(Ω), then

‖fu‖Hs ≤M(m, s,Ω) |f |Cs ‖u‖Hs ,
for some universal constant M(m, s,Ω).

Finally, we will need a particular notion of analytic function.

Definition 5.2. Given an integer m ≥ 0, the functions f = f(x) and E = E(x, z)

are members of the spaces Cωm([0, d]) and Cωm([0, d] × [−h, h]), respectively, if they are

real analytic and satisfy the estimates∣∣∣∣∂rxr! f
∣∣∣∣
Cm
≤ Cf

Ar

(r + 1)2
,

∣∣∣∣ ∂rx∂tz(r + t)!
E

∣∣∣∣
Cm
≤ CE

Ar

(r + 1)2

Dt

(t+ 1)2
, ∀ r, t ≥ 0,

for some Cf , CE , A,D > 0.

The notation Cωm defines the space of real analytic functions, Cω, with radius of

analyticity (given by A and D) measured in the Cm norm.
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Remark 5.3. Note that the incident radiation function φ, (3.1), is clearly real analytic

in x and satisfies ∥∥∥∥∂rxr! φ
∥∥∥∥
H1/2

≤ Cφ
Ar

(r + 1)2
, ∀ r ≥ 0,

for some Cφ, A > 0.

Before closing this section we quote an invaluable family of elementary bounds [36, 40].

Lemma 5.4. For any integer r ≥ 0 there exists a universal constant S < ∞ such that

the following sums are bounded

r∑
j=0

(r + 1)2

(r − j + 1)2(j + 1)2
< S,

r∑
j=0

j∑
p=0

(r + 1)2

(r − j + 1)2(j − p+ 1)2(p+ 1)2
< S2.

Clearly, changing the entries in the summations by one or two, e.g.,

r∑
j=0

r2

(r − j + 1)2(j + 1)2
,

will not affect the convergence of these sums and, among the finite collection of such

trivial changes, there is a universal S which works for all.

6. Analytic Continuation. As we mentioned above, in TE polarization the expan-

sion of v in δ, (4.1), was shown to be strongly convergent in an appropriate function

space by Feng, Lin, and Lorton [19], provided that E(x, z) is sufficiently smooth. This

result justifies our HOPE approach, but only in the case δ � 1. The situation of TM

polarization or, in either polarization, δ moderate to large is outside the scope of their

theory. However, by following the work of the author and Reitich [36] and the author

and Taber [40], we can demonstrate the analyticity of the solution for any real value of

the perturbation parameter (up to topological obstruction). This result is one of analytic

continuation and justifies our use of Padé approximation to simulate deformations which

are large and/or rough.

To demonstrate this we consider the envelope E(x, z) and show that v depends analyt-

ically upon δ̃E(x, z) for any δ̃ ∈ R. To put this into our current framework we consider

fixed δ̃0 ∈ R and write

E0(x, z) := δ̃0E(x, z), δ = δ̃ − δ̃0,

and we must prove analyticity of the field about δ = 0 as

δ̃E(x, z) = (δ̃0 + δ)E(x, z) = E0(x, z) + δE(x, z).

Thus, we consider

ε(v)(x, z) = ε̄
{

1− δ̃E(x, z)
}

= ε̄
{

1− δ̃0E(x, z)− δE(x, z)
}

= ε̄ {1− E0(x, z)} − δε̄E(x, z).
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We will now demonstrate that the field v = v(x, z;E0, δ) is analytic in δ by showing

that the expansion

v = v(x, z;E0, δ) =
∞∑
`=0

v`(x, z;E0)δ`, (6.1)

is convergent. In order to give a unified treatment for both polarizations we write (3.2)

and (3.3) as

Lv = 0, − h < z < h, (6.2a)

− ∂zv − Tu[v] = φ, z = h, (6.2b)

∂zv − Tw[v] = 0, z = −h, (6.2c)

v(x+ d, z) = exp(iαd)v(x, z), , (6.2d)

where

L :=

{
ρ(v)∆ + k2

0, TE polarization,

div
[
ρ(v)∇

]
+ k2

0, TM polarization,
(6.2e)

and

ρ(v)(x, z) :=
1

ε(v)(x, z)
. (6.2f)

We note that, from the definition of ε(v) above,

1 = ρ(v)ε(v) = ρ(v) {ε̄(1− E0(x, z))− δε̄E(x, z)} ,

we can show that

ρ(v) = ρ(v)(x, z; δ) =
∞∑
`=0

ρ
(v)
` (x, z)δ`,

where

ρ
(v)
0 (x, z) =

1

ε̄(1− E0(x, z))
, (6.3a)

ρ
(v)
` (x, z) =

E(x, z)

(1− E0(x, z))
ρ

(v)
`−1(x, z) = ε̄E(x, z)ρ

(v)
0 (x, z)ρ

(v)
`−1(x, z), ` > 0. (6.3b)

In addition, it can also be demonstrated that

L = L(δ) =
∞∑
`=0

L`δ`,

where

L` =

ρ
(v)
` ∆ + k2

0δ`,0, TE polarization,

div
[
ρ

(v)
` ∇

]
+ k2

0δ`,0, TM polarization.

Now it is a simple matter to show that the v` satisfy

L0v` = F` := −
`−1∑
q=0

L`−qvq, − h < z < h, (6.4a)

− ∂zv` − Tu[v`] = δ`,0φ, z = h, (6.4b)

∂zv` − Tw[v`] = 0, z = −h, (6.4c)

v`(x+ d, z) = exp(iαd)v`(x, z). (6.4d)
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For this and later results it is convenient to define the extra smoothness parameter we

require in TM polarization

σ :=

{
0, TE polarization,

1, TM polarization.

To facilitate later results we require the following elementary analyticity estimate.

Lemma 6.1. Given any integer s ≥ 0, if E0(x, z), E(x, z) ∈ Cs+σ([0, d]× [−h, h]), and∣∣∣∣ 1

ε̄(1− E0)

∣∣∣∣
Cs+σ

<
1

a
,

for some a > 0 then

|ρ`|Cs+σ ≤ CρB
`
ρ, ` ≥ 0,

for some Cρ, Bρ > 0.

Proof. We proceed by induction on ` and conclude the case ` = 0 by choosing

Cρ := |ρ0|Cs+σ =

∣∣∣∣ 1

ε̄(1− E0)

∣∣∣∣
Cs+σ

<
1

a
.

Now, assuming the estimate for all ` < L we examine the size of ρL,

|ρL|Cs+σ =

∣∣∣∣( E

1− E0

)
ρL−1

∣∣∣∣
Cs+σ

≤
∣∣∣∣ 1

1− E0

∣∣∣∣
Cs+σ

|E|Cs+σ |ρL−1|Cs+σ

≤ 1

a
|E|Cs+σ CρB

L−1
ρ ,

and we are done provided that

Bρ >
ε̄ |E|Cs+σ

a
.

�
We now state the elliptic estimate required for our inductive proof, which is proven in

[13, 7, 12, 5]. As observed by these authors, the issue of uniqueness of solutions to these

Helmholtz problems, e.g.,

L0V = 0, − h < z < h, (6.5a)

− ∂zV − Tu[V ] = 0, z = h, (6.5b)

∂zV − Tw[V ] = 0, z = −h, (6.5c)

V (x+ d, z) = exp(iαd)V (x, z), (6.5d)

which should have only the trivial solution V ≡ 0, is a subtle one and certain illuminating

frequencies ω will induce non–uniqueness in some configurations. Unfortunately a precise

characterization of the set of forbidden frequencies is elusive and all that is known is that

it is countable and accumulates at infinity [4]. To accommodate this state of affairs we

define the set of permissible configurations

P := {(ω, ε̄, E0) | V ≡ 0 is the unique solution of (6.5)} . (6.6)
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With this we can now state the fundamental result.

Theorem 6.2. For any integer s ≥ 0, if (ω, ε̄, E0) ∈ P , E0 ∈ Cs+σ([0, d] × [−h, h]),

F ∈ Hs([0, d] × [−h, h]), Q ∈ Hs+1/2([0, d]), and R ∈ Hs+1/2([0, d]), then there exists a

unique solution of

L0V = F, − h < z < h,

− ∂zV − Tu[V ] = Q, z = h,

∂zV − Tw[V ] = R, z = −h,
V (x+ d, z) = exp(iαd)V (x, z),

satisfying

‖V ‖Hs+2 ≤ Ce {‖F‖Hs + ‖Q‖Hs+1/2 + ‖R‖Hs+1/2} ,

for some universal constant Ce > 0.

We are now in a position to establish the recursive estimate required by our analyticity

theory.

Lemma 6.3. Given any integer s ≥ 0, if E0(x, z), E(x, z) ∈ Cs+σ([0, d]× [−h, h]), and

∣∣∣∣ 1

ε̄(1− E0)

∣∣∣∣
Cs+σ

<
1

a
,

for some a > 0, and

‖v`‖Hs+2 ≤ KB`, ` < L,

for constants K,B > 0, then the functions F` in (6.4a) satisfy

‖FL‖Hs ≤ C̃KBρB
L−1,

for some constant C̃ > 0.

Proof. The proof depends upon polarization, but the changes are minor so we focus

upon TM and leave TE to the reader. Given our hypotheses we can immediately appeal



HOPE METHOD FOR PERIODIC MEDIA 13

to Lemma 6.1 so that

‖FL‖Hs =

∥∥∥∥∥−
L−1∑
q=0

LL−qvq

∥∥∥∥∥
Hs

≤
L−1∑
q=0

∥∥∥div
[
ρ

(v)
L−q∇vq

]∥∥∥
Hs

≤
L−1∑
q=0

∥∥∥ρ(v)
L−q∇vq

∥∥∥
Hs+σ

≤
L−1∑
q=0

M
∣∣∣ρ(v)
L−q

∣∣∣
Cs+σ

‖∇vq‖Hs+σ

≤
L−1∑
q=0

MCρB
L−q
ρ ‖vq‖Hs+2

≤
L−1∑
q=0

MCρB
L−q
ρ KBq

≤ KCρMBρB
L−1

L−1∑
q=0

(
Bρ
B

)L−1−q

≤ KCρMBρB
L−1

(
1

1− θ

)
,

where we have defined θ := Bρ/B and we select

B > Bρ

to ensure θ < 1. We are done provided that we choose

C̃ ≥ CρM/(1− θ).

�
With these we can now state and prove our analytic continuation result.

Theorem 6.4. Given any integer s ≥ 0, if (ω, ε̄, E0) ∈ P , E0(x, z), E(x, z) ∈ Cs+σ([0, d]×
[−h, h]), and ∣∣∣∣ 1

ε̄(1− E0)

∣∣∣∣
Cs+σ

<
1

a
,

for some a > 0, then the series (6.1) converges strongly. More precisely,

‖v`‖Hs+2 ≤ KB`, ` ≥ 0, (6.7)

for some universal constants K,B > 0.

Proof. As before, we proceed inductively. The case ` = 0 is resolved by appealing to

Theorem 6.2 with F ≡ 0, Q = φ, and R ≡ 0, and then setting K := ‖v0‖Hs+2 . Assuming

that (6.7) is true for all ` < L we invoke Theorem 6.2 to deduce that

‖vL‖Hs+2 ≤ Ce ‖FL‖Hs .
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From Lemma 6.3 we find that

‖vL‖Hs+2 ≤ CeC̃KBρBL−1,

and we are done provided that

B > CeC̃Bρ.

�

7. Joint Analyticity. To conclude our theoretical developments we produce a joint

analyticity result in the spirit of that found in Nicholls and Taber [40], which shows that

v = v(x, z; δ) is analytic in x, z, and δ. For this we will demonstrate that the v` from

(6.1) satisfy the conditions of Definition 5.2. For this we will analyze, quite directly, the

equations (6.4), more specifically arbitrary x and z derivatives of these problems.

In order to simplify subsequent developments we require the following analogue of

Lemma 6.1 which is established in Appendix A.

Lemma 7.1. For any integer m ≥ 0, if E0(x, z), E(x, z) ∈ Cωm([0, d]× [−h, h]) so that∣∣∣∣ ∂rx∂tz(r + t)!
E0

∣∣∣∣
Cm
≤ CE0

ArE
(r + 1)2

Dt
E

(t+ 1)2
,

∣∣∣∣ ∂rx∂tz(r + t)!
E

∣∣∣∣
Cm
≤ CE

ArE
(r + 1)2

Dt
E

(t+ 1)2
,

for all r, t ≥ 0, for some CE0
, CE , AE , DE > 0, and∣∣∣∣ 1

ε̄(1− E0)

∣∣∣∣
Cm

<
1

a
,

for some a > 0, then∣∣∣∣ ∂rx∂tz(r + t)!
ρ`

∣∣∣∣
Cm
≤ CρB`ρ

Ar

(r + 1)2

Dt

(t+ 1)2
, ∀ `, r, t ≥ 0,

for some Cρ, Bρ, A,D > 0.

As before, we now consider the elliptic estimate necessary for our proof. We state it

here but establish it in Appendix B to maintain the flow of our developments.

Theorem 7.2. Given any integer m ≥ 1 + σ, if (ω, ε̄, E0) ∈ P , E0 ∈ Cωm([0, d]× [−h, h])

so that ∣∣∣∣ ∂rx∂tz(r + t)!
E0

∣∣∣∣
Cm
≤ CE0

ArE
(r + 1)2

Dt
E

(t+ 1)2
, ∀ r, t ≥ 0,

for some CE0
, AE , DE > 0, and ∣∣∣∣ 1

ε̄(1− E0)

∣∣∣∣
Cm

<
1

a
,

for some a > 0, and F ∈ Cω([0, d]× [−h, h]) satisfying∥∥∥∥ ∂rx∂
t
z

(r + t)!
F

∥∥∥∥
H0

≤ CF
Ar

(r + 1)2

Dt

(t+ 1)2
, ∀ r, t ≥ 0,

for the A,D > 0 from Lemma 7.1 and some CF > 0, and Q,R ∈ Cω([0, d]) satisfying∥∥∥∥∂rxr! Q
∥∥∥∥
H1/2

≤ CQ
Ar

(r + 1)2
,

∥∥∥∥∂rxr! R
∥∥∥∥
H1/2

≤ CR
Ar

(r + 1)2
, ∀ r ≥ 0,
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for some CQ, CR > 0, then there is a unique solution V ∈ Cω([0, d]× [−h, h]) of

L0V = F, − h < z < h, (7.1a)

− ∂zV − Tu[V ] = Q, z = h, (7.1b)

∂zV − Tw[V ] = R, z = −h, (7.1c)

V (x+ d, z) = exp(iαd)V (x, z), (7.1d)

satisfying ∥∥∥∥ ∂rx∂
t
z

(r + t)!
V

∥∥∥∥
H2

≤ Ce
Ar

(r + 1)2

Dt

(t+ 1)2
, ∀ r, t ≥ 0, (7.2)

where

Ce := κ(h) (CF + CQ + CR) ,

for some universal constant κ(h) > 0.

With this we can now state and prove the recursive estimate we require.

Lemma 7.3. For any integer m ≥ σ, if E0(x, z), E(x, z) ∈ Cωm([0, d]× [−h, h]) so that∣∣∣∣ ∂rx∂tz(r + t)!
E0

∣∣∣∣
Cm
≤ CE0

ArE
(r + 1)2

Dt
E

(t+ 1)2
,

∣∣∣∣ ∂rx∂tz(r + t)!
E

∣∣∣∣
Cm
≤ CE

ArE
(r + 1)2

Dt
E

(t+ 1)2
,

for all r, t ≥ 0, for some CE0 , CE , AE , DE > 0, and∣∣∣∣ 1

ε̄(1− E0)

∣∣∣∣
Cm

<
1

a
,

for some a > 0, and∥∥∥∥ ∂rx∂
t
z

(r + t)!
v`

∥∥∥∥
H2

≤ KB` Ar

(r + 1)2

Dt

(t+ 1)2
, ∀ ` < L, ∀ r, t ≥ 0,

for the A,D > 0 from Lemma 7.1 and some K,B > 0, then∥∥∥∥ ∂rx∂
t
z

(r + t)!
FL

∥∥∥∥
H0

≤ C̃KBρBL−1 Ar

(r + 1)2

Dt

(t+ 1)2
, ∀ r, t ≥ 0,

for some C̃ > 0.

Proof. The cases of TE and TM polarization are similar so we only present the latter

for simplicity. We recall that, in this case,

FL = −
L−1∑
q=0

LL−qvq = −
L−1∑
q=0

div
[
ρ

(v)
L−q∇vq

]
,

so that

∂rx∂
t
z

(r + t)!
FL = − r!t!

(r + t)!

L−1∑
q=0

r∑
j=0

t∑
k=0

div

[(
∂r−jx

(r − j)!
∂t−kz

(k − r)!
ρ

(v)
L−q

)(
∇∂

j
x

j!

∂kz
k!
vq

)]
.
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Using Lemma 6.1 and the inequality (r!t!) ≤ (r + t)! we have∥∥∥∥ ∂rx∂
t
z

(r + t)!
FL

∥∥∥∥
H0

≤ r!t!

(r + t)!

L−1∑
q=0

r∑
j=0

t∑
k=0

∥∥∥∥( ∂r−jx

(r − j)!
∂t−kz

(k − r)!
ρ

(v)
L−q

)(
∇∂

j
x

j!

∂kz
k!
vq

)∥∥∥∥
Hσ

≤ r!t!

(r + t)!

L−1∑
q=0

r∑
j=0

t∑
k=0

M

∣∣∣∣ ∂r−jx

(r − j)!
∂t−kz

(k − r)!
ρ

(v)
L−q

∣∣∣∣
Cσ

∥∥∥∥∂jxj! ∂kzk!
vq

∥∥∥∥
H2

≤
L−1∑
q=0

r∑
j=0

t∑
k=0

MCρB
L−q
ρ

Ar−j

(r − j + 1)2

Dt−k

(t− k + 1)2
KBq

Aj

(j + 1)2

Dk

(k + 1)2

≤ KCρMBρB
L−1 Ar

(r + 1)2

Dt

(t+ 1)2

L−1∑
q=0

(
Bρ
B

)L−1−q

×
r∑
j=0

(r + 1)2

(r − j + 1)2(j + 1)2

t∑
k=0

(t+ 1)2

(t− k + 1)2(k + 1)2

≤ KCρMS2

(
1

1− θ

)
BρB

L−1 Ar

(r + 1)2

Dt

(t+ 1)2
,

provided θ = Bρ/B < 1. Thus we are done if we choose

C̃ ≥ CρMS2/(1− θ).

�
We are now in a position to state and prove our joint analyticity result.

Theorem 7.4. Given any integer m ≥ 1 + σ, if (ω, ε̄, E0) ∈ P , E0 ∈ Cωm([0, d]× [−h, h])

so that ∣∣∣∣ ∂rx∂tz(r + t)!
E0

∣∣∣∣
Cm
≤ CE0

ArE
(r + 1)2

Dt
E

(t+ 1)2
, ∀ r, t ≥ 0,

for some CE0 , AE , DE > 0, and ∣∣∣∣ 1

ε̄(1− E0)

∣∣∣∣
Cm

<
1

a
,

for some a > 0, then the series (6.1) converges strongly. Furthermore, the solution v(x, z)

satisfies the joint analyticity estimate∥∥∥∥ ∂rx∂
t
z

(r + t)!
v`

∥∥∥∥
H2

≤ KB` Ar

(r + 1)2

Dt

(t+ 1)2
, ∀ `, r, t ≥ 0, (7.3)

for the A,D > 0 from Lemma 7.1 and some universal constants K,B > 0.

Proof. Once again we proceed inductively. The case ` = 0 is resolved by appealing to

Theorem 7.2 with F ≡ 0, Q = φ, and R ≡ 0, which delivers the estimate∥∥∥∥ ∂rx∂
t
z

(r + t)!
v0

∥∥∥∥
H2

≤ κ(h)Cφ
Ar

(r + 1)2

Dt

(t+ 1)2
, ∀ r, t ≥ 0,

and we are done if we set K = κ(h)Cφ. We now assume that (7.3) is true for all ` < L

and, from Lemma 7.3, we know that Theorem 7.2 can be invoked with

CF = C̃KBρB
L−1, CQ = CR = 0.
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This implies that∥∥∥∥ ∂rx∂
t
z

(r + t)!
vL

∥∥∥∥
H2

≤ κ(h)C̃KBρB
L−1 Ar

(r + 1)2

Dt

(t+ 1)2
, ∀ r, t ≥ 0.

We are done provided that

B > κ(h)C̃Bρ.

�

8. Numerical Results. We are now in a position to demonstrate the utility and

robustness of the HOPE algorithm we have discussed above. After we describe our im-

plementation of the method, we illuminate its usefulness by comparing it to a classical

exact solution for multiply layered media with flat interfaces. With this simple configu-

ration we can make several statements regarding the advantages and limitations of this

HOPE approach.

8.1. Implementation. A practical implementation of the HOPE algorithm involves

discretizing the problems (4.2) and (4.3) for TE and TM polarizations, respectively. To

start, we truncate the HOPE expansion (4.1) after a finite number of Taylor orders

v ≈ vL(x, z; δ) :=

L∑
`=0

v`(x, z)δ`, (8.1)

which should satisfy (4.2) or (4.3) up to perturbation order L. To accomplish this we

adopt a High–Order Spectral (HOS) philosophy [21, 45, 46] and, with the quasiperiodic

boundary conditions in mind, utilize a spectral Fourier–Chebyshev methodology. For

this we approximate

v` ≈ vNx,Nz` :=

Nx/2−1∑
p=−Nx/2

Nz∑
q=0

v̂`,p,qTq(z/h)eiαpx,

where Tq is the q–th Chebyshev polynomial. To discover the Fourier–Chebyshev coeffi-

cients, {v̂`,p,q}, we take a collocation approach and simply demand that the equations

(4.2) and (4.3) be true at the gridpoints

{xj = j(d/Nx) | 0 ≤ j ≤ Nx − 1} , {zr = h cos(πr/Nz) | 0 ≤ r ≤ Nz} .

The resulting system of equations can be efficiently and robustly solved by repeated use

of the fast Fourier and Chebyshev transforms as outlined in [21, 45, 46].

As with the HOPS schemes we have advocated in the past [36, 38], the current HOPE

approach requires careful thought regarding the summation of the Taylor series appearing

in (8.1). The natural, direct (Taylor), summation of this quantity is limited to the disk

in δ of analyticity centered at the origin in the complex plane. However, long experience

has demonstrated that the true domain of analyticity is typically much larger than this,

and the point of our theoretical developments in Section 6 was to demonstrate that this

is the case in the current setting. The conclusion that we can reach from Theorem 6.4 is

that this domain includes a (small) disk about any δ̃0 ∈ R such that∣∣∣∣ 1

ε̄(1− δ̃0E)

∣∣∣∣
Cs+σ

<
1

a
,
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or
a

|ε̄|
<
∣∣∣1− δ̃0E∣∣∣

Cs+σ
.

An effective and efficient algorithm to access this larger region of analyticity is Padé

approximation [2] which we have used with great success in the past [35, 36, 42, 33]. In

summary, Padé approximation estimates the truncated Taylor series

f(δ) =
L∑
`=0

f`δ
`,

by the rational function[
M

N

]
(δ) :=

aM (δ)

bN (δ)
=

∑M
m=0 amδ

m∑N
n=0 bnδ

n
, M +N = L,

where [
M

N

]
(δ) = f(δ) +O(δM+N+1).

Classical formulas exist for the coefficients {am, bn} [2], and these Padé approximants

have remarkable properties of convergence enhancement. We refer the interested reader

to § 2.2 of [2] and § 8.3 of [8] for a full discussion.

8.2. Layered Media Scattering. In order to provide a brief demonstration of the con-

vergence properties of our algorithm, we considered the scattering of linear waves by a

layered medium. More specifically, we focused on simulating solutions of the Maxwell

equations, (2.1), with piecewise constant permittivity

ε = ε(z) =


ε̄, t < z < h,

ε′, −t < z < t,

ε̄, −h < z < −t,

for 0 < t < h and real ε′ > ε̄ > 0, with incident radiation of the form (2.2). It is easy to

see that the unique solution to this problem can be written down in terms of a system of

linear equations which, in the three–layer case, is not difficult to solve [51] and we used

them as exact solutions against which we compared our numerical simulations.

To specify our test more precisely, we selected the following geometric parameters

d = 0.8, h = 0.95, t = 0.500,

and the following electromagnetic constants

ε̄ = 0.9, λ = 0.7, θ = 30◦.

We considered two configurations: (i.) a small deviation from the trivial, constant–

permittivity case, specified by ε′ = 1.1, and (ii.) a large deviation characterized by

ε′ = 1.6. In the small deviation case we required

16 ≤ Nx ≤ 32, 2 ≤ L ≤ 16,

while for the large deviation we demanded

16 ≤ Nx ≤ 64, 2 ≤ L ≤ 32,
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and in each case Nz = Nx. We measured convergence in the L∞ norm and computed

ErrorNx,Nz,L :=
∣∣vNx,Nz,L − vExact

∣∣
L∞ .

8.3. Small Deviation. We summarize the results of our experiments in the case of a

small deviation, ε′ = 1.1, in Figures 2 & 3. More specifically, we examined the conver-

gence in Nx = Nz in Figure 2 while we studied L convergence in Figure 3.
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Fig. 2. Error versus Nx for ε′ = 1.1 (Left: TE, Right: TM).
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Fig. 3. Error versus L for ε′ = 1.1 (Left: TE, Right: TM).

While we were pleased that our method showed convergence as all discretization pa-

rameters were refined, the results were rather disappointing. We employed not only a

HOS Fourier–Chebyshev approach to solve the Helmholtz problems, (4.2) and (4.3), but

also utilized a High–Order Perturbation scheme for the deformation variable, δ. We ex-

pected that our convergence rates would be exponential. However, a quick inspection of

the exact solution, which is only in H2 for TE polarization and merely H1 for TM polar-

ization, explains that, in the absence of sophisticated mesh refinement strategies (which

is an object of current research), one can only expect rather low rates of convergence.

In the experiments above we noticed an experimental rate of convergence of 1.87 for TE
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and 1.60 for TM polarization as Nx = Nz was refined, while the convergence rate in L

was difficult to characterize with the spatial resolution of such modest quality.

In order to further validate our code we conducted another convergence study against a

different “exact solution” obtained by numerically simulating solutions of (3.2) and (3.3)

with our smooth permittivity profile, (4.4) (w = 100), and a HOS Fourier–Chebyshev

approach. Reconsidering the calculations above yielded the results depicted in Figures 4

& 5 for Nx = Nz and L convergence, respectively. Here we saw the behavior we expected,

namely exponential rates of convergence in both Nx = Nz and L down to machine

precision (to the conditioning of our algorithm). This exhibits a well–known limitation

of HOS methods, that high–order rates of convergence are limited by the smoothness of

the underlying exact solution [21, 45, 46].
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Fig. 4. Error versus Nx for ε′ = 1.1 with smoothed exact solution
(Left: TE, Right: TM).
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Fig. 5. Error versus L for ε′ = 1.1 with smoothed exact solution

(Left: TE, Right: TM).

Before leaving this simulation we point out, in this latter case of a smoothed solution,

the extremely beneficial effect of Padé summation. This approach delivered solutions

with ten extra digits of accuracy compared to straightforward Taylor summation.
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8.4. Large Deviation. We repeated these small deformation simulations in the case of

a large deviation characterized by ε′ = 1.6. We display the results of these experiments

in comparison to the exact solution in Figures 6 and Figures 7 for Nx and L refinement,

respectively. Here we noticed not only the very poor performance of our algorithm with

Padé approximation, but also the complete inapplicability of Taylor summation.
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Fig. 6. Error versus Nx for ε′ = 1.6 (Left: TE, Right: TM).
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Fig. 7. Error versus L for ε′ = 1.6 (Left: TE, Right: TM).

As before, by replacing the exact solution with a numerical solution of the smoothed

problem with E given by (4.4) (w = 100), we obtained the results in Figures 8 and 9 for

Nx = Nz and L refinement. Once again we noticed the greatly enhanced performance of

our algorithm with Padé approximation in this setting, though Taylor summation was

completely unusable.

Dedication. I would like to dedicate this work to the memory of my wife’s mother,

Caryl Steimel. Caryl was a kind woman of strong faith who always put her own needs

behind those of others, particularly her family. I knew her for nearly thirty years and
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Fig. 8. Error versus Nx for ε′ = 1.6 with smoothed exact solution
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Fig. 9. Error versus L for ε′ = 1.6 with smoothed exact solution

(Left: TE, Right: TM).

was always inspired by the time and talent she spent on her husband, her children

(including my wife Kristy), and her grandchildren (particularly my daughter Emma). Her

example of patience and selflessness is a model for all who knew her. She is sorely missed.

Somehow the natural acronym for the algorithm described in this paper (“HOPE”) is

singularly appropriate for Caryl as her outlook on life was always full of “hope.” Quoting

the motto of my Alma Mater: In Deo Speramus!

Acknowledgments. D.P.N. gratefully acknowledges support from the National Sci-

ence Foundation through grant No. DMS–1813033.

Appendix A. Analyticity of the Reciprocal Permittivity. For the proof of

Lemma 7.1 we use induction on `, beginning with ` = 0. To accomplish this we induct

on t, beginning with t = 0. Finally, we establish this via induction on r, beginning with

r = 0. So, we begin by setting

Cρ =
∣∣∣ρ(v)

0

∣∣∣
Cm

,
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which resolves r = 0. Now we assume that∣∣∣∣∂rxr! ρ(v)
0

∣∣∣∣
Cm
≤ Cρ

Ar

(r + 1)2
, ∀ r < r̄,

and note that ∂rx/r! applied to

ε̄(1− E0(x, z))ρ
(v)
0 = 1,

c.f. (6.3), gives

∂rx
r!
ρ0 = − 1

ε̄(1− E0(x, z))

r−1∑
j=0

(
∂r−jx

(r − j)!
[ε̄(1− E0(x, z))]

)(
∂jx
j!
ρ0

)
.

From this we estimate

∣∣∣∣∂ r̄xr̄! ρ0

∣∣∣∣
Cm
≤
∣∣∣∣ 1

ε̄(1− E0(x, z))

∣∣∣∣
Cm

r̄−1∑
j=0

∣∣∣∣ ∂ r̄−jx

(r̄ − j)!
[ε̄(1− E0(x, z))]

∣∣∣∣
Cm

∣∣∣∣∂jxj! ρ0

∣∣∣∣
Cm

≤ |ε̄|
a

r̄−1∑
j=0

CE
Ar̄−jE

(r − j + 1)2
Cρ

Aj

(j + 1)2

≤ |ε̄|
a
CECρAE

Ar̄−1

(r̄ + 1)2

r̄−1∑
j=0

(r̄ + 1)2

(r̄ − j + 1)2(j + 1)2

(
AE
A

)r̄−j−1

≤ |ε̄|
a
CECρAE

Ar̄−1

(r̄ + 1)2
S,

if AE/A is chosen less than one. Thus we are done with our induction on r provided that

A > max

{
1, CE

|ε̄|
a
S

}
AE .

Conveniently this result resolves our base induction on t at t = 0. So, we proceed by

assuming that

∣∣∣∣ ∂rx∂tz(r + t)!
ρ

(v)
0

∣∣∣∣
Cm
≤ Cρ

Ar

(r + 1)2

Dt

(t+ 1)2
, ∀ r ≥ 0, ∀ t < t̄,

and note that (∂rx∂
t
z)/(r + t)! applied to

ε̄(1− E0(x, z))ρ
(v)
0 = 1,
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c.f. (6.3), gives

∂rx∂
t
z

(r + t)!
ρ

(v)
0 = − 1

ε̄(1− E0(x, z))

r!t!

(r + t)!

×


r−1∑
j=0

t−1∑
k=0

(
∂r−jx

(r − j)!
∂t−kz

(t− k)!
[ε̄(1− E0(x, z))]

)(
∂jx
j!

∂kz
k!
ρ

(v)
0

)

−
r−1∑
j=0

(
∂r−jx

(r − j)!
[ε̄(1− E0(x, z))]

)(
∂jx
j!

∂tz
t!
ρ

(v)
0

)

−
t−1∑
k=0

(
∂t−kz

(t− k)!
[ε̄(1− E0(x, z))]

)(
∂rx
r!

∂kz
k!
ρ

(v)
0

)}
.

With this and the fact that (r!t!) ≤ (r + t)! we estimate

∣∣∣∣ ∂rx∂ t̄z(r + t̄)!
ρ

(v)
0

∣∣∣∣
Cm
≤
∣∣∣∣ 1

ε̄(1− E0(x, z))

∣∣∣∣
Cm

×


r−1∑
j=0

t̄−1∑
k=0

∣∣∣∣ ∂r−jx

(r − j)!
∂ t̄−kz

(t̄− k)!
[ε̄(1− E0(x, z))]

∣∣∣∣
Cm

∣∣∣∣∂jxj! ∂kzk!
ρ

(v)
0

∣∣∣∣
Cm

+
r−1∑
j=0

∣∣∣∣ ∂r−jx

(r − j)!
[ε̄(1− E0(x, z))]

∣∣∣∣
Cm

∣∣∣∣∂jxj! ∂ t̄zt̄! ρ(v)
0

∣∣∣∣
Cm

+
t̄−1∑
k=0

∣∣∣∣ ∂ t̄−kz

(t̄− k)!
[ε̄(1− E0(x, z))]

∣∣∣∣
Cm

∣∣∣∣∂rxr! ∂kzk!
ρ

(v)
0

∣∣∣∣
Cm

}
,

and continue

∣∣∣∣ ∂rx∂ t̄z(r + t̄)!
ρ

(v)
0

∣∣∣∣
Cm
≤ |ε̄|

a


r−1∑
j=0

t̄−1∑
k=0

CE
Ar−jE

(r − j + 1)2

Dt̄−k
E

(t̄− k + 1)2
Cρ

Aj

(j + 1)2

Dk

(k + 1)2

+
r−1∑
j=0

CE
Ar−jE

(r − j + 1)2
Cρ

Aj

(j + 1)2

Dt̄

(t̄+ 1)2

+
t̄−1∑
k=0

CE
Dt̄−k
E

(t̄− k + 1)2
Cρ

Ar

(r + 1)2

Dk

(k + 1)2

}
.



HOPE METHOD FOR PERIODIC MEDIA 25

We now have

∣∣∣∣ ∂rx∂ t̄z(r + t̄)!
ρ

(v)
0

∣∣∣∣
Cm
≤ |ε̄|

a

{
CECρAEDE

Ar−1

(r + 1)2

Dt̄−1

(t̄+ 1)2

×
r−1∑
j=0

t̄−1∑
k=0

(r + 1)2

(r − j + 1)2(j + 1)2

(
AE
A

)r−j−1
(t̄+ 1)2

(t̄− k + 1)2(k + 1)2

(
DE

D

)t̄−k−1

+ CECρAE
Ar−1

(r + 1)2

Dt̄

(t̄+ 1)2

r−1∑
j=0

(r + 1)2

(r − j + 1)2(j + 1)2

(
AE
A

)r−j−1

+CECρDE
Ar

(r + 1)2

Dt̄−1

(t̄+ 1)2

t̄−1∑
k=0

(t̄+ 1)2

(t̄− k + 1)2(k + 1)2

(
DE

D

)t̄−k−1
}
,

upon choosing A > AE and D > DE we find

∣∣∣∣ ∂rx∂ t̄z(r + t̄)!
ρ

(v)
0

∣∣∣∣
Cm
≤ |ε̄|

a
CECρ

{
AEDE

Ar−1

(r + 1)2

Dt̄−1

(t̄+ 1)2
S2

+AE
Ar−1

(r + 1)2

Dt̄

(t̄+ 1)2
S +DE

Ar

(r + 1)2

Dt̄−1

(t̄+ 1)2
S

}
,

and are finished provided that

A > AE , D > DE , A > 3
|ε̄|
a
SCEAE , D > 3

|ε̄|
a
SCEDE , AD > 3

|ε̄|
a
S2CEAEDE .

This previous result establishes the base of our induction on ` at ` = 0. To finish our

proof we assume that

∣∣∣∣ ∂rx∂tz(r + t)!
ρ`

∣∣∣∣
Cm
≤ CρB`ρ

Ar

(r + 1)2

Dt

(t+ 1)2
, ∀ ` < L, ∀ r, t ≥ 0,

and recall that, for ` > 0,

ρ
(v)
` (x, z) = ε̄ρ

(v)
0 (x, z)E(x, z)ρ

(v)
`−1(x, z),

c.f. (6.3). From Leibniz’s Rule we have

∂rx∂
t
z

(r + t)!
ρ

(v)
` = ε̄

r!t!

(r + t)!

×
r∑
j=0

t∑
k=0

j∑
p=0

k∑
q=0

(
∂r−jx

(r − j)!
∂t−kz

(t− k)!
ρ

(v)
0

)(
∂j−px

(j − p)!
∂k−qz

(k − q)!
E

)(
∂px
p!

∂qz
q!
ρ

(v)
`−1

)
,
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which, since (r!t!) ≤ (r + t)!, leads to the estimate∣∣∣∣ ∂rx∂tz(r + t)!
ρ

(v)
L

∣∣∣∣
Cm
≤ ε̄C2

ρCEB
L−1
ρ

Ar

(r + 1)2

Dt

(t+ 1)2

r∑
j=0

j∑
p=0

(r + 1)2

(r − j + 1)2(j − p+ 1)2(p+ 1)2

t∑
k=0

k∑
q=0

(t+ 1)2

(t− k + 1)2(k − q + 1)2(q + 1)2

≤ ε̄C2
ρCEB

L−1
ρ S4 Ar

(r + 1)2

Dt

(t+ 1)2
,

provided that, as we have already enforced, A > AE and D > DE . We are done if we

choose

Bρ > ε̄CρCES
4.

Appendix B. Generalized Elliptic Estimate. In our proof of Theorem 7.2 we

focus upon TM polarization for brevity as the case of TE polarization is very similar

(and slightly easier). To begin we establish this result in the case of pure x–derivatives,

which we now state and prove.

Theorem B.1. Given any integer m ≥ 1 + σ, if (ω, ε̄, E0) ∈ P , E0 ∈ Cωm([0, d]× [−h, h])

so that ∣∣∣∣∂rxr! E0

∣∣∣∣
Cm
≤ CE0

ArE
(r + 1)2

, ∀ r ≥ 0,

for some CE0 , AE > 0, and ∣∣∣∣ 1

ε̄(1− E0)

∣∣∣∣
Cm

<
1

a
,

for some a > 0, and F ∈ Cω([0, d]× [−h, h]) satisfying∥∥∥∥∂rxr! F
∥∥∥∥
H0

≤ CF
Ar

(r + 1)2
, ∀ r ≥ 0,

for the A > 0 from Lemma 7.1 and some CF > 0, and Q,R ∈ Cω([0, d]) satisfying∥∥∥∥∂rxr! Q
∥∥∥∥
H1/2

≤ CQ
Ar

(r + 1)2
,

∥∥∥∥∂rxr! R
∥∥∥∥
H1/2

≤ CR
Ar

(r + 1)2
, ∀ r ≥ 0,

for some CQ, CR > 0, then there is a unique solution V ∈ Cω([0, d]× [−h, h]) of

L0V = F, − h < z < h, (B.1a)

− ∂zV − Tu[V ] = Q, z = h, (B.1b)

∂zV − Tw[V ] = R, z = −h, (B.1c)

V (x+ d, z) = exp(iαd)V (x, z), (B.1d)

satisfying ∥∥∥∥∂rxr! V
∥∥∥∥
H2

≤ Ce
Ar

(r + 1)2
, ∀ r ≥ 0, (B.2)
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where

Ce := κ(h) (CF + CQ + CR) ,

for some universal constant κ(h) > 0.

Proof. We work by induction on r and establish the base case, r = 0, by using the

elliptic estimate, Theorem 6.2, with s = 0, and the hypotheses of the theorem,

‖V ‖H2 ≤ Ce {‖F‖H0 + ‖Q‖H1/2 + ‖R‖H1/2} = Ce {CF + CQ + CR} ,

and we choose

Ce ≥ Ce {CF + CQ + CR} .

To proceed we study the operator ∂rx/r! applied to (B.1) which delivers

L0

[
∂rx
r!
V

]
=
∂rx
r!
F +

[
L0,

∂rx
r!

]
V, − h < z < h, (B.3a)

− ∂z
[
∂rx
r!
V

]
− Tu

[
∂rx
r!
V

]
=
∂rx
r!
Q, z = h, (B.3b)

∂z

[
∂rx
r!
V

]
− Tw

[
∂rx
r!
V

]
=
∂rx
r!
R, z = −h, (B.3c)

∂rx
r!
V (x+ d, z) = exp(iαd)

∂rx
r!
V (x, z), (B.3d)

where [·, ·] is the commutator

[A,B] = AB −BA.

We now assume ∥∥∥∥∂rxr! V
∥∥∥∥
H2

≤ Ce
Ar

(r + 1)2
, ∀ r < r̄,

c.f. (B.2), which, as we shall see in Lemma B.2, implies that∥∥∥∥[L0,
∂ r̄x
r̄!

]
V

∥∥∥∥
H0

≤ Ce(MSCρ)
Ar̄−1

(r̄ + 1)2
.

Applying the elliptic estimate, Theorem 6.2, to (B.3) and using the hypotheses on F , Q,

and R, we find∥∥∥∥∂ r̄xr̄! V
∥∥∥∥
H2

≤ Ce
{∥∥∥∥∂ r̄xr̄! F +

[
L0,

∂ r̄x
r̄!

]
V

∥∥∥∥
H0

+

∥∥∥∥∂ r̄xr̄! Q
∥∥∥∥
H1/2

+

∥∥∥∥∂ r̄xr̄! R
∥∥∥∥
H1/2

}
≤ Ce {CF + CQ + CR}

Ar̄

(r̄ + 1)2
+ Ce {MSCρ}

Ar̄−1

(r̄ + 1)2
,

and we are done provided

Ce ≥ 2Ce {CF + CQ + CR} , A ≥ 2MSCρ.

�
We now present the estimate on commutators which we require above.
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Lemma B.2. Given any integer m ≥ 1 + σ, if E0 ∈ Cωm([0, d]× [−h, h]) so that∣∣∣∣∂rxr! E0

∣∣∣∣
Cm
≤ CE0

ArE
(r + 1)2

, ∀ r ≥ 0,

for some CE0 , AE > 0, and ∣∣∣∣ 1

ε̄(1− E0)

∣∣∣∣
Cm

<
1

a
,

for some a > 0, and ∥∥∥∥∂rxr! V
∥∥∥∥
H2

≤ Ce
Ar

(r + 1)2
, ∀ r < r̄,

then ∥∥∥∥[L0,
∂ r̄x
r̄!

]
V

∥∥∥∥
H0

≤ Ce(MSCρ)
Ar̄−1

(r̄ + 1)2
.

Proof. Focusing on TM polarization, we recall that

L0 = div
[
ρ

(v)
0 ∇

]
+ k2

0,

so that [
L0,

∂rx
r!

]
V = L0

[
∂rx
r!
V

]
− ∂rx
r!

[L0V ]

= div

[
ρ

(v)
0 ∇

∂rx
r!
V

]
+ k2

0

∂rx
r!
V − ∂rx

r!

[
div
[
ρ

(v)
0 ∇V

]
+ k2

0V
]

= div

[
ρ

(v)
0 ∇

∂rx
r!
V

]
+ k2

0

∂rx
r!
V

−
r∑
j=0

div

[(
∂r−jx

(r − j)!
ρ

(v)
0

)
∇
(
∂jx
j!
V

)]
− k2

0

∂rx
r!
V

= −
r−1∑
j=0

div

[(
∂r−jx

(r − j)!
ρ

(v)
0

)
∇
(
∂jx
j!
V

)]
.

We can now estimate∥∥∥∥[L0,
∂ r̄x
r̄!

]
V

∥∥∥∥
H0

≤
r̄−1∑
j=0

∥∥∥∥( ∂ r̄−jx

(r̄ − j)!
ρ

(v)
0

)
∇
(
∂jx
j!
V

)∥∥∥∥
Hσ

≤
r̄−1∑
j=0

M

∣∣∣∣ ∂ r̄−jx

(r̄ − j)!
ρ

(v)
0

∣∣∣∣
Cσ

∥∥∥∥∂jxj! V
∥∥∥∥
H2

≤
r̄−1∑
j=0

M
1

(r̄ − j)

∣∣∣∣ ∂ r̄−j−1
x

(r̄ − j − 1)!
ρ

(v)
0

∣∣∣∣
Cσ+1

∥∥∥∥∂jxj! V
∥∥∥∥
H2

≤
r̄−1∑
j=0

MCρ
Ar̄−j−1

(r̄ − j − 1 + 1)2
Ce

Aj

(j + 1)2

≤ Ce (MSCρ)
Ar̄−1

(r̄ + 1)2
,

and we are done. �
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Remark B.3. We comment here that it is in this final step of the previous proof that

the requirement m ≥ 1 +σ is explained. This is necessary in order to reduce the number

of derivatives on the function ρ
(v)
0 by one.

Proof. (Theorem 7.2) Once again, we proceed by induction, this time on t. The base

case t = 0 is resolved by Lemma B.1. We now assume∥∥∥∥ ∂rx∂
t
z

(r + t)!
V

∥∥∥∥
H2

≤ Ce
Ar

(r + 1)2

Dt

(t+ 1)2
, ∀ t < t̄, ∀ r ≥ 0,

c.f. (7.2), and examine∥∥∥∥ ∂rx∂
t̄
z

(r + t̄)!
V

∥∥∥∥
H2

=

∥∥∥∥ ∂rx∂
t̄
z

(r + t̄)!
V

∥∥∥∥
H1

+

∥∥∥∥ ∂rx∂
t̄
z

(r + t̄)!
∂xV

∥∥∥∥
H1

+

∥∥∥∥ ∂rx∂
t̄
z

(r + t̄)!
∂zV

∥∥∥∥
H1

=

∥∥∥∥ ∂rx∂ t̄−1
z

(r + t̄)!
V

∥∥∥∥
H2

+

∥∥∥∥ ∂rx∂ t̄−1
z

(r + t̄)!
∂xV

∥∥∥∥
H2

+

∥∥∥∥ ∂rx∂ t̄−1
z

(r + t̄)!
∂2
zV

∥∥∥∥
H1

.

The first two terms can be addressed with our inductive hypothesis as they involve z

derivatives of order t̄ − 1. The third we call Z, which we simplify with the following

calculation (remembering that ε
(v)
0 = 1/ρ

(v)
0 ) using the TM Helmholtz equation, (3.3a),

∂2
zV = ∂z

[
1

ρ
(v)
0

ρ
(v)
0 ∂zV

]
= ∂z

[
ε
(v)
0 ρ

(v)
0 ∂zV

]
= (∂zε0)ρ

(v)
0 ∂zV + ε

(v)
0 ∂z

[
ρ

(v)
0 ∂zV

]
= (∂zε

(v)
0 )ρ

(v)
0 ∂zV − ε(v)

0 ∂x

[
ρ

(v)
0 ∂xV

]
− ε(v)

0 k2
0V.

With this we estimate

Z =

∥∥∥∥ ∂rx∂ t̄−1
z

(r + t̄)!
∂2
zV

∥∥∥∥
H1

=

∥∥∥∥ ∂rx∂ t̄−1
z

(r + t̄)!

[
(∂zε

(v)
0 )ρ

(v)
0 ∂zV − ε(v)

0 ∂x

[
ρ

(v)
0 ∂xV

]
− ε(v)

0 k2
0V
]∥∥∥∥
H1

≤
∥∥∥∥ ∂rx∂ t̄−1

z

(r + t̄)!

[
(∂zε

(v)
0 )ρ

(v)
0 ∂zV

]∥∥∥∥
H1

+

∥∥∥∥ ∂rx∂ t̄−1
z

(r + t̄)!

[
ε
(v)
0 ∂x

[
ρ

(v)
0 ∂xV

]]∥∥∥∥
H1

+

∥∥∥∥ ∂rx∂ t̄−1
z

(r + t̄)!

[
ε
(v)
0 k2

0V
]∥∥∥∥
H1

.

For brevity we focus upon the first and second of these terms

Z1 :=

∥∥∥∥ ∂rx∂ t̄−1
z

(r + t̄)!

[
(∂zε

(v)
0 )ρ

(v)
0 ∂zV

]∥∥∥∥
H1

Z2 :=

∥∥∥∥ ∂rx∂ t̄−1
z

(r + t̄)!

[
ε
(v)
0 ∂x

[
ρ

(v)
0 ∂xV

]]∥∥∥∥
H1

.
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For the first, with the calculation

∂rx∂
t̄−1
z

(r + t̄)!

[
(∂zε

(v)
0 )ρ

(v)
0 ∂zV

]
=

1

r + t̄

r!(t̄− 1)!

(r + t̄− 1)!

r∑
j=0

j∑
p=0

t̄−1∑
k=0

k∑
q=0

(
∂r−jx

(r − j)!
∂ t̄−1−k
z

(t̄− 1− k)!
∂zε

(v)
0

)
(

∂j−px

(j − p)!
∂k−qz

(k − q)!
ρ

(v)
0

)(
∂px
p!

∂qz
q!
∂zV

)
,

we estimate, since (r!(t− 1)!) ≤ (r + t− 1)!,

Z1 ≤
1

r + t̄

r∑
j=0

j∑
p=0

t̄−1∑
k=0

k∑
q=0

M

∣∣∣∣ ∂r−jx

(r − j)!
∂ t̄−1−k
z

(t̄− 1− k)!
∂zε

(v)
0

∣∣∣∣
C1

×M
∣∣∣∣ ∂j−px

(j − p)!
∂k−qz

(k − q)!
ρ

(v)
0

∣∣∣∣
C1

∥∥∥∥∂pxp! ∂qzq! ∂zV
∥∥∥∥
H1

≤ 1

r + t̄

r∑
j=0

j∑
p=0

t̄−1∑
k=0

k∑
q=0

M

∣∣∣∣ ∂r−jx

(r − j)!
∂ t̄−1−k
z

(t̄− 1− k)!
ε
(v)
0

∣∣∣∣
C2

×M
∣∣∣∣ ∂j−px

(j − p)!
∂k−qz

(k − q)!
ρ

(v)
0

∣∣∣∣
C1

∥∥∥∥∂pxp! ∂qzq! V
∥∥∥∥
H2

.

With the inductive hypotheses we continue

Z1 ≤
1

r + t̄

r∑
j=0

j∑
p=0

t̄−1∑
k=0

k∑
q=0

MCE
Ar−jE

(r − j + 1)2

Dt̄−1−k
E

(t̄− 1− k + 1)2

×MCρ
Aj−p

(j − p+ 1)2

Dk−q

(k − q + 1)2
Ce

Ap

(p+ 1)2

Dq

(q + 1)2

≤ Ce
M2CECρ
r + t̄

Ar

(r + 1)2

Dt̄−1

(t̄+ 1)2

r∑
j=0

j∑
p=0

(r + 1)2

(r − j + 1)2(j − p+ 1)2(p+ 1)2

×
t̄−1∑
k=0

k∑
q=0

(t̄+ 1)2

(t̄− 1− k + 1)2(k − q + 1)2(q + 1)2

≤ Ce
M2CECρ
r + t̄

S4 Ar

(r + 1)2

Dt̄−1

(t̄+ 1)2
,

and this term is addressed provided that

M2CECρ
r + t̄

S4 ≤ D/3.
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Regarding the term Z2, we begin with the computation

∂rx∂
t̄−1
z

(r + t̄)!

[
ε
(v)
0 ∂x

[
ρ

(v)
0 ∂xV

]]
=

1

r + t̄

r!(t̄− 1)!

(r + t̄− 1)!

r∑
j=0

j∑
p=0

t̄−1∑
k=0

k∑
q=0

(
∂r−jx

(r − j)!
∂ t̄−1−k
z

(t̄− 1− k)!
ε
(v)
0

)

×
{(

∂j−p+1
x

(j − p)!
∂k−qz

(k − q)!
ρ

(v)
0

)(
∂px
p!

∂qz
q!
∂xV

)
+

(
∂j−px

(j − p)!
∂k−qz

(k − q)!
ρ

(v)
0

)(
∂p+1
x

p!

∂qz
q!
∂xV

)}
,

with which we estimate, since (r!(t− 1)!) ≤ (r + t− 1)!,

Z2 ≤
1

r + t̄

r∑
j=0

j∑
p=0

t̄−1∑
k=0

k∑
q=0

M

∣∣∣∣ ∂r−jx

(r − j)!
∂ t̄−1−k
z

(t̄− 1− k)!
ε
(v)
0

∣∣∣∣
C1

×
{
M

∣∣∣∣ ∂j−p+1
x

(j − p)!
∂k−qz

(k − q)!
ρ

(v)
0

∣∣∣∣
C1

∥∥∥∥∂pxp! ∂qzq! V
∥∥∥∥
H2

+M

∣∣∣∣ ∂j−px

(j − p)!
∂k−qz

(k − q)!
ρ

(v)
0

∣∣∣∣
C1

∥∥∥∥∂p+1
x

p!

∂qz
q!
V

∥∥∥∥
H2

}
.

With the inductive hypotheses we can estimate

Z2 ≤
1

r + t̄

r∑
j=0

j∑
p=0

t̄−1∑
k=0

k∑
q=0

MCE
Ar−jE

(r − j + 1)2

Dt̄−1−k
E

(t̄− k)2

×
{
MCρ(j − p+ 1)

Aj−p+1

(j − p+ 2)2

Dk−q

(k − q + 1)2
Ce

Ap

(p+ 1)2

Dq

(q + 1)2

+MCρ
Aj−p

(j − p+ 1)2

Dk−q

(k − q + 1)2
Ce(p+ 1)

Ap+1

(p+ 2)2

Dq

(q + 1)2

}
.

≤ CeM2CECρS
4 Ar+1

(r + 1)2

Dt̄−1

(t̄+ 1)2
,

and this term is appropriately bounded if

M2CECρS
4A ≤ D/3,

since (j − p+ 1) ≤ r + t̄ and (p+ 1) ≤ r + t̄. �
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