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Abstract. The interaction of linear waves with periodic structures arises in a broad
range of scientific and engineering applications. For such problems it is often mandatory
that numerical simulations be rapid, robust, and highly accurate. With such qualities in
mind High—Order Spectral methods are often utilized, and in this paper we describe and
test a perturbative method which fits into this class. Here we view the inhomogeneous
(but laterally periodic) permittivity as a perturbation of a constant value and pursue
(regular) perturbation theory. We demonstrate that not only does this lead to a fast and
accurate numerical method, but also that the expansion of the field in this geometric
parameter is valid for large deformations (up to topological obstruction). Finally, we show
that, if the permittivity deformation is spatially analytic, then so is the field scattered
by it.

1. Introduction. The interaction of linear waves with periodic structures arises in
applications from across the engineering and physical sciences. Examples can readily be
found in acoustics (e.g., underwater acoustics [9], remote sensing [49], and nondestructive
testing [47]), electromagnetics (e.g., surface enhanced spectroscopy [32], extraordinary
optical transmission [14], cancer therapy [15], and surface plasmon resonance (SPR)
biosensing [23, 26, 30, 39]), and elastodynamics (e.g., hazard assessment [20] and full
waveform inversion [50]).

Due to the technological importance of these models, all of the classical numerical
algorithms have been used to simulate solutions of the governing partial differential equa-
tions. This includes the Finite Difference [48, 29], Finite Element [25, 24], Discontinuous
Galerkin [22], Spectral Element [11], and Spectral [21, 45, 46] methods. While these are
compelling choices, due to their fully volumetric character they feature a large number
of unknowns (N = N, N, N, for a three-dimensional simulation) and the need to invert
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2 D. P. NICHOLLS

enormous, non-symmetric positive definite (SPD) matrices (of dimension N x N). Such
characteristics are still challenging the most sophisticated research groups; see, e.g., the
discussion in [16, 31].

Turning to SPR sensors, their utility stems from two characteristics of an SPR, namely
(i.) its extremely strong response and (ii.) its quite sensitive nature. Indeed, over the
range of 10-50 nanometers in incident wavelength the reflected energy can fall from nearly
100 % to 10 % (or even 1 %) before returning to almost 100 %. Clearly, to simulate such
configurations with fidelity a numerical algorithm should be not only extremely accurate,
but also robust and rapid. For this reason we will focus upon High—Order Spectral (HOS)
methods [21, 45, 46] which can deliver precisely this behavior.

For the problem of scattering by homogeneous layers it is clearly wasteful to discretize
the full bulk of each layer and sophisticated solvers settle for interfacial unknowns with the
knowledge that information inside the layers can readily be computed from appropriate
integral formulas. Boundary element (BEM) [44] and boundary integral (BIM) [10, 27]
methods are foremost among such methodologies and can produce spectrally accurate
solutions in a fraction of the time of their volumetric competitors.

The author has investigated a related class of algorithms (“High—Order Perturbation of
Surfaces”-HOPS) where the (periodic) layer interfaces, {z = am, + gm (2, 2) }, are viewed
as perturbations, g, (z,y) = efm(z,y), of flat interfaces, {z = a,,}, and the governing
equations are treated by (regular) perturbation theory. This viewpoint has the advantage
that the (single) dense, non-SPD BEM/BIM solve (requiring sophisticated quadrature
rules, singularity treatment, and Green function quasiperiodization) is replaced by a
sequence of trivial flat—interface solves. In addition, once the perturbation calculation is
completed, the scattering of waves by a family of structures, parameterized by &,,, can
be rapidly computed by simple summation.

However, such surface approaches are not applicable for structures with more general
permittivities, e(x,y, z), which do not have layered structure. In this work we follow the
approach of Feng, Lin, and Lorton [18, 19] and adopt a perturbative philosophy akin to
that of the HOPS algorithm in that we consider such a permittivity as a perturbation of
a trivial one, e.g.,

e(r,y,2) = €+ 0E(z,y,2), €€R, Elx+dyy+dy,2)=Ez,y,2),

where E is a permittivity “envelope,” and again conduct (regular) perturbation theory.
With this point of view we denote the resulting algorithm a “High—Order Perturbation of
Envelopes” (HOPE) scheme. Feng, Lin, and Lorton focused upon strongly elliptic equa-
tions [18] and the Helmholtz problem in Transverse Electric (TE) polarization [19], each
with stochastic perturbations, E. In contrast, we consider both TE and TM (Trans-
verse Magnetic) polarization with deterministic envelopes in order to provide a novel
methodology which should have computational advantages over general-purpose volu-
metric solvers in certain configurations, e.g., where the support of E is small or where
the set on which FE significantly changes is small. One choice which we pursue in this
work is an approximate indicator function which is nearly zero/unity to denote the ab-
sence/presence of a material. For brevity and clarity of presentation, we focus upon the
two—dimensional setting of TE or TM polarization governed by the Helmholtz equation.
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We leave the nontrivial details of extending our approach to the fully three-dimensional
setting governed by the Maxwell equations for future investigations.

The contribution of the current work is not only a detailed description of the algorithm
for both TE and TM polarization supplemented with illuminating computations (very
much in the spirit of [18, 19]), but also a new, extensive, and rigorous analysis which
justifies the implementation we employ. More specifically, we prove not only that the
domain of analyticity of the scattered field in § can be extended to a neighborhood of the
entire real axis (up to topological obstruction), but also that this field is jointly analytic
in parametric and spatial variables provided that E(x,y, z) is spatially analytic.

The rest of the paper is organized as follows. In § 2 we recall the governing equations
complete with a discussion of transparent boundary conditions in § 3. We describe the
HOPE algorithm in § 4 and begin our theoretical developments with a description of the
relevant function spaces in § 5. We state and prove our analytic continuation results in
§ 6 and our joint analyticity results in § 7. Finally, we describe numerical results in § 8,
complete with implementation details in § 8.1 and results for layered media scattering in
§ 8.2. In Appendix A we record the proof of an involved joint analyticity result, while in
Appendix B we give the proof of an intricate elliptic estimate.

2. Governing Equations. We assume a constant permeability equal to that of the
vacuum u = o and that there are no currents or sources so that the time—harmonic
Maxwell equations become

curl[E] — iwpgH =0, curl[H] + iweE = 0, (2.1)

where (E, H) are the electric and magnetic field vectors, respectively, and time depen-
dence of the form exp(—iwt) has been factored out [43, 4]. The d—periodic permittivity
is specified as

e z > h,
e=¢e(r,z) =< e (x,2), —h<z<h,
ew), z < —h,

e ) ¢ R, and € (z + d, 2) = €)(z, z). We further specify that

lim € (z,2) = €W, lim e (z,2) = ™),
z—h— z—(—h)+

and typically e*) = ¢(®), With the permittivity of the vacuum ey we can define
k2 = wleouo = w?/c2, (K" =™E2 m e {u,v,w},

which also introduces the speed of light, ¢y = 1/,/€opo-
This structure is illuminated from above by y—independent plane—wave incident radi-
ation of the form

Ei“C(x, z) = Aexp(i(ax — ’y(“)z)), Hinc(x, z) = Bexp(i(ax — ’y(“)z)),
a=kEWsin(B), ~™ = k™ cos(), (2.2)
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where |A| = |B| = 1. If this is incident upon a y—invariant structure and the radiation is
appropriately polarized, then the fully vectorial Maxwell equations (2.1) can be reduced
to one of two scalar, two—dimensional Helmholtz problems. For instance, if

0 1 iy
A= 1 , B = 3 0 ’
0 WHO\ o

then the transverse component v = v(z, z) of the electric field satisfies the Transverse
Electric (TE) Helmholtz equation

1
—div [Vv] + kdv = 0.
€

By contrast, if

1 iy 0
A=—— , B=11],
iwe 0

then the transverse component v = v(x, z) of the magnetic field satisfies the Transverse
Magnetic (TM) Helmholtz equation

1
div |:V’U:| + kv = 0.
€
In each case we will seek quasiperiodic solutions satisfying [51]

v(z +d, z) = exp(iad)v(z, 2).

3. Transparent Boundary Conditions. We now seek to not only rigorously spec-
ify the appropriate boundary conditions on solutions in the far—field, but also reduce the
infinite domain to one of finite extent. Happily, both can be accomplished with the same
formalism [5, 6]. In the upper domain {z > h} we ask for solutions which are the sum of
the incident radiation and an upward propagating (reflected) component, e.g.,

v = Uinc 4 ,Ureﬂ
= exp(iax — iy z) + ¢o expliaz 4+ iy (z — h)) + Z Uy, exp(ioyr + iwéu)(z —h)),
p#0
[43, 51] where

ap, = a+ (27/d)p, 71(,m) =/eMk§ — a2, Im{vz(]m)} >0, me {u,w}

If we set ¢o = Gy — exp(—iy("h), implying @ = co + exp(—iy(“h), then

v = explioz — iyWz) — exp(iazx + iy (2 — 2h)) + Z Uy exp(iapr + i'yz()“)(z — h)),

p=—00
and v(z, h) = u(x). It is a simple matter to show that
d.v = (—iy ™) exp(iaz — iv™z) — (i7" exp(iaz + iy (z — 2h))

oo

+ > ()i expliay + i) (= = h)),

p=—00
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so that

— d.0(w, h) = (iv™) expliaz — iy h) + (/™) expliaa + i) (<h))

+ Z wp )i, exp(iay).

p=—00

If we define the function
o(x) == (22’7(“) exp(fify(“)h)) exp(iax), (3.1)

and the order—one Fourier multiplier (the externally directed Dirichlet—~Neumann opera-
tor for the Helmholtz equation on {z > h})

oo

Tu[w} = Z (_Z’)/z()u))'lsz exp(iapx),

p=—00

then we see that we can express the Upward Propagating Condition (UPC) [1] exactly
with the boundary condition

—0.0(z, h) — Tulv(z, h)] = ¢(x).

By contrast, in the domain {z < —h} we seek a solution which is purely downward
propagating (transmitted)

pTAnS — Z Wy exp(iopx — z*yl()w)(z + h)),

p=—00

[43, 51]. Clearly v(z,h) = w(z) and, with the calculation

oo

d,v(x,—h) = Z (—ml(,“’))wpexp(iapx),

p=—00

and the analogous order—one Fourier multiplier (again, the externally directed Dirichlet—
Neumann operator for the Helmholtz equation on {z < —h})

oo

Tul¥] = Y (—ing® )iy explicyz),

p=—o00
we can state the Downward Propagating Condition (DPC) [1] transparently using
0,v(x,—h) — Tyv(z,—h)] = 0.

Summarizing all of our conclusions thus far, we settle upon the following problems to
solve. In TE polarization we must find a unique solution of

mAv + k2v =0, —h<z<h, (3.2a)
— 0yv —Ty[v] = ¢, z=h, (3.2b)
0,v — Tylv] =0, z=—h, (3.2¢)
v(x +d, z) = exp(iad)v(z, 2). (3.2d)
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In TM polarization we seek a unique solution of

div [()lw} + k3v =0, ~h<z<h, (3.3a)
eW)(x, 2)

—0,v —T,[v] = &, z=h, (3.3b)

0,v — Ty [v] =0, z = —h, (3.3¢)

v(z +d, z) = exp(iad)v(z, 2). (3.3d)

4. A High—Order Perturbation of Envelopes Method. At this point there are
many approaches available to us for the numerical simulation of solutions to the TE, (3.2),
and TM, (3.3), problems stated above. Among these are the classical Finite Difference
[48, 29], Finite Element [25, 13, 5, 6], Spectral Element [11], and Spectral Methods
[21, 45, 46]. For more details about these and other approaches one can consult one of
the many surveys on the topic, e.g. [3].

Rather than pursue one of these standard volumetric approaches, we follow the lead
of Feng, Lin, and Lorton [18, 19] and view the problem perturbatively. More specifically,
we think of our configuration as a small deviation from a trivial, constant—permittivity,
structure,

) =€(1—0E) = e— 6(eE),

where € € R is a constant, and ¢ < 1 (initially). For future reference (TM polarization)
we note that, in this case,

I 1 o
e(v)_ggE(S'

In the case of TE polarization it was shown by Feng, Lin, and Lorton [19] that, provided
that F(x,z) is smooth enough, the field v = v(z, 2;6) depends analytically upon § so
that

v=uv(z,z;0) = ng(x, 2)6¢, (4.1)
=0

converges strongly in a Sobolev space. It is not difficult to show that, upon multiplication
of the Helmholtz equation by €*), in TE polarization these v, satisfy

Avg + ekdvg = F™, —h<z<h, (4.2a)
— 0,0 — Ty lve] = 60,00, z=h, (4.2b)
0,vp — Ty [ve] =0, z = —h, (4.2¢)
ve(x + d, z) = exp(iad)v(z, 2), (4.2d)

where d; 4 is the Kronecker delta function, and

F™)(0,2) = e, s (o,5).
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The situation is not much more difficult in TM polarization where, using the fact that €
is constant, the vy must verify

Avg + Ekdvy = FZ(TM), —h<z<h, (4.3a)
— Oyvp — Ty [ve] = 00,00, z=h, (4.3b)
0,v¢ — Toy[ve] =0, z = —h, (4.3¢)
ve(z + d, 2) = exp(iad)ve(z, 2), (4.3d)

where

-1
FZ(TM) (z,2) = — Zdiv [E(x, z)f—quq(x, z)} .
q=0

It is easy to see [51] that the unique solution at order £ = 0, in either polarization, is
vole, 2) = expli(az —1")2)),

and a “High—Order Perturbation” scheme can be built upon this where we make the
approximation

I
<
<
—
&
N
N
(o]
S

v(z,2) =~ vl (z, 2)

This is pursued in detail in Section 8.

In making the nature of the perturbation more precise we can formulate the particular
algorithm we pursue in this contribution. We consider an envelope function, F = E(z, z),
which indicates the support of the domain inside {—h < z < h} where the permittivity
is not equal to €. For instance, we may choose

tanh(w(z — a)) — tanh(w(z — b)) }
5 ;

E = Eq(2) = E { (4.4)

with transition sharpness parameter w, which is nearly zero for —h < z < a — ¢ and
b+ e < z < h, but is almost Ej on the interval a + ¢ < z < b — e. This function and the
resulting permittivity are depicted in Figure 1 (left and right, respectively).

Envelope function E(z, z) Permittivity function e(z, z)

\ﬁiﬁm\“\\\\\\\\\\\\\iﬂiﬁﬁi\\\\\\\\\\\

z 14 0 N

FIG. 1. Plot of E(z, z) (left) and () (z, z) (right).
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With this form of perturbation we classify our approach as a “High—Order Perturba-
tion of Envelopes” (HOPE) scheme [33] to distinguish it from the High-Order Pertur-
bation of Surfaces (HOPS) algorithms which the author has advocated in previous work
[34, 37, 38, 42, 41].

5. Function Spaces. Before pursuing our theoretical results we specify the function
spaces we require for the analysis. For any real s > 0 we have the classical interfacial
quasiperiodic L?~based Sobolev norm [27]

> 2

U5 = > @) |0,

p=—00

. 1 ¢ ,
. (p)Pi=1+ |p|2, U, = E/ U(x)e*“r® dx,
0

which gives rise to the quasiperiodic Sobolev space [27]
H*([0,d)) = {U(x) € L*([0,2]) | U]l . < o0}

The dual of H® is H™*® which can be equivalently defined by the norm above with
negative index. We also recall, for any integer s > 0, the space of s—times continuously
differentiable functions with the Holder norm

f

We also require, for any integer s > 0, the volumetric quasiperiodic L?~based Sobolev

norm
s ) h
lalZ =3 S ()22 / ol )| a,

j=0p=—o00
which defines the quasiperiodic Sobolev class

H*((0,d] x [~h, h]) = {u(z, 2) € LX([0, 2] x [=h, b)) | |U] . < 00} .

As we shall see, the following algebra property will be crucial for our subsequent
developments [28, 17, 34].

LEMMA 5.1. For any integer s > 0 and any set @ C R™, if {f,u} : Q — C, f € C*(Q),
u € H*(Q), then
[full g < M(m,s,Q)|f

for some universal constant M (m, s, Q).

Cs UHHS’

Finally, we will need a particular notion of analytic function.

DEFINITION 5.2. Given an integer m > 0, the functions f = f(x) and E = E(z, 2)
are members of the spaces C¥ (]0,d]) and C%([0,d] x [—h, h]), respectively, if they are
real analytic and satisfy the estimates

0y <oy A" ’ oot
! om (r+1)2 (r+1t)!
for some C¢,Cg, A, D > 0.

The notation C% defines the space of real analytic functions, C*, with radius of
analyticity (given by A and D) measured in the C™ norm.

A" Dt
—, Vr,t>0
r+1)2 (t+1)% nh=

C‘m,
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REMARK 5.3. Note that the incident radiation function ¢, (3.1), is clearly real analytic
in x and satisfies
AT

<Cy———, YVr>0,
HW— ?(r+1)2

for some Cy, A > 0.
Before closing this section we quote an invaluable family of elementary bounds [36, 40].

LEMMA 5.4. For any integer r > 0 there exists a universal constant S < oo such that
the following sums are bounded

r

(r+1)2 ~ (r+1)? 2
) ey TR A D D) Dy e sy R VA

=0 =0 p=0

Clearly, changing the entries in the summations by one or two, e.g.,
r 2

2 (r—j+12(G+1)%

=0

will not affect the convergence of these sums and, among the finite collection of such
trivial changes, there is a universal S which works for all.

6. Analytic Continuation. As we mentioned above, in TE polarization the expan-
sion of v in 4, (4.1), was shown to be strongly convergent in an appropriate function
space by Feng, Lin, and Lorton [19], provided that F(x,z) is sufficiently smooth. This
result justifies our HOPE approach, but only in the case § < 1. The situation of TM
polarization or, in either polarization, 6 moderate to large is outside the scope of their
theory. However, by following the work of the author and Reitich [36] and the author
and Taber [40], we can demonstrate the analyticity of the solution for any real value of
the perturbation parameter (up to topological obstruction). This result is one of analytic
continuation and justifies our use of Padé approximation to simulate deformations which
are large and/or rough.

To demonstrate this we consider the envelope F(z, z) and show that v depends analyt-
ically upon SE(x, z) for any deR. To put this into our current framework we consider
fixed dp € R and write

Eo(z,2) == 0oE(z,2), =20 —do,
and we must prove analyticity of the field about § = 0 as
SFE(z,2) = (0o + 0)E(x, 2) = Eo(z, z) + 0E(x, 2).
Thus, we consider

”)xz ZE{I—JE:UZ}

{1—60 z) — 0E(x, z)}
=e{l— Ey(z, z)} 0eE(z, 2).
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We will now demonstrate that the field v = v(x, 2; Ep, ) is analytic in 6 by showing

that the expansion

(6.1)

U= ’U(’I, Z3 EO; 5) = Z Ug(SC, Z3 EO)(;ev
£=0
is convergent. In order to give a unified treatment for both polarizations we write (3.2)
and (3.3) as
Lv =0, —h<z<h,
—0v —Tyv] = ¢, z=h,
0,v — Tyy[v] =0, z = —h,
v(x +d, z) = exp(iad)v(z, 2), ,
where
£ PUIA 4 k2, TE polarization,
. div [p(”)V] + k3, TM polarization,
and
P (z,2) = #
e (z, 2)

We note that, from the definition of €(*) above,
1= pMe® = o (&(1 — Eo(x, 2)) - 6eE(, 2)}

we can show that

P = p(2,2:0) =3 pf (w, 2)6",
=0
where
(v) _ 1
po (@:2) = é(1— Eo(z,2))’
() E(,z) (o)

py (2, 2) = m%q

In addition, it can also be demonstrated that
[oe]
L=LE)=) L,
£=0

where
p&v)A + k&de0, TE polarization,

Le= div [p{"'V | + kgdro, TM polarizati
Py + £50¢,0, polarization.

Now it is a simple matter to show that the v, satisfy

£—1

[-"OUé:Fé::_ZEE—qvqy _h/<Z<h,
q=0

- azvf - Tu[vf] = 5Z,O¢7 Z= h’

0,vp — Toy[ve] =0, z = —h,

ve(xz + d, z) = exp(iad)ve(z, z).

(x,2) = EE(x,z)p(()v)(x,z)pff_)l(x,z), > 0.

(6.2f)

(6.3a)

(6.3b)

(6.4a)

(6.4b)
(6.4c)
(6.4d)
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For this and later results it is convenient to define the extra smoothness parameter we
require in TM polarization

__J0, TE polarization,
1, TM polarization.
To facilitate later results we require the following elementary analyticity estimate.
LEMMA 6.1. Given any integer s > 0, if Ey(z, 2), E(z, 2) € C*T7([0,d] x [—h, h]), and
1 1

— = < -,
6(1 - EO) Cs+o a

for some a > 0 then
¢
el gave < CpBy, £ 0,
for some C,, B, > 0.

Proof. We proceed by induction on ¢ and conclude the case £ = 0 by choosing

1 1
1= Fo) |guro " a’

Cp = |po

Cs+o -

Now, assuming the estimate for all £ < L we examine the size of pr,,

E
Cs+o = 1_ E() PL—-1

123
Cs+a
1
‘ |E COs+o |PL—1 Cs+o
1 - Ey|geto
1 _
SﬁEmwQﬁﬁﬂ
and we are done provided that
E E s+o
l%>JJQL.
a

|

We now state the elliptic estimate required for our inductive proof, which is proven in

[13, 7, 12, 5]. As observed by these authors, the issue of uniqueness of solutions to these
Helmholtz problems, e.g.,

LoV =0, —h<z<h, (6.5a)
0.V —T,[V] =0, 2=h, (6.5b)
0.V —T,[V] =0, z = —h, (6.5¢)
V(z+d, z) = exp(iad)V(x, 2), (6.5d)

which should have only the trivial solution V' = 0, is a subtle one and certain illuminating
frequencies w will induce non—uniqueness in some configurations. Unfortunately a precise
characterization of the set of forbidden frequencies is elusive and all that is known is that
it is countable and accumulates at infinity [4]. To accommodate this state of affairs we
define the set of permissible configurations

P :={(w,€ Ep) | V =0 is the unique solution of (6.5)}. (6.6)
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With this we can now state the fundamental result.

THEOREM 6.2. For any integer s > 0, if (w,€, Ey) € P, Ey € C*T9([0,d] x [—h, h]),
F € H5([0,d] x [~h,h]), Q € H*t'/2([0,d]), and R € H*t'/2([0,d]), then there exists a
unique solution of

LoV =F, —h<z<h,
— 0,V —T,[V] = Q, z=h,
8.V —T,[V] =R, z=—h,

V(z+d,z) = exp(iad)V (z, z),

satisfying
Vllgeee < CAllF I ge + QU rovrre + 1Rl gosrsa}

for some universal constant C, > 0.

We are now in a position to establish the recursive estimate required by our analyticity
theory.

LEMMA 6.3. Given any integer s > 0, if Fo(x,2), E(x,2) € C*T9([0,d] x [—h, h]), and

_ b
€(1 — Ey)

Csto G
for some a > 0, and

||W||Hs+2 < KBZ, ¢ <L,
for constants K, B > 0, then the functions Fy in (6.4a) satisfy

1ELllye < CKB,B,

for some constant C' > 0.

Proof. The proof depends upon polarization, but the changes are minor so we focus
upon TM and leave TE to the reader. Given our hypotheses we can immediately appeal
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to Lemma 6.1 so that

L—1
IELl s = ||— Z L1—qvq
4=0 He
Z Hdlv [ quq} ‘HS
q=0
L—1
S Z HpL qvvq Hs+o
q=0
L—1
< M| 90l

T
|
-~ o

E“i

Cprfq ||vq||Hs+2

A
T
Lo

MC,B} 9K B

Q
I
o

oy
<

(]

L-1
<KC,MB,B"™! (
q=0

)qu

1
< KC,MB,B"™! ) :

|

where we have defined 6 := B,/B and we select
B> B,
to ensure € < 1. We are done provided that we choose

C>C,M/(1—0).

With these we can now state and prove our analytic continuation result.

THEOREM 6.4. Given any integer s > 0, if (w, €, Eg) € P, Eo(x, 2), E(z, z) € C519([0, d] x
[, h]), and

1 1
€(1 — Ey) Cs+o a’
for some a > 0, then the series (6.1) converges strongly. More precisely,
vgl| ese < KB, £>0, (6.7)

for some universal constants K, B > 0.

Proof. As before, we proceed inductively. The case £ = 0 is resolved by appealing to
Theorem 6.2 with F =0, Q = ¢, and R = 0, and then setting K := ||vg|| y.+>. Assuming
that (6.7) is true for all £ < L we invoke Theorem 6.2 to deduce that

ol grosz < Ce 1 FLl g -
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From Lemma 6.3 we find that
||'UL||H5+2 < CYEC']:{BPBL_l7

and we are done provided that
B> C.CB,.
O

7. Joint Analyticity. To conclude our theoretical developments we produce a joint
analyticity result in the spirit of that found in Nicholls and Taber [40], which shows that
v = v(x, 2;0) is analytic in z, z, and . For this we will demonstrate that the vy from
(6.1) satisfy the conditions of Definition 5.2. For this we will analyze, quite directly, the
equations (6.4), more specifically arbitrary a and z derivatives of these problems.

In order to simplify subsequent developments we require the following analogue of
Lemma 6.1 which is established in Appendix A.

LEMMA 7.1. For any integer m > 0, if Fy(z, 2), E(z,z) € C¥ (]0,d] x [—h, h]) so that

orot A", Dt orot A", Dt
0 om < Cro (r +E1)2 (t +Ei)2’ o om <Cs (r +E1)2 (t +Ei)2’

for all r,t > 0, for some Cg,,Cg, A, Dg > 0, and
1 1
Eron)

for some a > 0, then
arot A" Dt
G I A

for some C,, B,, A, D > 0.

As before, we now consider the elliptic estimate necessary for our proof. We state it
here but establish it in Appendix B to maintain the flow of our developments.

THEOREM 7.2. Given any integer m > 1+ o, if (w, € Ep) € P, Ey € C%([0,d] x [—h, h])
so that

arot A, DY

Tz <(Cg,——=—=2=, Vrt>0,
Ol o = B2+ 2 T
for some Cg,, Ag, Dg > 0, and
SN R
E(]. — Eo) om a’
for some a > 0, and F € C¥([0,d] x [—h, h]) satisfying
orot AT D!
27 <Op—— 2 Y t>0,
‘ (r + 1) HH RV VEA
for the A, D > 0 from Lemma 7.1 and some Cr > 0, and Q, R € C*([0,d]) satisfying
o AT ar A"
-z <COg———, ||=R <Cr7——5, Vr=>0,
r! QHHW RGN e PV G VR
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for some Cg, Cr > 0, then there is a unique solution V € C¥([0,d] x [—h, h]) of

LoV =F, —h<z<h, (7.1a)
OV T, V] =Q, 2=h, (7.1b)
8.V — T,[V] = R, 2= —h, (7.1c)
V(z +d,z) = exp(iad)V (z, z), (7.1d)

satisfying

orot AT Dt
—Ez_ < —_—— VYV rt> 7.2
‘(r—i—t)! HHQCE(r+1)2(t+1)2’ nt20, (72)
where

C,:=k(h)(Cr+Cq+Chr),
for some universal constant x(h) > 0.
With this we can now state and prove the recursive estimate we require.
LEMMA 7.3. For any integer m > o, if Eg(z, 2), E(z,2) € C¥([0,d] x [—h, h]) so that

0,02 <o Ae _Dg 0,02
0 o = P12+ 12 (1)

for all r,t > 0, for some Cg,,Cg, Ag, Dg > 0, and

r t
< OEL Dg

E ;
om (r+1)2(t+1)2

Eo

_r 1
E(1 - EO) cm a’
for some a > 0, and
T 9t A" Dt
%W < KB* 5, VYU<L, Vrt>0,
(r+t)! || e (r+1)2({t+1)
for the A, D > 0 from Lemma 7.1 and some K, B > 0, then
7T At ~ Ar Dt
%FL SciKBpBLil 27 L 1\2° vrat207
(r+1t)! HO (r+1)2@+1)

for some C > 0.

Proof. The cases of TE and TM polarization are similar so we only present the latter
for simplicity. We recall that, in this case,

L-1 L-1
Fr =— Z Lr_qug=— Z div [p(;quUq} ,
q=0 q=0

so that
%o I N O ) ) (g0hok
(r+0)! L“<r+t>!q§j20§ W[(v—j)!(k—r)!pu)( M'ﬂ
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Using Lemma 6.1 and the inequality (r!t!) < (r 4 ¢)! we have

oo LA Rt ( i ot >( 03 oF >’
[, < ovm S o () (95 5,
_ il Ry =i gLk g ’aﬂ i H
~ (r+t)! o e (r— ! (k — )"k 7! k'
L-1 r t ; :
Ar—i Dt—k AJ Dk
< MC,B51 _ KBI—
i e S Gl o DN (Rl e DR VRS VRN R D

AT Dt B\ 11
< L—1 P
< KC,MB, B (r+1)2(t+1)2 Z_: ( B >

(r+12 Zt: (t+1)2
)2 (t—k+1)2(k+1)2

1 A" D!
<KC,MS* | — |B,B" ' ——— —
(1—9) r (r+1)2 (t+1)%’
provided § = B,/B < 1. Thus we are done if we choose

C>C,MS*/(1-9).

X

|
We are now in a position to state and prove our joint analyticity result.

THEOREM 7.4. Given any integer m > 1+ o, if (w, €, Eg) € P, Eg € C¥([0,d] x [—h, h])
so that

oot An DY
G, SR e T2
for some Cg,, Ag, Dg > 0, and
1 1
é1—FEo)|gm a

for some a > 0, then the series (6.1) converges strongly. Furthermore, the solution v(z, z)
satisfies the joint analyticity estimate

orot , A" Dt
e <KB' ~ _—
(r+0) | e (r+1)2(t+1)

for the A, D > 0 from Lemma 7.1 and some universal constants K, B > 0.

Vg Virt>0, (7.3)

Proof. Once again we proceed inductively. The case ¢ = 0 is resolved by appealing to
Theorem 7.2 with F =0, @ = ¢, and R = 0, which delivers the estimate
arat Ar Dt
N C , Vrt>0,
‘(r+t)!0H2 r(h) Cr+1)2(t+1)2 =
and we are done if we set K = k(h)Cy. We now assume that (7.3) is true for all £ < L
and, from Lemma 7.3, we know that Theorem 7.2 can be invoked with

Crp=CKB,B*™', Co=Cr=0.
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This implies that

0:0: < k(h)CKB pri A Dy
(ret) ™ (r+1)2(t+1)2’ e

We are done provided that

Dt
|L

B > k(h)CB,.
0

8. Numerical Results. We are now in a position to demonstrate the utility and
robustness of the HOPE algorithm we have discussed above. After we describe our im-
plementation of the method, we illuminate its usefulness by comparing it to a classical
exact solution for multiply layered media with flat interfaces. With this simple configu-
ration we can make several statements regarding the advantages and limitations of this
HOPE approach.

8.1. Implementation. A practical implementation of the HOPE algorithm involves
discretizing the problems (4.2) and (4.3) for TE and TM polarizations, respectively. To
start, we truncate the HOPE expansion (4.1) after a finite number of Taylor orders

v~ ol(z, 2;0) ngxz (8.1)

which should satisfy (4.2) or (4.3) up to perturbatlon order L. To accomplish this we
adopt a High—Order Spectral (HOS) philosophy [21, 45, 46] and, with the quasiperiodic
boundary conditions in mind, utilize a spectral Fourier—Chebyshev methodology. For
this we approximate

N./2—-1 N,

W%Uévm’Nz = Z prq (z/h)e iap®

p=—N,/2 q=0
where Ty is the g-th Chebyshev polynomial. To discover the Fourier—Chebyshev coeffi-
cients, {0¢p,4}, we take a collocation approach and simply demand that the equations
(4.2) and (4.3) be true at the gridpoints

{z; =j(d/Ngy) | 0<j <Ny -1}, {2z =hcos(nr/N,)|0<r<N.,}.

The resulting system of equations can be efficiently and robustly solved by repeated use
of the fast Fourier and Chebyshev transforms as outlined in [21, 45, 46].

As with the HOPS schemes we have advocated in the past [36, 38], the current HOPE
approach requires careful thought regarding the summation of the Taylor series appearing
n (8.1). The natural, direct (Taylor), summation of this quantity is limited to the disk
in ¢ of analyticity centered at the origin in the complex plane. However, long experience
has demonstrated that the true domain of analyticity is typically much larger than this,
and the point of our theoretical developments in Section 6 was to demonstrate that this
is the case in the current setting. The conclusion that we can reach from Theorem 6.4 is
that this domain includes a (small) disk about any & € R such that

v 1
&1 —6oE)

)

a

Cs+o
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or
2 ‘1 _$E
&

Cs+a !
An effective and efficient algorithm to access this larger region of analyticity is Padé
approximation [2] which we have used with great success in the past [35, 36, 42, 33]. In
summary, Padé approximation estimates the truncated Taylor series

L

F(8) =" fid,

£=0

by the rational function

M o aM(9) B E%: 0™ B
¥ = - SN MAN=L
where
3] 0= 10+ 0@,

Classical formulas exist for the coefficients {a,;,,b,} [2], and these Padé approximants
have remarkable properties of convergence enhancement. We refer the interested reader
to § 2.2 of [2] and § 8.3 of [8] for a full discussion.

8.2. Layered Media Scattering. In order to provide a brief demonstration of the con-
vergence properties of our algorithm, we considered the scattering of linear waves by a
layered medium. More specifically, we focused on simulating solutions of the Maxwell
equations, (2.1), with piecewise constant permittivity

€, t<z<h,
e=e(z)=1¢€, —t<z<t,
€, —h<z<-t,

for 0 < ¢t < h and real ¢ > € > 0, with incident radiation of the form (2.2). It is easy to
see that the unique solution to this problem can be written down in terms of a system of
linear equations which, in the three-layer case, is not difficult to solve [51] and we used
them as exact solutions against which we compared our numerical simulations.

To specify our test more precisely, we selected the following geometric parameters

d=0.8, h=095 t=0.500,
and the following electromagnetic constants
€=09, A=0.7, 6=30°.

We considered two configurations: (i.) a small deviation from the trivial, constant—
permittivity case, specified by ¢ = 1.1, and (ii.) a large deviation characterized by
¢ = 1.6. In the small deviation case we required

16< N, <32, 2<L<16,
while for the large deviation we demanded

16< N, <64, 2<0L <32
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and in each case N, = N,. We measured convergence in the L* norm and computed

Ng,N:,L . Ng,N.,L UExact

Error = |U Loo
8.3. Small Deviation. We summarize the results of our experiments in the case of a
small deviation, ¢ = 1.1, in Figures 2 & 3. More specifically, we examined the conver-

gence in N, = N, in Figure 2 while we studied L convergence in Figure 3.

Error versus N, Error versus N,
0.1& T T T T T T 4 o1t E T T T
000 S Y
0.08 | 1 0.09 F E
0.07 0.08¢ ]
0.07 f k|
0.06
0.06 - E
8 0.05 8
2 2 0.05F 1
= =
0.04 1 0.04 | 1
0.03f 0.03 h
16 18 20 22 24 26 28 30 32 16 18 20 22 24 26 28 30 32
N, N,
F1c. 2. Error versus N, for ¢ = 1.1 (Left: TE, Right: TM).
Error versus L Error versus L
10° : : 018 ; ; : ‘ ‘
0.16
0.14 E
012 1
0.17¢ 1
0.08 q
5 o
=] 2
= M 0.06] 1
- 0.04 1
x
102 ‘ I
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
L L

F1c. 3. Error versus L for ¢ = 1.1 (Left: TE, Right: TM).

While we were pleased that our method showed convergence as all discretization pa-
rameters were refined, the results were rather disappointing. We employed not only a
HOS Fourier-Chebyshev approach to solve the Helmholtz problems, (4.2) and (4.3), but
also utilized a High—Order Perturbation scheme for the deformation variable, §. We ex-
pected that our convergence rates would be exponential. However, a quick inspection of
the exact solution, which is only in H? for TE polarization and merely H' for TM polar-
ization, explains that, in the absence of sophisticated mesh refinement strategies (which
is an object of current research), one can only expect rather low rates of convergence.
In the experiments above we noticed an experimental rate of convergence of 1.87 for TE
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and 1.60 for TM polarization as N, = N, was refined, while the convergence rate in L
was difficult to characterize with the spatial resolution of such modest quality.

In order to further validate our code we conducted another convergence study against a
different “exact solution” obtained by numerically simulating solutions of (3.2) and (3.3)
with our smooth permittivity profile, (4.4) (w = 100), and a HOS Fourier—Chebyshev
approach. Reconsidering the calculations above yielded the results depicted in Figures 4
& 5 for N, = N, and L convergence, respectively. Here we saw the behavior we expected,
namely exponential rates of convergence in both N, = N, and L down to machine
precision (to the conditioning of our algorithm). This exhibits a well-known limitation
of HOS methods, that high—order rates of convergence are limited by the smoothness of
the underlying exact solution [21, 45, 46].

Error versus N, Error versus N,
2 4
10 T T T T T T T 10 T T T T T T T
—o— Taylor —o— Taylor
-4 [ ]
10 ,/W 106k 4
108 F
10°®
8 8
=] -8 L =
g 10 =
10'10 L
10—10 L
-12 L
1012 10
10714 . . . . . t . 1 10714 . . . . . . . 1
16 18 20 22 24 26 28 30 32 16 18 20 22 24 26 28 30 32
N, N,
F1G. 4. Error versus N, for ¢ = 1.1 with smoothed exact solution
(Left: TE, Right: TM).
Error versus L Error versus L
10° T T T 10° T T T
—o— Taylor
105}
“ "
o =]
g i
5] &
10—10 L 4 10'10 L
10715 . . . . . . 10715 .
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
L L
FiG. 5. Error versus L for ¢ = 1.1 with smoothed exact solution

(Left: TE, Right: TM).

Before leaving this simulation we point out, in this latter case of a smoothed solution,
the extremely beneficial effect of Padé summation. This approach delivered solutions
with ten extra digits of accuracy compared to straightforward Taylor summation.
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8.4. Large Deviation. We repeated these small deformation simulations in the case of
a large deviation characterized by ¢ = 1.6. We display the results of these experiments
in comparison to the exact solution in Figures 6 and Figures 7 for NV, and L refinement,
respectively. Here we noticed not only the very poor performance of our algorithm with
Padé approximation, but also the complete inapplicability of Taylor summation.

Error versus N, Error versus N,
10 8 T T T T T RRARAASsas
10 10 :
—— Pade
f:14
10 10° W
10° ¢
10 E
g 10 &
102 ¢ 1
102F
ol ]
100k 10 .
*
* A — K P ’ o T -
102 . . . . e ¥ 102 . . . . ]
20 25 30 35 40 45 50 55 60 20 25 30 35 40 45 50 55 60
N, N,
F1G. 6. Error versus N, for ¢ = 1.6 (Left: TE, Right: TM).
Error versus L Error versus L
1010 - - 108 T T -
4 Pade
8L o
10 105k ]
108 .
5 10%¢ E
a1 o 5
. 102 E
102k
° of «= ]
of 10
10 .. L
- *
"
102 ‘ 102 :
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
L L

F1G. 7. Error versus L for ¢/ = 1.6 (Left: TE, Right: TM).

As before, by replacing the exact solution with a numerical solution of the smoothed
problem with F given by (4.4) (w = 100), we obtained the results in Figures 8 and 9 for
N, = N, and L refinement. Once again we noticed the greatly enhanced performance of
our algorithm with Padé approximation in this setting, though Taylor summation was
completely unusable.

Dedication. I would like to dedicate this work to the memory of my wife’s mother,
Caryl Steimel. Caryl was a kind woman of strong faith who always put her own needs
behind those of others, particularly her family. I knew her for nearly thirty years and
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Error versus N,

Error versus N,

1010

10%F 1 10%7

E ol 5 ol
| &
10°F 1 10°7
1010 . . . . . . et 10710 L . . . . ! . et d
20 25 30 35 40 45 50 55 60 20 25 30 35 40 45 50 55 60
N, N,
Fic. 8. Error versus N, for ¢ = 1.6 with smoothed exact solution
(Left: TE, Right: TM).
Error versus L Error versus L
1010 T T T T T T 1010 T T T
1081 o 1 1051
8 e B
= 0L = 0
& 10 & 10
105+ 10°
10-10 n n n n L n 10-10 n n n n L L
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
L L
F1G. 9. Error versus L for ¢ = 1.6 with smoothed exact solution

(Left: TE, Right: TM).

was always inspired by the time and talent she spent on her husband, her children
(including my wife Kristy), and her grandchildren (particularly my daughter Emma). Her
example of patience and selflessness is a model for all who knew her. She is sorely missed.
Somehow the natural acronym for the algorithm described in this paper (“HOPE”) is
singularly appropriate for Caryl as her outlook on life was always full of “hope.” Quoting
the motto of my Alma Mater: In Deo Speramus!

Acknowledgments. D.P.N. gratefully acknowledges support from the National Sci-
ence Foundation through grant No. DMS-1813033.

Appendix A. Analyticity of the Reciprocal Permittivity. For the proof of
Lemma 7.1 we use induction on ¢, beginning with £ = 0. To accomplish this we induct
on t, beginning with ¢ = 0. Finally, we establish this via induction on r, beginning with
r = 0. So, we begin by setting

Cp = ‘pgu)

cm ’
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which resolves r = 0. Now we assume that

9z (v)

r!

A’I"
<o,
om p(r"‘l)?

Vr<r,

and note that J7 /r! applied to

&1 = Eo(z,2))py” =1,

c.f. (6.3), gives

7%'00 = a1- EO (@.2) :Z:; ( ;9:; €(1 — Eo(z, z))]) (?%po> )
From this we estimate
7 F=1)| ap
T, < TR e
-1 Fej

: jj—o c (r —AJEJ: 1277 () fl)Q

< onCoe +F11>2 s fﬁf?i Y (éf)

< |€] CeC,Ag (;4—::11)257

if Ag/A is chosen less than one. Thus we are done with our induction on r provided that

A> max{l,CE |€|S} Ap.
a

Conveniently this result resolves our base induction on ¢ at t = 0. So, we proceed by
assuming that

DL ()

AT Dt _
(r+t)!p0 <C Vr>0, Vt<t,

cm 12 (E+1)% B

and note that (979%)/(r + t)! applied to

é(l — Eo(z,2)py" =1,
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c.f. (6.3), gives

0L () _

(r—l—t)!po

With this and the fact that (r!t!) <

oot (v)
(r+ f)'

cm

and continue

950 ()
(r+1)! 0

D. P. NICHOLLS

1 rlt!
(1— Ey(z,2)) (r+1t)!
r—1t—1 or- j at L a%‘ af )
Z:I;) ( (r—7)! 7@! [e(1 - Eo(%@)]) (j!k!po )

ar j 20
el - B )] ) (S50

85 (1 - Eo(s, ) (?%“)}

(r 4+ t)! we estimate

1
€1 = Eo(x,2)) |cm
—1¢—1 iy
r or—J 8t_k ] ak (v)
X L —= Ey(z, z
22 G T Bl e
r—1 ;
0y~ 7 0 )
+ ) | [e(1 = Eo(, 2))]
= (r—j)! gra om
t—1 7
at—k ra ()
+ 3 | e - Boa zm\ %0 o
£ | (F—k)! kO
ERESS AT Dk Al Dk
<4 _ C
e ;; P+ 2=k +12 (G +12 (R +1)
r—1 _a . -
A A D
C Z c _
t L O TR G T I
+fflc DfEfk AT Dk
PE—k+12 " (r+1)2(k+1)?
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We now have

Ar—1 D{—l
oa r+1)2(E+1)2

(r+ 1) <AE>”’1 (F+1)? (1),;)““
(r—j+12(G+1)2\ A (t—k+1)2(k+12\ D

At DF (r+1) (AE>”1
CpC,A Ap
T CECAE Ty (t+12j2% (r—j+1)2( +1)2

Ar o pl 2 (f+1)2 D\t
D _ _ =
+Ce0 E(r+1)2(t+1)2kz_;)(t—k+1)2(k+1)2(D) ’

upon choosing A > Ag and D > Dg we find

| €

{CECp eDg——5

8raf ) |€| Ar—l Dt 1 )
Loz < = ApDp—m— —
(r+0"° om aCECp B E(r+1)2 (t—|—1)25
Ar-1 Df AT fol
Agp—— " Dp— =
HR O VN ) e PN Ve A} }

and are finished provided that

A>AE, D>DE, A>3%SCEAE, D>3%SCEDE, AD>3‘ |SQCEAEDE

This previous result establishes the base of our induction on £ at ¢ = 0. To finish our
proof we assume that

oot

, A" Dt
DI

<C,B'— __— _ Vi<L Vrt>0,
om PP (r+1)2 (4 1)2

and recall that, for £ > 0,

pi (. 2) = &l (2. 2) B, 2)pf) (x.2),
c.f. (6.3). From Leibniz’s Rule we have

8;82 (W) rlt!

r t 7 k _ . _
or=i at B pi—r  gk-a or 01 (v
g ZZZ( (r— ) (t— k)"0 ) <(j—p)! (k—Q)!E) (p!q!p“)’




26 D. P. NICHOLLS

which, since (r!t!) < (r +t)!, leads to the estimate

T Ot T :
g (r+1)?
ii (t+1)°
Ltk +12(k— g+ 1)2(g + 1)?
A D

<ec*CpBilst — _ _—

=B Y T2 (1))
provided that, as we have already enforced, A > A and D > Dg. We are done if we
choose

B, > éC,CpS*.

Appendix B. Generalized Elliptic Estimate. In our proof of Theorem 7.2 we
focus upon TM polarization for brevity as the case of TE polarization is very similar
(and slightly easier). To begin we establish this result in the case of pure z—derivatives,
which we now state and prove.

THEOREM B.1. Given any integer m > 1+ o, if (w,€, Ey) € P, Ey € C2([0,d] x [—h, h])
so that

ar, A"
2 F, <C E V>0,
7! Ocm* EO(T—&-l)27 "=
for some Cg,, Ag > 0, and
_ 1
E(]. — Eo) om Cl7
for some a > 0, and F' € C¥([0,d] x [—h, h]) satisfying
%p| <o vrxo,
|| o (r+1)2
for the A > 0 from Lemma 7.1 and some Cr > 0, and Q, R € C*([0, d]) satisfying
o AT or AT
£ <Co—, ||-=%R <Cr—=, Vr>0,
r!QHHm GRS P ’H =Tz T
for some Cg, Cr > 0, then there is a unique solution V' € C*¥([0,d] x [—h, h]) of
LoV =F, —h<z<h, (B.1a)
-9,V -T,[V]=Q, z=h, (B.1b)
8.V — T,[V] = R, 2= —h, (B.1c)
V(z +d, z) = exp(iad)V (z, z), (B.1d)
satisfying
T AT
a”'”VH <cC, 5 Vr>0, (B.2)
I | (r+1)
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where

C,:=k(h)(Cr+Cq+Chr),
for some universal constant x(h) > 0.

Proof. We work by induction on r and establish the base case, r = 0, by using the
elliptic estimate, Theorem 6.2, with s = 0, and the hypotheses of the theorem,

Vliz < Ce{lllFll o + QN 12 + 1Bl 172} = Ce {Cr + Cq + Cr},

and we choose
C, > Ce{CF+CQ+CR}.
To proceed we study the operator J% /r! applied to (B.1) which delivers

Lo {8 } azF—l—[Eo,a }V, —h<z<h, (B.3a)
— 0, [a“’ V] T, [a‘"fv] - —TQ, 2 =h, (B.3b)
o.|%v] -1 | %Bv] = %r, i=h, (B.3¢)
or 5‘T
V(x +d,z) = exp(wzd) V(:L’7 z), (B.3d)
where [+, -] is the commutator

(A, B] = AB — BA.

We now assume

A’l"
CH P S
H? (r+1)

c.f. (B.2), which, as we shall see in Lemma B.2, implies that
Affl
(F+1)2
Applying the elliptic estimate, Theorem 6.2, to (B.3) and using the hypotheses on F, @,
and R, we find

[ )], =ccmsc
HO

e PR (S 1 R o WS v P8,
r H2 : HO H1/2 H1/2
AF Affl
S Ce {CF + CQ + CR} m +Qe {MSCp} m,

and we are done provided

QeZQCe{CF+CQ+CR}, AZQMSCP.

We now present the estimate on commutators which we require above.
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LEMMA B.2. Given any integer m > 1+ o, if Ey € C¥([0,d] x [—h, h]) so that
oy A",
—2E, <C -~ Yr>0
rl Ocm_ Eo(r+1)27 r=.,
for some Cg,, Ag > 0, and
1 < l
E(]. — Eo) om Cl7
for some a > 0, and
Oy §7€A77 Vr<F,
|| g2 “(r+1)2
then
Affl
Lo, V <C.(MSC))————.
|| ], < sy

Proof. Focusing on TM polarization, we recall that
Lo = div [pg“)v} T E2,
so that
{/307 87"} V=1L {a’“ } - g [LoV]

= div [Pov)va V} s %y S [pwv] 4 Y]

div[ vy % v}

idw [( f)pg») v (ﬁv)} — koaiv
_ _;Odiv K(f;__;)!f’(()v)) v (?{Evﬂ .

We can now estimate
A (v)> (35; )H
————p V{2V
((7” — N 3 ) e

2], <5

HO j=0
F—1 — ;
97 9]
<Su| | |%y
=0 (7 =) co Il J: H?
F—1 i ;
< ZM 1 a:c j—1 p(()’u) Q%V’
i (F—j)|(F—j—1) corr |3V |2
-1 — :
ATt Al
< MC C
s Pr—j—1+1)2"°(+1)?
Af—l
< M —_—
7Qe( SCP) (’F—Fl)27

and we are done.
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REMARK B.3. We comment here that it is in this final step of the previous proof that
the requirement m > 1+ o is explained. This is necessary in order to reduce the number
of derivatives on the function p(()v) by one.

Proof. (Theorem 7.2) Once again, we proceed by induction, this time on ¢. The base
case t = 0 is resolved by Lemma B.1. We now assume

c.f. (7.2), and examine

Vt<t, Vr>0,

orot A" Dt
-z < C
(r+0)! Hm@(rmz (C+ 172

[ B e B s G P e
(r+t)! (r+0! |l (TJFﬂ' OV JFE)' O H!
a;aglvH +‘ 8rat 1 Harat 1
T P ek (r+ D8 g

The first two terms can be addressed with our inductive hypothesis as they involve z
derivatives of order £ — 1. The third we call Z, which we simplify with the following
calculation (remembering that e(v) 1/ p(”)) using the TM Helmholtz equation, (3.3a),

92V = al —o 0.V | = 0. [eg“>p0)av]

= (8Zeo)p0 8ZV + e(()v)(?z [pév)an]
= 0,0,V — o, [,og”azv} — RV
With this we estimate

Rt H
(r+0!* |
8rat_—1

- E [ oy - o, [ o] - ]|

7 =

Hl

rat—1
|Fm e

oot D (v
(r+1)! {@65 pL; )@V} H

orott ()2
+‘ (r+1)! {60 kOV}H

For brevity we focus upon the first and second of these terms

IN

H! H!

H1

oot D (v
1= (7“+Z)' [(82 E) ))P(() )8 V} H
. Hl
RO 1 o [ () H
Zo L2 €y Oz |py  O0zV .
(r+1)! [ 0 [ 0 -
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For the first, with the calculation

0y
(r+1)!

[(0-e")00" 0.V |

1 orlE=1)! < J Lk
:r—i-t(r—i—t—l' ZZ

j=0 p=0 k=0 ¢=0

ar 7 af—l—k )
(T—J -1 )

Hi—p ok—a (v)) <5 o9 )
—L = 50V ],
((J—p)!(k—q)!pO p! ¢!

M

we estimate, since (r!(t — 1)) < (r+t—1)!,

agflfk 5 (v)

(r—)Et—1-k)! #€0

IN

L 55 ) ST s

7=0 p=0 k=0 g=0

(o2}

‘ 89{, P 85 q p(v) or 04 H
G—p)! (k=g p' ¢
] ailkk )

< LYYy Sl

(r—)lt-—1- k‘)€0

7=0 p=0 k=0 g=0 o2
o0l—p 81{: q ) P 91 H
XM|—= "= Oz O3 .
‘(]—p)!(k—q)!po Pl |l
With the inductive hypotheses we continue
Jj =1 k — -
Al DY
S 503) 3) DTS NS
T+t] 0 p=0 k=0 g=0 (r—j+1)2F-1-k+1)
A Dk~a AP Da
x MC, c
(J—p+1) (k_q+1)2—e(p+1)2( +1)2
M*CpC, A" (r+1)?
<cC —
== 4t (’I"+1 t+1222 ]+12 p+1) (p+1)2
-1 k
(t+1)2
X
I;)qzo t—1-k+1)(k—q+1)>2(q+1)?

M? CECPS4 AT l)ti1

< = =
=T et T (12 (E4 1)

@)

and this term is addressed provided that

M2CC,

St < D/3.
r+t
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Regarding the term Zs, we begin with the computation

s e [ro.v])

|

Torli-1) K
T r4t(r4t—1)

M :

-1 k - Fo1—
a i 81‘ 1—k 6(“)
o i (r—jNE—-1-k)! 0
9i—p+l  gk—q (U)> (817 07 ) ( P ak q > <8P+1 04
X =z 220,V | + 290,V
{((J—p)!(k—q)!p0 p! q! —q)! Ik P! g
(

r—l—t—l)

with which we estimate, since (r!(t — 1)!) <

LYYyl

j= Op 0 k=0¢=0
(e B ]|
(G—p)! (k=g plal |l
ay P af—q () 3£+1 gV
& —onPo I gl :
) (k= q)! ptod e
With the inductive hypotheses we can estimate

i -1 k AE—j Di:kk
55) ) ) DIICHEE. KN e

7=0 p=0 k=0 ¢=0

87 8{717]6 6(”)
0
(r—i)lEt—1-k)!

P N9
9502,

Zy <

Cl

+M ‘
Cc1

VA
2 < i

Ai—p+1 DF—a AP D1

x s MC,(j —p+1)~ C.
Ve =+ DG s G T
AP DFk—a AP+l D4

+MC,— C.lp+1)—s—

G-t 0P g1 )<p+2>2<q+1>2}
Ar+l Df—l
(r+1)2(+1)%’
and this term is appropriately bounded if

M?CgC,S*A< D/3,

< C.M2CyC,S*

since (j —p+1) <r+tand (p+1) <r+t.
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