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A B S T R A C T

Developing a turbulence model that is computationally inexpensive and com-
patible with the nature of the numerical scheme is a crucial step in expanding
the application of spectral element methods for large eddy simulation (LES) in
complex geometries. In this paper, an element-level modal low-pass explicit
filtering procedure, which operates in the spectral space, is implemented in a
discontinuous spectral element method (DSEM). The application of the modal
filter is studied for LES without a subgrid-scale (SGS) model. The method is
tested for a configuration featuring isotropic turbulence, and its performance
is compared with a previously used method—a spectral interpolation-based
nodal filter. The modal filter shows superior performance over the nodal filter.
The filtering procedure is also applied to a turbulent channel flow at a friction
Reynolds number of Reτ = 544, and the results are compared with a previ-
ous direct numerical simulation (DNS). It is also shown that the filter strength
that provides the best comparison with DNS depends only on the polynomial
order and is not a function of the grid resolution. An anisotropic version of
the modal filter, which damps high-frequency modes in a specific direction, is
also introduced and tested for the channel flow. It is observed that filtering in
the spanwise direction is the most effective approach based on the comparison
of velocity mean and fluctuations with DNS. In general, the modal filter has
shown good performance for both isotropic and wall-bounded flows; the cal-
culated channel friction Reynolds number for the modal filter is within 0.26%
error with respect to the DNS data, compared to 5.8% error for a case with no
modeling.
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1. Introduction

In large eddy simulation (LES) of turbulent flows, the motions with larger scales are directly calculated, while the
effects of the small-scale motions are modeled [1]. The governing equations of the large-scale motions of the flow are
obtained by applying a spatial low-pass filter to the Navier-Stokes equations [1]. The filter divides the flow scales into
two parts: resolved and subfilter-scale (SFS) motions [2]. These regions are shown in Fig. 1. The most widely used
approach for LES is to consider the coarse computational mesh as the spatial low-pass filter. This type of filter is called
an implicit filter since no explicit filtering operation is applied in the procedure [1]. For the case of the implicit filter,
SFS would be equivalent to the scales smaller than the grid size, the so-called subgrid-scales (SGS); see Fig. 1. Even
though the implicit filtering approach takes full advantage of the grid resolution, the shape of the low-pass filter is not
known [2]. Another drawback of the implicit filtering approach is that there is no direct control on the energy spectra
in the high-wavenumber motions [1]. To address the issues attributed to implicit filtering, explicit filtering is often
introduced; a low-pass filter, with a filter width larger than the grid size, is explicitly applied to the flow variables. The
explicit filtering approach provides a well-defined filter shape at the cost of reducing the effective resolution of the
simulation compared with the grid resolution [1, 3]. Since the filter width is larger than the grid size, the SFS motions
are divided into resolved subfilter-scale and unresolved subfilter-scale motions. The latter is equivalent to the SGS
motions. The use of an explicit filter is practiced in LES studies and is shown to reduce the numerical error [3, 4] as
well as aliasing and SGS modeling errors [3] and improve the accuracy of LES results [2, 3, 5]. Gullbrand and Chow
[2] performed LES of turbulent channel flow using a finite difference (FD) code. They showed that using explicit
filtering potentially limits the effects of the numerical errors in dynamic Smagorinsky [6] and dynamic reconstruction
models and significantly improves the accuracy of the mean velocity and turbulence intensities. In both cases of LES
with implicit and explicit filtering, the effects of the motions of the unresolved scales should be taken into account.
Those effects, which appear as the SGS stress tensor in the governing equations, are commonly modeled by a SGS
model, such as an eddy-viscosity model [7, 8, 6] or a similarity model [9].

Fig. 1: The division of turbulence motions by the filter and the grid based on their wavenumbers.

An alternative approach that is gaining more attention recently is a form of LES known as implicit LES (ILES). In
this approach, the dissipation of the numerical scheme is assumed to mimic the effects of the viscous dissipation of the
SGS motions and dampen the turbulent energy. Even though, ILES has shown successful results [10, 11, 12, 13], the
damping effects on the resolved scales remain questionable. This method is also not suitable for high-order schemes
that introduce minimal or no numerical dissipation. Winters et al. [14] studied the ILES capabilities of discontinuous
Gelerkin (DG) methods for under-resolved DNS (uDNS) of very high Reynolds number turbulence. In the absence
of sufficient dissipation, the accumulation of the energy at the grid cutoff wavenumber results in numerical errors
and could lead to instabilities [1]. To alleviate this problem, an explicit low-pass filter can be applied to the solution
variables to remove the small-scale components of the solution. In this approach, which is used in the present work,
the explicit filtering serves as a drain for the energy cascade and prevents the instabilities. This approach reduces
the computational cost as well as implementation complexity compared to methods that use a SGS model. Using an
explicit filter without any SGS model has been practiced for LES studies. Bogey and Baily [15] conducted high-order
finite difference simulation of compressible jets using an explicit filter without any SGS model. They applied the
filter to the density, velocities, and pressure every two time steps, sequentially in x-, y−, and z-directions. Mathew
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et al. [16] applied an explicit filter on the solution variables at every time step for LES of compressible channel
flows. However, they mention that a finite number of time steps can be taken without applying the filter. Fischer and
Mullen [17] applied an explicit interpolation-based nodal filter to stabilize their spectral element method and used it
for LES of complex flows [18]. Later, Sengupta [19] used the same filtering approach without a SGS model for LES
of isotropic turbulence and compared the results with the dynamic Smagorinsky model [8]. Sengupta et al. [20] used
the same procedure for the LES of flow over a backward-facing step.

The benefit of explicit filtering is realized especially in high-order methods such as discontinuous spectral element
methods (DSEM). The negligible numerical dissipation in these methods demands a drain for the energy cascade to
avoid numerical instabilities in under-resolved simulations. The basis functions in spectral methods form a hierarchi-
cal set, i.e., they represent progressively higher spatial frequencies. Therefore, a sharp cutoff of the higher modes in
the modal space (a modal filter) represents a low-pass spatial filter of the solution in the nodal space. Boyd [21, 22]
applied a modal filter in his spectral method to reduce Gibbs oscillations that are produced by shocks. Levin et
al. [23] applied a two-step modal filter to inhibit the growth of instabilities in their eddy resolving spectral element
ocean model. Blackburn and Schmidt [24] used a modal filter in their spectral element method as the test filter of the
Germano-Lilly [8, 6] dynamic procedure and applied the method for a turbulent channel flow. Bouffanais et al. [25]
also applied the modal filtering technique in conjunction with the dynamic model in their spectral element method
for simulation of a lid-driven cubic cavity flow. Chaudhuri et al. [26] applied an adaptive low-pass modal filter to the
solution variables to eliminate its high-frequency components and prevent instabilities around the shock.

To the best of our knowledge, the use of a modal filter, with no SGS model, for LES has not been studied in spectral
element methods. In this paper, the application of a modal filter in DSEM, without any SGS model, is investigated
for LES of isotropic and wall-bounded turbulent flows. A low-pass filter is applied to the primitive variables of the
Navier-Stokes equations in the modal space. The performance of such an explicit filter is studied for both decaying
isotropic turbulence and a turbulent flow in a periodic channel. Since the filters are applied locally within the elements,
the filtering operation is performed on a single processor for each element. This makes the method computationally
inexpensive with nearly no impact on the parallelization of the code. Global filters are expensive in spectral element
methods [27] due to the necessity for communication between the processors. Since the filtering procedure does not
consider any special treatment for the walls, the method can be used for more complex flows.

The remainder of the paper is organized as follows. In section 2, the governing equations and the numerical
method are presented. Next, the filtering procedures and formulations are explained in section 3. In section 4, the
modal filtering is tested for a problem exhibiting isotropic decaying turbulence, and its performance is compared with
two spectral interpolation-based nodal filters. The study continues with the application of the modal filter to LES of
a periodic turbulent channel flow. A grid resolution study is performed to ensure grid independence of the method.
Furthermore, the ideal choice of the filter strength is investigated by performing simulations using multiple grids with
different h and P resolutions. For the channel flow case, an anisotropic version of the modal filter is also introduced
and tested. The present methods are also compared in terms of their computational cost. Conclusions are drawn in
the last section.

2. Governing Equations and Numerical Methodology

In this section, the governing equations used in the present simulations, as well as the employed numerical method,
i.e., the DSEM, are described.

2.1. Governing Equations

The governing equations are the three-dimensional (3D) unsteady Navier-Stokes equations for compressible flows.
In DSEM, the governing equations are solved in conservative form. They read

∂ ~Q
∂t

+
∂~Fa

i

∂x j
=
∂~Fv

i

∂x j
(1)
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in vector notation, where

~Q =


ρ
ρu1
ρu2
ρu3
ρe

 , ~Fa
i =


ρui

pδi1 + ρu1ui

pδi2 + ρu2ui

pδi3 + ρu3ui

ui(ρe + p)

 , ~Fv
i =


0
σi1
σi2
σi3

−qi + u jσi j

 . (2)

In Eq. (1), ~Q is the vector of the conserved variables (solutions), and ~Fa
i and ~Fv

i are the advective and viscous flux
vectors, respectively. Also, t is the time, and x j are the spatial dimensions in the 3D space. In Eq. (2), ρ is the density,
ui are the components of the velocity1, p is the pressure, and δi j is the Kronecker delta function. The total energy,
viscous stress tensor, and heat flux vector are defined as

ρe =
p

γ − 1
+

1
2
ρ ui ui , (3)

σi j =
1

Re f

(
∂ui

∂x j
+
∂u j

∂xi
−

2
3
∂uk

∂xk
δi j

)
, (4)

qi = −
1

(γ − 1) Re f Pr f M2
f

∂T
∂xi

, (5)

respectively, where T and γ are the temperature and the heat capacity ratio, respectively. The reference Reynolds
number, reference Prandtl number, and reference Mach number are defined as

Re f =
ρ∗f l
∗
f u
∗
f

µ∗
, Pr f =

c∗pµ
∗

k∗
, M f =

u∗f
c∗f
, (6)

respectively. In Eq. (6), ρ∗f , l∗f , and u∗f are the reference density, reference length, and reference velocity, respectively,
and µ∗ is the fluid’s dynamic viscosity. Variables with superscript ∗ are dimensional variables. Also, k∗ and c∗p are the

thermal conductivity coefficient and the fluid’s constant pressure specific heat, respectively, and c∗f =
√
γR∗T ∗f is the

reference speed of sound based on the reference temperature, T ∗f , where R∗ is the gas constant. The ideal gas equation
of state in non-dimensional form, given by p = ρT/γM2

f , closes the governing equations.

2.2. Numerical Methodology

A nodal collocation form [28] of the DSEM [29, 30] is used in this work. Spectral element methods combine
the exponential convergence of spectral methods and the geometric flexibility of finite element methods. DSEM
introduces negligible diffusion and dispersion errors and is spectrally convergent for smooth solutions within each
element [29, 30]. It also offers useful features such as efficient parallelization and the ability to locally refine the grid
either by increasing the number of elements (h-refinement) or by increasing the polynomial order (p-refinement). The
method has been tested for direct numerical simulation (DNS) and LES of compressible turbulent flows in complex
geometries [31, 32, 33, 34, 35]. The DSEM solves the governing equations of compressible flows and allows for
discontinuity of the solution on interfaces between the elements.

In DSEM, the 3D physical domain is divided into a finite number of non-overlapping arbitrary shaped hexahedral
subdomains, so-called elements. Each element is then transformed to a unit cube, called the mapped space, using an
iso-parametric mapping. In the mapped space, the governing equations, Eq. (1), read

∂Q̃
∂t

+
∂F̃a

i

∂X j
=
∂F̃v

i

∂X j
, (7)

1For convenience, [u1, u2, u3] and [u, v,w] are interchangeably used for the streamwise (x1 or x), normal (x2 or y), and spanwise (x3 or z)
components of the velocity, respectively.
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with
Q̃ = J ~Q ; F̃a

i =
∂Xi

∂x j

~Fa
j ; F̃v

i =
∂Xi

∂x j

~Fv
j . (8)

In Eqs. (7)-(8), the tilde denotes a mapped vector, and J is the Jacobian of the mapping [28]. Also, X j are the
spatial dimensions in the mapped space, as opposed to x j, which are the spatial dimensions in the physical space.
Within each element, the spectral method is applied on a staggered Chebyshev grid [29]. The staggered grid in a
one-dimensional (1D) element consists of the Gauss collocation points for calculation of the solution values, and
Gauss-Lobatto collocation points for calculation of the fluxes. The distributions of the Gauss points and the Gauss-
Lobatto points in the mapped space on the interval [0, 1] are given by

Xi+ 1
2

=
1
2

[
1 − cos

( i + 1
2

p + 1
π
)]
, i = 0, . . . , p , (9)

and
Xi =

1
2

[
1 − cos

( i
p + 1

π
)]
, i = 0, . . . , p + 1, (10)

respectively, where P is the polynomial order. In the two-dimensional (2D) version, the staggered grid consists of
Gauss-Gauss (GG) points for the solution values and Lobatto-Gauss (LG) and Gauss-Lobatto (GL) points for the
fluxes in the x- and y-directions, respectively. The distribution of points of a 2D element obeys the same formulation
as the 1D element in each direction. An example of such a 2D staggered grid with polynomial order P = 2 is depicted
in Fig. 2. Similarly, a 3D staggered grid consists of GGG points for the solution and LGG, GLG, and GGL points for

Fig. 2: The staggered grid for a 2D element with polynomial order P = 2. Closed circles: Gauss-Gauss (GG) points, open square: Lobatto-Gauss
(LG) points, closed square: Gauss-Lobatto (GL) points.

the fluxes. The solution at any point within a 3D element in the mapped space is approximated by

Q̃ (X,Y,Z) =

p∑
i=0

p∑
j=0

p∑
k=0

hi+ 1
2

(X) h j+ 1
2

(Y) hk+ 1
2

(Z) Q̃i+ 1
2 , j+

1
2 ,k+ 1

2
, (11)

where Q̃i+ 1
2 , j+

1
2 ,k+ 1

2
is the solution value at the GGG points, and hi+1/2 is the Lagrange interpolating polynomial cal-

culated on the GGG grid. The advective and viscous fluxes are calculated at every time step. The fluxes are patched
at the interfaces of the elements by the so-called mortar method to achieve C0 continuity of the flux values [28]. The
time integration is performed using a fourth-order, low-storage Runge-Kutta scheme [28].

3. Filtering Procedures

Two filtering procedures are presented in this work. A filtering procedure in a spectral element method can be
constructed using either a modal low-pass filter in the modal space or an interpolant-projection in the nodal space
[24]. For the case of modal filtering, the solution needs to be transformed from the nodal representation to the modal
representation within each element. Then, the modes with the highest frequencies are set to zero. Finally, the modes
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are transformed back to the nodal space. For the case of a nodal filter, the solution, which is constructed as a sum
of basis functions of order P in each element, is interpolated to a basis function of order P′, where P′ < P. Then,
the solution is projected back to the original basis function of order P. Though the two filters introduced here are
designed to remove high-frequency motions of the flow, they are different than conventional filters in terms of their
operating mechanism to achieve the same goal; they may be considered as projection operators instead. The two
filtering approaches are explained in detail in the following sections.

3.1. Modal Filter

A solution function in a spectral element method can be expressed in either nodal or modal representation. In
the nodal representation, the function is expressed through the values of the function on a set of specific points in
space. In the modal representation, the function is expressed through the coefficients of a set of orthogonal expansion
functions, or modes. The two representations are mathematically equivalent, but each has its own computational
properties [36]. A local solution function, ũ(X, t), inside a 1D element with a polynomial order of P in the mapped
space can be expressed at a specific time via its modal expansion as

ũ(X) =

P∑
k=0

ûk ψk(X), (12)

where ψk(X) are the basis functions, and ûk are the expansion coefficients. The basis functions form a hierarchical
set, i.e., each successive mode represents motions with higher spatial frequencies. In the modal filtering approach,
the solution variables are transformed from the nodal to the modal representation, and the expansion coefficients that
correspond to the highest frequencies are set to zero. The transformation mechanism between the nodal representation,
ũ(X), and the modal representation, ûk, of the solution is a discrete Chebyshev transform (DChT) [37],

ûk =
2
N

N−1∑
i=0

ũ(Xi+ 1
2
) cos

[
kπ
N

(
i +

1
2

)]
, k = 0, . . . ,N − 1, (13)

and an inverse discrete Chebyshev transform (iDChT),

ũ(Xi+ 1
2
) =

1
2

û0 +

N−1∑
k=1

ûk cos
[
kπ
N

(
i +

1
2

)]
, i = 0, . . . ,N − 1. (14)

Both transformations are implemented in DSEM using the library Fastest Fourier Transform in the West (FFTW)
[38]. The three-dimensional variations of DChT and its inverse are simply separable products of the one-dimensional
definitions along each dimension and are also provided by FFTW.

The expansion functions in multiple space dimensions are the tensor-products of the 1D functions, and the filtering
procedure in three dimensions is applied using the matrix tensor product properties. Assume ũ(X,Y,Z) is the solution
in the mapped nodal space within a 3D element with a polynomial order of P. The solution function can be expressed
via its modal expansion as

ũ(X,Y,Z) =

P∑
k=0

P∑
l=0

P∑
m=0

ûklm ψk(X)ψl(Y)ψm(Z), (15)

where ûklm are the 3D expansion coefficients, which represent the modes of the function in the 3D space; therefore, we
call it the modal matrix. An example of such a 3D matrix is shown in Fig. 3(a) for a polynomial order of P = 8. Each
small cube represents an entry of the modal matrix, i.e., an expansion coefficient. After transforming the solution
to the modal space, we can modify the modes as desired, and then return the solution to the nodal space using an
iDChT. The component û000 of the modal matrix represents the bulk value of the function within the element (Fig.
3(b)), while components ûk00, û0l0, and û00m represent the modes purely in the x-, y-, and z-directions, respectively
(Fig. 3(c)). Consequently, components with combinatory subscript represent the combinatory modes in the 3D
space. Also, the components with lower subscript represent the low-frequency modes, and the components with
higher subscript represent the high-frequency modes. Therefore, lowering the values of the components with higher
subscript is equivalent to damping the high-frequency motions, which is the aim here. For example, if we set all the
components ûklm, where max{k, l,m} = P, to zero, it is equivalent to removing all the motions with contributions from



Zia Ghiasi et al. / Journal of Computational Physics (2018) 7

the highest-frequency modes from at least one direction. There are 3P2 +3P+1 such components, and they are shown
in Fig. 3(d) for P = 8. Therefore, applying a modal low-pass filter with modal strength N f means (i) transforming the
solution from the nodal to the modal space via DChT, given by Eq. (13), (ii) removing all combinatory modes that
have contributions from the N f highest-frequency spatial modes in any direction, i.e.,

ûklm = 0 ∀ {k, l,m} where max{k, l,m} > P − N f , (16)

and (iii) transforming the solution back to the nodal space via iDChT, given by Eq. (13). For example, for N f = 2, the
entries that are removed, i.e., set to zero, are those shown in Fig. 3(e). We call this filtering operation isotropic modal
filtering since the higher-frequency modes are removed from all three directions.

Alternatively, setting components ûklm, where for example k = P, to zero is equivalent to removing all motions
with any contribution from the highest-frequency modes in the x-direction. There are (P + 1)2 such components, and
they are shown in Fig. 3(f) for P = 8. Therefore, applying a modal low-pass filter with strength N f in the ith direction
means (i) transforming the solution from the nodal to the modal space by applying the DChT, given by Eq. (13), (ii)
removing all combinatory modes that have contributions from the N f highest-frequency modes in the i-direction, i.e.,

ûklm = 0 ∀ {k, l,m} where


k > P − N f (x-direction)
l > P − N f (y-direction) ,
m > P − N f (z-direction)

(17)

for removing the high-frequency modes in the x-, y-, or z-directions, respectively, and (iii) transforming the solution
back to the nodal space via the iDChT, given by Eq. (14). We call this filtering operation anisotropic modal filtering
since the higher-frequency motions are removed only from specific directions. The anisotropic version of the modal
filter is tested for the non-isotropic case, i.e. the turbulent channel flow.

Fig. 3: Modal matrix for an element with polynomial order of P = 8: (a) the complete matrix; (b) the zeroth mode, û000; (c) modes purely in the x-,
y-, or z-directions, ûk00, û0l0, and û00m; (d) highest-frequency modes in all three directions; (e) two highest-frequency modes in all three directions;
(f) highest-frequency modes in the x-direction.
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3.2. Nodal Filter
The second filtering method is called nodal filtering [25, 27]. In this method, the filtered values of a variable in

an element with a polynomial order of P are obtained by interpolating the variable to a grid with a lower polynomial
order of P′ < P, then projecting the solution back onto the original grid with the polynomial order of P [25]. The
nodal filter is also called an interpolant-projection filter [24, 19] or interpolation-based filter [17, 39]. The nodal
filtering procedure is expected to dampen high-frequency oscillations that have contributions from the N′f highest-
frequency modes in three directions, where N′f = P − P′ is the filter strength [25]. This is due to the fact that
the basis with the lower order, P′, does not have the capacity to capture the spatial modes corresponding to the N′f
highest-frequency modes. Note that for the modal filter, N f is defined as the number of high-frequency modes that
are explicitly removed from the modal space, while for the nodal filter, N′f is defined as the difference between the
order of the two polynomial space (P − P′). Both variables indicate the number of high-frequency modes intended to
be removed and represent the strength of the filters.

To formulate the nodal filter, first, we look at the procedure for a 1D element. The interpolation and projection
could be applied to both nodal sets, Gauss-Gauss and Gauss-Lobatto nodes. Here, we apply the filter on the Gauss-
Lobatto nodal set since it preserves the endpoint values of the original function. The first step is to interpolate the
original function from a polynomial of degree P to a polynomial of lower degree P′ by

Q̃′
(
X′i

)
=

P∑
j=0

h j
(
X′i

)
Q̃(X j). (18)

where X j and Q̃ are the grid points and the solution values on the original (P) polynomial space, respectively, while
primed variables are the same entities on the secondary (P′) polynomial spaces. The interpolation can be expressed
as matrix-vector product by [19]

Q̃′i = Iint
i j Q̃ j, (19)

where

Iint
i j =

P∏
k=0,k, j

X′i − Xk

X j − Xk
, i = 0, . . . , P′, j = 0, . . . , P, (20)

is the interpolation matrix. The second step is projecting the function Q̃′ (X′) back to the polynomial space P, resulting
the filtered function,

Q̃filt(X j) =

P′∑
i=0

hi

(
X j

)
Q′(X′i ). (21)

Similarly, the second operation can be expressed as a matrix-vector form by [19]

Q̃filt
j = Ipro

ji Q̃′i , (22)

with the projection matrix, Ipro
ji defined by

Ipro
ji =

P′∏
k=0,k,i

X j − X′k
X′i − X′k

, j = 0, . . . , P, i = 0, . . . , P′. (23)

There are two approaches to extend the 1D interpolation and projection procedures described in Eqs. (18) and (21)
to 3D space. The first approach is to apply the 1D procedure to all 1D arrays in the x-direction, then in the y-direction,
and then in the z-direction. We call this approach, which is used in previous work [15, 19], a series nodal filter. The
alternative approach is to generalize Eqs. (18) and (21) for 3D space as

Q̃′(X′l ,Y
′
m,Z

′
n) =

P∑
i=0

P∑
j=0

P∑
k=0

hi(X′l )h j(Y ′m)hk(Z′n) Q(Xi,Y j,Zk) (24)

and

Q̃filt(Xi,Y j,Zk) =

P′∑
l=0

P′∑
m=0

P′∑
n=0

hl(Xi)hm(Y j)hn(Zk) Q̃′(X′l ,Y
′
m,Z

′
n). (25)

In this approach, which we call a 3D nodal filter, the interpolation and projection defined in Eqs. (24) and (25) are
sequentially applied to the variables in all 3D elements.
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4. Isotropic Decaying Turbulence

The results for LES of a 3D isotropic decaying turbulence are presented in this section. The aim is to assess the
performance of the filters for an isotropic turbulence condition. Different filtering techniques, including the modal
filter and two nodal filters, are tested, and the results are compared with DNS and no-model coarse DNS.

4.1. Problem Setup

The problem setup is similar to the isotropic turbulence of Blaisdell et al. [40]. The simulation is performed in a
cube with periodic boundary conditions in three directions. The length of the cube is 2π units in each direction. The
domain is divided into six uniformly distributed elements in each direction, resulting in a total of 216 elements. A
polynomial order of P = 8 is used for the basis functions within each of the elements. The total number of solution
(Gauss) points is Np = 63 × (8 + 1)3 = 157,464.

An initial condition should be specified such that it generates an isotropic and periodic field for the velocity and
thermodynamic variables. The procedure outlined by Blaisdell et al. [40] for the case “idc96” is followed here to
initialize the solution domain. The domain is initialized by a correlated turbulent flow field using a specified initial
energy spectra. The spectra follow a top-hat distribution that has non-zero contributions in the wavenumber range of
8 ≤ k ≤ 16. In this work, a divergence-free initial field is considered for the thermodynamic variables; therefore,
only the mean values of density, pressure, and temperature are specified. The initial velocity fluctuations are purely
solenoidal and exist in all three directions. The initial field is first obtained on a uniform grid from the Fourier
coefficients using a fast Fourier transform. The field is then interpolated from the Fourier grid to the Gauss grid
points.

The bulk rms velocity at a fixed time instant is defined as

urms =

√
uiui

3
, (26)

where the overline denotes a spatial average over the whole domain. Turbulence kinetic energy (TKE) is defined as
the integral of the energy spectrum function, E(k), over all wavenumbers,

TKE =

∫ ∞

0
E(k) dk =

1
2

uiui. (27)

4.2. Results

The results of applying different filtering procedures on the isotropic turbulence are presented in this section.
First, the filters are applied once to the initial field before running the simulation to study the direct effect of the
filters on a turbulence field (a priori analysis). Then, the decaying isotropic turbulence is simulated using different
filtering approaches, and the performance of the filters in the prediction of the flow statistics are compared (a posteriori
analysis).

4.2.1. A Priori Analysis
In this section, the effects of the isotropic modal filter and both series and 3D nodal filters on an isotropic turbu-

lence field are considered. The filters are applied one time to a 3D isotropic turbulence field, and the solution fields
before and after applying the filter are compared. The turbulence field is obtained by running the isotropic turbulence
case described above for a duration of t = 1 without applying any filter.

First, we apply the filters on the 3D isotropic turbulence field and examine the solution values on a 1D sample
line across the domain. Figure 4(a)-(c) shows the u-velocity along a 1D sample line across the domain from the
original field and filtered fields obtained from different filtering procedures with different strengths. By applying a
stronger filter (larger N f and N′f ) at each step, the solution is expected to become smoother, and the high-frequency
features of the signal are expected to weaken. With the modal filtering (Fig. 4(a)), it is observed that the solution
becomes smoother with each consecutive step, where more high-frequency modes are removed. With the nodal
filters, however, this behavior is observed only for weaker filters (N′f < 3). Applying stronger nodal filters appears to
introduce inconsistent contributions to the motions, and change the general shape of the function. Such behavior can
be seen in 1 < x < 2 for N′f = 4 and 5 for both nodal filters and more clearly in 2.3 < x < 3.3 for the series nodal
filter. This means that by applying stronger nodal filters to the flow variables, non-physical effects are superimposed
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Fig. 4: The effect of (a) the modal filtering, (b) series nodal filtering, and (c) 3D nodal filtering on a 1D signal. The signal is the u-velocity on a
sample line through the isotropic turbulence field.

on the lower-frequency motions that could result in incorrect turbulence statistics. This low-frequency effect appears
to be stronger for the series nodal filter than the 3D nodal filter. Note that a nodal filter with N′f = 4 or 5 might be
too strong for a practical case of LES; however, visualizing their results help magnify the effects to better understand
their differences with modal filtering.

Following the results obtained from a 1D sample signal across the domain, further investigation of the effect of the
nodal filter on the modes of the solution is performed. This time, the nodal filter is applied once to all variables in all
elements for the same isotropic turbulence field at time t = 1, and the average properties among all elements before
and after applying the filter are compared (shown later). The amplitude of modes with wavenumber n in element q
before applying the filter is defined by

Aq(n) = 〈ûklm〉 ∀ {k, l,m} where max{k, l,m} = n, n = 0, . . . , P, (28)

where 〈〉 means the average of the set. Examples of these sets are shown in Fig. 5 for n = 6, 7, and 8. Similarly, the
amplitude of modes with wavenumber n in an element after applying the filter is called Afilt

q (n).
The procedure used to study the effects of filters on the modes is as follows. First, we transform the solutions from

nodal representation to modal representation via DChT, given by Eq. (13), and store the amplitudes of the modes (Eq.
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Fig. 5: The entries of the modal matrix that contribute to motions with wavenumber n for (a) n = 8, (b) n = 7, and (c) n = 6.

(28)). Then, we apply the filter of interest on the variables of interest and transform the filtered solutions from nodal
representation to modal representation. Finally, we compare the amplitude of the filtered modes (Afilt

q (n)) with the
previously stored original modes (Aq(n)). This procedure is used for the nodal filters. The effect of the modal filter on
the modes is trivial.

After calculating Aq(n) and Afilt
q (n) for all the elements, the amplitude of each wavenumber is averaged for all the

elements throughout the domain to obtain 〈A(n)〉 and 〈Afilt(n)〉. Here, we are interested in the effect of the nodal filter
on the amplitudes of modes at different wavenumbers. Therefore, for each wavenumber, we look at the amplitude of
each wavenumber after applying the filter, relative to the amplitude of the same wavenumber before applying the filter:
Ã(n) = 〈Afilt(n)〉/〈A(n)〉. This study identifies the statistical effect of the filters on the amplitude of each wavenumber.
An ideal filter would remove the high wavenumbers, and at the same time will not affect the low wavenumbers.

Figure 6(a) shows the relative amplitudes of modes (Ã(n)) at each wavenumber (n) after applying the modal filter
with different strengths (N f ). The motions are calculated based on u-velocity. Note that even though some adjacent
points are connected with a sloped line, they do not represent smooth transitions, but a sharp cutoff, i.e., the relative
amplitudes of the modes are one and zero for two adjacent wavenumbers. Not surprisingly, it is observed that by
applying a modal filter, the last N f modes with the highest frequencies are completely removed, and the relative
amplitude of the lower-frequency modes remain as one, which means those modes are not affected by the filtering
procedure.

Figures 6(b) and (c) show the effect of series and 3D nodal filters on the u-velocity modes, respectively. By
interpolating the solutions back and forth to a lower polynomial order, P′ = P − N′f , the motions associated with the
N′f modes with highest frequencies are expected to be completely removed with no effect on the other modes with
lower frequencies. From Fig. 6(b) it is observed that by applying the series nodal filter with N′f = 1, the mode with
the highest frequency (n = 8) is completely removed. However, the process has some weak effects on the lower-
frequency modes as well—two adjacent modes, i.e., n = 6 and 7, are slightly amplified. The amplification of modes
is not expected from a low-pass filter, where the modes should be removed or weakened. This effect could increase
the motions at unintended scales and contaminate the flow statistics. For N′f = 2, the two modes with the highest
frequencies (n = 7 and 8) are completely removed. However, again, some of the lower-frequency modes are also
affected. This time, three adjacent modes (n = 4, 5, and 6) are altered. Similarly, for N′f = 3, four adjacent modes
are affected. This low-frequency effect dramatically escalates for N′f > 3 such that the filtering process significantly

changes the lowest-frequency modes. The value of Ã(n) at three low-frequency end of the spectra, i.e., n = {0, 1, 2},
mostly fall outside the plot frame and are given by Ã(n) = {−0.34, 2.72, 3.24} and {3.29, 3.97, 0.39} for N′f = 4 and 5,
respectively. This observation conveys that the series nodal filter, especially at higher strengths, provokes significant
contributions to the low-frequency motions and is consistent with the observation in Fig. 4(b), where the general
shape of the function changes for N′f > 3. This unintended contamination of the low-frequency motions may remove
more turbulent motions than what is intended and severely affect the first-, as well as second-order statistics.

A less severe version of the above-mentioned low-frequency effect is also observed in the 3D nodal filter, shown
in Fig 6(c). The 3D nodal filter acts similar to the modal filter, i.e., the filtering procedure does not affect the lower-
frequency modes, only for N′f = 1. For higher values of N′f , the low-frequency effect is present, but, compared with
the series nodal filter, fewer adjacent modes are changed at a lower rate. The low-frequency effect becomes severe for
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N′f = 5; the points Ã(0) = 3.65 and Ã(2) = −1.36 for N′f = 5 fall outside the plot frame. This is a new observation and
shows that the nodal filter accomplishes one of the two expected goals: It does remove the motions within a certain
frequency range, but it does not leave the lower-frequency motions unaffected.

4.2.2. A Posteriori Analysis
LES of the isotropic decaying turbulence case is conducted using different filtering procedures to compare their

performance. A DNS of the same flow is also simulated as the benchmark. Turbulence statistics such as the decay of
the TKE, the energy spectra, and the dissipation spectra are used for comparison. The filters are applied to density,
three components of velocity, and pressure at each time step. The initial turbulent Mach number based on urms is
MT,0 = 0.3, and the initial Taylor Reynolds number is Reλ = 40. More details of the problem setup are given in
Sengupta [19].

The grid used for DNS consists of 63 = 216 elements, uniformly distributed in three directions. The polynomial
order used for DNS is P = 15. This grid has been shown to be sufficiently fine for DNS of the described isotropic
turbulence case [19]. The elements of the grid used for LES are the same as those used for DNS; however, the
polynomial order for LES is P = 8 as opposed to P = 15. A coarse DNS case is also simulated using the low
polynomial of LES without applying a turbulence model.

Figure 7(a) and (b) show the energy spectra and the dissipation spectra, respectively, of the isotropic decaying
turbulence simulation at time t = 3.2 for the DNS and coarse DNS cases. The energy spectrum is compared with
previously published data of Blaisdell et al. [41]. A good agreement with previous data is observed for the DNS
case. The sharp drop-off in the spectrum at high wavenumbers indicates a resolved DNS. The work of Blaisdell et al.
[41] used a Fourier-spectral method with 963 = 884,736 grid points. The present DNS grid has the same number of
degrees of freedom as the previous work with 216 × 163 = 884,736 Gauss grid points. This conclusion is consistent
with the validation study of Jacobs et al. [42]. On the other hand, the coarse DNS case is unable to capture the
expected drop-off in both energy and dissipation spectra for k > 13.

Figure 8(a)-(c) shows the energy spectra of the isotropic decaying turbulence using the three different filtering
approaches. The spectra are compared with the results obtained from DNS and coarse DNS cases. All three methods
provide steeper drop-off than the coarse DNS case at high wavenumbers, which is expected. It means that the filters
are serving as a drain for the turbulence energy cascade. Except for the 3D nodal filter, removing two modes results in
a steeper drop-off than removing one mode; a stronger filter damps more energy from the high wavenumber portion
of the spectrum. For the nodal filters, the spectra are affected at midrange wavenumbers (for both nodal filters) and
low wavenumbers (for series nodal filter). This undesired side effect could induce non-physical contributions to the
larger-scale motions of the turbulence and result in incorrect turbulence statistics. This behavior is not expected since
a low-pass filter ideally acts on the high wavenumbers only. The best agreement with DNS is obtained by removing
one mode using the modal filter.

The decay of the TKE, defined by Eq. (27), for the isotropic decaying turbulence is shown in Fig. 9(a)-(c) for the
modal filtering, the series nodal filtering, and the 3D nodal filtering procedures, respectively. The results are compared
with DNS. It is observed that the TKE has a noticeable deviation from DNS for the series nodal filter, with N′f = 1
and 2, for t > 1. The 3D nodal filter, with N′f = 2, also overpredicts the TKE from the beginning of the simulation
(t = 0). The nodal filters generally predict a lower rate of decay of the TKE compared to the DNS case. The modal
filtering, for both filter strengths N f = 1 and 2, provides good agreement with the DNS.

It is observed from the simulations of the isotropic turbulence that the nodal filtering not only drastically alters
the low-frequency content, but amplifies the lower modes due to |Ã(n)| > 1 and introduces large phase shifts due to
negative values of Ã(n). The consequence of this observation is clearly demonstrated in Fig. 8, where the energy of
LES cases are considerably higher than DNS, which in reality should be the opposite. This phenomenon is due to the
aliasing inherent in the interpolation-based operations, Eqs. (24) and (25), which causes the redistribution of energy
between modes. Based on the above-mentioned observations, it is strongly recommended to avoid using the nodal
explicit filter for LES. Therefore, the modal filter is used for further LES of turbulent channel flow in this work.

5. Channel Flow

The periodic turbulent channel flow between two parallel plates is a well-studied benchmark for turbulence models
[2, 3, 16, 24, 43]. It provides a simple flow that assesses the performance of turbulence models near the wall. The
tests with isotropic decaying turbulence, presented in the previous section, demonstrated the superior performance
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Fig. 6: The effect of (a) the modal filtering, (b) series nodal filtering, and (c) 3D nodal filtering on the magnitude of motions corresponding to
different modes. The motions are u-velocity throughout the domain.
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of the modal filter over the nodal filters. Therefore, for further simulations of channel flow, only the modal filtering
procedure is employed.

5.1. Problem Setup
In the present work, we perform LES of a 3D periodic turbulent channel flow to study the performance of the

modal filtering procedure in the case of wall-bounded turbulence. First- and second-order turbulent statistics are
used to assess the accuracy of the calculations. The DNS of Lee and Moser [44] at the friction Reynolds number of
Reτ = 544 is used as the reference.

5.1.1. Computational Domain
The channel flow configuration is shown in Fig. 10. The flow runs between two parallel no-slip isothermal walls

with a temperature of Tw = 1, which are placed in the xz-plane. The boundaries of the domain in the streamwise
(x) and spanwise (z) directions are periodic. The dimensions of the computational domain are Lx = 4π, Ly = 2,
and Lz = 2π in the streamwise, wall-normal, and spanwise directions, respectively. All lengths are scaled by the
channel’s half-height, δ = Ly/2. The domain dimensions in terms of the wall unit are L+

x ≈ 6,800, L+
y ≈ 1,100,

and L+
z ≈ 3,400. Throughout the paper, variables with the superscript + are scaled by wall units. These channel

dimensions are used in previous DNS [45], and are shown to be sufficiently large to encompass the largest scale of
turbulence by demonstrating two-point correlations in the periodic directions [46].

Flow

L

yL

zL

x

y

z

x

Fig. 10: Schematic of the computational domain of the channel flow.

5.1.2. Flow Conditions
The bulk velocity of the flow (U), the channel half-height (δ), the bulk density (ρ), and the wall temperature (Tw)

are taken as the reference velocity, reference length, reference density, and reference temperature, respectively. The
friction Reynolds number is defined by Reτ = uτδ/ν, where ν is the fluid’s kinematic viscosity and

uτ =

√√√
ν ∂u

∂y

∣∣∣∣
wall

Re f
(29)

is the friction velocity. All present channel flow simulations are performed at Reτ ≈ 544. The exact value of the
friction Reynolds number varies for each case based on the calculated slope of the streamwise velocity adjacent to
the wall. This friction Reynolds number corresponds to a reference Reynolds number of Re f = 10,000 based on the
reference scales. The reference Mach number, based on the reference temperature and velocity, is M f = 0.4. The heat
capacity ratio is assumed fixed at γ = 1.4 for air, and the reference Prandtl number is Pr = 0.72.

The flow in a physical channel is normally driven by a negative pressure gradient in the streamwise direction
(dp/dx). Here, a force term, which is dynamically adjusted, is applied to retain a constant mass flow rate. The forcing
algorithm employed in the present work was introduced by Lenormand et al. [47].
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Case P
Number of
elements

Number of
grid points

Total
grid points y+

min
Points
in y+

10
λ ∆t × 104

P6-B 6 20 × 12 × 30 140 × 84 × 210 2,469,600 0.167 5 4.5 6.81
P6-H 6 28 × 17 × 42 196 × 119 × 294 6,857,256 0.121 8 4.3 5.07
P10-B 10 13 × 7 × 19 143 × 77 × 209 2,301,299 0.157 4 4.5 5.96
P10-H 10 20 × 12 × 30 220 × 132 × 330 9,583,200 0.068 7 4.5 2.84

Table 1: Details of the grids used for different cases of LES of the channel flow. Points in y+
10 is the number of grid points below y+ = 10 near the

wall, and ∆t is the average time step size required for each grid.

5.1.3. Grid Resolution
The grid used for the LES of the periodic channel flow (shown in Fig. 11) has 20, 12, and 30 elements in the

streamwise, wall-normal, and spanwise directions, respectively. The polynomial order of the basis functions within
the elements is P = 6. This results in a total of 2,469,600 Gauss collocation points. The elements are uniformly
distributed in the periodic directions (x and z). A hyperbolic tangent function of the form

yn

Ly
=

1
2

(
1 −

tanh
[
λ( 1

2 −
n

Ny
)
]

tanh
[
λ/2

] )
, n = 0, . . . ,Ny , (30)

is used for the distribution of the elements in wall-normal direction. In Eq. (30), yn is the location of the interfaces
of the elements in the y-direction, Ny is the number of elements in the y-direction, and λ is an adjustable coefficient
that determines the compactness of the elements adjacent to the walls. The average grid (Gauss points) spacings
in the periodic directions in wall units are ∆x+ ≈ 49 and ∆z+ ≈ 16, and the wall-normal grid spacing ranges in
0.17 < ∆y+ < 43. The details of the grid is included in Table 1; the grid used in this section is labeled as P6-B.

Fig. 11: The grid used for LES of the channel flow (grid P6-B). The element interfaces are shown with black lines, while the intersections of the
gray lines indicate the locations of the Gauss grid points.

5.1.4. Initialization and Transition to Turbulence
The streamwise velocity is initialized with a laminar parabolic profile with a mean value of U0 as

u0(y) = −6
[( y

2

)2
−

( y
2

)]
(1 + ε), (31)

where ε is a 10% random disturbance intended to help accelerate the transition to turbulence. The spanwise and
wall-normal velocities are initialized as zero. The initial temperature follows a laminar Poiseuille profile as

T (y) = Tw +
3(γ − 1)

4
Pr f M f

[
1 − (y − 1)4]. (32)
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The density is initialized at ρ0 = 1, and the initial pressure is calculated from the equation of state.
Our preliminary tests showed that the initial disturbance that is introduced to expedite the transition to turbulence

gradually decays, and the transition does not occur. Neither an increase in the magnitude of the initial disturbance
nor a temporary increase in the Reynolds number resulted in a transition to turbulence. Instead, the simulation is
started using a significantly coarse grid with a polynomial order of P = 2 compared to the original order of P = 6.
The truncation error caused by the low resolution is sufficiently large to provide the necessary disturbance for the
transition to turbulence. Once the transition completes, the solution is spectrally interpolated to a new grid with
higher resolution (P = 3), and the simulation is continued at the new resolution for a few flow-through times. To
ensure stability, the solution is interpolated gradually to higher resolution grids using the same approach until reaching
the desired resolution of P = 6. More details of the transition procedure and initialization are provided in Jacobs [28]
and Ghiasi et al. [48].

5.2. Results
LES of the periodic channel flow has been performed using the modal filtering procedure. Different tests have

been conducted, and the results are compared with the DNS of Lee and Moser [44], which is used as the reference in
this study.

The rms velocity fluctuation in the xi-direction is defined as u′′i,rms = {u′′i u′′i }
1/2, and the scaled rms velocity

fluctuation is u′′i,rms
+ = u′′i,rms/uτ. Here, {} is the Favre average, which is defined by { f } = 〈ρ f 〉/〈ρ〉, where 〈〉 is the

Reynolds (ensemble) average. Also, the single prime, ′, and double prime, ′′, denote the turbulent fluctuations with
respect to the Reynolds and Favre averages, respectively.

A case using the dynamic Smagorinsky model [8] is also simulated for comparison. The value of the dynamic
Smagorinsky coefficient, Cs, is averaged within each element in the periodic directions to ensure stability [19].

Before performing the LES of the channel flow using the modal filter, we examined the amplitudes of the modes
for the coarse DNS (no-model) case. The amplitude of the nth mode in element m, is denoted by Am(n) and is defined
by Eq. (28) (See Fig. 5). We expect this quantity to be statistically only a function of the distance of the element
from the wall. Hence, we categorize the elements into three levels: Level 1: elements adjacent to the wall, level 2:
elements that are one element away from the wall, until level 6: elements nearest to the core of the channel. Then, we
average the amplitudes of each mode over all elements within the same level to obtain ALevel l(n), where l = 1, . . . , 6.

Figure 12 presents the amplitudes of the modes of the streamwise velocity at different levels. The zeroth mode
represents the bulk value of the quantity (streamwise velocity). The amplitude of this mode is greater for the higher
levels (see n = 0) because the magnitude of the streamwise velocity is higher away from the wall. In contrast, the
higher modes (n > 0) represent the spatial change of the quantity (streamwise velocity). The amplitudes of these
modes are lower for the higher levels because the spatial changes of the streamwise velocity decrease as we get closer
to the core of the channel. It is also observed that regardless of the distance from the wall, the amplitudes of the modes
decrease exponentially for successive modes.

5.2.1. Filtering Strategy
As mentioned before, the filters were applied at every time step to the density, all three components of velocity,

and pressure in the simulations of the isotropic turbulence. Our preliminary tests with the channel flow revealed
that applying the filter at every time step results in excessively dissipated turbulence and incorrect statistics (not
shown). Further tests showed that applying the filter every 100 time steps (equivalent to approximately 0.07 time
units) provides good agreement with DNS (shown in the next section).

Then, we studied the effect of applying a weaker filter, by blending the filtered values with the unfiltered values,
more frequently. Here, we apply the isotropic modal filter with N f = 1 at different frequencies: f = 1, 0.1, 0.02,
and 0.01 (the unit of the frequency is 1/time step), which correspond to filtering every 1, 10, 50, and 100 time steps,
respectively. In order to maintain the overall strength of the filter in all these cases, a function is used to update the
solution values with a combination of the filtered values and the original values [17]. The solution values are updated
to the effective value of

Qeff = αQfilt + (1 − α) Qorig, (33)

where Qfilt and Qorig are the filtered and original values, respectively. By choosing the combination coefficient to be
α = 1, we can disable the effect of the combination function, which was the case for previous simulations. Here, the
value of α is chosen to be 0.01, 0.1, 0.5, and 1 for the cases with f = 1, 0.1, 0.02, and 0.01, respectively. Therefore,
the cumulative strength of the filter, which is defined by f × α, remains the same for all cases.
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Fig. 13: (a) Mean streamwise velocity and (b) rms velocity fluctuations of LES of the channel flow using modal filter with N f = 1 applied at
different frequencies.

Figure 13 depicts the scaled mean streamwise velocity and rms velocity fluctuations for the four different frequen-
cies of the modal filter. It is observed that the frequency of the filter has nearly no effect on the first- and second-order
statistics of the flow, while the cumulative strength of the filter is maintained. Therefore, for all present simulations of
the channel flow using the modal filter, the filter is applied to density, all three components of velocity, and pressure
every 100 time steps, without blending (α = 1).

5.2.2. Isotropic Modal Filter
The isotropic modal filtering is applied for N f = 1 and 2, which correspond to removing one and two modes with

highest frequencies, respectively. Since this filter, according to Eq. (16), removes the high-frequency modes in all
three directions, it is called an isotropic modal filter. Figure 14 shows the scaled mean streamwise velocity, 〈u+〉, as
a function of the distance from the wall in wall units, y+. The profiles are compared with those from DNS, Coarse
DNS, and the dynamic model. The difference between the DNS results and other cases in 0.1 < y+ < 4 are related
to the plotting method; other cases have fewer solution points near the wall than DNS, and the solution values are
connected by straight lines. It is observed that all cases predict the same velocity profile up to y+ ≈ 8. Further away
from the wall, the case with no model (coarse DNS) underpredicts the mean velocity profile, the modal filtering with
N f = 2 overpredicts the profile, the dynamic model predicts close values to DNS, and the modal filtering with N f = 1
provides excellent agreement with DNS. In fact, it shows slightly better velocity prediction than the dynamic model.



20 Zia Ghiasi et al. / Journal of Computational Physics (2018)

10−1 100 101 102
0

5

10

15

20

y+

〈u
+
〉

Law of the wall
DNS (Lee & Moser [44])
Coarse DNS
N f = 1
N f = 2
Dynamic model

Fig. 14: Mean streamwise velocity for the LES of the channel flow using the modal filtering with different strengths. The DNS of Lee and Moser
[44] is used as the reference.

The friction Reynolds numbers for all cases are provided in Table 2. The simulations in this section appear under
the base resolution in the table. The closest prediction of the friction Reynolds number relative to the DNS value is
provided by the modal filter with N f = 1 with only 1.43% error. The modal filter with N f = 2 and the case with no
model significantly underpredict and overpredict the quantity, respectively. A large error in calculation of the friction
Reynolds number indicates the inability to accurately calculate the slope of the mean velocity at the wall.

The rms of velocity fluctuations are shown in Fig. 15. The modal filter with N f = 1, as well as the dynamic model,
give good predictions of the streamwise component (Fig. 15(a)) as compared with DNS. With N f = 2, however, the
streamwise rms is significantly overpredicted for y+ > 7. The coarse DNS also overpredicts the quantity near the wall
(y+ < 10). A closer look at the near-wall region reveals that the modal filtering provides better streamwise rms than
the dynamic model, regardless of the filter strength (N f ). The reason the profiles do not meet at the axis origin ({0, 0})
is that the solutions are calculated on the Gauss grid points, and these collocation points, according to Eq. (9), do not
exist on the element boundaries. The modal filtering with N f = 1 as well as the dynamic model predict close values
of wall-normal rms as shown in Fig. 15(b). The modal filter with N f = 2 and the coarse DNS case underpredict and
overpredict the profile, respectively. All present turbulence models do improve the prediction of the rms of velocity
in the spanwise direction (Fig. 15(c)), compared to the coarse DNS case. It is observed that modal filtering, with
N f = 2, has excellent agreement with DNS near the wall (y+ < 30), while N f = 1 gives better prediction at regions
away from the wall (y+ > 40). This implies that stronger modal filtering is desired more near the wall than it is away
from the wall.

5.2.3. Grid Independence Study
The simulation of the periodic channel flow with the base resolution (grid P6-B) that is presented in section 5.2.2

is performed using a grid with higher resolution to ensure the grid independency. The case that provide the closest
results to DNS, i.e. N f = 1, is chosen for the grid resolution study. A new grid with higher number of elements in
all three directions that features the same polynomial order of P = 6 is considered. The high-resolution grid has 28,
17, and 42 elements in the streamwise, wall-normal, and spanwise directions, respectively. The details of this grid is
included in Table 1 under case P6-H.

Figure 16 compares the mean streamwise velocity and rms velocity fluctuations based on the base and high
resolution grids. It is observed that the mean and fluctuations of the velocity do not significantly change by increasing
the resolution.

5.2.4. Filter Strength (N f )
In the simulations presented in the previous sections, it was observed that the best agreement with DNS is obtained

by the choice of N f = 1. One may ask the questions: Is N f = 1 always the best choice? What factors determine the
correct choice of the filter strength (N f )? To answer these questions, we perform some tests and study the effect of
the polynomial order and h-resolution on the best choice of N f . We consider two polynomial orders of P = 6 and 10,
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Fig. 15: Rms velocity fluctuations for the channel flow in the (a) streamwise (with magnified near-wall region), (b) wall-normal, and (c) spanwise
directions using the modal filtering. The profiles are compared with DNS of Lee and Moser [44], coarse DNS, and the dynamic model.
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Fig. 16: Comparison of (a) mean streamwise velocity and (b) rms velocity fluctuations of LES of the channel flow with modal filter with N f = 1
using the base (grid P6-B) and high resolution (grid P6-H) grids.

Base resolution High resolution

N f Reτ Error Reτ Error

0 575.5 5.79 % 558.6 2.68 %
1 545.4 0.26 % 543.2 -0.15 %
2 517.1 −4.95 % 527.9 −2.96 %

Table 2: The friction Reynolds numbers predicted by P6 cases as compared with DNS value of Reτ = 544. Note that N f = 0 means a coarse DNS
with no modal filter.

and for each P, we consider two grids with different h-resolutions. The details of the four grids are included in Table
1. For each of the four grids, we perform the LES using different modal filter strengths (N f ) and compare the results.

Table 2 presents the friction Reynolds numbers for all cases with P = 6. It is observed that for both resolutions, the
friction Reynolds number decreases by increasing the filter strength. The important observation here is that regardless
of the h-resolution, the smallest error with respect to the DNS case is obtained by N f = 1. Table 3 presents the same
quantity for cases with P = 10. The decrease in the friction Reynolds number by increasing the filter strength is again
observed for P = 10. It is also shown that the best agreement with DNS is achieved using N f = 3, again regardless of
the h-resolution.

Figure 17(a) compares the mean velocity profiles of the channel flow for the cases of the modal filter with different
strengths (N f ) that are performed on the base resolution grid with P = 6 (grid P6-B). It is observed that the best
comparison with DNS is obtained by N f = 1. Figure 17(b) presents the same velocity profile for the high resolution

Base resolution High resolution

N f Reτ Error Reτ Error

0 587.0 7.90 % 559.2 2.79 %
1 563.0 3.50 % 553.0 1.65 %
2 551.7 1.41 % 549.7 1.05 %
3 543.0 -0.18 % 544.7 0.13 %
4 539.2 −0.89 %
5 533.6 −1.92%

Table 3: The friction Reynolds numbers predicted by P10 cases as compared with DNS value of Reτ = 544. Note that N f = 0 means a coarse DNS
with no modal filter.
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Fig. 17: Mean streamwise velocity for the LES of the channel flow with P = 6 using the modal filter with different strengths (N f ) based on (a) the
base resolution grid (P6-B) and (b) the high resolution grid (P6-H). The DNS of Lee and Moser [44] is used as the reference. The boxes inside the
plots show magnified versions.
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Fig. 18: Mean streamwise velocity for the LES of the channel flow with P = 10 using the modal filter with different strengths (N f ) based on (a) the
base resolution grid (P10-B) and (b) the high resolution grid (P10-H). The DNS of Lee and Moser [44] is used as the reference. The boxes inside
the plots show magnified versions.

grid (P6-H). The closest profile to that of the DNS case is again obtained by N f = 1. The results for P = 10 are
presented in Fig. 17(a) and (b). It is observed that, for both resolutions, the best agreement with DNS is provided by
N f = 3. The important observation here is that the same value of N f is the best choice for both h-resolutions as long
as the polynomial order is the same. Therefore, the choice of N f is dependent on only the polynomial order, and not
on the h-resolution. However, regardless of P and N f , increasing the h-resoltion improves the predictions of friction
Reynolds number and mean velocity.

5.2.5. Anisotropic Modal Filter
In the previous sections, the modal filter formulated by Eq. (16) was applied to the solution variables in the channel

flow. This filter is the same as that applied to the isotropic turbulence case in section 4 and removes high-frequency
modes from all three directions equally. Since the channel flow is not an isotropic flow, we applied an anisotropic
version of the modal filter to determine the sensitivity of the results to the direction of the filter. The anisotropic
modal filter, given by Eq. (17), removes the motions with contributions from the highest-frequency modes in only
one direction. In this section, the anisotropic modal filter, with N f = 1, is applied in three different directions for LES
of the channel flow (using grid P6-B), and the results are compared with the isotropic filter as well as DNS and coarse
DNS cases. The choice of N f = 1 is due to its superior performance with the isotropic modal filter for the channel
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Fig. 19: (a) Mean streamwise velocity for the LES of the channel flow using the modal filtering applied in different directions. (b) Same as (a), but
magnified at the log-law region. The DNS of Lee and Moser [44] is used as the reference.

Case Reτ Error

DNS 544 -
Anisotropic modal (x-direction) 571.0 4.95 %
Anisotropic modal (y-direction) 577.1 6.08 %
Anisotropic modal (z-direction) 547.9 0.72 %

Table 4: The friction Reynolds numbers for the non-isotropic modal filtering cases as compared with DNS.

flow.
Figure 19 shows the mean streamwise velocity profiles of the LES of channel flow using the anisotropic modal

filtering with N f = 1 applied in the three directions. It is observed that applying the modal filter in the spanwise (z)
direction provides the closest profile to DNS. Applying the filter in the streamwise (x) direction has a slight effect on
the profile, and applying it in the wall-normal (y) direction has nearly no effect on the profile, i.e., the mean velocity
is the same as the coarse DNS case.

The values of the friction Reynolds number for cases with the anisotropic modal filter are presented in Table 4.
Again, the prediction of the friction Reynolds number closest to the DNS result is provided by the anisotropic filter
applied in the spanwise direction.

The rms velocity fluctuations are shown in Fig. 20. It is observed that applying the filter in the y-direction has
nearly no effects on the velocity fluctuations in any direction. Applying the filter in the x-direction slightly improves
the predictions of the spanwise and wall-normal fluctuations. However, applying the filter in the z-direction, i.e.,
removing one mode in the spanwise direction, noticeably improves the rms profiles in all three directions.

We also observed previously that the modal filtering in LES of the channel flow is most effective in accurate
prediction of the mean velocity and the friction Reynolds number when one mode is removed from the spanwise
direction. These observations are consistent with the fact that the motions in the spanwise direction contain more
energy than the motions in the streamwise direction as demonstrated in Fig. 21(a)-(c). This figure shows the one-
dimensional energy spectra along two periodic directions based on the three components of the velocity. The 1D
enegy spectra are defined as

E(k) =
1
π

∫ ∞

−∞

R(x) e−ikx dx, (34)

where R(x) is the two-point correlation defined by

R(x) = 〈u(x0, t) u(x0 + x, t)〉. (35)

The spectra in Fig. 21 are measured at three different distances from the wall: near-wall region (y+ ≈ 6), midrange
(y+ ≈ 15), and the core of the channel (y+ ≈ 170). It is observed that the spectra in the spanwise direction (solid
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Fig. 20: Rms fluctuations of the (a) streamwise, (b) wall-normal, and (c) spanwise velocity components for the LES of channel flow using the
modal filtering applied in different directions, as compared with DNS and coarse DNS.
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Fig. 21: One-dimensional energy spectra for the coarse DNS of the channel flow based on the streamwise (blue), wall-normal (green), and spanwise
(red) components of the velocity, along the periodic directions: streamwise (dashed) and spanwise (solid), at three distances from the wall: (a)
y+ ≈ 6, (b) y+ ≈ 15, and (c) y+ ≈ 170.

curves) are higher than those in the streamwise direction (dashed curves), regardless of the distance from the wall or
the component of the velocity. Therefore, there is a greater amount of energy in the spanwise direction that cascades
to the higher-frequency motions and needs to be dissipated by the turbulence model at the cutoff wavenumber. This
could contribute to the fact that removing the highest-frequency mode in the spanwise direction is more effective than
it is in the streamwise direction. Note that the conclusion that filtering in the spanwise direction is the most effective
among three directions is drawn merely for the periodic channel flow. Further investigation is needed to generalize
this behavior for various near-wall flows.

We also examined and compared the amplitude of the highest-frequency modes in each direction. These quantities
are defined by 

Aq,x(p) = 〈ûplm〉 , l = 0, . . . , P , m = 0, . . . , P
Aq,y(p) = 〈ûkpm〉 , k = 0, . . . , P , m = 0, . . . , P
Aq,z(p) = 〈ûklp〉 , k = 0, . . . , P , l = 0, . . . , P

, (36)

for the highest-frequency modes in the x-, y-, and z-directions, respectively, in the element q. Again, we categorize the
elements throughout the domain into six levels based on their distances from the wall. Then, we average the quantities
defined in Eq. (36) over the elements within the same level to obtain 〈Ax(p)〉, 〈Ay(p)〉, and 〈Az(p)〉 at each level. The
amplitude of the highest-frequency mode in each direction is shown in Fig. 22 for three sample levels: 1, 3, and 5. It
is observed that the amplitude of the highest-frequency modes is higher in the spanwise direction than it is in the other
two directions. This is also identified as another reason why removing the highest-frequency modes in the spanwise
direction is the most effective among three directions.

6. Computational Cost

The computational costs of the presented methods are quantified by running the same simulation using different
models and measuring the run time. The LES of the isotropic turbulence is conducted for 10 time steps using the
modal filter, series and 3D nodal filters, and the dynamic model. The run times are compared with a case without any
turbulence model. Also, three polynomial orders of P = 4, 8, and 16 are considered to investigate the effect of P on
the computational costs. The run times are averaged among 20 trials for each case. All simulations are performed
using a single processor so that the results are not affected by the parallel efficiency of the code. Intel Xeon E5-2670
(2.60 GHz) processors are used.
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P=4 P=8 P=12

Case Run time
(s/time step)

Overhead
(%)

Run time
(s/time step)

Overhead
(%)

Run time
(s/time step)

Overhead
(%)

No-model 0.875 - 4.85 - 14.73 -
Modal filter 0.898 2.55 4.94 1.93 14.80 0.45
Series nodal filter 0.910 3.93 5.04 4.01 15.35 4.18
3D nodal filter 0.900 2.85 5.01 3.40 15.49 5.12
Dynamic model 1.271 45.2 6.88 41.9 21.49 45.9

Table 5: Run times (seconds per time step) and computational overheads for the LES of the isotropic turbulence using different polynomial orders.

Table 5 presents the run times and the computational overheads for all cases as compared with the case with no
model. The computational overheads are also depicted in Fig. 23. It is observed that the modal filter is the least
computationally costly method among presented models regardless of the polynomial order. It is also the only model
whose computational cost reduces for higher polynomial orders, with an overhead of only 0.45% for P = 12. This
could be attributed to the computational implementation; FFTW library, which is known as one of the fastest fast
Fourier transform (FFT) libraries [49], is used to implement the transformation of the solution between nodal and
modal representations. The dynamic model is the most computationally expensive choice; all filtering procedures
are at least one order of magnitude less costly than the dynamic model. Also, the computational cost of the dynamic
model does not have a meaningful dependence on the polynomial order. The series nodal filter has a constant overhead
of roughly 4%, while the cost of the 3D nodal filter increases for higher polynomial orders. The 3D nodal filter is less
costly than the series version for the lower polynomial orders, and it is more costly for higher orders.

7. Summary and Conclusions

A modal low-pass filter is applied to a discontinuous spectral element method (DSEM), and its performance is
compared with two types of interpolation-based nodal filters, series and 3D, and DNS for LES of turbulent flows with
no additional SGS model. An isotropic decaying turbulence and a periodic turbulent channel flow are used as the test
cases. The conclusions from the isotropic turbulence tests are as follows:

1. By removing the N f highest-frequency modes using the modal filter, the solution becomes smoother step by step
while increasing N f , and the small-scale features are removed. However, by applying a nodal filter, especially



28 Zia Ghiasi et al. / Journal of Computational Physics (2018)

40

45

50

4 8 12
0

1

2

3

4

5

Polynomial order (P)

O
ve

rh
ea

d
(%

)
Modal filter
Series nodal
3D nodal
Dynamic model

Fig. 23: Computational cost overheads of the presented models for the isotropic turbulence case at different polynomial orders.

for N′f > 2, the shape of the function changes as well. The lower-frequency modes are also contaminated with
nodal filters, except for the 3D nodal filter with N′f = 1.

2. All filtering procedures provide better drop-off of the energy spectra at high wavenumbers compared with cases
with no model. However, the nodal filters overpredict the spectra at the midrange and low wavenumbers. This
overprediction is more severe in the series nodal filter than it is in the 3D version. Regardless of the filtering
procedure, removing one mode provides the closest agreement with DNS.

3. The modal filter predicts the correct decay of the TKE for both N f = 1 and 2. The series nodal filter under-
predicts the rate of decay of turbulence regardless of N′f . The 3D filter underpredicts the decay of TKE for
N′f = 2.

The modal filter provided more accurate statistics than the nodal filters in the isotropic turbulence tests. Therefore,
this filtering procedure is chosen for further simulations. The modal filter, as well as an anisotropic version of the
filter, is used in LES of a periodic turbulence channel flow. The conclusions are as follows:

1. The modal filtering procedure provides accurate statistics including the mean velocity, the friction Reynolds
number, and velocity fluctuations, with respect to DNS.

2. The best choice of the filter strength (N f ) depends only on the polynomial order (P) and is independent of the
h resolution. For a polynomial order of P = 6, a filter with N f = 1 provides the best agreement with DNS, and
for P = 10, the best results are obtained by N f = 3, regardless of the grid resolution.

3. Applying a too strong filter results in an overprediction of the mean and fluctuations of the streamwise velocity
and an underprediction of the friction Reynolds number and fluctuations of the wall-normal velocity. The
opposite results are obtained by applying a too weak filter.

4. Removing the highest-frequency modes in the spanwise direction is the most effective among three directions
and provides the closest predictions of the velocity profile and the rms velocity fluctuations to DNS results.
This observation is attributed to (i) the fact that the one-dimensional energy spectra are higher in the spanwise
direction than the streamwise direction, and (ii) the fact that the amplitude of the highest-frequency mode is
larger in the spanwise direction than the other two directions.

5. The frequency of the application of the filter does not affect the first- and second-order statistics as long as the
cumulative strength of the filter is maintained; the cumulative strength of the filter is controlled by a function
that updates the solution with a combination of the filtered and original values.

6. The amplitudes of the modes of the channel flow field decrease exponentially for successive modes from low-
frequency to high-frequency regardless of the distance from the walls.

It is also observed that all filtering procedures are significantly less computationally expensive than the dynamic
model, while the modal filter is the fastest model. The dynamic Smagorinsky model introduces a computational
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overhead of about 45%, while the other methods have less than 5% overhead. In general, the modal filter has shown
good performance for both isotropic and wall-bounded flows; the calculated channel friction Reynolds number for the
modal filter is within 0.26% error with respect to the DNS data, compared to 5.8% error for a case with no modeling.
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