Comprehensive Detection of Single Amino Acid Variants and Evaluation of Their Deleterious Potential in a PANC-1 Cell Line

Zhijing Tan¹; Jianhui Zhu¹; Paul M. Stemmer²; Liangliang Sun³; Zhichang Yang³; Kendall Schultz⁴; Matthew J. Gaffrey⁴; Anthony J. Cesnik⁵; Xinpei Yi⁶; Xiaohu Hao⁷; Michael R. Shortreed⁸; Tujin Shi⁴; David M. Lubman¹*

¹ Department of Surgery, the University of Michigan, Ann Arbor, Michigan 48109, United States

² Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan 48202, United States

³ Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States

⁴ Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States

⁵ Department of Genetics, Stanford University, Stanford, California 94305, United States

⁶ Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, United States

⁷ Shanghai Institutes for Biological Science, Chinese Academy of Science, Shanghai, China

⁸ Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States

^{*} To whom correspondence should be addressed. David M. Lubman, Department of Surgery, The University of Michigan Medical Center, 1150 West Medical Center Drive, Building MSRB 1, Room A510 B, Ann Arbor, MI 48109-0656. E-mail: dmlubman@umich.edu. Phone: 734-647-8834. Fax: 734-615-2088.

Abstract

Identifying single amino acid variants (SAAVs) in cancer is critical for precision oncology. Several advanced algorithms are now available to identify SAAVs but attempts to combine different algorithms and optimize them on large datasets to achieve a more comprehensive coverage of SAAVs have not been implemented. Herein we report an expanded detection of SAAVs in the PANC-1 cell line using three different strategies, which results in identification of 540 SAAVs in the mass spectrometry data. Among the set of 540 SAAVs, 79 are evaluated as deleterious SAAVs based on analysis using novel AssVar software in which one of the driver mutations found in each protein of KRAS, TP53 and SLC37A4 is further validated using independent selected reaction monitoring (SRM) analysis. Our study represents the most comprehensive discovery of SAAVs to date and the first large-scale detection of deleterious SAAVs in the PANC-1 cell line. This work may serve as the basis for future research in pancreatic cancer and personal immunotherapy and treatment.

Keywords: Single Amino Acid Variant; Deleterious Mutation; LC-MS/MS; LC-SRM; PRISM-SRM; PANC-1 Cell Line, KRAS, TP53

Introduction

Cancer development is caused by the loss of control of cell proliferation due to the accumulation of gene mutations. Thousands of mutations in a single tissue sample and in large cohorts have been detected at the nucleic acid level with next-generation sequencing. ^{1,2} These findings have been reached due to the advances in PCR methods for DNA or RNA sequencing. However, not all mutations at the nucleic acid level affect the final protein sequence due to the existence of DNA and RNA repair or because they are not translated. ³⁻⁵ Proteins perform most of the work in cells and are required for the structure, function and regulation of the biology, which provide more biologically relevant information on the current state of the phenotype. ⁶ In addition, the correlation between mRNA and protein levels is insufficient to predict protein abundance levels based on mRNA expression levels. ⁷ In comparison with mutations detected at the nucleic acid level, the direct detection of single amino acid variants (SAAVs) at the proteome level will be extremely important to understand tumorigenesis and progression and eventually could provide potential targets for immunotherapy for personalized medicine.

Various efforts have contributed to the systematic discovery of SAAVs based on advances in state-of-the-art mass spectrometry. Zhang et al., identified 796 SAAVs among 86 human colon and rectal cancers for which RNA-seq data were available. Su et al., identified and quantified 154 SAAVs in a human brain proteome using mass spectrometry data and a de novo sequencing algorithm instead of depending on general single nucleotide polymorphisms (SNPs) databases.⁸ Lichti et al., identified SAAVs in glioma stem-cell-derived chromosome 19 and validated 3 SAAVs at the protein level by selected reaction monitoring (SRM). Alternative to the genomic variant database or transcript data for customized database construction, an error-tolerant peptide search engine such as BICEPS for identifying SAAVs based on the standard UniProt database was developed by Giese et al. This approach has the advantage that the search space is not limited to known SAAVs. 10 Using the error-tolerant search strategy global quantification of the SAAVs in hepatocellular carcinoma (HCC) was obtained by integrating the stable isotope dimethyl labeling with a variant-associated database where 282 unique SAAVs sites were quantified between HCC and normal liver tissues. 11 There has appeared work on the detection of SAAVs in MCF-7 breast cancer cell line subpopulations and also quantitative analysis of SAAVs associated with pancreatic cancer in serum. 12,13 In addition, in recent work, 79 SAAVs

were detected from as few as 9 PANC-1 cells using sample fractionation, TMT multiplexing, and a carrier/reference strategy.¹⁴

Most of the current strategies for detection of SAAVs rely on customized database construction and novel database searching algorithms. ¹⁵ An important aspect in applying these strategies for SAAV discovery is filtering out the false positives from the potential SAAV results. ¹⁶ In recent work, SAAVs were filtered for quality control using the SAVControl method, which detects and removes false positives to reduce the false discovery rate (FDR) for variant peptide identifications and SAAV sites with unrestrictive mass shift relocalization. ^{14,17}

There has to date been no effort to compare different strategies for SAAV detection and the overlap of the SAAVs detected in the different strategies. In addition, some studies focus on the identification of driver mutations based on large-scale exome sequencing data such as the Cancer Genome Atlas (TCGA) project and the International Cancer Genome Consortium (ICGC). 18,19 However, for large-scale SAAV detection, the prediction of the impact on cancer development due to proteins with SAAVs has also not been investigated. It is critical to confirm the existence of deleterious SAAVs in cancer patients to aid in selection of treatment for cancer patients. As an example, the drugs Panitumumab and Cetuximab are used to treat advanced colorectal cancers, but cancer patients that have KRAS with SAAVs will not benefit from these two drugs. 20-22

There are two biological classes of somatic mutations that occur in all dividing cells: 'driver' mutations and 'passenger' mutations.²³ 'Driver' mutations confer a growth advantage for cancer cells during tissue invasion and metastasis, angiogenesis, and evasion of apoptosis. Driver mutations, therefore, are positively selected during the evolution of the cancer. By definition, these mutant genes are cancer genes. Conversely, 'passenger' mutations are biologically neutral and, therefore, these mutations do not contribute to the growth advantage where passenger mutations have not been subject to selection.²⁴ A current challenge involves the comprehensive identification of mutations in conjunction with accurate classification of the mutations into driver mutations and passenger mutations.²³

In this work, we have completed comprehensive detection of SAAVs on a PANC-1 cell line by three complementary strategies. The full set of 540 detected SAAVs was then used to predict the impact on cancer development for the combined set of SAAVs using the AssVar server. Of these, 70 SAAVs were found to overlap among the three detection strategies applied to PANC-1 cells. Of critical importance, 79 SAAVs were predicted as deleterious mutations using the

AssVar online server and one of the driver mutations found in each protein KRAS, TP53 and SLC37A4 was further validated using independent SRM analysis. The current comprehensive detection of SAAVs in the PANC-1 cell line, the prediction of a large number of deleterious SAAVs, and the validation of SAAVs in KRAS, TP53 and other proteins will be essential in diagnosing cancer, monitoring the effects of treatment for some clinical anti-cancer drugs, early detection and prognosis and the development of new drugs for specific targeted SAAVs sites.

Materials and Methods

Cell culture

The PANC-1 cell line was purchased from the American Type Culture Collection (ATCC). The cell culture was described in a previous study with minor adjustment. Herefly, the PANC-1 cells were cultured in a dish (100 × 20 mm) with Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% (v/v) fetal bovine serum (FBS) and 1% (v/v) antibiotic-antimycotic. PANC-1 cells were cultured in a humidified atmosphere at 37°C with 5% CO₂. The cells were harvested using trypsin while in the exponential growth phase. Harvested cells were collected in a 15 mL tube and centrifuged at 100 g for 5 min. After removing the supernatant, the cell pellets were washed with 10 mL 1× PBS prior to centrifugation at 100 g for 5 min. The washing step was repeated 5 times and the resulting cell pellets were stored at -80°C until used for proteomic analysis.

Protein extraction and sample fractionation

Different numbers of cells, ranging from 9 cells to 1×10^6 cells, were subject to protein extraction and digestion. For samples with a small number of cells lysis was performed by sonication, as described in our previous work, ¹⁴ while for a bulk cell scale, lysis was accomplished by incubation with 200 μ l of radioimmunoprecipitation assay buffer (RIPA) with protease inhibitors on ice for 15 min with periodic pipetting. To improve the protein yield, the lysate was sonicated for 30 seconds at 50% pulse on ice. Cell lysate was then centrifuged at 13,000 \times g for 5 minutes at 4°C and the supernatant was collected into an Eppendorf tube. Buffer exchange was conducted

using a 3 K MWCO centrifugal filter (EMD Millipore) with TEAB buffer. The lysate was then aliquoted and stored at -80°C for further analysis.

Protein reduction was conducted with 0.5 mM TCEP in 100 mM TEAB (pH 8.5) solution for 1 h followed by alkylation in 2 mM iodoacetaminde for 30 min under dark conditions. Sequencing grade trypsin (Promega) was added into sample solution (1:30 trypsin to protein ratio (w/w)) with 0.05% ProteaseMax (Promega) to improve the protein digestion efficiency at 37°C for 12 h. After the digestion, the samples were dried in a SpeedVac and then labeled with TMT 11-plex reagent following the manufacturer's instructions. The advantage of using an isobaric labeling strategy is not only to achieve high resolution MS/MS spectra to improve the accuracy of SAAV identification but also to detect different samples at the same time. After quenching, the remaining TMT reagent using ammonium hydroxide solution, the same sample set was pooled and dried using a SpeedVac.

The sample mixture was fractionated using two different methods. Half of the sample was fractioned with the Pierce high-pH reversed-phase peptide fractionation kit (Thermo Fisher Scientific) into 10 fractions for analysis as previously described in detail. ¹⁴ Then another one fourth of the sample was fractionated using high pH RPLC and 11 fractions were obtained. The last one fourth of the sample was subjected to low pH nanoRPLC for fractionation. An easy nanoLC 1200 (Thermo Fisher Scientific) equipped with a capillary column (75 µm i.d. x 50 cm Length, C18, 2 μm bead, 100 Å pore, Thermo Fisher Scientific) was used for fractionation. Mobile phase A contained 2% (v/v) acetonitrile (ACN), 98% (v/v) H₂O and 0.1% (v/v) formic acid (FA). Mobile phase B contained 80% (v/v) ACN, 20% (v/v) H₂O and 0.1 % (v/v) FA. The flow rate was set 200 nL/min. The gradient was set as follows: from 8% to 30% (v/v) B in 40 min, from 30% to 50% (v/v) B in 30 min, from 50% to 80% (v/v) B in 10 min and remain at 80% (v/v) B for 10 min. The first fraction collection started from the sample loading and continued for 15 min from initiation of the gradient. The rest of the fraction was collected every 4 min and the last fraction was collected from 75 min to the end of the gradient. In total 17 fractions were collected. The eluates of each fraction were deposited into an Eppendorf tube (0.6 mL) containing 2 µL 50 mM NH₄HCO₃ (pH 8.5). The final volume of each fraction was around 3 µL and the final pH was about 8.0. The first and last fractions were then lyophilized and resuspended with 3 µL 50 mM NH₄HCO₃ (pH 8.0). After desalting with C18 ZipTip (Thermo Fisher Scientific), the samples were analyzed by the proteomics workflow.

Mass spectrometry analysis

LC-MS/MS data were acquired on three different instruments. These include an Orbitrap Q-Exactive HF mass spectrometer coupled with high performance liquid chromatography (HPLC) or capillary zone electrophoresis (CZE) for the sample fractionated by low-pH nano-RPLC and an Orbitrap Fusion mass spectrometer coupled with HPLC for the sample fractionated by the Pierce high pH reversed-phase peptide fractionation kit (Thermo Fisher Scientific).

For the 17 fractions collected using low-pH nano-RPLC, each fraction was then analyzed by CZE-MS/MS as previously described in detail.²⁵ Briefly, the sample injection vials of CZE were treated with a BSA solution to reduce non-specific adsorption of peptides on the inner wall of the vials. A 100-cm linear polyacrylamide (LPA) coated capillary (50/360 µm i.d./o.d.) with an etched end by hydrofluoric acid was used for CZE separation.²⁶ The commercialized electrokinetically pumped sheath flow CE-MS interface (CMP scientific, Brooklyn, NY) was used to couple CZE to MS.²⁷ An ECE-001 autosampler (CMP scientific) was used for the automated CZE operation. The Background electrolyte (BGE) was 5% (v/v) Acetic Acid. Five psi was first applied for 90 s for sample loading so approximately 500 nL of sample was injected for CZE-MS/MS. The capillary distal end was then moved into BGE and 30 kV was applied for 120 min for CZE separation. 15 psi was applied during the last 5 min of separation to rinse the capillary.

The 11 fractions collected using high-pH HPLC were analyzed by low pH nanoRPLC-MS/MS. An easy nanoLC 1200 (Thermo Fisher Scientific) equipped with a capillary column (75 μm i.d. x 50 cm Length, C18, 2 μm bead, 100 Å pore, Thermo Fisher Scientific) was coupled with an Orbitrap Q-Exactive HF (Thermo Fisher Scientific) for low pH nanoRPLC-MS/MS analysis. Mobile phase A contained 2% (v/v) acetonitrile (ACN), 98% (v/v) H₂O and 0.1% (v/v) formic acid (FA). Mobile phase B contained 80% (v/v) ACN, 20% (v/v) H₂O and 0.1 % (v/v) FA. The flow rate was set at 200 nL/min. The gradient for separation was set as follows: from 8% to 30% (v/v) B in 55 min, from 30% to 50% (v/v) B in 45 min, from 50% to 80% (v/v) B in 15 min and remain at 80% (v/v) B for 5 min.

For CZE-ESI-MS/MS and RPLC-MS/MS analysis on the Q-Exactive, the parameters were set according to a previous study with some modifications.²⁵ The data acquisition was performed in data dependent mode using the software Xcalibur v2.3 (Thermo Fisher Scientific). Full MS scans were acquired in the Orbitrap mass analyzer over m/z 400-1500 range with a resolution of 60 K

at m/z 200. The AGC target was set 3e6. The quadrupole isolation window was set 4 m/z. The top 10 most intense peaks with charge state \geq 2 were fragmented in the HCD collision cell with normalized collision energy of 30%. The tandem mass spectra were acquired in the Orbitrap mass analyzer with a resolution of 35 K at m/z 200. The AGC target was set 1e5. Maximum ion injection time was set 50 ms for full MS scans and 200 ms for MS/MS mass spectra. Ion selection intensity threshold was set 1e4 and dynamic exclusion was set at 30 s.

For the samples fractionated by the high pH reversed-phase peptide fractionation kit, an Orbitrap Fusion mass spectrometer was used, coupled with an Easy 1000 nano UHPLC system (Thermo Fisher Scientific) and Acclaim PepMap 100, 75 µm × 2 cm trap with Acclaim PepMap RSLC, 75 µm × 25 cm column (Dionex). The samples were analyzed using a 90 min gradient from 4% to 30% acetonitrile with 0.1% FA. The mass spectrometer was operated in datadependent mode to acquire the mass spectral data using the software Xcalibur v2.3 (Thermo Fisher Scientific). The ESI spray voltage was set as positive ion mode at 2,500 V. A full mass scan (m/z 350-1,600) was performed, and the most intense ions in the full scan were chosen for MS/MS analysis. The normalized collision energy was set at 40% for higher energy collision induced dissociation (HCD) fragmentation. The maximum injection time was set at 100 ms and 250 ms for MS1 and MS/MS, respectively. The Orbitrap resolution was set at 120 K and 60 K for MS1 and MS2 spectra, respectively. For filter dynamic exclusion, repeat count was set to 1 and exclusion duration was set to 60 s. Both mass tolerances low and high were set at 10 ppm. The mass spectrometry proteomics data have been deposited to the public repository ProteomeXchange Consortium²⁸ using the PRIDE²⁹ partner repository with the data set identifier PXD017449.

Database searching on Proteome Discoverer 1.4

All RAW data were analyzed by database searching using the SEQUEST HT algorithm on Proteome Discoverer 1.4 (PD 1.4). The Swiss-CanSAAVs database that contains 87,733 amino acid variant sequences from 73,910 UniProtKB/Swiss-Prot canonical proteins was used. The carbamidomethylation of cysteine was set as a fixed modification and N-terminal TMT, TMT of lysine, and methionine oxidation were set as variable modifications. The tolerance for precursor ions and fragment ions was set as 10 ppm and 0.05 Da, respectively. A maximum of two missed

cleavages and the shortest peptide length set at six amino acids was allowed. The identified results were filtered using high confidence at 1% peptide-level false discovery rate (FDR). Protein identification is based on at least two confidently identified peptides. The resulting peptide data were exported into the XML-formatted file from PD 1.4 and all potential peptides with SAAVs derived from the same group sample were combined. A large percentage of false positive SAAV peptides are often observed due to the existence of missed cleavage sites surrounding the site of variation during database construction. A manual check of each SAAV site was further performed to remove false SAAVs. Only the shorter peptide sequence with the SAAV sites was selected due to up to 2 tryptic missed cleavages in the database search setting.

Customized database construction based on RNA-seq and database searching

The PANC-1 customized database was derived from RNA-seq data from GEO SRX5053565. This data was processed by proteogenomics software named Spritz (https://smith-chem-wisc. github.io/Spritz/). This software analyzes the RNA-seq data from beginning to end, starting by using *fasterq-dump*³¹ to download the RNA-Seq data, *skewer*³² to trim and filter the reads, *STAR*³³ to align the RNA sequences to the reference genome, and *GATK*³⁴⁻³⁶ to call variants from the alignments. Then, a custom version of *SnpEff*³⁷ is used to annotate variants and produce a proteogenomic database containing SAAVs that is annotated with posttranslational modifications (PTMs) from UniProt to allow detection of both amino acid variations and PTMs. MetaMorpheus³⁸ (https://github.com/smith-chem-wisc/MetaMorpheus) was used to search this database.

SAVControl database searching

The database searching based on SAVControl has been described in previous studies. ^{14,39} The CanProVar 2.0 database was downloaded from http://canprovar2.zhang-lab.org/ which includes 65,963 distinct human cancer protein variants and 825,106 coding SNPs from dbSNP. ⁴⁰ Corresponding non-variant proteins are from the Ensembl database (*Homo sapiens*, v53). A decoy database derived from the reversed sequences of the same size was mapped into the protein sequence database for false discovery rate (FDR) estimation. The RAW files were searched using the Mascot algorithm with the parameter settings, (1) carbamidomethylation

(+57.021 Da) at Cysteine and TMT tags reaction with peptide N-terminus and ε-amino group of lysine (+229.163 Da) were set as static modifications; (2) oxidation (+15.995 Da) at Methionine was set as a dynamic modification; (3) Precursor ion mass tolerance was set to 10 ppm and fragment ion mass tolerance was set to 0.05 Da; (4) trypsin was set as enzyme and the maximum missed trypsin cleavage sites was set as 2; (5) charge status was set as +2, +3 and +4; (6) the minimum tryptic peptide length was set at 5 amino acids and unrestricted peptide-level FDR was enabled. The unrestricted peptide-level FDR setting results in extremely exaggerated high coverage of peptide identification which includes not only genuine SAAVs but also false positive SAAVs. False positive peptides with SAAVs were removed by further quality control via SAVControl.

Prediction of SAAVs effect on protein function using the online AssVar server

AssVar has been developed to quantitatively assess the impact of SAAVs on tumor development (https://zhanglab.ccmb.med.umich.edu/AssVar/), which has shown an advantage over other similar pipelines with higher Matthews correlation coefficient. A total of 540 SAAVs were submitted for analysis. The default cut-off impact score was set at 0.57 which means that if the value of the impact score for SAAVs is greater than 0.57, the variant will be assigned as a "driver" mutation. Otherwise, the SAAVs are be assigned as "passenger" mutations without a deleterious feature in the protein that is related to cancer development.

Validation of three SAAVs by SRM assay

Three SAAVs derived from proteins KRAS, TP53 and SLC37A4 were selected for validation by SRM assay. The peptides pairs, LVVVGAGGVGK (canonical peptide) and LVVVGADGVGK (variant peptide G12D) for KRAS, FVSGVLSGQMSAR (canonical peptide) and FVSGVLSD QMSAR (variant peptide G88D) for SLC37A4, NSFEVRVCACPGR (canonical peptide) and NSFEVHVCACPGR (variant peptide R273H) for TP53. Heavy-isotope labeled variant peptides and one canonical peptide LVVVGAGGVGK with the 13 C/ 15 N labeling on the C-terminal K or R were synthesized by New England Peptide (Gardner, MA). For each peptide three or four best transitions with higher SRM response were selected for reliable detection and quantification. The standard peptides were spiked into the tryptic digests derived from PANC-1 cell lysate with final concentrations at 2 fmol/ μ L for the standard and 1 μ g/ μ L for the sample.

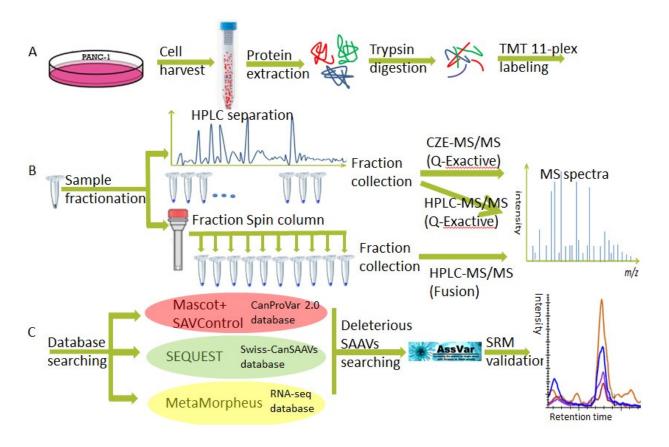
A tiered approach was used for sensitive SRM quantification of the three variant peptides and one canonical peptide. Regular LC-SRM was first used for simultaneous quantification of all the four peptides. For the peptide FVSGVLSDQMSAR from SLC37A4 that cannot be reliably detected and quantified by LC-SRM, PRISM-SRM was employed for sensitive targeted quantification because it can provide ~100-fold higher detection sensitivity.⁴²

Regular LC-SRM. The LC-SRM analysis was performed using a nanoACQUITY UPLC (Waters, Milford, MA) coupled to a TSQ Vantage triple quadrupole mass spectrometer (Thermo Scientific, San Jose, CA). The nanoACQUITY UPLC Ethylene Bridged Hybrid (BEH) 1.7 μm C18 column (75 μm i.d. × 20 cm) was connected to a chemically etched 20 μm inner diameter fused silica electrospray emitter via a stainless steel union. Mobile phase A (0.1% FA) and mobile phase B (90% acetonitrile in 0.1% FA) were used with a linear gradient, 5-20% B for 26 min, 20-25% B for 10 min, 25-40% B for 8 min, 40-95% B for 1 min, and at 95% B for 7 min. The flow rate was set as 350 nL/min. The analytical column was reconditioned at 99.5% mobile phase A for 8 min. Approximately 1 μL of peptide sample was directly loaded onto the BEH C18 column from the Vial (Waters, Milford, MA) without using a trapping column.

The TSQ Vantage mass spectrometer was operated with the following parameters: ion spray voltages $(2,400 \pm 100 \text{ V})$, capillary offset voltage (35 V), skimmer offset voltage (-5 V) and capillary inlet temperature (220°C) . The tube lens offset voltage was obtained from automatic tuning and calibration without any further optimization. A scan width of $0.002 \, \text{m/z}$ and a dwell time of 20 ms were set for all SRM transitions.

PRISM-SRM. The PRISM-SRM approach has been previously described for quantification of low-abundance proteins in human plasma or serum. ^{42,43} Briefly, high resolution reversed phase capillary LC with pH 9 mobile phase was used as the first dimensional separation of peptides from trypsin-digested PANC-1 proteins. Following separation, the column eluent was automatically collected every minute into a 96-well plate during a ~100 min LC run while online SRM monitoring of heavy internal standard peptides was performed on a small split stream of the flow. Intelligent selection (termed *i*Selection) of target peptide fractions was achieved based on the on-line SRM signal of internal standard peptides. Prior to peptide fraction collection, 27 μL of water was added to each well to minimize excessive loss of peptides and to dilute the peptide fractions (~1:10) for LC-SRM analysis. Following *i*Selection, the target peptide-containing fractions were subjected to LC-SRM measurement. 15 μL of individual

peptide fractions (total volume 30 μ L) following PRISM were injected for LC separations followed by SRM analysis. The nanoACQUITY UPLC and TSQ Vantage were operated in the same manner as above described for regular LC-SRM analysis.


SRM data analysis. Skyline software was employed for SRM data analysis.^{42,44} For each peptide the best transition without matrix interference from co-eluting peptides was used for precise quantification. Two criteria were applied to determine the peak detection and integration: (1) the same retention time; (2) approximately the same relative SRM peak intensity ratios among multiple transitions between heavy peptide internal standards and endogenous (light) peptides.⁴⁵ All data were manually inspected to confirm the correct peak detection and accurate integration. All RAW files generated on the TSQ Vantage mass spectrometer were imported into Skyline software and the graphs of extracted ion chromatograms (XICs) to multiple transitions of the target peptides monitored were displayed.⁴⁵

Results and Discussion

Overview of workflow

We have established an integrated workflow for high-confidence global SAAV analysis that can minimize false positives and predict deleterious SAAVs and incorporates validation of SAAVs using SRM. The workflow is summarized in Fig. 1. Two methods were applied in parallel for sample fractionation. The first was the low pH nano RPLC method where a total of 60 HPLC fractions were collected and then combined into 11 fractions for LC-MS/MS and CZE-MS/MS analyses. The second was the high pH RP fractionation method where a total of 10 fractions were collected for LC-MS/MS analysis. The fractionated samples were separated using CZE or UHPLC prior to tandem mass spectrometry analysis. The sets of SAAVs derived from the same sample sets using different separation methods and CZE or UHPLC are presented in Supplementary Table 1. In general, the HPLC method produced a greater depth of coverage than the CZE method for the same sample. A total of 13 sample sets were measured which resulted in 139 RAW files for SAAV detection. Data were searched using three different algorithms, SEQUEST, MASCOT incorporated with SAVControl, and MetaMorpheus³⁸, against three different databases, CanProVar 2.0, Swiss-CanSAAVs and RNA-seq databases, respectively, as shown in Fig. 1C. After data refinement including removal of false positive

SAAVs, all SAAVs with high confidence were evaluated by an online server AssVar to assess the impact on tumor development. One of the deleterious SAAVs found in each protein of KRAS, TP53 and SLC37A4 was validated by SRM.

Figure 1. Overview of comprehensive detection for SAAVs in the PANC-1 cell line including three major steps of sample preparation (A), sample fractionation and MS/MS analysis (B), and SAAV identification and validation (C).

SAAVs derived from different strategies

To increase the coverage of SAAV detection, we sampled the tryptic digests of PANC-1 cells into 13 sets which were subjected to fractionation and MS/MS analysis using different strategies. The sample information is shown in **Table 1**. Two sample sets were fractioned using low pH nano-RPLC, while the remaining 11 sets were fractioned using the Pierce high pH reversed-phase peptide fractionation kit. Eleven or 17 fractions were obtained from the low pH nano-RPLC method and 10 fractions from the high pH RP fractionation method. Fractions from the low pH RP method were analyzed on the Oribtrap Q-Exactive HF while fractions from the high

pH RP method were analyzed on the Orbitrap Fusion mass spectrometer. Due to the high workload for sample preparation and MS analysis, we performed the entire workflow at three different time points for 5, 2, and 6 sample sets, respectively. A total of 133 mass spectral runs were performed and the related RAW files were acquired for subsequent database searching.

Table 1. Sample fractionation and mass spectrometry analysis

Sample set	Fractionation method	Number of	MS/MS analysis	Number of
		fractions		runs per set
Sets 1-5	Pierce high pH reversed-	9	LC-MS/MS	9
	phase peptide fractionation kit			
Sets 6-7	low-pH nano-RPLC	11	CZE-MS/MS	11
		17	LC-MS/MS	17
Sets 8-13	Pierce high pH reversed-	10	LC-MS/MS	10
	phase peptide fractionation kit			

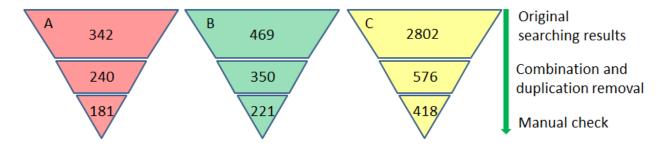
Three different search algorithms were employed for MS/MS database searching to identify SAAVs, i.e. SEQUEST algorithm in software Proteome Discoverer (PD) 1.4 against Swiss-CanSAAVs database, MetaMorpheus against the customized RNA-seq database, and Mascot algorithm coupled with SAVControl quality control. The results derived from the sample sets that were processed at the same time point were combined. The numbers of proteins and peptides containing SAAVs identified using the 3 different searching algorithms are listed in Table 2. A total of 418 SAAVs from 380 proteins were identified from all the sample sets using the SEQUEST algorithm in Proteome Discoverer (PD) 1.4 software (Table 2). A total of 196 proteins and 221 peptides with SAAVs were identified using MetaMorpheus against the customized RNA-seq database. The number of proteins and peptides with SAAVs by this strategy is approximately half that obtained compared to the strategy using the SEQUEST algorithm in PD 1.4. The total number of proteins and peptides with SAAVs were 165 and 181, respectively, when using Mascot algorithm coupled with SAVControl quality control. Among the 3 algorithms, the lowest number of proteins and peptides with SAAVs were identified based on the Mascot algorithm with SAVControl. Especially in sets 6-7, only 14 and 15 proteins and

peptides with SAAVs were identified, respectively. When combining the results from the 3 searching algorithms, 540 variant peptides from 483 proteins were identified in total, which is the most comprehensive coverage of SAAVs to date.

Table 2. Number of SAAVs identified using 3 different searching algorithms: SEQUEST algorithm in software Proteome Discoverer (PD) 1.4 against Swiss-CanSAAVs database, MetaMorpheus against the customized RNA-seq database, and Mascot algorithm coupled with SAVControl quality control.

Samples	SEQUEST algorithm		MetaMorpheus against		Mascot algorithm and	
	against Swiss-		RNA-seq database		SAVControl	
	CanSAAVs database					
	Proteins	Peptides	Proteins	Peptides	Proteins	Peptides
	with	with	with	with	with	with
	SAAVs	SAAVs	SAAVs	SAAVs	SAAVs	SAAVs
				100	1.50	
Sets 1-5	293	326	171	190	158	172
Sets 6-7	118	123	58	64	14	15
Sets 8-13	113	123	71	77	50	53
Total	382		197		165	
Percentage of	78.1%		40.9%		34.2%	
all SAAVs						

The SAAVs derived from low pH RPLC fractionation followed by 2 separation methods for MS/MS analysis, i.e. CZE or UHPLC, are presented in **Supplementary Table 1**. In general, the HPLC method produced a greater depth of coverage than the CZE method.


The numbers of proteins and peptides with SAAVs detected in three separate strategies are different. The largest number of SAAVs was detected in the PD strategy while the lowest number of SAAVs was detected in the SAVControl strategy. 382 of 483 (78.1%) SAAVs were detected in the PD strategy, 197 of 483 (40.9%) of SAAVs in the RNA-seq strategy, and 181 of 483 (33.5%) in the SAVControl strategy (**Table 2**). There is an overlap of 70 SAAVs identified across the three search algorithms. We have manually checked the spectra from many of the SAAVs to confirm the accuracy of the SAAVs in different strategies (**Supplementary Fig. 1**).

As shown in the Supplementary Fig. 1, the variant peptide DSMFGITVK from protein ITGA 6 (A419) is detected in all three different strategies, while the variant peptides ATEEQLK from protein ALB (K565E), AYLEGTCVEWLR from protein HLA-A (D185E) and AGLLIFASK from protein ARL5A (N125S) were detected in the SEQUEST strategy, the MetaMorpheus strategy and the SAVContol strategy, respectively. There are some potential reasons why only a small percentage of the 540 SAAVs were identified from all three platforms. One reason is the databases used for searching are different. This may be the main reason for such differences where we have found from our prior work on SAAVs searching that the use of RNA databases may result in different SAAVs depending on the source from which they were derived. The second reason for these differences is that the number of SAAVs derived from SEQUEST is largest but may contain more false positives than the other two strategies. False positive SAAVs may still exist although we reduce the false positives using multiple optimized methods and manual checking. The third reason is the search algorithm is different in the three strategies and yields complementary but different results. In addition, the canonical peptide sequence is predominant compared to variant peptides in most cases, so the SAAVs are difficult to detect and assign based on the algorithm.

SAAVs filtering in different strategies

The SAAVs obtained were filtered in each of the different strategies. Among these strategies, the highest duplication or false positives existed in the PD strategy while the lowest duplication and false positive SAAVs were detected in the SAVControl strategy. Many more duplications and false positive SAAVs were removed from the PD strategy where more SAAVs escaped from quality control based on FDR during the database searching resulting in potential false positives. The smallest number of SAAVs was detected in three processing steps (original searching results, combination and duplication removal, and manual check) in the SAVControl strategy compared to the other two strategies, which showed that the database searching is stringent and the highest quality control works in this strategy (Figure 2). There is a competition that exists between deeper coverage and highly rigid quality control. More false positive SAAVs resulted from loose quality control while less positive SAAVs were lost in this strategy. Likewise, the highest rigid quality control results in few false positive SAAVs where more positive SAAVs resulted. A much higher quality result for single amino acid polymorphisms (SAPs) derived from a

customized database compared to those identified using a larger aggregate database has also been shown by Sheynkman *et al.*, using a Jurkat cell line.⁴⁶

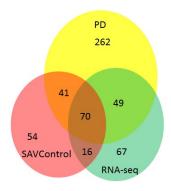


Figure 2. The filtering of SAAVs in different strategies. A, The number of potential SAAVs in SAVControl strategy; B, The number of potential SAAVs in PD strategy; C, The number of potential SAAVs in the RNA-seq strategy.

Overlap between different database searching

The SAAVs identified from three different strategies shared varying overlap (Fig. 3). 70 SAAVs were detected that are common to the three strategies which make them the most reliable variants detected in the PANC-1 cell line. The SAVcontrol and RNA-seq strategies shared 86 SAAVs, the SAVControl and PD strategies shared 111 SAAVs, and 119 SAAVs were shared by the RNA-seq and PD strategies. Compared to the PD strategy, a smaller number of SAAVs was detected in RNA-seq strategy. Nevertheless, the customized protein sequence database could significantly improve the sensitivity of SAAVs detection and reduce ambiguity in peptide identification. In addition, multiple modifications were considered in the MetaMorpheus strategy, which also increase the accuracy of the SAAVs searching. 83 novel SAAVs were identified in the RNA-seq strategy compared to SAAVs detected in the PD strategy. Customized databases derived from RNA-seq data can improve the efficiency and accuracy of identifying splice variants. Also, for the comparison between the PD and SAVControl strategy, a smaller number of SAAVs was detected in the SAVControl strategy where 70 novel SAAVs were detected in this strategy. The integrated of transfer FDR control, unrestricted mass shift relocation and introduction of alternative interpretations could also significantly increase the sensitivity of SAAVs detection and reduce ambiguity in peptide identification.³⁹ Compared to SEQUEST

strategy, a high FDR in global searching versus a strict FDR in variant peptides assignment in SAVControl strategy showed its advantage for SAAVs detection.

Figure 3. The Venn diagram picture shows the SAAVs identification and overlap among the three strategies. The yellow circle represents the Proteome Discoverer database searching. The green circle represents the RNA-seq database searching and the red circle represents the SAVControl strategy.

N-glycosylation site change

We also checked for potential loss and gain of glycosylation sites due to SAAVs. There were 9 potential N-glycosylation sites detected that change due to SAAVs, 3 peptides with SAAVs gained potential N-glycosylation sites while 6 peptides lost the potential N-glycosylation sites (**Table 3**). Among these proteins with gain or loss of N-glycosylation, CEND1 participates in cell cycle control.⁴⁷ Intracellular and extracellular ANXA1 plays a role in stimulating pancreatic cancer cell migration and invasion.⁴⁸ The mutation of ROCK2 leads to increased motility and adhesion in cancer cells.⁴⁹ Specific gain or loss of glycosylation sites in human glycosylation has been associated with diseases.⁵⁰ Mazumder *et al.*, revealed that there are 259 unique variations with loss of N-glycoslation by mapping the variation data to the UniprotKB human proteome.⁵¹ In our current study, we detected a small number of N-glycosylation sites with gain or loss compared to Mazumder's study.

Table 3. 9 potential N-glycosylation sites change due to SAAVs. +, represents gain while –, represents lost.

Peptide	Protein name	Accession	Gene Variant		N-
		number	name		glycosylation

				change
				Change
Cell cycle exit and neuronal	Q8N111	CEND1	N74D	_
differentiation protein 1				
NSFL1 cofactor p47	Q9UNZ2	NSFL1C	D290N	+
GC-rich sequence DNA-	P16383	GCFC2	N249S	_
binding factor 2				
Polyribonucleotide	Q8TCS8	PNPT1	N590D	_
nucleotidyltransferase 1,				
mitochondrial				
Rho-associated protein	O75116	ROCK2	T431N	+
kinase 2				
Cyclic GMP-AMP synthase	Q8N884	MB21D1	T35N	+
Annexin A1	P04083	ANXA1	N43D	_
GTP-binding protein 10	A4D1E9	GTPBP10	N110S	_
Keratin, type I cytoskeletal	P05783	KRT18	N193D	_
18				
	NSFL1 cofactor p47 GC-rich sequence DNA- binding factor 2 Polyribonucleotide nucleotidyltransferase 1, mitochondrial Rho-associated protein kinase 2 Cyclic GMP-AMP synthase Annexin A1 GTP-binding protein 10 Keratin, type I cytoskeletal	differentiation protein 1 NSFL1 cofactor p47 Q9UNZ2 GC-rich sequence DNA-P16383 binding factor 2 Polyribonucleotide Q8TCS8 nucleotidyltransferase 1, mitochondrial Rho-associated protein O75116 kinase 2 Cyclic GMP-AMP synthase Q8N884 Annexin A1 P04083 GTP-binding protein 10 A4D1E9 Keratin, type I cytoskeletal P05783	differentiation protein 1 NSFL1 cofactor p47 Q9UNZ2 NSFL1C GC-rich sequence DNA-P16383 GCFC2 binding factor 2 Polyribonucleotide Q8TCS8 PNPT1 nucleotidyltransferase 1, mitochondrial Rho-associated protein O75116 ROCK2 kinase 2 Cyclic GMP-AMP synthase Q8N884 MB21D1 Annexin A1 P04083 ANXA1 GTP-binding protein 10 A4D1E9 GTPBP10 Keratin, type I cytoskeletal P05783 KRT18	differentiation protein 1 NSFL1 cofactor p47 Q9UNZ2 NSFL1C D290N GC-rich sequence DNA-P16383 GCFC2 N249S binding factor 2 Polyribonucleotide Q8TCS8 PNPT1 N590D nucleotidyltransferase 1, mitochondrial Rho-associated protein O75116 ROCK2 T431N kinase 2 Cyclic GMP-AMP synthase Q8N884 MB21D1 T35N Annexin A1 P04083 ANXA1 N43D GTP-binding protein 10 A4D1E9 GTPBP10 N110S Keratin, type I cytoskeletal P05783 KRT18 N193D

Prediction of deleterious SAAVs

A total of 540 SAAVs were searched using the AssVar server to predict the impact of the SAAVs detected in each protein. If the SAAV was a driver mutation, the SAAV is considered as a deleterious mutation. Mutations can contribute to cancer by activating protein function. We have used the AssVar method to ascertain the presence of 79 deleterious SAAVs (Selected deleterious SAAVs shown in **Table 4**, all 79 deleterious SAAVs shown in **Supplementary Table 2**). Among these 79 deleterious SAAVs, most proteins were detected with a single deleterious site except for KRAS with 3 deleterious sites and FLNA with 2 deleterious sites. In addition to the oncogenic mutations of KRAS, another RAS family protein, HRAS which was the first oncogene identified in human tumors, was also detected in PANC-1 cells. The oncogenic mutation of RAS family genes changes the balance for the normal outcome of some signaling pathways resulting in tumor development. The RAS family has been detected in approximately 90 percent of pancreatic cancer patients. Also around 30 percent of other cancers have a mutation in the protein KRAS. In the MAPK signaling pathway, the pancreatic cell relies on a process known as autophagy to create energy by disrupting the pathway derived

from KRAS.⁵⁵ Thus the development of anti-KRAS therapies is one of the most elusive targets for cancer research.⁵⁶ Savoy *et al.*, revealed that FLNA is involved in cancer with dual roles. In the cytoplasm, overexpression of FLNA has a tumor-promoting effect while FLNS acts as an inhibitor for tumor growth when FLNA undergoes proteolysis in the nucleus.⁵⁷ In a study of more than 7,664 tumors from 29 different cancer types from TCGA, Martincorena *et al.*, confirmed the average number of driver genes for cancer as 1 to 10 driver mutations.⁵⁸

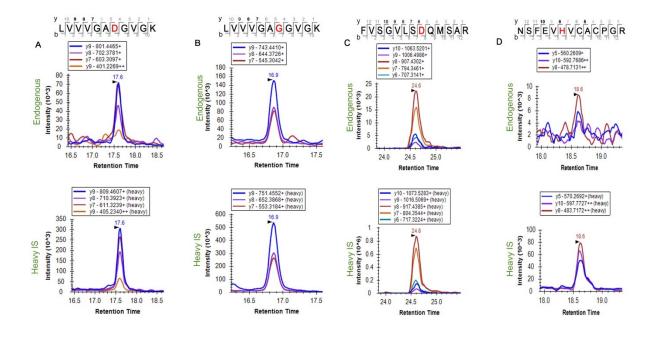

Three SAAVs were identified in protein TP53 while only one SAAV (R273H) was predicted as deleterious. As a tumor suppressor protein, TP53 plays a key role in some cell activities such as inducing cell cycle arrest, senescence, DNA repair and cell apoptosis. As the most frequently mutated protein in the Pan-Cancer cohort, it is found in almost every type of cancer at rates varying from 10% in hematopoietic malignancies to 95% in high-grade serous carcinoma of the ovary. 59,60 TP53 mutations including the hotspot R273H result in a gain of oncogenic function in tumor progression, invasion and metastasis. 61,62 Two proteins mitochondrial aldehyde dehydrogenase 2 (ALDH2) and SLC37A4 were also detected with a single SAAV. ALDH2 plays an essential role for alcohol detoxification to remove acetaldehyde in the pathway of alcohol metabolism.⁶³ It is reported that more than 500 million people worldwide, mostly in East Asia, have inherited an inactive ALDH2 at residue 487 (E487K) with symptoms.⁶⁴ It is the first time that the deleterious variant for ALDH2 at residue 287 (G287A) has been predicted. SLC37A4 is also known as glucose-6-phosphate translocase (G6PT) or SPX4 which belongs to the multicomponent glucose-6-phosphatase system (G6Pase-system) family. 65 SLC37A4 contains 10 transmembrane helices and plays a role to maintain blood glucose homeostasis in liver and kidney and also maintains neutrophil and macrophage functions. 66 A genetic defect of SLC37A4 was found to associate with inflammatory bowel disease (IBD)-like immunopathology for glycogen storage disease type 1b.⁶⁷ It is the first time that the deleterious variants for ALDH2 and SLC37A4 at residue 287 (G287A) and 88 (G88D) were predicted, respectively.

Table 4. Selected deleterious SAAVs from predicted 79 deleterious SAAVs based on AssVar server.All 79 deleterious SAAVs are shown in Supplementary Table 2. *Prediction results "1" refer to the deleterious SAAV. Superscript "a" means it is common to three different database searching methods. 5 deleterious SAAVs shared by three strategies.

Protein Name	Gene					-	Prediction
	name	Number	Position	type AA	type AA	Score	Results
Glucose-6-phosphate exchanger SLC37A4	SLC37A4	O43826	88	G	D	0.91	1*
GTPase Hras	HRAS	P01112	61	Q	E	0.88	1
GTPase Kras	KRAS	P01116	22	Q	E	0.87	1
GTPase Kras	KRAS	P01116	12	G	D	0.95	1
GTPase Kras	KRAS	P01116	12	G	R	0.94	1
Cellular tumor antigen p53	TP53	P04637	273	R	Н	0.87	1
Aldehyde dehydrogenase, mitochondrial	ALDH2	P05091	287	G	A	0.91	1
Insulin receptor	INSR	P06213	1055	A	V	0.86	1
Annexin A11	ANXA11	P50995	230	R	С	0.69	1 ^a
Neuroblast differentiation- associated protein AHNAK	AHNAK	Q09666	4090	D	G	0.78	1
Activating signal cointegrator 1 complex subunit 3	ASCC3	Q8N3C0	1995	S	С	0.63	1ª
Nuclear pore membrane glycoprotein 210	NUP210	Q8TEM1	1052	G	S	0.89	1
HEAT repeat-containing protein 1	HEATR1	Q9H583	2017	Е	G	0.68	1ª
NSFL1 cofactor p47	NSFL1C	Q9UNZ2	290	D	N	0.58	1 ^a
ADP-ribosylation factor- like protein 5A	ARL5A	Q9Y689	125	N	S	0.86	1
Filamin-A	FLNA	P21333	207	P	L	0.74	1
Filamin-A	FLNA	P21333	605	D	N	0.62	1
Integrin alpha-6	ITGA6	P23229	419	A	T	0.58	1 ^a

All cancer cells carry somatic mutations including driver mutations and passenger mutations. Driver mutations are defined where the mutation confers a selective growth advantage and is causally implicated in cancer development, whereas the remainder are passenger mutations which usually do not contribute to cancer development.^{24,68} Driver mutations are deleterious and accumulated passenger mutations could also impact cancer progression.⁶⁹ Ongoing research aims to identify driver mutations for all cancer types and identify therapies that can target tumors with these alterations. Accumulation of knowledge on deleterious SAAVs of cancer is a crucial step in successfully implementing precision oncology.

Validation of SAAV sites for variant peptides derived from KRAS, SLC37A4 and TP53 using SRM SRM was used to validate the presence of selected variants. One of these involves the KRAS (G12D) variant which is an important driver mutation in pancreatic cancer. Both endogenous canonical peptide LVVVGAGGVGK and variant peptide LVVVGADGVGK (variant peptide G12D, italic D) from PANC-1 cell line were detected using SRM (Figs. 4A, 4B). They have the same retention time and SRM peak patterns with their corresponding heavy internal standards. Interestingly, the abundance of variant peptide is slightly higher than that of the canonical peptide either by the endogenous peptide abundance alone or by the abundance ratio of endogenous over internal standard peptides (Figs. 4A, 4B). Similarly, two other variant peptides FVSGVLSDQM SAR (G88D, italic D) and NSFEVHVCACPGR (R273H, italic H) derived from SLC37A4 and TP53 were also validated based on SRM (Figs. 4C, 4D). For the variant peptide FVSGVLSDQ MSAR from SLC37A4, regular LC-SRM cannot provide sufficient sensitivity for confident detection with low SRM signal (Supplementary Fig.2). Mostovenko et al., also found that not all identified variant peptides were appropriate for mass spectrometric quantification by SRM assay after they identified approximate 400 SAAVs in glioma stem cells based on custom database searching. 70 We further applied ultrasensitive PRISM-SRM to confirm its expression in the PANC-1 cell line (Fig. 4C). TP53, a tumor suppressor protein, binds to DNA and regulates gene expression to prevent mutations of the genome. 71 The mutant TP53 (R273H) has been found to be involved in inducing cell massive apoptosis and enhancing cancer cell malignancy.⁷²⁻⁷⁴

Figure 4. Validation of SAAV sites for variant peptides derived from KRAS, SLC37A4 and TP53 using SRM. (A) Variant peptide LVVVGADGVGK (variant peptide G12D) from KRAS. (B) Canonical peptide LVVVGAGGVGK from KRAS. (C) Variant peptide FVSGVLS*D*QMSAR from SLC37A4. (D) Variant peptide NSFEV*H*VCACPGR (variant peptide R273H) from TP53. The variant peptide from SLC37A4 was detected by PRISM-SRM. Other three peptides were detected by regular LC-SRM. The endogenous peptides were confirmed by matching their corresponding heavy internal standards in the retention time and the SRM peak patterns. The top panel, SRM signal for endogenous peptides; the bottom panel, SRM signal for heavy internal standards (13 C6, 15 N2 on the C-terminal K or R). IS, internal standard.

(A) Variant peptide LVVVGADGVGK (variant peptide G12D) from KRAS. (B) Canonical peptide LVVVGAGGVGK from KRAS.

Conclusions

We have detected SAAVs in the PANC-1 cell line based on mass spectrometry analysis. To improve the depth of coverage of SAAV peptide detection, we prepared samples by fractionation into approximately 10 fractionations for each sample prior to analysis by HPLC-MS/MS and CZE-MS/MS. In total, 133 mass spectrometry runs evaluating the PANC-1 cell line were conducted in this study. Different algorithms for database searching and different databases were applied. Potential SAAV spectra were evaluated manually to remove duplication and false positive SAAVs. 70 SAAVs were identified using all three strategies indicating complementarity

in the MS/MS as well as the informatics approaches. The 70 SAAVs are believed to be high quality SAAV identifications. The 79 deleterious SAAVs predicted by the AssVar server included 5 SAAVs identified by all three strategies. The consistency of finding these deleterious SAAVs indicates they are high quality identifications and are prime candidates for further study of drivers for pancreatic cancer (**Table 4**). In summary, comprehensive detection of SAAVs was achieved in the current study by integrating multiple strategies in both data acquisition and data analysis. 79 deleterious SAAVs were distinguished from 461 passenger mutations in PANC-1 cells and one of the driver mutations found in each protein of KRAS, TP53 and SLC37A4 was validated by SRM. Our study provides a blueprint for mutation research and potential targeted sites for anti-immunotherapy drug design for pancreatic cancer.

■ASSOCIATED CONTENT

Supporting Information

Supplementary Figure 1. Representative four peptides with SAAVs were manually confirmed by checking spectra where they are detected in different strategies.

Supplementary Figure 2. Validation of one SAAV site in protein SLC37A4 using regular LC-SRM analysis.

Supplementary Table 1. SAAVs detected in HPLC and CZE in different strategies.

Supplementary Table 2. 79 deleterious SAAVs predicted by the AssVar server.

Notes

The authors declare no competing financial interest.

Acknowledgments

We thank Dr. Song Nie from Regeneron Pharmaceuticals, Inc. for a critical reading of the manuscript. We acknowledge partial support of this work under NIH R01GM49500 (DML) and R01CA160254 (DML), and R21CA223715 (TS). Also the assistance of the Wayne State University Proteomics Core, which is supported through NIH grants P30 ES020957, P30 CA022453 and S10 OD010700. The support of computation and informatics in biology and medicine training grant comes from the NIH award number 5T15LM007359 (AJC) and the support by NIH grant 5R21CA223887-02 (MRS) from the National Cancer Institute. We also

acknowledge partial support of this work under NIH R01GM125991 (LS) and the NSF CAREER Award, DBI-1846913 (LS).

References

- 1. Altshuler, D. M.; Durbin, R. M.; Abecasis, G. R. *et al.*, An integrated map of genetic variation from 1,092 human genomes. *Nature* **2012**, 491, (7422), 56-65.
- 2. Cole, C.; Krampis, K.; Karagiannis, K.; Almeida, J. S.; Faison, W. J.; Motwani, M.; Wan, Q.; Golikov, A.; Pan, Y.; Simonyan, V.; Mazumder, R., Non-synonymous variations in cancer and their effects on the human proteome: workflow for NGS data biocuration and proteome-wide analysis of TCGA data. *BMC Bioinformatics* **2014**, 15:28.
- 3. Bellacosa, A.; Moss, E. G., RNA repair: damage control. Curr Biol 2003, 13, (12), R482-R484.
- 4. Branzei, D.; Foiani, M., Regulation of DNA repair throughout the cell cycle. *Nat Rev Mol Cell Biol* **2008,** 9, (4), 297-308.
- 5. Li, M.; Wang, I. X.; Li, Y.; Bruzel, A.; Richards, A. L.; Toung, J. M.; Cheung, V. G., Widespread RNA and DNA sequence differences in the human transcriptome. *Science* **2011**, 333, (6038), 53-8.
- 6. Boonen, K.; Hens, K.; Menschaert, G.; Baggerman, G.; Valkenborg, D.; Ertaylan, G., Beyond genes: Re-identifiability of proteomic data and its implications for personalized medicine. *Genes (Basel)* **2019**, 10, (9):682.
- 7. Zhang, B.; Wang, J.; Wang, X.; Zhu, J.; Liu, Q.; Shi, Z.; Chambers, M. C.; Zimmerman, L. J.; Shaddox, K. F.; Kim, S.; Davies, S. R.; Wang, S.; Wang, P.; Kinsinger, C. R.; Rivers, R. C.; Rodriguez, H.;
- Townsend, R. R.; Ellis, M. J.; Carr, S. A.; Tabb, D. L.; Coffey, R. J.; Slebos, R. J.; Liebler, D. C.; Nci, C., Proteogenomic characterization of human colon and rectal cancer. *Nature* **2014**, 513, (7518), 382-387.
- 8. Su, Z. D.; Sheng, Q. H.; Li, Q. R.; Chi, H.; Jiang, X.; Yan, Z.; Fu, N.; He, S. M.; Khaitovich, P.; Wu, J. R.; Zeng, R., De novo identification and quantification of single amino-acid variants in human brain. *J Mol Cell Biol* **2014**, 6, (5), 421-433.
- 9. Lichti, C. F.; Mostovenko, E.; Wadsworth, P. A.; Lynch, G. C.; Pettitt, B. M.; Sulman, E. P.; Wang, Q.; Lang, F. F.; Rezeli, M.; Marko-Varga, G.; Vegvari, A.; Nilsson, C. L., Systematic identification of single amino acid variants in glioma stem-cell-derived chromosome 19 proteins. *J Proteome Res* **2015**, 14, (2), 778-786.
- 10. Giese, S. H.; Zickmann, F.; Renard, B. Y., Detection of unknown amino acid substitutions using error-tolerant database search. *Methods Mol Biol.* **2016**, 1362, 247-264.
- 11. Song, C.; Wang, F.; Cheng, K.; Wei, X.; Bian, Y.; Wang, K.; Tan, Y.; Wang, H.; Ye, M.; Zou, H., Large-scale quantification of single amino-acid variations by a variation-associated database search strategy. *J Proteome Res* **2014**, 13, (1), 241-248.
- 12. Tan, Z. J.; Nie, S.; McDermott, S. P.; Wicha, M. S.; Lubman, D. M., Single amino acid variant profiles of subpopulations in the MCF-7 breast cancer cell line. *J Proteome Res* **2017**, 16, (2), 842-851.
- 13. Nie, S.; Yin, H. D.; Tan, Z. J.; Anderson, M. A.; Ruffin, M. T.; Simeone, D. M.; Lubman, D. M., Quantitative analysis of single amino acid variant peptides associated with pancreatic cancer in serum by an isobaric labeling quantitative method. *J Proteome Res* **2014**, 13, (12), 6058-6066.
- 14. Tan, Z.; Yi, X.; Carruthers, N. J.; Stemmer, P. M.; Lubman, D. M., Single amino acid variant discovery in small numbers of cells. *J Proteome Res* **2019**, 18, (1), 417-425.
- 15. Sheynkman, G. M.; Shortreed, M. R.; Cesnik, A. J.; Smith, L. M., Proteogenomics: Integrating next-generation sequencing and mass spectrometry to characterize human proteomic variation. *Annu Rev Anal Chem (Palo Alto Calif)* **2016**, 9, (1), 521-545.
- 16. Nesvizhskii, A. I., Proteogenomics: concepts, applications and computational strategies. *Nat Methods* **2014**, 11, (11), 1114-1125.
- 17. Yi, X. P.; Wang, B.; An, Z. W.; Gong, F. Z.; Li, J.; Fu, Y., Quality control of single amino acid variations detected by tandem mass spectrometry. *J Proteomics* **2018**, 187, 144-151.
- 18. Bailey, M. H.; Tokheim, C.; Porta-Pardo, E *et al.*, Comprehensive characterization of cancer driver genes and mutations. *Cell* **2018**, 174, (4), 1034-1035.

- 19. Raphael, B. J.; Dobson, J. R.; Oesper, L.; Vandin, F., Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. *Genome Med* **2014**, 6:5. 20. Peeters, M.; Oliner, K. S.; Price, T. J *et al.*, Analysis of KRAS/NRAS mutations in a phase III study of panitumumab with FOLFIRI compared with FOLFIRI alone as second-line treatment for metastatic colorectal cancer. *Clin Cancer Res* **2015**, 21, (24), 5469-79.
- 21. Fakih, M.; Vincent, M., Adverse events associated with anti-EGFR therapies for the treatment of metastatic colorectal cancer. *Curr Oncol* **2010**, 17 Suppl 1, S18-30.
- 22. Hocking, C. M.; Price, T. J., Panitumumab in the management of patients with KRAS wild-type metastatic colorectal cancer. *Therap Adv Gastroenterol* **2014**, 7, (1), 20-37.
- 23. Greenman, C.; Stephens, P.; Smith, R. *et al.*, Stratton, M. R., Patterns of somatic mutation in human cancer genomes. *Nature* **2007**, 446, (7132), 153-158.
- 24. Stratton, M. R.; Campbell, P. J.; Futreal, P. A., The cancer genome. *Nature* **2009**, 458, (7239), 719-724.
- 25. Yang, Z. C.; Shen, X. J.; Chen, D. Y.; Sun, L. L., Improved nanoflow RPLC-CZE-MS/MS system with high peak capacity and sensitivity for nanogram bottom-up proteomics. *J Proteome Res* **2019**, 18, (11), 4046-4054.
- 26. McCool, E. N.; Lubeckyr, R.; Shen, X. J.; Kou, Q.; Liu, X. W.; Sun, L. L., Large-scale top-down proteomics using capillary zone electrophoresis tandem mass spectrometry. *Jove- J Vis Exp* **2018**, (140). e58644.
- 27. Yang, Z.; Shen, X.; Chen, D.; Sun, L., Microscale reversed-phase liquid chromatography/capillary zone electrophoresis-tandem mass spectrometry for deep and highly sensitive bottom-up proteomics: identification of 7500 proteins with five micrograms of an MCF7 proteome digest. *Anal Chem* **2018**, 90, (17), 10479-10486.
- 28. Deutsch, E. W.; Csordas, A.; Sun, Z.; Jarnuczak, A.; Perez-Riverol, Y.; Ternent, T.; Campbell, D. S.; Bernal-Llinares, M.; Okuda, S.; Kawano, S.; Moritz, R. L.; Carver, J. J.; Wang, M. X.; Ishihama, Y.; Bandeira, N.; Hermjakob, H.; Vizcaino, J. A. The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. *Nucleic Acids Res.* 2017, 45 (D1), D1100–D1106.
- 29. Vizcaino, J. A.; Csordas, A.; del-Toro, N.; Dianes, J. A.; Griss, J.; Lavidas, I.; Mayer, G.; Perez-Riverol, Y.; Reisinger, F.; Ternent, T.; Xu, Q. W.; Wang, R.; Hermjakob, H. 2016 update of the PRIDE database and its related tools. *Nucleic Acids Res.* 2016, 44 (D1), D447–D456.
- 30. Song, C. X.; Wang, F. J.; Cheng, K.; Wei, X. L.; Bian, Y. Y.; Wang, K. Y.; Tan, Y. X.; Wang, H. Y.; Ye, M. L.; Zou, H. F., Large-scale quantification of single amino-acid variations by a variation-associated database search strategy. *J Proteome Res* **2014**, 13, (1), 241-248.
- 31. Leinonen, R.; Sugawara, H.; Shumway, M.; C, I. N. S. D., The sequence read archive. *Nucleic Acids Res* **2011**, 39, D19-D21.
- 32. Jiang, H. S.; Lei, R.; Ding, S. W.; Zhu, S. F., Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. *BMC Bioinformatics* **2014**, 15:182.
- 33. Dobin, A.; Davis, C. A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T. R., STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **2013**, 29, (1), 15-21.
- 34. McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; DePristo, M. A., The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res* **2010**, 20, (9), 1297-1303.
- 35. DePristo, M. A.; Banks, E.; Poplin, R. *et al.*, A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nature Genetics* **2011**, 43, (5), 491-498.
- 36. Poplin, R.; Chang, P. C.; Alexander, D.; Schwartz, S.; Colthurst, T.; Ku, A.; Newburger, D.; Dijamco, J.; Nguyen, N.; Afshar, P. T.; Gross, S. S.; Dorfman, L.; McLean, C. Y.; DePristo, M. A., A universal SNP and small-indel variant caller using deep neural networks. *Nat Biotechnol* **2018**, 36, (10), 983-987.

- 37. Cingolani, P.; Platts, A.; Wang, L. L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S. J.; Lu, X. Y.; Ruden, D. M., A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w(1118); iso-2; iso-3. *Fly* **2012**, 6, (2), 80-92.
- 38. Solntsev, S. K.; Shortreed, M. R.; Frey, B. L.; Smith, L. M., Enhanced global post-translational modification discovery with MetaMorpheus. *J Proteome Res* **2018**, 17, (5), 1844-1851.
- 39. Xinpei Yi, B. W., Zhiwu An, Fuzhou Gong, Jing Li, Yan Fu, Quality control of single amino acid variations detected by tandem mass spectrometry. *J Protomics* **2018**, 187:144-151.
- 40. Zhang, M. H.; Wang, B.; Xu, J.; Wang, X. J.; Xie, L.; Zhang, B.; Li, Y. X.; Li, J., CanProVar 2.0: An updated database of human cancer proteome variation. *J Proteome Res* **2017**, 16, (2), 421-432.
- 41. Hao, X. H.; Tan, Z. J.; Li, Y.; Zhang, C. X.; Zheng, W.; Lubman, D. M.; Zhang, G. J.; Zhang, Y., AssVar: A computational method for as-sessing impact of single amino acid variants in tumor. **2019** (in preparation).
- 42. Shi, T. J.; Fillmore, T. L.; Sun, X. F.; Zhao, R.; Schepmoes, A. A.; Hossain, M.; Xie, F.; Wu, S.; Kim, J. S.; Jones, N.; Moore, R. J.; Pasa-Tolic, L.; Kagan, J.; Rodland, K. D.; Liu, T.; Tang, K. Q.; Camp, D.
- G.; Smith, R. D.; Qian, W. J., Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum. *Proc Natl Acad Sci USA* **2012**, 109, (38), 15395-15400.
- 43. Shi, T. J.; Sun, X. F.; Gao, Y. Q.; Fillmore, T. L.; Schepmoes, A. A.; Zhao, R.; He, J. T.; Moore, R. J.; Kagan, J.; Rodland, K. D.; Liu, T.; Liu, A. Y.; Smith, R. D.; Tang, K. Q.; Camp, D. G.; Qian, W. J., Targeted quantification of low ng/mL level proteins in human serum without immunoaffinity depletion. *J Proteome Res* **2013**, 12, (7), 3353-3361.
- 44. MacLean, B.; Tomazela, D. M.; Shulman, N.; Chambers, M.; Finney, G. L.; Frewen, B.; Kern, R.; Tabb, D. L.; Liebler, D. C.; MacCoss, M. J., Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. *Bioinformatics* **2010**, 26, (7), 966-968.
- 45. Shi, T. J.; Gaffrey, M. J.; Fillmore, T. L.; Nicora, C. D.; Yi, L.; Zhang, P. F.; Shukla, A. K.; Wiley, H. S.; Rodland, K. D.; Liu, T.; Smith, R. D.; Qian, W. J., Facile carrier-assisted targeted mass spectrometric approach for proteomic analysis of low numbers of mammalian cells. *Commun Biol* **2018**, 1:103.
- 46. Sheynkman, G. M.; Shortreed, M. R.; Frey, B. L.; Scalf, M.; Smith, L. M., Large-scale mass spectrometric detection of variant peptides resulting from nonsynonymous nucleotide differences. *J Proteome Res* **2014**, 13, (1), 228-40.
- 47. Katsimpardi, L.; Gaitanou, M.; Malnou, C. E.; Lledo, P. M.; Charneau, P.; Matsas, R.; Thomaidou, D., BM88/Cend1 expression levels are critical for proliferation and differentiation of subventricular zone-derived neural precursor cells. *Stem Cells* **2008**, 26, (7), 1796-807.
- 48. Belvedere, R.; Bizzarro, V.; Popolo, A.; Dal Piaz, F.; Vasaturo, M.; Picardi, P.; Parente, L.; Petrella, A., Role of intracellular and extracellular annexin A1 in migration and invasion of human pancreatic carcinoma cells. *BMC Cancer* **2014**, 14, 961.
- 49. Lochhead, P. A.; Wickman, G.; Mezna, M.; Olson, M. F., Activating ROCK1 somatic mutations in human cancer. *Oncogene* **2010**, 29, (17), 2591-2598.
- 50. Fan, Y.; Hu, Y.; Yan, C.; Goldman, R.; Pan, Y.; Mazumder, R.; Dingerdissen, H. M., Loss and gain of N-linked glycosylation sequons due to single-nucleotide variation in cancer. *Sci Rep* **2018**, 8, (1), 4322.
- 51. Mazumder, R.; Morampudi, K. S.; Motwani, M.; Vasudevan, S.; Goldman, R., Proteome-wide analysis of single-nucleotide variations in the N-glycosylation sequon of human genes. *PLOS One* **2012**, 7, (5):e36212.
- 52. Fernandez-Medarde, A.; Santos, E., Ras in cancer and developmental diseases. *Genes Cancer* **2011**, 2, (3), 344-58.
- 53. Ryan, D. P.; Hong, T. S.; Bardeesy, N., Pancreatic adenocarcinoma. *N Engl J Med* **2014**, 371, (11), 1039-49.
- 54. Waters, A. M.; Der, C. J., KRAS: The critical driver and therapeutic target for pancreatic cancer. *Cold Spring Harb Perspect Med* **2018**, 8, (9):a031435.

- 55. Kinsey, C. G.; Camolotto, S. A.; Boespflug, A. M. *et al.*, Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. *Nat Med* **2019**, 25, (4), 620-627.
- 56. McCormick, F., Progress in targeting RAS with small molecule drugs. *Biochem J* **2019**, 476, (2), 365-374.
- 57. Savoy, R. M.; Ghosh, P. M., The dual role of filamin A in cancer: can't live with (too much of) it, can't live without it. *Endocr Relat Cancer* **2013**, 20, (6), R341-R356.
- 58. Martincorena, I.; Raine, K. M.; Gerstung, M.; Dawson, K. J.; Haase, K.; Van Loo, P.; Davies, H.; Stratton, M. R.; Campbell, P. J., Universal patterns of selection in cancer and somatic tissues. *Cell* **2018**, 173, (7), 1823.
- 59. Kandoth, C.; McLellan, M. D.; Vandin, F.; Ye, K.; Niu, B.; Lu, C.; Xie, M.; Zhang, Q.; McMichael, J. F.; Wyczalkowski, M. A.; Leiserson, M. D. M.; Miller, C. A.; Welch, J. S.; Walter, M. J.; Wendl, M. C.; Ley, T. J.; Wilson, R. K.; Raphael, B. J.; Ding, L., Mutational landscape and significance across 12 major cancer types. *Nature* **2013**, 502, (7471), 333-339.
- 60. Rivlin, N.; Brosh, R.; Oren, M.; Rotter, V., Mutations in the p53 tumor suppressor gene: Important milestones at the various steps of tumorigenesis. *Genes Cancer* **2011**, 2, (4), 466-74.
- 61. Olive, K. P.; Tuveson, D. A.; Ruhe, Z. C.; Yin, B.; Willis, N. A.; Bronson, R. T.; Crowley, D.; Jacks, T., Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. *Cell* **2004**, 119, (6), 847-60.
- 62. Sigal, A.; Rotter, V., Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. *Cancer Res* **2000**, 60, (24), 6788-93.
- 63. Zakhari, S., Overview: How is alcohol metabolized by the body? *Alcohol Res Health* **2006**, 29, (4), 245-254.
- 64. Jin, S. F.; Chen, J.; Chen, L. Z.; Histen, G.; Lin, Z. Z.; Gross, S.; Hixon, J.; Chen, Y.; Kung, C.; Chen, Y. W.; Fu, Y. F.; Lu, Y. X.; Lin, H.; Cai, X. J.; Yang, H.; Cairns, R. A.; Dorsch, M.; Su, S. M.; Biller, S.
- S.; Mak, T. W.; Cang, Y., ALDH2(E487K) mutation increases protein turnover and promotes murine hepatocarcinogenesis. *Proc Natl Acad Sci USA* **2015**, 112, (29), 9088-9093.
- 65. Cappello, A. R.; Curcio, R.; Lappano, R.; Maggiolini, M.; Dolce, V., The physiopathological role of the exchangers belonging to the SLC37 family. *Front Chem* **2018**, 6:122.
- 66. Chou, J. Y.; Jun, H. S.; Mansfield, B. C., The SLC37 family of phosphate-linked sugar phosphate antiporters. *Mol* Aspects *Med* **2013**, 34, (2-3), 601-611.
- 67. Uhlig, H. H., Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. *Gut* **2013**, 62, (12), 1795-1805.
- 68. Pleasance, E. D.; Cheetham, R. K.; Stephens, P. J. et al., A comprehensive catalogue of somatic mutations from a human cancer genome. *Nature* **2010**, 463, (7278), 191-6.
- 69. McFarland, C. D.; Korolev, K. S.; Kryukov, G. V.; Sunyaev, S. R.; Mirny, L. A., Impact of deleterious passenger mutations on cancer progression. *Proc Natl Acad Sci USA* **2013**, 110, (8), 2910-5.
- 70. Mostovenko, E.; Vegvari, A.; Rezeli, M.; Lichti, C. F.; Fenyo, D.; Wang, Q.; Lang, F. F.; Sulman, E. P.; Sahlin, K. B.; Marko-Varga, G.; Nilsson, C. L., Large scale identification of variant proteins in glioma stem cells. *ACS Chem Neurosci* **2018**, *9*, (1), 73-79.
- 71. Kern, S. E.; Kinzler, K. W.; Bruskin, A.; Jarosz, D.; Friedman, P.; Prives, C.; Vogelstein, B., Identification of P53 as a sequence-specific DNA-binding protein. *Science* **1991**, 252, (5013), 1708-1711.
- 72. Li, J.; Yang, L. X.; Gaur, S.; Zhang, K. Q.; Wu, X. W.; Yuan, Y. C.; Li, H. Z.; Hu, S. Y.; Weng, Y. G.; Yen, Y., Mutants TP53 p.R273H and p.R273C but not p.R273G enhance cancer cell malignancy. *Human Mutation* **2014**, 35, (5), 575-584.
- 73. Kang, N.; Wang, Y.; Guo, S. C.; Ou, Y. W.; Wang, G. C.; Chen, J.; Li, D.; Zhan, Q. M., Mutant TP53 G245C and R273H promote cellular malignancy in esophageal squamous cell carcinoma. *BMC Cell Biol* **2018**, 19:16.
- 74. Tan, B. S.; Tiong, K. H.; Choo, H. L.; Chung, F. F.; Hii, L. W.; Tan, S. H.; Yap, I. K.; Pani, S.; Khor, N. T.; Wong, S. F.; Rosli, R.; Cheong, S. K.; Leong, C. O., Mutant p53-R273H mediates cancer cell

survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). *Cell Death Dis* **2015**, 6, e1826.

For TOC only

