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Abstract 

Identifying single amino acid variants (SAAVs) in cancer is critical for precision oncology. 

Several advanced algorithms are now available to identify SAAVs but attempts to combine 

different algorithms and optimize them on large datasets to achieve a more comprehensive 

coverage of SAAVs have not been implemented. Herein we report an expanded detection of 

SAAVs in the PANC-1 cell line using three different strategies, which results in identification of 

540 SAAVs in the mass spectrometry data. Among the set of 540 SAAVs, 79 are evaluated as 

deleterious SAAVs based on analysis using novel AssVar software in which one of the driver 

mutations found in each protein of KRAS, TP53 and SLC37A4 is further validated using 

independent selected reaction monitoring (SRM) analysis. Our study represents the most 

comprehensive discovery of SAAVs to date and the first large-scale detection of deleterious 

SAAVs in the PANC-1 cell line. This work may serve as the basis for future research in 

pancreatic cancer and personal immunotherapy and treatment.  
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Introduction 

Cancer development is caused by the loss of control of cell proliferation due to the accumulation 

of gene mutations. Thousands of mutations in a single tissue sample and in large cohorts have 

been detected at the nucleic acid level with next-generation sequencing.1,2 These findings have 

been reached due to the advances in PCR methods for DNA or RNA sequencing.  However, not 

all mutations at the nucleic acid level affect the final protein sequence due to the existence of 

DNA and RNA repair or because they are not translated.3-5 Proteins perform most of the work in 

cells and are required for the structure, function and regulation of the biology, which provide 

more biologically relevant information on the current state of the phenotype.6 In addition, the 

correlation between mRNA and protein levels is insufficient to predict protein abundance levels 

based on mRNA expression levels.7 In comparison with mutations detected at the nucleic acid 

level, the direct detection of single amino acid variants (SAAVs) at the proteome level will be 

extremely important to understand tumorigenesis and progression and eventually could provide 

potential targets for immunotherapy for personalized medicine.  

     Various efforts have contributed to the systematic discovery of SAAVs based on advances in 

state-of-the-art mass spectrometry. Zhang et al., identified 796 SAAVs among 86 human colon 

and rectal cancers for which RNA-seq data were available.7 Su et al., identified and quantified 

154 SAAVs in a human brain proteome using mass spectrometry data and a de novo sequencing 

algorithm instead of depending on general single nucleotide polymorphisms (SNPs) databases.8 

Lichti et al., identified SAAVs in glioma stem-cell-derived chromosome 19 and validated 3 

SAAVs at the protein level by selected reaction monitoring (SRM).9 Alternative to the genomic 

variant database or transcript data for customized database construction, an error-tolerant peptide 

search engine such as BICEPS for identifying SAAVs based on the standard UniProt database 

was developed by Giese et al. This approach has the advantage that the search space is not 

limited to known SAAVs.10 Using the error-tolerant search strategy global quantification of the 

SAAVs in hepatocellular carcinoma (HCC) was obtained by integrating the stable isotope 

dimethyl labeling with a variant-associated database where 282 unique SAAVs sites were 

quantified between HCC and normal liver tissues.11 There has appeared work on the detection of 

SAAVs in MCF-7 breast cancer cell line subpopulations and also quantitative analysis of 

SAAVs associated with pancreatic cancer in serum.12,13 In addition, in recent work, 79 SAAVs 
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were detected from as few as 9 PANC-1 cells using sample fractionation, TMT multiplexing, and 

a carrier/reference strategy.14      

    Most of the current strategies for detection of SAAVs rely on customized database 

construction and novel database searching algorithms.15 An important aspect in applying these 

strategies for SAAV discovery is filtering out the false positives from the potential SAAV 

results.16 In recent work, SAAVs were filtered for quality control using the SAVControl method, 

which detects and removes false positives to reduce the false discovery rate (FDR) for variant 

peptide identifications and SAAV sites with unrestrictive mass shift relocalization.14,17 

There has to date been no effort to compare different strategies for SAAV detection and the 

overlap of the SAAVs detected in the different strategies. In addition, some studies focus on the 

identification of driver mutations based on large-scale exome sequencing data such as the Cancer 

Genome Atlas (TCGA) project and the International Cancer Genome Consortium (ICGC).18,19 

However, for large-scale SAAV detection, the prediction of the impact on cancer development 

due to proteins with SAAVs has also not been investigated. It is critical to confirm the existence 

of deleterious SAAVs in cancer patients to aid in selection of treatment for cancer patients. As an 

example, the drugs Panitumumab and Cetuximab are used to treat advanced colorectal cancers, 

but cancer patients that have KRAS with SAAVs will not benefit from these two drugs.20-22  

There are two biological classes of somatic mutations that occur in all dividing cells: ‘driver’ 

mutations and ‘passenger’ mutations.23 ‘Driver’ mutations confer a growth advantage for cancer 

cells during tissue invasion and metastasis, angiogenesis, and evasion of apoptosis. Driver 

mutations, therefore, are positively selected during the evolution of the cancer. By definition, 

these mutant genes are cancer genes. Conversely, ‘passenger’ mutations are biologically neutral 

and, therefore, these mutations do not contribute to the growth advantage where passenger 

mutations have not been subject to selection.24 A current challenge involves the comprehensive 

identification of mutations in conjunction with accurate classification of the mutations into driver 

mutations and passenger mutations.23 

 In this work, we have completed comprehensive detection of SAAVs on a PANC-1 cell line 

by three complementary strategies. The full set of 540 detected SAAVs was then used to predict 

the impact on cancer development for the combined set of SAAVs using the AssVar server. Of 

these, 70 SAAVs were found to overlap among the three detection strategies applied to PANC-1 

cells. Of critical importance, 79 SAAVs were predicted as deleterious mutations using the 

https://www.cancer.org/cancer/colon-rectal-cancer.html
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AssVar online server and one of the driver mutations found in each protein KRAS, TP53 and 

SLC37A4 was further validated using independent SRM analysis. The current comprehensive 

detection of SAAVs in the PANC-1 cell line, the prediction of a large number of deleterious 

SAAVs, and the validation of SAAVs in KRAS, TP53 and other proteins will be essential in 

diagnosing cancer, monitoring the effects of treatment for some clinical anti-cancer drugs, early 

detection and prognosis and the development of new drugs for specific targeted SAAVs sites.    

 

Materials and Methods 

Cell culture 

The PANC-1 cell line was purchased from the American Type Culture Collection (ATCC). The 

cell culture was described in a previous study with minor adjustment.14 Briefly, the PANC-1 

cells were cultured in a dish (100 × 20 mm) with Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% (v/v) fetal bovine serum (FBS) and 1% (v/v) antibiotic-antimycotic. 

PANC-1 cells were cultured in a humidified atmosphere at 37°C with 5% CO2. The cells were 

harvested using trypsin while in the exponential growth phase. Harvested cells were collected in 

a 15 mL tube and centrifuged at 100 g for 5 min. After removing the supernatant, the cell pellets 

were washed with 10 mL 1× PBS prior to centrifugation at 100 g for 5 min. The washing step 

was repeated 5 times and the resulting cell pellets were stored at -80°C until used for proteomic 

analysis.   

 

Protein extraction and sample fractionation  

Different numbers of cells, ranging from 9 cells to 1×106 cells, were subject to protein extraction 

and digestion. For samples with a small number of cells lysis was performed by sonication, as 

described in our previous work,14 while for a bulk cell scale, lysis was accomplished by 

incubation with 200 µl of radioimmunoprecipitation assay buffer (RIPA) with protease inhibitors 

on ice for 15 min with periodic pipetting. To improve the protein yield, the lysate was sonicated 

for 30 seconds at 50% pulse on ice. Cell lysate was then centrifuged at 13,000 × g for 5 minutes 

at 4°C and the supernatant was collected into an Eppendorf tube. Buffer exchange was conducted 
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using a 3 K MWCO centrifugal filter (EMD Millipore) with TEAB buffer. The lysate was then 

aliquoted and stored at -80ºC for further analysis.  

   Protein reduction was conducted with 0.5 mM TCEP in 100 mM TEAB (pH 8.5) solution for 1 

h followed by alkylation in 2 mM iodoacetaminde for 30 min under dark conditions. Sequencing 

grade trypsin (Promega) was added into sample solution (1:30 trypsin to protein ratio (w/w)) 

with 0.05% ProteaseMax (Promega) to improve the protein digestion efficiency at 37ºC for 12 h. 

After the digestion, the samples were dried in a SpeedVac and then labeled with TMT 11-plex 

reagent following the manufacturer’s instructions. The advantage of using an isobaric labeling 

strategy is not only to achieve high resolution MS/MS spectra to improve the accuracy of SAAV 

identification but also to detect different samples at the same time. After quenching, the 

remaining TMT reagent using ammonium hydroxide solution, the same sample set was pooled 

and dried using a SpeedVac.  

   The sample mixture was fractionated using two different methods. Half of the sample was 

fractioned with the Pierce high-pH reversed-phase peptide fractionation kit (Thermo Fisher 

Scientific) into 10 fractions for analysis as previously described in detail.14 Then another one 

fourth of the sample was fractionated using high pH RPLC and 11 fractions were obtained. The 

last one fourth of the sample was subjected to low pH nanoRPLC for fractionation. An easy 

nanoLC 1200 (Thermo Fisher Scientific) equipped with a capillary column (75 µm i.d. x 50 cm 

Length, C18, 2 μm bead, 100 Å pore, Thermo Fisher Scientific) was used for fractionation. 

Mobile phase A contained 2% (v/v) acetonitrile (ACN), 98% (v/v) H2O and 0.1% (v/v) formic 

acid (FA). Mobile phase B contained 80% (v/v) ACN, 20% (v/v) H2O and 0.1 % (v/v) FA. The 

flow rate was set 200 nL/min. The gradient was set as follows: from 8% to 30% (v/v) B in 40 

min, from 30% to 50% (v/v) B in 30 min, from 50% to 80% (v/v) B in 10 min and remain at 80% 

(v/v) B for 10 min. The first fraction collection started from the sample loading and continued 

for 15 min from initiation of the gradient. The rest of the fraction was collected every 4 min and 

the last fraction was collected from 75 min to the end of the gradient. In total 17 fractions were 

collected. The eluates of each fraction were deposited into an Eppendorf tube (0.6 mL) 

containing 2 µL 50 mM NH4HCO3 (pH 8.5). The final volume of each fraction was around 3 µL 

and the final pH was about 8.0. The first and last fractions were then lyophilized and re-

suspended with 3 µL 50 mM NH4HCO3 (pH 8.0). After desalting with C18 ZipTip (Thermo 

Fisher Scientific), the samples were analyzed by the proteomics workflow.  
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Mass spectrometry analysis 

LC-MS/MS data were acquired on three different instruments. These include an Orbitrap Q-

Exactive HF mass spectrometer coupled with high performance liquid chromatography (HPLC) 

or capillary zone electrophoresis (CZE) for the sample fractionated by low-pH nano-RPLC and 

an Orbitrap Fusion mass spectrometer coupled with HPLC for the sample fractionated by the 

Pierce high pH reversed-phase peptide fractionation kit (Thermo Fisher Scientific).   

   For the 17 fractions collected using low-pH nano-RPLC, each fraction was then analyzed by 

CZE-MS/MS as previously described in detail.25 Briefly, the sample injection vials of CZE were 

treated with a BSA solution to reduce non-specific adsorption of peptides on the inner wall of the 

vials. A 100-cm linear polyacrylamide (LPA) coated capillary (50/360 µm i.d./o.d.) with an 

etched end by hydrofluoric acid was used for CZE separation.26 The commercialized 

electrokinetically pumped sheath flow CE-MS interface (CMP scientific, Brooklyn, NY) was 

used to couple CZE to MS.27 An ECE-001 autosampler (CMP scientific) was used for the 

automated CZE operation. The Background electrolyte (BGE) was 5% (v/v) Acetic Acid. Five 

psi was first applied for 90 s for sample loading so approximately 500 nL of sample was injected 

for CZE-MS/MS. The capillary distal end was then moved into BGE and 30 kV was applied for 

120 min for CZE separation. 15 psi was applied during the last 5 min of separation to rinse the 

capillary.  

    The 11 fractions collected using high-pH HPLC were analyzed by low pH nanoRPLC-MS/MS. 

An easy nanoLC 1200 (Thermo Fisher Scientific) equipped with a capillary column (75 µm i.d. x 

50 cm Length, C18, 2 μm bead, 100 Å pore, Thermo Fisher Scientific) was coupled with an 

Orbitrap Q-Exactive HF (Thermo Fisher Scientific) for low pH nanoRPLC-MS/MS analysis. 

Mobile phase A contained 2% (v/v) acetonitrile (ACN), 98% (v/v) H2O and 0.1% (v/v) formic 

acid (FA). Mobile phase B contained 80% (v/v) ACN, 20% (v/v) H2O and 0.1 % (v/v) FA. The 

flow rate was set at 200 nL/min. The gradient for separation was set as follows: from 8% to 30% 

(v/v) B in 55 min, from 30% to 50% (v/v) B in 45 min, from 50% to 80% (v/v) B in 15 min and 

remain at 80% (v/v) B for 5 min. 

    For CZE-ESI-MS/MS and RPLC-MS/MS analysis on the Q-Exactive, the parameters were set 

according to a previous study with some modifications.25 The data acquisition was performed in 

data dependent mode using the software Xcalibur v2.3 (Thermo Fisher Scientific). Full MS scans 

were acquired in the Orbitrap mass analyzer over m/z 400-1500 range with a resolution of 60 K 
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at m/z 200. The AGC target was set 3e6. The quadrupole isolation window was set 4 m/z. The 

top 10 most intense peaks with charge state ≥ 2 were fragmented in the HCD collision cell with 

normalized collision energy of 30%. The tandem mass spectra were acquired in the Orbitrap 

mass analyzer with a resolution of 35 K at m/z 200. The AGC target was set 1e5. Maximum ion 

injection time was set 50 ms for full MS scans and 200 ms for MS/MS mass spectra. Ion 

selection intensity threshold was set 1e4 and dynamic exclusion was set at 30 s.   

For the samples fractionated by the high pH reversed-phase peptide fractionation kit, an 

Orbitrap Fusion mass spectrometer was used, coupled with an Easy 1000 nano UHPLC system 

(Thermo Fisher Scientific) and Acclaim PepMap 100, 75 μm × 2 cm trap with Acclaim PepMap 

RSLC, 75 μm × 25 cm column (Dionex). The samples were analyzed using a 90 min gradient 

from 4% to 30% acetonitrile with 0.1% FA. The mass spectrometer was operated in data-

dependent mode to acquire the mass spectral data using the software Xcalibur v2.3 (Thermo 

Fisher Scientific). The ESI spray voltage was set as positive ion mode at 2,500 V. A full mass 

scan (m/z 350-1,600) was performed, and the most intense ions in the full scan were chosen for 

MS/MS analysis. The normalized collision energy was set at 40% for higher energy collision 

induced dissociation (HCD) fragmentation. The maximum injection time was set at 100 ms and 

250 ms for MS1 and MS/MS, respectively. The Orbitrap resolution was set at 120 K and 60 K 

for MS1 and MS2 spectra, respectively. For filter dynamic exclusion, repeat count was set to 1 

and exclusion duration was set to 60 s. Both mass tolerances low and high were set at 10 ppm. 

The mass spectrometry proteomics data have been deposited to the public repository 

ProteomeXchange Consortium28 using the PRIDE29 partner repository with the data set identifier 

PXD017449. 

 

Database searching on Proteome Discoverer 1.4 

All RAW data were analyzed by database searching using the SEQUEST HT algorithm on 

Proteome Discoverer 1.4 (PD 1.4). The Swiss-CanSAAVs database that contains 87,733 amino 

acid variant sequences from 73,910 UniProtKB/Swiss-Prot canonical proteins was used.30 The 

carbamidomethylation of cysteine was set as a fixed modification and N-terminal TMT, TMT of 

lysine, and methionine oxidation were set as variable modifications.  The tolerance for precursor 

ions and fragment ions was set as 10 ppm and 0.05 Da, respectively. A maximum of two missed 
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cleavages and the shortest peptide length set at six amino acids was allowed. The identified 

results were filtered using high confidence at 1% peptide-level false discovery rate (FDR). 

Protein identification is based on at least two confidently identified peptides. The resulting 

peptide data were exported into the XML-formatted file from PD 1.4 and all potential peptides 

with SAAVs derived from the same group sample were combined. A large percentage of false 

positive SAAV peptides are often observed due to the existence of missed cleavage sites 

surrounding the site of variation during database construction. A manual check of each SAAV 

site was further performed to remove false SAAVs. Only the shorter peptide sequence with the 

SAAV sites was selected due to up to 2 tryptic missed cleavages in the database search setting. 

 

Customized database construction based on RNA-seq and database searching 

The PANC-1 customized database was derived from RNA-seq data from GEO SRX5053565. 

This data was processed by proteogenomics software named Spritz (https://smith-chem-wisc. 

github.io/Spritz/). This software analyzes the RNA-seq data from beginning to end, starting by 

using fasterq-dump31 to download the RNA-Seq data, skewer32 to trim and filter the reads, 

STAR33 to align the RNA sequences to the reference genome, and GATK34-36 to call variants from 

the alignments. Then, a custom version of SnpEff 37 is used to annotate variants and produce a 

proteogenomic database containing SAAVs that is annotated with posttranslational modifications 

(PTMs) from UniProt to allow detection of both amino acid variations and PTMs. 

MetaMorpheus38 (https://github.com/smith-chem-wisc/MetaMorpheus) was used to search this 

database. 

SAVControl database searching 

The database searching based on SAVControl has been described in previous studies.14,39 The 

CanProVar 2.0 database was downloaded from http://canprovar2.zhang-lab.org/ which includes 

65,963 distinct human cancer protein variants and 825,106 coding SNPs from dbSNP.40 

Corresponding non-variant proteins are from the Ensembl database (Homo sapiens, v53). A 

decoy database derived from the reversed sequences of the same size was mapped into the 

protein sequence database for false discovery rate (FDR) estimation. The RAW files were 

searched using the Mascot algorithm with the parameter settings, (1) carbamidomethylation 

https://github.com/smith-chem-wisc/MetaMorpheus
http://canprovar2.zhang-lab.org/
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(+57.021 Da) at Cysteine and TMT tags reaction with peptide N-terminus and ε-amino group 

of lysine (+229.163 Da) were set as static modifications; (2) oxidation (+15.995 Da) at 

Methionine was set as a dynamic modification; (3) Precursor ion mass tolerance was set to 10 

ppm and fragment ion mass tolerance was set to 0.05 Da;  (4) trypsin was set as enzyme and the 

maximum missed trypsin cleavage sites was set as 2; (5) charge status was set as +2, +3 and +4; 

(6) the minimum tryptic peptide length was set at 5 amino acids and unrestricted peptide-level 

FDR was enabled. The unrestricted peptide-level FDR setting results in extremely exaggerated 

high coverage of peptide identification which includes not only genuine SAAVs but also false 

positive SAAVs. False positive peptides with SAAVs were removed by further quality control 

via SAVControl.  

 

Prediction of SAAVs effect on protein function using the online AssVar server 

AssVar has been developed to quantitatively assess the impact of SAAVs on tumor development 

(https://zhanglab.ccmb.med.umich.edu/AssVar/), which has shown an advantage over other 

similar pipelines with higher Matthews correlation coefficient.41 A total of 540 SAAVs were 

submitted for analysis. The default cut-off impact score was set at 0.57 which means that if the 

value of the impact score for SAAVs is greater than 0.57, the variant will be assigned as a 

“driver” mutation. Otherwise, the SAAVs are be assigned as “passenger” mutations without a 

deleterious feature in the protein that is related to cancer development.  

 

Validation of three SAAVs by SRM assay 

Three SAAVs derived from proteins KRAS, TP53 and SLC37A4 were selected for validation by 

SRM assay. The peptides pairs, LVVVGAGGVGK (canonical peptide) and LVVVGADGVGK 

(variant peptide G12D) for KRAS, FVSGVLSGQMSAR (canonical peptide) and FVSGVLSD 

QMSAR (variant peptide G88D) for SLC37A4, NSFEVRVCACPGR (canonical peptide) and 

NSFEVHVCACPGR (variant peptide R273H) for TP53. Heavy-isotope labeled variant peptides 

and one canonical peptide LVVVGAGGVGK with the 13C/15N labeling on the C-terminal K or R 

were synthesized by New England Peptide (Gardner, MA). For each peptide three or four best 

transitions with higher SRM response were selected for reliable detection and quantification. The 

standard peptides were spiked into the tryptic digests derived from PANC-1 cell lysate with final 

concentrations at 2 fmol/µL for the standard and 1 µg/µL for the sample.  

https://zhanglab.ccmb.med.umich.edu/AssVar/
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    A tiered approach was used for sensitive SRM quantification of the three variant peptides and 

one canonical peptide. Regular LC-SRM was first used for simultaneous quantification of all the 

four peptides. For the peptide FVSGVLSDQMSAR from SLC37A4 that cannot be reliably 

detected and quantified by LC-SRM, PRISM-SRM was employed for sensitive targeted 

quantification because it can provide ~100-fold higher detection sensitivity.42  

   Regular LC-SRM. The LC-SRM analysis was performed using a nanoACQUITY UPLC 

(Waters, Milford, MA) coupled to a TSQ Vantage triple quadrupole mass spectrometer (Thermo 

Scientific, San Jose, CA). The nanoACQUITY UPLC Ethylene Bridged Hybrid (BEH) 1.7 µm 

C18 column (75 µm i.d. × 20 cm) was connected to a chemically etched 20 μm inner diameter 

fused silica electrospray emitter via a stainless steel union. Mobile phase A (0.1% FA) and 

mobile phase B (90% acetonitrile in 0.1% FA) were used with a linear gradient, 5-20% B for 26 

min, 20-25% B for 10 min, 25-40% B for 8 min, 40-95% B for 1 min, and at 95% B for 7 min. 

The flow rate was set as 350 nL/min. The analytical column was reconditioned at 99.5% mobile 

phase A for 8 min. Approximately 1 µL of peptide sample was directly loaded onto the BEH 

C18 column from the Vial (Waters, Milford, MA) without using a trapping column.  

   The TSQ Vantage mass spectrometer was operated with the following parameters: ion spray 

voltages (2,400 ± 100 V), capillary offset voltage (35 V), skimmer offset voltage (-5 V) and 

capillary inlet temperature (220°C). The tube lens offset voltage was obtained from automatic 

tuning and calibration without any further optimization. A scan width of 0.002 m/z and a dwell 

time of 20 ms were set for all SRM transitions. 

   PRISM-SRM. The PRISM-SRM approach has been previously described for quantification of 

low-abundance proteins in human plasma or serum.42,43 Briefly, high resolution reversed phase 

capillary LC with pH 9 mobile phase was used as the first dimensional separation of peptides 

from trypsin-digested PANC-1 proteins. Following separation, the column eluent was 

automatically collected every minute into a 96-well plate during a ~100 min LC run while on-

line SRM monitoring of heavy internal standard peptides was performed on a small split stream 

of the flow. Intelligent selection (termed iSelection) of target peptide fractions was achieved 

based on the on-line SRM signal of internal standard peptides. Prior to peptide fraction 

collection, 27 μL of water was added to each well to minimize excessive loss of peptides and to 

dilute the peptide fractions (~1:10) for LC-SRM analysis. Following iSelection, the target 

peptide-containing fractions were subjected to LC-SRM measurement. 15 μL of individual 
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peptide fractions (total volume 30 μL) following PRISM were injected for LC separations 

followed by SRM analysis. The nanoACQUITY UPLC and TSQ Vantage were operated in the 

same manner as above described for regular LC-SRM analysis.  

    SRM data analysis. Skyline software was employed for SRM data analysis.42,44 For each 

peptide the best transition without matrix interference from co-eluting peptides was used for 

precise quantification. Two criteria were applied to determine the peak detection and integration: 

(1) the same retention time; (2) approximately the same relative SRM peak intensity ratios 

among multiple transitions between heavy peptide internal standards and endogenous (light) 

peptides.45 All data were manually inspected to confirm the correct peak detection and accurate 

integration. All RAW files generated on the TSQ Vantage mass spectrometer were imported into 

Skyline software and the graphs of extracted ion chromatograms (XICs) to multiple transitions of 

the target peptides monitored were displayed.45    

 

Results and Discussion 

Overview of workflow 

We have established an integrated workflow for high-confidence global SAAV analysis that can 

minimize false positives and predict deleterious SAAVs and incorporates validation of SAAVs 

using SRM. The workflow is summarized in Fig. 1. Two methods were applied in parallel for 

sample fractionation. The first was the low pH nano RPLC method where a total of 60 HPLC 

fractions were collected and then combined into 11 fractions for LC-MS/MS and CZE-MS/MS 

analyses. The second was the high pH RP fractionation method where a total of 10 fractions 

were collected for LC-MS/MS analysis. The fractionated samples were separated using CZE or 

UHPLC prior to tandem mass spectrometry analysis. The sets of SAAVs derived from the same 

sample sets using different separation methods and CZE or UHPLC are presented in 

Supplementary Table 1. In general, the HPLC method produced a greater depth of coverage 

than the CZE method for the same sample. A total of 13 sample sets were measured which 

resulted in 139 RAW files for SAAV detection. Data were searched using three different 

algorithms, SEQUEST, MASCOT incorporated with SAVControl, and MetaMorpheus38, against 

three different databases, CanProVar 2.0, Swiss-CanSAAVs and RNA-seq databases, 

respectively, as shown in Fig. 1C. After data refinement including removal of false positive 
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SAAVs, all SAAVs with high confidence were evaluated by an online server AssVar to assess 

the impact on tumor development. One of the deleterious SAAVs found in each protein of KRAS, 

TP53 and SLC37A4 was validated by SRM. 

 

Figure 1. Overview of comprehensive detection for SAAVs in the PANC-1 cell line including three major steps of 

sample preparation (A), sample fractionation and MS/MS analysis (B), and SAAV identification and validation (C).   

 

SAAVs derived from different strategies 

To increase the coverage of SAAV detection, we sampled the tryptic digests of PANC-1 cells 

into 13 sets which were subjected to fractionation and MS/MS analysis using different strategies. 

The sample information is shown in Table 1. Two sample sets were fractioned using low pH 

nano-RPLC, while the remaining 11 sets were fractioned using the Pierce high pH reversed-

phase peptide fractionation kit. Eleven or 17 fractions were obtained from the low pH nano-

RPLC method and 10 fractions from the high pH RP fractionation method. Fractions from the 

low pH RP method were analyzed on the Oribtrap Q-Exactive HF while fractions from the high 
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pH RP method were analyzed on the Orbitrap Fusion mass spectrometer. Due to the high 

workload for sample preparation and MS analysis, we performed the entire workflow at three 

different time points for 5, 2, and 6 sample sets, respectively. A total of 133 mass spectral runs 

were performed and the related RAW files were acquired for subsequent database searching.  

Table 1. Sample fractionation and mass spectrometry analysis 

Sample set Fractionation method Number of 

fractions 

MS/MS analysis Number of 

runs per set 

Sets 1-5 Pierce high pH reversed-

phase peptide fractionation kit 

9 LC-MS/MS 9 

Sets 6-7 low-pH nano-RPLC 

            

11 

17 

CZE-MS/MS 

LC-MS/MS 

 

11 

17 

Sets 8-13 Pierce high pH reversed-

phase peptide fractionation kit 

10 LC-MS/MS 10 

 

  Three different search algorithms were employed for MS/MS database searching to identify 

SAAVs, i.e. SEQUEST algorithm in software Proteome Discoverer (PD) 1.4 against Swiss-

CanSAAVs database, MetaMorpheus against the customized RNA-seq database, and Mascot 

algorithm coupled with SAVControl quality control. The results derived from the sample sets 

that were processed at the same time point were combined. The numbers of proteins and peptides 

containing SAAVs identified using the 3 different searching algorithms are listed in Table 2. A 

total of 418 SAAVs from 380 proteins were identified from all the sample sets using the 

SEQUEST algorithm in Proteome Discoverer (PD) 1.4 software (Table 2). A total of 196 

proteins and 221 peptides with SAAVs were identified using MetaMorpheus against the 

customized RNA-seq database. The number of proteins and peptides with SAAVs by this 

strategy is approximately half that obtained compared to the strategy using the SEQUEST 

algorithm in PD 1.4.  The total number of proteins and peptides with SAAVs were 165 and 181, 

respectively, when using Mascot algorithm coupled with SAVControl quality control.  Among 

the 3 algorithms, the lowest number of proteins and peptides with SAAVs were identified based 

on the Mascot algorithm with SAVControl. Especially in sets 6-7, only 14 and 15 proteins and 
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peptides with SAAVs were identified, respectively. When combining the results from the 3 

searching algorithms, 540 variant peptides from 483 proteins were identified in total, which is 

the most comprehensive coverage of SAAVs to date. 

Table 2. Number of SAAVs identified using 3 different searching algorithms: SEQUEST algorithm in 

software Proteome Discoverer (PD) 1.4 against Swiss-CanSAAVs database, MetaMorpheus against the 

customized RNA-seq database, and Mascot algorithm coupled with SAVControl quality control. 

Samples SEQUEST algorithm 

against Swiss-

CanSAAVs database 

MetaMorpheus against 

RNA-seq database 

Mascot algorithm and 

SAVControl 

Proteins 

with 

SAAVs 

Peptides 

with 

SAAVs 

Proteins 

with 

SAAVs 

Peptides 

with 

SAAVs 

Proteins 

with 

SAAVs 

Peptides 

with 

SAAVs 

Sets 1-5 293 326 171 190 158 172 

Sets 6-7 118 123 58 64 14 15 

Sets 8-13 113 123 71 77 50 53 

Total 382  197  165  

Percentage of 

all SAAVs 

78.1%  40.9%  34.2%  

 

The SAAVs derived from low pH RPLC fractionation followed by 2 separation methods for 

MS/MS analysis, i.e. CZE or UHPLC, are presented in Supplementary Table 1. In general, the 

HPLC method produced a greater depth of coverage than the CZE method. 

   The numbers of proteins and peptides with SAAVs detected in three separate strategies are 

different. The largest number of SAAVs was detected in the PD strategy while the lowest 

number of SAAVs was detected in the SAVControl strategy. 382 of 483 (78.1%) SAAVs were 

detected in the PD strategy, 197 of 483 (40.9%) of SAAVs in the RNA-seq strategy, and 181 of 

483 (33.5%) in the SAVControl strategy (Table 2). There is an overlap of 70 SAAVs identified 

across the three search algorithms. We have manually checked the spectra from many of the 

SAAVs to confirm the accuracy of the SAAVs in different strategies (Supplementary Fig. 1). 
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As shown in the Supplementary Fig. 1, the variant peptide DSMFGITVK from protein ITGA 6 

(A419) is detected in all three different strategies, while the variant peptides ATEEQLK from 

protein ALB (K565E), AYLEGTCVEWLR from protein HLA-A (D185E) and AGLLIFASK 

from protein ARL5A (N125S) were detected in the SEQUEST strategy, the MetaMorpheus 

strategy and the SAVContol strategy, respectively. There are some potential reasons why only a 

small percentage of the 540 SAAVs were identified from all three platforms. One reason is the 

databases used for searching are different. This may be the main reason for such differences 

where we have found from our prior work on SAAVs searching that the use of RNA databases 

may result in different SAAVs depending on the source from which they were derived. The 

second reason for these differences is that the number of SAAVs derived from SEQUEST is 

largest but may contain more false positives than the other two strategies. False positive SAAVs 

may still exist although we reduce the false positives using multiple optimized methods and 

manual checking. The third reason is the search algorithm is different in the three strategies and 

yields complementary but different results. In addition, the canonical peptide sequence is 

predominant compared to variant peptides in most cases, so the SAAVs are difficult to detect and 

assign based on the algorithm. 

SAAVs filtering in different strategies 

The SAAVs obtained were filtered in each of the different strategies. Among these strategies, the 

highest duplication or false positives existed in the PD strategy while the lowest duplication and 

false positive SAAVs were detected in the SAVControl strategy. Many more duplications and 

false positive SAAVs were removed from the PD strategy where more SAAVs escaped from 

quality control based on FDR during the database searching resulting in potential false positives. 

The smallest number of SAAVs was detected in three processing steps (original searching results, 

combination and duplication removal, and manual check) in the SAVControl strategy compared 

to the other two strategies, which showed that the database searching is stringent and the highest 

quality control works in this strategy (Figure 2). There is a competition that exists between 

deeper coverage and highly rigid quality control. More false positive SAAVs resulted from loose 

quality control while less positive SAAVs were lost in this strategy. Likewise, the highest rigid 

quality control results in few false positive SAAVs where more positive SAAVs resulted. A 

much higher quality result for single amino acid polymorphisms (SAPs) derived from a 
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customized database compared to those identified using a larger aggregate database has also 

been shown by Sheynkman et al., using a Jurkat cell line.46 

 

 

Figure 2. The filtering of SAAVs in different strategies. A, The number of potential SAAVs in SAVControl 

strategy; B, The number of potential SAAVs in PD strategy; C, The number of potential SAAVs in the RNA-seq 

strategy.                                                                                            

 

Overlap between different database searching 

The SAAVs identified from three different strategies shared varying overlap (Fig. 3). 70 SAAVs 

were detected that are common to the three strategies which make them the most reliable variants 

detected in the PANC-1 cell line. The SAVcontrol and RNA-seq strategies shared 86 SAAVs, 

the SAVControl and PD strategies shared 111 SAAVs, and 119 SAAVs were shared by the 

RNA-seq and PD strategies. Compared to the PD strategy, a smaller number of SAAVs was 

detected in RNA-seq strategy. Nevertheless, the customized protein sequence database could 

significantly improve the sensitivity of SAAVs detection and reduce ambiguity in peptide 

identification. In addition, multiple modifications were considered in the MetaMorpheus strategy, 

which also increase the accuracy of the SAAVs searching. 83 novel SAAVs were identified in 

the RNA-seq strategy compared to SAAVs detected in the PD strategy. Customized databases 

derived from RNA-seq data can improve the efficiency and accuracy of identifying splice 

variants. Also, for the comparison between the PD and SAVControl strategy, a smaller number 

of SAAVs was detected in the SAVControl strategy where 70 novel SAAVs were detected in 

this strategy. The integrated of transfer FDR control, unrestricted mass shift relocation and 

introduction of alternative interpretations could also significantly increase the sensitivity of 

SAAVs detection and reduce ambiguity in peptide identification.39 Compared to SEQUEST 
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strategy, a high FDR in global searching versus a strict FDR in variant peptides assignment in 

SAVControl strategy showed its advantage for SAAVs detection. 

  

Figure 3. The Venn diagram picture shows the SAAVs identification and overlap among the three strategies. The 

yellow circle represents the Proteome Discoverer database searching. The green circle represents the RNA-seq 

database searching and the red circle represents the SAVControl strategy.   

 

N-glycosylation site change 

We also checked for potential loss and gain of glycosylation sites due to SAAVs. There were 9 

potential N-glycosylation sites detected that change due to SAAVs, 3 peptides with SAAVs 

gained potential N-glycosylation sites while 6 peptides lost the potential N-glycosylation sites 

(Table 3). Among these proteins with gain or loss of N-glycosylation, CEND1 participates in 

cell cycle control.47 Intracellular and extracellular ANXA1 plays a role in stimulating pancreatic 

cancer cell migration and invasion.48
 The mutation of ROCK2 leads to increased motility and 

adhesion in cancer cells.49 Specific gain or loss of glycosylation sites in human glycosylation has 

been associated with diseases.50 Mazumder et al., revealed that there are 259 unique variations 

with loss of N-glycoslation by mapping the variation data to the UniprotKB human proteome.51 

In our current study, we detected a small number of N-glycosylation sites with gain or loss 

compared to Mazumder’s study.  

Table 3. 9 potential N-glycosylation sites change due to SAAVs. +, represents gain while –, represents 

lost.  

Peptide Protein name Accession 

number 

Gene 

name 

Variant N-

glycosylation 
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change 

ADPALLNDHSNLKPAPTVP

SSPDATPEPK 

Cell cycle exit and neuronal 

differentiation protein 1 

Q8N111 CEND1 N74D _ 

ASSSILINESEPTTNIQIR NSFL1 cofactor p47 Q9UNZ2 NSFL1C D290N + 

DIDLSCGSGSSK 

GC-rich sequence DNA-

binding factor 2 

P16383 GCFC2 N249S _ 

EILQIMDK Polyribonucleotide 

nucleotidyltransferase 1, 

mitochondrial 

Q8TCS8 PNPT1 N590D _ 

ENDSIQSR Rho-associated protein 

kinase 2 

O75116 ROCK2 T431N + 

GAPMDPNESPAAPEAALPK Cyclic GMP-AMP synthase Q8N884 MB21D1 T35N + 

GGPGSAVSPYPTFDPSSDV

AALH 

Annexin A1 P04083 ANXA1 N43D _ 

IIGELSK GTP-binding protein 10 A4D1E9 GTPBP10 N110S _ 

VIDDTDITR Keratin, type I cytoskeletal 

18  

P05783 KRT18 N193D _ 

 

Prediction of deleterious SAAVs 

A total of 540 SAAVs were searched using the AssVar server to predict the impact of the 

SAAVs detected in each protein. If the SAAV was a driver mutation, the SAAV is considered as 

a deleterious mutation. Mutations can contribute to cancer by activating protein function. We 

have used the AssVar method to ascertain the presence of 79 deleterious SAAVs (Selected 

deleterious SAAVs shown in Table 4, all 79 deleterious SAAVs shown in Supplementary 

Table 2). Among these 79 deleterious SAAVs, most proteins were detected with a single 

deleterious site except for KRAS with 3 deleterious sites and FLNA with 2 deleterious sites. In 

addition to the oncogenic mutations of KRAS, another RAS family protein, HRAS which was 

the first oncogene identified in human tumors, was also detected in PANC-1 cells. The 

oncogenic mutation of RAS family genes changes the balance for the normal outcome of some 

signaling pathways resulting in tumor development.52  The RAS family has been detected in 

approximately 90 percent of pancreatic cancer patients.53 Also around 30 percent of other 

cancers have a mutation in the protein KRAS.54 In the MAPK signaling pathway, the pancreatic 

cell relies on a process known as autophagy to create energy by disrupting the pathway derived 
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from KRAS.55 Thus the development of anti-KRAS therapies is one of the most elusive targets 

for cancer research.56 Savoy et al., revealed that FLNA is involved in cancer with dual roles. In 

the cytoplasm, overexpression of FLNA has a tumor-promoting effect while FLNS acts as an 

inhibitor for tumor growth when FLNA undergoes proteolysis in the nucleus.57 In a study of 

more than 7,664 tumors from 29 different cancer types from TCGA, Martincorena et al., 

confirmed the average number of driver genes for cancer as 1 to 10 driver mutations.58   

    Three SAAVs were identified in protein TP53 while only one SAAV (R273H) was predicted 

as deleterious.  As a tumor suppressor protein, TP53 plays a key role in some cell activities such 

as inducing cell cycle arrest, senescence, DNA repair and cell apoptosis. As the most frequently 

mutated protein in the Pan-Cancer cohort, it is found in almost every type of cancer at rates 

varying from 10% in hematopoietic malignancies to 95% in high-grade serous carcinoma of the 

ovary.59,60 TP53 mutations including the hotspot R273H result in a gain of oncogenic function in 

tumor progression, invasion and metastasis.61,62 Two proteins mitochondrial aldehyde 

dehydrogenase 2 (ALDH2) and SLC37A4 were also detected with a single SAAV. ALDH2 

plays an essential role for alcohol detoxification to remove acetaldehyde in the pathway of 

alcohol metabolism.63 It is reported that more than 500 million people worldwide, mostly in East 

Asia, have inherited an inactive ALDH2 at residue 487 (E487K) with symptoms.64 It is the first 

time that the deleterious variant for ALDH2 at residue 287 (G287A) has been predicted. 

SLC37A4 is also known as glucose-6-phosphate translocase (G6PT) or SPX4 which belongs to 

the multicomponent glucose-6-phosphatase system (G6Pase-system) family.65 SLC37A4 

contains 10 transmembrane helices and plays a role to maintain blood glucose homeostasis in 

liver and kidney and also maintains neutrophil and macrophage functions.66 A genetic defect of 

SLC37A4 was found to associate with inflammatory bowel disease (IBD)-like immunopathology 

for glycogen storage disease type 1b.67 It is the first time that the deleterious variants for ALDH2 

and SLC37A4 at residue 287 (G287A) and 88 (G88D) were predicted, respectively.     

  

Table 4. Selected deleterious SAAVs from predicted 79 deleterious SAAVs based on AssVar server. 

All 79 deleterious SAAVs are shown in Supplementary Table 2.  *Prediction results “1” refer to the 

deleterious SAAV. Superscript “a” means it is common to three different database searching methods. 5 

deleterious SAAVs shared by three strategies.   
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Protein Name Gene 

name 

Accession 

Number 

Mutation 

Position 

Wild-

type AA 

Mutant-

type AA 

Impact 

Score 

Prediction 

Results 

Glucose-6-phosphate 

exchanger SLC37A4 
SLC37A4 O43826 88 G D 0.91 1* 

GTPase Hras HRAS P01112 61 Q E 0.88 1 

GTPase Kras KRAS P01116 22 Q E 0.87 1 

GTPase Kras KRAS P01116 12 G D 0.95 1 

GTPase Kras KRAS P01116 12 G R 0.94 1 

Cellular tumor antigen p53 TP53 P04637 273 R H 0.87 1 

Aldehyde dehydrogenase, 

mitochondrial ALDH2 P05091 287 G A 0.91 1 

Insulin receptor INSR P06213 1055 A V 0.86 1 

Annexin A11 ANXA11 P50995 230 R C 0.69 1a 

Neuroblast differentiation-

associated protein AHNAK 
AHNAK Q09666 4090 D G 0.78 1 

Activating signal 

cointegrator 1 complex 

subunit 3 ASCC3 

Q8N3C0 1995 S C 0.63 1a 

Nuclear pore membrane 

glycoprotein 210 
NUP210 Q8TEM1 1052 G S 0.89 1 

HEAT repeat-containing 

protein 1 
HEATR1 Q9H583 2017 E G 0.68 1a 

NSFL1 cofactor p47 NSFL1C Q9UNZ2 290 D N 0.58 1a 

ADP-ribosylation factor-

like protein 5A 
ARL5A Q9Y689 125 N S 0.86 1 

Filamin-A FLNA P21333 207 P L 0.74 1 

Filamin-A FLNA P21333 605 D N 0.62 1 

Integrin alpha-6 ITGA6 P23229 419 A T 0.58 1a 

 

    All cancer cells carry somatic mutations including driver mutations and passenger mutations. 

Driver mutations are defined where the mutation confers a selective growth advantage and is 

causally implicated in cancer development, whereas the remainder are passenger mutations 

which usually do not contribute to cancer development.24,68 Driver mutations are deleterious and 

accumulated passenger mutations could also impact cancer progression.69 Ongoing research aims 

to identify driver mutations for all cancer types and identify therapies that can target tumors with 

these alterations. Accumulation of knowledge on deleterious SAAVs of cancer is a crucial step 

in successfully implementing precision oncology.  
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Validation of SAAV sites for variant peptides derived from KRAS, SLC37A4 and TP53 using SRM 

SRM was used to validate the presence of selected variants. One of these involves the KRAS 

(G12D) variant which is an important driver mutation in pancreatic cancer. Both endogenous 

canonical peptide LVVVGAGGVGK and variant peptide LVVVGADGVGK (variant peptide 

G12D, italic D) from PANC-1 cell line were detected using SRM (Figs. 4A, 4B). They have the 

same retention time and SRM peak patterns with their corresponding heavy internal standards. 

Interestingly, the abundance of variant peptide is slightly higher than that of the canonical 

peptide either by the endogenous peptide abundance alone or by the abundance ratio of 

endogenous over internal standard peptides (Figs. 4A, 4B). Similarly, two other variant peptides 

FVSGVLSDQM SAR (G88D, italic D) and NSFEVHVCACPGR (R273H, italic H) derived 

from SLC37A4 and TP53 were also validated based on SRM (Figs. 4C, 4D). For the variant 

peptide FVSGVLSDQ MSAR from SLC37A4, regular LC-SRM cannot provide sufficient 

sensitivity for confident detection with low SRM signal (Supplementary Fig.2). Mostovenko et 

al., also found that not all identified variant peptides were appropriate for mass spectrometric 

quantification by SRM assay after they identified approximate 400 SAAVs in glioma stem cells 

based on custom database searching.70 We further applied ultrasensitive PRISM-SRM to confirm 

its expression in the PANC-1 cell line (Fig. 4C). TP53, a tumor suppressor protein, binds to 

DNA and regulates gene expression to prevent mutations of the genome.71 The mutant TP53 

(R273H) has been found to be involved in inducing cell massive apoptosis and enhancing cancer 

cell malignancy.72-74 
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Figure 4. Validation of SAAV sites for variant peptides derived from KRAS, SLC37A4 and TP53 

using SRM. (A) Variant peptide LVVVGADGVGK (variant peptide G12D) from KRAS. (B) Canonical 

peptide LVVVGAGGVGK from KRAS. (C) Variant peptide FVSGVLSDQMSAR from SLC37A4. (D) 

Variant peptide NSFEVHVCACPGR (variant peptide R273H) from TP53. The variant peptide from 

SLC37A4 was detected by PRISM-SRM. Other three peptides were detected by regular LC-SRM. The 

endogenous peptides were confirmed by matching their corresponding heavy internal standards in the 

retention time and the SRM peak patterns. The top panel, SRM signal for endogenous peptides; the 

bottom panel, SRM signal for heavy internal standards (13C6,15N2 on the C-terminal K or R). IS, internal 

standard.      

(A) Variant peptide LVVVGADGVGK (variant peptide G12D) from KRAS. (B) Canonical peptide 

LVVVGAGGVGK from KRAS. 

 

Conclusions 

We have detected SAAVs in the PANC-1 cell line based on mass spectrometry analysis. To 

improve the depth of coverage of SAAV peptide detection, we prepared samples by fractionation 

into approximately 10 fractionations for each sample prior to analysis by HPLC-MS/MS and 

CZE-MS/MS. In total, 133 mass spectrometry runs evaluating the PANC-1 cell line were 

conducted in this study. Different algorithms for database searching and different databases were 

applied. Potential SAAV spectra were evaluated manually to remove duplication and false 

positive SAAVs. 70 SAAVs were identified using all three strategies indicating complementarity 



 
 

24 
 

in the MS/MS as well as the informatics approaches. The 70 SAAVs are believed to be high 

quality SAAV identifications. The 79 deleterious SAAVs predicted by the AssVar server 

included 5 SAAVs identified by all three strategies. The consistency of finding these deleterious 

SAAVs indicates they are high quality identifications and are prime candidates for further study 

of drivers for pancreatic cancer (Table 4). In summary, comprehensive detection of SAAVs was 

achieved in the current study by integrating multiple strategies in both data acquisition and data 

analysis. 79 deleterious SAAVs were distinguished from 461 passenger mutations in PANC-1 

cells and one of the driver mutations found in each protein of KRAS, TP53 and SLC37A4 was 

validated by SRM. Our study provides a blueprint for mutation research and potential targeted 

sites for anti-immunotherapy drug design for pancreatic cancer.  
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