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Abstract

Large-scale top-down proteomics characterizes proteoforms in cells globally with high
confidence and high throughput using reversed-phase liquid chromatography (RPLC)-
tandem mass spectrometry (MS/MS) or capillary zone electrophoresis (CZE)-MS/MS.
The false discovery rate (FDR) from the target-decoy database search is typically
deployed to filter identified proteoforms to ensure high-confidence identifications (IDs). It
has been demonstrated that the FDRs in top-down proteomics can be drastically
underestimated. An alternative approach to the FDR can be useful for further evaluating
the confidence of proteoform IDs after database search. We argue that predicting
retention/migration time of proteoforms from the RPLC/CZE separation accurately and
comparing their predicted and experimental separation time could be a useful and
practical approach. Based on our knowledge, there is still no report in the literature
about predicting separation time of proteoforms using large top-down proteomics
datasets. In this pilot study, for the first time, we evaluated various semi-empirical
models for predicting proteoforms’ electrophoretic mobility (uef) using large-scale top-
down proteomics datasets from CZE-MS/MS. We achieved a linear correlation between
experimental and predicted et of E. coli proteoforms (R?=0.98) with a simple semi-
empirical model, which utilizes the number of charges and molecular mass of each
proteoform as the parameters. Our modeling data suggest that the complete unfolding
of proteoforms during CZE separation benefits the prediction of their per. Our results
also indicate that N-terminal acetylation and phosphorylation both decrease

proteoforms’ charge by roughly one charge unit.



Mass spectrometry (MS)-based top-down proteomics aims to delineate proteoforms in
cells comprehensively with high confidence and throughput.’-® Proteoforms extracted
from biological samples are typically separated by reversed-phase liquid
chromatography (RPLC) or capillary zone electrophoresis (CZE), followed by
electrospray ionization (ESl)-tandem mass spectrometry (MS/MS). Database search is
then performed for the identification (ID) of proteoform spectrum matches (PrSMs),
proteoforms, and proteins through comparing experimental and theoretical masses of
proteoforms and their fragments. To improve the confidence of proteoform ID, the
target-decoy database search approach is typically employed, 7 and the identified
PrSMs and proteoforms were filtered by certain false discovery rates (FDRs). Recently,
the Kelleher’s group showed that the FDR estimation in top-down proteomics was
complicated and the FDRs could be drastically under-reported.? High-confidence
proteoform and protein IDs are vital. Therefore, after filtering the data with a specific

FDR, we need to validate the data further using an alternative approach to the FDR.

The retention/migration time of proteoforms in LC/CZE can be useful information for
improving the confidence of IDs. Some previous studies have deployed the
retention/migration time of proteins and peptides to facilitate their IDs.®'2 We believe
that accurate prediction of the retention/migration time of proteoforms will push the use
of separation time for ID forward drastically. By comparing the experimentally observed
and accurately predicted separation time of proteoforms, we could further boost the
confidence of identified proteoforms, determine wrong proteoform IDs, and even provide

useful information to correct proteoform IDs.

Some work has been done in predicting migration time (electrophoretic mobility, per) of
peptides from CZE separations.'3-? It has been demonstrated that CZE outperformed
RPLC regarding the prediction of migration/retention time of peptides for bottom-up
proteomics.?' One major reason is that the size and charge of peptides for CZE can be
calculated relatively easily, by contrast, the interaction between peptides and beads for
RPLC is complicated.?! Krokhin et al. achieved a linear correlation (R?=0.995) between
predicted and experimental per of peptides in CZE using a large peptide dataset and an
optimized semi-empirical model,?! which was based on the model reported by Cifuentes



et al.,’® Equation (1). Note: The equation (1) is the modified version from the reference

[19], and Krokhin et al. started their optimization from this equation for peptides.
Hef = 900 x (In(1 + 0.35 x Q)/MP411) Equation (1)

In the modified Cifuentes’s model, molecular weight (M) and charge (Q) were used as
the parameters. The Charge (Q) was equal to the number of positively charged amino
acid residues (K, R, H, and N-terminus) in the acidic background electrolyte (BGE) of
CZE, for example, 5% (v/v) acetic acid (AA), pH 2.4.2" More recently, we also applied
the similar model for predicting the per of phosphorylated peptides and achieved a high
correction (R?=0.99) between the predicted and experimental pef for mono-

phosphorylated peptides from the HCT116 cell line.??

Great success has been achieved for predicting per of peptides, but much more effort
need to be made on proteins/proteoforms. Some initial effort has been made using a
handful of standard proteins.’”2324 However, there is no report about predicting pef of
proteins/proteoforms using large-scale proteoform datasets. There are two major
reasons for that. First, large-scale top-down proteomics datasets from CZE-MS have
been limited. Second, proteins/proteoforms are much larger than peptides, leading to
potential difficulties in calculating their size and charge accurately. In the last 5 years,
CZE-MS has been recognized as an important approach for large-scale top-down
proteomics due to the improvement in CE-MS interfaces, capillary coatings, and online
sample stacking techniques.?>32 For instance, we identified nearly 600 proteoforms
from an E. coli cell lysate in a single-shot CZE-MS/MS analysis.?” In that study, we
employed a commercialized electro-kinetically pumped sheath-flow CE-MS
interface,3334 a 1-meter-long linear polyacrylamide (LPA)-coated capillary,®® and a
dynamic pH junction-based proteoform stacking method 36 to boost the sample loading
capacity, separation window, and overall sensitivity of the CZE-MS system. In another
study, we used a 1.5-meter-long LPA-coated capillary for CZE-MS/MS analysis of
zebrafish brains and identified thousands of proteoforms in a single analysis with
consumption of nanograms of protein material.?® These large-scale proteoform datasets
provide us great opportunities to push forward the prediction of per of proteoforms, which

will be useful for improving the confidence of proteoform IDs in top-down proteomics.



Here, we applied previously reported semi-empirical mobility models in the prediction of
proteoforms’ per and evaluated their performance using large proteoform datasets from
E. coli cells and zebrafish brains under different CZE conditions. For the zebrafish brain
datasets, we used the published data from our group and the detailed experimental
conditions are shown in reference [29]. Briefly, a 1.5-meters-long LPA-coated capillary
(50/360 um i.d./o.d.) was used for CZE separation. The BGE was 10% (v/v) AA, pH 2.2.
For the E. coli datasets, we generated these data for the project. In brief, the E. coli
proteins were denatured, reduced and alkylated, followed by desalting with a C4 trap
column according to the procedure in the reference [27]. The lyophilized protein sample
was redissolved in a 50 mM ammonium bicarbonate (NH4HCO3) buffer (pH 8.0) to get a
2 mg/mL protein solution for CZE-MS/MS. A 103-cm-long LPA-coated capillary (50/360
pum i.d./o.d.) was used for CZE. Three different BGEs were tested, including 5% (v/v) AA
in water, 20% (v/v) AA in water, and 20% (v/v) AA in water containing 10% (v/v)
isopropanol (IPA) and 15% (v/v) dimethylacetamide (DMA). Approximately 400 nL of the
sample, equivalent to 800 ng of E. coli proteins was injected for analysis per CZE-
MS/MS run. Technical triplicates were performed for each BGE. The commercialized
electro-kinetically pumped sheath-flow CE-MS interface from CMP Scientific (Brooklyn,
NY) was employed to couple CZE to MS.333* For all the experiments, +30 kV was
applied at the sample injection end, and +2 kV was applied at the interface for ESI. A Q-
Exactive HF mass spectrometer was used. The raw files from E. coli cells were
searched against the UniProt database (UP000000625) using TopPIC suite (version
1.2.6).3738 The identified PrSMs and proteoforms were filtered by a 0.1% FDR and a
0.5% FDR, respectively. The experimental details are described in the Supporting

Information I.

The migration time (tm) of each identified proteoform was obtained from the database
search result. The number of charge (Q) of each proteoform equals the number of
positively charged amino acid residues within their sequences (K, R, H, and N-
terminus). The molecular mass (M) of each proteoform equals the adjusted mass
reported by the TopPIC. The length (N) of each proteoform equals the number of amino
acid residues within the sequence. Only proteoforms without post-translational
modifications (PTMs) were used for calculation of experimental pefand predicted pesr.



About 500-1100 proteoforms were used for the calculations. The molecular mass of
proteoforms ranged from 1.5 kDa to 30 kDa. We also assumed that the electroosmotic
flow (EOF) in an LPA-coated capillary with an acidic BGE was extremely low.?’ The
proteoforms with their experimental and predicted perare listed in the Supporting
Information Il. The MS raw data have been deposited to the ProteomeXchange
Consortium via the PRIDE 39 partner repository with the data set identifier PXD017265.

First, we calculated the experimental per using the Equation (2),
Experimental pef = L/((30-2)/L*tm) (unit of cm? kV-'s) Equation (2)

Where L is the capillary length in cm, tu is the migration time in s. The 30 and 2 are

separation voltage and electrospray voltage in kilovolts.

Second, the predicted per of proteoforms from the E. coli datasets were calculated using
six classical semi-empirical models,'4-16.18-20 Table 1. For the Cifuentes’s model, we

obtained the final equation (3) based on the equation (1) via omitting the prefactor 900.
Hef =In(1+0.35*Q)/MO04™ Equation (3)
Where Q and M are the number of charge and molecular mass of each proteoform.

The Cifuentes’s model produced the best linear correlation (R?: 0.97-0.98) between the
predicted and experimental per of proteoforms according to the R? values for the three
CZE conditions, followed by the Offord’s model (R?: 0.92-0.94) and Kim’s model (R?:
0.82-0.90). The Reynolds’s model generated the lowest correlation coefficient (R?: 0.52-
0.72). The Cifuentes’s model obtained a drastically better linear correlation regarding
the R? value than the Grossman’s model (0.97 vs. 0.76 for the 5%AA BGE) and the two
models have two differences, M%411 vs. N9435 gnd 0.35*Q vs. Q. After a more detailed
study using the 5%AA BGE data, we figured out that the R? value of the Grossman’s
model could be boosted from 0.76 to 0.94 by simply changing the Q to 0.35*Q. Only a
minor effect on the R? value was observed by changing N°43%to M%411. We note that the
slopes of the linear correlation curves from the two best models (the Cifuentes’s model
and the Offord’s model) are comparable for the different CZE conditions, e.g., 0.22 vs.
0.25 for the 5%AA BGE, and are obviously smaller than that from other models,



suggesting that the predicted peffrom these two models are much smaller than that from
other four models and significantly smaller than the experimental per. We can add a CZE
condition-dependent prefactor to the Cifuentes’s model to match the predicted and

experimental per.

The data here represents the first try of predicting per of proteoforms using large-scale
top-down proteomics datasets. The great correlation between experimental per and
predicted per from the simple Cifuentes’s model further implies that the perof
proteoforms in CZE can be predicted easily. The predicted pef of proteoforms discussed

in the following parts were obtained from the Cifuentes’s model.

We evaluated how the BGE of CZE influenced the per of proteoforms, Figure 1A. When
the AA concentration in BGE increased from 5% to 20% and when 10% (v/v) IPA and
15% (v/v) DMA were added into the BGE, the experimental per of proteoforms
decreased. Two possible reasons exist for that phenomenon. First, the lower pH of 20%
(v/v) AA and the organic solvents unfold the proteoforms more completely, enlarging the
size of proteoforms and reducing their mobility. It has been reported recently that in
CZE protein size can increase significantly due to unfolding when the pH of BGE
decreases.*? Second, the lower pH of 20% (v/v) AA and the organic solvents further
eliminate the residual EOF in the capillary. In addition, when 20% (v/v) AA with or
without 10% (v/v) IPA and 15% (v/v) DMA was used as the BGE, a better linear
correlation was observed compared to the 5% (v/v) AA (0.98 vs. 0.96). For the BGE
containing 20% (v/v) AA, 10% (v/v) IPA, and 15% (v/v) DMA, the absolute value of
predicted pef is much closer to that of experimental per compared to the other two BGEs,
indicated by the much larger slope of the linear correlation curve (0.51 vs. 0.20-0.25).
The number of outliers from the BGE containing IPA and DMA is also much smaller
compared to the other BGEs. The results suggest that adding some organic solvents to
the BGE of CZE could benefit the prediction of yer of proteoforms. There is also some
evidence in the literature. For instance, in 2000, Katayama et al. demonstrated that the
use of methanol in BGE could improve the correlation between predicted per and
experimental et of peptides.*! We speculate that the organic solvents (IPA and DMA) in
the BGE facilitate the complete unfolding of proteoforms, leading to better prediction of



their per. It has been reported that certain types of polar solvents such as dimethyl
sulfoxide (DMSO), dimethylformamide (DMF), and formamide have the ability to unfold

proteins. 4243

We then tested the Cifuentes’s model on our published zebrafish brain (optic tectum
(Teo)) data and evaluated the performance of the model for predicting pef of
proteoforms with certain PTMs (i.e., N-terminal acetylation and phosphorylation). When
we only used nonmodified proteoforms, the predicted pef and experimental pef showed
reasonably good linear correlations (R>=0.96). We then further included the proteoforms
with N-terminal acetylation and/or phosphorylation in the analysis. The zebrafish Teo
data from one CZE-MS/MS run was used, which included 1163 nonmodified
proteoforms, 92 proteoforms with only N-terminal acetylation, 3 proteoforms with one
phosphorylation site, and 2 proteoforms with both N-terminal acetylation and one
phosphorylation site. N-terminal acetylation and phosphorylation can reduce the
proteoforms’ charge by one charge unit in theory. Figure 1B shows the linear
correlation between the experimental and predicted pes for these post-translationally
modified proteoforms (97 in total) regardless of the PTMs. First, the linear correlation is
poor (R?=0.76). Second, it is clear that the addition of one acetylation modification or
one phosphoryl group to a proteoform can decrease its mobility significantly. After
considering the effect of these PTMs on the proteoforms’ charge, we corrected the
charge (Q) in the Cifuentes’s model. We achieved a linear correlation for the 97
proteoforms with PTMs (R?=0.92) after we adjusted the Q by -1, -1 and -2 for
proteoforms with N-terminal acetylation, proteoforms with one phosphorylation site, and
proteoforms with both N-terminal acetylation and phosphorylation, respectively, Figure
1C. The results show that the proteoforms’ charge shifts are very close to the theoretical
contributions of N-terminal acetylation and phosphorylation. Additionally, the results
suggest that the pef of proteoforms with N-terminal acetylation and phosphorylation
could be predicted as accurately as nonmodified proteoforms (R? 0.92 vs. 0.96). We
note that some outliers exist in Figure 1C due to two possible reasons. First, for these
outliers, their experimental per values are larger than the predicted values, most likely

due to the incomplete unfolding of these proteoforms in the BGE used in the experiment



(10% (v/v) AA, pH 2.2). Second, since the proteoform IDs were filtered by a 0.5% FDR,

some of the outliers could be simply the wrong proteoform IDs.

In summary, in this work, for the first time, we evaluated various semi-empirical models
for predicting proteoforms’ yef using large-scale top-down proteomics datasets. Using a
simple semi-empirical model, we achieved a linear correlation between experimental per
and predicted per of E. coli proteoforms (R?=0.98). We note that some effort has been
made on predicting retention time of proteins in RPLC using simple protein mixtures
based on complicated models, producing reasonable correlations between predicted
and experimental retention time (R?=0.86-0.90).""4445 We also note that our current
study still has some limitations. First, the proteoforms used in this study have masses
lower than 30 kDa. Top-down proteomics datasets of large proteoforms using CZE-
MS/MS are required to expand the model into a wider range of proteoforms in mass.
Second, the number of proteoforms with PTMs (i.e., acetylation and phosphorylation)
used here is small, less than 100. Larger numbers of proteoforms with PTMs are
extremely important for improving the model for post-translationally modified

proteoforms.
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Table 1. Summary of the linear correlations between experimental pef and predicted per
of E. coli proteoforms using different semi-empirical models and under various CZE

conditions.*

Semi-empirical model

BGE

5% (viv) AA

20% (v/v) AA

10% (v/v) IPA

15% (v/v) DMA

20% (v/v) AA

R? Slope R? Slope R? Slope
* Cifuentes and
Nt on ' | poppe 2 097 | 022 | 098 | 026 | 098 | 0.51
In(1+Q)/N%43% | Grossman etal. ® | 0.76 1.72 0.82 2.1 0.82 4.4
Q/M?3 Offord ' 0.93 0.25 0.94 0.29 0.92 0.58
Q/M0-%6 Kim et al. 0.90 0.65 0.89 0.74 0.82 1.4
Q/M"2 Tanford '° 0.86 1.1 0.84 1.2 0.74 2.3
Q/M™3 Reynolds et al. %° 0.72 4.6 0.69 5.2 0.52 9.0

* Only proteoforms without PTMs were used. The R? and slope values were from the
mean of the triplicate CZE-MS/MS runs, and the standard deviations of the R? values
from the triplicate analyses were about 0.01.
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Figure 1. Linear correlations between predicted pef and experimental yer of proteoforms
from E. coli cells under various CZE conditions (A) and proteoforms from zebrafish optic
tectum (TEO) (B, C). For (A), only nonmodified proteoforms were used, and the data
was from a single CZE-MS/MS run. For (B) and (C), nonmodified, N-terminal acetylated,
and mono-phosphorylated proteoforms were employed. In (B), the charge of
proteoforms in the BGE (Q) was calculated by counting the positively charged amino
acid residues (K, R, H, and N-terminal) regardless of the PTMs. In (C), the charge of
proteoforms (Q) was corrected based on their PTMs. For example, one charge
reduction corresponded to one N-terminal acetylation or one phosphorylation.
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