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Abstract 

Large-scale top-down proteomics characterizes proteoforms in cells globally with high 

confidence and high throughput using reversed-phase liquid chromatography (RPLC)-

tandem mass spectrometry (MS/MS) or capillary zone electrophoresis (CZE)-MS/MS. 

The false discovery rate (FDR) from the target-decoy database search is typically 

deployed to filter identified proteoforms to ensure high-confidence identifications (IDs). It 

has been demonstrated that the FDRs in top-down proteomics can be drastically 

underestimated. An alternative approach to the FDR can be useful for further evaluating 

the confidence of proteoform IDs after database search. We argue that predicting 

retention/migration time of proteoforms from the RPLC/CZE separation accurately and 

comparing their predicted and experimental separation time could be a useful and 

practical approach. Based on our knowledge, there is still no report in the literature 

about predicting separation time of proteoforms using large top-down proteomics 

datasets. In this pilot study, for the first time, we evaluated various semi-empirical 

models for predicting proteoforms’ electrophoretic mobility (µef) using large-scale top-

down proteomics datasets from CZE-MS/MS. We achieved a linear correlation between 

experimental and predicted µef of E. coli proteoforms (R2=0.98) with a simple semi-

empirical model, which utilizes the number of charges and molecular mass of each 

proteoform as the parameters. Our modeling data suggest that the complete unfolding 

of proteoforms during CZE separation benefits the prediction of their µef. Our results 

also indicate that N-terminal acetylation and phosphorylation both decrease 

proteoforms’ charge by roughly one charge unit.  

 

 

 

 

 

 

 



Mass spectrometry (MS)-based top-down proteomics aims to delineate proteoforms in 

cells comprehensively with high confidence and throughput.1-5 Proteoforms extracted 

from biological samples are typically separated by reversed-phase liquid 

chromatography (RPLC) or capillary zone electrophoresis (CZE), followed by 

electrospray ionization (ESI)-tandem mass spectrometry (MS/MS). Database search is 

then performed for the identification (ID) of proteoform spectrum matches (PrSMs), 

proteoforms, and proteins through comparing experimental and theoretical masses of 

proteoforms and their fragments. To improve the confidence of proteoform ID, the 

target-decoy database search approach is typically employed, 6,7 and the identified 

PrSMs and proteoforms were filtered by certain false discovery rates (FDRs). Recently, 

the Kelleher’s group showed that the FDR estimation in top-down proteomics was 

complicated and the FDRs could be drastically under-reported.8 High-confidence 

proteoform and protein IDs are vital. Therefore, after filtering the data with a specific 

FDR, we need to validate the data further using an alternative approach to the FDR.  

The retention/migration time of proteoforms in LC/CZE can be useful information for 

improving the confidence of IDs. Some previous studies have deployed the 

retention/migration time of proteins and peptides to facilitate their IDs.9-12 We believe 

that accurate prediction of the retention/migration time of proteoforms will push the use 

of separation time for ID forward drastically. By comparing the experimentally observed 

and accurately predicted separation time of proteoforms, we could further boost the 

confidence of identified proteoforms, determine wrong proteoform IDs, and even provide 

useful information to correct proteoform IDs. 

Some work has been done in predicting migration time (electrophoretic mobility, µef) of 

peptides from CZE separations.13-21 It has been demonstrated that CZE outperformed 

RPLC regarding the prediction of migration/retention time of peptides for bottom-up 

proteomics.21 One major reason is that the size and charge of peptides for CZE can be 

calculated relatively easily, by contrast, the interaction between peptides and beads for 

RPLC is complicated.21 Krokhin et al. achieved a linear correlation (R2=0.995) between 

predicted and experimental µef of peptides in CZE using a large peptide dataset and an 

optimized semi-empirical model,21 which was based on the model reported by Cifuentes 



et al.,19 Equation (1). Note: The equation (1) is the modified version from the reference 

[19], and Krokhin et al. started their optimization from this equation for peptides. 

μef = 900 × (ln(1 + 0.35 × Q)/M0.411)                                                       Equation (1) 

In the modified Cifuentes’s model, molecular weight (M) and charge (Q) were used as 

the parameters. The Charge (Q) was equal to the number of positively charged amino 

acid residues (K, R, H, and N-terminus) in the acidic background electrolyte (BGE) of 

CZE, for example, 5% (v/v) acetic acid (AA), pH 2.4.21 More recently, we also applied 

the similar model for predicting the µef of phosphorylated peptides and achieved a high 

correction (R2=0.99) between the predicted and experimental µef for mono-

phosphorylated peptides from the HCT116 cell line.22 

Great success has been achieved for predicting µef of peptides, but much more effort 

need to be made on proteins/proteoforms. Some initial effort has been made using a 

handful of standard proteins.17,23,24 However, there is no report about predicting µef of 

proteins/proteoforms using large-scale proteoform datasets. There are two major 

reasons for that. First, large-scale top-down proteomics datasets from CZE-MS have 

been limited. Second, proteins/proteoforms are much larger than peptides, leading to 

potential difficulties in calculating their size and charge accurately. In the last 5 years, 

CZE-MS has been recognized as an important approach for large-scale top-down 

proteomics due to the improvement in CE-MS interfaces, capillary coatings, and online 

sample stacking techniques.25-32 For instance, we identified nearly 600 proteoforms 

from an E. coli cell lysate in a single-shot CZE-MS/MS analysis.27 In that study, we 

employed a commercialized electro-kinetically pumped sheath-flow CE-MS 

interface,33,34 a 1-meter-long linear polyacrylamide (LPA)-coated capillary,35 and a 

dynamic pH junction-based proteoform stacking method 36 to boost the sample loading 

capacity, separation window, and overall sensitivity of the CZE-MS system. In another 

study, we used a 1.5-meter-long LPA-coated capillary for CZE-MS/MS analysis of 

zebrafish brains and identified thousands of proteoforms in a single analysis with 

consumption of nanograms of protein material.29 These large-scale proteoform datasets 

provide us great opportunities to push forward the prediction of µef of proteoforms, which 

will be useful for improving the confidence of proteoform IDs in top-down proteomics.  



Here, we applied previously reported semi-empirical mobility models in the prediction of 

proteoforms’ µef and evaluated their performance using large proteoform datasets from 

E. coli cells and zebrafish brains under different CZE conditions. For the zebrafish brain 

datasets, we used the published data from our group and the detailed experimental 

conditions are shown in reference [29]. Briefly, a 1.5-meters-long LPA-coated capillary 

(50/360 µm i.d./o.d.) was used for CZE separation. The BGE was 10% (v/v) AA, pH 2.2. 

For the E. coli datasets, we generated these data for the project. In brief, the E. coli 

proteins were denatured, reduced and alkylated, followed by desalting with a C4 trap 

column according to the procedure in the reference [27]. The lyophilized protein sample 

was redissolved in a 50 mM ammonium bicarbonate (NH4HCO3) buffer (pH 8.0) to get a 

2 mg/mL protein solution for CZE-MS/MS. A 103-cm-long LPA-coated capillary (50/360 

µm i.d./o.d.) was used for CZE. Three different BGEs were tested, including 5% (v/v) AA 

in water, 20% (v/v) AA in water, and 20% (v/v) AA in water containing 10% (v/v) 

isopropanol (IPA) and 15% (v/v) dimethylacetamide (DMA). Approximately 400 nL of the 

sample, equivalent to 800 ng of E. coli proteins was injected for analysis per CZE-

MS/MS run. Technical triplicates were performed for each BGE. The commercialized 

electro-kinetically pumped sheath-flow CE-MS interface from CMP Scientific (Brooklyn, 

NY) was employed to couple CZE to MS.33,34 For all the experiments, +30 kV was 

applied at the sample injection end, and +2 kV was applied at the interface for ESI. A Q-

Exactive HF mass spectrometer was used. The raw files from E. coli cells were 

searched against the UniProt database (UP000000625) using TopPIC suite (version 

1.2.6).37,38 The identified PrSMs and proteoforms were filtered by a 0.1% FDR and a 

0.5% FDR, respectively. The experimental details are described in the Supporting 

Information I.  

The migration time (tM) of each identified proteoform was obtained from the database 

search result. The number of charge (Q) of each proteoform equals the number of 

positively charged amino acid residues within their sequences (K, R, H, and N-

terminus). The molecular mass (M) of each proteoform equals the adjusted mass 

reported by the TopPIC. The length (N) of each proteoform equals the number of amino 

acid residues within the sequence. Only proteoforms without post-translational 

modifications (PTMs) were used for calculation of experimental µef and predicted µef. 



About 500-1100 proteoforms were used for the calculations. The molecular mass of 

proteoforms ranged from 1.5 kDa to 30 kDa. We also assumed that the electroosmotic 

flow (EOF) in an LPA-coated capillary with an acidic BGE was extremely low.27 The 

proteoforms with their experimental and predicted µef are listed in the Supporting 

Information II. The MS raw data have been deposited to the ProteomeXchange 

Consortium via the PRIDE 39 partner repository with the data set identifier PXD017265. 

First, we calculated the experimental µef using the Equation (2), 

Experimental µef = L/((30-2)/L*tM) (unit of cm2 kV-1s-1)                                    Equation (2) 

Where L is the capillary length in cm, tM is the migration time in s. The 30 and 2 are 

separation voltage and electrospray voltage in kilovolts.  

Second, the predicted µef of proteoforms from the E. coli datasets were calculated using 

six classical semi-empirical models,14-16,18-20 Table 1. For the Cifuentes’s model, we 

obtained the final equation (3) based on the equation (1) via omitting the prefactor 900.  

µef =ln(1+0.35*Q)/M0.411                                                                                   Equation (3) 

Where Q and M are the number of charge and molecular mass of each proteoform. 

The Cifuentes’s model produced the best linear correlation (R2: 0.97-0.98) between the 

predicted and experimental µef of proteoforms according to the R2 values for the three 

CZE conditions, followed by the Offord’s model (R2: 0.92-0.94) and Kim’s model (R2: 

0.82-0.90). The Reynolds’s model generated the lowest correlation coefficient (R2: 0.52-

0.72). The Cifuentes’s model obtained a drastically better linear correlation regarding 

the R2 value than the Grossman’s model (0.97 vs. 0.76 for the 5%AA BGE) and the two 

models have two differences, M0.411 vs. N0.435 and 0.35*Q vs. Q. After a more detailed 

study using the 5%AA BGE data, we figured out that the R2 value of the Grossman’s 

model could be boosted from 0.76 to 0.94 by simply changing the Q to 0.35*Q. Only a 

minor effect on the R2 value was observed by changing N0.435 to M0.411. We note that the 

slopes of the linear correlation curves from the two best models (the Cifuentes’s model 

and the Offord’s model) are comparable for the different CZE conditions, e.g., 0.22 vs. 

0.25 for the 5%AA BGE,  and are obviously smaller than that from other models, 



suggesting that the predicted µef from these two models are much smaller than that from 

other four models and significantly smaller than the experimental µef. We can add a CZE 

condition-dependent prefactor to the Cifuentes’s model to match the predicted and 

experimental µef. 

The data here represents the first try of predicting µef of proteoforms using large-scale 

top-down proteomics datasets. The great correlation between experimental µef and 

predicted µef from the simple Cifuentes’s model further implies that the µef of 

proteoforms in CZE can be predicted easily. The predicted µef of proteoforms discussed 

in the following parts were obtained from the Cifuentes’s model.  

We evaluated how the BGE of CZE influenced the µef of proteoforms, Figure 1A. When 

the AA concentration in BGE increased from 5% to 20% and when 10% (v/v) IPA and 

15% (v/v) DMA were added into the BGE, the experimental µef of proteoforms 

decreased. Two possible reasons exist for that phenomenon. First, the lower pH of 20% 

(v/v) AA and the organic solvents unfold the proteoforms more completely, enlarging the 

size of proteoforms and reducing their mobility. It has been reported recently that in 

CZE protein size can increase significantly due to unfolding when the pH of BGE 

decreases.40 Second, the lower pH of 20% (v/v) AA and the organic solvents further 

eliminate the residual EOF in the capillary. In addition, when 20% (v/v) AA with or 

without 10% (v/v) IPA and 15% (v/v) DMA was used as the BGE, a better linear 

correlation was observed compared to the 5% (v/v) AA (0.98 vs. 0.96). For the BGE 

containing 20% (v/v) AA, 10% (v/v) IPA, and 15% (v/v) DMA, the absolute value of 

predicted µef is much closer to that of experimental µef compared to the other two BGEs, 

indicated by the much larger slope of the linear correlation curve (0.51 vs. 0.20-0.25). 

The number of outliers from the BGE containing IPA and DMA is also much smaller 

compared to the other BGEs. The results suggest that adding some organic solvents to 

the BGE of CZE could benefit the prediction of µef of proteoforms. There is also some 

evidence in the literature. For instance, in 2000, Katayama et al. demonstrated that the 

use of methanol in BGE could improve the correlation between predicted µef and 

experimental µef of peptides.41 We speculate that the organic solvents (IPA and DMA) in 

the BGE facilitate the complete unfolding of proteoforms, leading to better prediction of 



their µef. It has been reported that certain types of polar solvents such as dimethyl 

sulfoxide (DMSO), dimethylformamide (DMF), and formamide have the ability to unfold 

proteins. 42,43  

We then tested the Cifuentes’s model on our published zebrafish brain (optic tectum 

(Teo)) data and evaluated the performance of the model for predicting µef of 

proteoforms with certain PTMs (i.e., N-terminal acetylation and phosphorylation). When 

we only used nonmodified proteoforms, the predicted µef and experimental µef showed 

reasonably good linear correlations (R2=0.96). We then further included the proteoforms 

with N-terminal acetylation and/or phosphorylation in the analysis. The zebrafish Teo 

data from one CZE-MS/MS run was used, which included 1163 nonmodified 

proteoforms, 92 proteoforms with only N-terminal acetylation, 3 proteoforms with one 

phosphorylation site, and 2 proteoforms with both N-terminal acetylation and one 

phosphorylation site. N-terminal acetylation and phosphorylation can reduce the 

proteoforms’ charge by one charge unit in theory. Figure 1B shows the linear 

correlation between the experimental and predicted µef for these post-translationally 

modified proteoforms (97 in total) regardless of the PTMs. First, the linear correlation is 

poor (R2=0.76). Second, it is clear that the addition of one acetylation modification or 

one phosphoryl group to a proteoform can decrease its mobility significantly. After 

considering the effect of these PTMs on the proteoforms’ charge, we corrected the 

charge (Q) in the Cifuentes’s model. We achieved a linear correlation for the 97 

proteoforms with PTMs (R2=0.92) after we adjusted the Q by -1, -1 and -2 for 

proteoforms with N-terminal acetylation, proteoforms with one phosphorylation site, and 

proteoforms with both N-terminal acetylation and phosphorylation, respectively, Figure 

1C. The results show that the proteoforms’ charge shifts are very close to the theoretical 

contributions of N-terminal acetylation and phosphorylation. Additionally, the results 

suggest that the µef of proteoforms with N-terminal acetylation and phosphorylation 

could be predicted as accurately as nonmodified proteoforms (R2 0.92 vs. 0.96). We 

note that some outliers exist in Figure 1C due to two possible reasons. First, for these 

outliers, their experimental µef values are larger than the predicted values, most likely 

due to the incomplete unfolding of these proteoforms in the BGE used in the experiment 



(10% (v/v) AA, pH 2.2). Second, since the proteoform IDs were filtered by a 0.5% FDR, 

some of the outliers could be simply the wrong proteoform IDs.  

In summary, in this work, for the first time, we evaluated various semi-empirical models 

for predicting proteoforms’ µef using large-scale top-down proteomics datasets. Using a 

simple semi-empirical model, we achieved a linear correlation between experimental µef 

and predicted µef of E. coli proteoforms (R2=0.98). We note that some effort has been 

made on predicting retention time of proteins in RPLC using simple protein mixtures 

based on complicated models, producing reasonable correlations between predicted 

and experimental retention time (R2=0.86-0.90).11,44,45 We also note that our current 

study still has some limitations. First, the proteoforms used in this study have masses 

lower than 30 kDa. Top-down proteomics datasets of large proteoforms using CZE-

MS/MS are required to expand the model into a wider range of proteoforms in mass. 

Second, the number of proteoforms with PTMs (i.e., acetylation and phosphorylation) 

used here is small, less than 100. Larger numbers of proteoforms with PTMs are 

extremely important for improving the model for post-translationally modified 

proteoforms. 
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Table 1. Summary of the linear correlations between experimental µef and predicted µef 

of E. coli proteoforms using different semi-empirical models and under various CZE 

conditions.* 

* Only proteoforms without PTMs were used. The R2 and slope values were from the 

mean of the triplicate CZE-MS/MS runs, and the standard deviations of the R2 values 

from the triplicate analyses were about 0.01.  

 

 

 

 

 

 

 

 

 

Semi-empirical model 

BGE 

5% (v/v) AA 20% (v/v) AA 

10% (v/v) IPA 

15% (v/v) DMA 

20% (v/v) AA 

R2  Slope  R2  Slope  R2  Slope  

ln(1+0.35*Q)/ 
M0.411 

Cifuentes and 

Poppe 19,21 0.97 0.22 0.98 0.26 0.98 0.51 

ln(1+Q)/N0.435 Grossman et al. 18 0.76 1.72 0.82 2.1 0.82 4.4 

Q/M2/3 Offord 14 0.93 0.25 0.94 0.29 0.92 0.58 

Q/M0.56 Kim et al. 16 0.90 0.65 0.89 0.74 0.82 1.4 

Q/M1/2 Tanford 15 0.86 1.1 0.84 1.2 0.74 2.3 

Q/M1/3 Reynolds et al. 20 0.72 4.6 0.69 5.2 0.52 9.0 



 

Figure 1. Linear correlations between predicted µef and experimental µef of proteoforms 

from E. coli cells under various CZE conditions (A) and proteoforms from zebrafish optic 

tectum (TEO) (B, C). For (A), only nonmodified proteoforms were used, and the data 

was from a single CZE-MS/MS run. For (B) and (C), nonmodified, N-terminal acetylated, 

and mono-phosphorylated proteoforms were employed. In (B), the charge of 

proteoforms in the BGE (Q) was calculated by counting the positively charged amino 

acid residues (K, R, H, and N-terminal) regardless of the PTMs. In (C), the charge of 

proteoforms (Q) was corrected based on their PTMs. For example, one charge 

reduction corresponded to one N-terminal acetylation or one phosphorylation.    
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