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In this letter we consider the question of designing insulator/metal thermovoltaic structures with periodically
corrugated interfaces that give optimal performance based on the metric of useful power density. Using a
Monte Carlo approach in a robust, rapid, and high-accuracy numerical simulation strategy, we have identified
such interface shapes. We searched among the class of sinusoids and found that a flat-interface configuration
could be significantly improved in transverse magnetic polarization. More specifically, we found that (i.) the
performance improves with increasing corrugation amplitude (ii.) up to a maximum, (iii.) the shape of the
corrugation is largely irrelevant, and (iv.) the period of the corrugation should be chosen in connection to
the bandgap energy of the photovoltaic cell. For the latter we provide a simple expression as a starting point
for practitioners interested in fabricating such structures.

Introduction. A thermophotovoltaic (TPV) emitter
is a structure that, when heated to an appropriate tem-
perature, emits photons with energies suitable for the
generation of electricity by a photovoltaic (PV) cell.1 If
solar energy is used to heat the emitter, then the full
system is a solar thermophotovoltaic (STPV) system,1,2

although applications of TPVs involving nonsolar-based
energy (e.g., waste heat) are also of great interest. Ide-
ally, the emitted photons should have energies near and
above the bandgap energy of the relevant PV cell. If the
emitter were simply a blackbody emitter, then only the
operating temperature would be of relevance; but layered
and nanostructured TPV structures can lead to emission
properties more tailored for efficient energy generation.3,4

Inspired by Jeon et al5, we consider a simple Bragg
reflector-tungsten TPV system (see Figure 1) and use




















 









 

FIG. 1: Depiction of the full STPV system (left) with
special emphasis on the TPV emitter structure (right).

a highly efficient computational electrodynamics proce-

dure to predict optimal surface structuring. By corru-
gating the interfaces in the emitter we can enhance the
emissivity in the relevant, sub-bandgap range of ener-
gies. We follow Ref. 6 where the authors reasoned that
such corrugations act like a “graded” material and allow
one to modify the emissivity. However, rather than con-
sider their sharply varying sawtooth profiles6, we focus
on smooth periodic profiles to corrugate. Not only is this
feature advantageous for our numerical algorithm, but
also the response is similar to sawtooth shapes readily
generated by modern fabrication techniques.

The numerical approach we utilize is a high-order per-
turbation of surfaces (HOPS) algorithm7–10, which uti-
lizes surface unknowns, giving it an orders-of-magnitude
advantage in terms of storage and execution time over
volumetric approaches such as finite difference,11 finite
element,12 spectral element,13 and spectral14 methods.
Furthermore, because of its perturbative character and
expression in terms of periodic eigenfunctions of the
Laplacian, it has advantages over integral equations
approaches15: there is no need for specialized quadra-
tures, periodization strategies, or iteration schemes for
solving dense, nonsymmetric positive-definite systems of
linear equations.16,17

From our simulations we have made a number of im-
portant discoveries. First, the introduction of periodic
corrugations can significantly increase the useful power
density (4.2651 W/cm2 versus 3.4443 W/cm2) of solar
cells in transverse magnetic (TM) polarization. Second,
the enhancement grows with increasing corrugation am-
plitude up to a maximal value beyond which the benefi-
cial effects dissipate. Third, the shape of the corrugation
does not appear to be crucial since a simple sinusoid pro-
duces roughly the same results as those produced by a
sawtooth profile. Finally, our results improve as the pe-
riod, d, of the corrugation is adapted to the bandgap
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wavelength, λBG, of the underlying PV cell. Based upon
careful study of the emissivity of our structures we have
derived the rule d ≈ 2π/λBG as a useful starting point
for practitioners building such devices. We note that our
results depend strongly on polarization: The difference
between flat and corrugated is minimal in transverse elec-
tric (TE) polarization, however, it is sizable in TM.

Governing Equations. Figure 2 displays the ge-
ometry of the configuration we consider: a y-invariant
(M + 1)-layered insulator-metal structure. An insula-
tor (vacuum with refractive index nvac = 1) occupies
the domain above the uppermost interface {z > g1(x)}
and metal (tungsten) fills {z < gM (x)}. A tungsten-
alumina alloy spacer (Al2O3 with nal = 1.7682 with
tungsten volume fraction 0 ≤ fW ≤ 1) occupies the sec-
ond layer, {g2(x) < z < g1(x)}, while a Bragg reflector
composed of alternating layers of SiO2 (nsi = 1.4585) and
TiO2 (nti = 2.6142) occupies the middle of the structure
{gM (x) < z < g2(x)}. We focus upon d-periodic grating
interfaces, typically gj(x) = ḡj + a sin(2πx/d), and work
with triply layered Bragg structures so that M = 5. The
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FIG. 2: Bragg-tungsten structure with sinusoidal
periodic interfaces.

structure is illuminated from above by monochromatic
plane-wave incident radiation of frequency ω, aligned
with the grooves. Factoring out the common term
exp(−iωt), we choose the reduced electric and magnetic
fields as unknowns, which, like the incident field, are
quasiperiodic.

In this two-dimensional setting the time-harmonic
Maxwell equations decouple into (M + 1)-many scalar
Helmholtz problems that govern the TE and TM
polarizations18. We denote the invariant (y) directions
of the scattered (electric or magnetic) fields by vm(x, z)
in layer m, and the incident radiation in the upper layer

by vi. We seek outgoing, quasiperiodic solutions of

∆vm +
(
k(m)

)2
vm = 0, gm+1(x) < z < gm(x), (1)

vm−1 − vm = −δm,1vi, z = gm(x), (2)

∂Nm
vm−1 − τ2m∂Nm

vm = −δm,1∂Nm
vi, z = gm(x),

(3)

where δm,` is the Kronecker delta, k(m) = n(m)ω/c,
Nm = (−∂xgm, 1)T , τ2m = 1 in TE, and

τ2m =
(
k(m)/k(m+1)

)2
=
(
n(m)/n(m+1)

)2
, in TM.

The Rayleigh expansions18,19 state, for z > |g1|L∞ ,

v0(x, z) =
∞∑

p=−∞
âpe

iαpxeiγ
(0)
p z,

where αp := α + 2πp/d, γ
(0)
p =

√
(k(0))2 − α2

p, with

Im(γ
(0)
p ) ≥ 0, and the “propagating modes” are U (0) ={

p ∈ Z | α2
p < (k(0))2

}
. The emissivity (equal to the ab-

sorbance) is defined as

εs(λ) = 1−
∑
p∈U(0)

e(0)p , e(0)p :=
γ
(0)
p |(v̂0)p|2

γ(0)
.

Numerical Scheme. We follow a HOPS methodol-
ogy to solve (1)–(3), which successively corrects the flat-
interface (Fresnel) approximation.8,16,20–22 The approach
begins with the assumption that the shapes of the inter-
face deformations gm satisfy gm = εfm (ε� 1) with fm
sufficiently smooth. The smallness assumption on ε can
be removed by analytic continuation23,24 and numerically
implemented via Padé summation.8,25,26

We utilize the Transformed Field Expansions
approach8,20 which we recall here. A simple change
of variables is effected in each layer which flattens
the domain interfaces, {z = gj(x)} to {z′ = ḡj}.
This delivers equations for the transformed fields,
um(x′, z′) = vm(x(x′, z′), z(x′, z′)), e.g.,

∆′um +
(
k(m)

)2
um = Fm(x′, z′),

for (1), where forms for Fm can be readily derived.9,10

Classical results7,20 imply that the transformed fields de-
pend analytically on the deformation size ε so that, e.g.,

um = um(x′, z′; ε) =
∞∑
n=0

um,n(x′, z′)εn. (4)

This expansion is inserted into the transformed version of
(1)–(3) resulting in a system of coupled inhomogeneous
Helmholtz problems governing the um,n to be solved. For
the purpose of approximating these, we have selected a
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stable, High-Order Spectral Fourier-Legendre Galerkin
approach14 where

um,n ≈
Nx/2−1∑
p=−Nx/2

Nz∑
`=0

ũm,n,p,`L`(z)eiαpx,

and the L` are appropriately scaled and translated Leg-
endre polynomials. For smooth profiles fm, the scattered
fields, um, are jointly analytic in x, z, and ε, so the co-
efficients ũm,n,p,` decay exponentially fast as {m,n, p, `}
grow8. Thus, only a small number of these are required
to deliver a high–fidelity solution which can be discov-
ered very quickly. Naturally, as the deformation size ε
becomes larger, more perturbation orders n are required
which slows our algorithm.

Figure of Merit. A figure of merit that measures the
utility of our structures comes from Planck’s law for the
spectral radiance of a black body at temperature T ,

B(λ, T ) =

(
4π~c2

λ5

)
1

exp(Q)− 1
, Q :=

2π~c
kBTλ

,

where ~ is Planck’s constant, c is the speed of light in a
vacuum, and kB is the Boltzman constant. With this the
(useful) power density is given by

P :=

∫ λBG

0

λ

λBG
B(λ, T )εs(λ) dλ, (5)

where we restricted the integration domain to be {λmin <
λ < λmax}. Jeon et al5 introduced a second figure of
merit, the “spectral efficiency,” which, in our simulations,
decreased only slightly with the introduction of corruga-
tions.

Numerical Results. In all of our simulations we
chose the physical parameters λBG = 2.254 µm, λmin =
0.6 µm, λmax = 6.0 µm, T = 1700 K, and fW = 0.75,
where we have used a Maxwell formula to estimate the
permittivity of the alloy.5 Geometrically we have chosen
the base layer thicknesses to be: 20 nm tungsten-alumina
alloy, 255 nm SiO2, and 150 nm TiO2.

To begin we consider a selection of representative con-
figurations with sinusoidal corrugations of spatial period,
d = 2.5 µm, and amplitudes a = 0, 0.15, 0.275, 0.35 µm.
The results are summarized in Table I. The final column,
δ, is a dimensionless measure of the energy defect when
the tungsten and alloy layers are replaced by a dielectric.
If δ = 0, then energy is perfectly conserved (as it should
be in a dielectric structure), while values of 10−2 to 10−3

indicate that 2-3 digits can be trusted. From this table
we learn a number of things. First, we can increase the
useful power density by nearly 25 % with the introduc-
tion of periodic sinusoidal corrugations. To see why this
is the case we display, in Figure 3 the emissivity, εs, for
flat (a = 0 µm) and corrugated (a = 0.25 µm) interface
configurations. We notice the significant enhancement to
the magnitude of the emissivity below the bandgap wave-
length in the presence of corrugations. In addition, from

TABLE I: Numerical results for six-layer structures.

a(µm) PD (W/cm2) δ Nx Nz N

0 3.4443 4× 10−16 20 20 20

0.15 3.8381 3× 10−3 20 20 20

0.275 4.2651 8× 10−3 20 40 40

0.35 4.1651 1× 10−2 20 40 40
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FIG. 3: Plot of the emissivity, εs, versus wavelength, λ,
for the sinusoidally corrugated interface configuration

with a = 0, 0.25 µm. (Nx = Nz = 20 and N = 20.)

Table I we note that the improvement in useful power
density increases as the corrugation amplitude increases
to a maximum around a ≈ 0.275 µm, but then decreases
again as a increases.

To discern the effect of the particular shape of the in-
terface deformations, we ran these simulations again with
a = 0.18 µm and interfaces shaped as sawtooth profiles
(see Figure 4). These simulations revealed that the useful
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FIG. 4: Bragg-tungsten structure with sawtooth
periodic interfaces.

power density increases from 4.01 W/cm2 to 4.03 W/cm2
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when the sharp sawtooth corrugations are introduced,
which is clearly not significant.

Continuing, we decided to investigate the possibility
of improving the performance of our design by varying
the period of our corrugations. For this we selected 100
samples of d from the uniform distribution U(1.6, 3.0)
(in microns) for a fixed amplitude a = 0.18 µm; the
results are depicted in Figure 5. Here we see a signif-
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FIG. 5: Useful power density versus period of the
sinusoidally corrugated interfaces. (Nx = Nz = 20 and

N = 20.)

icant spike near the value d = 2.8 µm. Our explana-
tion for this result is that it is within a small neighbor-
hood of 2π/λBG ≈ 2.7876 so that our emissivity pro-
file is tailored to the bandgap of the PV. To make this
more quantitative we display the emissivity for a period
d near this critical value 2π/λBG in Figure 6 (d = 2.88)
and below/above (d = 2.4, 3.2) this value in Figure 7
with amplitude a = 0.18 µm corrugations. Here we
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FIG. 6: Emissivity versus wavelength for period
d = 2.88 µm (d ≈ 2π/λBG) corrugated interfaces.

(Nx = Nz = 20 and N = 20.)

see how the emissivity curve is “optimal” in the case
d = 2.88 ≈ 2π/λBG case with all of the plasmonic peaks

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

is
s
iv

it
y

Emissivity with d=2.4

Emissivity with d=3.2

Bandgap

FIG. 7: Emissivity versus wavelength for periods
d = 2.4 µm (d < 2π/λBG) and d = 3.2 µm

(d > 2π/λBG) corrugated interfaces. (Nx = Nz = 20
and N = 20.)

located at wavelengths up to, but not past, the bandgap
wavelength. By contrast, for d < 2π/λBG the peaks do
not exist all the way up to the bandgap wavelength, while
for d > 2π/λBG there are “wasted” peaks beyond.
Conclusions. In this letter we addressed the prob-

lem of designing TPV emitters consisting of Bragg re-
flectors overlaying tungsten with periodically corrugated
interfaces. Using a rapid and robust HOPS solver, we
have found such structures using the useful power den-
sity figure of merit. We determined that corrugations
of simple sinusoidal form can give significant enhance-
ments which grow with increasing amplitude up to a
maximal value. The shape of the corrugation did not
appear to be particularly important, however, the pe-
riod, d, should be adapted to the bandgap wavelength
of the PV cell, λBG, with a useful first approximation
expressed by d ≈ 2π/λBG.

We note that our calculations focus on normal inci-
dence (emission), which is common in the literature. As
discussed in the Supporting Information of Ref. 5, al-
though angles near normal are expected to be most im-
portant, a more complete calculation would involve in-
tegrating over all angles of emission. The conditions for
plasmonic/diffractive resonances depend on angle (e.g.,
eqns (1)–(2) of Ref. 27) so that there will likely be some
deterioration in the overall power densities.

This paper has focused on achieving emissivities that
can enhance power density associated with a PV cell at a
particular band–gap energy. However, another important
aspect of solar energy related problems (e.g., concentrat-
ing solar power28) is to design structures that can absorb
over the entire solar spectrum. Figure 7 shows that one
can achieve absorption (emissivity) at somewhat longer
wavelengths by increasing the periodicity. The extent to
which one could optimize the periodicity represents an
interesting problem that we plan to address.
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