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The advent of high-throughput sequencing technologies has led to an
increasing availability of large multi-tissue data sets which contain gene ex-
pression measurements across different tissues and individuals. In this setting,
variation in expression levels arises due to contributions specific to genes, tis-
sues, individuals, and interactions thereof. Classical clustering methods are
ill-suited to explore these three-way interactions and struggle to fully extract
the insights into transcriptome complexity contained in the data. We propose
anew statistical method, called MultiCluster, based on semi-nonnegative ten-
sor decomposition which permits the investigation of transcriptome variation
across individuals and tissues simultaneously. We further develop a tensor
projection procedure which detects covariate-related genes with high power,
demonstrating the advantage of tensor-based methods in incorporating in-
formation across similar tissues. Through simulation and application to the
GTEx RNA-seq data from 53 human tissues, we show that MultiCluster iden-
tifies three-way interactions with high accuracy and robustness.

1. Introduction. Owing to advances in high-throughput sequencing technol-
ogy, multi-tissue expression studies have provided unprecedented opportunities to
investigate transcriptome variation across tissues and individuals (Lonsdale et al.
(2013), Melé et al. (2015), Hawrylycz et al. (2012)). A typical multi-tissue exper-
iment collects gene expression profiles (e.g., via RNA-seq or microarrays) from
different individuals in a number of different tissues, and variation in expression
levels often results from complex interactions among genes, individuals, and tis-
sues (Melé et al. (2015)). For example, a group of genes may perform coordinated
biological functions in certain contexts (e.g., specific tissues or individuals), but
behave differently in other settings through tissue- and/or individual-dependent
gene regulation mechanisms.

Clustering has proven useful to reveal latent structure in high-dimensional ex-
pression data (Tibshirani et al. (1999), Lazzeroni and Owen (2002), Liu et al.
(2008)). Traditional clustering methods (such as K-means, PCA, and t-SNE
(van der Maaten and Hinton (2008))) assume that gene expression patterns persist
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across one of the different contexts (either tissues or individuals), or assume that
samples are i.i.d. or homogeneous. Direct application of these algorithms to multi-
tissue expression data requires concatenating all available samples from different
tissues into a single matrix, precluding potential insights into tissue x individual
specificity (Bahcall (2015)). Alternatively, inferring gene modules separately for
each tissue ignores commonalities among tissues and may hinder the discovery
of differentially expressed (DE) genes that characterize tissues or tissue groups.
Likewise, individuals vary by their biological attributes (such as race, gender, and
age), and ignoring such heterogeneity impedes the accurate estimation of gene-
and/or tissue-wise correlations. The development of a statistical method that inte-
grates multiple modes (defined in Section 3) simultaneously is therefore essential
for elucidating the complex biological interactions present in multi-tissue multi-
individual gene expression data.

Several methods have been proposed in multi-tissue multi-individual expres-
sion studies, but they are often unable to fully exploit the three-mode structure of
the data. Pierson et al. (2015) propose a hierarchical transfer learning algorithm to
learn gene networks in which they first construct a global tissue hierarchy based on
mean expression values and subsequently infer gene networks for each tissue con-
ditioned on the tissue hierarchy. Dey, Hsiao and Stephens (2017) instead use topic
models to cluster samples (i.e., tissues or individuals) and identify genes that are
distinctively expressed in each cluster. Both algorithms take a two-step procedure
to uncover expression patterns in tissues and genes. Other methods offer one-shot
approaches by identifying subsets of correlated genes that are exclusive to, for
example, female individuals. Gao et al. (2016) adopt the biclustering framework
and propose decomposing the expression matrix into biclusters of subsets of sam-
ples and features with latent structure unique to the overlap of particular subsets.
However, in the case of multi-tissue measurements across individuals, concatenat-
ing the data sample-wise to create a single expression matrix will not explore the
three-way interactions among genes, tissues, and individuals. A more recent work
(Hore et al. (2016)) develops sparse decomposition of arrays (SDA) for multi-tissue
expression experiments. Because their focus is not on clustering tissues or individ-
uals, the proposed i.i.d. prior on individual/tissue loadings may not be suitable to
detect tissue- and individual-wise correlation.

We address the aforementioned challenges by developing a tensor-based
method, called MultiCluster, to simultaneously cluster genes, tissues, and individ-
uals. As illustrated in Figure 1(a), multi-tissue multi-individual gene expression
measurements can be organized into a three-way array, or order-3 tensor, with
gene, tissue, and individual modes. Our goal is to identify subsets of genes that
are similarly expressed in subsets of tissues and individuals; mathematically, this
reduces to detecting three-way blocks in the expression tensor (Figure 1(b)). We
utilize the flexible tensor decomposition framework to directly identify gene mod-
ules in a tissue x individual specific fashion, which traditional clustering methods
would struggle to capture.
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F1G. 1. Three-way clustering problem. (a) Input tensor of gene expression. (b) Shuffled, de-noised
output tensor containing local blocks. Both (a) and (b) are color images of a data tensor Y = [Y; jk]]a
with each entry colored according to the value of Y j .

Our tensor decomposition method can be viewed as a generalization of matrix
PCA. Compared to matrices, tensors provide greater flexibility to describe data
but entail a higher computational cost. Indeed, extending familiar matrix concepts
such as SVD to tensors is not straightforward (de Silva and Lim (2008), Kolda and
Bader (2009), Wang et al. (2017)), and the associated computational complexity
has proven to be NP-hard (Hillar and Lim (2013)). Motivated by recent advances in
tensor decomposition (Anandkumar et al. (2014), Wang and Song (2017)), we de-
velop a robust clustering method to simultaneously infer common and distinctive
gene expression patterns among tissues and individuals which utilizes triplets of
sorted loading vectors in a constrained tensor decomposition. This approach han-
dles heterogeneity in each mode and learns the clustering patterns across different
modes of the data in an unsupervised manner analogous to PCA and SVD. In ad-
dition, we develop a tensor projection procedure which detects covariate-related
genes with high power, demonstrating the advantage of tensor-based methods in
incorporating information across similar tissues. When applied to the Genotype-
Tissue Expression (GTEx) RNA-seq data, our method uncovers different types of
gene expression modules, including (i) global, shared expression modules; (ii) ex-
pression modules specific to certain subsets of tissues; (iii) modules with differ-
entially expressed genes across individual-level covariates (e.g., age, sex or race);
and (iv) expression modules that are specific to both tissues and individuals.

Section 2 discusses the GTEx data set which serves as the motivating example
for our method. Section 3 covers tensor preliminaries and presents our three-way
clustering method via the use of semi-nonnegative tensor decomposition. We then
describe the fitting procedure and develop a tensor projection method for detecting
covariate-related genes. Section 4 presents simulation studies that compare our
method with a number of alternatives. In Section 5 we describe the application of
our method to the GTEx multi-tissue multi-individual gene expression data set.
We conclude in Section 6 with a discussion of our findings and avenues for future
work.
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2. Motivating data set. We demonstrate the usefulness of MultiCluster us-
ing the GTEx v6 gene expression data, which consist of RNA-seq samples col-
lected from 544 individuals across 53 human tissues, including 13 brain sub-
regions, adipose, heart, artery, skin, and more. These data are available from
https://www.gtexportal.org/home/datasets. The experiment is described in detail
in Lonsdale et al. (2013) and further in Melé et al. (2015). After cleaning and
preprocessing the data as detailed in the Supplementary Material (Wang, Fischer
and Song (2019)), gene expression measurements were organized into a gene X
individual x tissue multi-way array ) € R"6*"*"T ‘where ng = 18,481 (genes),
n; = 544 (individuals), and np = 53 (tissues).

The GTEx data set contains categorical clinical variables such as sex (n = 357
females vs. n = 187 males), race (n = 77 African Americans vs. n = 467 Euro-
pean Americans), and age (1st and 3rd age quantiles of 47 and 62, respectively).
Given its inherent structure and levels of individual heterogeneity, this data set nat-
urally lends itself to a tensor framework and allows us to systematically investigate
multifactorial patterns of transcriptome variation.

3. Models and methods. We begin by reviewing a few basic facts about ten-
sors (Kolda and Bader (2009)). We use Y = [Yi,i,..;,] € RA1xdyxxd ¢4 denote a
(d1,da, ..., dy)-dimensional real-valued tensor, where k corresponds to the num-
ber of modes of ) and is called the order. Given our intended application to multi-
way gene expression data, we describe the method in the context of order-3 tensors,
though it is also applicable to higher-order tensors. A tensor Y is called a rank one
tensor if it can be written as an outer product of vectors such that Y =x ® y ® z,
where x € R%, y € R%, 7z € R%, and ® denotes the Kronecker product.

The inner product between two tensors Y = [Y; ] and V' = [¥/;; ] in Rt xd2xd3
is the sum of the product of their entries given by

d dy d3

WY)=2"2" D YiuYje

i=1j=1k=1
The Frobenius norm of ) is defined as

dy d di )1/2

IVlF =V, V) = (Z oD Yk

i=1j=1k=1
Following Lim (2005), we define the covariant multilinear matrix multiplication of
atensor 7 € RN*4xd3 by matrix M| = [[mfé?]] e RIS My = [[m%]] e R2xs2,
and M3 = [[n,(il]] € R%BX53 a5

di dy d
D@ 3
YM 1, M3, M3) = HZZ > Yijkm,(g?mﬁg)zml({%ﬂ,
i=1j=1k=1
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which results in a tensor in R¥1*52*53 When M is an identity matrix, we often
write Y (-, M, M3) for brevity; similar shorthand rules apply to other modes. Note
than when s; = 1, Y(M 1, My, M3) degenerates to an s2-by-s3 matrix, and when
both sy =sp =1, Y(M, My, M3) degenerates to a length-s3 vector. Mildly abus-
ing notation, we use symbols such as Y (-, -, k) to denote the kth matrix slice of the
tensor in which the first two indices may vary and the last index is held fixed for
some 1 <k <ds.

For ease of notation, we allow the basic arithmetic operators (4, —, >, etc.) to
be applied to pairs of vectors in an element-wise manner. We use the shorthand [#]
to denote the n-set {1, ...,n} forn e N;.

3.1. Tensor decomposition model. Figure 2 provides a schematic illustration
of the MultiCluster method. In a multi-tissue multi-individual gene expression ex-
periment, the data take the form of an order-3 tensor, Y = [Y; jk]] e RrGXnrxnr
where Y;jx denotes the expression value (possibly after a suitable transformation)
of gene i measured in individual j and tissue k, n¢ is the total number of genes,
ny is the total number of individuals, and n7 is the total number of tissues. We
propose to model the expression tensor ) as a perturbed rank-R tensor,

R
3.1) Y=> 4G I, T, +E&,

r=1

where A, € R, are singular values; G, I, and T, are norm-1 singular vectors in
R"G, R, and R"7, respectively; and £ = [E; jk]] is a noise tensor with each entry
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FI1G. 2. Schematic diagram of MultiCluster method. (a) Multi-tissue multi-individual gene expres-
sion data. (b) Input expression tensor after normalization and imputation. (c) Our method decom-
poses the expression tensor into a set of rank-1 tensors, Gy ® I, ® T, where G, I, and T are,
respectively, gene, individual, and tissue singular vectors. (d) Each three-way cluster is represented
by the three sorted singular vectors. (e) We utilize metadata, such as gene ontology (GO) annota-
tion, tissue labels, and individual-level covariates, to identify the sources of variation in each loading
vector.
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E;ijr i.i.d. N(O, 03). We refer to the loading vectors G,, I, T, as “eigen-genes,’
“eigen-individuals,” and “eigen-tissues,” respectively.

The rank-1 component G, ® I, ® T, in (3.1) can be interpreted as the basic unit
of an expression pattern (called an expression module), in which the (i, j, k)th en-
try of G, ® I, ® T, is the multiplicative product of the corresponding entries in
the three modes, that is, (G, ® I, ® T,), j k) = Gr,il,j Ty k. The tissue loadings
indicate the “activity” of the expression module r for each tissue. To facilitate the
biological interpretation, we impose entry-wise nonnegativity conditions, T', > 0,
on the tissue loading vectors T ,; the manner of execution and motivation for this
constraint are discussed in Section 3.2. Note that no sign constraint is imposed on
individual and gene loadings, so our method is flexible enough to handle mixed-
sign data tensors. We refer to such constraints as “semi-nonnegative” tensor de-
composition.

3.2. Estimation via optimization. We wish to recover the tensor components
of interest,

{()‘rv G I,,T): |Glla= L l2=Trll2=1,A>0,T, >0,r € [R]}’
from the observation ). The negative log-likelihood under the Gaussian model
(3.1) is equal (ignoring constants) to
2

El

R
(32) Hy—ZA,Gr®1r®Tr
F

r=1

which will be the cost function in our estimation procedure. Before presenting the
algorithm, we first state some conditions for the model identifiability. The first
complication is the indeterminacy due to sign flips and permutation:

— Sign flips: changing the factors from (G,, I, T,) to (-G, —I,, T;) does not
affect the likelihood.

— Permutation: applying permutation to the index set [ R] does not affect the like-
lihood.

To deal with the above indeterminacy, we adopt the following convention. The sign
of I, is chosen such that maxcp,,1 Ir,j = max e[, |1, ;| for all r € [R]. Because
of the nonnegativity constraints on T ,, this convention fixes the sign of I, (and
thus G,). Furthermore, component indices are arranged such that Ay > Ay > -.- >
Ar. In the degenerate case where not all eigenvalues are unique, we break ties by
first choosing the module r with larger max e, I, ;.

The second complication comes from the possible nonuniqueness of tensor de-
composition even after accounting for sign and permutation indeterminacy. For-
tunately, we are able to utilize sufficient conditions for the uniqueness of tensor
decomposition. These conditions were initially developed for unconstrained tensor
decomposition, but they also apply to our semi-nonnegative tensor decomposition.
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— (Kruskal (1977)) A rank-R semi-nonnegative tensor decomposition is unique if
kc +kr +kr = 2R + 2, where kg is the Kruskal-rank of the gene factor matrix
G =[Gy, ..., GR], that is, the maximum value k such that any k columns are
linearly independent. The definitions for k7 and k; are similar, except that the
tissue factor matrix T'=[T'1, ..., T gr] is nonnegative in our case.

— (De Lathauwer (2006)) Suppose ng > n; > nt (asinthe GTEx data). If R < nr
and R(R — 1) <ng(ng — )ny(n; — 1)/2, then the rank-R semi-nonnegative
tensor decomposition is unique for almost all such tensors except on a set of
Lebesgue measure zero.

In parameter estimation, we decompose the tensor ) via successive rank-1 ap-
proximations coupled with deflation. Although successive rank-1 approximations
of a tensor do not necessarily yield its best rank-R approximation, recent work
shows that they provide a flexible estimation procedure with well-controlled error
in many cases (Allen (2012), Mu, Hsu and Goldfarb (2015)). R
_ We modify our earlier algorithm (Wang and Song (2017)) to solve for s Gy,
I, T, via the following optimization:

minimize |V —A,G, I, T, | F,
(3.3) Ar,Gr 0y Ty
subject to [|G,ll2=[I/ll2=|T;2=1 and T,>0,

where ) denotes either the original or residual tensor after deflation. As the op-
timization (3.3) is separable into each of its factors, we can optimize this in an
iterative block-wise manner:

PROPERTY 1. Let (i\r, Gr, 7,, Tr) be the optimizer of (3.3). Then the follow-
ing properties hold (assuming the denominators are nonzero):

G, =Y. 1. T)/| Y. 1,.T))|,.
I, =Y(G, .. T)/|V(@G,,-. T,
T,=YG, 1,.)/|¥(G,. T . )4
*r =Y(Gr, 1,.T)),

where a4 := max(a, 0) and we allow this operator to be applied to vectors in an
element-wise manner.

(3.4)

2

A proof is provided in the Supplementary Material (Wang, Fischer and Song
(2019)). The above result suggests an alternating optimization scheme. The ten-
sor factors G, 7,, and T, are initialized using outputs from unconstrained ten-
sor decomposition (Wang and Song (2017)). Each factor is then updated alterna-
tively while keeping the other two factors fixed. The update step requires solving
a (either constrained or unconstrained) least-square problem and the optimal so-
lution is given explicitly by the right-hand side of equality (3.4). In particular,



1110 M. WANG, J. FISCHER AND Y. S. SONG

the entry-wise nonnegativity of the tissue loading vectors T, is imposed by set-
ting negative values of T, to 0. As each coordinate update reduces the objective
function, which is bounded below by 0, convergence of this scheme is assured.
After obtaining the rth component (Ar, Gr, Ir, T ), we take the residual tensor as
the new input and repeat the algorithm to find the next component via the update
Y < ¥Y-—1G,®I ®T,. The full algorithm is provided in the Supplementary
Material (Wang, Fischer and Song (2019)).

The requirement of nonnegative tissue loadings effectively introduces zeros in
the vector T,; a sparse T, implies that the module r is active in only a few tissues,
whereas a dense T, implies that the module r is common to several tissues. With-
out the nonnegativity constraint, it is possible, and in our experience likely, that
each T, contains two tissue groups: one corresponding to positively loaded tissues
and one to negatively loaded tissues. Consequently, gene and individual loading
patterns become less interpretable due to ambiguities in the identity of the tissue
group with which they are associated.

Before concluding this section, we briefly comment on two implementation de-
tails. First, the algorithm assumes that R is given. In practice, the rank R is often
unknown and must be determined from the data )). There are many heuristics de-
veloped for choosing R in the matrix case, and similar ideas can be adopted here.
For example, one can plot the sum of squared residuals (3.1) as a function of R and
identify the elbow point in the curve. Second, when some entries Y are missing,
tensor decomposition is not well defined. In such a case, one could instead use the
cost function Z[i’ﬁk]eQ(YU-k -3, A,Gr,,-lr,jTr,k)z, where Q C [ng] x[n;] x [nr]
is the index set for nonmissing entries. To implement this, we iteratively approx-
imate missing data with fitted values based on current parameter estimates and
proceed with the algorithm until convergence. This procedure has been commonly
used in matrix factorization (Lee, Huang and Hu (2010), Lee and Huang (2014)),
and we adopt it for tensor factorization.

3.3. Characterizing expression modules. For each expression module 1 <r <
R, we propose a straightforward procedure to characterize the biological signifi-
cance of the loading vectors @r, Tr, and Tr. For ease of presentation, in what
follows we drop the subscript r and simply write G,1andT.

3.3.1. GO enrichment based on gene loadings. Let G = (61, e 6nG)T be
the estimated eigen-gene. Genes with extreme loadings contribute more to this
module, and we are particularly interested in the overexpressed and underex-
pressed gene clusters Gop = {i € [ng]: Gi > ctop} and Guotom = {i € [nG]: 61- <
Chottom }» respectively, where ciop and cportom are thresholds which control the clus-
ter sizes.

We use a permutation-based procedure (see the Supplementary Material, Wang,
Fischer and Song (2019)) to determine the cut-off values at significance level
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a = 0.05. To characterize the biological significance of the declared gene clus-
ters, we perform gene ontology (GO) enrichment analyses among both the overex-
pressed and underexpressed genes. A standard test for enrichment is to conduct
a hypergeometric test for each GO, and we employ such a procedure to iden-
tify GO terms that are overrepresented in the gene clusters Giop and Gyottom- The
Benjamini—-Hochberg correction (Benjamini and Hochberg (1995)) is applied to
the set of enrichment p-values to account for multiple hypothesis testing.

3.3.2. Covariate effects on individual loadings. To identify the sources of
variation in the individual loadings, we consider the following linear model for
the estimated eigen-individual 1= (I [ A 1)

(3.5) T=XB+e,

where X represents the nj-by-p covariate matrix including the intercept, f =
Bi,..., B p)T represents the column vector of unknown coefficients, and the error
vector satisfies E(¢) = 0 and Var(e) = 021, Ixnp-

If one wishes to test whether covariate £ (1 < ¢ < p) affects the expression of
the candidate gene, the following hypothesis test can be carried out:

Ho:ﬂgzo VS. 'Ha: ,Bg;é().

To perform this test we use the standard Wald statistic, which under weak assump-
tions (i.e., the first two moments concerning the means and variance-covariance
matrix of €) asymptotically follows a standard normal distribution, permitting ap-
proximate inference in large samples. We declare expression modules as “age-,
sex-, or race-related” if the eigen-individual loadings are significantly correlated
with age, sex, or race, respectively. Upon fitting the model (3.5), we calculate the
proportion of variance explained by each covariate using ANOVA.

3.3.3. Tensor projection for detectmg tissue-specific differentially expressed
(DE) genes. Let T= (Tl, .y nr) be the estimated eigen-tissue. Recall that
the nonnegative tissue loading T; indicates the strength of tissue i in this expres-
sion module. We define )(-, -, T) to be the tensor projection of ) through the
eigen-tissue T,

L T) = ZTM, :

Note that (-, -, T) is an ng-by-n; matrix, with each entry encoding the weighted
average of gene expression across tissues.

Given a candidate gene to be tested for covariate-association, we propose the
following linear model:

Y(test gene, -, T) =XB +e,
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where ) (test gene, -, T) € R™ denotes the row in Y(-, -, T) corresponding to the
test gene, X B represents the intercept and covariate (such as age, sex, and race)
effects of interest, and the error vector & satisfies ELe) =0 and Var(e) = 021, Ixnp-
Here we take the tensor projection )(test gene, -, T) as the response variable and
test for the covariate effects. Such an analysis differs from (3.5) in that the detected
covariate effect corresponds to a single gene rather than the overall gene module.
By examining the entries of the tissue vector T, we can infer which tissues drive
the signal of differential expression.

4. Numerical comparison. We now compare our method with several com-
peting approaches.

4.1. A simple example. As abasic illustration, we generated an expression ten-
sor consisting of 60 genes, 20 individuals, and 10 tissues. The 20 individuals were
partitioned into two groups (“young” vs. “elderly”), each of size 10. The genes and
tissues were each partitioned into three groups (denoted by A, B, C). The mean ex-
pression value for each block is described in Table 1. Such pattern represents the
tissue-specific DE structure across individuals. In particular, the Gene Group A are
age-downregulated in Tissue Group A but are age-upregulated in Tissue Group B.
The Gene Group B are age-downregulated in both Tissue Groups B and C but
with different effect sizes. The Gene Group C are age-downregulated in only Tis-
sue Group C. All other gene-by-tissue combinations have no age effects. Finally,
independent N (0, 1) noise was added to every entry of the tensor.

This example represents a challenging scenario in which traditional methods
may fail. For example, if we average the expression over individuals and apply
matrix PCA to the resulting data, then neither the mode-specific grouping nor the
three-way interaction can be recovered. In fact, matrix PCA (Figure 3(a)) reveals
little information on the gene/tissue clustering. This is because the matricization
destroys the three-way structure encoded in the higher-order tensor data.

The standard (fixed-effect) meta-analysis also suffers from low power for de-
tecting DE genes in this example. To see this, we tested the age effects in each
tissue separately and combined the test statistics into a pooled estimate using z-
score method (Kelley and Kelley (2012)). This approach detected few DE genes

TABLE 1
Mean expression value of the illustrative tensor

Tissue Group A Tissue Group B Tissue Group C
Gene \ Individual Young Elderly Young Elderly Young Elderly
Gene Group A 1 -1 -1 1 0 0
Gene Group B 0 0 0.5 -0.5 0.1 -0.1

Gene Group C 0 0 0 0 0.5 -0.5
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FI1G. 3. Performance comparison for the illustrative example. (a) First two gene/tissue factors in
the matrix PCA. (b) Power comparison for detecting age effects in three gene groups. (c) First two
geneltissue factors in the tensor decomposition.

in group A and also exhibited limited power in groups B and C (Figure 3(b)).
The meta-analysis’ poor performance is due to the tissue-specificity of DE genes:
genes in Gene Group A have opposite age effects in two of the tissue groups, so
the signals partially cancel out; moreover, genes in Gene Groups B and C have age
effects in only subsets of tissues, potentially diluting observed DE patterns.

In contrast to matrix PCA, the factors from our tensor decomposition ably cap-
ture the true clustering patterns (Figure 3(c)). Furthermore, tensor projection sig-
nificantly improves detection power across all three gene groups (Figure 3(b)). As
the tissue loadings are used as the weights in the tensor projection (Section 3.3.3),
testing based on eigen-tissues allows us to test for age effects in a group-specific
fashion. Consider Gene Group A as an example. Genes in this group have opposite
age effects in Tissue Groups A and Group B. Since the first eigen-tissue has nearly
zero loadings in Tissue Group A, it only contains information about differential ex-
pression in Tissue Group B without including unwanted noise from Tissue Group
A. This toy example demonstrates the ability of MultiCluster to improve detec-
tion power by automatically identifying similar tissues and borrowing information
among them.

4.2. Accuracy of three-way clustering. We also performed more extensive
simulations to evaluate the ability of MultiCluster to perform multi-way clustering.
Since matrix methods may perform poorly in such cases (see Section 4.1), we fo-
cus our attention on tensor-based methods. Specifically, we compare MultiCluster
with: (i) sparse decomposition of arrays (SDA) (Hore et al. (2016)) and (ii) tensor
higher-order singular value decomposition (HOSVD) (Omberg, Golub and Alter
(2007)).
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Both MultiCluster and SDA are built upon the Canonical Polyadic decomposi-
tion (Hitchcock (1927)), which decomposes a tensor into a sum of rank-1 tensors.
Conversely, HOSVD is based on the Tucker decomposition (Tucker (1966)), which
factorizes a tensor into a core tensor multiplied by orthogonal matrices in each
mode.

We simulated noisy expression tensors ) = [Y;«] € [R300>30x10 \yith three-way
blocks from models which are detailed in the next paragraph. In each tensor, we
created five gene clusters, four individual clusters, and three tissue clusters. Block
means {u;,,} were generated according to the following two block models (as
well as sparse versions):

(i) Additive-mean model: fuymn = 1§ + pt, + 1%, where uf, ul,, and w!, repre-
sent the marginal means for gene cluster /, tissue cluster m, and individual cluster
n, respectively.

(i) Multiplicative-mean model: wj,, = ,ulg ;,Lﬁn ul, where the notation remains
the same.

The marginal means (], ul,, and p1,) were drawn independently from a N (1, 1)
distribution. Let Ve denote the noiseless tensor with three-way block means gen-
erated from each of the above schemes, that is, Ve (i, j, k) = Wimn When i is in
block /, j in block m, and k in block n. For both the additive- and multiplicative-
mean models, we also considered a sparse setting in which expression matrices
Virwe (i, -, -) were zeroed out for 90% of genes i = 1, ..., 500. The observed ex-
pression data were then simulated as Y = Ve + &, where £ € RI00x50x10 44 4
random Gaussian tensor with i.i.d. N (0, o2) entries. We assessed the recovery ac-
curacy of each algorithm using the relative error, defined as

1 Dest.R = Viruell
RelErr = min 1 Vest, rue

R<10 || Virell%

where ji\est, r denotes the rank-R approximation obtained from tensor decomposi-
tion.

The simulation models we consider here span a range of scenarios. The additive-
mean model can be viewed as an extension of the plaid model for biclustering
(Lazzeroni and Owen (2002)) to three-way clustering while the multiplicative-
mean model is a special case of the tensor decomposition model (3.1). The sparse
setting represents a realistic scenario in RNA-seq studies in which a high number
of genes are lowly expressed across individuals and tissues. As we designed these
simulations to potentially violate the modeling assumptions in (3.1), they are well
suited to evaluate the robustness of each method.

As seen in Figure 4, MultiCluster is able to recover the block structure well in
all scenarios, demonstrating its robustness to model misspecification. In particular,
the recovery error of MultiCluster grows noticeably more slowly than that of SDA
in the nonsparsity settings (Figure 4(a) and Figure 4(b)). One possible explana-
tion is that SDA is designed to cluster genes rather than tissues and individuals, so

’
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FIG. 4. Recovery accuracy of different tensor-based methods. MultiCluster achieves the lowest
error rates.

the i.i.d. prior imposed on tissues/individuals may not be optimized to detect local
blocks, especially when the blocks are small. Another possibility is the algorith-
mic stability of MultiCluster relative to SDA; the latter usually requires multiple
restarts in order to reduce spurious components (Hore et al. (2016)). We also found
that, even in the sparse settings, MultiCluster compares favorably with the other
two methods (Figure 4(c) and Figure 4(d)). Note that these three methods adopt
different regularization schemes: tissue nonnegativity for MultiCluster, gene spar-
sity for SDA, and orthogonality for HOSVD. Our results suggest the flexibility of
MultiCluster to handle a range of models.

4.3. Power to detect differentially expressed genes. To study how our tensor
projection procedure affects the detection of covariate-associated gene expression,
we simulated age-related genes. This required modifying the earlier additive model
to

. i.i.d.
@1 Yie=pnf + i Age(j) + i1l Feije where g~ N(O, 1),

where Y;;; denotes the expression level of gene i, individual j, and tissue k; Mf
and pu!, denote the same parameters as before (the marginal means for gene cluster
[ =1(i) and tissue cluster n = n(k)); and

o idd Unifle, 8] if gene i is age-related in the tissue cluster n,
Hiinl 0 otherwise.
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We again simulated 50 tensors Y € R300x50x10 1 each tensor, we planted five
gene clusters plus three tissue clusters and further assigned 100 genes to be age-
related. We considered two parameter settings: (1) @ = 0, g = 0.06, that is, age
effects are in the same direction, and (2) « = —0.06, 8 = 0.06, that is, age effects
are in the opposite direction. Individual ages were drawn i.i.d. from Unif[40, 70].
The final expression data were generated based on model (4.1).

We decomposed each simulated tensor into R = 3 and 10 components and ap-
plied our tensor-projection procedure to test for age-relatedness. We declared a
gene age-related if its p-value was less than the nominal significance level in
at least one of the R eigen-tissues. To compare to single-tissue tests, we per-
formed standard linear regressions in each tissue separately and declared a gene
age-related if its p-value was less than the nominal level in at least one of the
10 tissues. We also performed a fixed-effect meta-analyses by aggregating the age
effects across single-tissue tests using z-score method. Neither SDA (Hore et al.
(2016)) nor HOSVD (Omberg, Golub and Alter (2007)) allow association tests on
single-gene bases, so we did not consider them here.

Figure 5 shows the receiver operating characteristic (ROC) curves for each
method. We found that the testing procedure based on tensor projection had higher
detection power than single-tissue analyses, demonstrating the advantage gained
when tensor-based methods incorporate information from similar tissues. Notably,
the power appears stable when the decomposition rank R increases from 3 (the
number of latent tissue groups) to 10 (the number of total tissues). We note that
the power of a meta-analysis relies on genes being age-related in several tissues
with effects primarily in the same direction (Figure 5(a)). Violations of these as-
sumptions may well arise in practical applications and result in substantial losses
in power (Figure 5(b)). In contrast, our tensor approach teases apart tissue-specific

a. Age effects in the same direction b. Age effects in the opposite direction
o | o |
@ | @ |
E S
L 2
[ ©
2 o | g o |
= o s o
= k7]
o o
Q Q
o [}
S <« S <
E S F s
o | o
=] . . : ©
—e— Single-tissue analysis —&— Single-tissue analysis
—— Meta-anaysis P —+—  Meta-anaysis
—&— Tensor-projection with R=3 & —&— Tensor—projection with R=3
2 . —— Tensor—projection with R=10 = 7'1‘ —&— Tensor—projection with R=10
T T T T T T T T T T T T
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FIG. 5. ROC curves for detecting age-related genes. The ROC curves were obtained under various
nominal significance levels using 50 simulations.
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expression patterns by using eigen-tissues to synthesize information from suffi-
ciently similar tissues. Subsequent examination of the entries of eigen-tissues al-
lows one to determine in which tissues DE patterns are present, something that
requires additional steps in meta-analyses.

4.4. Run time. To compare the computational performance of each algorithm,
we simulated a large order-3 tensor of 18,000 genes x 500 individuals x 40 tissues
as these dimensions mimic those of the processed GTEx RNA-seq data set. We
then recorded the run times for each method when decomposing the tensor into
10 components. We found that MultiCluster is computationally competitive with
HOSVD while being more computationally efficient than SDA. In particular, it took
~1.6 hours for HOSVD, ~1.7 hours for MultiCluster, and ~20.1 hours for SDA to
complete the task.

5. Analysis of GTEx RNA-seq data. The GTEx V6 gene expression data
consist of RNA-seq samples collected from 544 human individuals spanning 53
tissues. Prior to analysis, we performed a standard data processing procedure de-
scribed in depth in the Supplementary Material (Wang, Fischer and Song (2019)).
Briefly, these steps included correction for sequencing depth, removal of lowly
expressed genes, log transformation of the data, correction for nuisance variation
arising due to technical effects, removal of sex-specific tissues, and imputation of
missing data. We focus here on two tissue collections, one consisting of 44 somatic
tissues and the other consisting of 13 brain tissues. Results for other tissue groups
can be found in the Supplementary Material (Wang, Fischer and Song (2019)).

5.1. Analysis of 44 somatic tissues. To interrogate the dominant features in
the human transcriptome, we performed a global clustering analysis to identify
gene X tissue x individual expression modules in 44 somatic tissues by applying
MultiCluster to the GTEx tensor after excluding ¥ chromosome genes and sex-
specific tissues. Supplemental Table S1 summarizes the top expression modules.

5.1.1. Component I. Shared, global expression. Tissues with positive load-
ings in a given eigen-tissue are said to be active in the associated module. As
expected, the first eigen-tissue and eigen-individual are essentially flat (Supple-
mental Table S1), so this expression module captures baseline global expression
common to all samples. The top genes in the corresponding eigen-gene (Supple-
mental Table S1) are mainly mitochondrial genes (15/20 top genes), comporting
with their high transcription rates and the large number of mitochondria within
most cells (Melé et al. (2015)). In addition, we detected several nonmitochon-
drial genes, most of which are related to essential protein synthesis functions and
eukaryotic cell activities (Supplemental Table S1). For example, ACTB encodes
highly conserved proteins and is known to be involved in various types of cell
motility (Fishilevich et al. (2016)). Two other nuclear genes, EEFIAI and EEF2,
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encode eukaryotic translation elongation factors, and their isoforms are widely ex-
pressed in the brain, placenta, liver, kidney, pancreas, heart, and skeletal muscle
(Fishilevich et al. (2016)).

5.1.2. Component II: Brain tissues. The second eigen-tissue clearly separates
brain tissues from nonbrain tissues, with the pituitary gland being the only non-
brain tissue in the cluster (Figure 6(a)). We note that while not explicitly labeled
as a brain tissue, the pituitary gland protrudes from the base of the brain. The
sharp decline in tissue loadings (Figure 6(a)) highlights the distinctive expression
pattern in the brain. We found that, in the eigen-individual (Figure 6(c) and Fig-
ure 6(e)), age explains more variation (24.4%, p < 2 X 10~16) than sex (0.3%,
p = 0.12) or race (4.3%, p =2.3 x 1073). The eigen-gene (Figure 6(b)) pro-
duces a gene clustering that is biologically coherent with aging signals in the brain
(Yang et al. (2015)), and we observed an enrichment of genes associated with the
glutamate receptor signaling pathway (p = 1.2 x 1072), chemical synaptic trans-
mission (p = 1.8 x 10719), excitatory postsynaptic potential (p = 2.4 x 10716),
and memory (p = 1.2 x 10~!1) (Figure 6(d)). Among the 899 genes in this clus-
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ter, we identified 675 age-related genes using tensor-projection (with significance
threshold o = 1073/899 ~ 10~/ via Bonferroni correction), 556 of which exhibit
decreased expression with age. The association of brain disease and neurological
disorders with age is well documented, and our findings support that aging affects
brain tissues in a manner not shared by other tissues. We present further evidence
of multi-way clustering in the brain in Section 5.2.

5.1.3. Component III: Tissues involved in immune response. The third com-
ponent captures an expression module heavily loaded on tissues with roles in
the immune system. The eigen-tissue is led by two blood tissues (whole blood
and EBV-transformed lymphocytes), the spleen, and the liver (Supplemental Ta-
ble S1). These tissues mediate the direct immune response (whole blood and lym-
phocytes), production and storage of antibodies (spleen), and filtering of antigens
(spleen and liver). Correspondingly, the eigen-gene loads heavily on immunity-
related genes (e.g., IGHM, FCRLS, IGJ, MS4A1) (Supplemental Table S1). The
eigen-individual does not correlate with any covariate as strikingly as the brain
does with age, but we do find a significant correlation with race (explaining 4.5%
variation among individuals, p = 5.8 x 10~7; Supplemental Table S1). The top
genes in the eigen-gene are functionally related to the B cell receptor signaling
pathway (p = 3.0 x 10~1%), humoral immune response mediated by circulating
immunoglobulin (p = 7.5 x 10~13), phagocytosis recognition (p = 5.3 x 10710),
and plasma membrane invagination (p = 2.1 x 10~?) (Supplemental Table S1).

5.1.4. Other expression modules identified in the global analysis. Like mod-
ules II and III, each of the remaining expression modules is active in only a
subset of tissues, indicating the presence of tissue specificity (Supplemental Ta-
ble S1). These detected modules are specific to artery (tibial, aorta, coronary), skin
(exposed and nonexposed), cell lines (EBV-transformed lymphocytes and trans-
formed fibroblasts), liver, muscle (skeletal and cardiac), and cerebellar regions
(Supplemental Table S1). Of note is the strong signal of gender-related differential
expression in the cerebellum. As seen in Supplemental Table S1, the enriched gene
ontologies are consistent with the functions of the associated tissues. For example,
the artery-specific module is enriched with collagen catabolic/metabolic genes, the
skin-specific module is enriched with keratin-related genes, the two cell lines are
enriched with genes responsible for cell division (e.g., chromosome segregation,
meiosis, sister chromatid segregation). Conversely, most eigen-individuals have
limited descriptive power compared to eigen-genes and eigen-tissues (Supplemen-
tal Table S1). This was expected because variation in gene expression is usually
lower among individuals than among tissues (Melé et al. (2015)). Consequently,
we turned our attention to smaller tensors of similar tissues to fully showcase Mul-
tiCluster’s three-way clustering capabilities.
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5.2. Brain transcriptome data. Although our global analysis successfully un-
covers distinctive expression patterns in the GTEx data, it may miss finer-scale
structure within similar tissues or within similar individuals because of the high
degree of inter-tissue heterogeneity. In order to reveal the crucial individual x
tissue specificity, we considered 13 brain tissues and applied MultiCluster to the
resulting tensor, revealing substantial individual-level variation most notably asso-
ciated with age.

5.2.1. Comparison with other tensor methods. Figure 7 shows the top six ex-
pression components for the brain tensor identified by MultiCluster. To assess the
goodness-of-fit, we plotted the sum of squared residuals (see equation (3.2)) as a
function of rank R (Supplemental Figure S1). Visual inspection suggested R = 6
in our case. We also applied HOSVD and SDA to the brain tensor; the results are
summarized in Supplemental Figures S2 and S3. Both MultiCluster and HOSVD
successfully clustered the 13 tissues into functionally similar groups, while SDA
failed in tissue clustering. Furthermore, MultiCluster enjoyed better interpretabil-
ity as it yielded sparse tissue factors. In particular, we found that most expression
modules are spatially restricted to specific brain regions, such as the two cerebel-
lum tissues (component 2), three cortex tissues (component 4), and three basal
ganglia tissues (component 5).

5.2.2. Spatially restricted expression in the brain. Table 2 summarizes the
biological interpretation for the expression modules detected in the brain tensor.
Consistent with the tissue clustering, the gene clusters capture distinctly expressed
genes that are over- or underexpressed in each brain region. Genes overexpressed
in the cerebellum region are strongly enriched for dorsal spinal cord regulation
(p = 9.8 x 1077) whereas the underexpressed genes are most strongly enriched
for forebrain development (p = 3.4 x 1078); the opposite enrichment pattern is
observed for basal ganglia region. The enriched GOs are consistent with the spa-
tial locations of the cerebellum (located in the hindbrain) and basal ganglia (situ-
ated at the base of the forebrain). In addition, we noticed an abundance of over-
expressed HOX genes in the spinal cord (cervical C-1) compared to other brain
regions (Supplemental Figure S4(a)). The HOX gene family (HOXA-HOXD) is a
group of related genes that control the body plan and orientation of an embryo.
The nonuniform expression of HOX genes across brain regions may suggest the
particularly important role of the spinal cord during early embryogenesis.

5.2.3. Sex/age-related expression in the brain. Many expression modules in
the brain also exhibited considerable individual-specificity. We identified two sex-
related and three age-related expression modules among the top tensor components
(bold in Table 2). The second gene module was found to be both cerebellum-
specific and sex-related. By ranking genes based on their p-values for sex ef-
fect in the direction of eigen-tissue, we found that the top sex-related signal in
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this module is the X-Y gene pair PCDHIIX/Y. In fact, the combined expres-
sion of PCDH11X/Y was significantly lower in the cerebellum (paired ¢-test p-
value < 2 x 10716) and in females (p = 8.0 x 10~!"), with expression levels also
decreasing with age (p = 3 x 1073). Notably, PCDHIIX was the first reported
gender-linked susceptibility gene for late-onset Alzheimer’s disease (Carrasquillo
et al. (2009)), and it may also be implicated in developmental dyslexia (Veerappa
et al. (2013)). However, its Y-chromosome paralog, PCDH11Y, is believed to be
regulated differently. Previous studies (Priddle and Crow (2013)) have shown that
this difference is due at least in part to retinoic acid, which stimulates the activity
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TABLE 2
Top expression modules in the brain tensor. Number in bold indicates p < 1073

Eigen-individual

Eigen-tissue Eigen-gene % variance explained
Module Enriched region Enriched GO Age Sex Race
1 all neuronal synaptic plasticity L5 7.8 2.2
cerebellum dorsal spinal cord development 0.0 8.0 0.2
3 spinal cord embryonic skeletal system 9.3 0.9 5.2
morphogenesis
4 cortex fear response, behavior defense 17 0.6 14
response
5 basal ganglia forebrain generation of neurons 34 0.8 2.2
6 hypothalamus and neuropeptide signaling pathway 32 2.2 2.2
hippocampus

of PCDHI1Y but suppresses PCDHI1X and perhaps explains the sex-specificity
we observed for this gene pair in most brain tissues.

Significant age effects are widely present in the identified expression modules
(Table 2). In particular, age explains over 15% of individual-level variation in mod-
ule 4 (cortex) and module 6 (hypothalamus and hippocampus). Notably, the hip-
pocampus is associated with memory, in particular long-term memory, and is vul-
nerable to Alzheimer’s disease (Lam et al. (2017)). In module 4, GPR26 is found to
be the top age-related gene. For comparison with our results we used linear regres-
sion, confirming the significant decrease of GPR26 expression with age in all three
cortex tissues (cortex, p = 1.9 x 10~18; frontal cortex, p=8.8x 10~'2; anterior
cingulate cortex, p = 1.9 x 10~7) but not in the substantia nigra (p = 0.17) or
cerebellum (p = 0.64). It is worth noting that both the substantia nigra and cere-
bellum have zero loadings in the 4th eigen-tissue, so our tensor-based approach
automatically detects the tissue-specificity of this aging pattern. In line with our
findings, a recent study shows that GPR26 plays an important role in the degra-
dation of intranuclear inclusions in several age-related neurodegenerative diseases
(Mori et al. (2016)).

6. Discussion. We presented a new multi-way clustering method, MultiClus-
ter, and demonstrated its utility in identifying three-way gene expression patterns
in multi-tissue multi-individual experiments. We were able to uncover three-way
specificities with clear statistical and biological significance in both simulations
and the GTEXx data set, and we showed that our method effectively identifies tissues
which drive expression modules. In particular, it is able to do so even when gene x
covariate interactions are not common across tissues, and clustering into modules
provides information about joint expression patterns that may not be identified
by meta-analyses without additional steps. Moreover, we provided evidence that
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the distinctions among human tissue gene expression profiles are usually driven
by small sets of functionally coherent genes and that many age-, race- or gender-
related genes exhibit tissue-specificity even within functionally similar tissues.

We also implemented a tensor projection procedure to test for differential ex-
pression of genes that are correlated with biological attributes (age, sex, or race)
and found that we generically achieve improved power relative to single-tissue
tests. Additionally, higher power is attained relative to meta-analyses when genes
are differentially expressed in opposing directions in different tissues, allowing for
finer resolution when seeking relevant genes. The tensor projection approach can
be naturally extended to (trans-)eQTL analyses by testing the projected expres-
sion of each gene against genetic variants across the genome. Alternatively, one
can test each individual loading vector against genetic variants to identify eQTLs
(Hore et al. (2016)). Existing multi-tissue eQTL analyses usually proceed by iden-
tifying eQTLs in each tissue separately before combining single-tissue results via
meta analysis (Battle et al. (2017)). However, the large numbers of genes, tissues,
and genetic variants potentially incur a substantial penalty for multiple testing and
there is also the risk of under-powered tests due to limited sample sizes. Hence
applying MultiCluster to perform eQTL discovery in large multi-tissue expression
studies is an avenue worth pursuing.

One benefit of MultiCluster and tensor projection, as well as tensor-based
methods in general, over existing tissue comparison methods (GTEx Consortium
(2015)) is the substantially reduced number of comparisons which must be con-
sidered (Hore et al. (2016)). For instance, if one wanted to analyze every possible
tissue pairing in a set of n tissues, roughly n? analyses would have to be per-
formed and the results would need to be synthesized via a meta-analysis. Such an
analysis could be even more prohibitive if one wanted to examine the 2" possible
tissue-specific configurations (GTEx Consortium (2015)). In contrast, MultiClus-
ter constructs clusters across each mode of the data and associates the resulting
variation with biological contexts via eigen-genes, -tissues, and -individuals. Each
of these resulting components can then serve as the basis for testing, removing
the need for many marginal tests. Though prior knowledge of tissue function can
greatly reduce the number of pairwise comparisons, doing so constrains potential
insights to the set of hypothesized tissue modules. For instance, components III
and IV of our global tensor decomposition consist of diverse tissues which may
not have been grouped together a priori.

One assumption made by our algorithm is that expression matrices for different
tissues are of the same dimension. In the present work, we do not directly model
the missing data mechanisms but instead iteratively impute them based on the fit-
ted value. This allows the implementation to exploit standard fast array operation
routines. Another possible approach which avoids the need for imputation is to
make use of the connection between tensor decomposition and joint matrix fac-
torization (Lock et al. (2013), Hore et al. (2016)). For example, one could model
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the ng-by-n;, expression matrix M;, where ¢ indexes the tissue, as M, ~ AA; B;
with some identifiability conditions. This model is a relaxation of tensor decom-
position because it allows different tissues to have different column (individual)
spaces B; while sharing the same row (gene) space A. The diagonal matrix A;
captures the tissue-sharing and specificity as before. Another potential approach is
to implement tensor imputation and decomposition simultaneously via a low-rank
approximation, an idea which has roots in the matrix literature (Candes and Recht
(2009)).

Statistical inference based on tensor decomposition can be further extended.
Measures of uncertainty, such as confidence intervals for tissue-, gene-, or
individual-loadings, would be useful. Standard resampling techniques such as
bootstrapping may help in this regard, and we have employed this approach to
select gene cluster sizes. Further details on our bootstrap analysis can be found in
Section 1.6 of the Supplementary Material (Wang, Fischer and Song (2019)).

Although we have presented MultiCluster in the context of multi-tissue multi-
individual gene expression data, the general framework applies to more general
multi-way data sets. One possible extension is the integrative analysis of omics
data, in which multiple types of omics measurements (such as gene expression,
DNA methylation, microRNA) are collected in the same set of individuals (Lock
et al. (2013)). In such cases, tensor decomposition may be applied to a stack of
data or correlation matrices, depending on the specific goals of the project. Other
applications include multi-tissue gene expression studies under different experi-
mental conditions in which one may be interested in identifying 4-way expression
modules arising from the interactions among individuals, genes, tissues, and con-
ditions. The tensor framework can also be applied to time-course multi-tissue gene
expression. In this instance one may treat time as the 4th mode and extend the ten-
sor projection approach to identify the time trajectories of three-way expression
modules. Finally, in certain experimental designs, our method could be used to
model batch effects while preserving biological information.
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SUPPLEMENTARY MATERIAL

Supplement to ‘“Three-way clustering of multi-tissue multi-individual
gene expression data using semi-nonnegative tensor decomposition” (DOI:
10.1214/18-A0OAS1228SUPP; .pdf). The Supplementary Material includes data
processing procedure and further results on our GTEx data analysis. Our soft-
ware MultiCluster and the data used in our analysis are publicly available at
https://github.com/songlab-cal/MultiCluster.
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