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Abstract

Retrovirus assembly is driven by the multidomain structural protein Gag. Interactions
between the capsid domains (CA) of Gag result in Gag multimerization, leading to an imma-
ture virus particle that is formed by a protein lattice based on dimeric, trimeric, and hexame-
ric protein contacts. Among retroviruses the inter- and intra-hexamer contacts differ,
especially in the N-terminal sub-domain of CA (CAntp). For HIV-1 the cellular molecule ino-
sitol hexakisphosphate (IP6) interacts with and stabilizes the immature hexamer, and is
required for production of infectious virus particles. We have used in vitro assembly, cryo-
electron tomography and subtomogram averaging, atomistic molecular dynamics simula-
tions and mutational analyses to study the HIV-related lentivirus equine infectious anemia
virus (EIAV). In particular, we sought to understand the structural conservation of the imma-
ture lentivirus lattice and the role of IP6 in EIAV assembly. Similar to HIV-1, IP6 strongly pro-
moted in vitro assembly of EIAV Gag proteins into virus-like particles (VLPs), which took
three morphologically highly distinct forms: narrow tubes, wide tubes, and spheres. Struc-
tural characterization of these VLPs to sub-4A resolution unexpectedly showed that all three
morphologies are based on an immature lattice with preserved key structural components,
highlighting the structural versatility of CA to form immature assemblies. A direct compari-
son between EIAV and HIV revealed that both lentiviruses maintain similar immature inter-
faces, which are established by both conserved and non-conserved residues. In both EIAV
and HIV-1, IP6 regulates immature assembly via conserved lysine residues within the
CActp and SP. Lastly, we demonstrate that IP6 stimulates in vitro assembly of immature
particles of several other retroviruses in the lentivirus genus, suggesting a conserved role
for IP6 in lentiviral assembly.

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008277  January 27, 2020

1/28


http://orcid.org/0000-0003-3693-2531
http://orcid.org/0000-0003-4693-3220
http://orcid.org/0000-0001-9523-9089
http://orcid.org/0000-0002-9733-9136
http://orcid.org/0000-0001-6566-8667
http://orcid.org/0000-0002-6431-7133
http://orcid.org/0000-0003-1171-6816
http://orcid.org/0000-0003-3990-6910
http://orcid.org/0000-0003-4790-8078
https://doi.org/10.1371/journal.ppat.1008277
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008277&domain=pdf&date_stamp=2020-02-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008277&domain=pdf&date_stamp=2020-02-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008277&domain=pdf&date_stamp=2020-02-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008277&domain=pdf&date_stamp=2020-02-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008277&domain=pdf&date_stamp=2020-02-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008277&domain=pdf&date_stamp=2020-02-06
https://doi.org/10.1371/journal.ppat.1008277
https://doi.org/10.1371/journal.ppat.1008277
https://doi.org/10.1371/journal.ppat.1008277
http://creativecommons.org/licenses/by/4.0/

@'PLOS ‘ PATHOGENS

Structural conservation of IP6-enhanced lentivirus assembly

refined models were deposited in the PDB under
accession codes PDB 6T61, PDB 6T63 and PDB
6T64.

Funding: This work was supported by National
Institutes of Health (NIH, https://www.nih.gov/)
grant R01-GM107013 and National Science
Foundation (NSF, https://www.nsf.gov/) grant
1659534 to V.M.V, National Institute of Allergy and
Infectious Diseases (NIAID, https://www.niaid.nih.
gov/) grant R01-Al147890 to R.A.D., National
Institute of General Medical Sciences (NIGMS,
https://www.nigms.nih.gov/) grant P30-GM110758
and National Institute of Allergy and Infectious
Diseases (NIAID, https://www.niaid.nih.gov/) grant
P50AI150481 to J.R.P., NIAID grant Al142263 to
M.C.J., European Research Council (ERC, https://
erc.europa.eu/) under the European Union’s
Horizon 2020 research and innovation programme
(ERC-2014-CoG 648432 — MEMBRANEFUSION),
Medical Research Council (https:/mrc.ukri.org/)
MC_UP_1201/16, Deutsche
Forschungsgemeinschaft (https://www.dfg.de/)
grant BR 3635/2-1 to JAGB, Austrian Science Fund
(FWF, https://www.fwf.ac.at/en/) grant P31445 to
FKMS. Molecular dynamics simulations were
performed on the NCSA Blue Waters
supercomputer, supported by the National Science
Foundation grant number ACI-1548562. This work
used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is
supported by National Science Foundation grant
number ACI-1548562. The funders had no role in
study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

Author summary

The structural polyprotein Gag is conserved among all retroviruses and mediates virus
assembly via oligomerization into incomplete lattices that are stabilized by dimeric, tri-
meric and hexameric contacts. Despite a high degree of conservation at the secondary and
tertiary structure level, the quaternary interactions between the CA domains of retroviral
Gag vary. Recently, the small cellular molecule IP6 was identified as an assembly co-factor
of the lentivirus HIV-1. To better understand the structural variability of retroviruses and
to determine if IP6 is an assembly cofactor of other lentiviruses we determined the struc-
ture of the HIV-1 related retrovirus EIAV. Using cryo-electron tomography and subto-
mogram averaging, in vitro assembly, mutation analysis, and molecular dynamics
simulations, we determined and characterized the structure of the EIAV immature lattice.
Furthermore, we found that IP6 is an assembly cofactor of EIAV, and other lentiviruses.

Introduction

Assembly of the retrovirus particle typically takes place at the inner leaflet of the plasma mem-
brane (PM) and involves the formation of a curved lattice by the structural multidomain pro-
tein Gag. This so-called immature lattice, which is attached to the PM via the N-terminal
matrix (MA) domain of Gag, can be viewed as a collection of Gag hexamers connected with
each other by dimeric and trimeric interfaces. Immediately after, or concomitant with, budding
away from the cell, the virus particle goes through a process called maturation in which the
viral protease cleaves Gag, releasing the CA domain, which in turn goes on to form the mature
lattice. In the course of maturation, the two independently folded halves (or sub-domains) of
CA (CAntp and CAcrp), rearrange to create a new lattice of hexamers, but with an entirely
new set of interactions [1,2]. Only upon complete maturation is the virus particle infectious.
Equine infectious anemia virus (EIAV) belongs, like HIV-1, to the lentivirus genus of retro-
viruses [3]. EIAV Gag and HIV-1 Gag share only 30% amino acid sequence identity but have
an overall similar domain arrangement (S1A and S1B Fig), with the canonical Gag domains
MA, capsid (CA), nucleocapsid (NC), and an unstructured C-terminal domain mediating the
late stages of budding. In addition, these two retroviral Gag proteins include a short segment
of polypeptide, in HIV-1 termed SP1 (“spacer”, here generically called “SP”), that is critical for
formation of the immature lattice [4,5]. SP is similar to domains in the Gag proteins of the
alpha-retrovirus Rous sarcoma virus (RSV) [6-10] and of the gamma retrovirus murine leuke-
mia virus (MLV) [11] in that it folds into a six-helix bundle (6HB) at the base of the CA
domain of the Gag hexamer. The 6HB stabilizes, and indeed may nucleate, assembly of the
hexamer. Mutations in SP result in assembly defects and loss of infectious viral particle forma-
tion [5,12,13]. SP acts like a switch; its unfolding or proteolytic removal leads to mature CA
assembly [14]. Maturation inhibitors target the CAcrp-SP junction in HIV-1, preventing
unfolding of SP, effectively stopping the immature virus from transitioning into an infectious
particle [15,16]. Acting in conjunction with SP is the small cellular molecule inositol hexaki-
sphosphate (IP6), which was shown recently to be an HIV-1 assembly cofactor [17-19]. The
binding of IP6 to two rings of six lysine residues in the Gag hexamer, one created at the
CAcrp-SP interface and the other created by the major homology region (MHR), promotes
immature Gag hexamerization and thus virus particle assembly. After the viral protease ablates
this immature binding site, IP6 is inferred to be released and then to interact with a ring of six
arginine residues in the CAnp, thereby enhancing the formation of the mature hexameric
HIV-1 CA lattice and promoting infectivity [2,17,18]. In cells IP6 is synthesized by conversion
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of IP5 to IP6 by the enzyme inositol-pentakisphosphate 2-kinase (IPPK). Depletion of IP6
from mammalian cells via CRISPR/Cas9 knock-out of the IPPK gene results in a greater than
10-fold reduction in the production of infectious HIV-1 particles [17].

For several retroviruses both immature and mature lattices can be assembled in vitro from
purified proteins in the absence of membranes [20]. The protein structures of the resulting
virus-like particles (VLPs) accurately mimic the structures of authentic particles formed in
cells [15,21]. In vitro assembly is carried out by mixing purified, E. coli-expressed, full-length
or truncated Gag or CA proteins with buffers and small molecules. Immature assembly typi-
cally requires the presence of nucleic acid, a requirement often fulfilled by DNA oligonucleo-
tides. That IP6 promotes HIV-1 assembly was first demonstrated in such an in vitro system
[22]. In vitro assembly systems also have been used extensively to study retroviral structure
[15,23-25].

Cryo-electron tomography (cryo-ET) and subtomogram averaging can provide high-
resolution structural insights into irregular pleomorphic assemblies [26, 27]. Recently, these
techniques have been used to define the structure of the immature HIV-1 lattice to high resolu-
tion, both within authentic immature virus particles and with VLPs assembled in vitro [14,15].
These studies visualized structural features that regulate HIV-1 assembly and maturation, and
increased the understanding of the mode of action of maturation inhibitors [15]. Cryo-ET and
subtomogram averaging comparisons of immature Gag lattices of retroviruses from three dif-
ferent genera—alpha-retroviruses, beta-retroviruses and gamma-retroviruses—revealed that
despite their high degree of tertiary CA structure conservation, viruses from these three genera
adopt different quaternary CAnrp arrangements [1,6,11,21]. These findings thus raise ques-
tions about the structural conservation of assembly and maturation mechanisms among the
different retroviruses.

Here we report the establishment of an in vitro assembly system for EIAV. As found for
HIV-1, IP6 promotes assembly of EIAV in vitro. Using cryo-ET and subtomogram averaging
we have generated structures to below 4A resolution, revealing conserved and unique structural
elements in comparisons between these two lentiviruses. The EIAV CA-SP junction forms an
IP6 binding site that interacts with IP6 in a fashion similar to that for HIV-1. This conclusion
is supported by in vitro assembly, mutational analysis, and all atom molecular dynamics (MD)
simulations. Furthermore, our results agree with previous inferences that the retroviral CAxrp
and CAcrp are independent structural entities that act autonomously in regulating immature
virus particle diameter and curvature. Nevertheless, immature assembly is defined by a set of
conserved structural interactions leading to dimeric, trimeric, and hexameric interfaces that
are largely determined by the CAcrp-SP region, independent of overall particle morphology.
In contrast, the immature CAyrp is predominantly stabilized by trimeric inter-hexamer inter-
actions, which remain stable even upon strong distortion of intra-hexameric interactions.

Results
In vitro assembly of EIAV VLPs

To generate VLPs for cryo-ET and biochemical and mutational analysis, we purified EIAV

Gag protein lacking the C-terminal p9 domain, here referred to as Gag for simplicity. The
equivalent p6 domain of HIV-1 Gag is not necessary for in vitro assembly of VLPs [20]. We

also purified a Gag protein lacking both the C-terminal p9 domain and the N-terminal MA
domain (GagAMA) (S1A Fig). These two proteins were screened for their ability to form imma-
ture VLPs by in vitro assembly. The full length EIAV Gag protein, i.e. with the p9 and MA
domains, was insoluble and therefore not studied further. Assembly conditions were assayed by
subjecting ETIAV Gag and EIAV GagAMA to different salt concentrations, DNA oligonucleotide
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Fig 1. Effect of IP5 and IP6 on in vitro assembly of EIAV Gag, EIAV GagAMA, and HIV GagAMA. (A,C,E) Representative low and high
magnification images of respective proteins assembled in the absence (red) or presence of 10 uM IP5 (pink) or 10 uM IP6 (blue) at pH 6. Examples of
wide tubes (T:W), narrow tubes (T:N), and spheres (S) are indicated by green and purple triangles. (B,D,F). The number of VLPs (spheres-purple,
tubes-green) per 55um” for no fewer than five representative images for each condition. Center lines show the medians; box limits indicate the 25th and
75th percentiles as determined by R software; whiskers extend to minimum and maximum values; data points are plotted as circles. Please note the
different Y-axis ranges for the bar chart plots in B, D and F. The low magnification images are representative of the distribution of spheres and tubes
assembled under different conditions, while the high magnification images were selected to illustrate their morphology. The mean value of counted
particles is given in italics in the bar charts.

https://doi.org/10.1371/journal.ppat.1008277.9001

templates, pH values, temperatures, and inositol phosphates. EIAV GagAMA assembly was
most efficient at 100mM NaCl, but surprisingly EIAV Gag assembly occurred efficiently at high
ionic strengths, e.g. 450mM NaCl at pH 6 (Fig 1A and 1B) and pH 8 (S2A and S2B Fig).

For both of these proteins the N-terminus has an ectopic (non-viral) serine from the
purification procedure. GagAMA beginning with the natural proline, which is found at
the N-terminus of all retroviral CA proteins, assembled into tubes with the same diameter
as those formed for GagAMA with the ectopic serine in the absence of IP6 (Fig 1 and S2C
Fig). In the presence of IP6, GagAMA with the natural proline formed multilayered spheres
while GagAMA with the ectopic serine formed single layered spheres. The presence of NC
was required for assembly except at high protein and IP6 concentrations, as had been dem-
onstrated previously for HIV-1 [17] (S2D Fig). For all NC containing proteins screened,
assembly was dependent on the presence of a fifty-nucleotide single stranded DNA oligonu-
cleotide composed of twenty-five repeats of GT (GT,s). Interestingly, Gag formed primarily
spherical particles while GagAMA formed both tubes and spheres. To our knowledge, until
now, no methods for in vitro assembly of EIAV Gag proteins into VLPs had been reported.

Effect of IP5 and IP6 on EIAV assembly

In the absence of IPs, at pH 6 Gag formed predominantly spheres (~100 spheres and ~20 tubes
per defined area), and GagAMA protein formed long narrow (~35nm) tubes and regular
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spheres (~100nm) (Fig 1A-1D). At pH 8 Gag formed predominantly spheres, and GagAMA
yielded both wide (~70nm) tubes and regular spheres (S2A and S2B Fig). Based on these obser-
vations we predicted that the narrow GagAMA tubes at pH 6 represent a mature lattice, consis-
tent with assembly for the corresponding HIV-1 proteins [17], and that the wide tubes and
spheres represent immature lattices, consistent with what is known about immature assembly
of MPMV, RSV, and HIV-1 [6,15,24]. However, as described below, this prediction proved to
be partially incorrect.

In vitro assembly of HIV-1 Gag and Gag truncations is stimulated both by IP5 and IP6
[17]. The myo- inositol form of IP6, with 5 equatorial phosphates and 1 axial phosphate, is
the most prominent form of inositol [28]. IP5 lacks the 2’ axial phosphate (S1C Fig). For
HIV-1 we previously showed that while IP5 is able to promote GagAMAAp1Ap6 (referred
to here as GagAMA, see S1A Fig for the construct) assembly into immature VLPs, it does so
less well than IP6. The EIAV Gag major homology region (MHR) and CA-SP junction
region contain lysine residues at the same positions as those employed by HIV-1 for IP6
interaction (S1B Fig). Direct comparison of VLP formation by EIAV Gag, EIAV GagAMA,
and HIV-1 GagAMA demonstrated that the ability of IP5 and IP6 to promote immature
assembly is less pronounced for EIAV than for HIV-1 (Fig 1). For example, IP6 increased
the number of round VLPs by 100-fold for EIAV Gag and 3-fold for GagAMA, but by as
much as a 2000-fold for HIV-1 GagAMA. By contrast, IP5 increased round VLP formation
by only 10-fold for EIAV Gag, had almost no effect for EIAV GagAMA, but resulted in a
1000-fold increase for HIV-1 GagAMA. Notably, the overall particle number resulting from
IP6-enhanced assembly did not differ significantly for EIAV Gag and the equivalent HIV-1
protein GagAMAAp1Ap6. The large difference in the fold increase is due to the number of
spherical particles that were already observed in the absence of IP6, ~1 and ~100 for HIV-1
and EIAV, respectively. The effect of IP6 on EIAV assembly did not qualitatively differ
between pH 6 and 8 (Fig 1A-1D, S2A and S2B Fig). In summary, these results demonstrate
that as for HIV-1, EIAV immature assembly is enhanced by IP6, although it appears less
dependent on IP6.

To determine if EIAV is sensitive to IP6 depletion in vivo, we used the previously descri-
bed IPPK knock out cell line coupled with relative infectivity assays [17]. Ablation of this gene
reduced infectious particle production by 2-fold, much less than the 100-fold observed for
HIV-1 (S3A Fig). Western blots demonstrate that the release of EIAV from cells was not sign-
ificantly different between control and IPPK KO cells (S3B Fig). These results are consistent
with the in vitro assembly data showing that immature EIAV assembly is enhanced by, but not
dependent on, IP6. For HIV-1 the western blots show a significant decrease in virus release
from IPPK KO cells compared to control cells. We interpret this to mean that the large reduc-
tion in infectious virus particle production for HIV-1 is due to a reduction in immature virus
particle release.

Cryo-ET analysis of EIAV Gag assembly products

To determine the structure of the in vitro assembled EIAV VLPs formed by GagAMA, and to
further elucidate the role of IP6 in regulating assembly, we acquired and processed cryo-ET
data of spherical and tubular particles assembled in the presence of IP6 at both pH 6 and pH
8, using our previously published approach [15] (S1 Table). Particles formed by Gag (i.e. con-
taining the MA domain) showed a significant degree of clustering upon vitrification, and
attempts to perform cryo-ET of these particles therefore remained unsuccessful. In all cases,
the EIAV GagAMA particles displayed an arrangement of their Gag layer (Fig 2A, S4A Fig),
that is reminiscent of what was observed in in vitro assembled immature HIV-1 or M-PMV
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Fig 2. Cryo-electron microscopy of EIAV GagAMA assemblies. (A) Sum of 10 computational slices through gaussian-filtered tomograms containing
EIAV GagAMA tubes and spheres assembled at pH6 and pHS8. Protein density is black. Scale bar is 50nm; note the significantly smaller diameter of
tubes assembled at pH6. (B) Isosurface representations of the subtomogram averages derived from the different EIAV GagAMA assemblies at pH6 and
pHS. In all cases, the CAxp and CAcrp-SP are colored cyan and orange, respectively. The IP6 density is colored in pink. The symmetry-independent
copies of CA-SP are denoted with number 1,2,3 and 1,2°,3’ for the tubes at pH6 and pHS, respectively. For the spheres, only one monomer is colored as
all monomers in the hexamer are symmetry-related. In all structures, the helical pitch and densities for larger and several smaller side chains are visible
in the EM-density, in good correspondence with the observed resolutions.

https://doi.org/10.1371/journal.ppat.1008277.9g002

tubes and spheres [21,24]. This result was surprising, since HIV-1 and RSV narrow tubes are
exclusively in a mature arrangement [25,29,30] and we had therefore predicted that the nar-
row EIAV tubes would form a mature lattice. In order to obtain more detailed insights into
the molecular interactions of GagAMA in the assembled particles, we performed subtomo-
gram averaging.

The density maps obtained for spheres, and wide and narrow tubes assembled at pH 8 and
pH 6, respectively, revealed a conserved order of densities corresponding to the CAnp at the
particle surface, followed by the CAcrp, and then the NC-nucleic acid complex (Fig 2, S4A
Fig). At the base of CA, just distal to the NC-nucleic acid density, a density consistent with a
6-helix bundle (6HB) was resolved, likely corresponding to the last residues of CAcrp and the
first residues of SP, similar to previous maps determined for immature HIV-1 VLPs [15]. In
the center of the hexamer, above the 6HB region, an additional density was present, which we
interpret to be a bound IP6 molecule. The density is similar in strength to that of the surround-
ing protein, suggesting that the majority of hexamers contain a bound molecule. No ordered
density was observed for NC in any of the structures. In the tubes and spheres assembled at
pH6, disordered densities were also observed at the base of the CTD dimer interface, i.e. at the
contact points between hexamers (S5 Fig).

The resolution of the different EIAV GagAMA structures was determined by Fourier-shell
correlation (FSC) and in all cases was below 4 A (S4B Fig and S1 Table). This allowed us to
build and refine a model of the EIAV CA and SP domains placed into the experimental elec-
tron microscopy densities in the spheres, narrow tubes, and wide tubes. (Fig 3, S1 Movie). We
then used the model for further analysis and validation by Molecular Dynamics simulations
(S6A and S6B Fig).
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independent copies is annotated (as described in Fig 2B). The 6-fold, 3-fold and 2-fold symmetry axes are annotated by a hexamer, triangle, and oval
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visualization of the differences that symmetry independent CA monomers can adopt in relation to their neighbors. (C-E) All symmetry independent
copies have been aligned on the CAxrp. Models are shown as seen from outside the virus. (F-G) All symmetry independent copies have been aligned
on the CAcrp. Models are shown in a 90-degree rotation compared to (C-E). (C) the trimeric interface stabilizing the interhexameric interactions. This
trimeric interface involving helices 2 (colored in red) is rigid and almost no structural changes can be seen. (D) Interactions around the hexameric ring
are shown. Helices 4 of one monomer of the symmetry independent copies are colored in red to show the large structural variation of the intra-
hexameric interactions at the CAxrp. (E) The dimeric interface between helices 1 (shown in red) is variable as seen by the increasing separation of the
helices and the lack of alignment of adjacent monomers. (F) The inter-hexameric interactions at the CAcrp are maintained via a dimeric interface
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the monomers forming the dimeric interface. (G) The interactions around the 6HB and the hexameric ring involving residues in the MHR are
maintained, but show a variable degree of flexibility to adapt to the varying diameter in the tubes and spheres.

https://doi.org/10.1371/journal.ppat.1008277.9003
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Structural versatility of EIAV CA domains in immature assembly

Tube morphologies have been observed previously for in vitro assembled Gag proteins, where
wide tubes were determined exclusively to have an immature lattice [24], and narrow tubes
were inferred to have a mature lattice [25,30]. As described above, both wide and narrow
EIAV GagAMA tubes adopted an immature CA arrangement. We therefore aimed to deter-
mine the key interactions that form the immature hexameric assembly in EIAV, but still allow
the CA domains to accommodate the significant morphological differences between spheres
(~100 nm) and tubes of different diameters (~35 nm and ~70 nm).

CA domain monomers within tubes are present in three symmetry-independent copies,
due to the inherent two-fold symmetry within the tubular assemblies (Figs 2B, 3A and 3B).
Refinement of the model into the independent CA copies resulted in seven structural states
of immature EIAV CA-SP (three symmetry-independent CA-SP copies for each of the narrow
and wide tubes, respectively, and one CA-SP monomer for the spherical assembly). The root-
mean-squared deviation (RMSD) variation between the individual NTD and CTD subdo-
mains of CA was low (0.65+0.16 and 0.55+0.1 A, respectively), but when aligning the CA
domains on their C-termini (Fig 3A), a significant variation of the NTD orientation among
these models was observed (RMSD of 9.5 A, ranging from monomer 1’ to 3, as annotated in
Figs 2 and 3B). No interactions between the CAxrp and the CAcp were observed (Fig 3A),
indicating that the linker (residues 270-274) connecting the two halves of CA allows them to
act as two independent structural entities.

Close comparison of all inter- and intra-hexameric interactions across the three structures
showed that three major interaction interfaces (one at the CAxrp and two at the CAcrp) need
to be maintained in the immature assembly, even with changing particle diameter or assembly
morphology (Fig 3B, S2 Movie). A trimeric inter-hexameric interface at the CAnrp, involving
helix 2 of CA monomers of adjacent hexamers (Fig 3C), is entirely unaffected by the change
of the assembly phenotype. In contrast, the different assemblies display highly variable CAxrp
interfaces around the hexameric ring (Fig 3D). This also leads to a large structural variability
of a potential dimeric CAnp inter-hexamer interface involving helix 1 (with a maximal
RMSD of 11.3 A between the different helix 1 conformations, Fig 3E). Specific, defined inter-
faces therefore do not seem to be required at these positions for the stabilization of the imma-
ture lattice. At the CTD, a hydrophobic dimer interface involving helices 9 establishes inter-
hexameric interactions and remains intact irrespective of the assembly phenotype (Fig 3F).
The CAcrp dimer interface appears to accommodate curvature changes between the different
hexamers, as no increase in distance of the interface is observed, but rather a slight rotation of
the two helices 9 with respect to each other (Fig 3F). Such a hydrophobic interface has already
been described for other immature retroviral assemblies. Intra-hexameric CAcrp stabilization
is maintained by interactions around the hexameric ring involving residues in the MHR and
the 6HB (Fig 3G), which remain intact in all assembly morphologies. Taken together these
results identify key interaction domains in the EIAV immature lattice. Although intra-hex-
americ CAnrp interactions can be formed in EIAV, their high structural variability suggests
that the CAnrp is not required to establish intra-hexameric interactions, but rather forms a
trimer to promote interactions with neighboring hexamers. Intra-hexameric interactions are
maintained by the CAcrp and the CA-SP 6HB.

EIAV and HIV-1 use conserved interactions to form the immature CA-SP
lattice

Retroviruses have low CA amino acid sequence similarity, but have highly conserved tertiary
folds of their CA domains. Previous reports have compared the quaternary CA structures of
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retroviruses from different genera and found them to be different at the CAnrp [6,11,21].
Until now, it was not known if immature CA assembly is conserved within the same retroviral
genus, lentivirus in this case, nor what role highly conserved residues among lentiviral CA
domains might play in establishing important interfaces in the immature assembly. Here we
compare the structures of EIAV and HIV-1, two lentiviruses that share 29% and 42% identity
between their CAntp and CAcrp, respectively (S1B Fig).

As described above, both tubular and spherical EIAV GagAMA particles maintain identical
key interactions within the immature lattice. We used the model derived from spheres assem-
bled at pH6 for further analysis, in order to compare the interfaces present in immature EIAV
with those previously described for HIV-1 [15,31]. Overall, immature assembly in EIAV and
HIV-1 is very similar. Mapping the conserved residues onto our structures reveals similarities
and subtle differences. EIAV and HIV-1 maintain similar immature assemblies by using resi-
dues with equivalent biochemical properties. Of the conserved CA amino acids, the majority
are positioned to maintain the tertiary fold of the CA domain, while a minority (~10%) is
involved in contacts between CA domain monomers in the immature lattice (Fig 4A, S3
Movie). We predict that the rest are important for maintaining CA contacts in the mature
lattice.

In both lentiviruses, the CAnrp is positioned to form extensive inter-hexamer contacts.

Of note, both retroviruses have a trimeric CAxrp interface around helices 2 that is structurally
similar despite weak sequence conservation. The structural similarity nevertheless suggests
that this might be an important interface for maintaining the CAytp quaternary structure (Fig
4B left). The distance across the helix 1 CAxpp dimer interface (as also described in HIV-1
previously [21]) is variable between EIAV and HIV-1, suggesting that this interface is not con-
served for immature lentivirus CA assembly. In the EIAV lattice, helix 1 begins at residue
G143, and the upstream residues 140TPR142 appear less ordered and cannot be modeled into
an alpha-helix. This differs in HIV-1, where the corresponding residues 148SPR150 are part of
helix 1 (Fig 4B right). The shorter helix 1 in immature EIAV agrees with a previous NMR
study that reported the first residues of helix 1 to become ordered only upon maturation and
beta-hairpin formation [32].

EIAV hexamers are linked at the CAcrp via a dimeric interface involving hydrophobic resi-
dues F308 and L309 in helix 9 (Fig 4C). This interface corresponds to the dimer interface in
HIV across helix 9 maintained by residues W316 and M317. Conserved residues in the MHR
and helix 11 in both EIAV (R278, E336) and HIV-1 (R286, E344) are positioned to establish an
interaction that stabilizes the immature hexameric assembly at the CAcrp (Fig 4D, left).

The structural arrangement formed by the 6HB and the base of CAcrp is similar to the hex-
americ assembly unit described in HIV-1, where the MHR, the CAcrp base, and the residues
in the hinge connecting helix 11 and the CA-SP1 helix are packed together. In HIV-1 this
assembly unit is stabilized by a three-way interaction involving D329, P356 and H358 (Fig 4D,
right). Mutation of any one of these three amino acids results in a complete switch from an
immature to mature assembly phenotype [31]. In vivo, mutating these residues results in a
severe loss of particle production [33]. In EIAV this interface is less tightly packed, consisting
of residues E321, T348 and Q350 (Fig 4D, right). In order to determine whether this three-way
interaction is critical for the immature EIAV lattice, we created Q350 mutants and analyzed in
vitro assembly of GagAMA and in vivo infectious particle production. The Q350A mutation
resulted in a ~20-fold decrease in the number of VLPs in the absence of IP6 compared to WT
assembly. IP6 did stimulate assembly of Q350A suggesting that the mutation does not alter the
IP6 binding site. In vivo, the mutation reduced the production of infectious virus particles by
less than two-fold compared with wild type (S7 Fig). MD simulations revealed that for HIV-1
the contact occupancy between H358 and D329 or P356 is high (95% and 94%, respectively).
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Fig 4. Conserved structural interactions in EIAV and HIV-1. Comparison of structural features in EIAV and HIV-1.
The HIV-1 CA-SP1 model derived from HIV-1 GagA16-99Ap6 (pdb 5193, referred to as AMACANCAPpG in [15]) is
shown on the left. The EIAV CA-SP model derived from EIAV GagAMA is shown on the right. S3 Movie shows a
guided tour of this comparison. (A) Side view on the CASP lattice of EIAV and HIV-1 CASP. One monomer is
highlighted, surrounding monomers of the lattice are shown with reduced opacity. The residues are colored according
to the conservation between the two viruses. The color legend is indicated in panel (A). (B) Interactions and structural
features in the CAnrp. The trimeric interface in EIAV and HIV-1 is similar (Left). The Helix 1 in EIAV is shorter than
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in HIV-1 (Right). The extent of helix 1 in EIAV approximately corresponds to the conserved residues in HIV-1. (C)
Comparison of the dimeric CAcrp interface. Both lentiviruses use hydrophobic residues in helix 9 to stabilize the
dimeric interface. F308/L309 and W316/M317 are annotated in EIAV and HIV-1, respectively. (D) Conserved
residues in the MHR and helix 11 contribute to interactions around the hexameric ring to stabilize the immature CA
assembly (Left). In HIV-1 residues D329, P356 and H358 form an important three-way interaction linking the CAcrp
base and the CA-SP1 helix of two adjacent CA monomers to each other. The equivalent residues in EIAV are E321,
T348 and Q350 (Right). (E) The EIAV CASP 6HB is shorter than its counterpart in HIV-1. In EIAV and HIV-1 the
CA-SP cleavage site is located within the helix, while the SP-NC cleavage site is located below the helix. Proteolytic
cleavage sites are annotated by dashed lines.

https://doi.org/10.1371/journal.ppat.1008277.9004

These values are significantly greater than the contact occupancy for EIAV at the same inter-
face, Q350 and E321 or T348 (61% and 23%, respectively). Taken together, these results indi-
cate that this junction in EIAV might be a less critical regulator of immature assembly than
has been described for HIV-1.

In EIAV the last eight residues of the CAcrp (TTKQKMML) and all five residues of SP
(LAKAL) (S1B Fig) form a helix that arranges into a 6-helix bundle in the immature lattice
(Figs 2B, 3B and 4E). Identical to HIV-1, in EIAV 12 Lysine residues in the MHR (K282) and
in the CA-SP (K351) project towards the center of the hexamer. The density for the CA-SP
helix stops at residue L359, which is the cleavage site between SP and NC, making the 6HB
approximately one turn shorter than its HIV-1 counterpart (Fig 4E). In HIV-1, residues in
the 6HB that are critical for assembly are A360 and L363 [15,31,33]. In EIAV, interactions to
stabilize the 6HB seem to be similarly established by hydrophobic residues (M352, L355 and
A356) (Fig 4E, S1B Fig).

IP6 has a conserved structural role in immature lentivirus assembly

The density we observed in the center of the EIAV hexamer at the level of the CAcrp -SP
junction is in an identical position to that previously reported for HIV-1 VLPs and immature
viruses [15,21]. The shape and size of the IP6 density is similar in tubular and spherical parti-
cles. The better-resolved density in the map from GagAMA spheres assembled at pH6 has a
strikingly similar shape and size to the density observed for IP6 in the recently obtained co-
crystal structure of HIV-1 CACTD-SP with IP6 [17]. In our electron microscopy map, densi-
ties for the individual phosphate groups were visible and hence allowed fitting of IP6 in its
myo-conformation, with one axial and five equatorial phosphate groups (Figs 2B and 5A).
Identical to HIV-1, in EIAV IP6 is coordinated by the above described 12 lysines in the MHR
and the CA-SP bundle, indicating that IP6 is bound in immature lentivirus CA assemblies in
a conserved manner.

Mutation of IP6-interacting amino acids alters assembly and infectious
virus particle production

For HIV-1, mutation of the IP6-interacting amino acids results in both a loss of IP6 enhanced
assembly in vitro, and a loss of infectivity in vivo [17]. For EIAV, mutation of either K282A or
K351A resulted in a near complete loss of infectivity (Fig 5B). To further confirm the role of
the lysine residues in IP6 binding we compared the in vitro assembly properties of GagAMA
with two mutant forms of the same protein, K282A and K351A (Fig 5C-5H). The mutations
resulted in a loss of IP6-enhanced assembly. Thus, IP6 increased the number of spherical VLPs
counted for wild type GagAMA protein by ~10-fold, but this small molecule gave no enhance-
ment for the K282A and K351A proteins. Interestingly, both of these mutant proteins assem-
bled better than wild type GagAMA in the absence of IP6. In summary, these results imply that
the amino acids K282 and K351 are critical for IP6 interaction in vitro, and for production of
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Fig 5. IP6 stabilizes the immature EIAV CASP lattice. (A) EIAV CASP and the IP6 molecule are shown as seen from
the outside of the VLP and additionally rotated by 90°. IP6 sits in the center of the hexamer and is coordinated by a
ring of six lysines in the MHR (K282) and six lysines in the CASP 6HB (K351). An isosurface representation of the IP6
density is shown in pink. The densities for the individual equatorial and the axial phosphate groups are clearly
visualized. The non-occupied phosphate group is caused by the 6-fold symmetry applied during processing and the
fact that IP6 can sit in the binding site in 6 rotationally equivalent positions. (B) Relative infectious particle production
in 293FT cells of VSV-G-pseudotyped provirus of wild type EIAV Gag (WT) and Gag with point mutations. Graphs
show the average and standard deviation of three independent experiments; dots show individual data points. (C,E,G)
Representative low and high magnification images of GagAMA WT, K282A, and K351A proteins assembled in the
absence (red) or presence (blue) of 10 uM IP6 at pH 6. (D,F,H) The number of VLPs (spheres-purple, tubes-green) per
55um’ for no fewer than five representative images for each condition. Center lines show the medians; box limits
indicate the 25th and 75th percentiles as determined by R software; whiskers extend to minimum and maximum
values; data points are plotted as circles. The mean value of counted particles is given in italics in the bar charts.

https://doi.org/10.1371/journal.ppat.1008277.9g005

infectious virions in vivo, and that the binding site for IP6 is highly conserved between HIV-1
and EIAV.

IP6 does not alter 6-helix bundle stability

Previously, MD simulations of HIV CAcrp-SP demonstrated that the presence of IP6 provides
a dramatic stabilizing effect on the 6HB, with overall C-alpha RMSD values of 2.5 and 4 A for
bound and unbound IP6, respectively [17]. In the absence of IP6, the 6-helix bundle collapsed
rapidly during simulation time. In HIV-1, through contacts with K290 and K359, IP6 stabi-
lized this region. EIAV differs from HIV in this respect, showing no dependence on IP6 for six
helix bundle stability over simulation time, with C-alpha RMSD values of ~1.5 for both bound
and unbound IP6. While IP6 binding to the two rings of six lysine residues (K282 and K351)
formed by CAcrp-SP hexamerization is stable, it is dispensable for maintaining the stability of
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the hexamer structure over simulation time (S6 Fig, S4 Movie). The latter is a result of the
greater stability of the side-chain interactions between helices of the six-helix bundle of EIAV
compared to HIV-1; remarkably most of the interactions are hydrophobic in nature. These
observations are consistent with the in vitro assembly data which show that EIAV, but not
HIV-1, can form immature VLPs in the absence of IP6, and that immature assembly for both
is stimulated by IP6.

Effect of IP6 on other lentiviruses

Sequence comparisons of the MHR and CA-SP junction show conservation of IP6-interacting
lysine residues for HIV-1, EIAV, simian immunodeficiency virus (SIV), HIV-2, feline immu-
nodeficiency virus (FIV), and bovine immunodeficiency virus (BIV) (Fig 6A). Thus, we pre-
dict that all lentiviruses form a similar binding pocket, and that IP6-enhanced assembly is
conserved among lentiviruses. To test this hypothesis, we purified GagAMA proteins for HIV-
2, SIV, FIV, and BIV, and determined if their assembly properties are altered by IP6 (see con-
struct diagrams in 6B-E). To our knowledge, no in vitro assembly conditions had been estab-
lished previously for any of these viruses, requiring us first to screen for conditions that
support assembly. In the absence of IP6, all four retroviral proteins failed to form VLPs, as ana-
lyzed by negative stain TEM. These results differ from those for EIAV, which forms some
immature VLPs, and for HIV-1, which forms mature tubes in the absence of IP6 (Fig 1). For
all four other lentiviruses, in the presence of IP6, spherical VLP assembly consistent with an
immature lattice was observed (Fig 6B-6E). VLP diameters fell into two groups. HIV-2 and
SIV had average diameters similar to those of HIV-1 and EIAYV, greater than 100nm (S8B Fig).
FIV and BIV had significantly smaller diameters of ~80nm. FIV and BIV VLPs, while abun-
dant, were also less regular. The observation that assembly of all of these lentivirus Gag pro-
teins is stimulated by IP6 suggests that IP6 plays an evolutionarily conserved role in immature
virus particle assembly for this genus of retroviruses.

Discussion
Comparison of immature EIAV and HIV-1 assembly

We have identified in vitro assembly conditions for EIAV Gag proteins that result in VLPs of
sufficient quality and abundance for cryo-ET structure determination. Three VLP morpholo-
gies were observed: spheres, narrow tubes, and wide tubes. Subtomogram averaging revealed
the lattice of all three structures to sub-4A resolution; surprisingly, all three were immature.

The immature Gag lattice can adopt a range of morphologies

The spatial separation of EIAV CAnrp and CAcrp, and the lack of strong interactions between
them, allow these two halves of CA to behave almost as independent entities, as suggested pre-
viously for other retroviruses [6,21,34]. For example, assembly of an HIV-1 CA mutant led to
immature-like tubes [35], where the CAntp adopted an artificial p2 lattice with four two-fold
positions, while the CAcrp was still arranged into an immature hexameric lattice. Other stud-
ies showed that the CAcrp is sufficient to form the protein-protein interactions needed to
assemble the immature lattice [36], while the CAnrp regulates curvature and hence size of the
virus particle [1]. For example, IP6-induced assembly of HIV-1 CA-SP protein leads to spheri-
cal VLPs, while IP6-induced assembly of CAcrp-SP (lacking the CAnrp) leads to a flat imma-
ture CAcrp-SP lattice [17]. Our present results extend these observations by illuminating in
detail the different conformations that the CAntp can adopt in order to form an immature lat-
tice, even at higher curvatures as seen in the narrow tube assemblies at pH6. In immature
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Fig 6. The effect of IP6 on other lentiviruses. (A) Comparison of the MHR sequence and the CASP junction of
lentiviruses. Blue bars indicate the location of known (EIAV and HIV-1) and predicted IP6 interacting lysine residues.
(B-E) In vitro assembly results of HIV-2, SIV, FIV, and BIV Gag constructs without (red) and with (blue) IP6 at 22°C.
(B, C) HIV-2 and SIV assembly was done in 50 mM Tris pH 8, 100 mM NaCl, with GT25 oligo by dialysis. (D) FIV
assembly was done in 50 mM Bis-Tris propane, 150 mM NaCl, GT50 oligo by dilution. (E) BIV assembly was done in
50 mM MES pH 6.5, 100 mM NaCl, GT50 oligo by dilution. The mean value of counted particles is given in italics in

the bar charts.

https://doi.org/10.1371/journal.ppat.1008277.9006
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EIAYV the building block of immature assembly at the CAnrp is defined by trimeric inter-hex-
amer interactions. A similar trimeric interaction is also observed in the immature HIV-1 lat-
tice (Fig 4B), although the residues within helix 2 at this trimer interface are not conserved
between EIAV and HIV-1 (S1B Fig). Formation of a trimeric interface is important in HIV-1
assembly: defects in immature HIV-1 Gag assembly are caused by mutation of selected resi-
dues in a conserved proline-rich loop that is positioned on the trimeric symmetry axis at the
top of the CAnrp [37].

In our previous publications we reported on a potential inter-hexameric CAyrp dimer
interface in HIV-1 involving Helices 1, and speculated that this interface might play a role in
immature lattice assembly [21]. Here we show that in EIAV such a dimeric interaction is not
involved in determining the immature lattice, as the distance between helices 1 is highly vari-
able between the different assembly morphologies (Fig 3E). Further experiments are therefore
necessary to confirm whether the proposed dimeric interaction in HIV-1 is of relevance in
determining the immature lattice.

At the CAcrp the intra- and inter-hexamer interactions in EIAV remain highly similar,
despite the variable curvature we have observed in the different assembly morphologies. This
further supports previous observations that the CAcrp plays the dominant role in establishing
relevant lateral protein-protein interactions in the immature lattice. In immature EIAV the
inter-hexamer interactions at the CAcrp are, as reported for other studied retroviruses, estab-
lished by a hydrophobic helix 9 dimer interface [6,15,38,39]. It is likely that such a hydropho-
bic interface between hexamers at the CAcrp allows for enough flexibility in immature
retroviral assembly to accommodate the curvature changes imposed by the varying CA-NTD
interactions.

IP6-enhanced immature lentivirus assembly

Remarkably, in EIAV and HIV-1, IP6 is coordinated by the same two rings of highly conserved
lysines in the MHR and the top of the CAcrp-SP bundle. This suggests that this defined struc-
tural coordination of IP6 by 12 conserved positively charged residues is important for lentivi-
rus assembly and stability.

The effects of IP6 on EIAV and HIV-1 differ qualitatively and quantitatively. For HIV-1, in
the absence of IP6, Gag protein assembles into mature tubes, while in the presence of IP6 Gag
assembles into immature spheres. By contrast, in vitro EIAV Gag forms immature virus parti-
cles both with and without IP6. We predict that the difference in IP6 dependence of these two
lentiviruses is due to the effect of IP6 on 6HB formation. Supporting this hypothesis, in MD
simulations the HIV-1 6HB collapses in the absence of IP6 but remains stable in its presence.
By contrast, in MD simulations the EIAV 6HB was stable both with and without IP6 likely due
to additional side chain contacts between helices in the six-helix bundle.

For HIV-1 in vivo, genetic ablation of IPPK, the cellular protein that converts IP5 to IP6,
results in dramatic reduction in infectious particle production. In contrast, the effect of the
IPPK knockout on EIAV was weak, consistent with the less strict requirement for IP6 in
assembly in vitro. One possible explanation is that EIAV can use IP5 as an alternative to IP6;
however, our observation that IP5 did not stimulate EIAV Gag assembly in vitro argues against
this model. A second possibility is that another small molecule can promote EIAV assembly.
Because of the high positive charge of the IP6 binding site, any hypothetical molecule that
mimics IP6 should also have a high negative charge density. The high degree of conservation
of the IP6 binding site between EIAV and HIV-1 argues against this model.

A third possible explanation is based on the observation that ETAV infectivity is signifi-
cantly lower than that of HIV-1 [40]. We might be observing a basal level of IP6-independent
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lentiviral assembly in our cell-line model, which is detected for EIAV relative to the low level
of infectivity in control cells, but not for HIV-1 relative to the high level of infectivity in control
cells. Conceivably, if infectious particle production for EIAV in control cells were more effi-
cient, the effect of IP6 might be more pronounced. We consider this third explanation to be
the most likely.

IP6 enhanced assembly of other lentiviruses

The role of IP6 as an assembly cofactor apparently is conserved among most lentiviruses,
given our findings that in vitro assembly of HIV-1, HIV-2, SIV, FIV, and BIV Gag proteins
also is dramatically stimulated by IP6. In contrast to EIAV, the other lentiviruses did not
assemble in the absence of IP6, suggesting that they have a stricter requirement for the mole-
cule. This observation perhaps is not surprising since EIAV is the most distantly related to
HIV-1 of the viruses tested. We are continuing to study these diverse lentiviruses in vivo to
determine how IP6 depletion affects assembly, budding, and infectivity. It will be critical to
determine if IP6 also influences mature assembly of these lentiviruses in the way that it does
for HIV-1.

Conclusion

In summary, EIAV is only the second retrovirus, after HIV-1, to have its immature Gag lattice
determined to this level of resolution by cryo-ET and subtomogram averaging. Comparison
of these two structures allowed us to identify conserved and variable structural features that
determine immature assembly in both viruses. The overall similarity of the interactions that
determine immature assembly in EIAV implies that EIAV can be a valuable model for obtain-
ing a deeper understanding of how virus assembly is regulated within the lentivirus genus.
Our structures allow for a detailed comparison of the position of conserved and variable resi-
dues in interfaces within the EIAV and HIV-1 CA domain, providing a detailed view of the
mechanisms these viruses employ to form stable virus particles. Our data clearly show that
both EIAV and HIV-1 coordinate IP6 via a pair of lysine rings that are identically positioned
within the immature Gag assembly. The identification of the IP6 binding site in EIAV, and
the accompanying assembly data for HIV-2, SIV, FIV, and BIV, provide further support to
the model that IP6 is a conserved lentiviral assembly cofactor.

Methods
In vitro assembly

All ETAV Gag constructs were based on a pRE/EIAV Gag expression vector provided by Eric
Freed, and cloned into respective vectors using standard molecular cloning methods. Unless
otherwise noted, all proteins were purified using the SUMO-tag system [41] as previously
described in [17], and stored at -80°C in storage buffer (500 mM NaCl, 20 mM Tris-HCI pH 8,
2 mM TCEP). Mutations were generated by sub-cloning synthesized DNA harboring the
stated point mutation (gBlocks purchased from Integrated DNA Technologies) into the
respective vector. Native GagAMA protein was purified as previously described for RSV
GagAMBD [42].

In vitro assembly was performed by dialysis described briefly here. Protein at 50 pM was
mixed with 10 pM GT?25 oligo. IP5 or IP6 was added to a final concentration of 10 uM to both
the reaction chamber and the bulk buffer. 30 uL assembly reactions were dialyzed against 2 mL
buffer (50mM Tris-HCI pH 8 or 50 mM MES pH 6, 100 mM NaCl, 2 mM TCEP, with or with-
out IP6). Unless otherwise stated, all assembly reactions were performed at 4°C for a minimum
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of 4 hrs. All assembly reactions were adjusted up to a final volume of 200 pl with dialysis buffer
before spotting on EM grids. Samples were spotted onto formvar/carbon grids with a coating
for negative charge (Electron Microscopy Sciences; FCF200-CU-SP), stained with 2% uranyl
acetate solution, and imaged on an FEI Morgagni transmission electron microscope.

GagAp9 assembly was performed by mixing 50 uM protein in storage buffer to an assembly
buffer to a final concentration of 10 pM GT25; 0 uM IP, 10 uM IP5, or 10 uM IP6; 450mM
NaCl; with 50 mM MES at pH 6. Assembly reactions were incubated at 22°C for 1 hr. Follow-
ing incubation, reactions were diluted to 200 L (1:5) with the corresponding assembly buffer
before spotting onto EM grids as previously described.

We were unsuccessful in identifying conditions for assembly of the mature EIAV lattice.
We screened conditions for assembly of purified EIAV CA, but none of the conditions known
to promote robust assembly of HIV-1 or RSV CA resulted in EIAV assembly, e.g. presence of
high NaCl (500 mM protein; 1 M or 2 M NaCl; at 4°C, 22°C, or 24°C; in 20 mM MES pH 6 or
20 mM Tris-HCI pH 8), high NaP04 (500 mM protein; 500 mM NaPO4 pH 7 or 1 M NaPO4
pH 7; at 22°C) or IP6 (250 mM protein; 2.5 M IP6; at 22°C; in 20 mM MES pH 6 or 20 mM
Tris-HCI pH 8), or crowding reagents such as Ficoll 400 (protein; Ficoll 400; at 4°C or 37°C;
20 mM MES pH 6.5 or 20 mM Tris-HCI pH 8).

Cells and plasmids

The HEK293FT cell line was obtained from Invitrogen and maintained in Dulbecco’s modified
Eagle’s medium (Sigma, Cat#D5796-500ML) supplemented with 10% Serum Plus II (Sigma,
Cat#14009C-500ML), 2 mM L-glutamine (VWR, Cat#02-0131-0100), 1 mM sodium pyruvate
(Corning, Cat#25-000-CI), 10 mM nonessential amino acids (Lonza, Cat#13-114E), and 1%
minimal essential medium vitamins (Sigma, Cat#M6895-100mL). The IPPK KO was derived
from the HEK293FT cell line as previously described [17].

The proviral HIV plasmid construct consists of pNL4-3 HIV plus CMV-GFP in place of
Nef (kindly obtained from Vineet KewalRamani). This HIV construct has Vif, Vpr and Env
deleted and has several restriction sites silently added to the Gag gene for cloning purposes.
EIAV proviral constructs consisted of the Gag/Pol expression vector pPONY3.1 [40] and the
GFP reporter vector pONY8.0G [43]. The K282A, Q350A, and K351A versions of pPONY3.1
were made by standard cloning methods. The VSV-G construct consists of the coding
sequence for VSV-g preceded by the EFal promoter [44] and obtained through the NIH AIDS
Research and Reference Reagent Program.

VSV-G-pseudotyped virus production, infection, and western blots

EIAV and HIV viruses were produced by equal PEI transfection of adhered HEK293FT's and
the IPPK-KO in 6-well format at 75-80% confluence with 1000 ng of proviral plasmids and
the VSV-g expression construct in a 9:1 ratio (900 ng HIV with 100 ng of VSV-g; 450 ng of
pONY3.1 or mutants plus 450 ng of pPONY8.0G with 100ng of VSV-g). Media from transfected
cells was collected two days after transfection by aspiration. This media was then frozen at
-80°C for a minimum of 2 hrs to lyse cells, thawed in a 37°C water bath, precleared by centrifu-
gation at 3000 x g for 5 min, and supernatant (viral media) collected by aspiration. Viral media
was stored at -80°C and subsequently used for assays.

To compare EIAV and HIV infectious particle production, HEK293FT's were plated in
12-well format and infected by equal volume addition of viral media from HEK293FT's and
from the IPPK-KO at low MOI. WT EIAV and mutant (K282A, Q350A, and K351A) EIAV
viral media were similarly infected. Cells were collected 48 hrs post-infection. Number of
infections, as measured by green fluorescence, was quantified via flow cytometry (Accuri C6,
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BD). The number of infections was expressed as a percentage and normalized to WT percent-
age of infections. Western blots were performed as previously described [45]. The E. coli-
expressed EIAV CANC protein was used in preparation of the rabbit antiserum (Cocalico
Biologicals).

Cryo-electron tomography

Cryo-electron tomography sample preparation and data acquisition were performed as
described previously [15]. In brief, 10nm colloidal gold (coated either with BSA or conju-
gated with Protein A) was added to the VLP solutions and 2.5 pl of this solution was then
applied to degassed 2/2-3C C-flat grids, that previously were glow discharged for 30 seconds
at 20 mA. The samples were vitrified in liquid ethane using a Vitrobot Mark 2 (blot time of
1-2 seconds, with a blot offset of -3 mm) and stored under liquid nitrogen conditions until
imaging.

Tilt series acquisition and tomogram reconstruction were performed in an identical man-
ner for all datasets unless stated otherwise. All imaging was done on an FEI Titan Krios, oper-
ated at 300 keV, equipped with a Gatan Quantum 967 LS energy filter and a Gatan K2xp direct
electron detector using the SerialEM software package [46]. The slit width of the filter was set
to 20 eV. Low magnification montages were acquired for search purposes and for defining
areas of interest for subsequent high-resolution tomography data acquisition. Prior to tomo-
gram acquisition, gain references were acquired and the filter was fully tuned. Microscope tun-
ing was performed using the FEI AutoCTF software [47].

The nominal magnification for the dataset containing EIAV GagAMA assembled at pH8
was 105,000x, resulting in a pixel size of 1.35 A/pixel. The nominal magnification for the data-
set containing EIAV GagAMA assembled at pH6 was 130,000x, resulting in a pixel size of 1.04
A/pixel. Tilt series were acquired using a dose-symmetric tilt-scheme [48]. The tilt range was
from 0° to 60° and -60° in 3° steps. Tilt images were acquired as 8k x 8k super-resolution mov-
ies of 20 and 21 frames, for the pH8 and pH6 data sets, respectively. The set dose rate was at ~
2.5 e’/A/sec. Tilt series were collected at nominal defocus between -1.5 and -5 pm and a target
dose of ~140 e'/A*. Data acquisition information is also provided in S1 Fig.

Image processing

The super-resolution movies were aligned on-the-fly on a GPU during data acquisition using
the SerialEMCCD frame alignment plugin and tilt series were automatically saved as 2x binned
mrc stacks. CTF-estimation was performed using CTFFIND4 [49] on each tilt individually.
Images were low-pass filtered according to their cumulative electron dose using exposure fil-
ters that were calculated using an exposure-dependent amplitude attenuation function and
critical exposure constants (as determined previously by [50]). Prior to further processing,
bad tilts (e.g. images that shifted significantly during acquisition or due to a blocked beam at
high tilts) were removed.

Tomogram reconstruction of the exposure-filtered tilt images was performed in the IMOD
software package [51]. CTF-correction was performed slightly different for the two datasets.
For the data of EIAV GagAMA assembled at pH8 (spheres, and tubes with wide diameter) 2D
CTF-correction was initially performed by the “ctf-phase-flip”-program implemented in
IMOD [52]. 3D-CTF correction using NovaCTF [53] was then performed at the end of the
subtomogram averaging calculations using Z-height coordinates of the aligned subvolumes to
define the center of mass in tomograms to obtain a more precise CTF-correction for final
unbinned structure calculation.
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The data set containing EIAV GagAMA assembled at ph6 (spheres and tubes with narrow
diameter) was corrected with NovaCTF from the very beginning, using no subtomogram Z
coordinates for refining the CTF-correction. Updated Z-positions were then again used at the
end of the subtomogram averaging computations to regenerate more accurately CTF-cor-
rected tomograms for final unbinned structure calculation.

CTF-corrected tomograms were reconstructed unbinned, as well as 2x, 4x and 8x binned,
using either anti-aliasing (in case for the 2D-CTF corrected tomograms) or Fourier cropping
(for 3D-CTF corrected tomograms using NovaCTF).

VLPs were identified within the tomograms using the Amira visualization software (FEI
Visualization Sciences group). The radii, and center or spline of the VLPs (for the spherical
or tubular VLP assemblies, respectively) were determined in Amira using the electron micros-
copy toolbox [54]. The pH8 and pH6 datasets contained 158 spheres/106 tubes and 175
spheres/152 tubes, respectively. All four datasets were processed independently.

Subtomogram averaging was performed identically for all datasets using scripts derived
from the AV3 [55], TOM [56] and Dynamo [57] packages. The only exception was the use of
different subvolume dimensions due to the varying pixel size.

Initially, one tomogram (binned 8x) containing both spheres and tubes assembled at pH8
was chosen to generate ab initio starting references. To generate a starting reference for the
narrow tubular EIAV GagAMA assembly (pH6), again one tomogram was chosen. The start-
ing reference from pH8 was used to also align EIAV GagAMA in spheres assembled at pH6.
Subvolumes with a size of approximately (380)” A were extracted from the surface of spheres
or tubes, respectively, and averaged. Initial angles were assigned according to the geometry of
the spheres or tubes. First iterations were performed without applying any symmetry, and only
once the structures converged, revealing the inherent 6-fold and 2-fold symmetry for the struc-
tures in spheres and tubes, respectively, the symmetry was enforced for two more iterations.
In all cases the starting references showed clear densities for EIAV GagAMA. From this point
onwards, symmetry was applied throughout all subtomogram averaging steps.

Two rounds of alignments were performed on 8x binned data. Subsequently, all sub-
volumes that had converged onto the same position of the lattice were removed using a
subvolume-to-subvolume distance cut-off threshold. Subvolumes that contained no protein
density or did not align against the reference were removed based on a cross-correlation
threshold.

Subtomograms were then extracted from 4x binned tomograms at positions determined
in the 8x-binned alignments and averages were generated using the orientational parameters
determined in these 8x-binned alignments. The subtomograms were aligned, progressively
reducing the angular search range. During these alignments a low-pass filter at 32 A or 35 A
was applied for the pH8 and pH6 datasets, respectively. At the end of the 4x-binned alignments
a subvolume-to-subvolume distance threshold was applied to remove subvolumes that might
have shifted onto identical positions on the lattice.

The remaining subvolumes were extracted from 2x-binned tomograms at their aligned
positions. At this stage the datasets were split into even/odd half sets and from here on, the
even/odd datasets were treated completely independently. Subvolumes with mean grey values
that deviated from the dataset mean with more than * 1 standard deviation were removed.
For the even/odd datasets, independent 2x-binned references were generated by averaging
their respective subvolumes using the alignment parameters determined in the 4x-binned
alignments. After two more rounds of alignment the subvolumes were finally extracted from
the unbinned tomograms and again independent references were generated for the respective
half sets. Two more rounds of alignment in bin 1 were performed. Statistics for the sizes of the
different datasets is given in S1 Fig.
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The tubular structures showed a varying degree of anisotropy due to a preferential orienta-
tion of the tubes in the tomograms with respect to the tilt axis. To more appropriately handle
the anisotropic distribution of subtomogram orientations, weighted averaging of the 1x binned
data was performed using modified wedge masks [58] instead of a binary wedge mask. The
modified wedge masks were calculated by averaging the amplitude spectra from structure-free
(ice only) areas in each tomogram and therefore represent an ice/noise amplitude spectrum
modulated by CTF correction, dose filtering and weighted back-projection.

The final averages were multiplied with a gaussian-filtered cylindrical mask and the resolu-
tion was determined by mask-corrected Fourier-shell correlation at the 0.143 criterion. The
half maps were then averaged, sharpened (for the empirically determined B-factor values see
S1 Table) and filtered to the measured resolution [59]. Visualization of tilt series, tomograms
and EM-densities was performed in IMOD [51], Amira 4, UCSF Chimera [60], Coot [61] and
Pymol [62].

Atomic model building, refinement and model analysis

The resolution of our electron microscopy maps allowed us to refine existing models of the
EIAV CA and to de novo build the last residues of CA and SP that form the CA-SP helix. At
~4 A resolution the helical pitch is clearly visible and also large side chains (e.g. tryptophans,
phenylalanines, arginines or lysines) can be identified. Small side chains and also negatively
charged side chains are not clearly visible at this resolution. Therefore, rotamer refinements
of residues are not possible.

Model refinements were performed into three of the EIAV GagAMA EM maps: spheres
assembled at pHS6, tubes assembled at pH6, and tubes assembled at pH8. The crystal structure of
EIAV CA (pdb 2EIA) [63] was used as a starting model for refinement into the map determined
from spheres assembled at pH6. One CA monomer of pdb 2EIA was selected and the CAxtp
and CAcrp of this monomer were independently placed into the EM-density using the rigid
body fitting option in UCSF Chimera. Subsequently the linker connecting the two CA domains
was joined in Coot. Additionally, the last residues of CA and the first residues of SP (T347-L359)
that were not present in pdb 2EIA were manually built into our EM-density using Coot.

To account for the different monomer-monomer interactions in GagAMA, the monomers
were replicated according to the inherent 6-fold symmetry of the map, resulting in 18 symmetry
related copies of GagAMA. A map segment (defined by a mask extending 3 Angstrom around
the rigid body fitted model) was extracted, and real-space coordinate refinement against the
EM-density was performed using Phenix [64], which was iterated with manual model building
in Coot in a similar fashion as described previously [15]. Secondary structure restraints and
non-crystallographic symmetry (NCS) restraints were applied throughout all refinements.

In Phenix each iteration consisted of 5 macro cycles, in which simulated annealing was
performed in every macro cycle. Atomic displacement parameter (ADP) refinement was per-
formed at the end of each iteration.

The refined model for one EIAV GagAMA monomer in the spherical assembly was then
used as starting model for the refinement into the EM-density maps generated from tubular
assemblies. The monomer was again rigid body fitted into the EM densities three times to
accommodate the 3 symmetry independent copies of the EIAV GagAMA monomer per hex-
amer in the tubes. As the monomers show a difference in the respective orientations of their
CAnrp and CAcrp, the fit was further manually refined in Coot. Subsequently, the symmetry
independent monomers were expanded within the cryo-EM density to cover all potential
CA-SP interactions. The refinement of these models was then done as described above for the
spherical model, iteratively refining in Phenix and Coot, with the difference that no NCS
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restraints were applied. The quality of all models was validated using MOLPROBITY [65] and
is given in S2 Table.

The HIV-1 CA-SP1 model used for comparison was pdb 5L93 [15]. All comparisons and
RMSD calculations were performed in UCSF Chimera, between the C-alpha backbone atoms
selected residues. To compare all EIAV GagAMA monomer conformations the individual
monomers were first aligned on the CAcrp (residues 272-359). RMSD values were then calcu-
lated for the C-alpha atoms of the individual EIAV CA models including residues 143-271 for
the CAnrp and residues 272-342 (until the end of helix 11) for the CAcrp. Fig 4 showing the
conservation of residues between HIV-1 and EIAV was performed using the ‘multialign
viewer’ tool in UCSF Chimera.

Data deposition

The EM-density maps and two representative tomograms have been deposited in the EMDB
under accession numbers EMD-10381, EMD-10382, EMD-10383, EMD-10384, EMD-10385
and EMD-10386.

The refined models were deposited in the PDB under accession codes PDB 6T61, PDB
6T63 and PDB 6T64.

Molecular dynamics simulations

All atom molecular dynamics simulations were employed to investigate the interactions
between IP6 and EIAV’s Gag lattice. In total, six atomic models of EIAV GagAMA hexamer
were built, namely, Apo- and Holo-CASP 43 350 wildtype hexamer. The starting CASP1 43 359
hexamer system was refined from the Cryo-ET atomic model of the sphere EIAV GagAMA
capsid. One IP6 molecule was rigid-body docked at the binding pocket identified in Cryo-ET
densities. Subsequently, 18 adjacent EIAV monomers of each central hexamer were added to
complete the lattice. All models were then solvated with the TIP3P water model, neutralized
by addition of NaCl, finally the total NaCl concentrations was set to 150 mM. Resulting models
had total atom counts around 388 K atoms.

After model building, these systems were initially subjected to energy minimization in
two stages, both using the conjugated gradient algorithm [66] with linear searching [67].
Only water and ion molecules were free to move during the first minimization stage, while
the protein backbone atoms were restrained in the second stage. Convergence of the mini-
mizations were confirmed once the variances of gradients were not greater than 1 Kcal mol™
A’'. After minimizations, the temperature of all systems were gradually increased from 50 to
310 K in 20 K increments over 5 ns. The restraints applied on backbone atoms were main-
tained during the thermalization stage and then gradually released from 10 to 1 Kcal mol™
A over 5 ns of equilibration at 310 K and 1 atm.

Once equilibrated, production simulations of six EIAV systems were conducted on TACC
Stampede 2 and NCSA Bluewaters supercomputers. Apo- and Holo-CASP 43 35, wildtype hex-
amers were ran for over 100 ns. Molecular dynamics simulations in this study were performed
on NAMD2.12 [68] using the CHARMM36m force field [69]. During the production runs,
the temperature (310 K) was maintained by employing a Langevin thermostat with a coupling
factor of 0.1 ps™ [70]; similarly, pressure was maintained at 1 atm employing the Nosé-Hoover
Langevin piston with a decay time of 1ps and a period of 2ps [71,72]. A time step of 2 fs was
used for all simulations and all bonds to hydrogen atoms were constrained with the SHAKE
algorithm [73]. Long-range electrostatics were calculated using the Particle-Mesh-Ewald
method with a grid size of 1 A [74] with a cutoff of 1.2 nm, as implemented in NAMD. Full
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electrostatic interactions were calculated every two-time steps while nonbonded interactions
were computed every time step.

Supporting information

S1 Fig. EIAV and HIV-1 Gag and CA sequence similarity. (A) Schematic representation

of HIV-1 and EIAV Gag, and the truncated Gag variants used in this study. The cleavage sites
are annotated by arrows and the first residue of each individual domain is shown. The CAxtp
and CAcrp are colored cyan and orange, respectively. The SP region is colored red. Abbrevi-
ated protein names in parenthesis. (B) Sequence alignment between HIV-1 CA-SP1 and EIAV
CA-SP. The background of the sequence is colored as in (A) to indicate the location of the
CAxtps CAcrp or SP. Secondary structure assignments (alpha-helices) are indicated with
dashed lines. Above the sequence alignment the conservation of the respective residues and
existing charge variations are shown, in gray and blue/red respectively; a blue bar indicates a
positive charge variation from EIAV to HIV-1, conversely a red bar indicates a negative charge
variation from EIAV to HIV-1. Conserved lysine residues are in indicated by dashed rectan-
gles. (C) Molecular representations using the licorice representation of IP6 and IP5. It is clearly
shown that IP5 lacks the axial phosphate present in IP6.

(TIF)

S2 Fig. Screening examples of EIAV Gag and Gag truncation assembly. (A,B) Representa-
tive low and high magnification images of Gag and GagAMA assembled in the absence (red)
or presence (blue) of 10 uM IP6 at pH 8. The number of VLPs (spheres-purple, tubes-green)
per 55um” for no fewer than five representative images for each condition. Center lines show
the medians; box limits indicate the 25th and 75th percentiles as determined by R software;
whiskers extend to minimum and maximum values; data points are plotted as circles. (C)
Representative low and high magnification images of native GagAMA assembled in the
absence (red) and presence (blue) of 10 uM IP6 at pH 6. Tubes assembled in the absence of
IP6 were the same, by negative stain EM, as tubes assembled with GagAMAAp9 containing an
ectopic serine at the N-terminus. In the presence of IP6, protein formed multi-layered, spheri-
cal VLPs. (D) Representative low and high magnification images of GagAMAANC®7® assem-
bled in the absence (red) or presence (blue) of IP6 at pH 6. Very few VLPs were observed; see
purple triangle, compared to the amount observed for HIV-1 [17]. The mean value of counted
particles is given in italics in the bar charts.

(TIF)

S3 Fig. Effect of IP6 on Infectious particle production. (A) The effect of IPPK KO on the
production of infectious EIAV and HIV virus particles. Relative to WT, bars represent the
average and whiskers the standard deviation of no fewer than three replicates. (B) Western
blots were performed on cell lysates and released virus from HEK293T WT and IPPK KO
cells for EIAV and HIV. EIAV was probed with RboaEIAV-CANC and HIV with
MsaHIVp24.

(TIF)

$4 Fig. Cryo-ET and subtomogram averaging of EIAV GagAMA. (A) Radial orthoslices
through the final sharpened map from spheres assembled at pHS6, filtered to 8 A resolution.
Protein density is white. The level of the CAxrp, CAcrp and SP is indicated with dashed
boxes. (B) Fourier shell correlations (FSC) between independent halfsets for EIAV GagAMA
spheres (green) and tubes (orange) assembled at pH6, and spheres (pink) and tubes (blue)
assembled at pH8. The resolution measured at the 0.143 FSC criterion is indicated with lines.
The Nyquist frequency for the dataset of particles assembled at pH8, which was acquired with
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a pixel size of 1.35 A is indicated at 2.7 A.
(TIF)

S5 Fig. A positively charged region at the base of EIAV CAcrp potentially interacts with
nucleic acids. A) Isosurface representations of EIAV CA-SP from spherical and tubular
assemblies at pH8 and pH6 as seen from the inside of the particle. All structures have been fil-
tered to 8 Angstrom resolution. The additional densities in the spheres and tubes assembled
at pH6 are highlighted in yellow. The corresponding positions in the sphere structure assem-
bled at pHS are circled in yellow. The red dashed line indicates the tube axis, showing that the
additional densities are absent along the direction of the tube, where no curvature between the
CAcrp dimer is found. This observation of an additional density being recruited to the base
of the CAcrp by basic residues is reminiscent of a similar interface observed in M-PMV [75].
B) The three positively charged residues (green) in the linker connecting helix 10 and helix 11
are positioned to interact with the additional density (displayed as an isosurface in yellow). C)
(Top) Low and high magnification negative staining TEM images of GagAMA (RHR:AAA)
VLPs assembled at pH 6 without (red) and with (blue) 10 uM IP6. (Bottom) Quantification of
the number of VLPs counted for no fewer than five representative TEM images at pH 6 with-
out and with 10 uM IP6. The mean value of counted particles is given in italics in the bar
charts.

(TIF)

S6 Fig. Stability of the 6HB is independent of the presence of IP6. A) Structural changes
observed following ~150 ns of MD simulations of CApSP without and with bound IP6 for
model 1 (correct model) and model 2 (model with registry shift in the SP helix). We ran one
simulation with an incorrect model with a n+1 registry shift of the SP helix, clearly showing
the loss of 6HB bundle stability and partial unfolding. B) Root mean squared deviations
(RMSDs) of the central hexamer during simulations. C) Root mean squared fluctuations were
averaged over six central monomers for model 1 with standard deviations shown for each resi-
due. RMSFs are good indicators of protein flexibility.

(TIF)

S7 Fig. Q350A mutation reduces overall particle number but not sensitivity to IP6. (A)
Representative low and high magnification negative stain EM images of in vitro assembled
GagAMA (Q350A) in the absence (red) and presence (blue) of 10 uM IP6. Compared to
GagAMA (Fig 1), the number of VLPs formed in the absence and presence of IP6 is much
lower. However, the stimulatory effect of IP6 is still apparent. (B) Relative infectious particle
production of wild type EIAV Gag (WT) and Gag (Q350A) point mutation VSV-G-pseudo-
typed provirus in 293FT cells. Graphs show the average and standard deviation of three inde-
pendent experiments; dots show individual data points. The mean value of counted particles is
given in italics in the bar charts.

(TIF)

S8 Fig. Diameter of different lentivirus VLPs. In vitro assembled VLPs were imaged via neg-
ative stain EM. From the latter the diameters of the particles were determined.
(TIF)

S1 Table. Cryo-ET data acquisition and subtomogram averaging statistics.
(PDF)

S2 Table. Model refinement statistics.
(PDF)
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S1 Movie. Immature EIAV CA-SP assembly in GagAMA spheres assembled at pH6. A 3D
visualization of the 3.7 A EIAV CA-SP structure in GagAMA spheres assembled at pH6. The
movie displays both tubes and spheres at pH6, the structure and model are derived from spheres.
(MOV)

$2 Movie. A guided tour comparing the structural differences of EIAV CA-SP assemblies
in tubes and spheres at pH6 and pH8. A tour comparing key interfaces and variable interac-
tions of EIAV CA-SP described in Fig 3.

(MOV)

$3 Movie. Comparison of immature CASP interfaces in EIAV and HIV-1. A comparison of
the CASP assembly in EIAV and HIV-1, as described in Fig 4.
(MOV)

S$4 Movie. EIAYV six-helix bundle stability without and with IP6. All-atom molecular
dynamics simulation of EIAV CAcrp-SP model 1 as described in S6 Fig. A moving average of
the 3D coordinates with a window size of 1 ns is employed to remove high frequency motions
from the movie. IP6 is shown in licorice representation.

(MOV)
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