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Abstract. An operator analogue of the FEAST matrix eigensolver is developed to compute the
discrete part of the spectrum of a differential operator in a region of interest in the complex plane.
Unbounded search regions are handled with a novel rational filter for the right half-plane. If the
differential operator is normal or self-adjoint, then the operator analogue preserves that structure
and robustly computes eigenvalues to near machine precision accuracy. The algorithm is particularly
adept at computing high-frequency modes of differential operators that possess self-adjoint structure
with respect to weighted Hilbert spaces.
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1. Introduction. In this paper, we consider differential eigenvalue problems
posed on the interval [ - 1, 1], i.e.,

(1.1) \scrL u = \lambda u, u(\pm 1) = \cdot \cdot \cdot = u(N/2)(\pm 1) = 0.

Here, \scrL is a linear, ordinary differential operator of even order N . A complex number
\lambda and a function u satisfying (1.1) are called an eigenvalue and eigenfunction of \scrL ,
respectively. We focus on computing the eigenvalues of \scrL contained in a simply con-
nected region \Omega \subset \BbbC . Throughout, we assume that the boundary \partial \Omega is a rectifiable,
simple closed curve and that the spectrum \lambda (\scrL ) of \scrL is discrete, does not intersect
\partial \Omega , and only finitely many eigenvalues counting multiplicities are in \Omega . To simplify
discussion about the eigenfunctions of (1.1), we assume that there are eigenfunctions
of \scrL that form a basis for the invariant subspace of \scrL associated with \Omega .

Since the development of the QR algorithm in the 1960s, the standard methods for
solving (1.1) have adopted a ``discretize-then-solve"" paradigm. These algorithms first
discretize \scrL to obtain a finite matrix eigenvalue problem and then solve the matrix ei-
genvalue problem with algorithms from numerical linear algebra [17, 21, 25, 39]. Moti-
vated by mathematical software for highly adaptive computations with functions [18],
we propose an alternative strategy: an algorithm that solves (1.1) by directly manip-
ulating \scrL at the continuous level and only discretizes functions, not operators. By
designing an eigensolver for \scrL rather than intermediate discretizations, we are able
to leverage spectrally accurate approximation schemes for functions while avoiding
several pitfalls that plague spectral discretizations of (1.1) (see [60], [22, Chap. 2],
and [59, Chap. 30]). For this reason, we view our proposed algorithms as adopting a
``solve-then-discretize"" paradigm. This paradigm has been applied to Krylov meth-
ods [23], iterative eigensolvers [28], and contour integral projection eigensolvers [7] for
differential operators. Related techniques for computing with operators on infinite-
dimensional spaces have been proposed and studied in [14, 37].
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Fig. 1.1. Left: The eigenvalue condition numbers [5] for 4000 \times 4000 discretizations of (1.2)
obtained by collocation (blue dots), tau (red dots), Chebyshev--Galerkin (black dots), and ultraspheri-
cal (yellow dots) spectral methods are compared to the eigenvalue condition numbers (magenta dots)
of (1.2), which are preserved by the operator analogue of FEAST. Right: The relative errors in
the first 2000 eigenvalues of each spectral discretization of (1.2), computed with a backward stable
eigensolver [24, p. 385]. We observe fluctuations in the relative errors due to the ill-conditioning
introduced by using nonsymmetric spectral discretizations of \scrL . In contrast, the relative errors (ma-
genta dots) in the eigenvalues computed by contFEAST, a practical implementation of the operator
analogue of FEAST (see section 4), are on the order of machine precision.

As an example of the advantages of our methodology, consider the simplest pos-
sible differential eigenvalue problem given by

(1.2)  - d2u

dx2
= \lambda u, u(\pm 1) = 0.

The eigenvalues of (1.2) are \lambda k = (k\pi /2)2, for k \geq 1, and are well-conditioned due to
the fact that the eigenfunctions form a complete orthonormal set in the Hilbert space
L2([ - 1, 1]) [31, p. 382]. However, spectral discretizations of (1.2) lead to highly non-
normal matrices with eigenvalues that are far more ill-conditioned than expected. Due
to this ill-conditioning, the accuracy in the computed eigenvalues can be extremely
variable and difficult to predict, ranging from a few digits to nearly full precision
(see Figure 1.1).

It is possible to use structure-preserving spectral discretizations to solve (1.2)
accurately [13, 49]. However, there is a lack of literature on designing spectral dis-
cretizations of (1.1) when \scrL is self-adjoint or normal with respect to an inner product
other than L2([ - 1, 1]). On the other hand, our solve-then-discretize methodology au-
tomatically preserves the normality or self-adjointness of \scrL with respect to a relevant
Hilbert space \scrH , provided that the inner product (\cdot , \cdot )\scrH can be evaluated.

At the heart of our approach is an operator analogue of the FEAST matrix
eigensolver, which we briefly outline:

(1) We construct a basis for the eigenspace \scrV corresponding to \Omega by sampling
the range of the associated spectral projector \scrP \scrV .

(2) We extract an \scrH -orthonormal basis for \scrV with a continuous analogue of the
QR factorization [57].

(3) We perform a Rayleigh--Ritz projection [46, p. 98] of \scrL onto \scrV with the
orthonormal basis in (2). We solve the resulting matrix eigenvalue problem
to obtain approximations to the eigenvalues of \scrL in \Omega .

As with the FEAST matrix eigensolver, the spectral projector \scrP \scrV is applied ap-
proximately via a quadrature rule approximation. For matrices, this involves solving
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Fig. 2.1. Left: FEAST uses an approximation to the spectral projector to compute the eigen-
values that lie inside \Omega (red dots) and project away the eigenvalues outside of \Omega (blue dots). Right:
The rational map in (2.2) that approximates the characteristic function on \Omega .

shifted linear systems, while for differential operators one needs to solve shifted lin-
ear differential equations. We solve these differential equations with the ultraspherical
spectral method, which is a well-conditioned spectral method that is capable of resolv-
ing solutions that exhibit layers, rapid oscillations, and weak corner singularities [36].

Critically, we discretize basis functions for \scrV as opposed to discretizing the dif-
ferential operator \scrL when solving (1.1). While discretizations of a normal operator \scrL 
can lead to nonnormal matrices, the Rayleigh--Ritz projection described in (3) always
leads to a normal matrix eigenvalue problem when \scrL is normal (see Theorems 3.1
and 3.2). In fact, we prove that using a sufficiently good approximate basis for \scrV does
not significantly increase the sensitivity of the eigenvalues when \scrL is normal (see sub-
section 5.2 for a precise statement). The result is a highly accurate eigensolver for
normal differential operators \scrL , requiring \scrO (mMN log(N) + m2N + m3) floating
point operations, where m = dim(\scrV ) and M and N are the polynomial degrees used
to resolve the variable coefficients in \scrL and the eigenfunctions in \scrV , respectively.

The eigensolver we develop is competitive in the high-frequency regime because it
efficiently resolves oscillatory basis functions in \scrV . Furthermore, it handles operators
that are self-adjoint or normal with respect to nonstandard Hilbert spaces. Finally,
our algorithm is parallelizable like the FEAST matrix eigensolver [43]. This work is
a step towards closing the gap between the frequency regimes that are accessible to
computational techniques and asymptotic methods for differential eigenvalue problems
posed on higher-dimensional domains [9, 10].

This paper is organized as follows. We begin in section 2 by reviewing FEAST
for matrix eigenvalue problems. In section 3 we introduce an analogue of FEAST for
differential operators and show that the operator analogue preserves eigenvalue sen-
sitivity. In section 4 we discuss a practical implementation of the operator analogue
and provide two examples from Sturm--Liouville theory to illustrate its capabilities
in the high-frequency regime. We analyze the convergence and stability of this im-
plementation in section 5. Sections 6 and 7 develop further applications of the solve-
then-discretize paradigm, including an operator analogue of the Rayleigh Quotient
Iteration and an extension of FEAST to unbounded search regions.

2. The FEAST matrix eigensolver. The FEAST matrix eigensolver uses
approximate spectral projection to compute the eigenvalues of a matrix A \in \BbbC n\times n in
a region of interest \Omega \subset \BbbC [32] (see Figure 2.1). It is usually more computationally
efficient than standard eigensolvers when the number of eigenvalues in \Omega is much
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1242 ANDREW HORNING AND ALEX TOWNSEND

Algorithm 2.1 The FEAST algorithm for matrix eigenvalue problems [43]. This
is often viewed as a single iteration that is repeated to improve the accuracy of the
computed eigenvalues and eigenvectors [53].

Input: A \in \BbbC n\times n, \Omega \subset \BbbC containing m eigenvalues of A, Y : \BbbC n\times m.

1: Compute V = \scrP \scrV Y .
2: Compute the QR factorization V = QR.
3: Compute AQ = Q\ast AQ and solve the eigenvalue problem AQX = \Lambda X for \Lambda =

diag (\lambda 1, . . . , \lambda m) and X \in \BbbC m\times m.

Output: Eigenvalues \lambda 1, . . . , \lambda m in \Omega and eigenfunctions U = QX.

smaller than n. The dominating computational cost of FEAST is solving several
independent shifted linear systems, but these can be performed in parallel [32].

There are three essential ingredients to FEAST:
(i) Spectral projector. Let \lambda 1, . . . , \lambda m be the eigenvalues of A in \Omega and let \scrV 

be the associated invariant subspace of A, i.e., A\scrV = \scrV . The spectral projector
onto \scrV is defined as

(2.1) P\scrV =
1

2\pi i

\int 
\partial \Omega 

(zI  - A) - 1 dz.

The important fact here is that range(P\scrV ) = \scrV and so P\scrV is a projection onto
the invariant subspace of A [31].

(ii) Basis for \bfscrV . FEAST uses the spectral projector to construct a basis for \scrV .
It begins with a matrix Y \in \BbbC n\times m with linearly independent columns that
are not in ker(P\scrV ), then it computes Z = P\scrV Y . The columns of Z span \scrV ,
and a QR factorization of Z provides an orthonormal basis, Q, for \scrV .

(iii) Rayleigh--Ritz projection. Having obtained an orthonormal basis for \scrV ,
FEAST solves AQx = \lambda x using a dense eigensolver [43], where AQ = Q\ast AQ.
Since range(Q) = \scrV , the eigenvalues of AQ are the eigenvalues of A that lie
inside \Omega . When AQ is diagonalizable, the eigenvectors of A are given by ui =
Qxi, for i = 1, . . . ,m, where x1, . . . , xm are the corresponding eigenvectors of
AQ.

For practical computation, FEAST approximates the contour integral in (2.1)
with a quadrature rule. Given a quadrature rule with nodes z1, . . . , z\ell and weights
w1, . . . , w\ell , one can approximate P\scrV Y by

(2.2) P\scrV Y \approx 1

2\pi i

\ell \sum 
k=1

wk(zkI  - A) - 1Y.

In this case, the eigenpairs of AQ provide approximations to the eigenpairs of A,
known as Ritz values and vectors [53]. To refine the accuracy of the Ritz values and
vectors, a more accurate quadrature rule can be used to compute P\scrV Y [53]. FEAST
also refines the approximate eigenvalues and eigenvectors by applying P\scrV to the n\times m
block of approximate eigenvectors using a quadrature rule and iterating (ii) and (iii)
until convergence. To fully understand this refinement process, one must examine
FEAST through the lens of rational subspace iteration [53].

When the dimension m of the invariant subspace \scrV is unknown, there are several
techniques for estimating m and selecting an appropriate value [32, 35, 53]. Most of
these techniques can be incorporated into the operator analogue of FEAST. Conse-
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FEAST FOR DIFFERENTIAL EIGENPROBLEMS 1243

quently, we assume that m is known throughout the paper and focus on the algorith-
mic and theoretical aspects of FEAST that are relevant in the operator setting.

Curiously, the originally proposed FEAST algorithm does not compute an or-
thonormal basis for \scrV before performing the Rayleigh--Ritz projection [32, 43].1 How-
ever, when Q has orthonormal columns and range(Q) is an invariant subspace of A,
then the eigenvalues of the small matrix Q\ast AQ are no more sensitive to perturbations
than the original eigenvalues of A. This highly desirable property follows from an
examination of the structure of the left and right invariant subspaces of Q\ast AQ or,
alternatively, from the \epsilon -pseudospectra of Q\ast AQ [59, p. 382].

3. An operator analogue of FEAST. The FEAST matrix algorithm provides
a natural starting point for an operator analogue because it provides a recipe to con-
struct a small matrix Q\ast AQ whose eigenvalues coincide with those of A inside \Omega and
have related invariant subspaces. Moreover, the eigenstructure of Q\ast AQ reflects the
eigenstructure of A when the columns of Q are orthonormal. As the sensitivity of the
eigenvalues of A depends intimately on the structure of the associated eigenvectors,
Q\ast AQ may be used to compute the desired eigenvalues of A efficiently without sac-
rificing accuracy. Here, we generalize FEAST so that it constructs a matrix whose
eigenvalues coincide with those of a differential operator inside \Omega .

3.1. FEAST for differential operators. In place of a matrix A acting on
vectors from \BbbC n, we now consider a differential operator \scrL acting on functions from
a Hilbert space \scrH . As described in section 2, the FEAST recipe prescribes a spectral
projection to compute a basis for \scrV , which is then used for the Rayleigh--Ritz projec-
tion to construct a matrix representation on \scrV . Throughout, we require that \scrL be a
closed operator2 and that its domain \scrD (\scrL ) is dense in \scrH .

(i) Spectral projector. Although \scrL is unbounded, the resolvent (z\scrI  - \scrL ) - 1 is
bounded when z \not \in \lambda (\scrL ) and the spectral projector onto \scrV may be defined
via contour integral [31, p. 178]. It is given by

(3.1) \scrP \scrV =
1

2\pi i

\int 
\partial \Omega 

(z\scrI  - \scrL ) - 1 dz.

(ii) Basis for \bfscrV . With the spectral projector at our disposal, we apply \scrP \scrV to
functions f1, . . . , fm in \scrH \setminus ker(\scrP \scrV ) to obtain a basis of functions v1, . . . , vm
for \scrV . Orthonormalizing v1, . . . , vm with respect to the inner product (\cdot , \cdot )\scrH 
on \scrH gives us an \scrH -orthonormal basis q1, . . . , qm for \scrV .

(iii) Rayleigh--Ritz projection. To compute a matrix representation L of \scrL 
on \scrV , the Rayleigh--Ritz projection is performed using the inner product on
\scrH . The elements of L are given by Lij = (qi,\scrL qj)\scrH for 1 \leq i, j \leq m. The
eigenvalues of L are precisely the eigenvalues \lambda 1, . . . , \lambda m of \scrL that lie inside
\Omega . The eigenfunctions of \scrL are recovered from the eigenvectors x1, . . . , xm

of L by computing ui =
\sum m

k=1 x
(k)
i qk, for i = 1, . . . ,m, where x

(k)
i is the kth

component of xi.
To avoid a clutter of indices, we employ the notation of quasimatrices.3 If Q

is the quasimatrix with columns q1, . . . , qm, then the matrix L whose elements are

1The FEAST algorithm for non-Hermitian matrices utilizes dual bases for the left and right
eigenspaces to improve stability [32].

2An operator \scrA : \scrD (\scrA ) \rightarrow \scrH is closed if its graph is a closed linear subspace of \scrH \times \scrH [31, p. 165].
3A quasimatrix is a matrix whose columns (or rows) are functions defined on an interval [a, b],

in contrast to matrices whose columns (or rows) are vectors [18, Chap. 6].

D
ow

nl
oa

de
d 

06
/0

2/
20

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1244 ANDREW HORNING AND ALEX TOWNSEND

Algorithm 3.1 An operator analogue of FEAST for differential operators.

Input: \scrL : \scrD (\scrL ) \rightarrow \scrH , \Omega \subset \BbbC containing m eigenvalues of \scrL , F : \BbbC m \rightarrow \scrH .

1: Compute V = \scrP \scrV F .
2: Compute V = QR, where Q : \BbbC m \rightarrow \scrD (\scrL ) \subset \scrH has \scrH -orthonormal columns and

R \in \BbbC m\times m is upper triangular.
3: Compute L = Q\ast \scrL Q and solve LX = \Lambda X for \Lambda = diag[\lambda 1, . . . , \lambda m] and X \in 

\BbbC m\times m.

Output: Eigenvalues \lambda 1, . . . , \lambda m in \Omega and eigenfunctions U = QX.

Lij = (qi,\scrL qj)\scrH in (iii) is expressed compactly in quasimatrix notation as L = Q\ast \scrL Q.
Here, Q\ast is the conjugate transpose of the quasimatrix Q so its rows are complex
conjugates of the functions q1, . . . , qm.

The analogue of FEAST for differential operators is summarized in Algorithm 3.1
using quasimatrix notation so that it resembles its matrix counterpart.

Keep in mind that Algorithm 3.1 is a formal algorithm. In general, we cannot
apply the spectral projector exactly, nor represent the basis \scrV exactly with finite
memory. A practical implementation is discussed in section 4.

3.2. Condition number of the Ritz values. As illustrated in Figure 1.1, the
eigenvalues of matrix discretizations of \scrL can be more sensitive to perturbations than
the eigenvalues of \scrL . The advantage of our FEAST approach in subsection 3.1 is that
the Ritz values, i.e., the eigenvalues of Q\ast \scrL Q, are no more sensitive to perturbations
than the original eigenvalues of \scrL when range(Q) is an invariant subspace of \scrL .

To see this, let \lambda be a simple eigenvalue of a differential operator \scrL . Let u,w \in \scrH 
satisfy \scrL u = \lambda u and \scrL \ast w = \lambda w, where \lambda denotes the complex conjugate of \lambda . The
condition number4 of \lambda is given by [5, Theorem 2.3]

(3.2) \kappa \scrH (\lambda ) =
\| u\| \scrH \| w\| \scrH 
(w, u)\scrH 

.

The condition number \kappa \scrH (\lambda ) quantifies the worst-case first-order sensitivity of \lambda to
perturbations of \scrL . For instance, if we compute \lambda using a backward stable algorithm
in floating point arithmetic, we expect to achieve an accuracy of at least \kappa \scrH (\lambda )\epsilon mach,
where \epsilon mach is machine precision [58, Theorem 15.1].

Theorem 3.1. Let \scrL : \scrD (\scrL ) \rightarrow \scrH be a closed and densely defined operator on a
Hilbert space \scrH , Q : \BbbC m \rightarrow \scrH be an invariant subspace of \scrL satisfying Q\ast Q = I, and
L = Q\ast \scrL Q. Suppose that u \in range(Q) satisfies \scrL u = \lambda u and w satisfies \scrL \ast w = \lambda w,
where \scrL \ast denotes the adjoint of \scrL and \lambda is a simple eigenvalue of \scrL with condition
number \kappa \scrH (\lambda ). Then,

(1) LQ\ast u = \lambda Q\ast u and L\ast Q\ast w = \lambda Q\ast w,
(2) (Q\ast w,Q\ast u)\BbbC m = (w, u)\scrH , and
(3) \kappa \BbbC m(\lambda ) \leq \kappa \scrH (\lambda ).

Proof. Denote x = Q\ast u and y = Q\ast w. We prove the statements of the theorem in
order. (1) Since u \in range(Q), we can write u = Qx. Then, \scrL (Qx) = \lambda (Qx) implies
that Q\ast \scrL Qx = \lambda x using the fact that Q\ast Q = I. For the left eigenvector, we write
w = Qy + v for some v \in range(Q)\bot . Rewriting the adjoint equation for w, we find

4Although this formula is usually associated with the condition number for a simple eigenvalue
of a matrix, its proof extends to our general setting [54, Theorem 5].
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that \scrL \ast (Qy+v) = \lambda (Qy+v) and multiplying byQ\ast on both sides yieldsQ\ast \scrL \ast Qy = \lambda y.
Here, we have used the fact that Q\ast \scrL \ast v = 0, which holds because v\ast \scrL Q = 0. (2)
By calculating (w, u)\scrH = (Qy + v,Qx)\scrH , we find that (w, u)\scrH = (Qy,Qx)\scrH because
v \in range(Q)\bot . Moreover, since Q\ast Q = I we conclude that (w, u)\scrH = (y,Q\ast Qx)\BbbC m =
(y, x)\BbbC m . (3) We know that \| u\| \scrH = (Qx,Qx)\scrH = (x, x)\BbbC m = \| x\| \BbbC m and \| w\| \scrH =
(Qy + v,Qy + v)\scrH = \| y\| \BbbC m + \| v\| \scrH . Therefore,

\| u\| \scrH \| w\| \scrH = \| x\| \BbbC m (\| y\| \BbbC m + \| v\| \scrH ) \geq \| x\| \BbbC m\| y\| \BbbC m .

Referring to (2) for equality of the inner products in the denominator, we have

\kappa \BbbC m(\lambda ) =
\| x\| \BbbC m\| y\| \BbbC m

(y, x)\BbbC m

\leq \| u\| \scrH \| w\| \scrH 
(w, u)\scrH 

= \kappa \scrH (\lambda ),

which concludes the proof.

Theorem 3.1 shows that if \scrL is a normal operator, then u = w and we have
\kappa \BbbC m(\lambda ) = \kappa \scrH (\lambda ) = 1. For nonnormal operators, item (3) of Theorem 3.1 may seem to
erroneously indicate that ill-conditioning in the eigenvalues of \scrL can be overcome by
a Rayleigh--Ritz projection. However, when \scrL is nonnormal the spectral projector \scrP \scrV 
is an oblique projection and computing the basis Q may be itself an ill-conditioned
problem. Theorem 3.1 also illustrates why the operator analogue of FEAST leads to a
well-conditioned matrix eigenvalue problem when the differential eigenvalue problem
is well-conditioned. By computing an \scrH -orthonormal basis for the Rayleigh--Ritz pro-
jection, the relevant structure in the eigenspaces of \scrL and \scrL \ast is preserved. However,
the first-order analysis above is limited to simple eigenvalues.

3.3. Pseudospectra of Q\ast \bfscrL Q. To go beyond first-order sensitivity analysis,
we compare the \epsilon -pseudospectra of \scrL and Q\ast \scrL Q. Fix any \epsilon > 0 and let \scrL : \scrD (\scrL ) \rightarrow \scrH 
be a closed operator with a domain \scrD (\scrL ) that is dense in \scrH . The \epsilon -pseudospectrum
of \scrL is defined as the set [59, p. 31]

(3.3) \lambda \epsilon (\scrL ) = \{ z \in \BbbC : \| (z\scrI  - \scrL ) - 1\| \scrH > 1/\epsilon \} .

Here, we adopt the usual convention that \| (z\scrI  - \scrL ) - 1\| \scrH = \infty when z \in \lambda (\scrL ) so
that \lambda (\scrL ) \subset \lambda \epsilon (\scrL ). The \epsilon -pseudospectrum set of \scrL bounds the region in which the
eigenvalues of the perturbed operator \scrL + \scrE with \| \scrE \| \scrH < \epsilon can be found [59, p. 31].
This means that \lambda (\scrL + \scrE ) \subset \lambda \epsilon (\scrL ). In fact, there is an equivalence so that [59, p. 31]

(3.4)
\bigcup 

\| \scrE \| \scrH <\epsilon 

\lambda (\scrL + \scrE ) = \lambda \epsilon (\scrL ).

This allows us to relate the sensitivity of the eigenvalues of \scrL and Q\ast \scrL Q by comparing
the resolvent norms \| (z\scrI  - \scrL ) - 1\| \scrH and \| (zI  - Q\ast \scrL Q) - 1\| \BbbC m , respectively.

A useful generalization of Theorem 3.1 is that the \epsilon -pseudospectrum of Q\ast \scrL Q is
contained in the \epsilon -pseudospectrum of \scrL . Since this holds for any \epsilon > 0, it demon-
strates that the eigenvalues (even those with multiplicity) of Q\ast \scrL Q are no more
sensitive to perturbations than those of \scrL . This inclusion result is well known in the
matrix case where projection methods are a popular method for approximating the
\epsilon -pseudospectra of large data-sparse matrices [59, p. 381].

Theorem 3.2. Let \scrL : \scrD (\scrL ) \rightarrow \scrH be a closed and densely defined operator on a
Hilbert space \scrH . For a fixed \epsilon > 0, suppose that Q : \BbbC m \rightarrow \scrH satisfies Q\ast Q = I and
that range(Q) is an invariant subspace of \scrL . Then, \lambda \epsilon (Q

\ast \scrL Q) \subset \lambda \epsilon (\scrL ).
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1246 ANDREW HORNING AND ALEX TOWNSEND

Proof. We follow the proof of Proposition 40.1 in [59, p. 382] for matrices, but
with a closed operator. Since Qx \in \scrH for any x \in \BbbC m, we have that

\| (zI  - \scrL ) - 1\| \scrH = sup
f\in \scrH ,\| f\| \scrH =1

\| (z\scrI  - \scrL ) - 1f\| \scrH \geq max
x\in \BbbC m,\| x\| \BbbC m=1

\| (z\scrI  - \scrL ) - 1Qx\| \scrH .

Now, when range(Q) is an invariant subspace of \scrL and Q\ast Q = I, we have that
\| (z\scrI  - \scrL ) - 1Qx\| \scrH = \| Q\ast (z\scrI  - \scrL ) - 1Qx\| \BbbC m . Because QQ\ast f = f for all f \in \scrV , we
can check that Q\ast (z\scrI  - \scrL ) - 1Q = (Q\ast (z\scrI  - \scrL )Q) - 1. Since Q\ast Q = I, it follows that

\| (zI  - \scrL ) - 1\| \scrH \geq \| (Q\ast (z\scrI  - \scrL )Q) - 1\| \BbbC m = \| (zI  - Q\ast \scrL Q) - 1\| \BbbC m .

Therefore, z \in \lambda \epsilon (\scrL ) whenever z \in \lambda \epsilon (Q
\ast \scrL Q).

The inclusion in Theorem 3.2 may be strict, indicating that the eigenvalues of
Q\ast \scrL Q are less sensitive than those of \scrL . For example, this may occur when the pro-
jection onto range(Q) targets a subset of well-conditioned eigenvalues of \scrL . However,
we emphasize that ill-conditioning in the eigenvalues of \scrL cannot be overcome by a
Rayleigh--Ritz projection: in general, the situation is complicated [59, Chap. 40].

Theorem 3.2 is useful for studying the stability of Algorithm 3.1. If an approxi-
mate eigenvalue \^\lambda of Q\ast \scrL Q is computed with an error tolerance of \epsilon > 0, then

\^\lambda \in \lambda \epsilon (Q
\ast \scrL Q) \subset \lambda \epsilon (\scrL ).

From this, we know by (3.4) that \^\lambda is an eigenvalue of a perturbed operator \scrL + \scrE 
with \| \scrE \| \scrH < \epsilon . In other words, the operator analogue of FEAST, Algorithm 3.1, is
backward stable. As we see in section 5, Theorem 3.2 is also the starting point for a
stability analysis when the spectral projection is no longer exact and the Rayleigh--
Ritz projection is performed with a matrix \^Q that only approximates a basis for an
invariant subspace of \scrL .

4. A practical differential eigensolver based on an operator analogue
of FEAST. The operator analogue of FEAST requires the manipulation of objects
such as differential operators, functions, and contour integrals (see Algorithm 3.1).
For a practical implementation, these objects must be discretized; however, we avoid
discretizing \scrL directly. Instead, we construct polynomial approximants to the basis
for \scrV by approximately solving shifted linear ODEs. These polynomial approximants
are used in the Rayleigh--Ritz projection to compute the eigenvalues of \scrL in \Omega .

Let z1, . . . , z\ell and w1, . . . , w\ell be a set of quadrature nodes and weights to approx-
imate the integral in (3.1). As FEAST does in the matrix case, we approximate \scrP \scrV 
in (3.1) with a quadrature rule as follows:

(4.1) \^\scrP \scrV =
1

2\pi i

\ell \sum 
k=1

wk(zk\scrI  - \scrL ) - 1.

If F is a quasimatrix with columns f1, . . . , fm \in \scrH , then \scrP \scrV F is replaced by the
approximation \^\scrP \scrV F = 1

2\pi i

\sum \ell 
k=1 wk(zk\scrI  - \scrL ) - 1F . Therefore, to compute \^\scrP \scrV F we

need to solve \ell shifted linear ODEs, each with m right-hand sides, i.e.,

(4.2) (zk\scrI  - \scrL )gi,k = fi, gi,k(\pm 1) = \cdot \cdot \cdot = g
(N/2)
i,k (\pm 1) = 0, 1 \leq i \leq m.

If the quasimatrix with columns g1,k, . . . , gm,k is denoted by Gk for k = 1, . . . , \ell , then

we have \^\scrP \scrV F =
\sum \ell 

k=1 wkGk.
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Algorithm 4.1 A practical algorithm for computing the eigenvalues of a differential
operator \scrL , which we refer to as contFEAST.

Input: \scrL : \scrD (\scrL ) \rightarrow \scrH , z1, . . . , z\ell \in \partial \Omega , w1, . . . , w\ell \in \BbbC , F : \BbbC m \rightarrow \scrH , \epsilon > 0.

1: repeat

2: Solve (zk\scrI  - \scrL )Gk = F , Gk(\pm 1) = 0, . . . , G
(N/2)
k (\pm 1) = 0, for k = 1, . . . , \ell .

3: Set \^V =
\sum \ell 

k=1 wkGk.

4: Compute \^V = \^Q \^R, where \^Q : \BbbC m \rightarrow \scrD (\scrL ) \subset \scrH has \scrH -orthonormal columns
and \^R \in \BbbC m\times m is upper triangular.

5: Compute \^L = \^Q\ast \scrL \^Q and solve \^L \^X = \^X \^\Lambda for \^\Lambda = diag[\^\lambda 1, . . . , \^\lambda m] and \^X \in 
\BbbC m\times m. Set F = \^Q \^X.

6: until \| \scrL F  - F \^\Lambda \| \scrH \leq \epsilon \| \^\Lambda \| \BbbC m .

Output: \^\Lambda , \^U = \^Q \^X.

To construct a basis for \scrV , it is important to choose F so that the columns of
\^V = \^\scrP \scrV F are linearly independent and, if possible, well-conditioned. Analogous to
the implementation of matrix FEAST [32, 43], we obtain the columns of F by selecting
m band-limited random functions5 on [ - 1, 1] [20]. When \scrL is a normal operator, this
typically yields a well-conditioned basis \^V .

We now outline the key implementation details of our differential eigensolver:
(i) Approximate spectral projection. To compute \^V = \^\scrP \scrV F , we solve the

shifted linear ODEs in (4.2) using the ultraspherical spectral method [36]. The
ultraspherical spectral method leads to well-conditioned linear systems and is
capable of accurately resolving the functions gi,k even when they are highly
oscillatory or have boundary layers. Moreover, an adaptive QR factorization
automatically determines the degree of the polynomial interpolants needed
to approximate the functions gi,k to near machine precision [37, 38]. After
accurately resolving the functions gi,k, we can accurately compute a basis for
\scrV provided that both the spectral projector is well-conditioned (i.e., \scrL is not
highly nonnormal) and the quadrature rule is sufficiently accurate.

(ii) Orthonormal basis. To compute an orthonormal basis \^Q for the columns of
\^V , we compute a QR factorization of the quasimatrix \^V by Householder tri-
angularization [57]. The Householder reflectors are constructed with respect
to the inner product (\cdot , \cdot )\scrH so that the columns of \^Q are \scrH -orthonormal.

(iii) Computing \^\bfitQ \ast \bfscrL \^\bfitQ . To construct the matrix \^L = \^Q\ast \scrL \^Q, we apply \scrL to
the columns of \^Q and then evaluate the action of \^Q\ast on \scrL \^Q. Multiplying \^Q\ast 

with \scrL \^Q involves taking the inner products

(4.3) \^Lij = (\^qi,\scrL \^qj)\scrH , 1 \leq i, j \leq m,

where \^qi denotes the ith column of \^Q. The eigenvalues \^\lambda 1, . . . , \^\lambda m and eigen-
vectors \^x1, . . . , \^xm of the matrix \^L are computed using the QR algorithm [24,
p. 385].

Critically, the inner product (\cdot , \cdot )\scrH used in the QR factorization of \^V and the
construction of \^Q\ast \scrL \^Q depends on the choice of the Hilbert space \scrH . As long as we
are able to evaluate (\cdot , \cdot )\scrH , we can exploit the fact that \scrL is self-adjoint or a normal

5A periodic band-limited random function on [ - L,L] is a periodic function defined by a truncated
Fourier series with random (e.g., standard Gaussian distributed) coefficients. In the nonperiodic set-
ting, the Fourier series is defined on a larger interval [ - L\prime , L\prime ] and the domain is then truncated [20].
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1248 ANDREW HORNING AND ALEX TOWNSEND

operator with respect to (\cdot , \cdot )\scrH so that we can accurately compute the eigenvalues of \scrL 
in \Omega (see Theorem 5.2). For this reason, our algorithm is able to accurately compute
the eigenvalues and eigenfunctions of differential operators that are self-adjoint with
respect to nonstandard Hilbert spaces (see subsection 4.1).

Evaluating the inner product (\cdot , \cdot )\scrH usually means computing an integral, which
we approximate with a quadrature rule. For example, if \scrH = L2([ - 1, 1]),

(f, g)L2([ - 1,1]) =

\int 1

 - 1

f(x)g(x) dx.

Given the Gauss--Legendre quadrature nodes x1, . . . , xp and weights w1, . . . , wp on
[ - 1, 1], then one uses the approximation [11]

(f, g)L2([ - 1,1]) \approx 
p\sum 

k=1

wkf(xk)g(xk).

A practical implementation of the operator analogue of FEAST is presented in
Algorithm 4.1. As with matrix FEAST, there are two approaches for improving
the accuracy of the Ritz values \^\lambda 1, . . . , \^\lambda m and vectors \^Q\^x1, . . . , \^Q\^xm. The first is
to improve the accuracy of the quadrature rule in (4.1). The second is to iterate the
algorithm by replacing F by the quasimatrix \^U with columns \^ui = \^Q\^xi for 1 \leq i \leq m,
repeating the process if necessary.6 For normal operators, this iteration generates a
sequence of quasimatrices \^Qk with \scrH -orthonormal columns that converge to an \scrH -
orthonormal basis for the invariant subspace \scrV as k \rightarrow \infty . This can be viewed as
a rational subspace iteration, and geometric convergence of the Ritz pairs is typical
(see section 5).

With either refinement strategy, the accuracy of the Ritz pairs may be monitored
using the residual norm (see step 6 of Algorithm 4.1) as a proxy, just as in the matrix
case. For normal operators, the error in the eigenvalues and eigenvectors computed by
Algorithm 4.1 is typically\scrO (\epsilon ), where \epsilon is the threshold for the residual norm in step 6.
We defer a discussion of the convergence and stability of Algorithm 4.1 to section 5.
Additional resources on residual norm bounds for eigenvalues and eigenvectors of
matrices and extensions to closed linear operators are found in [8, 12, 51].

In practice, when \scrL is nonnormal it may be beneficial to use a dual Rayleigh--Ritz
projection \^Q\ast 

L\scrL \^QR, where the columns of \^QR approximate an orthonormal basis for

the target eigenspace of \scrL and the columns of \^QL approximate an orthonormal basis
for the associated eigenspace of the adjoint \scrL \ast . In the case of matrix FEAST, the
use of the dual projection leads to a nonnormal matrix eigensolver with improved
robustness [32]. Although it is not difficult to adapt Algorithm 4.1 to an operator
analogue of FEAST that uses dual projection, we focus on the implementation and
analysis of the one-sided iteration.

Typically, solving the ODEs in (4.2) dominates the computational cost of Algo-
rithm 4.1. With the ultraspherical spectral method, the computational complexity of
solving the linear ODEs with m distinct right-hand sides is \scrO (mMN log(N)) float-
ing point operations (flops) [36]. Here, N and M are, respectively, the degrees of

6When \scrL is nonnormal the Ritz vectors \^Q\^x1, . . . , \^Q\^xm may become numerically linearly de-
pendent, which can lead to an ill-conditioned basis \^V in subsequent iterations. The robustness of
Algorithm 4.1 may be improved by computing the Schur vectors v1, . . . , vm of \^L and using the
orthonormal basis \^Q\^v1, . . . , \^Q\^vm to seed the next iteration [52].
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the truncated Chebyshev series needed to resolve the columns of Gk and the vari-
able coefficients in \scrL to within the tolerance \epsilon specified in Algorithm 4.1. In ad-
dition to the ODE solve, the QR factorization in (ii) requires \scrO (m2N) flops [57],
while the dense eigenvalue computation with a small m \times m matrix in (iii) takes
\scrO (m3) flops [24, p. 391]. The complexity of one iteration of Algorithm 4.1 is therefore
\scrO (mMN log(N) + m2N + m3) flops. In practice, convergence to machine precision
usually occurs within two or three iterations.

4.1. Computing high-frequency eigenmodes. Algorithm 4.1 adaptively and
accurately resolves basis functions for highly oscillatory eigenmodes and preserves the
sensitivity of the eigenvalues of the differential operator \scrL , so it is well-suited to
computing high-frequency eigenmodes when \scrL is self-adjoint or normal with respect
to (\cdot , \cdot )\scrH . We provide two examples from Sturm--Liouville theory to illustrate the
effectiveness of the solve-then-discretize methodology in the high-frequency regime.

4.1.1. A regular Sturm--Liouville eigenvalue problem. First, consider a
regular Sturm--Liouville eigenvalue problem (SLEP) given by

(4.4)  - d2u

dx2
+ x2u = \lambda cosh(x)u, u(\pm 1) = 0.

This defines a self-adjoint differential operator with respect to the inner product

(4.5) (v, u)w =

\int 1

 - 1

vu cosh(x) dx.

Consequently, (4.4) possesses a complete (\cdot , \cdot )w-orthonormal basis of eigenfunctions
u1, u2, u3, . . . for the weighted Hilbert space \scrH w = \{ u : \| u\| w =

\sqrt{} 
(u, u)w < \infty \} and

an unbounded set of real eigenvalues \lambda 1 \leq \lambda 2 \leq \lambda 3 \leq \cdot \cdot \cdot .
Asymptotics for the large eigenvalues of (4.4) are given by [2]

(4.6)
\sqrt{} 

\lambda n \sim n\pi \int 1

 - 1

\sqrt{} 
cosh(x) dx

, n \rightarrow \infty .

To accurately compute the large eigenvalues of (4.4) with Algorithm 4.1, we prescribe
circular search regions with unit radius centered at the values given by the asymptotic
formula in (4.6) (see Figure 4.1). Each search region contains one eigenvalue.

4.1.2. An indefinite Sturm--Liouville eigenvalue problem. Next, we con-
sider the following indefinite SLEP:

(4.7)  - d2u

dx2
= \lambda x3u, u(\pm 1) = 0,

which is closely related to models of light propagation in a nonhomogeneous mate-
rial [2, 61]. Since the weight function x3 changes sign at x = 0, (4.7) has a bi-infinite
sequence of eigenvalues [6]. We index them in order as \cdot \cdot \cdot \leq \lambda  - 2 \leq \lambda  - 1 < 0 < \lambda 1 \leq 
\lambda 2 \leq \cdot \cdot \cdot . The asymptotics for the positive eigenvalues are given by [3]

(4.8)
\sqrt{} 

\lambda n \sim (n - 1/4)\pi \int 1

0
x3/2 dx

, \lambda n > 0, n \rightarrow \infty .

A similar expansion holds for the negative eigenvalues [3].
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Fig. 4.1. Left: The large eigenvalues of (4.4) are computed by contFEAST (see Algorithm 4.1)
using search regions given by asymptotic estimates for the eigenvalues (4.6). Right: The relative

difference | \^\lambda n  - \lambda asy
n | /\lambda asy

n between the eigenvalues \^\lambda n computed by contFEAST and the asymptotic
values \lambda asy

n from (4.6). The difference is compared to an \scrO (n - 2) relative error estimate [2].
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Fig. 4.2. Left: The high-frequency eigenfunction associated to \lambda 1500 of the indefinite SLEP
(4.7) computed by contFEAST (see Algorithm 4.1). Right: The Chebyshev coefficients \{ \^uk\} in a
series expansion used to represent the eigenfunction. About 5371 Chebyshev coefficients are needed
to accurately resolve the eigenfunction. The rapid decay in the coefficients to essentially machine
precision is a good indication that the solution is fully resolved.

In contrast to the previous example, the indefinite weight function x3 means
that (4.7) is not immediately associated with a self-adjoint operator on a Hilbert
space. Instead, (4.7) is usually studied through the lens of a Krein space and the
eigenfunctions form a Riesz basis for the Hilbert space with the inner product [15]

(4.9) (v, u)| w| =

\int 1

 - 1

vu| x| 3 dx.

We use the leading order asymptotics in (4.8) to identify search regions that are
likely to contain an eigenvalue of (4.7). Because the ultraspherical spectral method
used to solve the ODEs in step 2 of Algorithm 4.1 is efficient when applied to ODEs
with smooth variable coefficients, it is convenient to treat (4.7) as a generalized ei-

genvalue problem, i.e., as \scrL 1u = \lambda \scrL 2u, where \scrL 1u =  - d2u
dx2 and \scrL 2u = x3u. The

eigenvalues of the pencil z\scrL 2  - \scrL 1 are then computed with a straightforward gener-
alization of Algorithm 4.1 that is based on the spectral projector for the generalized
eigenvalue problem, i.e.,

(4.10) \scrP \scrV =
1

2\pi i

\int 
\partial \Omega 

(z\scrL 2  - \scrL 1)
 - 1\scrL 2 dz.
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The eigenvalues and eigenfunctions are automatically resolved to essentially machine
precision because of the use of the adaptive QR solver (see Figure 4.2).

5. Convergence and stability. The primary consequence of the approxima-
tions introduced in Algorithm 4.1 is that the spectral projector is no longer applied
exactly. Therefore, the basis \^Q computed for the Rayleigh--Ritz projection is not an
exact basis for the invariant subspace \scrV of \scrL and may require further refinement.
Here, we view the iterative refinement procedure used in Algorithm 4.1 as a rational
subspace iteration applied to a normal differential operator \scrL in order to provide a
preliminary analysis of the stability of the iteration and the sensitivity of the Ritz
values. The main results may be summarized as follows.

(i) Algorithm 4.1 yields a sequence of quasimatrices \^Q1, . . . , \^Qk that (generi-
cally) converge geometrically to an orthonormal basis for the eigenspace \scrV 
(see Theorem 5.1).

(ii) If \^Qk is a sufficiently good approximation to an orthonormal basis for \scrV , then
the \epsilon -psuedospectrum of \^Q\ast 

k\scrL \^Qk is contained in the 2\epsilon -psuedospectrum of \scrL 
itself (see Theorem 5.2).

(iii) Under mild conditions on the initial quasimatrix F in Algorithm 4.1, the
sequence \| \scrL ( \^Qk - Q)\| \BbbC m\rightarrow \scrH is uniformly bounded as k \rightarrow \infty (see Lemma 5.3).

Taken together, these results demonstrate that each iteration of Algorithm 4.1 yields
uniformly consistent Ritz pairs that converge linearly to the desired eigenpair and
that the unboundedness of \scrL does not lead to instability. Note that this analysis does
not take into account the impact of finite-precision arithmetic or the fact that the
shifted differential equations in (4.2) are not solved exactly at each iteration (see the
discussion at the end of subsection 5.1). However, (ii) ensures that the eigenvalues
of the small matrix \^Q\ast 

k\scrL \^Qk are not much more sensitive than the eigenvalues of \scrL .
Therefore, provided that the eigenvalue problem for \scrL is well-conditioned and we
compute a sufficiently accurate approximation to a basis for \scrV , then we expect that
the eigenvalues computed with Algorithm 4.1 provide an accurate approximation to
the desired eigenvalues of \scrL .

5.1. Rational subspace iteration for differential operators. Analogous
to the matrix case [53], Algorithm 4.1 may be interpreted as a filtered subspace
iteration. Filtered subspace iteration is a variant of standard subspace iteration for
computing a target subset of eigenvalues of a matrix A [46, Chap. 5]. The main idea
is to choose a filter function s(\cdot ) that is large on the targeted eigenvalues of A and
small on the unwanted eigenvalues of A. Applying the spectral transformation s(A),7

one uses standard subspace iteration to compute a basis for the eigenspace of s(A)
corresponding to its largest eigenvalues, i.e., the targeted eigenvalues of A. With an
approximate basis for the eigenspace available, the eigenvalues and eigenvectors can
be extracted with a Rayleigh--Ritz step.

From this perspective, Algorithm 4.1 computes the eigenvalues of \scrL in \Omega with
the aid of a rational filter function induced by the quadrature rule in (4.1), i.e., s(\cdot )
is given by

(5.1) s(z) =

\ell \sum 
k=1

wk

zk  - z
, z \in \BbbC \setminus \{ z1, . . . , zl\} .

7A spectral transformation s(\cdot ) may be applied to A via the eigendecomposition of A, or more
generally the Jordan decomposition. For example, if A has eigendecomposition A = X\Lambda X - 1 with
\Lambda = diag(\lambda 1, . . . , \lambda n), then s(A) = X s(\Lambda )X - 1, where s(\Lambda ) = diag(s(\lambda 1), . . . , s(\lambda n)).
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The functional calculus for unbounded normal operators ensures that if \lambda i is an eigen-
value of \scrL with eigenfunction ui, then s(\lambda i) is an eigenvalue of s(\scrL ) with eigenfunction
ui [44, VIII.5].

8 As the degree of the quadrature rule is increased, the rational function
becomes an increasingly good approximation to the Cauchy integral

(5.2) \chi (z) =
1

2\pi i

\int 
\partial \Omega 

dw

w  - z
, z \in \BbbC \setminus \partial \Omega .

Therefore, the eigenvalues of \scrL in \Omega are usually \scrO (1) in size under the spectral
transformation s(\cdot ) while the eigenvalues outside of \Omega are much smaller.

We now turn to the convergence of the iteration described in Algorithm 4.1, which
we interpret as a subspace iteration applied to the bounded linear operator \^\scrP \scrV = s(\scrL ).
It is helpful to introduce the notions of the spectral radius and a dominant eigenspace
of a bounded linear operator \scrB . The spectral radius of a bounded linear operator \scrB 
on a Hilbert space \scrH is defined as [16, p. 99]

(5.3) \rho (\scrB ) = max\{ | z| : z \in \lambda (\scrB )\} .

The spectral radius is useful because it characterizes the asymptotic behavior of

\| \scrB k\| \scrH , in the sense that \rho (\scrB ) = limk\rightarrow \infty \| \scrB k\| 1/k\scrH [16, Theorem 4.1.3]. Let \scrV be
an invariant subspace of \scrB associated with eigenvalues \lambda 1 \geq \cdot \cdot \cdot \geq \lambda m and a spectral
projector \scrP \scrV . We say that \scrB has dominant eigenspace \scrV if

(5.4) \rho ((\scrI  - \scrP \scrV )\scrB ) < | \lambda m| .

The following theorem is an extension of a convergence analysis [46, p. 119] for
matrix subspace iteration to the setting of bounded linear operators with a dominant
eigenspace. We omit the details of the proof, as they are identical to those found in
the proof of Lemmas 3.1 and 3.2 of [26].

Theorem 5.1. Let \scrB be a bounded linear operator on a Hilbert space \scrH with
dominant eigenspace \scrV , defined in (5.4), having dim(\scrV ) = m. Select a quasimatrix
F : \BbbC m \rightarrow \scrH such that the columns of \scrP \scrV F are linearly independent, and suppose the
columns of the quasimatrix \^Qk : \BbbC m \rightarrow \scrH form an orthonormal basis for range(\scrB kF ),
for k = 1, 2, 3, . . . . If u \in \scrV is an eigenvector of \scrB with eigenvalue \lambda , then there is a
function \^uk \in range( \^Qk) such that

\| \^uk  - u\| \scrH \leq (| \rho /\lambda | + \epsilon k)
k \| (I  - \scrP \scrV )Fx\| \scrH , k = 1, 2, 3, . . . ,

where \rho = \rho ((\scrI  - \scrP \scrV )\scrB ), \epsilon k \rightarrow 0 as k \rightarrow \infty , and u = \scrP \scrV Fx.

Although we have neglected the effects of approximately solving the ODEs in (4.2)
and the impact of round-off errors in our brief analysis of rational subspace iteration
for normal differential operators, we mention two recent results for rational subspace
iteration with matrices [47] and self-adjoint differential operators [26, 27].
\bullet For matrices, small errors made during application of the spectral projector gener-
ally do not alter the convergence behavior of subspace iteration [47]. In this case,
the sequence \^Qk no longer converges to an exact basis for \scrV . However, the matrices
\^Qk approximate a basis for \scrV and the approximation error converges geometrically
to a constant determined by the sizes of the errors introduced at each iteration [47].

8The result [44, VIII.5] is stated for closed self-adjoint operators on \scrH ; however, it extends
immediately to closed normal operators on \scrH if the spectral decomposition of a closed normal op-
erator [45, Theorem 13.33] is used in place of the spectral decomposition of a self-adjoint operator.
For information on the spectral decomposition of unbounded normal operators and the associated
functional calculus, see [45, Chap. 13] and [19].
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\bullet For self-adjoint differential operators (closed and densely defined on \scrH ), rational
subspace iteration converges to a subspace even when the resolvent operator is
discretized to solve the ODEs in (4.2) [26, 27]. The distance between the computed
subspace and the target eigenspace (in a distance metric between subspaces) is
proportional to the approximation error in the discretized resolvent [26, 27].

We expect that similar statements hold for normal operators on \scrH , but a rigorous
and detailed convergence analysis is more subtle and beyond the scope of this paper.

5.2. A pseudospectral inclusion theorem. As range( \^Q) is not an invariant
subspace of \scrL , the \epsilon -pseudospectrum of \^Q\ast \scrL \^Q is not, in general, contained in the
\epsilon -pseudospectrum of \scrL . However, if \| \^Q  - Q\| \BbbC m\rightarrow \scrH is sufficiently small, then the
\epsilon -pseudospectrum of \^Q\ast \scrL \^Q is contained in the 2\epsilon -pseudospectrum of \scrL .

Theorem 5.2. Consider a closed operator \scrL with domain \scrD (\scrL ) that is densely
defined on a Hilbert space \scrH and fix \epsilon > 0. Let Q : \BbbC m \rightarrow \scrD (\scrL )

\bigcap 
\scrD (\scrL \ast ) satisfy

Q\ast Q = I, and let range(Q) be an m-dimensional invariant subspace of \scrL . If \^Q :
\BbbC m \rightarrow \scrD (\scrL ) satisfies

\| \^Q - Q\| \BbbC m\rightarrow \scrH 

\Bigl( 
\| \scrL \ast Q\| \BbbC m\rightarrow \scrH + \| \scrL Q\| \BbbC m\rightarrow \scrH + \| \scrL ( \^Q - Q)\| \BbbC m\rightarrow \scrH 

\Bigr) 
<

\epsilon 

2
,

then \lambda \epsilon ( \^Q
\ast \scrL \^Q) \subset \lambda 2\epsilon (\scrL ).

Proof. Consider z \in \lambda \epsilon ( \^Q
\ast \scrL \^Q). If z \in \lambda \epsilon ( \^Q

\ast \scrL \^Q) \cap \lambda \epsilon (\scrL ), there is nothing to
prove, so assume without loss of generality that z \not \in \lambda \epsilon (\scrL ). If we denote RQ(z) =

(zI  - Q\ast \scrL Q) - 1, R \^Q(z) = (zI  - \^Q\ast \scrL \^Q) - 1, and E = \^Q  - Q, then we have that

R \^Q(z) = [RQ(z)
 - 1 - B] - 1, where B = Q\ast \scrL E+E\ast \scrL Q+E\ast \scrL E. Employing a formula

for the inverse of the sum of two matrices, we obtain R \^Q(z) = RQ(z) + RQ(z)[I  - 
BRQ(z)]

 - 1BRQ(z) [30].
Now, \| B\| \BbbC m \leq \| Q\ast \scrL E\| \BbbC m + \| E\ast \scrL Q\| \BbbC m + \| E\ast \scrL E\| \BbbC m . Since \| E\ast \| \scrH \rightarrow \BbbC m =

\| E\| \BbbC m\rightarrow \scrH and \| Q\ast \scrL \| \scrH \rightarrow \BbbC m = \| \scrL \ast Q\| \BbbC m\rightarrow \scrH [31, p. 256], our hypothesis indicates
that the sum of the three terms comprising B is bounded in norm by

\| B\| \BbbC m \leq \| E\| \BbbC m\rightarrow \scrH (\| \scrL \ast Q\| \BbbC m\rightarrow \scrH + \| \scrL Q\| \BbbC m\rightarrow \scrH + \| \scrL E\| \BbbC m\rightarrow \scrH ) <
\epsilon 

2
.

Moreover, since z \not \in \lambda \epsilon (\scrL ), we have that \| RQ(z)\| \BbbC m \leq 1/\epsilon by Theorem 3.2. Therefore,
\| BRQ(z)\| \BbbC m \leq 1/2.

Because \| BRQ(z)\| \BbbC m \leq 1/2, we may use the Neumann series to compute (I  - 
BRQ(z))

 - 1 =
\sum \infty 

k=0(BRQ(z))
k. We see that R \^Q(z) = RQ(z)

\bigl( 
I +

\sum \infty 
k=1(BRQ(z))

k
\bigr) 

and therefore,

\| R \^Q(z)\| \BbbC m \leq 

\Biggl( 
1 +

\infty \sum 
k=1

1

2k

\Biggr) 
\| RQ(z)\| \BbbC m = 2\| RQ(z)\| \BbbC m .

Now, if z \in \lambda \epsilon ( \^Q
\ast \scrL \^Q), then \| RQ(z)\| \BbbC m \geq \| R \^Q(z)\| \BbbC m/2 > 1/(2\epsilon ). By Theorem 3.2,

we have that \| (zI  - \scrL ) - 1\| \scrH \geq \| RQ(z)\| \BbbC m . Collecting inequalities yields the result
\| (zI  - \scrL ) - 1\| \scrH > 1/(2\epsilon ), i.e., z \in \lambda 2\epsilon (\scrL ).

A consequence of Theorem 5.2 is that Algorithm 4.1 possesses a type of stability
provided that \scrL is uniformly bounded on the sequence E1, E2, E3, . . . , where Ek =
\^Qk  - Q for k \geq 1. If \scrL is uniformly bounded on \{ Ek\} \infty k=1, then there is a \Lambda \geq 0 such
that supk\geq 1\| \scrL Ek\| \BbbC m\rightarrow \scrH \leq \Lambda . Applying Theorem 5.2, we see that Algorithm 4.1
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1254 ANDREW HORNING AND ALEX TOWNSEND

computes elements in the 2\epsilon -pseudospectrum of \scrL provided that a basis for \scrV is
resolved to within \epsilon /(2(\| \scrL \ast Q\| \BbbC m\rightarrow \scrH + \| \scrL Q\| \BbbC m\rightarrow \scrH + \Lambda )).

We now verify, with two mild constraints placed on the choice of the initial quasi-
matrix F , that \scrL is uniformly bounded on the sequence \{ \^Qk\} \infty k=1 generated by Algo-
rithm 4.1. Note that this implies that \scrL is uniformly bounded on \{ Ek\} \infty k=1 because

Ek = \^Qk  - Q and range(Q) \subset \scrD (\scrL ). The constraints on F are generically satisfied
when F is selected as in section 4. In the statement of the bound on \| \scrL \^Qk\| \BbbC m\rightarrow \scrH ,
we use the notation \sigma min(\scrP \scrV F ) and \sigma min((\scrI  - \scrP \scrV )F ) to denote the smallest singular
values of the quasimatrices \scrP \scrV F and (\scrI  - \scrP \scrV )F , respectively.9

Lemma 5.3. Consider a closed, normal operator \scrL with domain \scrD (\scrL ) that is
densely defined on a Hilbert space \scrH . Let \^\scrP \scrV be the bounded operator on \scrH defined
in (4.1) and suppose that \^\scrP \scrV has a dominant eigenspace of \scrV (see (5.4)) with dim(\scrV ) =
m. Let F , \scrP \scrV , and \{ \^Qk\} \infty k=1 be as in Theorem 5.1 with \scrB = \^\scrP \scrV . Suppose that \^\scrP k

\scrV F
(for each k \geq 1) and (\scrI  - \scrP \scrV )F each have linearly independent columns and that
range(F ) \subset \scrD (\scrL ). Then, we have that

\| \scrL \^Qk\| \BbbC m\rightarrow \scrH \leq 2M\| \scrL F\| \BbbC m\rightarrow \scrH , k = 1, 2, 3 . . . ,

where M = max \{ 1/\sigma min(\scrP \scrV F ), 1/\sigma min((\scrI  - \scrP \scrV )F )\} .
Proof. Since \^Qk is an orthonormal basis for \^\scrP k

\scrV F , there is a matrix Rk \in \BbbC m\times m

such that \^\scrP k
\scrV F = \^QkRk. By the assumption that \^\scrP k

\scrV F has linearly independent
columns, we know that Rk is invertible. We obtain that

(5.5) \^Qk = \^\scrP k
\scrV FR - 1

k .

We use the spectral projector \scrP \scrV to rewrite (5.5) as

(5.6) \^Qk = \^\scrP k
\scrV (\scrP \scrV F + (\scrI  - \scrP \scrV )F )R - 1

k .

Now, range(\scrP \scrV F ) and range((\scrI  - \scrP \scrV )F ) are invariant under \^\scrP \scrV [31, p. 178].
Consequently, there are matrices D1, D2 \in \BbbC m\times m such that

(5.7) \^\scrP k
\scrV \scrP \scrV F = \scrP \scrV FDk

1 , \^\scrP k
\scrV (\scrI  - \scrP \scrV )F = (\scrI  - \scrP \scrV )FDk

2 .

Substituting (5.7) into (5.6) yields the following useful equation for \^Qk:

(5.8) \^Qk =
\bigl( 
\scrP \scrV FDk

1 + (\scrI  - \scrP \scrV )FDk
2

\bigr) 
R - 1

k .

Applying \scrL to both sides of (5.8) and commuting with the spectral projectors \scrP \scrV and
\scrI  - \scrP \scrV [31, p. 179], we obtain

(5.9) \scrL \^Qk =
\bigl( 
\scrP \scrV \scrL FDk

1 + (\scrI  - \scrP \scrV )\scrL FDk
2

\bigr) 
R - 1

k .

Since range(F ) \subset \scrD (\scrL ), we have that \| \scrL F\| \BbbC m\rightarrow \scrH < \infty . Additionally, since \scrL 
is normal, the spectral projectors have norms equal to 1 [31, p. 277]. Therefore, it
remains to find a uniform bound for \| Dk

1R
 - 1
k \| \BbbC m and \| Dk

2R
 - 1
k \| \BbbC m as k \rightarrow \infty .

9The singular value decomposition of a quasimatrix A : \BbbC m \rightarrow \scrH is the decomposition A =
U\Sigma V \ast , where U : \BbbC m \rightarrow \scrH is a quasimatrix with \scrH -orthonormal columns, \Sigma \in \BbbC m\times m is a diagonal
matrix with nonnegative entries \sigma 1 \geq \cdot \cdot \cdot \geq \sigma m, and V \in \BbbC m\times m is a unitary matrix [56].
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For brevity, we prove uniform boundedness of \| Dk
1R

 - 1
k \| \BbbC m and note that the

proof for \| Dk
2R

 - 1
k \| \BbbC m is essentially identical. We begin by commuting \^\scrP \scrV with the

spectral projectors in (5.7) and substituting the QR factorization of \^\scrP k
\scrV F to see that

(5.10) \scrP \scrV \^Qk = (\scrP \scrV F )Dk
1R

 - 1
k .

Using the psuedoinverse (\scrP \scrV F )+ of the quasimatrix10 \scrP \scrV F and noting that \scrP \scrV F has
linearly independent columns, (5.10) implies that

(5.11) Dk
1R

 - 1
k = (\scrP \scrV F )+\scrP \scrV \^Qk.

Now, we know that \| \scrP \scrV \^Qk\| \scrH \leq 1, because \| \scrP \scrV \| \scrH = 1 and \^Qk has orthonormal
columns. We conclude that

(5.12) \| Dk
1R

 - 1
k \| \BbbC m \leq 1

\sigma min(\scrP \scrV F )
.

A similar argument shows that

(5.13) \| Dk
2R

 - 1
k \| \BbbC m \leq 1

\sigma min((\scrI  - \scrP \scrV )F )
.

Taking norms in (5.9) and substituting the bounds from (5.12) and (5.13), we find

(5.14) \| \scrL \^Qk\| \BbbC m\rightarrow \scrH \leq \| \scrL F\| \BbbC m\rightarrow \scrH 

\biggl( 
1

\sigma min(\scrP \scrV F )
+

1

\sigma min((\scrI  - \scrP \scrV )F )

\biggr) 
.

The lemma follows immediately from (5.14).

Theorem 5.1, Theorem 5.2, and Lemma 5.3 provide a preliminary analysis to ex-
plain why Algorithm 4.1 accurately computes the eigenvalues of normal operators with
a dominant eigenspace \scrV . Theorem 5.1 allows us to accurately resolve an orthonormal
basis Q for \scrV by refining the quasimatrix \^Qk with subspace iteration. Lemma 5.3 con-
firms that \scrL \^Qk does not grow without bound as \^Qk is refined. Finally, Theorem 5.2
demonstrates that the eigenvalues are computed to the expected accuracy, provided
that the basis for \scrV has been resolved.

6. An operator analogue of the Rayleigh Quotient Iteration. It is useful
to have operator analogues for other eigensolvers too; particularly, when the eigen-
values of interest are difficult to target with a pre-selected search region \Omega \subset \BbbC . The
Rayleigh Quotient Iteration (RQI) is a generalization of the inverse iteration that
incorporates dynamic shifting to obtain cubic (for Hermitian problems) or quadratic
(non-Hermitian problems) convergence [42]. Given a matrix A \in \BbbC n\times n and an initial
vector \~y0 \in \BbbC n, RQI computes the iterates

(6.1) \~yk+1 = (A - \beta kI)
 - 1yk, \beta k = y\ast kAyk, yk =

\~yk
\| \~yk\| 2

, k = 0, 1, 2, . . . .

The vectors yk typically converge to a nearby eigenvector of A, while the sequence
\beta k converges to the associated eigenvalue of A [40]. In the matrix setting, (6.1)

10The pseudoinverse of a quasimatrix A : \BbbC m \rightarrow \scrH may be defined via the SVD as A+ = V \Sigma +U\ast ,
where \Sigma + is the diagonal matrix with entries \Sigma +

ii = 1/\sigma i if \sigma i \not = 0 and 0 otherwise. It is easy to verify
familiar properties from the matrix case [24, p. 290], i.e., if A has linearly independent columns, then
A+A = I and \| A+\| \scrH \rightarrow \BbbC m = 1/\sigma min(A).

D
ow

nl
oa

de
d 

06
/0

2/
20

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1256 ANDREW HORNING AND ALEX TOWNSEND

0 0.25 0.5 0.75 1

x/L

\lambda 1 \approx 3.759

\lambda 2 \approx 178.4

\lambda 3 \approx 1470

\lambda 4 \approx 5712

Fig. 6.1. Selected free-vibration modes of an airplane wing modeled by (6.3).

is often used to compute interior eigenvalues or refine an estimate of an invariant
subspace [41, 42].

Replacing a matrix A by a differential operator \scrL : \scrD (\scrL ) \rightarrow \scrH , as in (1.1), and
the vectors \~yk by functions fk \in \scrD (\scrL ), we obtain an operator analogue of RQI. One
needs to select an initial function f0 \in \scrD (\scrL ) and solve a sequence of ODEs, i.e.,

(6.2) (\scrL  - \beta kI)fk+1 = fk, fk+1(\pm 1) = \cdot \cdot \cdot = f
(N/2)
k+1 (\pm 1) = 0.

At each iteration, the shift \beta k is computed from the Rayleigh quotient (fk,\scrL fk)\scrH (in
strong form) and the solution fk+1 is normalized after each iteration. Analogous to
the matrix setting, we observe that the operator analogue of RQI converges cubically
for self-adjoint operators and quadratically otherwise [28].

We note that block generalizations of RQI (e.g., RSQR and GRQI [1]) are also
easily extended to the differential operator setting. In this case, a sequence of quasi-
matrices \^Qk with \scrH -orthonormal columns are generated to approximate an invariant
subspace of \scrL and a Rayleigh--Ritz projection is performed to compute approximate
eigenvalues and eigenvectors. As with the operator analogue of FEAST, Theorem 5.2
implies that the iteration (6.2) accurately computes eigenvalues of normal differential
operators when the basis for the target eigenspace is sufficiently resolved.

6.1. Free vibrations of an airplane wing. The improved convergence rate
of RQI can offer much faster computation time than subspace iteration, often re-
quiring only three or four ODE solves to reach an accuracy of essentially machine
precision [28]. We now employ (6.2) for the rapid computation of vibrational modes
of an airplane wing.

An airplane wing may be crudely modeled as a thin, cantilevered beam of length
L with a linear taper. The governing equation for free vibrations is [29]

(6.3)
d2

dx2

\biggl( 
(1 + x)

d2u

dx2

\biggr) 
= \lambda u, u(0) = u\prime (0) = 0, u\prime \prime (L) = u\prime \prime \prime (L) = 0.

The variable coefficient 1 + x accounts for the linear taper of the wing, while the
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boundary conditions on u\prime \prime and u\prime \prime \prime at x = 1 express the natural requirement that the
bending moment and shear force vanish at the endpoint.

To compute a few of the smoothest modes of (6.3) we use the eigenfunctions wn of
the cantilevered beam equation with constant coefficients, given in closed form by [29]

(6.4) wn(x) = cosh\beta nx - cos\beta nx+
cos\beta nL+ cosh\beta nL

sin\beta nL+ sinh\beta nL
(sin\beta nx+ sinh\beta nx).

Here \beta n is the nth root of g(\beta ) = cosh(\beta L) cos(\beta L)+1 [29]. We target a mode of (6.3)
by setting f0(x) = wn(x). Figure 6.1 shows the modes that are computed using initial
guesses w1, . . . , w4, corresponding to the smallest four positive roots of g(\beta ).

7. Computing eigenvalues in unbounded regions. The stability analysis of
solutions to time-dependent partial differential equations (PDEs) provides an abun-
dant source of differential eigenvalue problems. Consider the initial boundary value
problem (IBVP) with periodic boundary conditions

(7.1) ut = \scrL u+\scrN (u), ut(x, 0) = g(x), u( - 1, t) = u(1, t).

Here, \scrL and \scrN are linear and nonlinear ordinary differential operators (with respect
to the variable x), respectively. In many instances, (7.1) supports steady-states, trav-
eling wave states, or other phenomena whose stability is of critical importance in the
physical problem under study [4, 34, 48]. When \scrL is self-adjoint or normal, the sta-
bility analysis often reduces to determining whether or not the eigenvalues of \scrL are
contained in one half-plane [4, 33, 48, 59]. We now show how to modify the spec-
tral projector in (3.1) to derive a practical rational filter to compute (finitely many)
eigenvalues of \scrL in the right half-plane.

7.1. A rational filter for the half-plane. Let \scrL be a closed linear operator
that is densely defined on a Hilbert space \scrH . Suppose that \scrL is a normal operator
with a spectrum in the left half-plane Re(z) < 0 except for finitely many eigenvalues
\lambda 1, . . . , \lambda m (including multiplicities) such that Re(\lambda i) > 0 for 1 \leq i \leq m. Denote
the eigenspace associated with \lambda 1, . . . , \lambda m by \scrV and consider search regions that are
semicircles of radius R, i.e.,

(7.2) \Omega R = \{ z \in \BbbC : | z| < R,Re(z) > 0\} , R > max1\leq i\leq m| \lambda i| .

To construct a computable spectral projector onto the right half-plane we consider
taking R \rightarrow \infty . We adopt the following strategy:

(i) Introduce a 1/R decay into the integrand of the spectral projector (3.1) as
R \rightarrow \infty , while preserving the projection onto \scrV .

(ii) Split the projector into an integral over the vertical part of \partial \Omega R and an
integral over the circular arc of \partial \Omega R. By taking R \rightarrow \infty , we observe that the
contribution from the circular arc goes to 0 due to the additional 1/R decay
in the integrand.

(iii) Map the imaginary axis to the interval [ - 1, 1] and approximate the spectral
projector by a quadrature rule.

Select a \in \BbbR + and consider the family of functions that are analytic in the right
half-plane defined by

(7.3) \scrP R(\lambda ) =
1

2\pi i

\int 
\partial \Omega R

(z + a) - 1(z  - \lambda ) - 1 dz.
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Fig. 7.1. Left: The region \Omega R from (7.2) used in the derivation of the rational filter over the
right half-plane. Right: The constructed rational filter (7.6) for the right half-plane with \ell = 20.

By Cauchy's Integral Formula, we know that \scrP R(\lambda ) = (\lambda +a) - 1 if \lambda \in \Omega R and is zero
otherwise [50]. Taking the limit R \rightarrow \infty , we obtain

(7.4) \scrP (\lambda ) = lim
R\rightarrow \infty 

\scrP R(\lambda ) =
1

2\pi 

\int \infty 

 - \infty 
(iy + a) - 1(iy  - \lambda ) - 1 dy.

Using functional calculus for unbounded normal operators we can extend \scrP (\lambda ) to
an operator-valued function \scrP (\scrL ) [45, Theorem 13.24].11 Moreover, we have that
\scrP (\scrL )u = \scrP (\lambda )u when \scrL u = \lambda u [44, VIII.5]. Consequently, range(\scrP (\scrL )) = \scrV .

Now, take the change-of-variables x = 2
\pi tan - 1 y in (7.4) to obtain

(7.5) \scrP (\scrL ) = 1

4

\int 1

 - 1

\Bigl( 
i tan

\Bigl( \pi x
2

\Bigr) 
+ a
\Bigr)  - 1 \Bigl( 

i tan
\Bigl( \pi x

2

\Bigr) 
\scrI  - \scrL 

\Bigr)  - 1

sec2
\Bigl( \pi x

2

\Bigr) 
dx.

Using Gauss--Legendre quadrature nodes x1, . . . , x\ell and weights w1, . . . , w\ell on [ - 1, 1],
we can approximate \scrP (\scrL ) by

(7.6) \^\scrP (\scrL ) = 1

4

\ell \sum 
k=1

wk
1 - z2k
zk + a

(zk\scrI  - \scrL ) - 1, zk = i tan
\Bigl( \pi xk

2

\Bigr) 
.

Figure 7.1 (right) shows the derived rational filter \^\scrP (\lambda ) in the complex plane.

7.2. Stability of thin fluid films. To demonstrate the utility of the filter
in (7.6), we assess the stability of the steady-state solutions to a PDE governing the
motion of a thin film of fluid supported below by a flat substrate. The PDE is

(7.7) ut = \partial 4
xu+ \partial x(u\partial xu),

where u(x, t) is a positive, periodic function representing the thickness of the fluid [34].
The nonlinear term models gravitational effects and substrate-fluid interactions [34].

A droplet steady-state uss(x) of (7.7), rescaled so that it is supported on [0, l]
with contact angle \pi /4, is stable if all the eigenvalues of a fourth-order differential
operator are in the left half-plane. The associated differential eigenproblem is [33]

(7.8)
d4u

dx4
+

d

dx

\biggl( 
uss

du

dx

\biggr) 
= \lambda u, u(0) = u(l) = 0, u\prime \prime (0) = u\prime \prime (l) = 0.

11In [45, Theorem 13.24], Ex,y is the spectral measure of \scrL [45, Theorem 13.33].

D
ow

nl
oa

de
d 

06
/0

2/
20

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FEAST FOR DIFFERENTIAL EIGENPROBLEMS 1259

0 1 2 3 4

0

0.5

1

1.5

2

2.5

x

uss

Real(z)

Im
a
g
(z
)

Fig. 7.2. Left: A droplet, uss, which is a steady-state solution to (7.7), computed from the
nonlinear ODE in (7.9). Right: Two rightmost eigenvalues (blue and red dots) of (7.8) together
with a log-scale colormap of the rational filter in (7.6) with \ell = 20, which is used in place of (4.1).
The eigenvalue with a positive real part (red dot) indicates that this steady-state droplet is unstable.

We compute the steady-state uss(x) by solving the second-order nonlinear ODE [34]

(7.9)
duss

dx
+

1

2
u2
ss  - \delta = 0, uss(0) = 0, u\prime 

ss(0) = 1.

Here, \delta is a dimensionless quantity relating the rescaled problem to the original contact
angle [34]. The length l of the droplet's base and \delta may be calculated analytically [34].

In Figure 7.2, we show an approximation to the rescaled steady-state uss along
with the rightmost eigenvalues of (7.8). Using the rational filter in (7.6) with \ell = 20
(the degree of the quadrature rule defining the filter) to perform the approximate
spectral projection in Algorithm 4.1, we are able to identify an eigenvalue of (7.8) in
the right half-plane, which indicates that the droplet (see Figure 7.2 (left)) is unstable.

Techniques for selecting the dimension m of the subspace \scrV [32, 53] are important
in stability analysis as one is trying to determine the number of eigenvalues in the
right half-plane. To select m, we monitor the singular values of the matrix \^V \ast \^V after
each iteration and adjust the number of basis functions by removing columns of \^V
associated with singular values that are close to machine precision (relative to the
largest singular value) [53]. This procedure usually allows us to capture the dominant
eigenspace of the filtered operator \^\scrP (\scrL ) that includes the target eigenspace as well
as any eigenvalues clustered near the imaginary axis. We then determine whether
there are any eigenvalues in the right half-plane by sorting through the computed
eigenvalues. However, this strategy may break down, for instance, if there is an
eigenvalue close to a quadrature node. Additionally, the sharp decay of the filter (7.6)
across the imaginary axis is softened as | Im(z)| \rightarrow \infty , which can lead to difficulties
when there are clusters of eigenvalues near the imaginary axis with large imaginary
part. In this case, one may need to take a large number of basis functions to accurately
resolve the dominant eigenvalues of \^\scrP (\scrL ).

Conclusions. An operator analogue of the FEAST matrix eigensolver is de-
rived to solve differential eigenvalue problems without discretizing the operator. This
approach leads to an algorithm that can exploit spectrally accurate techinques for
computing with functions while preserving the structure of \scrL . The result is an ef-
ficient, automated, and accurate eigensolver for normal and self-adjoint differential
operators. This eigensolver is adept in the high-frequency regime and may provide a
new direction towards robust high-frequency eigenvalue computations.
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The implementation described in section 4 extends to higher dimensions in a
straightforward way for simple geometries where spectral methods apply [55]. In the
case of more complicated geometries, one may still benefit from the advantages of the
``solve-then-discretize"" framework outlined in Algorithm 4.1 provided that one is able
to accurately compute inner products and solutions to the shifted linear differential
equations. Although we have focused on the strong form of the eigenvalue problem
in (1.1), it may be necessary to work with the weak form. In this case, one can still
follow Algorithm 4.1 provided that the shifted linear systems are solved in weak form
and the Rayleigh--Ritz projection is performed with the associated sesquilinear form.
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