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Abstract

The accurate simulation of scattering of electromagnetic waves in three di-
mensions by a diffraction grating is crucial in many applications of engineer-
ing and scientific interest. In this contribution we present a novel High—Order
Perturbation of Surfaces method for the numerical approximation of vector
electromagnetic scattering by a doubly periodic layered medium. For this we
restate the governing time harmonic Maxwell equations as vector Helmholtz
equations which are coupled by transmission boundary conditions at the
layer interface. We then apply the method of Transformed Field Expansions
which delivers a Fourier collocation, Legendre—Galerkin, Boundary Perturba-
tion approach to solve the problem in transformed coordinates. A sequence
of numerical simulations demonstrate the efficient and robust spectral con-
vergence which can be achieved with the proposed algorithm.
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1. Introduction

The accurate simulation of scattering of electromagnetic waves in three
dimensions by a diffraction grating is crucial in many applications of engi-
neering and scientific interest. Examples include surface enhanced Raman
scattering [XBKB99], extraordinary optical transmission [ELG*98], surface
enhanced spectroscopy [Mos85], photovoltaic devices [AP10], and surface
plasmon resonance biosensing [Hom08, LJJ*12]. Clearly, the ability to nu-
merically simulate such configurations with speed, accuracy, and robustness
is of the utmost importance to many disciplines. In this contribution we
present a novel High-Order Perturbation of Surfaces (HOPS) method for
the numerical approximation of vector electromagnetic scattering by a peri-
odic doubly layered medium.

Volumetric approaches to these problems are pervasive in the engineer-
ing literature. More specifically Finite Difference [LeV07], Finite Element
[Joh87], Discontinuous Galerkin [HWO08], Spectral Element [DFMO02], and
Spectral [GO77, STW11] methods are all widely used by practitioners. How-
ever, such methods are clearly disadvantaged with an unnecessarily large
number of unknowns for the piecewise homogeneous problems we consider
here. In addition, the faithful enforcement of outgoing wave conditions
is problematic for these approaches typically necessitating approximations
such as the Perfectly Matched Layer [Bér94, Bér99] or exact, non-reflecting
boundary conditions [JN80, HWS85, KG89, Giv99, NN04, BNNW09] which
spoil the sparseness properties of the relevant linear systems.

For these reasons, surface methods are an ideal choice as they are orders of
magnitude faster when compared to volumetric approaches due to the greatly
reduced number of degrees of freedom required to resolve a computation.
In addition, far—field boundary conditions are enforced exactly through the
choice of the Green function. Consequently, these methods are a very appeal-
ing alternative which are gaining favor with practitioners. The most prevalent
among these interfacial algorithms are those based upon Boundary Integral
Equations (BIEs) [CK13, RT04], but these face difficulties. Most have been
resolved in recent years through (i.) the use of sophisticated quadrature
rules to deliver High—Order Spectral (HOS) accuracy; (ii.) the design of
preconditioned iterative solvers with suitable acceleration [GR87]; (iii) new
strategies to accelerate the convergence of the periodized Green function
[BPA17, BLPAT16] (or avoiding its periodization entirely [BG11, CB15));
and (iv.) new approaches to deal with the Rayleigh singularities (widely
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known in the literature as “Wood’s anomalies”) [BD14, BFL17, BSTV16].
As a result they are a compelling alternative for many problems of applied
interest, however, two properties render them disadvantaged for the param-
eterized problems we consider as compared with the methods we advocate
here: (i.) For geometries specified by the real value, ¢, (here the deviation of
the interface shapes from trivial), a BIE solver will provide a solution for a
single value of . If this is changed then the solver must be initiated again;
(ii.) the dense, non-symmetric positive definite systems of linear equations
that must be solved with each simulation. As specific examples where such
considerations arise, we point the interested reader to the work of the second
author, F. Reitich, T. Johnson, and S.—H. Oh. on (i.) simulating “reflec-
tivity maps” associated to multilayer plasmonic devices [NRJO14] and (ii.)
determining the minimal configuration required to excite surface plasmons
with shallow gratings [NOJR16]. In the former, the parameterized nature of
the configuration and the associated reflectivity map would require a BIE to
be restarted with each new data point (unlike the scheme we advocate here).
In the latter, the geometry shape was, by design, a very small perturbation
of a flat—interface configuration. For a BIE method the cost of simulating
this is the same as that of approximating a grating with a large deformation,
while a perturbative algorithm (such as the one we discuss in this paper) can
run much more quickly.

In contrast, a High—Order Perturbation of Surfaces (HOPS) methodol-
ogy effectively addresses these concerns. These formulations have the advan-
tageous properties of BIE formulations (e.g., surface formulation, reduced
numbers of degrees of freedom, and exact enforcement of far-field boundary
conditions) while being immune to the shortcomings listed above: (i.) Since
HOPS approaches are built upon expansions in the deformation parameter,
e, once the Taylor coefficients are known for the problem unknowns, one
simply sums these for any choice of € to recover the solution rather than
beginning a new simulation; (ii.) the perturbative nature of the scheme
is built upon the flat—interface solution which is trivially solved in Fourier
space by inverting a sparse operator at each wavenumber. We point out that
the initial smallness assumption on the deformation parameter, €, can be
dropped in light of the analytic continuation results in [NR03, HN10] which
demonstrate that the domain of analyticity contains a neighborhood of the
entire real axis. Therefore, with appropriate numerial analytic continuation
methodologies (e.g., Padé approximation [BGM96]) to access this region of
analyticity, quite large and irregular perturbations can be simulated. We

3
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direct the interested reader to [BR93b, BR94, BRO1, NRO1b, NR04b] for
numerical demonstrations.

There are several approaches to HOPS simulation of partial differen-
tial equations posed on irregular domains, but they all trace their begin-
nings to low—order calculations such as those of Rayleigh [Ray07] and Rice
[Ricb1]. The first high-order incarnations appeared in the early 1990s with
the introduction of the methods of Operator Expansions (OE) by Milder
[Mil91a, Mil91b, MS91, MS92| and Field Expansions (FE) by Bruno and Re-
itich [BR93a, BR93b, BR93c|. Each has been enhanced by various authors,
but the most significant was the stabilization of these methods by one of
the authors and Reitich with the Transformed Field Expansions (TFE) al-
gorithm [NROla, NRO1b, NR03, NR04a, NR04b|. Beyond this, these HOPS
schemes have been extended in a number of directions. Of particular in-
terest to this contribuation we mention bounded obstacle configurations
[BRIS8, NS06, FNS07], the full vector Maxwell equations [BR96, Nic15, NT16]
and a rigorous numerical analysis [NS09].

In addition to these, the authors have initiated a comprehensive study of
the TFE recursions for linear wave scattering and their extension to multiple
(three) layers in two dimensions [HN17b] and multiple (arbitrary numbers of)
layers in three dimensions [HN17a]. However, these investigations fixed upon
the scalar Helmholtz equations which only govern electromagnetic wave prop-
agation in two dimensions under Transverse Electric or Transverse Magnetic
polarization [Pet80]. In this contribution we examine the much more diffi-
cult problem of simulating electromagnetic radiation scattered by a crossed
grating in three dimensions in general polarization. This demands that we
not only solve the vector Helmholtz equations in three dimensions, but also
accommodate the more subtle interfacial boundary conditions of continuity
of tangential fields with appropriate jumps in the normal direction. To this
one must also add divergence free constraints while imposing appropriate
outgoing wave conditions to avoid pollution of solutions. We demonstrate
how this can be achieved in the doubly layered scenario for which the TFE
recursions have yet to be derived and implemented. Of particular note, we
describe a novel, spectrally accurate, modified Legendre—Galerkin approach
to the vertical discretization where the standard basis is enriched with addi-
tional connecting basis functions across the layer boundary.

In addition to the novelty of our new algorithm for this model, we also
point out that our approach will be the method of choice for simulating the
technologically relevant case of homogeneous layers separated by an interface

4
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which is a slight to moderate deviation of flat. In this case volumetric ap-
proaches will not be competitive due to their onerous operation counts and
memory requirements, while BIE approaches (which have the same memory
constraints as our TFE method) will take longer as their computational cost
in this setting will be significantly greater. The combination of (i.) dense,
non-symmetric positive—definite matrix inversion, and (ii.) the algorithmic
and operational complications of evaluating the Green function (both its
periodization and accounting for the Rayleigh singularities) render such ap-
proaches non—competitive for the problems we consider here.

The article is organized as follows: In Section 2 the governing equations
for linear electromagnetic waves interacting with a periodic doubly layered
structure are carefully formulated, together with the appropriate interfacial
boundary conditions. The TFE method is described in Section 3, and the
modified Legendre—Galerkin scheme, which we implemented for the vertical
discretization, is discussed in Sections 4 and 5. A sequence of numerical
experiments are presented in Section 6 which demonstrate the stability and
accuracy we can achieve in simulations of configurations containing not only
smooth and small interfaces, but also rough and large ones as well.

2. Governing Equations

In this section we describe the governing equations of linear electromag-
netic waves scattered by a doubly layered medium. Consider a grating struc-
ture with crossed periodic interface located at

z=g(z,y), glx+d,y+ds)=g(zy),

where z is the vertical coordinate, and x and y are the lateral coordinates.
Dielectrics occupy each of the two domains

Sgi={z>glz,y)}, S5 :={z <glz,y)},

with constant permittivities and permeabilities, {€,,, tm} (m = 1,2), in each
of the layers. The structure is illuminated from above by time-harmonic
(with frequency w) plane-wave incidence of the (reduced) form

Hinc _ Aei(aﬂﬂ'ﬁy—Vz)? V- I‘IinC = O, (1&)
Einc _ Bei(aw'i'ﬁy—%z), V- ]‘:‘]inC = O, (1b)
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where

1
A (a,8,—)"=0, B=—-——-VxA.

1WET
We follow the convention that bold—faced characters denote vectors and
plain—faced are scalars, so that, for instance, A = (A%, AY, A*)T.
In this setting electromagnetic radiation is governed by the time—harmonic
forms of Faraday’s and Ampere’s Laws

V xE —iwpH =0, (2a)
V x H + iweE = 0, (2b)

respectively, which govern the reduced electric, E, and magnetic, H, fields.
We consider p = pp, the permeability of the vacuum, and the permittivity a

piecewise constant
€, inS ;,
€ =
Q2
€2, 1n Sy,

As there are no sources (current or charge), applying the divergence operator
to (2) and using the fact that the divergence of a curl is zero, reveals Gauss’
Law for Magnetism and Gauss’ Law

div[poH] =0, div[eE] =0, (3)

respectively, inside each layer. By applying the curl operator to (2) and using
(3) one can see that each field satisfies the vector Helmholtz equations

AE +K*E=0, AH+kKH=0, (4)

where k? = w?eu. We decompose the total magnetic and electric fields into
reflected (layer 1) and transmitted (layer 2) components in the following way

g JEHET s [HAH™ S,
EQ, in 52 ’ Hg, in 52

and note that each of the {E,,, H,,} also satisfy the vector Helmholtz equa-
tions, (4).
At this point we remark that it is sufficient to solve for the magnetic
fields, H,,, as the electric fields, E,,, can be recovered from (2b),
1

E, = —- V x H,,.
WE,

6
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We could, of course, select the electric field as our unknown and recover
the magnetic field from (2a). However, as we shall see, the magnetic field
enjoys better smoothness properties across the grating interface (its normal
component is continuous) than the electric field.

With this choice we select (4) as the governing equations for our unknowns
H,, in the bulk and now must specify boundary conditions for these. First,
the periodicity of the grating interface demands quasiperiodicity of the fields,
[Pet80],

H,,(z +dy,y + do, 2) = “NTPEH, (1), 2).

Additionally, the scattered fields must be “outgoing” (upward propagating in
S ; and downward propagating in Sg) which we make precise in Section 2.1.

For interfacial boundary conditions, an application of Stokes’ Theorem to
(2a) and (2b) yields the continuity of tangential components of the electric
and magnetic fields in the absence of interface sources (currents and charges)

N x (E; + E™ — E,) =0, at T, (5a)
N x (H; + H™ — H,) =0, at T, (5b)

where N = (—0,9,—0d,9,1)" is an upward pointing normal and T' denotes
the interface

I'={(z,y,2) | 2 = g(z,y)}.
Using (2b), the first of these, (5a), can be written in terms of the magnetic
field as

Nx (VxH; +V xH™ -7V xH,) =0, atT, (6)
where
€1 k’%
Ti=—=—.
€9 ]{7%

The divergence theorem applied to (3) delivers the jump relations in the
normal components of the fields

N-. (€1E1 + €1Einc - EQEQ) = 0, at F, (7&)
N- (H; + H™ — H,) =0, at T, (7b)

where we have used 1 = pp to simplify the latter. From these we discover that
the change in permittivity across I' induces a jump in the normal component
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of the electric field, while the constant value of the permeability yields a
magnetic field with continuous normal component.

However, as noted in [CF91], there is redundancy in these conditions so we
appeal to the work of [KN99, JWP96] who demonstrate that for a sufficiently
regular interface (Lipschitz continuous is smooth enough) the divergence free
conditions in the bulk, (3), can be guaranteed by simply enforcing them at
the interface

div[en,En] =0, div[H,] =0, atT. (8)

We have now presented eight interfacial boundary conditions, but six should
suffice for the six unknowns in (4). For our developments we find it most
convenient to select (5b), (6), (7b), and the difference of the latter equation
n (8) between H; and H,.

Gathering all of these equations, we now focus on the following problem

AH, + k2H; =0, in S, (9a)
AH, + k2H, = 0, in 52, (9b)
N x (H; — Hy) = —N x H™, at T, (9¢)
N-(H, - Hy) = —-N-H™, at T, (9d)
N x (VxH; =7V x Hy) = —N x V x H™, at I, (9e)
div [H;] — div [Hy] = 0, at T, (9f)
OWC[H;] = 0, z— w, (9g)
OWC[H;] = 0, z — —0, (9h)

where “OWC” stands for the outgoing (upward/downward propagating) wave
condition which we make precise presently [Are09).

Remark 1. An inspection of the mathematically careful literature shows that
while our formulation is largely standard, the appearance of two of our surface
conditions, (9d) and (9f), while true, are somewhat unusual. However, a
more careful reading of these papers typically reveals that the bulk divergence—
free conditions (3), or their surface versions (8), are used in rather subtle
and implicit ways at important points of the analysis. One of our goals in
this work is to make all of this explicit in the problem statement with a view
towards efficient and high—order numerical simulation (rather than rigorous
analysis).  Our choice was one of many we could have made, and it was
simply the one most convenient for our implementation.
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2.1. Transparent Boundary Conditions

The usual procedure when implementing the TFE method is to truncate
the unbounded problem domain to a bounded one using a transparent (non—
reflecting) boundary condition. For this we introduce artificial boundaries
above and below the structure, and enforce boundary conditions to solve (9)
equivalently. Introducing the planes

z=a>|9|», z2=b<—|9|;x,
we define the domains

S = {z > a}, S = {z < b},
51 = {gley) <z <a). S2'i= (b <z < glag))

see, e.g., Figure 1. Transparent boundary conditions can be enforced with

S(l
Z2=0 p=mmmm e e - ] :(I ——————————————
Sg
=9, [ N — ——~—~—
2,b
ng
z=b -7 mm-mmmmm o - - -
Sb

Figure 1: A depiction of the layered grating structure with artificial boundaries at z = a
and z = b.

Dirichlet-Neumann Operators (DNOs) from the Rayleigh expansions [Ray07]
in the following way. More specifically, it is known [Pet80] that

0 o0
Hl(l’,y, Z) = Z Z Epvqe’i(apﬂHﬁqer’yz(,z(zfa))’ z > a,

p=—%0 q=—00

and
o0 o0

HQ(:E?y?Z) = Z Z ép qei(apx+’8qy+71(7?q)(b_z))’ < b,

)

p=—00g=—00



where, for p,q € Z,

ap = a+ 2n/dy)p, B, =5+ (27/ds)q,

and

) Vkn—ay =67 (p.g)eU™, m=12,
7 ivop + B — ki, (p.g) gU™,

and the set of propagating modes is
z{p,qu|04}2,+52<k2} m=1,2.

It is not difficult to see that these solutions satisfy the Dirichlet conditions

ZL‘ Y, a Z Z tp qez(apx"‘ﬁqy) — t(ZE y)

p=—00 g=—00

(z,y,b Z Z §p g€ OB = gz y).

p=—00 g=—00

From these we can compute the Neumann data at the artificial boundaries,

©¢] e ¢]
0.Hi(z,y,a Z Z qu £, e/ (o7t 0a),

0, Hy(z,y,b Z i Z'ypq Z(ap$+5qy)7

p=—00g=—0

and thus we define the DNOs

0 0
Ti[t] := Z Z SN, ge' e Hoan),
e g0

Ty[s] := Z Z —wz(fq) quez(o‘p“ﬁqy),

P=—00 g=—00

17z which are order—one Fourier multipliers.

10
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Using these DNOs at the artificial boundaries we write (9) equivalently

on the bounded domain {b < z < a},

AH, + E2H, =0,

AH, + k3H, = 0,

N x (H; — Hy) = —N x H"™,

N-(H, - Hy) = -N.H™,

N x (VxH; =7V x Hy) = -N x V x H™,
div [H;] — div [Hs] = 0,

azI_Il - TI[HI] = 07

0.Hy — Ty[Hs] = 0,

which are our governing equations.

3. Transformed Field Expansions

in Sgl’a,
in Sg’b,
at I,

at I,

at I,

at I,

at z = a,

at z = b,

N~ T/
— = —_ — —
o =5 o 5 o o
0o /A Q. & T

— =
@) o
= D
N’ e e e e T N N

—~

We are now in a position to describe our TFE method. As always,
the algorithm begins with a domain flattening change of variables [NRO1a]
(also known as o—coordinates [Phi57] in the geophysical literature and the
C-method [CMRS80] in the electromagnetics community). Subsequently, a
boundary perturbation expansion is conducted, resulting in a recurrently
defined set of vector Helmholtz problems which must be solved at every per-

turbation order desired.

3.1. The Change of Variables

To begin we define the change of variables

z_
zlza( g>’ g<z<a,

a—4g
22=b<g_z), b<z<y,
g—>

and the transformed fields

U, (2, 2m) = Hp(x(2), y(y), 2(2", ¥, 2)), m =1,2.

11

a > |g|L007

b<_’g|L°07



With this change of variables, a ponderous computation (see Appendix A)

transforms (10) to the following system of equations

AU, + kiU, = Ry, in0< 2z <a,
AQUQ + k’SUQ = RQ, in b < 2o < 0,
[[Ux]] :Il, at 21222:0,
[UY] = I, at 21 = 20 =0,
IIUZ]] :]3, at 2122220,
[[(%/UZ]]T — [[(G/C)(?ZU:E]]T = Ql; at 21 = Z9 = 0,
[0, U], — [(G/C)o.U"]. = Qs, at 21 = 20 =0,
[[é’x/U ]] + [[6y/Uy]] + 0 gé’zUl — maZUQ = J, at 21 = 29 = 0,
alel — Tl[Ul] = Bl, at 21 = a,
aZQUQ — T2 [UQ] = BQ, at Z9 = b,
where
1
R,, := G—gn(agc,an +0yRY + 0., R:, +RY), m=1,2,
and
L = — ((ax’g)AZ + Ax) ¥ — (&x/g)[[Uz]],
Ir = —((dyg)A* + AY) o — (0y 9)[U7],
I3 := ((0wg) A" + (0y g)AY — A%)p + (v g)[U*] + (0y 9)[U*],
Q= e(iaxﬂﬁyfivg(r,y)),
and
a b
J = (0pqg)——0,UF — (0pg)——0,U5
( g)a g ( g)b —g2
T (6y9)—2— 0.0 — (By9)—— .U
Yy a—g 1 Yy b —g 29
Bi := —(g/a)T1[U4],
B, := —(g/b)12[Us],
and

[[K]] = Kl—Kg, [[K]]T = Kl—’TKQ.

12

A~~~
— = = =
= = =
2 o T W

—~
[N
— =
0

~—~
—_
—_
=

—_ =
— [
[N @
~— ~— ~— N — D T

~~~
—_
—_
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The Laplacian operator A,, is defined by

Am:ai/+a§/+62 m:1,2

Zm??

We refer the reader to Appendix A for the specific formulas for the right
hand sides R?, and @, (A.2) and (A.7), respectively.

3.2. A High—Order Perturbation of Surfaces Method

To specify our HOPS approach we consider an interface deformation of
the form

g(x,y) =cf(z,y), e<«1,

and insert this into the transformed equations (11). In a forthcoming publi-
cation it will be shown that the transformed fields depend analytically upon
the parameter € so that the following expansions are valid

0
U,, = Z Upn(z,y,2)e", m=1,2.
n=0

From (11) we find at each perturbation order that

AUy, + kiU, = Ry, in0< 2 <a, (12a)
AU, + k3Us, = Rap, inb<z <0, (12b)
[UR] = L, at z; = 25 = 0, (12¢)
[UZ] = Iz, at 21 = 2, =0, (12d)
[U7] = I3, at 21 = 29 = 0, (12¢)
[02UZ]; = [0-U]. = Q1) at z, = 2, = 0, (12f)
[0, Uz, = [0:-U), = Qam, at 21 = 2 = 0, (12g)
[0.U%] + [6,UY] + [0.U?] = J,, at 2, = 25 = 0, (12h)
04, U1 —T1[Uy,] = By, at 21 = a, (12i)
02, Usy — T5[Usg,| = Bay, at 29 = b. (12j)

Again, we refer the reader to Appendix A for formulas for the right hand
sides Rm,na [s,rm Qm,rm Jna and Bm,n-

13
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Considering the quasiperiodicity of solutions, we propose the following
generalized Fourier (Floquet) series expansions

o0]

(Vs R} = 3 ) (088, R, (o) o0,

P=—00 g=—00
o) o0

Tom, Qs T B} (w,y) = >0 D AIPE Qoo b B Jelrmtoa),
P=—00 q=—00
Inserting these expansions into (12), and using the fact that (7,(,7';)) =
k2 — ag — 53, the governing equations are reduced to the one-dimensional
boundary value problems

04 UL + (,9)"UT = RE, n0<a<a  (I13)
02 UL + (412)?Uss = REY, nb<z<0, (13)
[UzPa] = Ifn, at 23 = 29 = 0, (13c)
[UyP9] = ]5:27 at 21 = 2 = 0, (13d)
[Uzpa] = 14, at 21 = 29 = 0, (13e)
iop[U7"], — [0.U77], = Qs at s =2=0,  (13f)
iB,JUZP], — [0.U¥"1], = 2m at z1 = 29 = 0, (13g)
iop[UZPI] + i3, [ULPY) + [0.UT 2] = J29,  at 2y =2 =0,  (13h)
0. Ut — UL = BY, ab 21 = g, (131)
0, UB8 + U3 = BYS, at z = b. (13))

We point out that the unique solvability of the full problem (9) [CF91, DF92,
BF95] delivers a unique solution to (13).

4. Weak Formulation

In this section, we construct a weak formulation of (13) by decomposing
solutions into two parts

urd = Urt 4 UPE - m=1,2,

m,n?

We choose the first term, U?; ., to solve (13) With RZ: identically zero, and

the second term, UP4 | to solve (13) with 174 Jp 4, and B4 all zero.

m,n’ s,n’ mn7 n

14
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For the sake of simplicity we drop the indices {p, ¢, n}, and point out that it
is not difficult to see that

~

U, = Cme”(m)z + Dme’”(m)z, m=1,2,
where the coeflicients
C, = (Cﬁw ng O;)Ta D,, = (D;:w D%w Drzn)T

can be explicitly computed from the boundary conditions.

It remains to investigate the equations for U,, which can be solved by
a High-Order Spectral (HOS) method [STW11]. As both our Fourier dis-
cretization of the lateral variables, (z,y), and the Taylor approximation of
the perturbation quantity, ¢, are spectrally accurate, it is natural to se-
lect a HOS approach to discretize the vertical variable in order to maintain
high accuracy. Among HOS approaches, the Legendre—Galerkin methodol-
ogy [STW11] appealed to us due to its ease of implementation and stability
properties. We have used it in our previous work [HN17b, HN17a] and were
impressed with its performance; for this reason we have selected it again in
these developments.

However, we have not found the “standard” approaches appearing in the
literature useful for our layered media problems and have devised our own
“enriched” approach [HNS12, HN17b, HN17a]. To describe this we state
that a classic weak formulation of (13) for U,, can be specified by: Find
V e [HY([b,a])]?® such that

(0-05(0) — iy U3(0) ) °(0)
(K*V,®) — (0,V,0,®) + (1 —7) (&JE’(O) _ zﬁqﬁ§(0)> @¥(0)
0
= (R, ®) — iy 01 (a)®(a) — iy P Ty ()D(b), ¥ e [H'([b,a])]’,
where I := (0, a), I := (b,0),
(U, Ry, 7V}, zel,

V,R7l</ = ~
{ } {{UQ;R277(2)}’ ZGIQ'

Here the vector pairing on the interval (a,b) is defined by

b [ U101
(u,v) ::J usls | dx,

@ \usvs
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207 where the overbar denotes complex conjugation.
To construct a Legendre-Galerkin method as in [HN17b, HN17a], we
define the finite-dimensional function space Xy, < [H([(b,a)])]? by

= { @ € [Py, (In)]* | 0:®1(a) — iy @1 (a) = 0,
0. @5 (b) + iy P ®y(b) = 0,m = 1,2},

where Py, is the space of polynomials of degree less than V,. The Legendre-
Galerkin formulation is: Find Uy, € Xy, such that

(KJZUNZ7 ¢Nz) - (azUNz7 aZ(ﬁNZ)

0.U3 . (0) — ic,U3 5 (0) ) &% (0)
+(1—7) 0:U 5. (0) —iB,U3 x.(0) ) @ (0)
0
= (Zn.R, ®y.) — inV Uy (a)®n.(a) — v P Uy, () By, (), Y®y. € Xy,

where Zy. is the projection operator onto Py_. Using integration by parts on
each subdomain I,,, an equivalent variational formulation is derived: Find
Uy, € Xy, such that

(k*Un., ®x.) + (02U, @)
o>—rU5N (0))) #%.(0)
(0) = 705 5, (0)) ) ¢4 (0)
2 (ﬁf,N 0) - Ui, 0>) <>

= (In.R,®y.), V®y € Xy..

28 5. A Legendre—Galerkin Numerical Method in Enriched Spaces

To apply the spectral Legendre—Galerkin approach [She94, STW11] we
consider basis functions which are combinations of Legendre polynomials
L;(z). For z € I, we define

) 2z —a 2z —a
wij(Z) = (1 + Z)Lj < a ) + al,ij+1 ( a )

2z —a

+b1’ij+2( >, j=17...,Nz—2,

16



s € {z,y, z}, such that
0.0, ;(a) — iy ;(a) =0, U;;(0) =0,

where
lIjl,j(z) = (wiy Zl,l,jvwij)T'

Similarly, for z € I, we define

. b—2z b— 2z
V5 (2) == (1 +1)L; < 2 ) +ag;Ljn ( 2

s € {x,y, z}, such that
62\1'27]-(19) + Z"}/(Q)\IIQ,]‘(I)) =0, lI’QJ(O) =0,

where
T
‘I’Z,j(z) = (¢§,ja¢g,j=¢§,j) .
Note that these Legendre—Galerkin basis functions vanish at the transition

layer at z = 0. For this reason, we introduce additional (enriched) basis
functions which have the value (1 +4) at z = 0:

s € {z,y, z}, where
-5 (a) —ivWni(a) = 0, 2n3(b) + iy n3(b) = 0,
We readily find

iy ™ —iy
- - y G2 = " - .
(1+14) —ivWa (1+14) +iy@b

C1 =

With these we construct the basis functions defined on {b < z < a}

~ Vii(2), 0<z<a,
(z)=4"1 =0,...,N, -2,
vil2) {O, b<z<0, J

17



and

~ 0 0<z<a
() = ’ ! ':O,...,Nz_za
¢Nz+j 1( ) {wg}j(z)j b<z<0, g
and
- w%j(z)v 0<z<a,
- = ’ = 07 ‘7NZ _27
Yan. +j-2(2) {O, b<z<0, /
and
~ 0 0<z<a
. _a(z) = ’ ’ = 07 '7NZ _2’
Van.+j-3(2) {@ng,j(z)’ b<z<0, /
and
- ¢f](2)a 0<z<CL,
4(2) = ’ =0,...,N; -2,
Yan.+j-a(2) {07 b<z<0, /
and
~ 0 0<z<a
- (z) = ’ ’ = 07 ‘7NZ _2’
Vs, +j-5(2) {¢§,j(2)v b<z<0, /
and finally,

Von.—6 = 1", Von.—5 =1", Ven.—a =1".

Setting N = 6NN, — 4, we write our numerical approximation

uy, (2) 1= Z a5 (y),

and seek
u= (ﬁ07ﬁ17"‘7’&]\7)T7
where we are given
f:(wa"?fAGsz?)T: f;: (INfaquj)v j:()?"'vN-

200 Here, f stands for the right hand side R,,, in (13).
We define the matrices

(Ams)ij = (2 m—142(5—1)) (Vo 1)t Ylm142(5—1)) (No—1)41) T
+ (1) (Dn—142(5-1) (V- 1) 5 Pm—142(5- 1) (Vo 1) +1) L

18



where 0 < [, < N, —2, 1 <m < 2, and 1 < s < 3. We set the column
vectors

a2 = (020sn. -6, V5) 1 + () (Won.—,¥)1,,

bio = (26N —6: UN.tj1) 1 + (Vo) (PN, —6, VN, +i-1) 1o
13 = (02 %Nz 5,¢2NZ+] 2)r, + (71£q)2(¢6N2 5,¢2Nz+j 2)1
dyy = (07 PN —5,¢3N 1j-3)n + (%(;2(;))2(%N 5,¢3N +j=3) I
e = (02 %NZ 4,¢4NZ+J 4 + (’YS{I))Q(?/%NZ 4,¢4Nz+g s
Jia = (5 6N — 4,¢5Nz+g 5)I +(71§23)2( Nz—47¢5Nz+j—5)127

and row vectors

as1 = (0%, Yen.—6)1, + (7 1,1))2(%,%%—6)11 + 0,450 )@stNfﬁ(O),
bar = (02N, 41, Von.—6) 1, + (V)2 (V. +j-1, Pon.—6)1,

— 700N +j-1(0) D, 6(0),
C31 = (527L2N2+j—27¢6NZ 5)n, + (7,&}3)2(122Nz+j—27@;6Nz—5)11

+ az1/~12Nz+j—2(0)¢6Nz—5<0)7
ds1 = (023N, +-3, Yon.—5) 1 + (Vo)) 2 (VsN. +j—3, Von.—5) I,

— 70N 1j-3(0)gn, 5(0),
€41 = ( ¢4N +j— 4,¢6N 4)11

(VN2 (it j—a, Pon.—a)1,
+ 0w +j-1(0) gy, 4(0),

+ (7

)

fin = (Psnris, Yen.—a)1 . () ) (V582 1j—5 Von.—a) 1
— 045N +-5(0 )%NZ 4(0),

19



for 0 < 7 < N, — 2. Moreover, we set

az = (02en.—6 + K Pen.—6, Vo, —6)

+ 0o -6(0" )y, —5(07) = 70t 607 )P, 6(07),
agz = (551/;6%—5 + KJQlEGNZ—a ZZGNZ—E,)

+ 0.n.—5(0") P 5(0%) — T8 50w, -5(07),
(44 = (531;6%—4 + K*Y6N, —4, Von,—1)

+ 521/;6N2—4(0+)56N2—4(0+) - 8212;6Nz—4(07)56NZ—4<07)7
a2y = —ia(1 = 7)oy.—a(0) gy, (0),
ass = ~iB(1 = 7)o -4(0) g, 5(0).

Here, ,10,(07) and 0,1,(0%) stand for the left and right derivatives at 0,
respectively. The Legendre—Galerkin scheme demands the 6N, — 3 equations:

Mu = f,
where M is a block matrix
A B
M= (e p)
The block matrix A is defined as
A171 0 RN 0
0 A271
A= A1,2 :
Az
Al,S 0
0 e 0 A273
and the block matrices B and C are defined as
a12 0 0
bia O
_ 0 C13 0
B = 0 dizs O
0 0 €14
0 0 fu
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210

211

212

213

214

215

216

217

218

and

(ag))™ (bay)” 0 0 0 0
C= 0 0 (C31>T (dgl)T 0 0
0 0 0 0 (ea)” (fu)®

Finally the upper-triangular matrix D is given by

azp 0 axy
D = 0 assz as4q
0 0 g4

6. Numerical Simulations

We now present a variety of numerical experiments utilizing our imple-
mentation of the algorithm described above which demonstrate the stability,
speed, and accuracy of our methodology. To begin, we demonstrate the per-
formance of our solver for the boundary value problem (13) at the heart of
our numerical method using an exact solution. Subsequently we display the
fidelity of our full scattering solver for (10) using the “energy defect” as an
indicator of convergence [Pet80)].

6.1. Simulations of a Boundary Value Problem

We began by investigating our scheme’s numerical approximation of so-
lutions to the reduced problem, (13), which is at the core of our full solver.
Utilizing the algorithm proposed in Section 5, we looked for numerical con-
vergence to solutions of the following one—dimensional reduced problem

*u+kiu = f,, 0<z<a, (14a
*v +k*v =1, b<z<0, (14b
u(0) = v(0), (14c
0, (u1(0) — 7v1(0)) = ia(us(0) — Tv3(0)), (14d

[a—
M
—

D

I8

—~

<

[}

—

o

SN—

|

B

<

[\v)
/N

(e

N—
S—

Il

~

)

—~

<

w

—~

(e

~

|

2

<

w

—

(e

N—

N~—

~~

~ =

IS

a2 D

S e e e e N N N

N
—_
W
=

21



219

220

221

222

223

224

225

226

227

228

229

230

231

where

u= (ul,u2,u3)T, vV = (Ul,UQ,Ug)T,
ki - ((ku1)27 (ku2)27 (ku3)2>Tv kg = ((kv1)2’ (ka)Qa (kv3)2)T7
fu = (ful»fu%qu)Ta fv = (fvlafv27fv3)T‘

Since the differential operator and boundary conditions in (14) are the same
as those in (13), the proposed model provides a good indicator of convergence
for our modified Legendre-Galerkin method.

As a test of convergence we considered the following functions and pa-
rameters

up = (y—a)’(y+b)? us=sin(y)(y—a)’(y+0b)°
ug = exp(y)(y — a)*(y + b)?,
v =(y—a)’(y+0b)% vy =sin(y)(y —a)’(y +b)
vz = exp(y)(y — a)’(y + b)?,
a=5 b=-2 71=15 ~AY=1-4i ~P =244
(Kuts uz, kouz) = (1.25,2.25,3.25),  (Kur, ko, kus) = (2.55,3.55,4.55).  (15)

Upon using (14a) and (14b) we can define appropriate f, and f, so that these
represent an exact solution.
To test numerical convergence, we defined the relative L? error

[ttex — un. | 2

bz 1o
where ue, is the exact solution and N, is the number of Legendre—Galerkin
basis functions. In Figures 2 and 3 we display the spectral rate of con-
vergence which our Legendre—Galerkin method achieved in this simplified
setting. The numerical results illustrate that, given N, chosen large enough,
the proposed modified spectral method can successfully resolve the vector
Helmholtz equations with the underlying interfacial boundary conditions.

6.2. Simulations of a Layered Medium: The Mazxwell Equations

We also performed numerical experiments of a periodic doubly layered
medium whose scattering returns are governed by the full vector Maxwell
equations in three dimensions, (10). Unlike the simplified problem in Section
6.1, exact solutions are not available. Hence, we utilized the widely accepted
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The relative L? error for u;,u,, and u;

Relative L? Error

10710 +

10712 +

10-14 L L L L L
8 10 12 14 16 18 20
N.: Number of basis

Figure 2: Relative L? error in u, (16), of our Legendre-Galerkin approximation of (14) in
configuration (15) versus number of basis functions IV, on a log-linear scale.

diagnostic of error measurement, the energy defect [Pet80, BR93a]. More
precisely, if one considers the Rayleigh expansions in the upper and lower
layers

'(apx+,3qy+'y(1)z)

0 a0 R
Hl(xay7z) = Z Z HLp,qu )

o0
Hy(r,y,2) = 3, D) Hape /w9,

p=—00g=—00

quantities of great interest are the efficiencies

~ 2
(1) [H;
Yp.q P:q 1
6p7q: _—7 (p7Q)€u )
Py AP
I,:I 2
2 [
epuq = ’Yp_,q;’ (p’ q) €U27
’ v AP

where A is the amplitude of the incident wave, (1). With this definition in
hand, it is clear why these efficiencies are of such interest as they quantify
the energy fraction in each mode which propagates away from the grating.
If all materials in the structure are lossless (k,, € R), energy is conserved

which is expressed as
y2u p,q __
E e+ T E ey = 1.

(p,q)ett* (p,q)eU?
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The relative L? error for v;,vy, and v3

)

Relative L? Error
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N.: Number of basis

Figure 3: Relative L? error in v, (16), of our Legendre-Galerkin approximation of (14) in
configuration (15) versus number of basis functions IV, on a log-linear scale.

Hence, we define the “energy defect” as

dg:=1— Z e — 7 Z ebd,

(p,g)eu? (p,q)elt?

which will be zero for an exact solution [Pet80].

We conducted a sequence of simulations to show the spectral convergence
of our proposed Legendre-Galerkin method (in the energy defect measure),
and checked the performance of our numerical methods. To begin, we set
the following configuration:

a=4, b=-3, (a,0,7)=(1/2,4/1/3,1.2845), dy = dy = 2,
A= (V3,V3,v3), (vW,4?) = (1.2845,2.0330),
(k1, ko) = (1.5758,2.2285), g(z,y) = € cos(z) cos(y). (17)

To characterize the performance of our methods we defined the parameters
N (perturbation order) and {N,, N,, N,} (the number of basis functions in
{x,y, 2z} directions). In the first experiment we chose

N, =N, =16, N. =20, (18)

and varied N. In Figure 4 we display the energy defect versus the number of
perturbation orders, IV, retained for the configuration (17) and the parameter
choices (18). The figure shows the spectral convergence of the energy defect
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Figure 4: Energy defect versus perturbation order, N, for smooth interface configuration
(17) and parameter choices (18).

as the perturbation order is refined. We also see that the energy defect decays
more rapidly to machine precision as the value of ¢ is reduced.

In Figure 5 we display results of simulations of configuration (17) with
with parameter choices

N =12, N, =N, =18, (19)

while varying the vertical discretization parameter, N,. This clearly shows
the spectral convergence of the energy defect as this vertical discretization
parameter is refined.

In Figures 6-9 we present the real parts of the scattered solution H”
and H* from configuration (17) with parameter choices (18) where € = 0.05.
Figures 6 and 8 present the numerical approximations of H* and H* above the
interface, {z = g(x,y)}, and Figures 7 and 9 display the numerical solutions
of H* and H* below the interface, {z < g(z,y)}.

To continue, we investigate the possibility of using our new algorithm for
deformations of large size. To examine this, we used the following configura-
tion:

a=2 b=-2 (a,8,7) = (/1/2,4/1/3,1.2845), dy = ds = 2r,
A = (V3,V3,V3), (v, 4?) = (1.2845,2.0330),
(k1, ko) = (1.5758,2.2285), g(x,y) = £ cos(x) cos(y), (20)

with numerical parameters (N, N,, N,) = (24,24,50). In Figure 10, we
display numerical simulations with € = 1. As exhibited in [NRO1b, NR04a],
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Figure 5: Energy defect versus perturbation order, N, for smooth interface configuration
(17) and (18).

simple Taylor summation in perturbation order N does not work well for large
or rough deformations. However, if Padé approximation [BGM96] is utilized
then outstanding results can be achieved showing that large deformations
can be readily simulated.

To close, we conducted a numerical simulation with a very rough interface
defined with the aid of the following “sawtooth” profile

2
—2x+1, 0<z<nw
fL(x): 27r ? )
Zr—3, 7m<ux<?2m,

where f; possesses only Lipschitz regularity [NR0O4a, NR04b]. For our nu-
merical experiments we used its Fourier series representation

0

8
fr(z) = kzl mws((?k - D),
which we truncated after wavenumber P = 20,
r 8
frp(z) = 1;1 22k = 1) cos((2k — 1)z).

For these simulations we chose the following parameters:
a=2 b=-2, («,0,7)=1(02,0.150.35), dy =dy=2m,

A= (V3,V3,v3), (YV,7?) =(0.35,0.55453),
(k1, ko) = (0.43012,0.60828), ¢g(z,y) = efr(z)cos(y), (21)
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Scattering filed of Re(HY)

Figure 6: Plot of the real part of the scattered field Re[H*] above the interface in config-
uration (17) with parameters (18); for this we chose € = 0.05 and N = 12.

with numerical parameters (N,, Ny, N,) = (60,18,18). In Figure 11 we dis-
play results of our experiment with this rough interface and ¢ = 0.01, 0.05, 0.1.
Evidently, our new method is applicable to configurations with even Lipschitz
smoothness, provided that sufficient resolution is utilized.

7. Conclusions

We have studied a HOPS algorithm for vector electromagnetic scattering
by a periodic, doubly layered medium. In reformulating the time-harmonic
Maxwell’s equations, a system of vector Helmholtz equations was considered,
together with appropriate interfacial boundary conditions. We introduced
the TFE algorithm to the resulting problem for the first time, which required
that we derive a sequence of one—dimensional, boundary value problems to be
solved at each perturbation order in our expansion. Accurate numerical simu-
lations of these TFE recursions were demonstrated with a Legendre—Galerkin
method based on a novel weak formulation. These simulations included not
only small and smooth interfaces in the periodic structure, but also large and
rough ones as well. The numerical simulations showed the spectral conver-
gence which our new algorithm can achieve, and our developments clearly
point towards several extensions of great importance. In particular, our ap-
proach will be generalized to accommodate surface currents which are one
popular approach to modeling two—dimensional materials such as graphene
and black phosphorous which are of such great interest to engineers at the
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Figure 7: Plot of the real part of the scattered field Re[H*] below the interface in config-
uration (17) with parameters (18); for this we chose € = 0.05 and N = 12.

moment [GNO7, BFPV13]. This extension will not be straightforward as
more subtle boundary conditions between layers must be considered, and
hence the algorithmic differences will be significant. In addition, the natural
extension to an arbitrary number of layers is clearly in view, and will be con-
sidered in a forthcoming article. For a potential roadmap we point the reader
to [HN17a] where we achieved this in the simpler context of the Helmholtz
equation.
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Appendix A. Derivation of the Transformed Equations

In this appendix we provide a full derivation of the transformed equations
(11) presented in Section 3.1. Setting g(x) = ef(x), by the chain rule, we
find

+ (0p2m)0s,, m=1,2
ay = ay/ + (ayzm)azma m = 1727
0, = (0.2m)0s,, m=1,2.



Scattering filed of Re(H})

Figure 8: Plot of the real part of the scattered field Re[H?] above the interface in config-
uration (17) with parameters (18); for this we chose € = 0.05 and N = 12.

With this we can write

and

(b— g)vm,y = (b— g)vw’,y’ - (Vw’,y’g>(22 —0)0.,,
(b - g)az = bazza

where V, , = (0z,0y) and Vg = (0pr, 0). Defining

Ci=(a—g), DY=—-0yg9la—z), D}=-0y9(a—z), Gi=a,
and

Cy=(9-0), Dj=—0g(b—2), Dy=—09(b—2), Gy=-b,
we deduce that

CnOy = Cpi0p + D70,
Condy = Condy + DI0
Omaz = Gmgzrm

Zm?

2 for m = 1,2.
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Scattering filed of Re(H5)

Figure 9: Plot of the real part of the scattered field Re[H?] below the interface in config-
uration (17) with parameters (18); for this we chose € = 0.05 and N = 12.

20 Appendiz A.1. The Helmholtz Equation

As in [HN17a], we rewrite the Laplace operator as

CrznA = Vr’,y’ ) [Cgmvw’,y’] - (Vz’,y’cm) : [Cmv:r’,y’] + azm [CmDm ) Vﬂc’,y’]
- (aszm> ’ [Cmvx’,y’] + vw’,y’ ’ [CmDmaZm] - (Vx’,y’om) ’ [DmaZm]
+ azm[|Dm|2azm] - (aszm) ) [Dmazm] - (vw’,y’cm) ’ [Cmva:’,y’]
— (Vo yCn) - [Dp0s,,] + G,Qnézm.

where D,, := (D%, D¥). Then the governing problem becomes

0=C2AUpn + C2E2U,,
=V (C2V 0 yUp) + 0., (CriDiy - Vs yUp) + Vi - (Con D0, Uny)
- (Vx’,y’om) (Dm0, Un) + aZm(|Dm|2aszm)
— (Vz/,y/Cm) . (Cme/,y/Um) + anafmUm + CJQkfnUm,

23 where U, stands for the z, y, or z components of U,, = (U%,UY,Uz)T.
204 Setting C2, (z) = G2, + F,,(z) we deduce that

1
2
AmUm + k;mUm = G_2

m

(0w RE, + 0y RY + 0, R: + RY), (A1)

Zm = 'm
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Figure 10: Energy defect versus perturbation order, N, for smooth interface configuration
with large deformation (20).

where
R: = —F,0,U,, — C D" 0., Upn, (A.2a)
RY = —F,,0,U,, — CuDY.0, U, (A.2b)
R, = —Cy D30 Uy — (D5)%0.,,Un,
— CyDY,0,U,, — (DY)?0,, Up, (A.2¢)
RY = (0pC)(DE,0,, U + Crn0pUpy)
+ (O Cr) (D20, Up + Cpi0yUp) — Epk2, Upy. (A.2d)

Appendiz A.2. Artificial Boundary Conditions

For the conditions at the artificial boundaries, {z = a} and {z = b}, of
(10), we note that

Cm
0. U, — —T,|U.,| =0,
and obtain

for M; = a and M5 = b.

Appendiz A.3. Interfacial Boundary Conditions
Regarding the transmission boundary conditions at z = g(x,y) in (10),

N x (Hl — Hz) = —N x Hinc’
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Figure 11: Energy defect versus perturbation order, IV, for rough interface configuration
(21).

implies that

(=0y)[U°] = [U*] = ((0yg) A" + AY) o,
(0w g)IU°] = [U*] = ((Qwrg) A" + A7) .

Furthermore
N x (V x (H; — 7Hy)) = =N x (V x H™),

implies that

(—=0y9) (0[] — 0,[H"]-) + (0.[H"]- — [0:H"]:)
= (0y9) (10 AY — iBA")p — (10 A” +ivA%)p, (A.da)

and

(02:9)(0:[HY]- — 0, [H"];) + (6,[H*]- — [0.H"])
= (0hg) (i A — iBAT)p — (iaA® + iy AY)p. (A.4b)
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Noting that, for any scalar function K,

6;,;[[[(]]7 = &y(Kl — TKQ) + <%621K1 — 7'2—2822[(2)
D*
= 3:1:’ K T _azK )
oalie+ o]

DY DY
Oy[K]r = 0y (Ky — TKy) + | =10, Ky — 720, K>
Cy Cy

DY
= 0y [K]- + HF@KHT,

Gy Go G
[0.K], = c, 0., K1 —TCQ@QKQ = I[ &ZKHT,

we rewrite (A.4) as

(—0y9) (ax/ [U¥]- + H%azwﬂ - oy U] — H%azwﬂ T)

z D‘T z G xT
« (e + [ o] -[gev] )

T

= (0y9)(iad? — ifA")p — (iaA” + ivA%)p, (A.5)

and
D* DY
, , Y - Y — A, 7 I | T
o) (2ol + | o] -0t - [ o] )
B DY B G
(ot [Ze] - [Ge])
— —(0ug)(iaAY — iBA)p — (iBA* + iy A)g. (A.6)
Since z; = 25 = 0 at z = g(x,y), we have
Di = (=0wg)a, Di=(=0yg)a, D3 = (0wg)b, Dj=(0yg)b.

Hence, we can simplify (A.5) and (A.6) as

(%' [[UZ]]T - |]:gazUm:|] = Qb

G
@y’ HUZ]]T - H:EazUy:ﬂ = Q27
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where

D$
Q1 := (Oyg)(iacAY —iSA")p — (0 A® + iy A%)p — IIF&ZUZH

D* DY
+ (0y9) ((333,[[Uy]]7 + |[682Uyﬂ — oy U] — ﬂFaZUmﬂ ) ,
’ "(ATa)
DY
Qs = (—0ug)(iaA? — iBA)p — (IBA® + iy AV)p — ngﬂ
D* DY
- ! / y —_— y - / x - —_— x .
oo (et + [Za] -t~ [Zor] )
(A.7b)
The divergence free boundary condition
Cno. 1) + Cp o, HY, + C0.Hy, =0,
transforms to
Gm D? DY
e Y —m z _ _—“m T —m Yy
OxU, + 0y Ul + c 0., Ur, c. 0., Ur c. 0, UY

Hence, we deduce that

?w/ 9/
U 4 o0+ — oz = )y e Gy, oy
a—4g a—4g a—4g

g b—yg

0., UY.

T b z
8m/U2 + @y/Ug + ma@Uz = b—

For the other interfacial boundary condition, we simply find that
N.[H] = -N.-H"
implies that

=0 g[U"] = 0y g[UY] + [U?] = (G g)p + (Oyg)p — A%p.

34



Consequently, the transmission boundary conditions in (10) become

[[Ux]] = <_ax’g)[[UZ]] + ((_ax/g)Az - Am)gpa (AS&
(

)
[UY] = (=dy9)[U] — ((0y9) A" + AY)¢, A.8b)
[U°] = (w ) [U] + (@) [U*] + ((rg) A" + (0yg9)AY — A%)g,  (A.8c)
U] — Hgazmﬂ - Q, (A.8d)

z G y
oy [U7]: — EazU = @2, (A.8e)
ol + a0+ — gz = 9y e (vglay (A.8f)
a—4g a—4g a—4g

6x/U2 + ay/UQy + H622U2 = b—g 8z2U2 + by—g &ZQUQy. (ASg)

200 Appendiz A.4. Boundary Perturbation
Considering our specification that g(z) = e f(x), it can be shown that the
following expansions converge strongly

e}
U, = Z Unn(z,y,2)e",  form=1,2.
n=0

In light of this (A.1) becomes

1
2
Am[]m,n + kmUm,n = G_2

m

(afE'R;g’L,n + ay’Rz{n,n + aZmen,n + R?n,n) =: Rm,n;

where

Ry = My f)0wUn 1 + My (0w f) 0z, Ui
— 20w Unn—z = (Cu [)¥mOz, U2,

Ry, = (2My )0y U1 + M (Qy [) 0z, U1
— [0y Unm—a = [(Oy [)m0z U2,

R, = Mo(@r0 f) o Unss + Mo (D F) om0y U
- f(am'f>¢maz’Um,n—2 - f(ay’f)¢may’Um,n—2
— Y2 ((az’f)z + (5y’f)2) Oz Umn—2,

Ry, = =M (0 )0 Ut = My (3 )0y U
+ 2My fl U1 + (0w ) + (O £)?) Ym0z, Unnin—2
+ (0w ) FOurUnmn— + (O ) f Oy Unn—2 — fhpUnpa.
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for
My=a, My=0b, Y1=0a—2, v2=0b—2.

For the boundary condition (A.3), we write

Upin — Tin[Unon] = —iTm[Um,n_l], for m = 1,2.

0 L

Zm

We now consider the transmission boundary conditions (A.8), and, upon
setting A
O 1= ei(ax/+ﬂy/) (—1’}/'f) :
n!

we write (A.8a) and (A.8b) as

[U3] = (0w NHUZ 1] — (Cw [)A%pn — Apn,

[U3] = (=0 NIV 1] = (O [) A% pn1 — A¥pn,
and (A.8¢c) as

[U7] = Qo YUy = Uspa) + (O U y — Uspa)
+ (a:c’f)AxSOn—l + (ay’f)Aycpn—l - Azgpn

We reformulate (A.8d) and (A.8e) as
((%Um — T&x/UQ,n) — a—_gézl Ul,n — TH&ZZUQ’” = le, (A9a)
. . a b
(00U = 0U3) ~ (o0uUl = 1008 ) = Qua (ASD)
where

Q1 = (Oy )i AY —iBAT) o1 — (10 A" 4+ ivA") @,
+ (a@ fﬁlem 1t Z@ faz2U2n 1)

a_
(0w fa _(Gu f)b
5 azl Uyn— 822 Uyn
+ ( f)( P 1,n—2 g—b 2,n—2
oy fla, (9 b)
“—g O Ut o +7 azzUQn 2

+ (ay/f) (am’Uiy,n—l - Tax/UQ,n—l - ay’Ul,n—l + Tay’Uér,n—l) )
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and

f

Qo = (—0x )i AY —iBA")pp_1 — (IBA* +ivAY)p,
— 0y Oy
(B -, )

(=0w f)a ((3 )b
— (O ~—0,U! ,— 822Uyn
f)( a—g I,n—2 g— 2,n—2

(
(=0yfla, o Oy b)b
_ﬁalel,n—Q—’_ (g baZ2U2n 2
- (ax’f) (ax'Uiy,n—1 - TaI/Ug,n—l - ay/Uin—l + Tay/Ug,n—l) :

Multiplying (A.9) by (a — g)(b — g) we rearrange these equations
(0wUfy = 700U,) = (0Uf, = 705U3,) = Qs
(ay'Ulz,n - Tay'Ug,n) - (a’«“l Uig,n - 7'622 UZy,n> = @va

~ 1
Ql,n = E(f(a + b)(aiﬂ Ulz,n—l - Tam'UQZ,n—l) - a’fazl Ulz,n—l + beaz2 U2$,n—1
— f28$/Uf,n,2 + Tf2&£/U§7n,2 + abQLn — ((l + b)le,n—l + szLn_Q),

and
— af@zl Uﬁn—l + beam Ug,n—l

~ 1
Qan = —(fla+0)(0y U, =70y Us, )
(CL + b)fQ?,n—l + fQQQ,n—2)-

ab
- f2ay'Ulz,n—2 + 7—.]8263/(]5,71—2 + abQ2,n -

If we multiply (A.8f) by (a — g)/a and (A.8g) by (b — g)/b, respectively,
and simplify the divergence free conditions we find

8x/Uﬁn + ﬁy/Uﬁn + 621Uf7n

= (aw'f)alelm,nfl + (ay’f>az1 Uly,nfl + gaw'Uinl + gay'Uiy,nh

and

aﬂﬁ/ U;,n + ay/ Uéj,n + a22 UQZ,n
= (5x’f)az2U2,n—1 + (ay’f)azng,n—l + EaxlUZn—l + an'Ug,n—l'
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By subtracting these equations, we complete the interfacial boundary condi-
tion

0w (UY, = Us,) + 0y (UL, = U, + (0:,Uf,, = 0:,U5,) = Jy,
where
T = (0w )0 UT = 0,U3 1) + (0 )0, U,y — 0,U4, )
+ (gameﬁnl - %8r1U§n1> + (géy/Uﬁnl — %ay,Ug{nl) .

In conclusion, we arrive at the following equations:

AUy, + kiU, = Ry, in0<z<a, (A.10a)
AoUsp + k3Us, = Ray, inb<z<0, (A.10b)
[UR] = L1, at 21 = 22 =0, (A.10c)
[U] = Lo, at 21 = 29 = 0, (A.10d)
[U] = L5, at z1 = 22 =0, (A.10e)
[02U]-[0.Uz]- = Q1. at 21 = 29 = 0, (A.10f)
[0y UZ]-[0:UZ]- = Q> at z; = 23 =0, (A.10g)
[0.:U%] + [0,UY] + [0.U?] = J,, at 2 = z = 0, (A.10h)
04 Urn —T1[Us,] = By, at z1 = a, (A.101)
0z Uz — T5[Uy,] = Bay, at zp = b, (A.10j)
where
Iy = <_a$’f)(U12,nfl - Uzz,n71> - (az’f)AzSOn—l — A%pnp,
Ly = (=0y ) Uy = Uz pr) = (Oy [)A%nr = AV,
I3, = (535’ )(Ulm,nfl - U;,nfl) + (ay/f)(U%’,nfl - UQy,nfl)
+ (O [)A o1 + (Oy f) AV 1 — A%pp
and
B, = —£T1 [Uin-],
Bow =~ T3[Us, ]
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