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1. Introduction1

The accurate simulation of scattering of electromagnetic waves in three2

dimensions by a diffraction grating is crucial in many applications of engi-3

neering and scientific interest. Examples include surface enhanced Raman4

scattering [XBKB99], extraordinary optical transmission [ELG`98], surface5

enhanced spectroscopy [Mos85], photovoltaic devices [AP10], and surface6

plasmon resonance biosensing [Hom08, LJJ`12]. Clearly, the ability to nu-7

merically simulate such configurations with speed, accuracy, and robustness8

is of the utmost importance to many disciplines. In this contribution we9

present a novel High–Order Perturbation of Surfaces (HOPS) method for10

the numerical approximation of vector electromagnetic scattering by a peri-11

odic doubly layered medium.12

Volumetric approaches to these problems are pervasive in the engineer-13

ing literature. More specifically Finite Difference [LeV07], Finite Element14

[Joh87], Discontinuous Galerkin [HW08], Spectral Element [DFM02], and15

Spectral [GO77, STW11] methods are all widely used by practitioners. How-16

ever, such methods are clearly disadvantaged with an unnecessarily large17

number of unknowns for the piecewise homogeneous problems we consider18

here. In addition, the faithful enforcement of outgoing wave conditions19

is problematic for these approaches typically necessitating approximations20

such as the Perfectly Matched Layer [Bér94, Bér99] or exact, non–reflecting21

boundary conditions [JN80, HW85, KG89, Giv99, NN04, BNNW09] which22

spoil the sparseness properties of the relevant linear systems.23

For these reasons, surface methods are an ideal choice as they are orders of24

magnitude faster when compared to volumetric approaches due to the greatly25

reduced number of degrees of freedom required to resolve a computation.26

In addition, far–field boundary conditions are enforced exactly through the27

choice of the Green function. Consequently, these methods are a very appeal-28

ing alternative which are gaining favor with practitioners. The most prevalent29

among these interfacial algorithms are those based upon Boundary Integral30

Equations (BIEs) [CK13, RT04], but these face difficulties. Most have been31

resolved in recent years through (i.) the use of sophisticated quadrature32

rules to deliver High–Order Spectral (HOS) accuracy; (ii.) the design of33

preconditioned iterative solvers with suitable acceleration [GR87]; (iii) new34

strategies to accelerate the convergence of the periodized Green function35

[BPA17, BLPAT16] (or avoiding its periodization entirely [BG11, CB15]);36

and (iv.) new approaches to deal with the Rayleigh singularities (widely37
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known in the literature as “Wood’s anomalies”) [BD14, BFL17, BSTV16].38

As a result they are a compelling alternative for many problems of applied39

interest, however, two properties render them disadvantaged for the param-40

eterized problems we consider as compared with the methods we advocate41

here: (i.) For geometries specified by the real value, ε, (here the deviation of42

the interface shapes from trivial), a BIE solver will provide a solution for a43

single value of ε. If this is changed then the solver must be initiated again;44

(ii.) the dense, non-symmetric positive definite systems of linear equations45

that must be solved with each simulation. As specific examples where such46

considerations arise, we point the interested reader to the work of the second47

author, F. Reitich, T. Johnson, and S.–H. Oh. on (i.) simulating “reflec-48

tivity maps” associated to multilayer plasmonic devices [NRJO14] and (ii.)49

determining the minimal configuration required to excite surface plasmons50

with shallow gratings [NOJR16]. In the former, the parameterized nature of51

the configuration and the associated reflectivity map would require a BIE to52

be restarted with each new data point (unlike the scheme we advocate here).53

In the latter, the geometry shape was, by design, a very small perturbation54

of a flat–interface configuration. For a BIE method the cost of simulating55

this is the same as that of approximating a grating with a large deformation,56

while a perturbative algorithm (such as the one we discuss in this paper) can57

run much more quickly.58

In contrast, a High–Order Perturbation of Surfaces (HOPS) methodol-59

ogy effectively addresses these concerns. These formulations have the advan-60

tageous properties of BIE formulations (e.g., surface formulation, reduced61

numbers of degrees of freedom, and exact enforcement of far-field boundary62

conditions) while being immune to the shortcomings listed above: (i.) Since63

HOPS approaches are built upon expansions in the deformation parameter,64

ε, once the Taylor coefficients are known for the problem unknowns, one65

simply sums these for any choice of ε to recover the solution rather than66

beginning a new simulation; (ii.) the perturbative nature of the scheme67

is built upon the flat–interface solution which is trivially solved in Fourier68

space by inverting a sparse operator at each wavenumber. We point out that69

the initial smallness assumption on the deformation parameter, ε, can be70

dropped in light of the analytic continuation results in [NR03, HN10] which71

demonstrate that the domain of analyticity contains a neighborhood of the72

entire real axis. Therefore, with appropriate numerial analytic continuation73

methodologies (e.g., Padé approximation [BGM96]) to access this region of74

analyticity, quite large and irregular perturbations can be simulated. We75
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direct the interested reader to [BR93b, BR94, BR01, NR01b, NR04b] for76

numerical demonstrations.77

There are several approaches to HOPS simulation of partial differen-78

tial equations posed on irregular domains, but they all trace their begin-79

nings to low–order calculations such as those of Rayleigh [Ray07] and Rice80

[Ric51]. The first high–order incarnations appeared in the early 1990s with81

the introduction of the methods of Operator Expansions (OE) by Milder82

[Mil91a, Mil91b, MS91, MS92] and Field Expansions (FE) by Bruno and Re-83

itich [BR93a, BR93b, BR93c]. Each has been enhanced by various authors,84

but the most significant was the stabilization of these methods by one of85

the authors and Reitich with the Transformed Field Expansions (TFE) al-86

gorithm [NR01a, NR01b, NR03, NR04a, NR04b]. Beyond this, these HOPS87

schemes have been extended in a number of directions. Of particular in-88

terest to this contribuation we mention bounded obstacle configurations89

[BR98, NS06, FNS07], the full vector Maxwell equations [BR96, Nic15, NT16]90

and a rigorous numerical analysis [NS09].91

In addition to these, the authors have initiated a comprehensive study of92

the TFE recursions for linear wave scattering and their extension to multiple93

(three) layers in two dimensions [HN17b] and multiple (arbitrary numbers of)94

layers in three dimensions [HN17a]. However, these investigations fixed upon95

the scalar Helmholtz equations which only govern electromagnetic wave prop-96

agation in two dimensions under Transverse Electric or Transverse Magnetic97

polarization [Pet80]. In this contribution we examine the much more diffi-98

cult problem of simulating electromagnetic radiation scattered by a crossed99

grating in three dimensions in general polarization. This demands that we100

not only solve the vector Helmholtz equations in three dimensions, but also101

accommodate the more subtle interfacial boundary conditions of continuity102

of tangential fields with appropriate jumps in the normal direction. To this103

one must also add divergence free constraints while imposing appropriate104

outgoing wave conditions to avoid pollution of solutions. We demonstrate105

how this can be achieved in the doubly layered scenario for which the TFE106

recursions have yet to be derived and implemented. Of particular note, we107

describe a novel, spectrally accurate, modified Legendre–Galerkin approach108

to the vertical discretization where the standard basis is enriched with addi-109

tional connecting basis functions across the layer boundary.110

In addition to the novelty of our new algorithm for this model, we also111

point out that our approach will be the method of choice for simulating the112

technologically relevant case of homogeneous layers separated by an interface113
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which is a slight to moderate deviation of flat. In this case volumetric ap-114

proaches will not be competitive due to their onerous operation counts and115

memory requirements, while BIE approaches (which have the same memory116

constraints as our TFE method) will take longer as their computational cost117

in this setting will be significantly greater. The combination of (i.) dense,118

non–symmetric positive–definite matrix inversion, and (ii.) the algorithmic119

and operational complications of evaluating the Green function (both its120

periodization and accounting for the Rayleigh singularities) render such ap-121

proaches non–competitive for the problems we consider here.122

The article is organized as follows: In Section 2 the governing equations123

for linear electromagnetic waves interacting with a periodic doubly layered124

structure are carefully formulated, together with the appropriate interfacial125

boundary conditions. The TFE method is described in Section 3, and the126

modified Legendre–Galerkin scheme, which we implemented for the vertical127

discretization, is discussed in Sections 4 and 5. A sequence of numerical128

experiments are presented in Section 6 which demonstrate the stability and129

accuracy we can achieve in simulations of configurations containing not only130

smooth and small interfaces, but also rough and large ones as well.131

2. Governing Equations132

In this section we describe the governing equations of linear electromag-
netic waves scattered by a doubly layered medium. Consider a grating struc-
ture with crossed periodic interface located at

z “ gpx, yq, gpx` d1, y ` d2q “ gpx, yq,

where z is the vertical coordinate, and x and y are the lateral coordinates.
Dielectrics occupy each of the two domains

S1
g :“ tz ą gpx, yqu, S2

g :“ tz ă gpx, yqu,

with constant permittivities and permeabilities, tεm, µmu (m “ 1, 2), in each
of the layers. The structure is illuminated from above by time–harmonic
(with frequency ω) plane–wave incidence of the (reduced) form

Hinc
“ Aeipαx`βy´γzq, ∇ ¨Hinc

“ 0, (1a)

Einc
“ Beipαx`βy´γzq, ∇ ¨ Einc

“ 0, (1b)
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where

A ¨ pα, β,´γqT “ 0, B “ ´
1

iωε1
∇ˆA.

We follow the convention that bold–faced characters denote vectors and133

plain–faced are scalars, so that, for instance, A “ pAx, Ay, AzqT .134

In this setting electromagnetic radiation is governed by the time–harmonic
forms of Faraday’s and Ampere’s Laws

∇ˆ E´ iωµH “ 0, (2a)

∇ˆH` iωεE “ 0, (2b)

respectively, which govern the reduced electric, E, and magnetic, H, fields.
We consider µ “ µ0, the permeability of the vacuum, and the permittivity a
piecewise constant

ε “

#

ε1, in S1
g ,

ε2, in S2
g .

As there are no sources (current or charge), applying the divergence operator135

to (2) and using the fact that the divergence of a curl is zero, reveals Gauss’136

Law for Magnetism and Gauss’ Law137

div rµ0Hs “ 0, div rεEs “ 0, (3)

respectively, inside each layer. By applying the curl operator to (2) and using138

(3) one can see that each field satisfies the vector Helmholtz equations139

∆E` k2E “ 0, ∆H` k2H “ 0, (4)

where k2 “ ω2εµ. We decompose the total magnetic and electric fields into
reflected (layer 1) and transmitted (layer 2) components in the following way

E “

#

E1 ` Einc, in S1
g ,

E2, in S2
g ,
, H “

#

H1 `Hinc, in S1
g ,

H2, in S2
g ,

and note that each of the tEm,Hmu also satisfy the vector Helmholtz equa-140

tions, (4).141

At this point we remark that it is sufficient to solve for the magnetic
fields, Hm, as the electric fields, Em, can be recovered from (2b),

Em “ ´
1

iωεm
∇ˆHm.
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We could, of course, select the electric field as our unknown and recover142

the magnetic field from (2a). However, as we shall see, the magnetic field143

enjoys better smoothness properties across the grating interface (its normal144

component is continuous) than the electric field.145

With this choice we select (4) as the governing equations for our unknowns
Hm in the bulk and now must specify boundary conditions for these. First,
the periodicity of the grating interface demands quasiperiodicity of the fields,
[Pet80],

Hmpx` d1, y ` d2, zq “ eiαd1`iβd2Hmpx, y, zq.

Additionally, the scattered fields must be “outgoing” (upward propagating in146

S1
g and downward propagating in S2

g ) which we make precise in Section 2.1.147

For interfacial boundary conditions, an application of Stokes’ Theorem to
(2a) and (2b) yields the continuity of tangential components of the electric
and magnetic fields in the absence of interface sources (currents and charges)

Nˆ
`

E1 ` Einc
´ E2

˘

“ 0, at Γ, (5a)

Nˆ
`

H1 `Hinc
´H2

˘

“ 0, at Γ, (5b)

where N “ p´Bxg,´Byg, 1q
T is an upward pointing normal and Γ denotes

the interface
Γ :“ tpx, y, zq | z “ gpx, yqu.

Using (2b), the first of these, (5a), can be written in terms of the magnetic148

field as149

Nˆ
`

∇ˆH1 `∇ˆHinc
´ τ∇ˆH2

˘

“ 0, at Γ, (6)

where

τ :“
ε1
ε2
“
k2

1

k2
2

.

The divergence theorem applied to (3) delivers the jump relations in the
normal components of the fields

N ¨
`

ε1E1 ` ε1E
inc
´ ε2E2

˘

“ 0, at Γ, (7a)

N ¨
`

H1 `Hinc
´H2

˘

“ 0, at Γ, (7b)

where we have used µ “ µ0 to simplify the latter. From these we discover that150

the change in permittivity across Γ induces a jump in the normal component151

7



of the electric field, while the constant value of the permeability yields a152

magnetic field with continuous normal component.153

However, as noted in [CF91], there is redundancy in these conditions so we154

appeal to the work of [KN99, JWP96] who demonstrate that for a sufficiently155

regular interface (Lipschitz continuous is smooth enough) the divergence free156

conditions in the bulk, (3), can be guaranteed by simply enforcing them at157

the interface158

div rεmEms “ 0, div rHms “ 0, at Γ. (8)

We have now presented eight interfacial boundary conditions, but six should159

suffice for the six unknowns in (4). For our developments we find it most160

convenient to select (5b), (6), (7b), and the difference of the latter equation161

in (8) between H1 and H2.162

Gathering all of these equations, we now focus on the following problem

∆H1 ` k
2
1H1 “ 0, in S1

g , (9a)

∆H2 ` k
2
2H2 “ 0, in S2

g , (9b)

Nˆ pH1 ´H2q “ ´NˆHinc, at Γ, (9c)

N ¨ pH1 ´H2q “ ´N ¨Hinc, at Γ, (9d)

Nˆ p∇ˆH1 ´ τ∇ˆH2q “ ´Nˆ∇ˆHinc, at Γ, (9e)

div rH1s ´ div rH2s “ 0, at Γ, (9f)

OWCrH1s “ 0, z Ñ 8, (9g)

OWCrH2s “ 0, z Ñ ´8, (9h)

where “OWC” stands for the outgoing (upward/downward propagating) wave163

condition which we make precise presently [Are09].164

165

Remark 1. An inspection of the mathematically careful literature shows that166

while our formulation is largely standard, the appearance of two of our surface167

conditions, (9d) and (9f), while true, are somewhat unusual. However, a168

more careful reading of these papers typically reveals that the bulk divergence–169

free conditions (3), or their surface versions (8), are used in rather subtle170

and implicit ways at important points of the analysis. One of our goals in171

this work is to make all of this explicit in the problem statement with a view172

towards efficient and high–order numerical simulation (rather than rigorous173

analysis). Our choice was one of many we could have made, and it was174

simply the one most convenient for our implementation.175
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2.1. Transparent Boundary Conditions176

The usual procedure when implementing the TFE method is to truncate
the unbounded problem domain to a bounded one using a transparent (non–
reflecting) boundary condition. For this we introduce artificial boundaries
above and below the structure, and enforce boundary conditions to solve (9)
equivalently. Introducing the planes

z “ a ą |g|L8 , z “ b ă ´ |g|L8 ,

we define the domains

Sa :“ tz ą au, Sb :“ tz ă bu,

S1,a
g :“ tgpx, yq ă z ă au, S2,b

g :“ tb ă z ă gpx, yqu;

see, e.g., Figure 1. Transparent boundary conditions can be enforced with

z = g(x, y)

z = a

z = b

S1,a
g

Sa

Sb

S2,b
g

Figure 1: A depiction of the layered grating structure with artificial boundaries at z “ a
and z “ b.

Dirichlet–Neumann Operators (DNOs) from the Rayleigh expansions [Ray07]
in the following way. More specifically, it is known [Pet80] that

H1px, y, zq “
8
ÿ

p“´8

8
ÿ

q“´8

t̂p,qe
ipαpx`βqy`γ

p1q
p,qpz´aqq, z ą a,

and

H2px, y, zq “
8
ÿ

p“´8

8
ÿ

q“´8

ŝp,qe
ipαpx`βqy`γ

p2q
p,qpb´zqq, z ă b,
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where, for p, q P Z,

αp :“ α ` p2π{d1qp, βq :“ β ` p2π{d2qq,

and

γpmqp,q :“

#

a

k2
m ´ α

2
p ´ β

2
q , pp, qq P Um,

i
a

α2
p ` β

2
q ´ k

2
m, pp, qq R Um,

m “ 1, 2,

and the set of propagating modes is

Um :“ tp, q P Z | α2
p ` β

2
q ă k2

mu, m “ 1, 2.

It is not difficult to see that these solutions satisfy the Dirichlet conditions

H1px, y, aq “
8
ÿ

p“´8

8
ÿ

q“´8

t̂p,qe
ipαpx`βqyq “: tpx, yq,

H2px, y, bq “
8
ÿ

p“´8

8
ÿ

q“´8

ŝp,qe
ipαpx`βqyq “: spx, yq.

From these we can compute the Neumann data at the artificial boundaries,

BzH1px, y, aq “
8
ÿ

p“´8

8
ÿ

q“´8

piγp1qp,q qt̂p,qe
ipαpx`βqyq,

BzH2px, y, bq “
8
ÿ

p“´8

8
ÿ

q“´8

p´iγp2qp,q qŝp,qe
ipαpx`βqyq,

and thus we define the DNOs

T1rts :“
8
ÿ

p“´8

8
ÿ

q“´8

piγp1qp,q qt̂p,qe
ipαpx`βqyq,

T2rss :“
8
ÿ

p“´8

8
ÿ

q“´8

p´iγp2qp,q qŝp,qe
ipαpx`βqyq,

which are order–one Fourier multipliers.177
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Using these DNOs at the artificial boundaries we write (9) equivalently
on the bounded domain tb ă z ă au,

∆H1 ` k
2
1H1 “ 0, in S1,a

g , (10a)

∆H2 ` k
2
2H2 “ 0, in S2,b

g , (10b)

Nˆ pH1 ´H2q “ ´NˆHinc, at Γ, (10c)

N ¨ pH1 ´H2q “ ´N ¨Hinc, at Γ, (10d)

Nˆ p∇ˆH1 ´ τ∇ˆH2q “ ´Nˆ∇ˆHinc, at Γ, (10e)

div rH1s ´ div rH2s “ 0, at Γ, (10f)

BzH1 ´ T1rH1s “ 0, at z “ a, (10g)

BzH2 ´ T2rH2s “ 0, at z “ b, (10h)

which are our governing equations.178

3. Transformed Field Expansions179

We are now in a position to describe our TFE method. As always,180

the algorithm begins with a domain flattening change of variables [NR01a]181

(also known as σ–coordinates [Phi57] in the geophysical literature and the182

C–method [CMR80] in the electromagnetics community). Subsequently, a183

boundary perturbation expansion is conducted, resulting in a recurrently184

defined set of vector Helmholtz problems which must be solved at every per-185

turbation order desired.186

3.1. The Change of Variables187

To begin we define the change of variables

x1 “ x, y1 “ y,

z1 “ a

ˆ

z ´ g

a´ g

˙

, g ă z ă a, a ą |g|L8 ,

z2 “ b

ˆ

g ´ z

g ´ b

˙

, b ă z ă g, b ă ´ |g|L8 ,

and the transformed fields

Umpx
1, y1, zmq :“ Hmpxpx

1
q, ypy1q, zpx1, y1, zmqq, m “ 1, 2.

11



With this change of variables, a ponderous computation (see Appendix A)
transforms (10) to the following system of equations

∆1U1 ` k
2
1U1 “ R1, in 0 ă z1 ă a, (11a)

∆2U2 ` k
2
2U2 “ R2, in b ă z2 ă 0, (11b)

JUxK “ I1, at z1 “ z2 “ 0, (11c)

JUyK “ I2, at z1 “ z2 “ 0, (11d)

JU zK “ I3, at z1 “ z2 “ 0, (11e)

JBx1U zKτ ´ JpG{CqBzUxKτ “ Q1, at z1 “ z2 “ 0, (11f)

JBy1U zKτ ´ JpG{CqBzUyKτ “ Q2, at z1 “ z2 “ 0, (11g)

JBx1UxK` JBy1UyK`
a

a´ g
BzU

z
1 ´

b

b´ g
BzU

z
2 “ J, at z1 “ z2 “ 0, (11h)

Bz1U1 ´ T1rU1s “ B1, at z1 “ a, (11i)

Bz2U2 ´ T2rU2s “ B2, at z2 “ b, (11j)

where

Rm :“
1

G2
m

pBx1Rx
m ` By1Ry

m ` BzmR
z
m `R

0
mq, m “ 1, 2,

and

I1 :“ ´ppBx1gqAz ` Axqϕ´ pBx1gqJU zK,
I2 :“ ´ppBy1gqAz ` Ayqϕ´ pBy1gqJU zK,
I3 :“ ppBx1gqAx ` pBy1gqAy ´ Azqϕ` pBx1gqJUxK` pBy1gqJUyK,

ϕ :“ epiαx`iβy´iγgpx,yqq,

and

J :“ pBx1gq
a

a´ g
BzU

x
1 ´ pBx1gq

b

b´ g
BzU

x
2

` pBy1gq
a

a´ g
BzU

y
1 ´ pBy1gq

b

b´ g
BzU

y
2 ,

B1 :“ ´pg{aqT1rU1s,

B2 :“ ´pg{bqT2rU2s,

and
JKK :“ K1 ´K2, JKKτ :“ K1 ´ τK2.
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The Laplacian operator ∆m is defined by

∆m “ B
2
x1 ` B

2
y1 ` B

2
zm , m “ 1, 2.

We refer the reader to Appendix A for the specific formulas for the right188

hand sides Rs
m and Qm, (A.2) and (A.7), respectively.189

3.2. A High–Order Perturbation of Surfaces Method190

To specify our HOPS approach we consider an interface deformation of
the form

gpx, yq “ εfpx, yq, ε ! 1,

and insert this into the transformed equations (11). In a forthcoming publi-
cation it will be shown that the transformed fields depend analytically upon
the parameter ε so that the following expansions are valid

Um “

8
ÿ

n“0

Um,npx, y, zqε
n, m “ 1, 2.

From (11) we find at each perturbation order that

∆1U1,n ` k
2
1U1,n “ R1,n, in 0 ă z1 ă a, (12a)

∆2U2,n ` k
2
2U2,n “ R2,n, in b ă z2 ă 0, (12b)

JUx
nK “ I1,n, at z1 “ z2 “ 0, (12c)

JUy
nK “ I2,n, at z1 “ z2 “ 0, (12d)

JU z
nK “ I3,n, at z1 “ z2 “ 0, (12e)

JBx1U z
nKτ ´ JBzUx

nKτ “ rQ1,n, at z1 “ z2 “ 0, (12f)

JBy1U z
nKτ ´ JBzUy

nKτ “ rQ2,n, at z1 “ z2 “ 0, (12g)

JBx1Ux
nK` JBy1Uy

nK` JBzU z
nK “ J̃n, at z1 “ z2 “ 0, (12h)

Bz1U1,n ´ T1rU1,ns “ B1,n, at z1 “ a, (12i)

Bz2U2,n ´ T2rU2,ns “ B2,n, at z2 “ b. (12j)

Again, we refer the reader to Appendix A for formulas for the right hand191

sides Rm,n, Is,n, rQm,n, rJn, and Bm,n.192
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Considering the quasiperiodicity of solutions, we propose the following
generalized Fourier (Floquet) series expansions

tUm,n,Rm,nupx, y, zq “
8
ÿ

p“´8

8
ÿ

q“´8

tUp,q
m,n,R

p,q
m,nupzqe

ipαpx`βqyq,

tIs,n, rQm,n, rJn,Bm,nupx, yq “
8
ÿ

p“´8

8
ÿ

q“´8

tIp,qs,n,
rQp,q
m,n,

rJp,qn ,Bp,q
m,nue

ipαpx`βqyq.

Inserting these expansions into (12), and using the fact that pγ
pmq
p,q q

2 “

k2
m ´ α2

p ´ β2
q , the governing equations are reduced to the one–dimensional

boundary value problems

B
2
z1

Up,q
1,n ` pγ

p1q
p,q q

2Up,q
1,n “ Rp,q

1,n, in 0 ă z1 ă a, (13a)

B
2
z2

Up,q
2,n ` pγ

p2q
p,q q

2Up,q
2,n “ Rp,q

2,n, in b ă z2 ă 0, (13b)

JUx,p,q
n K “ Ip,q1,n, at z1 “ z2 “ 0, (13c)

JUy,p,q
n K “ Ip,q2,n, at z1 “ z2 “ 0, (13d)

JU z,p,q
n K “ Ip,q3,n, at z1 “ z2 “ 0, (13e)

iαpJU z,p,q
n Kτ ´ JBzUx,p,q

n Kτ “ rQp,q
1,n, at z1 “ z2 “ 0, (13f)

iβqJU z,p,q
n Kτ ´ JBzUy,p,q

n Kτ “ rQp,q
2,n, at z1 “ z2 “ 0, (13g)

iαpJUx,p,q
n K` iβqJUy,p,q

n K` JBzU z,p,q
1,n K “ rJp,qn , at z1 “ z2 “ 0, (13h)

Bz1U
p,q
1,n ´ iγ

p1q
p,qU

p,q
1,n “ Bp,q

1,n, at z1 “ a, (13i)

Bz2U
p,q
2,n ` iγ

p2q
p,qU

p,q
2,n “ Bp,q

2,n, at z2 “ b. (13j)

We point out that the unique solvability of the full problem (9) [CF91, DF92,193

BF95] delivers a unique solution to (13).194

4. Weak Formulation195

In this section, we construct a weak formulation of (13) by decomposing
solutions into two parts

Up,q
m,n “

rUp,q
m,n `

qUp,q
m,n, m “ 1, 2.

We choose the first term, rUp,q
m,n, to solve (13) with Rp,q

m,n identically zero, and

the second term, qUp,q
m,n, to solve (13) with Ip,qs,n, rQp,q

m,n, rJp,qn , and Bp,q
m,n all zero.
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For the sake of simplicity we drop the indices tp, q, nu, and point out that it
is not difficult to see that

rUm “ Cme
iγpmqz

`Dme
´iγpmqz, m “ 1, 2,

where the coefficients

Cm “ pC
x
m, C

y
m, C

z
mq

T , Dm “ pD
x
m, D

y
m, D

z
mq

T .

can be explicitly computed from the boundary conditions.196

It remains to investigate the equations for qUm which can be solved by197

a High–Order Spectral (HOS) method [STW11]. As both our Fourier dis-198

cretization of the lateral variables, px, yq, and the Taylor approximation of199

the perturbation quantity, ε, are spectrally accurate, it is natural to se-200

lect a HOS approach to discretize the vertical variable in order to maintain201

high accuracy. Among HOS approaches, the Legendre–Galerkin methodol-202

ogy [STW11] appealed to us due to its ease of implementation and stability203

properties. We have used it in our previous work [HN17b, HN17a] and were204

impressed with its performance; for this reason we have selected it again in205

these developments.206

However, we have not found the “standard” approaches appearing in the
literature useful for our layered media problems and have devised our own
“enriched” approach [HNS12, HN17b, HN17a]. To describe this we state

that a classic weak formulation of (13) for qUm can be specified by: Find
V P rH1prb, asqs3 such that

pκ2V,Φq ´ pBzV, BzΦq ` p1´ τq

¨

˚

˚

˝

´

Bz qU
x
2 p0q ´ iαp qU

z
2 p0q

¯

ϕ̄xp0q
´

Bz qU
y
2 p0q ´ iβq qU

z
2 p0q

¯

ϕ̄yp0q

0

˛

‹

‹

‚

“ pR,Φq ´ iγp1q qU1paqΦ̄paq ´ iγ
p2q

qU2pbqΦ̄pbq, @Φ P rH1
prb, asqs3,

where I1 :“ p0, aq, I2 :“ pb, 0q,

tV,R, κu “

#

tqU1,R1, γ
p1qu, z P I1,

tqU2,R2, γ
p2qu, z P I2.

Here the vector pairing on the interval pa, bq is defined by

pu,vq :“

ż b

a

¨

˝

u1v̄1

u2v̄2

u3v̄3

˛

‚ dx,

15



where the overbar denotes complex conjugation.207

To construct a Legendre–Galerkin method as in [HN17b, HN17a], we
define the finite–dimensional function space XNz Ă rH

1prpb, aqsqs3 by

XNz :“ tΦm P rPNypImqs
3
| BzΦ1paq ´ iγ

p1qΦ1paq “ 0,

BzΦ2pbq ` iγ
p2qΦ2pbq “ 0,m “ 1, 2u,

where PNz is the space of polynomials of degree less than Nz. The Legendre–
Galerkin formulation is: Find UNz P XNz such that

pκ2UNz ,ΦNzq ´ pBzUNz , BzΦNzq

` p1´ τq

¨

˚

˚

˝

´

Bz qU
x
2,Nz
p0q ´ iαp qU

z
2,Nz
p0q

¯

ϕ̄xNz
p0q

´

Bz qU
y
2,Nz
p0q ´ iβq qU

z
2,Nz
p0q

¯

ϕ̄yNz
p0q

0

˛

‹

‹

‚

“ pINzR,ΦNzq ´ iγ
p1q

qUNzpaqΦ̄Nzpaq ´ iγ
p2q

qUNzpbqΦ̄Nzpbq, @ΦNz P XNz ,

where INz is the projection operator onto PNz . Using integration by parts on
each subdomain Im, an equivalent variational formulation is derived: Find
UNz P XNz such that

pκ2UNz ,ΦNzq ` pB
2
zUNz ,ΦNzq

`

¨

˚

˚

˚

˝

´

Bz qU
x
1,Nz
p0q ´ τBz qU

x
2,Nz
p0q ´ iαppqU

z
1,Nz
p0q ´ τ qU z

2,Nz
p0qq

¯

ϕ̄xNz
p0q

´

Bz qU
y
1,Nz
p0q ´ τBz qU

y
2,Nz
p0q ´ iβqpqU

z
1,Nz
p0q ´ τ qU z

2,Nz
p0qq

¯

ϕ̄yNz
p0q

Bz

´

qU z
1,Nz
p0q ´ qU z

2,Nz
p0q

¯

ϕ̄zNz
p0q

˛

‹

‹

‹

‚

“ pINzR,ΦNzq, @ΦNz P XNz .

5. A Legendre–Galerkin Numerical Method in Enriched Spaces208

To apply the spectral Legendre–Galerkin approach [She94, STW11] we
consider basis functions which are combinations of Legendre polynomials
Ljpzq. For z P I1, we define

ψs1,jpzq :“ p1` iqLj

ˆ

2z ´ a

a

˙

` a1,jLj`1

ˆ

2z ´ a

a

˙

` b1,jLj`2

ˆ

2z ´ a

a

˙

, j “ 1, . . . , Nz ´ 2,
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s P tx, y, zu, such that

BzΨ1,jpaq ´ iγ
p1qΨ1,jpaq “ 0, Ψ1,jp0q “ 0,

where
Ψ1,jpzq :“ pψx1,j, ψ

y
1,j, ψ

z
1,jq

T .

Similarly, for z P I2, we define

ψs2,jpzq :“ p1` iqLj

ˆ

b´ 2z

b

˙

` a2,jLj`1

ˆ

b´ 2z

b

˙

` b2,jLj`2

ˆ

b´ 2z

b

˙

, j “ 1, . . . , Nz ´ 2,

s P tx, y, zu, such that

BzΨ2,jpbq ` iγ
p2qΨ2,jpbq “ 0, Ψ2,jp0q “ 0,

where
Ψ2,jpzq “ pψ

x
2,j, ψ

y
2,j, ψ

z
2,jq

T .

Note that these Legendre–Galerkin basis functions vanish at the transition
layer at z “ 0. For this reason, we introduce additional (enriched) basis
functions which have the value p1` iq at z “ 0:

ηspzq :“

#

ηs1pzq “ c1z ` p1` iq, 0 ď z ď a,

ηs2pzq “ c2z ` p1` iq, b ď z ď 0,

s P tx, y, zu, where

Bzη
s
1paq ´ iγ

p1qηs1paq “ 0, Bzη
s
2pbq ` iγ

p2qηs2pbq “ 0.

We readily find

c1 “
iγp1q

p1` iq ´ iγp1qa
, c2 “

´iγp2q

p1` iq ` iγp2qb
.

With these we construct the basis functions defined on tb ă z ă au

ψ̃jpzq “

#

ψx1,jpzq, 0 ă z ă a,

0, b ă z ă 0,
j “ 0, . . . , Nz ´ 2,
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and

ψ̃Nz`j´1pzq “

#

0, 0 ă z ă a,

ψx2,jpzq, b ă z ă 0,
j “ 0, . . . , Nz ´ 2,

and

ψ̃2Nz`j´2pzq “

#

ψy1,jpzq, 0 ă z ă a,

0, b ă z ă 0,
j “ 0, . . . , Nz ´ 2,

and

ψ̃3Nz`j´3pzq “

#

0, 0 ă z ă a,

ψy2,jpzq, b ă z ă 0,
j “ 0, . . . , Nz ´ 2,

and

ψ̃4Nz`j´4pzq “

#

ψz1,jpzq, 0 ă z ă a,

0, b ă z ă 0,
j “ 0, . . . , Nz ´ 2,

and

ψ̃5Nz`j´5pzq “

#

0, 0 ă z ă a,

ψz2,jpzq, b ă z ă 0,
j “ 0, . . . , Nz ´ 2,

and finally,
ψ̃6Nz´6 “ ηx, ψ̃6Nz´5 “ ηy, ψ̃6Nz´4 “ ηz.

Setting N̄ “ 6Nz ´ 4, we write our numerical approximation

uNzpzq :“
N̄
ÿ

j“0

ûjψ̃jpyq,

and seek
u “ pû0, û1, . . . , ûN̄q

T ,

where we are given

f “ pf̂0, . . . , f̂6Nz´7q
T , f̂j :“ pINf, ψ̃jq, j “ 0, . . . , N̄ .

Here, f stands for the right hand side Rm in (13).209

We define the matrices

pAm,sqlj “ pB
2
yψ̃pm´1`2ps´1qqpNz´1q`j, ψ̃pm´1`2ps´1qqpNz´1q`lqIm

` pγpmqp,q q
2
pψ̃pm´1`2ps´1qqpNz´1q`j, ψ̃pm´1`2ps´1qqpNz´1q`lqIm ,
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where 0 ď l, j ď Nz ´ 2, 1 ď m ď 2, and 1 ď s ď 3. We set the column
vectors

a12 “ pB
2
z ψ̃6Nz´6, ψ̃jqI1 ` pγ

p1q
p,q q

2
pψ̃6Nz´6, ψ̃jqI1 ,

b12 “ pB
2
z ψ̃6Nz´6, ψ̃Nz`j´1qI2 ` pγ

p2q
p,q q

2
pψ̃6Nz´6, ψ̃Nz`j´1qI2 ,

c13 “ pB
2
z ψ̃6Nz´5, ψ̃2Nz`j´2qI1 ` pγ

p1q
p,q q

2
pψ̃6Nz´5, ψ̃2Nz`j´2qI1 ,

d13 “ pB
2
z ψ̃6Nz´5, ψ̃3Nz`j´3qI2 ` pγ

p2q
p,q q

2
pψ̃6Nz´5, ψ̃3Nz`j´3qI2 ,

e14 “ pB
2
z ψ̃6Nz´4, ψ̃4Nz`j´4qI1 ` pγ

p1q
p,q q

2
pψ̃6Nz´4, ψ̃4Nz`j´4qI1 ,

f14 “ pB
2
z ψ̃6Nz´4, ψ̃5Nz`j´5qI2 ` pγ

p2q
p,q q

2
pψ̃6Nz´4, ψ̃5Nz`j´5qI2 ,

and row vectors

a21 “ pB
2
z ψ̃j, ψ̃6Nz´6qI1 ` pγ

p1q
p,q q

2
pψ̃j, ψ̃6Nz´6qI1 ` Bzψ̃jp0qψ̃6Nz´6p0q,

b21 “ pB
2
z ψ̃Nz`j´1, ψ̃6Nz´6qI2 ` pγ

p2q
p,q q

2
pψ̃Nz`j´1, ψ̃6Nz´6qI2

´ τBzψ̃Nz`j´1p0qψ̃6Nz´6p0q,

c31 “ pB
2
z ψ̃2Nz`j´2, ψ̃6Nz´5qI1 ` pγ

p1q
p,q q

2
pψ̃2Nz`j´2, ψ̃6Nz´5qI1

` Bzψ̃2Nz`j´2p0qψ̃6Nz´5p0q,

d31 “ pB
2
z ψ̃3Nz`j´3, ψ̃6Nz´5qI2 ` pγ

p2q
p,q q

2
pψ̃3Nz`j´3, ψ̃6Nz´5qI2

´ τBzψ̃3Nz`j´3p0qψ̃6Nz´5p0q,

e41 “ pB
2
z ψ̃4Nz`j´4, ψ̃6Nz´4qI1 ` pγ

p1q
p,q q

2
pψ̃4Nz`j´4, ψ̃6Nz´4qI1

` Bzψ̃4Nz`j´4p0qψ̃6Nz´4p0q,

f41 “ pB
2
z ψ̃5Nz`j´5, ψ̃6Nz´4qI2 ` pγ

p2q
p,q q

2
pψ̃5Nz`j´5, ψ̃6Nz´4qI2

´ Bzψ̃5Nz`j´5p0qψ̃6Nz´4p0q,
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for 0 ď j ď Nz ´ 2. Moreover, we set

a22 “ pB
2
z ψ̃6Nz´6 ` κ

2ψ̃6Nz´6, ψ̃6Nz´6q

` Bzψ̃6Nz´6p0
`
qψ̃6Nz´6p0

`
q ´ τBzψ̃6Nz´6p0

´
qψ̃6Nz´6p0

´
q,

a33 “ pB
2
z ψ̃6Nz´5 ` κ

2ψ̃6Nz´5, ψ̃6Nz´5q

` Bzψ̃6Nz´5p0
`
qψ̃6Nz´5p0

`
q ´ τBzψ̃6Nz´5p0

´
qψ̃6Nz´5p0

´
q,

a44 “ pB
2
z ψ̃6Nz´4 ` κ

2ψ̃6Nz´4, ψ̃6Nz´4q

` Bzψ̃6Nz´4p0
`
qψ̃6Nz´4p0

`
q ´ Bzψ̃6Nz´4p0

´
qψ̃6Nz´4p0

´
q,

a24 “ ´iαp1´ τqψ̃6Nz´4p0qψ̃6Nz´6p0q,

a34 “ ´iβp1´ τqψ̃6Nz´4p0qψ̃6Nz´5p0q.

Here, Bzψ̃np0
´q and Bzψ̃np0

`q stand for the left and right derivatives at 0,
respectively. The Legendre–Galerkin scheme demands the 6Nz´3 equations:

Mu “ f ,

where M is a block matrix

M “

ˆ

A B
C D

˙

.

The block matrix A is defined as

A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

A1,1 0 . . . 0
0 A2,1

A1,2
...

... A2,2

A1,3 0
0 . . . 0 A2,3

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

and the block matrices B and C are defined as

B “

¨

˚

˚

˚

˚

˚

˚

˝

a12 0 0
b12 0
0 c13 0
0 d13 0
0 0 e14

0 0 f14

˛

‹

‹

‹

‹

‹

‹

‚

,
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and

C “

¨

˝

pa21q
T pb21q

T 0 0 0 0
0 0 pc31q

T pd31q
T 0 0

0 0 0 0 pe41q
T pf41q

T

˛

‚.

Finally the upper-triangular matrix D is given by

D “

¨

˝

a22 0 a24

0 a33 a34

0 0 a44

˛

‚.

6. Numerical Simulations210

We now present a variety of numerical experiments utilizing our imple-211

mentation of the algorithm described above which demonstrate the stability,212

speed, and accuracy of our methodology. To begin, we demonstrate the per-213

formance of our solver for the boundary value problem (13) at the heart of214

our numerical method using an exact solution. Subsequently we display the215

fidelity of our full scattering solver for (10) using the “energy defect” as an216

indicator of convergence [Pet80].217

6.1. Simulations of a Boundary Value Problem218

We began by investigating our scheme’s numerical approximation of so-
lutions to the reduced problem, (13), which is at the core of our full solver.
Utilizing the algorithm proposed in Section 5, we looked for numerical con-
vergence to solutions of the following one–dimensional reduced problem

B
2
zu` k2

uu “ fu, 0 ă z ă a, (14a)

B
2
zv ` k2

vv “ fv, b ă z ă 0, (14b)

up0q “ vp0q, (14c)

Bzpu1p0q ´ τv1p0qq “ iαpu3p0q ´ τv3p0qq, (14d)

Bzpu2p0q ´ τv2p0qq “ iβpu3p0q ´ τv3p0qq, (14e)

Bzpu3p0q ´ v3p0qq “ 0, (14f)

Bzupaq ´ iγ
p1qupaq “ 0, (14g)

Bzvpbq ` iγ
p2qvpbq “ 0, (14h)
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where

u “ pu1, u2, u3q
T , v “ pv1, v2, v3q

T ,

k2
u “ ppku1q

2, pku2q
2, pku3q

2
q
T , k2

v “ ppkv1q
2, pkv2q

2, pkv3q
2
q
T ,

fu “ pfu1, fu2, fu3q
T , fv “ pfv1, fv2, fv3q

T .

Since the differential operator and boundary conditions in (14) are the same219

as those in (13), the proposed model provides a good indicator of convergence220

for our modified Legendre-Galerkin method.221

As a test of convergence we considered the following functions and pa-
rameters

u1 “ py ´ aq
2
py ` bq2, u2 “ sinpyqpy ´ aq2py ` bq2,

u3 “ exppyqpy ´ aq2py ` bq2,

v1 “ py ´ aq
2
py ` bq2, v2 “ sinpyqpy ´ aq2py ` bq2,

v3 “ exppyqpy ´ aq2py ` bq2,

a “ 5, b “ ´2, τ “ 1.5, γp1q “ 1´ i, γp2q “ 2` i,

pku1, ku2, ku3q “ p1.25, 2.25, 3.25q, pkv1, kv2, kv3q “ p2.55, 3.55, 4.55q. (15)

Upon using (14a) and (14b) we can define appropriate fu and fv so that these222

represent an exact solution.223

To test numerical convergence, we defined the relative L2 error224

}uex ´ uNz}L2

}uex}L2

, (16)

where uex is the exact solution and Nz is the number of Legendre–Galerkin225

basis functions. In Figures 2 and 3 we display the spectral rate of con-226

vergence which our Legendre–Galerkin method achieved in this simplified227

setting. The numerical results illustrate that, given Nz chosen large enough,228

the proposed modified spectral method can successfully resolve the vector229

Helmholtz equations with the underlying interfacial boundary conditions.230

6.2. Simulations of a Layered Medium: The Maxwell Equations231

We also performed numerical experiments of a periodic doubly layered
medium whose scattering returns are governed by the full vector Maxwell
equations in three dimensions, (10). Unlike the simplified problem in Section
6.1, exact solutions are not available. Hence, we utilized the widely accepted
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Figure 2: Relative L2 error in u, (16), of our Legendre–Galerkin approximation of (14) in
configuration (15) versus number of basis functions Nz on a log–linear scale.

diagnostic of error measurement, the energy defect [Pet80, BR93a]. More
precisely, if one considers the Rayleigh expansions in the upper and lower
layers

H1px, y, zq “
8
ÿ

p“´8

8
ÿ

q“´8

pH1,p,qe
ipαpx`βqy`γp1qzq,

H2px, y, zq “
8
ÿ

p“´8

8
ÿ

q“´8

pH2,p,qe
ipαpx`βqy´γp2qzq,

quantities of great interest are the efficiencies

ep,q1 :“
γ
p1q
p,q

γ

ˇ

ˇ

ˇ

pH1,p,q

ˇ

ˇ

ˇ

2

|A|2
, pp, qq P U1,

ep,q2 :“
γ
p2q
p,q

γ

ˇ

ˇ

ˇ

pH2,p,q

ˇ

ˇ

ˇ

2

|A|2
, pp, qq P U2,

where A is the amplitude of the incident wave, (1). With this definition in
hand, it is clear why these efficiencies are of such interest as they quantify
the energy fraction in each mode which propagates away from the grating.
If all materials in the structure are lossless (km P R), energy is conserved
which is expressed as

ÿ

pp,qqPU1

ep,q1 ` τ
ÿ

pp,qqPU2

ep,q2 “ 1.
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Figure 3: Relative L2 error in v, (16), of our Legendre–Galerkin approximation of (14) in
configuration (15) versus number of basis functions Nz on a log–linear scale.

Hence, we define the “energy defect” as

δd :“ 1´
ÿ

pp,qqPU1

ep,q1 ´ τ
ÿ

pp,qqPU2

ep,q2 ,

which will be zero for an exact solution [Pet80].232

We conducted a sequence of simulations to show the spectral convergence
of our proposed Legendre–Galerkin method (in the energy defect measure),
and checked the performance of our numerical methods. To begin, we set
the following configuration:

a “ 4, b “ ´3, pα, β, γq “ p
a

1{2,
a

1{3, 1.2845q, d1 “ d2 “ 2π,

A “ p
?

3,
?

3,
?

3q, pγp1q, γp2qq “ p1.2845, 2.0330q,

pk1, k2q “ p1.5758, 2.2285q, gpx, yq “ ε cospxq cospyq. (17)

To characterize the performance of our methods we defined the parameters233

N (perturbation order) and tNx, Ny, Nzu (the number of basis functions in234

tx, y, zu directions). In the first experiment we chose235

Nx “ Ny “ 16, Nz “ 20, (18)

and varied N . In Figure 4 we display the energy defect versus the number of236

perturbation orders, N , retained for the configuration (17) and the parameter237

choices (18). The figure shows the spectral convergence of the energy defect238
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Figure 4: Energy defect versus perturbation order, N , for smooth interface configuration
(17) and parameter choices (18).

as the perturbation order is refined. We also see that the energy defect decays239

more rapidly to machine precision as the value of ε is reduced.240

In Figure 5 we display results of simulations of configuration (17) with241

with parameter choices242

N “ 12, Nx “ Ny “ 18, (19)

while varying the vertical discretization parameter, Nz. This clearly shows243

the spectral convergence of the energy defect as this vertical discretization244

parameter is refined.245

In Figures 6–9 we present the real parts of the scattered solution Hx
246

and Hz from configuration (17) with parameter choices (18) where ε “ 0.05.247

Figures 6 and 8 present the numerical approximations of Hx andHz above the248

interface, tz “ gpx, yqu, and Figures 7 and 9 display the numerical solutions249

of Hx and Hz below the interface, tz ă gpx, yqu.250

To continue, we investigate the possibility of using our new algorithm for
deformations of large size. To examine this, we used the following configura-
tion:

a “ 2, b “ ´2, pα, β, γq “ p
a

1{2,
a

1{3, 1.2845q, d1 “ d2 “ 2π,

A “ p
?

3,
?

3,
?

3q, pγp1q, γp2qq “ p1.2845, 2.0330q,

pk1, k2q “ p1.5758, 2.2285q, gpx, yq “ ε cospxq cospyq, (20)

with numerical parameters pNx, Ny, Nzq “ p24, 24, 50q. In Figure 10, we251

display numerical simulations with ε “ 1. As exhibited in [NR01b, NR04a],252
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Figure 5: Energy defect versus perturbation order, N , for smooth interface configuration
(17) and (18).

simple Taylor summation in perturbation order N does not work well for large253

or rough deformations. However, if Padé approximation [BGM96] is utilized254

then outstanding results can be achieved showing that large deformations255

can be readily simulated.256

To close, we conducted a numerical simulation with a very rough interface
defined with the aid of the following “sawtooth” profile

fLpxq “

#

´ 2
π
x` 1, 0 ď x ď π,

2
π
x´ 3, π ď x ď 2π,

where fL possesses only Lipschitz regularity [NR04a, NR04b]. For our nu-
merical experiments we used its Fourier series representation

fLpxq “
8
ÿ

k“1

8

π2p2k ´ 1q2
cospp2k ´ 1qxq,

which we truncated after wavenumber P “ 20,

fL,P pxq “
P
ÿ

k“1

8

π2p2k ´ 1q2
cospp2k ´ 1qxq.

For these simulations we chose the following parameters:

a “ 2, b “ ´2, pα, β, γq “ p0.2, 0.15, 0.35q, d1 “ d2 “ 2π,

A “ p
?

3,
?

3,
?

3q, pγp1q, γp2qq “ p0.35, 0.55453q,

pk1, k2q “ p0.43012, 0.60828q, gpx, yq “ εfLpxq cospyq, (21)
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Figure 6: Plot of the real part of the scattered field Re[Hx] above the interface in config-
uration (17) with parameters (18); for this we chose ε “ 0.05 and N “ 12.

with numerical parameters pNx, Ny, Nzq “ p60, 18, 18q. In Figure 11 we dis-257

play results of our experiment with this rough interface and ε “ 0.01, 0.05, 0.1.258

Evidently, our new method is applicable to configurations with even Lipschitz259

smoothness, provided that sufficient resolution is utilized.260

7. Conclusions261

We have studied a HOPS algorithm for vector electromagnetic scattering262

by a periodic, doubly layered medium. In reformulating the time–harmonic263

Maxwell’s equations, a system of vector Helmholtz equations was considered,264

together with appropriate interfacial boundary conditions. We introduced265

the TFE algorithm to the resulting problem for the first time, which required266

that we derive a sequence of one–dimensional, boundary value problems to be267

solved at each perturbation order in our expansion. Accurate numerical simu-268

lations of these TFE recursions were demonstrated with a Legendre–Galerkin269

method based on a novel weak formulation. These simulations included not270

only small and smooth interfaces in the periodic structure, but also large and271

rough ones as well. The numerical simulations showed the spectral conver-272

gence which our new algorithm can achieve, and our developments clearly273

point towards several extensions of great importance. In particular, our ap-274

proach will be generalized to accommodate surface currents which are one275

popular approach to modeling two–dimensional materials such as graphene276

and black phosphorous which are of such great interest to engineers at the277
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Figure 7: Plot of the real part of the scattered field Re[Hx] below the interface in config-
uration (17) with parameters (18); for this we chose ε “ 0.05 and N “ 12.

moment [GN07, BFPV13]. This extension will not be straightforward as278

more subtle boundary conditions between layers must be considered, and279

hence the algorithmic differences will be significant. In addition, the natural280

extension to an arbitrary number of layers is clearly in view, and will be con-281

sidered in a forthcoming article. For a potential roadmap we point the reader282

to [HN17a] where we achieved this in the simpler context of the Helmholtz283

equation.284
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Appendix A. Derivation of the Transformed Equations290

In this appendix we provide a full derivation of the transformed equations
(11) presented in Section 3.1. Setting gpxq “ εfpxq, by the chain rule, we
find

Bx “ Bx1 ` pBxzmqBzm , m “ 1, 2,

By “ By1 ` pByzmqBzm , m “ 1, 2,

Bz “ pBzzmqBzm , m “ 1, 2.
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Figure 8: Plot of the real part of the scattered field Re[Hz] above the interface in config-
uration (17) with parameters (18); for this we chose ε “ 0.05 and N “ 12.

With this we can write

pa´ gq∇x,y “ pa´ gq∇x1,y1 ´ p∇x1,y1gqpa´ z1qBz1 ,

pa´ gqBz “ aBz1 ,

and

pb´ gq∇x,y “ pb´ gq∇x1,y1 ´ p∇x1,y1gqpz2 ´ bqBz2 ,

pb´ gqBz “ bBz2 ,

where ∇x,y “ pBx, Byq and ∇x1,y1 “ pBx1 , By1q. Defining

C1 “ pa´ gq, Dx
1 “ ´Bxgpa´ z1q, Dy

1 “ ´Bygpa´ z1q, G1 “ a,

and

C2 “ pg ´ bq, Dx
2 “ ´Bxgpb´ z2q, Dy

2 “ ´Bygpb´ z2q, G2 “ ´b,

we deduce that

CmBx “ CmBx1 `Dx
mBzm ,

CmBy “ CmBy1 `Dy
mBzm ,

CmBz “ GmBzm ,

for m “ 1, 2.291
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Figure 9: Plot of the real part of the scattered field Re[Hz] below the interface in config-
uration (17) with parameters (18); for this we chose ε “ 0.05 and N “ 12.

Appendix A.1. The Helmholtz Equation292

As in [HN17a], we rewrite the Laplace operator as

C2
m∆ “ ∇x1,y1 ¨ rC2

m∇x1,y1s ´ p∇x1,y1Cmq ¨ rCm∇x1,y1s ` BzmrCmDm ¨∇x1,y1s

´ pBzmDmq ¨ rCm∇x1,y1s `∇x1,y1 ¨ rCmDmBzms ´ p∇x1,y1Cmq ¨ rDmBzms

` Bzmr|Dm|
2
Bzms ´ pBzmDmq ¨ rDmBzms ´ p∇x1,y1Cmq ¨ rCm∇x1,y1s

´ p∇x1,y1Cmq ¨ rDmBzms `G
2
mB

2
zm .

where Dm :“ pDx
m, D

y
mq. Then the governing problem becomes

0 “ C2
m∆mUm ` C

2
mk

2
mUm

“ ∇x1,y1 ¨ pC2
m∇x1,y1Umq ` BzmpCmDm ¨∇x1,y1Umq `∇x1,y1 ¨ pCmDmBzmUmq

´ p∇x1,y1Cmq ¨ pDmBzmUmq ` Bzmp|Dm|
2
BzmUmq

´ p∇x1,y1Cmq ¨ pCm∇x1,y1Umq `G
2
mB

2
zmUm ` C

2
j k

2
mUm,

where Um stands for the x, y, or z components of Um “ pUx
m, U

y
m, U

z
mq

T .293

Setting C2
mpxq “ G2

m ` Fmpxq we deduce that294

∆mUm ` k
2
mUm “

1

G2
m

pBx1Rx
m ` By1Ry

m ` BzmR
z
m `R

0
mq, (A.1)
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Figure 10: Energy defect versus perturbation order, N , for smooth interface configuration
with large deformation (20).

where

Rx
m “ ´FmBx1Um ´ CmD

x
mBzmUm, (A.2a)

Ry
m “ ´FmBy1Um ´ CmD

y
mBzmUm, (A.2b)

Rz
m “ ´CmD

x
mBx1Um ´ pD

x
mq

2
BzmUm

´ CmD
y
mBy1Um ´ pD

y
mq

2
BzmUm, (A.2c)

R0
m “ pBx1CmqpD

x
mBzmUm ` CmBx1Umq

` pBy1CmqpD
y
mBzmUm ` CmBy1Umq ´ Fmk

2
mUm. (A.2d)

Appendix A.2. Artificial Boundary Conditions295

For the conditions at the artificial boundaries, tz “ au and tz “ bu, of
(10), we note that

BzmUm ´
Cm
Gm

TmrUms “ 0,

and obtain296

BzmUm ´ TmrUms “ ´
g

Mm

TmrUms, (A.3)

for M1 “ a and M2 “ b.297

Appendix A.3. Interfacial Boundary Conditions298

Regarding the transmission boundary conditions at z “ gpx, yq in (10),

Nˆ pH1 ´H2q “ ´NˆHinc,
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Figure 11: Energy defect versus perturbation order, N , for rough interface configuration
(21).

implies that

p´By1gqJU zK´ JUyK “ ppBy1gqAz ` Ayqϕ,

p´Bx1gqJU zK´ JUxK “ ppBx1gqAz ` Axqϕ.

Furthermore

Nˆ p∇ˆ pH1 ´ τH2qq “ ´Nˆ p∇ˆHinc
q,

implies that

p´BygqpBxJHyKτ ´ ByJHxKτ q ` pBxJHzKτ ´ JBzHxKτ q
“ pBygqpiαA

y
´ iβAxqϕ´ piαAz ` iγAxqϕ, (A.4a)

and

pBxgqpBxJHyKτ ´ ByJHxKτ q ` pByJHzKτ ´ JBzHyKτ q
“ ´pBxgqpiαA

y
´ iβAxqϕ´ piαAz ` iγAyqϕ. (A.4b)
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Noting that, for any scalar function K,

BxJKKτ “ Bx1pK1 ´ τK2q `

ˆ

Dx
1

C1

Bz1K1 ´ τ
Dx

2

C2

Bz2K2

˙

“ Bx1JKKτ `
s
Dx

C
BzK

{

τ

,

ByJKKτ “ By1pK1 ´ τK2q `

ˆ

Dy
1

C1

Bz1K1 ´ τ
Dy

2

C2

Bz2K2

˙

“ By1JKKτ `
s
Dy

C
BzK

{

τ

,

JBzKKτ “
G1

C1

Bz1K1 ´ τ
G2

C2

Bz2K2 “

s
G

C
BzK

{

τ

,

we rewrite (A.4) as

p´By1gq

ˆ

Bx1JUyKτ `
s
Dx

C
BzU

y

{

τ

´ By1JUxKτ ´
s
Dy

C
BzU

x

{

τ

˙

`

ˆ

Bx1JU zKτ `
s
Dx

C
BzU

z

{

τ

´

s
G

C
BzU

x

{

τ

˙

“ pBygqpiαA
y
´ iβAxqϕ´ piαAz ` iγAxqϕ, (A.5)

and

pBx1gq

ˆ

Bx1JUyKτ `
s
Dx

C
BzU

y

{

τ

´ By1JUxKτ ´
s
Dy

C
BzU

x

{

τ

˙

`

ˆ

By1JU zKτ `
s
Dy

C
BzU

z

{

τ

´

s
G

C
BzU

y

{

τ

˙

“ ´pBxgqpiαA
y
´ iβAxqϕ´ piβAz ` iγAyqϕ. (A.6)

Since z1 “ z2 “ 0 at z “ gpx, yq, we have

Dx
1 “ p´Bx1gqa, Dy

1 “ p´By1gqa, Dx
2 “ pBx1gqb, Dy

2 “ pBy1gqb.

Hence, we can simplify (A.5) and (A.6) as

Bx1JU zKτ ´
s
G

C
BzU

x

{

τ

“ Q1,

By1JU zKτ ´
s
G

C
BzU

y

{

τ

“ Q2,
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where

Q1 :“ pBy1gqpiαAy ´ iβAxqϕ´ piαAz ` iγAxqϕ´

s
Dx

C
BzU

z

{

τ

` pBy1gq

ˆ

Bx1JUyKτ `
s
Dx

C
BzU

y

{

τ

´ By1JUxKτ ´
s
Dy

C
BzU

x

{

τ

˙

,

(A.7a)

Q2 :“ p´Bx1gqpiαAy ´ iβAxqϕ´ piβAz ` iγAyqϕ´

s
Dy

C
BzU

z

{

τ

´ pBx1gq

ˆ

Bx1JUyKτ `
s
Dx

C
BzU

y

{

τ

´ By1JUxKτ ´
s
Dy

C
BzU

x

{

τ

˙

.

(A.7b)

The divergence free boundary condition

CmBxH
x
m ` CmByH

y
m ` CmBzH

z
m “ 0,

transforms to

Bx1Ux
m ` By1Uy

m `
Gm

Cm
BzmU

z
m “ ´

Dx
m

Cm
BzmU

x
m ´

Dy
m

Cm
BzmU

y
m.

Hence, we deduce that

Bx1Ux
1 ` By1Uy

1 `
a

a´ g
Bz1U

z
1 “

pBx1gqa

a´ g
Bz1U

x
1 `

pBy1gqa

a´ g
Bz1U

y
1 ,

Bx1Ux
2 ` By1Uy

2 `
b

b´ g
Bz2U

z
2 “

pBx1gqb

b´ g
Bz2U

x
2 `

pBy1gqb

b´ g
Bz2U

y
2 .

For the other interfacial boundary condition, we simply find that

N ¨ JHK “ ´N ¨Hinc

implies that

´Bx1gJUxK´ By1gJUyK` JU zK “ pBx1gqϕ` pBy1gqϕ´ Azϕ.
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Consequently, the transmission boundary conditions in (10) become

JUxK “ p´Bx1gqJU zK` pp´Bx1gqAz ´ Axqϕ, (A.8a)

JUyK “ p´By1gqJU zK´ ppBy1gqAz ` Ayqϕ, (A.8b)

JU zK “ pBx1gqJUxK` pBy1gqJUyK` ppBx1gqAx ` pBy1gqAy ´ Azqϕ, (A.8c)

Bx1JU zKτ ´
s
G

C
BzU

x

{

τ

“ Q1, (A.8d)

By1JU zKτ ´
s
G

C
BzU

y

{

τ

“ Q2, (A.8e)

Bx1Ux
1 ` By1Uy

1 `
a

a´ g
Bz1U

z
1 “

pBx1gqa

a´ g
Bz1U

x
1 `

pBy1gqa

a´ g
Bz1U

y, (A.8f)

Bx1Ux
2 ` By1Uy

2 `
b

b´ g
Bz2U

z
2 “

pBx1gqb

b´ g
Bz2U

x
2 `

pBy1gqb

b´ g
Bz2U

y
2 . (A.8g)

Appendix A.4. Boundary Perturbation299

Considering our specification that gpxq “ εfpxq, it can be shown that the
following expansions converge strongly

Um “
8
ÿ

n“0

Um,npx, y, zqε
n, for m “ 1, 2.

In light of this (A.1) becomes

∆mUm,n ` k
2
mUm,n “

1

G2
m

pBx1Rx
m,n ` By1Ry

m,n ` BzmR
z
m,n `R

0
m,nq “: Rm,n,

where

Rx
m,n “ p2MmfqBx1Um,n´1 `MmψmpBx1fqBzmUm,n´1

´ f 2
Bx1Um,n´2 ´ fpBx1fqψmBzmUm,n´2,

Ry
m,n “ p2MmfqBy1Um,n´1 `MmψmpBy1fqBzmUm,n´1

´ f 2
By1Um,n´2 ´ fpBy1fqψmBzmUm,n´2,

Rz
m,n “MmpB1xfqψmBx1Um,n´1 `MmpBy1fqψmBy1Um,n´1

´ fpBx1fqψmBx1Um,n´2 ´ fpBy1fqψmBy1Um,n´2

´ ψ2
m

`

pBx1fq2 ` pBy1fq2
˘

BzmUm,n´2,

R0
m,n “ ´MmpBx1fqBx1Um,n´1 ´MmpBy1fqBy1Um,n´1

` 2Mmfk
2
mUm,n´1 `

`

pBx1fq2 ` pBy1fq2
˘

ψmBzmUm,n´2

` pBx1fqfBx1Um,n´2 ` pBy1fqfBy1Um,n´2 ´ f
2k2
mUm,n´2.
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for
M1 “ a, M2 “ b, ψ1 “ a´ z1, ψ2 “ b´ z2.

For the boundary condition (A.3), we write

BzmUm,n ´ TmrUm,ns “ ´
f

Mm

TmrUm,n´1s, for m “ 1, 2.

We now consider the transmission boundary conditions (A.8), and, upon
setting

ϕn :“ eipαx
1`βy1q p´iγfq

n

n!
,

we write (A.8a) and (A.8b) as

JUx
nK “ p´Bx1fqJU z

n´1K´ pBx1fqAzϕn´1 ´ A
xϕn,

JUy
nK “ p´By1fqJU z

n´1K´ pBy1fqAzϕn´1 ´ A
yϕn,

and (A.8c) as

JU z
nK “ pBx1fqpUx

1,n´1 ´ U
x
2,n´1q ` pBy1fqpUy

1,n´1 ´ U
y
2,n´1q

` pBx1fqAxϕn´1 ` pBy1fqAyϕn´1 ´ A
zϕn.

We reformulate (A.8d) and (A.8e) as

pBx1U z
1,n ´ τBx1U z

2,nq ´

ˆ

a

a´ g
Bz1U

x
1,n ´ τ

b

b´ g
Bz2U

x
2,n

˙

“ Q1,n, (A.9a)

pBy1U z
1,n ´ τBy1U z

2,nq ´

ˆ

a

a´ g
Bz1U

y
1,n ´ τ

b

b´ g
Bz2U

y
2,n

˙

“ Q2,n, (A.9b)

where

Q1,n “ pBy1fqpiαAy ´ iβAxqϕn´1 ´ piαA
x
` iγAxqϕn

`

ˆ

aBx1f

a´ g
Bz1U

z
1,n´1 ` τ

bBx1f

g ´ b
Bz2U

z
2,n´1

˙

` pBy1fq

ˆ

p´Bx1fqa

a´ g
Bz1U

y
1,n´2 ´ τ

pBx1fqb

g ´ b
Bz2U

y
2,n´2

´
p´By1fqa

a´ g
Bz1U

x
1,n´2 ` τ

pBy1bqb

g ´ b
Bz2U

x
2,n´2

˙

` pBy1fq
`

Bx1Uy
1,n´1 ´ τBx1Uy

2,n´1 ´ By1Ux
1,n´1 ` τBy1Ux

2,n´1

˘

,
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and

Q2,n “ p´Bx1fqpiαAy ´ iβAxqϕn´1 ´ piβA
z
` iγAyqϕn

´

ˆ

p´By1fqa

a´ g
Bz1U

z
1,n´1 ´ τ

pBy1fqb

g ´ b
Bz2U

z
2,n´1

˙

´ pBx1fq

ˆ

p´Bx1fqa

a´ g
Bz1U

y
1,n´2 ´ τ

pBx1fqb

g ´ b
Bz2U

y
2,n´2

´
p´By1fqa

a´ g
Bz1U

x
1,n´2 ` τ

pBy1bqb

g ´ b
Bz2U

x
2,n´2

˙

´ pBx1fq
`

Bx1Uy
1,n´1 ´ τBx1Uy

2,n´1 ´ By1Ux
1,n´1 ` τBy1Ux

2,n´1

˘

.

Multiplying (A.9) by pa´ gqpb´ gq we rearrange these equations

pBx1U z
1,n ´ τBx1U z

2,nq ´ pBz1U
x
1,n ´ τBz2U

x
2,nq “

rQ1,n,

pBy1U z
1,n ´ τBy1U z

2,nq ´ pBz1U
y
1,n ´ τBz2U

y
2,nq “

rQ2,n,

where

rQ1,n “
1

ab
pfpa` bqpBx1U z

1,n´1 ´ τBx1U z
2,n´1q ´ afBz1U

x
1,n´1 ` τbfBz2U

x
2,n´1

´ f 2
Bx1U z

1,n´2 ` τf
2
Bx1U z

2,n´2 ` abQ1,n ´ pa` bqfQ1,n´1 ` f
2Q1,n´2q,

and

rQ2,n “
1

ab
pfpa` bqpBy1U z

1,n´1 ´ τBy1U z
2,n´1q ´ afBz1U

y
1,n´1 ` τbfBz2U

y
2,n´1

´ f 2
By1U z

1,n´2 ` τf
2
By1U z

2,n´2 ` abQ2,n ´ pa` bqfQ2,n´1 ` f
2Q2,n´2q.

If we multiply (A.8f) by pa ´ gq{a and (A.8g) by pb ´ gq{b, respectively,
and simplify the divergence free conditions we find

Bx1Ux
1,n ` By1Uy

1,n ` Bz1U
z
1,n

“ pBx1fqBz1U
x
1,n´1 ` pBy1fqBz1U

y
1,n´1 `

f

a
Bx1Ux

1,n´1 `
f

a
By1Uy

1,n´1,

and

Bx1Ux
2,n ` By1Uy

2,n ` Bz2U
z
2,n

“ pBx1fqBz2U
x
2,n´1 ` pBy1fqBz2U

y
2,n´1 `

f

b
Bx1Ux

2,n´1 `
f

b
By1Uy

2,n´1.
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By subtracting these equations, we complete the interfacial boundary condi-
tion

Bx1pUx
1,n ´ U

x
2,nq ` By1pUy

1,n ´ U
y
2,nq ` pBz1U

z
1,n ´ Bz2U

z
2,nq “ J̃n,

where

J̃n :“ pBx1fqpBz1U
x
1,n´1 ´ Bz2U

x
2,n´1q ` pBy1fqpBz1U

y
1,n´1 ´ Bz2U

y
2,n´1q

`

ˆ

f

a
Bx1Ux

1,n´1 ´
f

b
Bx1Ux

2,n´1

˙

`

ˆ

f

a
By1Uy

1,n´1 ´
f

b
By1Uy

2,n´1

˙

.

In conclusion, we arrive at the following equations:

∆1U1,n ` k
2
1U1,n “ R1,n, in 0 ă z ă a, (A.10a)

∆2U2,n ` k
2
2U2,n “ R2,n, in b ă z ă 0, (A.10b)

JUx
nK “ I1,n, at z1 “ z2 “ 0, (A.10c)

JUy
nK “ I2,n, at z1 “ z2 “ 0, (A.10d)

JU z
nK “ I3,n, at z1 “ z2 “ 0, (A.10e)

JBx1U z
nKτJBzU

x
nKτ “ rQ1, at z1 “ z2 “ 0, (A.10f)

JBy1U z
nKτJBzU

y
nKτ “ rQ2, at z1 “ z2 “ 0, (A.10g)

JBx1Ux
nK` JBy1Uy

nK` JBzU z
nK “ J̃n, at z1 “ z2 “ 0, (A.10h)

Bz1U1,n ´ T1rU1,ns “ B1,n, at z1 “ a, (A.10i)

Bz2U2,n ´ T2rU2,ns “ B2,n, at z2 “ b, (A.10j)

where

I1,n :“ p´Bx1fqpU z
1,n´1 ´ U

z
2,n´1q ´ pBx1fqAzϕn´1 ´ A

xϕn,

I2,n :“ p´By1fqpU z
1,n´1 ´ U

z
2,n´1q ´ pBy1fqAzϕn´1 ´ A

yϕn,

I3,n :“ pBx1fqpUx
1,n´1 ´ U

x
2,n´1q ` pBy1fqpUy

1,n´1 ´ U
y
2,n´1q

` pBx1fqAxϕn´1 ` pBy1fqAyϕn´1 ´ A
zϕn

and

B1,n “ ´
f

a
T1rU1,n´1s,

B2,n “ ´
f

b
T2rU2,n´1s.
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