

Large-eddy simulation of flash flood propagation and sediment transport in a dry-bed desert stream

Abstract

Large-eddy simulation (LES) model is used to study flow dynamics of a flash flood event in a dry-bed desert wash, the so-called Tex Wash, near the Tex Wash Bridge on Interstate 10 in the Mojave Desert of California. The evolving free surface of the flash flood is tracked via the level-set method. A bed morphodynamics module is coupled to the hyrdodynamics model to calculate the erosion and bed evolution of the mobile bed of the wash under the flash flood conditions. Flash floods in a desert wash can be characterized with a number of salient features such as (1) existence of both the dry- and wet-cells on the bed surface of the wash that correspond to the air and water phases, respectively; (2) presence of various flow regimes, critical, sub-critical and super-critical in the flow domain; and (3) occurrence of highly transient and complicated flow field and, subsequently, sediment dynamics throughout the wash. We present a numerical modeling effort to study a recorded flash flood and corresponding scour processes in the Tex Wash. The flood event occurred in 2015 and lead to the collapse of the Tex Wash Bridge. Our goal is to gain insights into the flood flow and sediment transport mechanisms, which resulted in the collapse of the bridge. To that end, we selected a study area which includes a 0.65 *km*-long reach of Tex wash at its intersection with the Tex-Wash Bridge. The bathymetry of the wash

¹

was obtained via light-detection-and-ranging (LiDAR) technology and used to construct the computational domain of the wash and bridge foundations. The transient flow of the flash flood, in both air and water phases, and the evolving morphology of the wash is numerically simulated. Our site-specific numerical simulation revealed the formation of deep scour regions adjacent to the right abutment of the upstream bridge, where significant erosion caused the collapse of the bridge. Moreover, our results show that most of the scour processes takes place during the steady phase of the flash flood when the wash is filled with water. However, the transient phase of the flash flood is rather short and contributes to a very limited amount of erosion within the wash.

Keywords: Flash flood; dry-bed streams; Large eddy simulations; Sediment transport.

² **1. Introduction**

³ Excessive rainfalls in a short period of time often cause flash floods in
⁴ fluvial desert streams. Flash floods are known to be followed by intricate
⁵ and interconnected hydro- and morpho-dynamics processes. Understanding
⁶ of these processes seems to be crucial in predicting the effects of flash floods
⁷ on infrastructures installed within the fluvial desert streams. Flash floods
⁸ are being considered among the most disastrous natural hazards [6]. As a
⁹ result, they have attracted significant attention among the researchers in
¹⁰ both hydraulic and hydrology fields [34, 11, 29, 46]. Previous studies are
¹¹ primarily focused on understanding the propagation of flash flood to enable

12 development of early warning systems. Such systems seem to enable min-
13 imization of hazardous effects of flash floods [7, 38, 32, 12]. This study is
14 focused on flash floods in dry-bed desert streams which can lead to excessive
15 bed erosion around the foundations of infrastructures installed in the stream.
16 Owing to the rarity of water flow in desert streams, bridge and other infras-
17 tructure foundations are often placed in shallow depth of stream bed which
18 renders these structures vulnerable to even small amounts of scour during
19 flash floods.

20 Past studies of flash flood propagation are mainly focused on hydrolog-
21 ical modeling approaches. For instance, Knocke [27] proposed a localized
22 lumped hydrological model embedded into geographic information systems
23 (GIS) enabling effective flood forecast and risk assessment. Julien et al. [14]
24 introduced a physically-based distributed model, TREX, and demonstrated
25 its ability to simulate watershed processes by applying to three filed studies.
26 In order to improve predictive capabilities of flash flood models for arid re-
27 gions, Al-Rawas and co-workers [1, 2] conducted GIS-based studies of flash
28 flood in Oman. Schaffner et al. [41] applied the real-time distributed KINE-
29 matic runoff and EROsion model (KINEROS2) to predict the rainfall and
30 basin response of the Fish Creek basin in California, to evaluate the ability
31 of this model. By comparing the result to sub-daily measured data and re-
32 sult of MARINE model, Boithias et al. [5] tested the ability of the sub-daily
33 module of the lumped Soil and Water Assessment Tool (SWAT) to simulated
34 discharges in a catchment. Hydrological models are very easy to be solved
35 by computer so that they are efficient to predict flood event.

36 Hydrodynamic models are potentially capable of predicting more com-

plex phenomena, such as transient flow and sediment dynamics. To study the physical mechanisms of flash flood and predict water depth and velocity field more accurately, past studies have, for the most part, focused on hydrodynamic models. For instance, Mudd [36] performed a scaling analysis and developed a numerical model coupled one-dimensional (1D) Saint-Venant equations and Richards' equation, to investigate flow and infiltration in ephemeral channels during flash flood. Cao et al. [9] developed a 1D shallow water hydrodynamic model to reveal the self-amplifying mechanism of the interaction between the flow and bed scour and the active sediment transport by flash flood. Abderrezak et al. [10] used a two-dimensional (2D) depth-averaged shallow water model to study flash flood propagation in urban areas. Despite some discrepancies observed around buildings where the flow is strongly three-dimensional (3D), their results show good accordance with experimental data. Using a 2D shallow water hydrodynamic model, Roca and Davison [40] analyzed blockage of structures and changes in flow dynamics during a flash flood. Kvocka et al. [30] studied three different 2D hydrodynamic models; i.e., models based on: simplified version of the 2D shallow water equations, full 2D shallow water equations, and full hydrodynamic 2D models with shock-capturing ability; and determined a general threshold value of the bottom slope as a guideline for selecting an adequate flood model. Xia et al. [45] discussed the challenges encountered by overland flow simulations, and developed a numerical scheme based on the full 2D shallow water equations to simulate large-scale transient overland flood flows. Hu and Song [13] developed a 2D shallow water model for simulation of flash floods in mountain watersheds, and executed it in

62 GPU-based parallel model. Liu et al. [33] applied a coupled 1D and 2D
63 hydrodynamic model linking the channel flow and watershed for flood sim-
64 ulation over a complex terrain. They employed 1D Saint-Venant equations
65 were for the channel flow, while 2D shallow water equations were adopted to
66 simulate floods in the basin. Bricker et al. [8] investigated flood prediction
67 strategies in a data-scare environment, and compared 1D HEC-RAS model
68 and 2D Delft-FLOW model. They showed that the 1D model generates
69 conservative results while running faster, whereas 2D model is more accu-
70 rate and, thus, useful for hazard assessment. Li et al. [31] developed a 3D
71 hydrodynamic model based on Reynolds-averaged Navier-Stocks equations
72 including hydrodynamic pressure to simulate flood flows and assess the flood
73 risk. Albano et al. [3] applied a 3D free-mesh Smoothed Particle Hydrody-
74 namics (SPH) model to investigate rigid body movement in flash flood. Us-
75 ing the Stevens Institute of Technology Estuarine and Coastal Ocean Model
76 (sECOM), Marsooli et al. [35] studied coastal flood mitigation by vegeta-
77 tion which is a 3D model based on Reynolds-Averaged NavierStokes (RANS)
78 equations with hydrostatic pressure distribution. Such hydrodynamic sim-
79 ulations often require relatively high computational resources, especially for
80 extensive geographical domains. Thus, researchers have attempted to de-
81 velop hybrid methods which combine the hydrodynamic modeling and hy-
82 drological approaches. For example, Kourgialas and Karatzas [28] developed
83 an integrated modeling system for the estimation of flood flow velocity and
84 sediment transport. This system combined hydrological model HSPF (Hy-
85 drological Simulation ProgramFORTRAN), the quasi-2D distributed MIKE
86 11 hydrodynamic module and the MIKE 11 suspended sediment transport

87 module. The impact of riparian vegetation on flash flood propagation was
88 then studied using this modeling system. Nguyen et al. [37] developed a
89 high resolution coupled hydrologic-hydraulic model for flash flood modeling,
90 the so-called HiResFlood-UCI. Also, Bellos and Tsakiris [4] developed a hy-
91 brid model by combining the hydrological unit, hydrograph theory, and a
92 physically-based 2D hydrodynamic model, the so-called FLOW-R2D.

93 Although flash floods are extensively studied, few of past studies are fo-
94 cused on 3D interactions of flash flood, sediment transport, and terrain and
95 infrastructures. Taking advantage of recent advances in computing technol-
96 ogy and parallel processing on computing clusters, we attempted to numeri-
97 cally model a flash flood event in a desert wash, the Tex wash in the Mojave
98 Desert of California. The flash flood of interest occurred on July 15, 2015
99 causing significant damage to the Tex Wash Bridge located on Interstate 10
100 in California. As seen in Fig. 1 and reported in [43], the bridge failure is
101 occurred because of the severe bed scour around the bridge foundations lead-
102 ing to human fatality and great economic loss. The objective of this study
103 is to better understand the dynamics of the flash flood encroachment on the
104 dry-bed of the wash and its effect on the sediment transport and scour pro-
105 cesses throughout the wash and, particularly, around the collapsed hydraulic
106 structures. When the head of a flash flood enters the dry-bed flow domain,
107 it propagates downstream until the wash is filled up with flood water. The
108 period before the wash is filled is denoted as transient phase. Soon after
109 transient phase is over, the steady phase of the flash flood starts. We note
110 that the duration of the transient phase is solely a function of flash flood's
111 mean-flow velocity and geometric characteristics of the wash. However, the

duration of the steady phase is a function of the flood hydrograph. In this work, a constant volumetric flow rate at the inlet cross-section of the domain is considered. The chosen flow rate is equal to that of the peak of the flood flow. Such an inlet boundary condition was as a result of that the hydrograph of flash flood event is not known. We expect that such an inlet flow rate will lead to conservative results for the scour depth around the hydraulic structures located in the wash. The mean-flow velocity at the inlet is considered to be equal to 0.5 m/s . Our simulation results show that the head of the flash flood propagates with a variable speed of 1 to 3 m/s . Given the fact that the length of the study area in the wash is about 0.65 km , the flash flood has a transient phase of $\approx 5 \text{ min}$. The total duration of the flood was recorded to be about 10 hours and the duration of steady phase of the flash flood is 9 hours and 55 minutes. The duration of the transient phase is less than one percent of that of steady phase of the flash flood. The effect of flash flood during both the transient and steady phases on the sediment transport around the bridge foundations was the subject of the study.

This paper is organized as follows. The governing equations are introduced in Sec. 2. Subsequently, the computational details of the simulation are presented in Sect. 3. Then, the computed results for the instantaneous flow field of the flash flood are presented in Sec. 4. In the same section, the bed morphodynamics simulation results are also presented and discussed. Finally, the main contribution of the paper is summarized in Sec. 5.

¹³⁴ **2. Governing equations**

¹³⁵ *2.1. Flow solver*

Turbulent flood flow is solved using the spatially-filtered continuity and Navier-Stokes equations in both the air and water phases using LES model. The governing equations in non-orthogonal, generalized, curvilinear coordinates $\{\xi^i\}$ read as follows:

$$J \frac{\partial U^j}{\partial \xi^j} = 0 \quad (1)$$

¹³⁶

$$\begin{aligned} \frac{1}{J} \frac{\partial U^j}{\partial t} = & \frac{\xi_l^i}{J} \left[-\frac{\partial (U^j u_l)}{\partial \xi_j} + \frac{1}{\rho(\phi) Re} \frac{\partial}{\partial \xi^j} \left(\mu(\phi) \frac{\xi_l^j \xi_l^k}{J} \frac{\partial u_l}{\partial \xi^k} \right) - \frac{1}{\rho(\phi)} \frac{\partial}{\partial \xi^j} \left(\frac{\xi_l^j p}{J} \right) \right. \\ & \left. - \frac{1}{\rho(\phi)} \frac{\partial \tau_{lj}}{\partial \xi^j} - \frac{\kappa}{\rho(\phi) We^2} \frac{\partial h(\phi)}{\partial x_j} + \frac{\delta_{ij}}{Fr^2} \right] \end{aligned} \quad (2)$$

where the transformed equations are in compact tensor notation in which the repeated indices imply summation. ξ_l^i are the transformation metrics, J is the Jacobian of the transformation, U^i is the contravariant volume flux, u_i is the Cartesian velocity component, p is the pressure, τ_{lj} is the sub-grid scale (SGS) tensor, κ is the curvature of the interface, and δ_{ij} is the Kronecker delta. ρ , μ , ϕ and h are the fluid density, the viscosity, the level set function, and the smoothed Heaviside function, respectively. Re , Fr , and We are the dimensionless Reynolds, Froude, and Weber numbers, respectively:

$$Re = \frac{UL\rho_{water}}{\mu_{water}}, Fr = \frac{U}{\sqrt{gL}}, We = U \sqrt{\frac{\rho_{water}L}{\sigma}} \quad (3)$$

¹³⁷ where U and L are the characteristic velocity and length of the flash-flood
¹³⁸ flow, g is the gravitational acceleration, and σ the surface tension. ρ_{water} and
¹³⁹ μ_{water} are the density and dynamics viscosity of the water phase, respectively.

140 The water/air interface of the flash-flood flow is tracked by solving for the
 141 level-set function $\phi(x, y, z, t)$ as a scalar that defines the minimum distance
 142 from any computational cell center within the fluid domain to the closest
 143 point on the water/air interface, where the iso-surfaces of ϕ is equal to zero.
 144 To ensure numerical stability of solution, the fluid properties at the water/air
 145 interface are smeared over a thin layer. Details of the level-set method, LES
 146 turbulent model, and numerical methods employed in the flow solver are
 147 already reported elsewhere and, for the sake of brevity, we refer the reader
 148 to [15, 25, 20].

149 *2.2. Sediment transport solver*

The temporal variation of the bed elevation is governed by the Exner-Polya equation:

$$(1 - \gamma) \frac{\partial z_b}{\partial t} = \underbrace{-\nabla \cdot \mathbf{q}_{BL}}_{\text{Bed-load}} \quad (4)$$

where γ is the sediment material porosity, z_b is the bed elevation, ∇ denotes the divergence operator, and \mathbf{q}_{BL} is the bed-load flux vector, which is calculated as follows [21]:

$$\mathbf{q}_{BL} = \Psi \|d\mathbf{S}\| \delta_{BL} \mathbf{u}_{BL} \quad (5)$$

150 where Ψ is the local sediment concentration on the mobile bed surface (computed
 151 using Van Rijn formula [39]), $\|d\mathbf{S}\|$ is the length of the bed cell edge,
 152 δ_{BL} is the thickness of the bed-load layer (considered to be equal to $20d_{50}$,
 153 where d_{50} is the median grain size of sediment material [24]), and \mathbf{u}_{BL} is the
 154 flow velocity vector parallel to the bed surface at the edge of the bed-load
 155 layer. At each time step, once the flow field is computed (on the background

156 structured mesh), velocity field and bed shear stress info are projected onto
157 the cell centroids of bed surface (unrestricted triangular grid) at the edge of
158 bed-load layer using the law of the wall (for more details, see [42]). As flash
159 flood propagates downstream, the Exner-Polya equation is solely solved for
160 bed cells that are covered by water, i.e. wet cells. At each time step, the
161 wet cells are found and flagged using a search algorithm which uses fluid
162 density adjacent to the bed cell to differentiate water from air (see Fig. 3).
163 Furthermore, the model employs a sand-slide algorithm to correct the slope
164 of bed surface wherever it exceeds the angle of repose of the bed material.
165 Details of these algorithms can be found in [26]. Finally, it is important to
166 mention that the coupling between the flow solver and bed morphodynamics
167 calculations is done by adopting a fluid-structure interaction (FSI) approach.
168 Detailed description of this FSI approach is already reported in [21].

169 **3. Computational Details**

170 We employ our in-house coupled flow and bed morphodynamics model,
171 the Virtual Flow Simulator (VFS-Geophysics) code, to simulate the flash
172 flood and, consequently, sediment transport in the Tex wash. The flash
173 flood is modeled in the three phases of air, water, and sediment – in a fully
174 coupled manner. The two former phases are resolved to track the free surface
175 of the flash flood, as its head propagates through the wash. Using the large
176 eddy simulation (LES) model, the flood-induced turbulence is resolved [25].
177 Free surface of the flash flood is modeled using the level-set method [15, 20].
178 Once resolved, the hydrodynamics of the water flow over the dry-bed of
179 the wash is used to resolve the latter phase using a bed morphodynamics

180 module that is coupled with the flow solver. A surface bed-cell on the wash
181 bathymetry, under dry-bed condition, can be in contact with either water
182 or air. Sediment transport is allowed to occur on the bed cells that are in
183 contact with water, i.e., wet-bed cells. To that end, a module is developed
184 to identify the wet- and dry-bed cells and, subsequently, sediment transport
185 solely on the wet-bed cells is to be solved. As shown in Fig. 2, the study area
186 within the Tex wash consists of a highly complex bathymetry with several
187 bridge piers of the Tex-Wash bridge. The bridge foundations are located
188 in a ≈ 27 *m*-wide narrow channel, where the highway intersects with the
189 wash. The complex geometry of the wash and the bridge piers are obtained
190 using light-detection-and-ranging (LiDAR) technology and considered in the
191 simulations using the curvilinear Immersed Boundary (CURVIB) module of
192 the VFS-Geophysics model. The flow field of the flash flood of July 15, 2015
193 is modeled on a structured background mesh within a 0.65 *km*-long reach
194 of the wash. The calculation area is shown with the black rectangle in Fig.
195 2(D). Nevertheless, the sediment transport calculations are carried out on the
196 unstructured triangular grid system. This area is limited to a 0.25 *km*-long
197 portion of the wash on the both sides of the Tex-Wash Bridge – see the refined
198 triangular mesh region around the bridge piers in Fig. 2(E). As seen in the
199 figure, near the inlet section of the study area, the wash is relatively narrow
200 (≈ 50 *m* wide). Farther downstream, the wash becomes wider reaching a
201 maximum width of about 200 *m*. The wider area of the wash includes a
202 relatively deep gorge close to the right bank of the wash, while the dry-
203 bed of the wash near the left bank is rather elevated generating a relatively
204 shallow water condition—see next section. The wide region of the wash ends

205 to the narrow channel. It is noted that the transition from the wide region
206 of the wash to the narrow gorge includes a sharp bend, which is expected to
207 generate a system of energetic helical flow within this region. Additionally,
208 the interaction of such helical flow with the bridge piers in the narrow channel
209 can induce highly complicated flow dynamics. As reported [43], extreme
210 erosion near the right bank of the narrow channel adjacent to the bridge
211 foundation "P2" (see Fig. 2) has led to the failure of the right abutment
212 then the collapse of the bridge span. It seems to be of great importance to
213 employ a finer grid resolution around the bridge foundations to understand
214 the effect of flash flood on the scour pattern near the bridge abutment and the
215 link between the flow dynamics and scour process in this region. Employing
216 proper grid systems, a fully coupled hydro- and morphodynamics numerical
217 simulation is conducted to gain insights about the dynamics of the interaction
218 of the flash flow, the wash bed, the side banks, and the bridge foundations.
219 Such insight would potentially be helpful for a better understanding of the
220 effects of the flash flood on structural stability of our infrastructures.

221 Fig. 4 plots the Cartesian background mesh, which is used to discretize
222 the flow domain, along with the unstructured triangular grid system for
223 discretization of the immersed bodies: stream morphology and bridge foun-
224 dations. Table 1 presents the details of these grid systems along with the
225 temporal steps used in the simulations. As seen in this figure, the Cartesian
226 background mesh is uniform in vertical, while stretched horizontally with a
227 stretching factor of 1.05 to better resolve the areas of interest: regions around
228 the bridge foundations.

229 The selected time-step for the flow solver ($\Delta t \approx 0.005s$) leads to a the

230 maximum Courant-Friedrichs-Lowy (CFL) number of 0.1 ensuring numerical
231 stability of the flow and free-surface computations of the flash flood. De-
232 synchronizing the flow and sediment transport computations (while still fully
233 coupled), a morphodynamics time-step of $\Delta t_s \approx 1000 \times \Delta t$ was selected for
234 the sediment transport model. This dual time-stepping approach allows for
235 affordable and yet physical simulation of the evolution of bed morphology
236 of the stream for longer periods of time. Details of the dual time-stepping
237 algorithm along with its validation studies are reported in [23].

238 For the inlet boundary condition, we employ a flux of $14 \text{ m}^3/\text{s}$ at the
239 inlet cross plane of the domain resulting in a mean-flow velocity of $\approx 0.5 \text{ m/s}$
240 at the inlet. Neumann boundary condition is employed for velocity compo-
241 nents and pressure at the outlet cross plane, while the velocity field at the
242 sediment/water and solid/water interface of the wash bathymetry and bridge
243 foundations is reconstructed using a wall modeling approach [26]. The large-
244 scale roughness's on the river banks and on the bed are directly incorporated
245 in the flow field calculations through immersed boundary method, while their
246 surfaces are treated as rough surfaces with an effective roughness height of
247 $20d_{50}$. Sediment transport is recirculated within the computational domain
248 by setting the inflow of sediment at the inlet section equal to that of outflow
249 of the sediment mass at the outlet section.

250 The coupled three-phase flow simulations in this work are performed on
251 a supercomputing cluster, the so-called "Zagros", at the Department of Civil
252 Engineering of Stony Brook University. Zagros has 76 compute nodes with
253 1216 cores. Cores are 3.06 GHz Intel X5675 with 6 GB RAM/core and
254 connected via QDR Infiniband. The cluster has a 135 TB Lustre-based

255 storage system with distributed meta data servers (MDS) and object storage
256 servers (OSS), all connected via the IB network in order to handle high I/O
257 needs of the code. For this work, we employed 512 cores for 15 days of
258 CPU-time to simulate 10h of actual time of the flash flood.

259 **4. Results and discussions**

260 *4.1. Instantaneous flash-flood flow*

261 Prior to present the computed flow field, it is important to note that the
262 wash bathymetry is highly irregular with complex macro-roughness elements.
263 Based on the concept of specific energy in open-channel flows, variations in
264 the bed geometry can lead to changes in water depth and geometry. There-
265 fore, the interaction of a flash flood with such irregularities in the wash is
266 expected to induce variations in the flow depth and, consequently, velocity
267 field. The simulation results of instantaneous velocity field is presented at the
268 free surface of the flash flood within the study area (Fig. 5). In the middle of
269 the wash, just downstream of the inlet cross-section, the LES has captured a
270 jet-like flow which has a high-velocity core with velocity magnitudes of up to
271 5 m/s (Fig. 5(A and C)). As it impinges upon the road shoulder, the high-
272 velocity region ends with a hydraulic jump. Immediately downstream of the
273 hydraulic jump, the flash flood enters the sharp, near 90°, bend and flows to-
274 wards the bridge foundations, "P1" and "P2". Entering the narrow channel,
275 the flash-flood markedly accelerates. The dynamics of the flood flow within
276 the narrow channel is quite intricate because of its interaction with the side
277 banks, bridge foundations, and the irregularities in the bank geometry—to
278 name a few. The flow in the narrow channel also contains a high-energy 3D

279 helical flow, which is induced by the sharp bend at the entrance to the narrow
280 channel. These features led to a very complex flow field around the bridge
281 piers. For instance, note the local hydraulic jump at point *i* and *ii*, as seen
282 in Fig. 5(B). This local hydraulic jump seems to be formed because of the
283 local flow acceleration between the bridge pier "P1" and the right bank of the
284 narrow channel. Overall, the Fr number in the narrow channel is shown to
285 be varying significantly, from 0.1 to 7, inducing simultaneously sub-critical,
286 super-critical and critical flow regimes (Fig. 5(D)). Note the computed flow
287 field near the left bank of the narrow channel, where the flow is relatively
288 less accelerated. As seen in Fig. 5(B and D), at farther downstream regions,
289 in the wake of bridge piers "P3" and "P4", flash flood forms another jet-like
290 flow with a high-velocity core near the mid-wash region.

291 In Fig. 6, the computed instantaneous flow field is plotted at the mid-
292 depth of the flash-flood flow. As seen in this figure, the velocity magnitudes
293 within the narrow channel is roughly as high as those observed at the free
294 surface. The high velocity region near the right bank of the narrow channel is
295 noted – all the way, from the beginning to the end of the narrow channel (see
296 Fig. 6(B)). We expect such high velocity core to impose high shear forces on
297 the right bank threatening its stability. Another high-velocity core is cap-
298 tured in the middle of the narrow channel, between the two adjacent bridge
299 piers. The velocity magnitude near the left bank of the narrow channel, how-
300 ever, is relatively small. Additionally, computed contours of the out-of-plane
301 vorticity component are illustrated in Fig. 6(C). As seen in this figure, the
302 flow contains a wide range of high-energy vertical structures within the nar-
303 row channel. The dominant vortical structures between the right bank and

304 the bridge piers "P2" and "P4" is noted. The two counter-rotating vortices
305 are the reminiscent of the helical vortex formed because of the sharp bend –
306 see Fig. 6(C).

307 We plot in Fig. 7 contours of dimensionless bed shear stress, i.e., Shield's
308 parameter ($= \tau_o / [(\rho_s - \rho)gd_{50}]$, where τ_o and ρ_s are the bed shear stress and
309 the sediment density, respectively). For a channel bed to act as a mobile bed,
310 the Shield's parameter should be higher than its critical value, θ_{cr} . Based
311 on the sediment material size of the wash, θ_{cr} is equal to 0.028 [44]. The
312 bank erosion can be attributed to high values of the Shield's parameters near
313 the bank – due to highly energetic turbulent flow and increased mean flow
314 gradients in that region [22]. As seen in Fig. 7(A and B), the computed
315 Shield's parameter near the right bank is quite higher than the critical value
316 of 0.028, whereas the Shield's parameter at the left bank is slightly smaller
317 than or equal to θ_{cr} . It is also noted that, in the region between the bridge
318 piers, θ is significantly higher than the critical value. As seen, the computed
319 bed shear stress distribution within the narrow channel show that, in most
320 locations with the narrow channel, θ is greater than the threshold value,
321 therefore significant bed material movements is to be expected. In the next
322 section, the computed bed morphology will be presented and analyzed to
323 examine the effect of the flash flood on the transport of bed material within
324 the wash.

325 *4.2. Sediment transport calculations*

326 In this section the morphodynamics results of the coupled flow and bed
327 simulations are presented to examine the effect of the flash-flood flow on
328 the evolution of the wash morphology. First, the initial bathymetry of the

329 wash, prior to the flash flood event, is presented (Fig. 8). As seen, the
330 initial bed topography of the wash around the bridge foundation has variable
331 longitudinal slope with an average of $\approx 5\%$, which is relatively steep.

332 In Fig. 9, the computed bed topography of the wash is plotted at the
333 end of the steady phase of the flash flood, i.e. $t \approx 10 h$. As seen, the LES
334 model obtained a deep scour depth near the base of the banks and around
335 the bridge piers "P1" and "P2". The LES model captured a number of sand
336 waves, which propagate downstream. These sand waves are formed near the
337 entrance of the narrow channel migrating downstream of the wash. As seen
338 in Fig. 9(A), after $t \approx 10 h$, they are located downstream of the bridge
339 piers "P3" and "P4". There are a number of salient features vis-à-vis the
340 computed results of bed morphology in Fig. 9. These features include: (i)
341 sediment transport process at locations upstream of the narrow channel is
342 rather insignificant and, therefore, the bed topography of the wash in these
343 regions has experienced the least amount of bed change; (ii) interaction of
344 the sharp-bend-induced-3D-helical flow and the accelerated flash-flood flow
345 leads to a significant bed material moment in the narrow channel, all the way
346 from its beginning to end; (iii) as a results, significant amount of scour takes
347 place immediately at the base of the right bank near the bridge pier "P1";
348 and (iv) the wash bed at the base of the left bank, which is less exposed to
349 the helical flow, experiences relatively smaller scour.

350 In order to further investigate the amount of bed-elevation change through
351 the wash bed, we calculate the bed-change parameter, Δz_b . This parameter,
352 calculated locally for each bed cell, represents the difference between the bed
353 elevation of the wash at the beginning and the end of the sediment transport

354 process. Hence, the bed-change parameter is obtained as $\Delta z_b = z_{end} - z_{init}$
355 in which z_{init} is measured in the field and used as the initial bed-topographic
356 condition and z_{end} is the computed bed-topography after 10 h of the flash
357 flood. The contours of computed bed-change parameter is shown in Fig. 10.
358 As seen, the bed-change at the region upstream of the narrow channel hovers
359 around zero. Likewise, the bed-change of the narrow channel downstream
360 of the bridge piers "P1" and "P2" experiences either no scour or sediment
361 deposition. While, the base of the right bank, near the bridge pier "P2",
362 is among the zones where maximum scour depths can be observed. To be
363 exact, the maximum computed scour depth is $\approx 1.8 m$, which corresponds to
364 the base of the right bank – see Fig. 10(B). It is important to note that the
365 location of the computed maximum scour depth is in accord with the region
366 at which the bridge foundation failure reportedly led to the collapse of the
367 Tex-Wash Bridge during the flash flood, as seen in Fig. 1. Similarly, a deep
368 scour region can be observed upstream of the bridge pier "P1", however,
369 since there was no field field measurements, these predicted scour patterns
370 cannot be validated. Overall, one can argue that the complex flow with
371 elevated turbulence level in the narrow channel has led to deep scour around
372 the bridge foundations – see the intricate water surface, velocity field, and
373 bed shear stress distribution in Figs. 5, 6, and 7, respectively. Given the
374 drop of the water surface around bridge piers "P1" and "P2" (Fig. 5), we
375 argue that the deep scours at this location are caused by the accelerated flow
376 and high shear stress near the inlet of the narrow channel [16, 17, 18, 19].

377 Now, the evolution of the computed bed-morphology during the 10 h -long
378 flash flood event is examined. To do so, the time history of the computed

379 sediment-transport kinematics is analyzed at a local point on the bed surface,
380 where the information during the flood are recorded. The local point is picked
381 to be between the tip of the bridge pier "P2" and the right bank because of
382 the importance of the scour at the right bank of the narrow channel. This
383 point is denoted as "th" and shown with a pink star in Fig. 8.

384 The computed time history of the sediment-transport kinematics at the
385 point "th" on the bed surface of the wash is plotted in Fig. 11. In this figure,
386 the first $\approx 5 \text{ min}$ of the time histories, during which the bed surface is in
387 contact with air, is skipped. In Fig. 11(A), the time history of the velocity
388 magnitude of the sediment phase is showed at the boundary of the bed-
389 load layer, i.e., sediment/water interface. As seen, starting from a velocity
390 magnitude of $\approx 0.7 \text{ m/s}$, the velocity magnitude gradually reduces to about
391 0.45 m/s . Fluctuating slightly around these values after about 3 h , the
392 velocity magnitude of particles seems to be at a dynamic equilibrium. A
393 similar trend can be seen for the time history of the Shield's parameter in
394 Fig. 11(B) where the two models reach quasi-equilibrium after about 3 h
395 while the computed Shield's parameter fluctuates around $\theta \approx 0.06$. Both
396 the sediment phase velocity and Shield's parameter are proportional to the
397 flow velocity. Hence, the decreasing trend of the Shield's parameter and
398 sediment phase velocity is due to the reduction in the flow velocity, owing to
399 the deformation of the stream bed and the expansion of the cross-sectional
400 area of the flow. It is noted that the critical value of Shield's particle in this
401 work is $\theta_{cr} \approx 0.03$, which is half of the Shield's parameter at equilibrium
402 and indicates that sediment in this location is rather mobile. The time
403 history of the rate-of-change of the bed elevation, $\partial z_b / \partial t$ is shown in Fig.

404 11(C). The rate-of-change represents the instantaneous time-variation of the
 405 bed elevation. Multiplied by the time-step of the sediment transport model
 406 (Δt_s), the rate-of-change of the bed can be quantified in meter (m). As seen
 407 in this figure, early on, the rate-of-change is $\approx -8 \text{ mm}$ meaning that the bed
 408 elevation is scouring by 8 mm at each time step. Rapidly decreasing, the
 409 rate-of-change diverges to a minimal amount of $\approx -1 \text{ mm}$ each time step.
 410 We also plot in Fig. 11(D) the time history of the sediment bed-load (q_b)
 411 per unit width of the channel. As seen, a trend very similar to that of the
 412 Shield's parameter can be seen for the q_b , which after about 3 h reaches a
 413 quasi-equilibrium value of $\approx 0.3 \text{ kg/s/m}$. The association between θ and q_b is
 414 something to be expected, as it is a general characteristic of all continuum, or
 415 Eulerian, sediment transport models. Also, Figs. 11(E and F) depict the time
 416 history of the bed elevation and scour depth (H_s). The two parameters are
 417 essentially the same because the instantaneous H_s is defined as $H_s = z_b - z_{init}$,
 418 in which z_b is the instantaneous bed elevation at the point "th", while z_{init}
 419 is a constant value that is equal to the initial value of z_b at point "th".
 420 Unlike all other parameters whose time histories converge after $\approx 3 \text{ h}$, the
 421 time histories of z_b and H_s include continuously descending and ascending
 422 limbs, respectively. In other words, had we continued the simulations beyond
 423 10 h duration of the flash flood, the scour depth would increase further.
 424 This means that although the morphodynamics parameters (i.e., V , θ , q_b ,
 425 and $\partial z_b / \partial t$) have reached quasi-equilibrium after 3 h , nonetheless the bed
 426 elevation computations are not at equilibrium yet. This characteristic can
 427 be specific solely to flash flood events in desert, dry-bed, wash in which Fr
 428 number varies so drastically throughout the waterway. Having said that the

429 slopes of the time history lines of both z_b and H_s seem to be reducing and that
430 they seem to eventually plateau. Finally, the contribution of the transient
431 phase to overall scour depth can be seen in Fig. 11(F). The red dashed line
432 in this figure shows the time when the transient phase of the flash flood is
433 over ($\sim 5 \text{ min}$). The local scour depth at this time is about 3.7 cm that is
434 less than two percent of the total scour depth at the end of the flood. This
435 is mainly because the transient phase takes only about 5 minutes, which is
436 less than one percent of the flash flood duration. Thus, one can argue that
437 the overall contribution of the transient phase of the flash flood to the scour
438 and streambed deformation is insignificant.

439 **5. Conclusions**

440 A fully-coupled hydrodynamics and morphodynamics model, the VFS-
441 Geophysics code, is employed to simulate numerically the three-phase flow
442 of air, water, and sediment in a dry-bed desert wash under flash flood condi-
443 tions. The wash, the so-called Tex wash, is located in the Mojave Desert of
444 California. The simulated flash flood, which is the subject of this study, was
445 caused by an intensive rainfall on July 15, 2015. The simulation domain is
446 limited to a 650 m -long reach of the Tex wash at its intersection with Inter-
447 state Highway 10. The flash flood event, after about 10 h flood duration, led
448 to the collapse of the bridge infrastructure, the so-called Tex-Wash Bridge,
449 causing significant economic loss and endangering public safety.

450 We attempted to use the VFS-Geophysics model to gain insight into the
451 mechanisms that lead to the collapse of the bridge. The site-specific nu-
452 mercial simulation of the Tex wash was carried out by taking into account

453 detailed geometry of the wash bathymetry and bridge foundations. It started
454 by allowing the head of the flash flood to propagate through the wash filling
455 the study area. The free surface of the flash flood was traced using the level-
456 set method. Otherwise, the turbulent flow of the flood was resolved using
457 the LES model. This model, coupled with the morphodynamics module of
458 the VFS-Geophysics code, was helpful to quantify the flash flood kinemat-
459 ics, flow, and sediment dynamics in the wash within the study area. The
460 computed flow field results revealed the formation of highly complicated flow
461 dynamics within the study area with all the flow regimes of critical, sub-
462 critical, and super critical taking place, simultaneously. Moreover, our flow
463 field computations using LES revealed the formation of two major hydraulic
464 jumps. One of these hydraulic jumps occurs at a location between the bridge
465 pier "P2" and the right bank of the narrow channel, which leads to a super-
466 critical and high-velocity core Jet-flow immediately adjacent to the base of
467 the right bank of the narrow channel. The morphodynamics results also re-
468 vealed the development of a deep scour region adjacent to the right bank
469 of the narrow channel, where the hydraulic jump took place. These finding
470 agree well with the reported accident at the Tex-Wash Bridge, where erosion
471 of the right bank foundation led to the collapse of the bridge. The grid res-
472 olution of our LES was selected to be rather coarse to enable the simulation
473 of such real-life stream. However, higher resolution LES can be utilized to
474 gain more insightful information into the interaction of flash floods, stream
475 bed and banks, and the infrastructures.

476 The site-specific, fully coupled, numerical simulation of the flash flood
477 event in the Tex wash illustrates clearly the capability of LES to provide

Table 1: The computational grid systems and the time step employed for the flow and morphodynamics solvers. N_{x_i} and Δx_i ($\forall i = 1, 2, 3$) (in m) indicate the number of grid nodes and the finest grid spacing of the background grid for flow solver in the i direction, respectively. y , x , and z represent streamwise, spanwise, and vertical directions, respectively. $\Delta z^+ = u_* \Delta z / \nu$ is the minimum grid spacing in the vertical direction scaled in inner wall units. Shear velocity, u_* , is calculated from wall model calculations. Δt and Δt_s (both in s) are the temporal steps of the flow and morphodynamics modules, respectively. N_f is the number grid nodes (background mesh) to discretize the flow domain. While, N_s is the numbers of unstructured triangular cells to discretize the wash bathymetry and bridge foundations. ΔS (in m) is the finest edge size of the unstructured triangular cells used in the bed morphodynamics calculations.

$N_x \times N_y \times N_z$	Δx	Δy	Δz	Δz^+	Δt	ΔS	Δt_s	N_s
$541 \times 1101 \times 61$	0.15	0.18	0.10	$> 10^3$	0.005	0.45	5.0	1.8×10^6

478 science-based predictions revealing the effects of flash floods on infrastruc-
 479 tures. Such predictive tools have the potential to obtain invaluable knowledge
 480 to be utilized by engineers and practitioners to protect vulnerable infrastruc-
 481 tures against natural hazards, e.g. the flash flood of July 15, 2015 at the Tex
 482 wash and, consequently, prevent similar disastrous incidents.

483 **Acknowledgments**

484 This work was supported by NSF award EAR-1823121. The computa-
 485 tional resources were provided by the Center for Excellence in Wireless and
 486 Information Technology (CEWIT), College of Engineering & Applied Sci-
 487 ences at Stony Brook University.

Figure 1: Pictures of the Tex Wash Bridge taken two days after the collapse of the bridge. Note the excessive erosion at the base of the right bank of the wash. (A) views upstream of the wash and shows the bridge piers herein denoted as "P1" and "P2". (B) is taken immediately upstream of the bridge piers, views downstream of the wash, and is focused on the collapsed right bank adjacent to the bridge pier "P2".

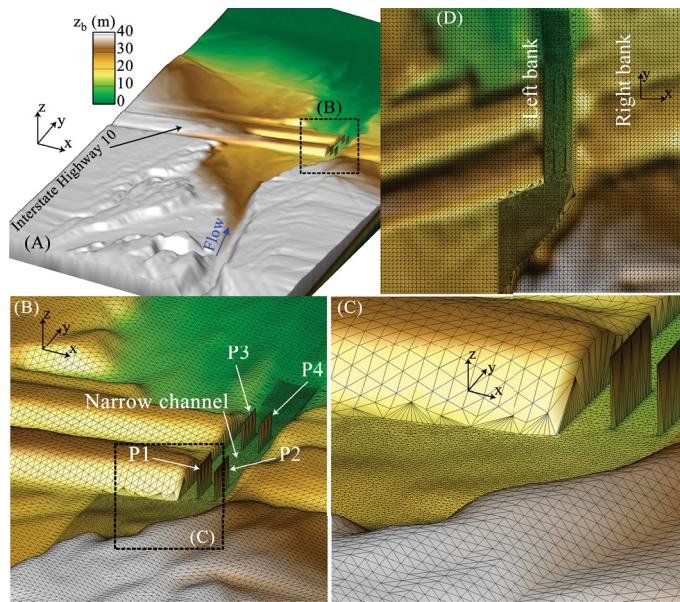


Figure 2: An aerial view of the study area in the Tex wash colored with bed elevation (z_b) showing the bridge piers on Interstate Highway 10. (A), (B), and (C) represent successive zoomed-in views of the study area in 3D. (D) is a zoomed-in view of the study area from top view.

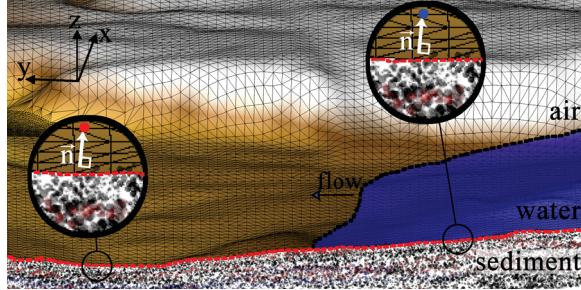


Figure 3: Schematic of the flash flood flow over a dry-bed fluvial stream. The flow field, for both the air and water phases is solved on the background mesh that contains sediment, water, and air phases. Unstructured triangular mesh represents the bathymetry of the wash. Bed morphodynamics equations are solved at the sediment/fluid interface (dashed-red line). Level-set method is used to track the location of the free surface (dashed-black line) of the flash flood. Normal vectors (\vec{n}) are radiated from the bed-cell surfaces into the background mesh to identify the wet- (blue dot) and dry-bed (red dot) cells on the bed surface of the wash.

References

- [1] G.A. Al-Rawas, C. Valeo, Issues with Flash Flood Modeling in the Capital region of Sultanate Oman, Geomatics Engineering, Schulich School of Engineering, University of Calgary (2008) 1–11.
- [2] G.A.A. Al-rawas, Flash flood modelling in Oman wadis, Ph.D. thesis, University of Calgary, 2009.
- [3] R. Albano, A. Sole, D. Mirauda, J. Adamowski, K.E.K. Abderrezzak, A. Paquier, E. Mignot, Modelling large floating bodies in urban area flash-floods via a Smoothed Particle Hydrodynamics model, Journal of Hydrology 541 (2016) 344–358.
- [4] V. Bellos, G. Tsakiris, A hybrid method for flood simulation in small

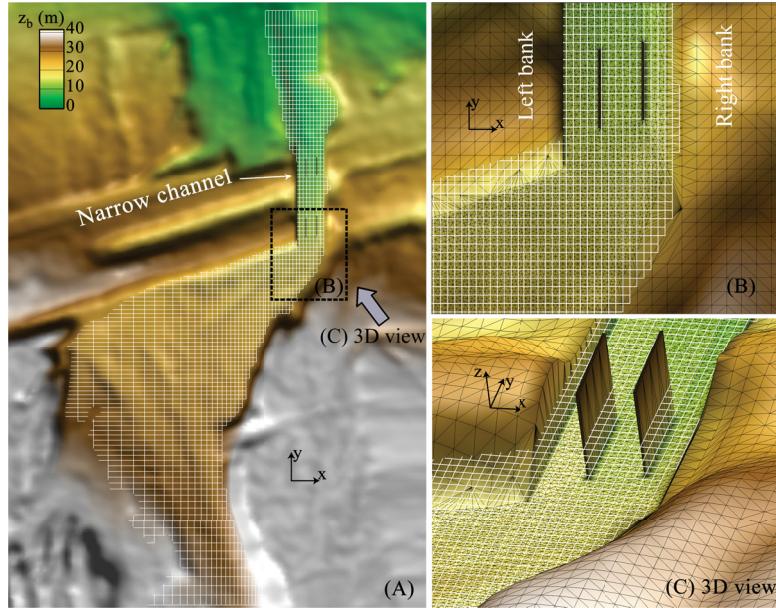


Figure 4: Computational grid systems for discretizing the wash bathymetry, bridge foundations, and flow domain of the study area. The structured mesh (white lines) of the background grid system to discretize the flow domain is shown at the z equal to the maximum elevation in (A), in which only every other 10 computational cells is showed. Zoomed-in views of the grid systems around the bridge piers are shown in a plan and 3D in (B) and (C), respectively. In addition, the unstructured triangular grids (black-lines triangles) for discretization of wash bathymetry and bridge foundation can be seen in (B) and (C). In (B) and (C) we present every other 5 computational cells of the background mesh system.

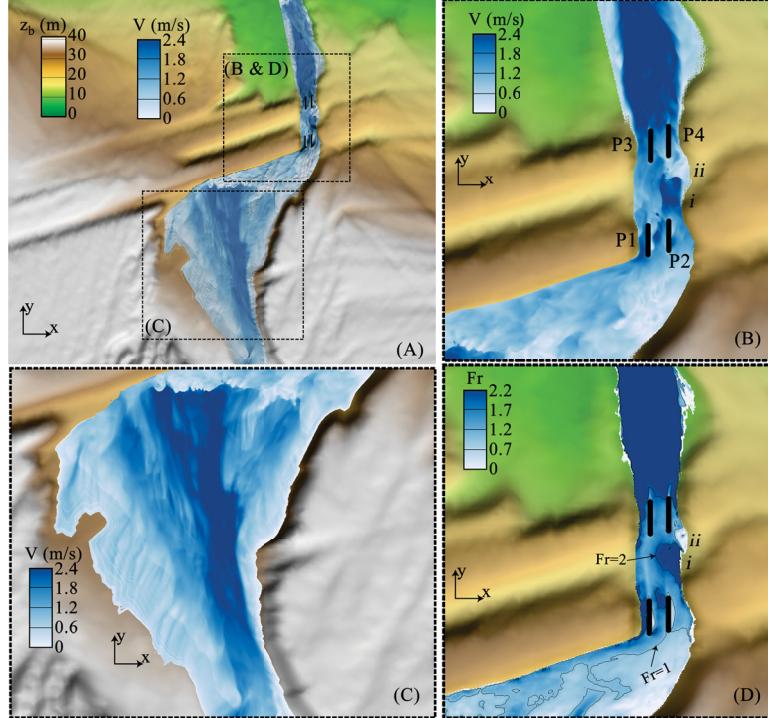


Figure 5: Computed instantaneous flow field of the flash flood in the Tex wash at the water surface. (A) shows the contour of the velocity magnitude (V) and the bed elevation (z_b) of the wash. The zoomed-in view of (B) shows the contour of velocity magnitude around the bridge piers "P1" and "P2" within the narrow channel. In the zoomed-in window of (C), the contours of velocity magnitude is presented. Near the upper part of this window, one can see the hydraulic jump. The zoomed-in window of (D) shows the Fr number distribution in the wash. The flash flood flows from bottom to top.

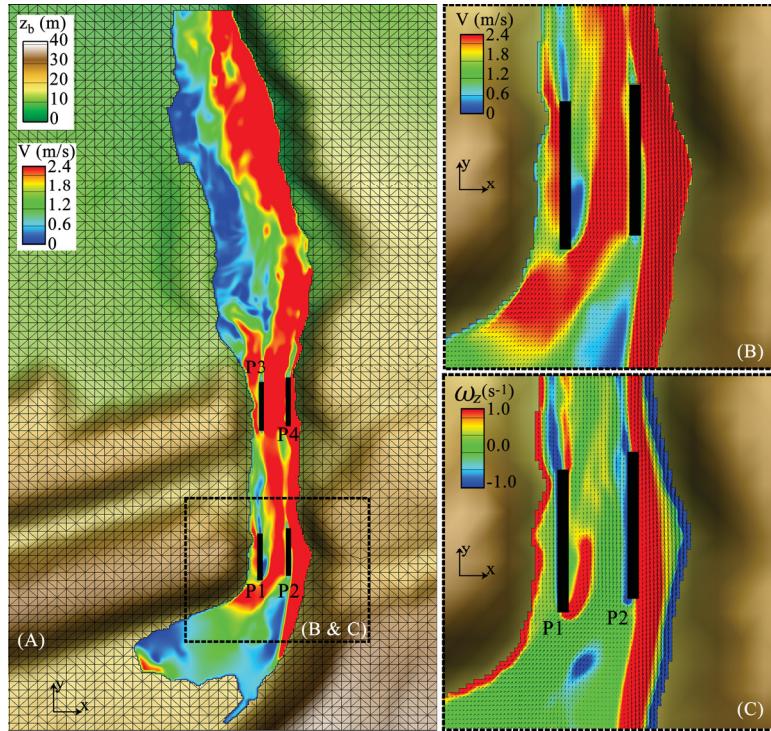


Figure 6: Computed instantaneous flow field at the mid-depth of the flash flood in the Tex wash from top view. (A) shows the contour of the velocity magnitude (V) and the bed elevation (z_b) of the wash. The zoomed-in view of (B) shows the contour of velocity magnitude, along with the velocity vectors, around the bridge piers "P1" and "P2" within the narrow channel. The zoomed-in window of (C) presents the contours of out-of-plane vorticity component (ω_z). The flash flood flows from bottom to top.

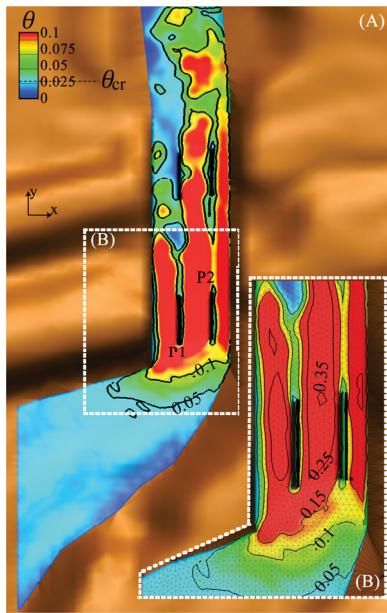


Figure 7: Computed contours of instantaneous, dimensionless, bed shear stress (i.e., Shield's parameter, θ) in the Tex wash from top view. The zoomed-in view of (B) shows the distribution of θ around the bridge piers within the narrow channel. The critical value of the dimensionless bed-shear-stress for sediment movement is equal to $\theta_{cr} = 0.028$. The triangular grids in (B) and (D) are the grid systems used to discretize the morphodynamics equations. The flash flood flows from bottom to top.

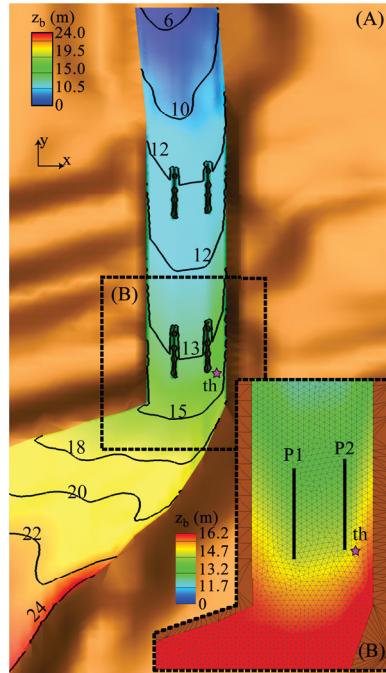


Figure 8: Bed bathymetry and contours of bed elevation (z_b) of the Tex wash within the study area (A) where the bed morphodynamics equations are solved. (B) shows details of the bed topography around the bridge piers "P1" and "P2". The pink-star in (A) and (B), denoted as "th", represent the location on the wash bed where the time history of the sediment phase kinematics are recorded. Contour-line labels are in m . The flash flood flows from bottom to top.

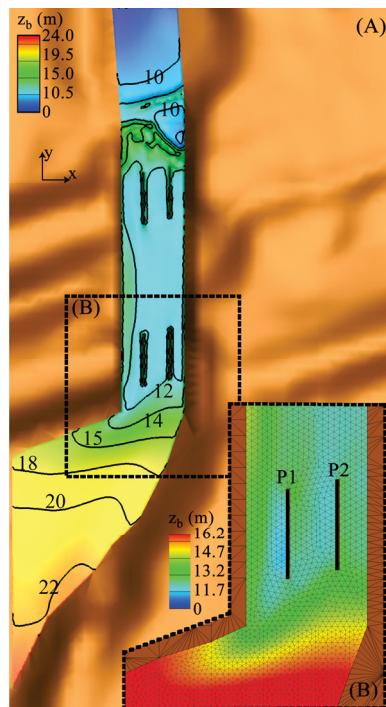


Figure 9: Computed bed topography and contours of bed elevation (z_b) of the Tex wash within the study area after $t = 10$ h of the flash flood (A). (B) shows a zoomed-in windows illustrating details of the computed bed topography around the bridge piers "P1" and "P2". Contour-line labels are in m . The flash flood flows from bottom to top.

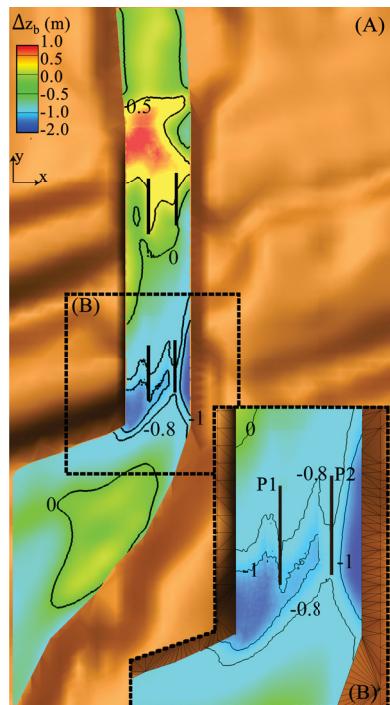


Figure 10: Computed contours of the bed-elevation change (Δz_b) in the Tex wash after $t = 10$ h of the flash flood (A). (B) is a zoomed-in window showing details of the computed bed-elevation change around the bridge piers "P1" and "P2". Contour-line labels are in m . Negative and positive values of Δz_b represent scour and deposition. The flash flood flows from bottom to top.

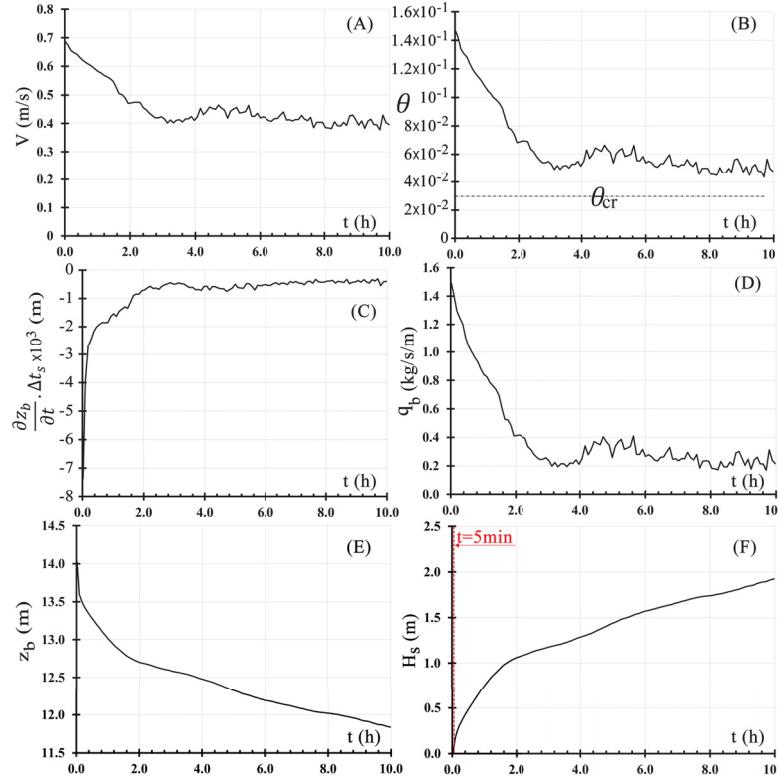


Figure 11: Computed time history of sediment-transport kinematics on the bed surface of the wash at point "th", shown in Fig. 8. (A), (B), (C), (D), (E), and (F) represent the time history of sediment phase velocity magnitude, Shield's parameter, rate of bed-elevation change, sediment bed-load per unit width, bed elevation, and scour depth. In (B), θ_{cr} is the threshold value of the θ for sediment movement. Abscissa is time (t) in hours (h).

catchments combining hydrodynamic and hydrological techniques, *Journal of Hydrology* 540 (2016) 331–339.

- [5] L. Boithias, S. Sauvage, A. Lenica, H. Roux, K.C. Abbaspour, K. Larnier, D. Dartus, J.M. Sánchez-Pérez, Simulating flash floods at hourly time-step using the SWAT model, *Water* 9 (2017) 929.
- [6] M. Borga, E.N. Anagnostou, G. Blschl, J.D. Creutin, Flash floods: Observations and analysis of hydro-meteorological controls, *Journal of Hydrology* 394 (2010) 1–3. Flash Floods: Observations and Analysis of Hydrometeorological Controls.
- [7] I. Braud, P.A. Ayral, C. Bouvier, F. Branger, G. Delrieu, J. Le Coz, G. Nord, J.P. Vandervaere, S. Anquetin, M. Adamovic, J. Andrieu, C. Batiot, B. Boudevillain, P. Brunet, J. Carreau, A. Confoland, J.F. Didon-Lescot, J.M. Domergue, J. Douvinet, G. Dramaïs, R. Freydier, S. Gérard, J. Huza, E. Leblois, O. Le Bourgeois, R. Le Boursicaud, P. Marchand, P. Martin, L. Nottale, N. Patris, B. Renard, J.L. Seidel, J.D. Taupin, O. Vannier, B. Vincendon, A. Wijbrans, Multi-scale hydrometeorological observation and modelling for flash flood understanding, *Hydrology and Earth System Sciences* 18 (2014) 3733–3761.
- [8] J.D. Bricker, W. Schwanghart, B.R. Adhikari, S. Moriguchi, V. Roeber, S. Giri, Performance of Models for Flash Flood Warning and Hazard Assessment: The 2015 Kali Gandaki Landslide Dam Breach in Nepal, *Mountain Research and Development* 37 (2017) 5–15.
- [9] Z. Cao, G. Pender, P. Carling, Shallow water hydrodynamic models for

hyperconcentrated sediment-laden floods over erodible bed, *Advances in Water Resources* 29 (2006) 546–557.

- [10] K. El Kadi Abderrezak, A. Paquier, E. Mignot, K.E.K. Abderrezak, A. Paquier, E. Mignot, Modelling flash flood propagation in urban areas using a two-dimensional numerical model, *Natural Hazards* 50 (2009) 433–460.
- [11] J. Gourley, J. M. Erlingis, Y. Hong, E. B. Wells, Evaluation of tools used for monitoring and forecasting flash floods in the united states, *Weather and Forecasting* 27 (2012) 158–173.
- [12] X. Hu, L. Song, Hydrodynamic modeling of flash flood in mountain watersheds based on high-performance gpu computing, *Natural Hazards* 91 (2018) 567–586.
- [13] X. Hu, L. Song, Hydrodynamic modeling of flash flood in mountain watersheds based on high-performance GPU computing, *Natural Hazards* 91 (2018) 567–586.
- [14] P.Y. Julien, M. Velleux, J. John F. England, J. Halgren, J. England, J. Halgren, Flash Flood and Sediment Modeling with TREX, in: Keynote Address in Innovations in Water Resources and Environmental Engineering, Proceedings of the International Conference on Construction and Building Technology, pp. 1–20.
- [15] S. Kang, F. Sotiropoulos, Numerical modeling of 3D turbulent free surface flow in natural waterways, *Adv. Water Resour.* 40 (2012) 23–36.

- [16] S. Kara, M.C. Kara, T. Stoesser, T.W. Sturm, Free-surface versus rigid-lid LES computations for bridge-abutment flow, *Journal of Hydraulic Engineering* 141 (2015) 04015019.
- [17] A. Khosronejad, M.G. Aarabi, D. Angelidis, E. Bagherizade, K. Flora, A. Farhadzadeh, Comparative hydrodynamic study of rigid-lid and level-set methods for LES of open-channel flow, *Journal of Hydraulic Engineering* 145 (2018) 04018077.
- [18] A. Khosronejad, M.G. Aarabi, D. Angelidis, E. Bagherizade, K. Flora, A. Farhadzadeh, A comparative study of rigid-lid and level-set methods for LES of open-channel flows: morphodynamics, *Environmental Fluid Mechanics* (2019).
- [19] A. Khosronejad, P. Diplas, D. Angelidis, Z. Zhang, N. Heydari, F. Sotiropoulos, Scour depth prediction at the base of longitudinal walls: a combined experimental, numerical, and field study, *Environmental Fluid Mechanics* (2019).
- [20] A. Khosronejad, A.M. Ghazian, D. Angelidis, E. Bagherzad, K. Flora, A. Farhadzadeh, Comparative hydrodynamics study of rigid-lid and level-set methods for LES of open-channel flow, *Journal of Hydraulic Engineering* 145 (2019) 0401807.
- [21] A. Khosronejad, S. Kang, I. Borazjani, F. Sotiropoulos, Curvilinear immersed boundary method for simulating coupled flow and bed morphodynamic interactions due to sediment transport phenomena, *Advances in Water Resources* 34(7) (2011) 829–843.

- [22] A. Khosronejad, J. Kozarek, P. Diplas, C. Hill, R. Jha, P. Chatantanatavet, N. Heydari, F. Sotiropoulos, Simulation-based optimization of in-stream structures design: rock vanes, *Environ. Fluid Mech.* 18 (2018) 695–738.
- [23] A. Khosronejad, J.L. Kozarek, F. Sotiropoulos, Simulation-based approach for stream restoration structure design: model development and validation, *Journal of Hydraulic Engineering* 140 (2014) 04014042.
- [24] A. Khosronejad, T. Le, P. DeWall, N. Bartelt, S. Woldeamlak, X. Yang, F. Sotiropoulos, High-fidelity numerical modeling of the upper mississippi river under extreme flood condition, *Advances in Water Resources* 98 (2016) 97 – 113.
- [25] A. Khosronejad, F. Sotiropoulos, Numerical simulation of sand waves in a turbulent open channel flow, *Journal of Fluid Mechanics* 753 (2014) 150–216.
- [26] A. Khosronejad, F. Sotiropoulos, On the genesis and evolution of barchan dunes: Morphodynamics, *Journal of Fluid Mechanics* 815 (2017).
- [27] E.W. Knocke, Modeling Flash Floods in Small Ungaged Watersheds using Embedded GIS, Ph.D. thesis, Virginia Tech, 2006.
- [28] N.N. Kourgialas, G.P. Karatzas, A hydro-sedimentary modeling system for flash flood propagation and hazard estimation under different agricultural practices, *Natural Hazards and Earth System Sciences* 14 (2014) 625–634.

- [29] N.N. Kourgialas, G.P. Karatzas, N.P. Nikolaidis, Development of a thresholds approach for real-time flash flood prediction in complex geomorphological river basins, *Hydrological Processes* 26 (2012) 1478–1494.
- [30] D. Kvočka, R. Ahmadian, R.A. Falconer, Flood inundation modelling of flash floods in steep river basins and catchments, *Water* 9 (2017) 705.
- [31] B. Li, M. Phillips, C.A. Fleming, Application of 3D hydrodynamic model to flood risk assessment, *Proceedings of the Institution of Civil Engineers-Water Management* 159 (2006) 63–75.
- [32] J. Lian, W. Yang, K. Xu, a. et, Flash flood vulnerability assessment for small catchments with a material flow approach, *Natural Hazards* 88 (2017) 699–719.
- [33] Q. Liu, Y. Qin, Y. Zhang, Z. Li, A coupled 1D–2D hydrodynamic model for flood simulation in flood detention basin, *Natural hazards* 75 (2015) 1303–1325.
- [34] W.C. Liu, W.B. Chen, M.H. Hsu, J.C. Fu, Dynamic routing modeling for flash flood forecast in river system, *Natural Hazards* 52 (2010) 519–537.
- [35] R. Marsooli, P.M. Orton, N. Georgas, A.F. Blumberg, Three-dimensional hydrodynamic modeling of coastal flood mitigation by wetlands, *Coastal Engineering* 111 (2016) 83–94.
- [36] S.M. Mudd, Investigation of the hydrodynamics of flash floods in ephemeral channels: scaling analysis and simulation using a shock-

capturing flow model incorporating the effects of transmission losses, Journal of Hydrology 324 (2006) 65–79.

- [37] P. Nguyen, A. Thorstensen, S. Sorooshian, K. Hsu, A. Aghakouchak, B. Sanders, V. Koren, Z. Cui, M. Smith, A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling, Journal of Hydrology 541 (2016) 401–420.
- [38] P. Nguyen, A. Thorstensen, S. Sorooshian, K. Hsu, A. Aghakouchak, B. Sanders, V. Koren, Z. Cui, M. Smith, A high resolution coupled hydrologic-hydraulic model (HiResFlood-UCI) for flash flood modeling, Journal of Hydrology 541 (2016) 401–420.
- [39] L.C. van Rijn, Principles of sediment transport in rivers, estuaries, and coastal seas, Aqua Publications, 1993.
- [40] M. Roca, M. Davison, Two dimensional model analysis of flash-flood processes: application to the Boscastle event, Journal of Flood Risk Management 3 (2010) 63–71.
- [41] M. Schaffner, C. Unkrich, D. Goodrich, A. Tardy, J. Laber, Modeling Flash Flood Events in an Ungaged Semi-Arid Basin using a Real-Time Distributed Model: Fish Creek near Anza Borrego, California, National Oceanic and Atmospheric Administration Western Regional Technical Attachment. (2014) 42 p.
- [42] F. Sotiropoulos, A. Khosronejad, Sand waves in environmental flows: Insights gained by coupling large-eddy simulation with morphodynamics, Phys. Fluids 28 (2016) 021301.

- [43] M. Tabbakhha, A. Astaneh-Asl, D.C. Setioso, Failure analysis of flood collapse of the tex-wash bridge, in: Proceedings of the World Congress on Civil, Structural, and Environmental Engineering (CSEE16), IC-SENM 118, Prague, Czech Republic.
- [44] L.C. Van Rijn, Principles of sediment transport in rivers, estuaries, and coastal seas, Aqua Publications, 1993.
- [45] T. Wu, X. Xia, Q. Liang, X. Ming, J. Hou, An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations, *Water Resources Research* 53 (2017) 3730–3759.
- [46] L. Yang, J.A. Smith, M.L. Baeck, Y. Zhang, Flash flooding in small urban watersheds: Storm event hydrologic response, *Water Resources Research* 52 (2016) 4571–4589.