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Model Misfit Minimization
by Yuanyuan Fang,” Ying Zhou, and Zhenxing Yao'

Abstract In geophysical applications, solutions to ill-posed inverse problems
Ax = b are often obtained by analyzing the trade-off between data residue |Ax — b||?
and model norm ||x||%. In this study, we show that the traditional L-curve analysis does
not lead to solutions closest to the true models because the maximum curvature (or the
corner of the L-curve) depends on the relative scaling between data residue and model
norm. A Bayes approach based on empirical risk function minimization using training
datasets may be designed to find a statistically optimal solution, but its success
depends on the true realization of the model. To overcome this limitation, we construct
training models using eigenvectors of matrix ATA as well as spectral coefficients
calculated from the correlation between observations and eigenvector projected data.
This approach accounts for data noise level but does not require it as a priori
knowledge. Using global tomography as an example, we show that the solutions are
closest to true models.

Supplemental Content: Figures showing additional scaling and L-curve analy-
sis, Bayesian risk minimization, examples of N-point running average and model mis-
fit (MM) minimization in seismic tomography.

Introduction

The linear inverse problem Ax = b rises in many (ATA + a’Dx = ATD, (2)
geophysical imaging applications. It is often ill-posed and
consequently, the true model x is not recoverable (Jackson,
1972). A common practice is to find an approximate solution
to a nearby well-posed problem by introducing regularization
(Haber et al., 2007; Charléty et al., 2013; Fan et al., 2014; Ma
et al., 2016). Tikhonov regularization is one of the most popu-
lar regularization methods for ill-posed problems (Tikhonov
and Arsenin, 1977), and damped least-squares minimization
(zero-order Tikhonov regularization) in many geophysical
inverse problems is such an application (Song et al., 2004;
Ritsema et al., 2011; Kaban et al., 2016; Zhou, 2018).

The solution to the nearby well-posed zero-order
Tikhonov regularization can be found by solving a minimi-
zation problem

in which a is the Tikhonov (damping) parameter, and the
ill-posedness of the inverse problem is removed by introduc-
ing the damping matrix o?I.

In this article, we shall focus on the damped least-
squares problem and develop a method for determining the
Tikhonov parameter in equation (2). We point out that
Tikhonov regularization does not require a priori knowledge
of the data and model covariances. For completeness, we
provide a brief review subsequently on the connection
between the aforementioned Tikhonov regularization and
probability inverse methods that have been used in many
geophysical inverse problems. If one assumes the true model
is a realization of a Gaussian distribution and the model
covariance matrix C; is known (a priori), the ill-posedness
of the inverse problem Ax = b may also be removed through
|Ax — b||> + o?||x||?> = minimum, (1) an alternative approach that minimizes the posteriori proba-
bility density which solves

in which b is the noise contaminated data b = b'™¢ + ¢ with
€ being the noise vector. This expression can be written
equivalently as

(ATA + C')x = A7b. (3)

If the data have a Gaussian distribution and the covariance
matrix C, is also known (not an identity matrix), a more gen-
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in which the data covariance matrix Cy, practically introduces
weights on observations. One important step in solving
underdetermined inverse problems is to find the regulariza-
tion parameter (or matrix) by imposing additional constraints
such that the matrices on the left side of equations (2—4)are
invertible.

In this article, we shall focus on the Tikhonov regulari-
zation (equation 2), which does not require data and model
covariance matrices as a priori. The linear system in equa-
tion (2) can be solved based on singular value decomposition
(SVD) of the n x m matrix A,

A =UzVT, &)

The singular value matrix X is a rectangular diagonal matrix
with an upper m x m diagonal matrix diag(sy, ..., 0,,) and a
lower zero matrix, and U and V contain data and model
singular vectors u; and v;, respectively. The model singular vec-
tors v; and o7 are eigenvectors and eigenvalues of matrix ATA.

Tikhonov solutions to the inverse problem can be writ-
ten as

612 u; - b
X = Z(alz T az) Tivi? (6)

i

and the dot product u; - b = u!’b. The most important step in
solving the ill-posed inverse problem is to determine an opti-
mal damping parameter . In the rest of the article, without
loss of generality, we shall use seismic surface-wave imaging
as an example ill-posed inverse problem for discussions on
choosing an optimal parameter such that the obtained model
is closest to the true model.

For ill-posed inverse problems, regularizations have to
be applied to find a model that approximates the true model
in some way. The choice of regularization depends on the
properties of the final model that one seeks. For example,
the Morozov’s discrepancy principle (Morozov, 1984) finds
an optimal model that produces best data fit based on a
known size of the noise; the generalized cross validation
(Wahba, 1977) aims to find a model that best predicts each
measurement as a function of the others; the quasi-optimality
criterion (Tikhonov and Arsenin, 1977) finds a damping
parameter in which the resulting model is least sensitive
to a small change in the damping parameter; and the discrete
Picard condition (Hansen, 1990) requires the projection of
data onto the data singular vectors |u; - b| to decay faster than
the generalized singular values (the Picard condition). In this
article, we shall propose a method that finds an optimal
Tikhonov parameter to minimize model misfit (MM).

The Problem with L-Curve Analysis

L-curve was first introduced by Lawson and Hanson
(1974) to investigate the relation between data residue norm
|Ax —b||> and solution model norm ||x||> for regularized
inverse problems. It has received wide applications in
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seismic tomography in determining an optimal Tikhonov
(damping) parameter (Zhao, 2015). If noise level in data
is a priori, this becomes easier because it statistically con-
strains data residue. The parameter @ may be chosen by trying
different values until the outcome model has a normalized data
residue norm that equals the variance of the noise. In most
cases, noise level in data is unknown, and optimal models
are often chosen at the corner of the L-curve (Zhao 2015),
in which the curvature (Kreyszig, 1959)

hg —gh
k= (W2 + g%) (7

is maximum. Here, h(a) = ||x||*> and g(a) = ||Ax —b|%.
However, it has been reported in geophysical studies that mod-
els obtained using L-curve analysis can be far away from true
models (Deidda et al., 2003; Zaroli et al., 2013). Although it is
not impossible to find an optimal model using L-curve analy-
sis, we show in this section that this approach is very subjec-
tive. We will use surface-wave finite-frequency tomography as
an example; the same applies to seismic tomography regard-
less of approximations in physics (e.g., ray theory).

In surface-wave tomography, efforts have been made to
improve the representation of wave propagation physics by
introducing finite-frequency sensitivity kernels (Snieder and
Nolet, 1987; Spetzler et al., 2002; Yoshizawa and Kennett,
2002; Zhou et al., 2004, 2005). The linear tomographic prob-
lem can be written as a Fredholm integral of the first kind
(Liu and Zhou, 2016)

Sp(w) =/[]K§,(a),f')51nc(a),f‘)dﬂ, (8)

in which K7, is the sensitivity kernel of phase delays o¢ to
fractional perturbations in local phase velocity §In ¢, and the
integration is over the surface of the unit sphere
Q={r:|r)>=1}.

We use a global dataset of Rayleigh-wave phase-delay
measurements from Zhou et al. (2006), and we calculate
phase-velocity sensitivity kernels following Liu and Zhou
(2016). The surface of the Earth is parameterized into 2562
triangular grid points with a lateral grid spacing of about 4°
as in Zhou et al. (2006). The discrete form of the aforemen-
tioned equation can be written as Ax = b, in which A is the
sensitivity kernel matrix with n number of rows and m num-
ber of columns, x is the vector of unknown fractional velocity
perturbations on m global grid points, and b is the phase-
delay data vector with n measurements. In this article, the
unit of phase delay (b) is radian and the fractional velocity
perturbation in percentage (x) is dimensionless. When the
data vector includes both minor-arc and major-arc surface-
wave observations, the number of observations (n = 3681)
exceeds the number of unknowns (m = 2562). When the
observations include only minor-arc surface-wave observa-
tions, n = 1885. The coverage of minor-arc Rayleigh wave
alone illuminates the Pacific Ocean as well as the continents,
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Figure 1.  This figure illustrates the arbitrariness in determining an optimal model based on analysis of the L-curve (relation between data
residue ||Ax — b||? and model norm ||x||2). (a) Input model (left) and target output model with best model fit (right). (b) L-curve (left) and
maximum curvature model (right). No scaling (normalization) has been applied to the inverse problem. The solid line is the L-curve, and the
curvature of the L-curve is plotted in gray dotted line. The optimal model with maximum curvature (corner of the L-curve) is indicated by the
diamond, and the corresponding model is plotted in the right panel. The dotted—dashed line is the U-curve (model misfit [MM] plotted as a
function of model norm), in which the star indicates the target output model. (c) Same as (b) but for a scaled inverse problem 7Ax = zb, in
which # = 0.05. The color version of this figure is available only in the electronic edition.

and the inclusion of major-arc measurements significantly vector b, L-curve analysis can lead to very different optimal
improves global coverage, especially in the Southern  solutions depending on the relative scaling between data res-
Hemisphere and the Atlantic Ocean. We will first consider ~ idue norm ||Ax — b||?> and model norm ||x||?. In this experi-
inversions using both minor-arc and major-arc data, and ment, the true model x has a spherical harmonics structure
inversions using only minor-arc data will be discussed in with degree / = 6 and order m = 3. Because the true model
the Model Misfit (MM) Minimization section. is known in this case, we may vary the damping parameter o

In Figure 1, we show that the corner of a trade-off curve and quantify the misfit between the true model and output
is highly subjective. For the same matrix A and the same data ~ model ||x — x™||2. The U-shaped model misfit curve for
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Figure 2.  (a) Model misfit curves (U-curves) for input models with spherical harmonics structure / = 6 (dotted line) and / = 20 (dashed

line). (b) and (c) are target models (with best model fit) for / = 6 and 20, respectively. The corresponding damping parameters are o = 0.14
and 0.047, respectively. In both inversions, 20% of random noise has been added to synthetic data. The color version of this figure is available

only in the electronic edition.

varying parameter « is plotted in Figure 1 in dotted-dashed
lines. We added Gaussian noise to the synthetic data b in all
inversions, and the root mean square (rms) of the noise is 20%
of the rms of the synthetic data. The solution with minimum
model misfit is the target model x™€ (Fig. 1a) and is indi-
cated by a star on the U-curve. The L-curves are in solid lines
and their corresponding curvatures are plotted in gray dotted
lines. Maximum curvature models are indicated by diamonds
on the L-curves. In Figure 1b, the maximum curvature model
is underdamped, leading to a large model norm as noises are
amplified in the solution. L-curve normalization using extreme
values of i(a) (¢ = 0) and g(a) (@ = oco) does not change the
overall quality of the model at the corner of the L-curve
(® Fig. S1, available in the supplemental content to this
article), consistent with the investigation made by Zaroli et al.
(2013).

The rationale behind finding the corner (maximum cur-
vature) of an L-curve is that the solution seems to be a fair
balance between data misfit and model uncertainty (Hansen
and O'Leary, 1993). However, the location of the corner is
arbitrary because model norm ||x||> and data misfit
|Ax — b||> have independent units. For example, if one sol-
ves a scaled inverse problem nAx = yb, the corner of the L-
curve will be different as data residue is now scaled by #?
whereas model norm remains the same. The optimal model
x can either be overdamped or underdamped depending on
the scaling parameter 5 (Fig. 1 and (B Fig. S1). In seismic
tomography, an optimal model is often first determined
based on good estimate of noise level in data, and the L-curve
plot is then scaled to have its corner at the preferred solution.
This approach can lead to arbitrary solutions because esti-
mates of noise level are subjective. We point out that L-
curves are often plotted in linear scale in geophysical appli-
cations whereas a logarithmic scale has been used in other
literature, including the original paper by Hansen and
O'Leary (1993). This choice does not change the nature of
the L-curve problem, that is, the maximum curvature of the
L-curve depends on the relative scaling between data residue
and model norm. In this article, we will take a different
approach to minimize the mean square error and determine
optimal models that are closest to the target model, that is,

©)

We show that the target model can be approached by min-
imizing a risk function using training models, without having
data noise level as a priori knowledge.

[x — xteet||2 = minimum.

Bayesian Risk Minimization

In Figure 2, we explore optimal damping parameters for
models with different structure length scales. In this experi-
ment, we use spherical harmonic models as true models to
generate synthetic data, we add 20% of Gaussian noise to the
synthetic data, and then calculate solutions for different damp-
ing parameter a. A true model with large-scale structure
(I = 6) requires more damping, whereas a model that contains
only small-scale structures (I = 20) requires less damping.

The length scale of the true earth model is unknown in
seismic tomography, but it can be considered as a sample
(realization) from a set of possible earth models. It is there-
fore possible to find a statistically optimal regularization
parameter using a finite set of training models (Chung ef al.,
2011). The optimal parameter may be found by minimizing
an empirical Bayesian risk function

o = argmin ) _[|x;(@) — x|, (10)

in which x"" are training models used to generate training
datasets b{™" including different realizations of data noises.
Tikhonov solutions calculated using each training dataset and
parameter «a is X; (a). The summation is over all training models.

This approach aims to minimize the misfit between the
optimal model and the true model. The optimization is only
in statistical sense, and the optimal parameters obtained from
those training models and datasets do not necessarily mini-
mize MM for a particular true model. The success depends
on training models, noise levels in the training datasets as
well as the real realization of the model and noise. In
Figure 3, we use 18 spherical harmonics as training models
to find the optimal Tikhonov parameter for the example
inverse problem with observation contaminated by 20% of
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Figure 3. Model misfit curves (U-curves) for a Tikhonov inverse problem ||Ax — b||> + a||x||> = minimum with a varying damping
parameter a. Synthetic data are generated for three input models (a) large scale (I = 3), (b) small scale (/ = 20), and (c) mixed scale, all with
20% of Gaussian noise added. The mixed scale model is a spherical harmonic (! = 12 and m = 5) but with perturbations in continental
regions replaced by a constant of —3%. The target models (with best model fit) are indicated by stars on the U-curves. The optimal models
obtained based on Bayesian minimization are plotted in solid diamonds (with 20% of Gaussian noise) and open diamonds (with 10% of
Gaussian noise). The training models used in this experiment are 18 spherical harmonics models with / ranging from 3 to 20. The color

version of this figure is available only in the electronic edition.

Gaussian noise. The training models have a spherical har-
monics degree / ranging from 3 to 20. When the true model
has large-scale structure (! = 3) and noise level in the train-
ing datasets is the same as the true realization (20%), the
recovered model using the earlier Bayesian risk minimiza-
tion approach is close to the target model but underdamped.
When the training datasets has a noise level of 10%, it leads
to an optimal model much farther away from the true model.
On the other hand, when the true model has only small-scale
structure (I = 20), the optimal models are overdamped. In
the case the true model has a mixed scale, the situation is
somewhere in between. The success of this approach
depends on prior knowledge about the true model (statistical
model distribution) and true noise level. For example, if we
use spherical harmonics with degree / from 3 to 40 as train-
ing models, the obtained optimal models will be differ-
ent (B Fig. S2).

Model Misfit (MM) Minimization

In the previous examples, we included the true model
and models with similar length scales as training models.
Howeyver, statistical distribution of the true model is not nec-
essarily a priori in geophysical inverse problems; this
imposes difficulties in constructing suitable calibration data.
Because the target model is a linear combination of model
eigenvectors

t t
o = Yy, (1
i

the model singular vectors v; can be potentially used to
construct a complete set of training models. The spectral
coefficients of the target model f;"*"" are unknown, and
the goal is to find spectral coefficients f; with a similar decay
rate as f"*" and could be used to construct training models.
We calculate the dot product (correlation) between observa-
tion b and eigenvector projected data Av;, as

¢i = (Av;) -b = (Av)"D, (12)
and spectral coefficients as

(2 2 :
(O-i + Gsmall)

fi (13)

The training models
X = fv; (14)

are then used to find the optimal Tikhonov parameter « in
equation (10). In noise-free case, the dot product between
observation and eigenvector-projected data (Av;) - b = f;67.
To avoid spectral coefficients (f;) blowing up for eigenvec-
tors associated with small (near zero) eigenvalues, a small
base eigenvalue o2, is added in the denominator. In deter-

smal
mining o2, we make two assumptions:

1. If we order the singular values from maximum to mini-
mum, the projection of data b on data singular vectors u;
is in general a decaying function. This condition is
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Figure 4.  Tikhonov inverse problem for input models with different structure length scales: large scale I = 3 (left), small scale [ = 20

(middle), and mixed scale (right). (a) Target output models that are closest to their respective input models. The target models can be deter-
mined only if the input models are known. (b) Optimal models determined using scaled eigenfunctions as training models. (c) U-curves for
different damping parameters. The stars indicate the target models. Circles are optimal models determined based MM minimization with
different N-point averaging noise estimates: N = 10 (small circles), N = 20 (medium circles), and N = 50 (large circles). The models
corresponding to large circles are plotted in (b). The color version of this figure is available only in the electronic edition.

usually satisfied for forward problems that involve path
integration in which o; decays rapidly, an indication that
the inverse problem is ill-posed (Kress, 2014; Luis
et al., 2008).

2. The noise vector € has a nearly flat spectrum in the data
singular vector space, that is, u; - € ~ constant. The spec-
trum is flat in statistical sense, meaning that an N-point
running average of (u; - €) is nearly constant.

In this case, we can order the singular values from maxi-
mum to minimum, and then calculate the N-point running
average of the squared ratio between the correlation and
the singular values as y; = ||c;/o;||>. The y; value may
increase with i at the end of its spectrum as noise in c; blows
up for small ¢;. The maximum eigenvalue associated with a
y; value at the same level as that at the end of its spectrum is
o2 1 (® Fig. S3). The basic principle behind the approach
is, if the effects of noise on the coefficients (through small
eigenvalues) are as large as the effects of informative signal
on the coefficients, the signals are not strong enough and
therefore calculations will require conditioning.

This approach is adaptive because training models will
be different for different data vector b. The noise level in real
data as well as the length scale of the true model has been
accounted for in the calculations of the correlation ¢; and the
conditioning parameter 62 .

Because each input training model contains structure at
one scale (the scale of the chosen eigenvector), summation
over other eigenvectors may be dropped. The Tikhonov sol-
utions to the training models become

O'2 u; - bi
(@) = =2 )| =iy 15
X,(a) (612 + az) o; A\ ( )
in which

b, = b}‘am + €= AX§-rajn +e€ (16)

In Figure 4, we show that MM minimization using spectral
coefficients weighted eigenvectors as training models recovers
optimal models very close to the target models, regardless of
the length scale of the true models. We suggest the number of
points N used in estimating the noise spectrum to be around
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N = 10, 20, and 50 are plotted in small, medium, and large circles, respectively. 20% of Gaussian noise has been added to training datasets in
MM minimization. Optimal models do not vary significantly for different sample sizes or noise level (¢) used in training datasets. (b) The
spectra of data u; - b (UTB) in dark black lines and the spectra of noise u; - € (UTE) in bright red lines for 10% noise (left) and 30% noise
(right). The spectra are in the data singular vector domain. The color version of this figure is available only in the electronic edition.

30 to make sampling statistically significant, but optimal mod-
els do not vary significantly for different sample sizes, for
example, from 10 to 50. The noise vector € used in training
datasets b; does not have a significant impact on the optimal
Tikhonov parameter as long as it has a near-flat spectrum
(Fig. 5). An example using a published phase velocity map
as an input model and comparisons with L-curve analysis
and Bayesian risk minimization are included in ) Figure S4.

Geophysical inverse problems can be very underdeter-
mined, with the number of observations smaller than the
number of unknowns. In Figure 6, we use global surface-
wave tomography as an example in which the data vector
b contains 1885 minor-arc phase-delay measurements and
the unknown velocity perturbation vector x has 2562 ele-
ments. The optimal models obtained using MM minimiza-
tion are very close to the target model. We want to point
out that near-zero eigenvalues may not be computed accu-
rately depending on the SVD code and compiler. It was
the case for minor-arc inversions in which the number of
unknowns exceeds the number of observations. It is impor-
tant to use independent calculations to ensure the accuracy of
eigenvalues. For example, the model singular vectors v; can
be used to calibrate the eigenvalues as ||Av;|?> = 67

i-

Conclusions

Using global seismic tomography as an example, we
show that optimal models obtained from traditional L-curve
analysis are highly subjective, and the success of the

approach mainly depends on prior knowledge about noise
in data. L-curve analysis focuses on data misfit as model misfit
is unknown. We develop an approach to the general inverse
problem Ax = b in the framework of model misfit (MM) min-
imization using training models. The training models are eigen-
vectors of the matrix ATA, weighted by spectral coefficients
calculated from the correlation between noise-contaminated
observation and eigenvector-projected data. We show that
this approach can be used to find optimal models very close
to target models, without prior knowledge of noise in data. In
the future, the same concept can be explored for higher order
Tikhonov regularizations based on generalized SVD.

The dimension of the matrix A used in this article is
3681 x 2562 and the SVD of the matrix takes about
2 min on a single workstation. When the size of the matrix
increases, it may become necessary to parallelize the SVD
algorithm. For example, in Liu and Zhou (2016), the
SVD of a matrix with a dimension of 70, 000 x 10, 242 took
about 90 min on eight processors.
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(a) Sensitivity density of the inverse problem using both minor-arc and major-arc surface waves. (b) Same as (a) but for minor-

arc surface waves only. The sensitivity density is calculated using the diagonal elements of matrix AT A. (c) and (d) are the target model and
the optimal model obtained using MM minimization for minor-arc surface waves only. 20% noise has been added in inversions. The color

version of this figure is available only in the electronic edition.
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