
Optimizing Performance and Computing Resource
Management of in-memory Big Data Analytics with

Disaggregated Persistent Memory
Shouwei Chen∗‡, Wensheng Wang∗, Xueyang Wu∗, Zhen Fan∗, Kunwu Huang†,

Peiyu Zhuang†, Yue Li†, Ivan Rodero‡, Manish Parashar‡, Dennis Weng∗
∗JD.com Inc., †MemVerge Inc., ‡Rutgers Discovery Informatics Institute

Abstract—The performance of modern Big Data frameworks,
e.g. Spark, depends greatly on high-speed storage and shuffling,
which impose a significant memory burden on production data
centers. In many production situations, the persistence and
shuffling intensive applications can suffer a major performance
loss due to lack of memory. Thus, the common practice is usually
to over-allocate the memory assigned to the data workers for
production applications, which in turn reduces overall resource
utilization. One efficient way to address the dilemma between
the performance and cost efficiency of Big Data applications
is through data center computing resource disaggregation. This
paper proposes and implements a system that incorporates the
Spark Big Data framework with a novel in-memory distributed
file system to achieve memory disaggregation for data persistence
and shuffling. We address the challenge of optimizing perfor-
mance at affordable cost by co-designing the proposed in-memory
distributed file system with large-volume DIMM-based persistent
memory (PMEM) and RDMA technology. The disaggregation
design allows each part of the system to be scaled independently,
which is particularly suitable for cloud deployments. The pro-
posed system is evaluated in a production-level cluster using real
enterprise-level Spark production applications. The results of an
empirical evaluation show that the system can achieve up to a 3.5-
fold performance improvement for shuffle-intensive applications
with the same amount of memory, compared to the default
Spark setup. Moreover, by leveraging PMEM, we demonstrate
that our system can effectively increase the memory capacity of
the computing cluster with affordable cost, with a reasonable
execution time overhead with respect to using local DRAM only.

I. INTRODUCTION

The increasing generation of data at high rates is creating
new requirements for large-scale enterprise applications from
different business areas. For example, faster Big Data analytics
are critical for supporting speedier business intelligence and
for leveraging the recent advances in machine learning. This
trend is pushing Big Data analysis systems toward high-
performance in-memory processing solutions. However, in-
memory Big Data processing systems impose a significant
memory burden on the data center enterprise, especially in
terms of capital and operation costs.

To deliver high performance, the computing infrastructure
must provide sufficient DRAM memory to hold large amounts
of intermediate data. In addition, it is common to see a data
skew in production applications as the data size increases.
A common practice in production environments is to over-
allocate the memory assigned to the data workers. This lowers
overall memory utilization and increases the data center’s

memory requirements. At the same time, real large-scale
production data centers are facing several challenges, such as
uneven resource utilization levels between CPU and memory
and the expensive cost of DRAM memory. As a result,
these factors are limiting how data centers can deliver high-
performance in-memory Big Data applications efficiently.

Both academia and industry have devoted significant efforts
to design and implement data center architectures to optimize
the use of novel hardware technologies. However, advances
in processor, memory, storage, and network technology show
different growth and demand trends. Therefore, data center
architectures that are built based on the vision of server-
centric resources face significant challenges with adopting
the latest hardware innovations quickly [1], [2]. Conversely,
disaggregated data center designs allow different resources
to be scaled independently, enabling the faster adoption of
novel hardware developments at a lower cost. In turn, en-
terprise applications can effectively obtain full value from
an advanced disaggregated infrastructure and its associated
investments. This is especially beneficial for supporting in-
memory Big Data frameworks. However, to address the chal-
lenges associated with upgrading data center infrastructures
at affordable cost, co-designing applications with innovative
memory system architectures is essential.

To address the challenges described above, we design
and implement an in-memory Big Data processing system
using disaggregated memory resource. The system is based
on a state-of-the-art in-memory Big Data framework and a
novel in-memory distributed file system. Existing research
efforts [3]–[6] have explored the potential of remote page
caching; however, unlike existing approaches, we increase the
memory capacity of the data processing cluster with large-
volume DIMM-based persistent memory (PMEM) [7] and the
abstraction provided by the proposed in-memory distributed
file system co-designed with PMEM. With our approach, we
implement a disaggregated memory pool without modifying
the kernel. Furthermore, instead of remote page caching,
our implementation is capable of transparently employing
disaggregated memory resources in a data processing cluster
using Spark [8] and the proposed in-memory distributed file
system. We also propose external shuffle/persistence storage
in a pool of disaggregated memory resources using the pro-
posed in-memory distributed file system, thereby significantly

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 02,2020 at 20:45:38 UTC from IEEE Xplore. Restrictions apply.

improving the performance and resource utilization of Spark.
This is especially important for large-scale enterprise data
centers running Big Data frameworks, as computing resource
utilization is typically uneven, and with the large volume of
data (i.e., TBs to tens of TBs of data per application), it is
difficult to achieve a high performance without significant and
complex tuning. To the best of our knowledge, this is the first
work addressing these issues in a real production enterprise
data center.

In this paper, we present several scientific and engineering
contributions. We first characterize the computing resource
efficiency of a real production enterprise data center. We
address the uneven utilization of memory and CPU, and
then we address the bottleneck of the current in-memory
Big Data framework within an existing data center. We also
characterize the remote read and write performances of PMEM
and DRAM, enabling us to explore the potential of PMEM as
an affordable replacement for DRAM, used in a disaggregated
memory pool. Next, we present the design and implementa-
tion of the proposed in-memory Big Data processing system
using disaggregated memory with Spark and an in-memory
distributed file system called Distributed Memory Objects
(DMO). We present the design and implementation of an
external shuffle service with DMO, leading to a savings of up
to 72% in execution time with shuffle-intensive Spark applica-
tions having the same memory consumption. Furthermore, we
present the design and implementation of external extended
storage for Spark data shuffling and persistence with DMO
and large-volume PMEM. Finally, we empirically evaluate the
performance of our system with real production workloads.
We demonstrate that the system can increase memory capacity
at affordable cost and with low overhead, compared to using
DRAM exclusively. Finally, we discuss the impacts of our
system on real production data processing systems.

The rest of the paper is organized as follows. Section II
studies the computing resource utilization of a real production
enterprise data center. Section III discusses current Spark
memory management and shuffling. Section IV characterizes
the remote read/write performance of PMEM and Section V
presents the design and implementation of the proposed
shuffling storage and persistence system using DMO and
PMEM. Section VI provides the experimental evaluation of
the proposed system using real production workloads. Finally,
section VII presents an overview of the literature and sec-
tion VIII concludes the paper and outlines directions for future
work.

II. ANALYSIS OF THE EFFICIENCY OF DATA CENTER
COMPUTING RESOURCES

Before discussing the details of our proposed approach,
in this section, we provide a detailed utilization analysis of
computing resources in a real production data center with
3, 700 servers from a large E-Commerce company. This char-
acterization will enable us to understand the bottlenecks of
current production computing clusters. We first analyze the
utilization of computing resources (both CPU and memory)

during one month (August 2018), and then we analyze the
performance pattern of real production applications.

We collected profiling data through an internal cluster mon-
itoring tool. The data includes multiple system metrics from
the data center’s computing cluster running Big Data analytics
using Spark. As the focus of this work is on computing
resource management, we use the allocation information of
the YARN scheduler collected through the monitoring tool, to
analyze the utilization of the CPU and memory, which are the
most important computing resources in the cluster.

In order to illustrate the computing resource utilization in
a data processing cluster, we define cluster memory overhead
MEMOverhead as:

MEMoverhead = CPUutil − MEMutil

where CPU utilization CPUutil is the ratio between the number
of allocated CPU cores and the number of allocable CPU
in the cluster, and memory utilization MEMutil is the ratio
between the amount of allocated memory and the amount of
total allocable memory in the cluster.

Fig. 1 shows the memory overhead of the computing
cluster during the data collection period. The average memory
utilization is mostly above that of the CPU utilization for the
data center. Therefore, the Big Data processing frameworks
that run on the computing cluster cannot fully utilize the
available CPU cores because of limited memory resources.
In the following section, we discuss the current memory
architecture and memory management of Spark, and explain
the high memory utilization of the computing cluster.

III. BACKGROUND OF SPARK MEMORY MANAGEMENT
AND SHUFFLE SERVICE

Spark, which is one of the most powerful Big Data
frameworks [8], uses memory to speed up large-scale data
processing. In this section, we describe the latest memory
management and shuffle service used in Spark (version 2.3)
and provide cost analysis based on its current memory man-
agement and architecture.

A. Spark memory management optimization

In Spark, data is abstracted as resilient distributed datasets
(RDD) [9], which represents a collection of objects partitioned
across a set of compute nodes. RDDs include the lineage
information, which can help Spark applications recompute the
RDDs to ensure data reliability upon task failures. Spark tries
to keep all RDDs in memory to ensure fast access to the data
and uses the disk when memory space is insufficient.

Spark divides memory into two main regions, execution
and storage memory. The execution memory is mainly used
for storing the objects required during the execution of Spark
tasks. The intermediate data of shuffle is stored in execution
memory. Execution memory will not be evicted for storage
memory purposes. The storage memory is a region of memory
used for caching and for intermediate serialized data. We
are facing the following challenges regarding to optimize the
performance and computing resource utilization in Spark:

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 02,2020 at 20:45:38 UTC from IEEE Xplore. Restrictions apply.

-10.00%
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M
em

or
y

O
ve

rh
ea

d(
%

)

Day

Fig. 1. Memory overhead of a production computing cluster with 3,700 servers

100.00

200.00

300.00

400.00

500.00

600.00

700.00

8:3
0

8:5
3

9:1
5

9:3
8

10
:00

10
:23

10
:45

11
:08

11
:30

11
:53

12
:15

M
em

or
y

(T
B)

Time
Allocated Memory Total Memory

100

20100

40100

60100

80100

100100

120100

140100

160100

8:3
0

8:5
3

9:1
5

9:3
8

10
:00

10
:23

10
:45

11
:08

11
:30

11
:53

12
:15

CP
U

 (C
or

es
)

Time
Allocated VCores Total VCores

Fig. 2. Computing resources utilization of a production cluster with 3,700 servers from 8:30 AM to 12:30 PM

Tuning Challenge: Although computing resource tuning
can help adjusting the amount of memory to the Spark
application, it is hard to set the optimal configuration for every
application because (i) enterprise data centers can run tens of
thousands of applications in the computing cluster every day;
and (ii) the size of input data vary every day.

Uneven utilization of computing resources: Current clus-
ter is not typically designed for running in-memory big data
frameworks and, as mentioned in previous sections, the utiliza-
tion of the CPU is lower than the utilization of the memory.
As a result, there is significant under-utilized CPU resource in
the computer cluster while memory may not be sufficient to
persist data in memory.

Spark has several optimization strategies, such as dynamic
memory tuning at run time, which is called “Dynamic Re-
source Allocation”. In this strategy, Spark applications request
computing resources back to the computing cluster if they are
no longer being used, and they request computing resource
again when needed [10]. However, we found that dynamic
resource allocation cannot solve this problem in a production
system for the following two reasons.

1) Dynamic Resource Allocation can only kill or start
an executor to release currently unused resource early, but
cannot address the waste of processing resources due to an
imbalance between CPU and memory utilization. Fig. 2 shows
the memory and CPU utilization of the production computing
cluster from 8:30 AM to 12:30 PM during a work day. The
memory utilization of the entire cluster can remain close to
100% for a long period, while utilization of the CPU ranges
from 30% to 70%, representing a large waste of CPU resource.

2) In production environments, once a resource is freed,
the scheduler may take a long time to get enough executors
for the same Spark application because of computing resource

racing. The memory utilization of the entire computing cluster
reached 100%, so it cannot offer enough executor memory to
the Spark applications in the following stages on time.

B. Spark shuffle management

The shuffle operation can re-distribute data to certain tasks
[11], and it is involved in a large number of Spark operations.
Shuffle is one of the most expensive operations in Spark, as
it involves disk I/O, data serialization, and network I/O. We
divide the main I/O costs of Spark shuffle into two parts:

Data spill cost: The output data from an individual mapper
is kept in the memory until there is insufficient memory in
JVM. Spark will spill data onto disks once the execution
memory is insufficient. Moreover, Spark sorts the shuffling
results based on the target partitions. Thus, with sort based
shuffling, spill data can significant decrease the performance
of Spark.

Shuffle read/write cost: Spark task writes/reads shuffle data
to/from disks, which could introduce significant I/O cost.

C. Spark memory requirements

A Spark application is executed in stages. Specifically, it
considers all operations before the shuffle phase to be one
stage and all operations after to be another. If an operation
does not require shuffling, it is considered one stage. Spark can
suffer significant performance loss if it does not have sufficient
memory to be allocated to every executor. On the other hand,
in production it is possible to have large variability in the size
of the input data for different tasks at the same stage. As a
result, it is hard to balance the trade-off between performance
and memory usage efficiency.

Fig. 3 shows the data distribution of one of our typical
production Spark workloads at different stages. The input data
size is organized into six layers, from 0 MB to 1 GB.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 02,2020 at 20:45:38 UTC from IEEE Xplore. Restrictions apply.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

0 MB - 64 MB 64 MB - 128 MB 128 MB - 256 MB
256 MB - 384 MB 384 MB - 512 MB 512 MB - 1 GB

Fig. 3. Input data size at different stages of a production Spark application

The figure shows that the input data size of every task dif-
fers, while the allocated computing resources are the same in
every executor. Thus, the allocated memory for every executor
will be dominated by the largest partition in its tasks, which
leads to memory under-utilization during data processing. An
effective way to address this imbalanced memory requirement
issue is to have a large shared memory pool to satisfy different
executor’s memory requirement.

We observed in our production system that most of the
executor memory resource is used for two purposes: persis-
tence and shuffling. Based on the observation, we focus on
optimizing the shuffle and persistence mechanisms in Spark
with in-memory distributed file system DMO and persistent
memory (PMEM). DMO helps to improve the memory uti-
lization while PMEM helps to increase the cluster’s memory
capacity with affordable cost. In the next section, we show
that the IO throughput of PMEM can meet the requirements
of our system.

IV. CHARACTERIZING REMOTE PMEM

Recent architecture developments feature DIMM-based
PMEM, which utilizes novel storage media to acheive data
density that is much higher than DRAM. Moreover, the per
GB cost of PMEM has also been projected to be much lower
than that of DRAM. In most modern computer architectures,
there is no layer between memory and storage, but there is a
huge performance gap between memory and disk. PMEM has
been proposed recently both by industry and academia to fulfill
such performance gap. Therefore, PMEM can be considered
as larger but slower memory or faster persistent storage. In this
work, we empirically characterize and compare the read/write
performance of PMEM and DRAM remotely. Furthermore,
we explore whether the read/write throughput of PMEM is
sufficient to be used as a remote disaggregated resource via
RDMA technology.

A. Experimental setup

As our evaluation investigates the performance of using a
disaggregated memory pool for Spark workloads, we mimick
the scenario where Spark executors read from and write to
remote PMEM: we set up a two-node cluster within a 25 GbE
network (this is the current network bandwidth used across
the whole data center). Among these two nodes, one node
serves as the external pmem server, and the other emulates

the Spark compute node. We let the external pmem server be
equipped with two Intel Xeon Gold 6252 CPUs @ 2.10 GHz
with 24 physical cores, 192 GB of DDR4 memory and 1.5 TB
PMEM samples in DIMM form factor from a major vendor.
The compute node uses two Intel Xeon E5-2650 v4 @ 2.2
GHz with 12 physical cores and 256 GB DDR4 memory. Both
nodes use Mellanox ConnectX-4 Ethernet cards. The operating
system is CentOS 7.5 with default 3.10 kernel that comes with
PMEM support. PMEM in our system can be configured in
different modes, allowing user applications to treat it as either
volatile memory or persistent block or character device. In this
work, we use the latter approach and configure all the PMEM
as device DAX [12]. This further allows us to build a highly
customized distributed in-memory storage system on top of
the PMEM as we show in section V.

B. Remote PMEM performance

We further build an internal remote memory profiling tool
that measures the throughput of single-sided RDMA read
and write operations sent to the external memory node, and
compare the remote access performance between PMEM and
DRAM. To better understand the sequential read/write perfor-
mance of remote PMEM, we use different data transfer sizes,
from 4 KB to 1 MB, with the number of threads ranging from
1 to 32. Fig. 4 shows the remote read and write throughput of
PMEM and DRAM, respectively.

0

1000

2000

3000

1 2 4 8 16 32Th
ro

ug
hp

ut
 (M

B/
s)

Number of Threads

4K pmem 4K DRAM 16K pmem 16K DRAM 64K pmem
64K DRAM 256K pmem 256K DRAM 1MB pmem 1MB DRAM

(a) Remote Read

0

1000

2000

3000

1 2 4 8 16 32Th
ro

ug
hp

ut
 (M

B/
s)

Number of Threads

(b) Remote Write

Fig. 4. Remote RDMA read/write throughput for PMEM and DRAM using
25GbE network

The results indicate that both remote PMEM and DRAM
access are able to almost saturate the 25Gb network bandwidth
at higher I/O sizes. Moreover, PMEM is able to offer the same
remote read/write throughput compared to DRAM as through-
put starts being bottlenecked by the network as opposed to the
bandwidth of PMEM itself.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 02,2020 at 20:45:38 UTC from IEEE Xplore. Restrictions apply.

�������	
��������

��
���
����

�����

�
�
 ����
��
�����

������������

��� 	��!
"
���		

����

������������

��� 	��!
"���		

����

����

����# ��������

����# ��������

����
��
�����

������������

��� 	��!
"
���		

����

����# ��������

$%�

����

Fig. 5. Extended memory design with remote PMEM

C. PMEM viability for remote memory implementation

Although existing data centers deploy servers with different
types of resources (e.g., CPU, DRAM, GPU, HDD, SSD,
etc.) that are typically used within a server, our observations
discussed above indicate that the server-centric architecture
cannot fully utilize the computing resources available in the
data processing clusters. For example, in current data centers,
usually only a limited number of servers feature advanced stor-
age devices and large volumes of memory while most servers
are equipped with standard hardware configurations. Because
of this, it is not realistic to approach a high performance and
cost effective solution based on the traditional server-centric
data center architecture. The advances and continuous cost
reduction in communication networks (e.g., RDMA) enables
computing nodes in modern data center to leverage remote
resources efficiently. The analysis above clearly show that
PMEM is a solid candidate for implementing extended remote
memory solutions for enterprise data centers.

In this paper, we design and implement disaggregated
memory pool with DRAM and PMEM. Fig. 5 shows the
basic architecture of our system, co-designed with Spark.
Our system stores all spill, persistence and shuffling data
in the disaggregated memory pool. To solve the problem
discussed in Sections II and III, we use a server featuring
large volume of PMEM as supplemental memory for the
disaggregated memory pool. Moreover, to ensure the high
availability of remote PMEM, we connect the servers via fast
fabric interconnection. In the next section, we present the
detailed design and implementation of our system.

V. SYSTEM IMPLEMENTATION

We present the design and implementation of two core
components in our system: (1) a distributed in-memory storage
system named distributed memory objects (DMO), and (2)
integration of DMO with Spark via memory-speed RDD
storage and a newly designed Spark shuffle manager.

A. Distributed Memory Objects

DMO is designed as next generation data infrastructure
software optimized for memory-centric computing and high
bandwidth networks. It aims at providing memory-speed data
persistence and very fast data exchange that are highly de-
manded by distributed in-memory computation frameworks

TABLE I
MAJOR DMO CLIENT SIDE APIS.

API Description
connect Establish connections with DMO backend.
disconnect Drop an existing connection with DMO backend.
create Create an empty object in DMO.
write Write data to some offset of an existing object.
read Read some offset of an existing object.
get_attr Retrieve the attributes of an existing object.
delete Delete an object from DMO.
create_dir Creating an empty directory for holding objects.
remove_dir Remove a directory.

such as Spark. DMO offers a large PMEM pool by aggregating
PMEM resources from its member nodes. For Spark, the pool
becomes a disaggregated memory resource that extends the
capacity of the off-heap memory for every Spark executor.
Current Spark utilizes off-heap memory for accelerating RDD
caching/storage as well as storing data used by shuffle tasks.
With the help of PMEM as well as our RDMA-based net-
working framework, accessing any data in the pool has been
made even faster than accessing local disks.

At high level, DMO consists of client and storage backend.
The client integrates with user applications through a set of
APIs that performs data and metadata operations on storage
backend. Storage backend is a remote cluster of multiple
PMEM-equipped servers where each node executes one or
more of the following DMO components: name server, and
object store. Across nodes communications within DMO are
purely through RDMA over Converged Ethernet (RoCE). In
particular, we use single-sided RDMA write/read for data
transfer, and use double-sided RDMA send/receive for RPC
messages. We briefly describe each of the DMO components
in the following paragraphs.

DMO client exposes a set of APIs for data and metadata
operations. Currently, Java, C and C++ versions of object APIs
have been implemented. Table I describes the major APIs
used in this work. These APIs are sufficient for supporting
the integration of DMO with Spark.

Name server records the locations of a DMO object’s
metadata and some other attributes. In DMO, metadata are
stored in object store (described below) and records the
address information of the object’s data chunks. The name
server further maintains another map that tracks information
of directories such as what objects are contained inside a
directory. Multiple name servers can be deployed inside a
DMO cluster to handle a large number of objects. In such
scenario, entries in name servers are sharded and replicated
using consistent hashing [13].

A DMO object consists of metadata chunks and data
chunks. All these chunks are held by object store. Metadata
chunks mainly hold the address information of each data
chunk, including node index, PMEM device index and the
starting offset of the data chunk in the PMEM device. As
all the data are stored in memory, data operations are done
through load and store using memory copy. To guarantee data
persistency, we use clflush instruction to flush CPU cache
back to PMEM region [14].

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 02,2020 at 20:45:38 UTC from IEEE Xplore. Restrictions apply.

Caching is still needed to achieve close-to-DRAM perfor-
mance as PMEM is still lower in performance compared to
DRAM. We chose to cache an object’s metadata in DRAM
when the object is accessed for the first time. Furthermore,
when an object’s data is accessed by a remote node, a copy
of the related data chunks is cached on the remote node
after the first read. Cached chunks are evicted either upon a
timeout or when the available space for caching in the node is
approaching a limit specified by user when configuring DMO.

B. Integrating DMO with Spark

We made two major efforts to integrate DMO with Spark:
a modification of Spark to allow persisting RDD into DMO,
and a Spark shuffle manager based on DMO.

1) Persisting RDD to DMO: In Spark, RDD can be cached
in memory or disk in order to avoid recomputation of lineage
[9]. By default, RDD is cached using the persist API. The
caching policy specifying the media RDD will be placed on
can be passed in as an input parameter. We modified Spark to
allow RDD to be persisted directly into the external PMEM
pool of DMO. This is done by adding a new RDD persist
policy, while augmenting the implementation of the persist
function of Spark’s block manager. To further enable RDD
retrieval from DMO, we modified the function for reading
RDD data blocks in block manager. Besides enabling the use
of remote PMEM for RDD storage, our modification further
replaced the TCP/IP based Netty communication framework
used for cross-node communication with our RDMA frame-
work used by DMO.

2) Shuffle with DMO: We implement a customized shuffle
manager based on DMO. Compared to default Spark shuffle
manager, mappers write shuffle outputs directly to remote
PMEM of DMO instead of to local DRAM and disks; reducers
read shuffle output by pulling data directly from DMO instead
of each Spark mapper node. All the remote data operations are
efficiently carried out with our RDMA-based networking layer
instead of the TCP/IP based Netty framework.

Building a pluggable shuffle manager requires us to im-
plement the shuffle reader, the shuffle resolver and the shuf-
fle writer components specified by the ShuffleManager
trait of Spark. Fig. 6 illustrates the structure of our imple-
mentation. A shuffle task is performed in two consecutive
stages: map and reduce. During map stage, a mapper uses
DMOShuffleWriter to produce a shuffle output. The out-
put is made of an index file and a data file, which are
stored as separate objects by DMO. Data file contains multiple
partitions, and each partition stores the data to be read by
one reducer. Offsets marking the starting positions of the
partitions in data file are kept in index file. To allow reducer
to be able to retrieve needed partitions correctly, mapper
registers with DMOShuffleBlockResolver, assigning the
partitions of the mapper to corresponding reducers. In reduce
stage, each reducer uses DMOShuffleReader to retrieve all
the partitions belonging to the reducer following the guidance
of DMOShuffleBlockResolver. The reducer then merges
all the partitions together.

&�'� ('�'

&)*+), -,./),

�'0123445)�5678&)965:),�'0123445)-,./),�'0123455)&)*+),

�'0123445)'*;*<),

123445)&)*+), 123445)-,./), 123445)�5678&)965:),

�'016,/),

�'0�1=9/)>

123445)'*;*<),

�'0�<<,)<*/6,
�<<,)<*/6,

�'0�??);+0;5='*?

Fig. 6. The structure of DMO-based shuffle manager

TABLE II
INPUT SIZE AND CHARACTERISTIC OF WORKLOADS

Workload Input Size Characteristic
Terasort 600 GB I/O intensive
Warehouse application 200 GB I/O intensive
price protection application 726.9 GB I/O, CPU intensive

Both DMOShuffleWriter and DMOShuffleReader
utilize DMOSorter. A sorter receives partitions written by
mapper or read by reducer, and insert them into an in-
memory collection for fast computation. During the insertion,
it performs aggregation and sorting if specified. However,
when memory assigned to a sorter is not sufficient for holding
all the data, spilling part of the data to disk is required to
avoid out-of-memory (OOM) failure. In our implementation,
DMOSorter starts spilling part of the in-memory data by
serializing and writing them to DMO. Therefore, DMO objects
holding spilled data are treated as part of the spilled collection
of a DMOSorter.

An aggregator is used when shuffle is triggered by “group
by” computations. Depending on the characteristics of input
data, aggregator of default Spark shuffle manager may also
spill in-memory data to local disk when there is not enough
memory. Similar to DMOSorter, we implement our own
DMOAggregator to speed up data spill by directly writing
spilled data into DMO. We also implemented some custom
logic to avoid out of memory issues when the result of
aggregation consumes too much memory.

VI. EXPERIMENTAL EVALUATION

A. Workloads and experimental setup

We selected three different workloads to evaluate the per-
formance, memory efficiency, and scalability of our system.
Table II shows the input size and characteristics of the work-
loads, and Table III shows the shuffling size and persistence
RDD size of the workloads.

Terasort: We select TeraSort from HiBench [15]. TeraSort
is a standard shuffling intensive benchmark well suited to eval-
uate the I/O performance (especially shuffling performance) of
Big Data frameworks, such as Spark.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 02,2020 at 20:45:38 UTC from IEEE Xplore. Restrictions apply.

TABLE III
SHUFFLING SIZE AND PERSISTENCE RDD SIZE OF WORKLOADS

Workload Shuffling Size Persistence Size
Terasort 334.2 GB N/A
Data warehouse application 234.7 GB N/A
Price protection application 57.6 GB 349 GB

Core service of data warehouse application: We selected
a typical data warehousing scenario in the E-commerce com-
pany that provides core data joining and aggregation services
to various businesses, including user information, order in-
formation, shipping information, storage information, etc. It
consists of more than 150 Spark SQL-based applications.
As it provides core data to a large amount of downstream
customers with explicitly defined SLA, reducing its execution
time is critical. This workload is I/O-intensive (both disk
and network), as it is based on the select, insert, and
fullouterjoin operations.

Price protection service: This is a core service of large
E-commerce companies that typically suffers frequent price
DDoS attacks, such as coordinated product price crawling.
The price protection application can find abnormal infor-
mation, e.g., IP addresses, using several different strategies.
With these information, the price protecting strategy can help
data scientists make better decisions regarding product price
to minimize the loss from price DDoS. Because the price
protection application reuses RDDs tens of times, it is both
I/O intensive and computing intensive.

The experimental setup includes one server featuring
PMEM technology and 10 regular production enterprise
servers. The regular server is equipped with two Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20GHz with 24 cores leverag-
ing hardware threads, and 256 GB of DDR-4 RAM memory.
What’s more, Spark version 2.3 was deployed using standalone
mode, CentOS 7.5 and HDFS version 2.7.

B. Performance evaluation results

We evaluate the performance of the three workloads with 60
Spark executors, each using five cores and a different amount
of memory varying from 1 GB to 20 GB. We determine the
total memory utilization from the allocated executor memory
in Spark and the storage memory in DMO, i.e.,

Memtotal = MemSpark + MemDMO

Note that the PMEM usage is also accounted into the total
memory utilization.

Based on the above experimental setup, we evaluate the
performance of our system with four configurations: (1) Spark,
(2) Spark with DMO Local (all DMO data chunks written/read
to/from local DRAM, no remote PMEM), (3) Spark with DMO
Remote (all DMO data chunks written/read to/from remote
PMEM), and (4) Spark with DMO Local with caching.

Overall performance. Fig. 7 shows the execution time
of Spark with different executor memory and DMO memory
using different workloads . For TeraSort, default Spark cannot
successfully finish until the executor memory is more than 10

700
850

1000
1150
1300
1450
1600
1750

400 600 800 1000 1200 1400 1600

Ex
ec

ut
io

n
Ti

m
e

(s
)

Memory Utilization (GB)

Spark
Spark w DMO Local
Spark w DMO Remote

(a) TeraSort

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200 1400 1600 1800

Ex
ec

ut
io

n
Ti

m
e

(s
)

Memory Utilization (GB)

Spark
Spark w DMO Local
Spark w DMO Remote

(b) Price protection system

400
600
800

1000
1200
1400
1600

100 300 500 700 900 1100 1300 1500 1700

Ex
ec

ut
io

n
Ti

m
e

(s
)

Memory Utilization (GB)

Spark
Spark w DMO Local
Spark w DMO Remote

(c) Data warehouse application

Fig. 7. Total memory - Execution time of TeraSort, price protection system
and data warehouse application

GB (total memory is 600 GB). This is because (1) the tasks
cannot obtain enough local memory which leads to significant
Java GC, even OOM, and (2) executor connections are closed
because the bandwidth of local disk is too low. In consequence,
as we can see from Fig. 7, the minimum required memory for
default Spark is 600 GB, while our proposed system is 410
GB. The most expensive operation in TeraSort is shuffling,
because Spark must write/read large amounts of shuffling
data on disk. With our optimization of shuffling (i.e., external
shuffling memory instead of disk), our system can reduce the
execution time by up to 40% compared to default Spark with
the same memory consumption. The figures also show that
the performance is similar comparing using DMO with local
DRAM and with a disaggregated remote PMEM pool.

The price protection system first generates the intermediate
RDDs, which are re-used tens of times in the subsequent
stages. We store persistent RDDs with serialized Java objects
in Spark. Our system stores shuffling data, spills, and persis-
tence data in DMO, which is backed by a distributed DRAM
and PMEM memory pool, which can offer sufficient storage
memory to Spark. On the other hand, the re-computation strat-
egy enables default Spark to finish all stages with insufficient
storage memory for the JVM. However significant execution
overhead was introduced because of re-computation. With a
greater executor memory capacity, default Spark can achieve

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 02,2020 at 20:45:38 UTC from IEEE Xplore. Restrictions apply.

the best performance with more than 14 GB memory per
executor, with a total of 840 GB of allocated memory. The best
performance of our proposed system offers a 4.3% execution
time reduction with the same memory utilization. Although we
do not optimize the persistence strategy of Spark, the system
provides performance improvement from garbage collection
reduction. Note that comparing to default Spark, the proposed
system with DMO needs larger minimum total memory to
finish the workload, as the additional memory is used to persist
all intermediate RDDs with disaggregated memory pool in
these experiments.

The core service of the data warehouse application is a
typical Spark SQL application that involves a large volume
of data. This workload profile is similar to the TeraSort
application. As shown in Fig. 7, our proposed system can
reduce the execution time up to 59.5% with same amount of
memory compared with default Spark.

Computing resource efficiency. As discussed in Section II,
the data center memory utilization is usually higher than the
CPU utilization in data center. As each regular production
server features 256 GB of DRAM already, increasing the
memory size further may not be possible.

We use one server featuring large-capacity PMEM to in-
crease the overall memory size and therefore optimize the use
of computing resources. Specifically, we increase by 66.5%
the overall memory capacity of the cluster with 10 regular
nodes, by adding one server with 192 GB of DRAM and 1.5
TB of PMEM. The corresponding performance overhead of
TeraSort, price protection, and data warehouse application is
only 10.5%, 9.1%, and 18% at the worst scenario: all DMO
read from/written to remote PMEM, comparing to all DMO
read from/written to local DRAM.

Additionally, because of the disaggregated design, the ex-
tended memory is shared across different executors in a
Spark application for persistence and shuffling. This eases the
performance tuning in the production scenario, and improves
the overall memory utilization, especially for imbalanced data
partition cases.

Quality of service discussion. To meet Service-level Agree-
ments (SLAs) in enterprise data centers, system engineers tend
to assign large volumes of memory to Spark applications;
although in some cases, Spark can finish jobs with lower
memory requirements. This usually leads to memory resource
waste. For example, assuming a price protection application
is required to finish in less than 2,000 seconds, an engineer
would allocate 840 GB of memory to the application using
default Spark, and still worry about that occasional OOM due
to input data change can ruin the SLA. As the comparison, the
memory requirement of our proposed system is only around
600 GB, and is more scalable to data change.

Impact of caching. Fig. 8 shows that with caching opti-
mization, TeraSort can further reduce its execution time by
52% with the same amount of overall memory, which is up
to 3.5-fold performance improvement comparing to default
Spark. However, for the price protection and data warehouse
applications, the caching does not show obvious benefits. This

300
450
600
750
900

1050
1200

300 600 900 1200 1500 1800 2100 2400 2700

Ex
ec

ut
io

n
Ti

m
e

(s
)

Memory Utilization (GB)

Spark w DMO Local

Spark w DMO Local w Caching

(a) TeraSort

1000
1300
1600
1900
2200
2500
2800

400 600 800 1000 1200 1400 1600 1800 2000

Ex
ec

ut
io

n
Ti

m
e

(s
)

Memory Utilization (GB)

Spark w DMO Local

Spark w DMO Local w Caching

(b) Price protection system

500

550

600

650

700

300 500 700 900 1100 1300 1500 1700

Ex
ec

ut
io

n
Ti

m
e

(s
)

Memory Utilization (GB)

Spark w DMO Local
Spark w DMO Local w Caching

(c) Data warehouse application

Fig. 8. Total memory - Execution time of TeraSort, price protection system
and data warehouse application

is because TeraSort does the sort operation at reduce side,
which produces heavy IO loads. Thus, TeraSort can benefit
from caching while the other two workloads can not.

Impact of garbage collection (GC). We observed in
production environments that the GC of a Spark application
can represent a significant fraction of its execution time. The
most common approach to avoid performance degradation due
to GC is to increase the size of executor memory in Spark.
Fig. 9 shows the total GC time of default Spark and Spark
with DMO. As shown in the figure, our proposed system
can save up to 42% of the total GC time for TeraSort and
price protection applications with the same amount of executor
memory, because the persistence and shuffling data are of-
floaded to DMO. However, for the data warehouse application
with low memory utilization, the GC time in Spark with DMO
could be larger than default Spark. This is because we do
not implement the BypassMergeSortShuffleWriter
in DMO, which is used when number of partitions is no more
than 200 by default, which is the case for the data warehouse
application. In general, with the same executor memory size,
DMO (external extended memory) is expected to decrease the
GC time.

Discussion of N+1 architecture. We propose a system
with a disaggregated memory pool, which can utilize the
extended PMEM with N+1 architecture (N regular nodes with

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 02,2020 at 20:45:38 UTC from IEEE Xplore. Restrictions apply.

0
100
200
300
400
500
600
700
800

0 5 10 15 20

To
ta

l G
C

 T
im

e
(m

in
)

Executor Memory (GB)

Spark
Spark w DMO Local
Spark w DMO Remote
Spark w DMO Local w Caching

(a) TeraSort

0
1000
2000
3000
4000
5000
6000
7000

0 5 10 15 20

To
ta

l G
C

 T
im

e
(m

in
)

Executor Memory (GB)

Spark
Spark w DMO Local
Spark w DMO Remote
Spark w DMO Local w Caching

(b) Price protection system

0
50

100
150
200
250
300

0 5 10 15 20

To
ta

l G
C

 T
im

e
(m

in
)

Executor Memory (GB)

Spark
Spark w DMO Local
Spark w DMO Remote
Spark w DMO Local w Caching

(c) Data Warehouse application

Fig. 9. Executor memory - GC time of TeraSort, price protection system and
data warehouse application

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9

Av
er

ge
 T

hr
ou

gh
pu

t (
G

bp
s)

Number of Machines

Incomming
Outgoing

Fig. 10. Average network throughput of PMEM-based server with TeraSort

one PMEM node). We evaluated the network throughput of
the server featuring PMEM in our system, with TeraSort
application. We increase the number of executors and the size
of data accordingly as the number of regular nodes used for
computation increases. Fig. 10 shows the average incoming
throughput for shuffle write phase and outgoing throughput for
shuffle read phase on the single remote PMEM server. We aim
at finding a trade-off between the bandwidth of the computing
cluster and the data center’s computing resource efficiency. As
shown in Fig. 10, as the application load increases, the shuffle
write throughput can reach the available network bandwidth
in our system. This also provides meaningful data points for
identifying efficient enterprise data center design choices.

VII. RELATED WORK

Characterization of Big Data data center: Complement-
ing existing research that analyzed the resource utilization of
compute clusters and data centers [16], [17], our work provides
a characterizations of a large scale production data center in
a large E-commerce company running big data applications
and addresses relevant bottlenecks that limit the capabilities
of in-memory Big Data frameworks.

Memory efficiency and disaggregated data center:
Cur-rent research address disaggregated resources with advanced

infrastructure to increase the performance and compute re-
source efficiency for Big Data frameworks. Existing re-
search [18]–[21] has explored the potential of RDMA for
Spark. Gao et at. [22] address the network requirements of
disaggregated data centers, and compare the performance loss
of different network latency and bandwidth. Rao et al. [23]
compare the performance of Spark SQL with different memory
bandwidth. Industry has already proposed disaggregated data
center architectures with PCIe and fast fabric interconnects
such as the Intel Rack Scale Design (RSD) for rack-scale
disaggregation [24], HP’s “The Machine” concept [25], and
Facebook’s proposed disaggregated data center [26].

Optimizing the shuffle service: Zhang et al. [27], [28]
optimize Spark with disaggregated storage (disk) and external
shuffle service in Facebook. To avoid overfit into the local
disk, they store temporary data into distributed file system.
Google has also optimized the shuffle service with the Cloud
Dataflow service.

Burst buffers for Big Data framework: Existing literature
has explored the potential of HPC burst buffers for Big
Data frameworks. For example, Yildiz et al. [29] propose
Eley, which leverage burst buffers and data prefetching for
accelerating Big Data applications. Chaimov et al. [20] use
NVMe SSD buffers between compute nodes and Lustre file
systems in order to improve the scalability of the Spark
framework. Islam et al. [21] propose using Memcached as
a burst buffer system to integrate HDFS with the Lustre file
system in a performant and efficient way and evaluate the
performance of NVMe SSD based HDFS [30].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present the design and implementation of
a disaggregated memory system with persistent memory for
an in-memory Big Data processing framework. Our proposed
system optimizes the memory efficiency of the data center
with external extended persistent memory and a disaggregated
memory pool. By leveraging shuffle and persistence optimiza-
tion, we demonstrate that our system can effectively reduce the
execution time by up to 72% for shuffle-intensive applications.
Moreover, we incorporate shuffle and persistence mechanisms
into Big Data frameworks using an in-memory distributed
file system. The results of the experimental evaluation from
empirical executions show that with remote large-volume
persistent memory and a disaggregated memory pool, our
proposed system can also increase the overall memory capacity
by 66.5% with much lower overheads. While the experimental

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 02,2020 at 20:45:38 UTC from IEEE Xplore. Restrictions apply.

evaluation has been conducted using a 25 GbE commodity
network, we expect our proposed system to provide sig-
nificantly better results using faster networks (e.g., 40/100
GbE or Intel Omnipath technology). This actually shows the
viability of PMEM for implementing bare-metal software-
defined infrastructures in production enterprise environments.

Based on this proof of concept work, the large E-commerce
company is looking at deploying the solution with persistent
memory in production for shuffle/persistence intensive Spark
applications with high SLA requirements. The company is also
deploying Spark on container and Kubernetes based private
cloud environment, mixed with other workloads to improve
the machine resource utilization. The solution fits nicely to the
deployment as it gets rid of the dependency on the local disks
which is difficult to virtualize and manage in the environment.
With Spark executor in cloud, the solution provides a truly
elastic way to run Spark application.

ACKNOWLEDGMENTS

We thank Jie Li for his help with our experimental setup.
We are indebted to Yue Zhao, Wei Kang, Ning Xu, and Haiyan
Wang for their help with developing and some of our changes
to DMO. Finally, we thank JD cloud and Charles Fan for their
support of this project. The research at Rutgers was conducted
as part of the Rutgers Discovery Informatics Institute (RDI2)
and is supported in part by NSF via grants numbers OAC
1640834, OAC 1826997, OAC 1835692, and OCE 1745246.

REFERENCES

[1] Nvidia. Gpu. https://www.nvidia.com/en-us/about-nvidia/ai-computing/.
Accessed March, 2019.

[2] Intel. Optane ssd. https://www.intel.com/content/www/us/en/
architecture-and-technology/intel-optane-technology.html. Accessed
March, 2019.

[3] Sandhya Dwarkadas, Nikolaos Hardavellas, Leonidas Kontothanassis,
Rishiyur Nikhil, and Robert Stets. Cashmere-vlm: Remote memory pag-
ing for software distributed shared memory. In International Symposium
on Parallel and Distributed Processing, pages 153–159, 1999.

[4] Michail D Flouris and Evangelos P Markatos. The network ramdisk:
Using remote memory on heterogeneous nows. Cluster Computing,
2(4):281–293, 1999.

[5] Shuang Liang, Ranjit Noronha, and Dhabaleswar K Panda. Swapping to
remote memory over infiniband: An approach using a high performance
network block device. In IEEE Cluster Computing, pages 1–10, 2005.

[6] Evangelos P Markatos and George Dramitinos. Implementation of a re-
liable remote memory pager. In USENIX Annual Technical Conference,
pages 177–190, 1996.

[7] Intel. Persistent memory. https://software.intel.com/en-us/
persistent-memory. Accessed March, 2019.

[8] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster computing with working sets. HotCloud,
10(10-10):95, 2010.

[9] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation, pages
15–28, San Jose, CA, 2012.

[10] Spark. Spark dynamic resource allocation. https://spark.apache.org/
docs/latest/job-scheduling.html#dynamic-resource-allocation. Accessed
March, 2019.

[11] Spark. Shuffle operations. https://spark.apache.org/docs/latest/
rdd-programming-guide.html#shuffle-operations. Accessed March,
2019.

[12] Dan Williams. “Device DAX” for persistent memory. https://lwn.net/
Articles/687489/. Accessed March, 2019.

[13] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the world wide
web. In Proceedings of the Twenty-ninth Annual ACM Symposium on
Theory of Computing, STOC ’97, pages 654–663, 1997.

[14] Andy Rudoff. Persistent memory: The value to hpc and the challenges.
In Proceedings of the Workshop on Memory Centric Programming for
HPC, pages 7–10, New York, NY, USA, 2017. ACM.

[15] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang.
The HiBench benchmark suite: Characterization of the mapreduce-based
data analysis. In Data Engineering Workshops (ICDEW), 2010 IEEE
26th International Conference on, pages 41–51. IEEE, 2010.

[16] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. Large-scale cluster management
at google with borg. In Proceedings of the Tenth European Conference
on Computer Systems, page 18. ACM, 2015.

[17] Yunqi Zhang, George Prekas, Giovanni Matteo Fumarola, Marcus Fon-
toura, Íñigo Goiri, and Ricardo Bianchini. History-based harvesting
of spare cycles and storage in large-scale datacenters. In Proceedings
of the 12th USENIX conference on Operating Systems Design and
Implementation, pages 755–770, 2016.

[18] Xiaoyi Lu, Dipti Shankar, Shashank Gugnani, and Dhabaleswar K DK
Panda. High-performance design of apache spark with rdma and its
benefits on various workloads. In Big Data (Big Data), 2016 IEEE
International Conference on, pages 253–262. IEEE, 2016.

[19] Xiaoyi Lu, Md Wasi Ur Rahman, Nusrat Islam, Dipti Shankar, and
Dhabaleswar K Panda. Accelerating spark with rdma for big data
processing: Early experiences. In High-performance interconnects
(HOTI), 2014 IEEE 22nd annual symposium on, pages 9–16. IEEE,
2014.

[20] Nicholas Chaimov, Allen Malony, Shane Canon, Costin Iancu, Khaled Z
Ibrahim, and Jay Srinivasan. Scaling spark on hpc systems. In Proceed-
ings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing, pages 97–110. ACM, 2016.

[21] Nusrat Sharmin Islam, Dipti Shankar, Xiaoyi Lu, Md Wasi-Ur-Rahman,
and Dhabaleswar K Panda. Accelerating i/o performance of big data
analytics on hpc clusters through rdma-based key-value store. In Parallel
Processing (ICPP), 44th International Conference on, pages 280–289.
IEEE, 2015.

[22] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira,
Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
Network requirements for resource disaggregation. In OSDI, volume 16,
pages 249–264, 2016.

[23] Pramod Subba Rao and George Porter. Is memory disaggregation
feasible?: A case study with spark sql. In Proc. of the 2016 Symp.
on Architectures for Networking and Communications Systems, pages
75–80, 2016.

[24] Intel. Intel rack scale design. https://www.intel.com/content/www/us/en/
architecture-and-technology/rack-scale-design-overview.html. Accessed
March, 2019.

[25] hp. Hp the machine. http://www.labs.hpe.com/research/themachine/.
Accessed March, 2019.

[26] Jason Taylor. Facebooks data center infrastructure: Opencompute,
disaggregated rack, and beyond. In Optical Fiber Communication
Conference, pages W1D–5. Optical Society of America, 2015.

[27] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching, and Michael J
Freedman. Riffle: optimized shuffle service for large-scale data analytics.
In Proceedings of the Thirteenth EuroSys Conference, page 43. ACM,
2018.

[28] Brian Cho. Taking advantage of a disaggregated storage
and compute architecture. https://databricks.com/session/
taking-advantage-of-a-disaggregated-storage-and-compute-architecture.
Accessed March, 2019.

[29] Orcun Yildiz, Amelie Chi Zhou, and Shadi Ibrahim. Improving the
effectiveness of burst buffers for big data processing in hpc systems
with eley. Future Generation Computer Systems, 86:308–318, 2018.

[30] Nusrat Sharmin Islam, Md Wasi-ur Rahman, Xiaoyi Lu, and Dha-
baleswar K Panda. High performance design for hdfs with byte-
addressability of nvm and rdma. In International Conference on
Supercomputing, page 8, 2016.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 02,2020 at 20:45:38 UTC from IEEE Xplore. Restrictions apply.

