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Abstract—Large-scale enterprise computing systems are grow-
ing rapidly, to address the increasing demand for data pro-
cessing; however, in many cases, the computing resources in a
single data center may not be sufficient for critical data-centric
workloads, and important factors, such as space limitations,
power availability, or company policies, limit the possibilities of
expanding the data center’s resources. In this paper, we explore
the potential of harvesting spare computing resources across geo-
distributed data centers with fast fabric interconnection for real-
world enterprise applications. We specifically characterize the
computing resource utilization of four large-scale production data
centers, and we show how to efficiently combine local storage
and computing clusters with remote and elastic computation
resources. The primary challenge is incorporating the available
remote computing resources efficiently. To achieve this goal, we
propose leveraging the capabilities of Kubernetes-based elastic
computing clusters to utilize the spare computing resources
across geo-distributed data centers for Big Data applications.
We also provide an experimental performance evaluation based
on real-use case scenarios via an empirical execution and a
simulation, which shows that the proposed system can accelerate
Big Data services by employing existing computing resources
more efficiently across geo-distributed data centers.

Index Terms—Geo-distributed Data Centers, Apache Spark,
Kubernetes, Elastic Computing Cluster, Fast Fabric Intercon-
nection.

I. INTRODUCTION

To process large volumes of data, Big Data applications
require a large number of computing resources. However,
expanding the size of the data center computing clusters
within the same geo-location is challenging for large-scale
organizations due to several reasons, including space and
power supply limitations. For example, we have a comput-
ing cluster in Beijing, with about 3,700 servers to support
warehouse applications, which has reached the data center’s
limits. However, these warehouse applications support the data
supply for all departments and, as a result, the demand to
reduce their execution time is increasing. Furthermore, the cost
of expanding the computing capabilities by purchasing more
servers can substantially increase the total cost of ownership of
enterprise data centers [1], [2], as considerable infrastructure
investments might be needed to support additional resources.
To reduce the total cost of ownership of enterprise data centers,
we harvest spare computing resources from existing computing
clusters.

Current research efforts [3]-[7] mostly focus on low-
bandwidth cloud environments. The data transmission time
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for a task across data centers can determine the execution
time of applications. In most of these cases, data distribution
and caching are reasonable solutions; however, with existing
fast fabric interconnections, we integrate computing clusters
as an elastic computing resource pool across geo-distributed
data centers.

We found the computing resource utilization of different
data centers differs in the time scale and the spatial scale. For
example, the computing resource utilization of online service
clusters (e.g., a search and online shopping service) can be
much lower than off-line service clusters during particular pe-
riods, because the system has to reserve computing resources
for periods requiring peak computing capabilities (e.g., 200%
computing resources compared to normal operations). Another
difference is in the time scale, as the busy time of online ser-
vice clusters is typically daytime, while offline service clusters
can be busy at that time (e.g., running Extract, Transform,
Load workloads). As the resource utilization of offline service
clusters is usually high (70% to 90%), running online services
simultaneously may require significant additional resources
to avoid resource contention and/or workload performance
degradation.

With the consideration of network latency and bandwidth as
key factors, we explore the use of fast fabric interconnections
to overcome this problem. In this paper, we focus on a data
warehouse service, which deals with a large volume of data
(hundreds of GBs to tens of TBs per application at a PB-
level data warehouse). To better understand the performance
of different methods with fast fabric interconnection, we first
characterize two different situations:

o Performance of data warehouse applications with a stor-
age cluster (HDFS) within the same data center.

o Performance of data warehouse applications with a re-
mote storage cluster (HDFS).

Based on the findings from our empirical performance
evaluation, we investigate methods for fully utilizing the com-
puting resources between two geo-distributed data centers with
fast fabric interconnection and the abstraction of an elastic
computing cluster. To the best of our knowledge, no previous
work has explored the execution of enterprise applications with
an elastic computing cluster using geo-distributed data centers
with fast fabric interconnection. The main contributions of this
paper are as follows:
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o We characterize the performance of real warehouse ap-
plications with fast fabric interconnection between geo-
distributed data centers.

« We explore the potential of the elastic computing cluster
abstraction with Kubernetes across data centers.

e« We explore scheduling strategies for data warehouse
applications.

« We provide meaningful evaluations of the proposed ap-
proach in real-world large-scale computing cluster de-
ployments.

The rest of the paper is organized as follows. In Section II,
we provide background and related work, which motivates the
proposed approach. In Section III, we characterize warehouse
applications and resource utilization of warehouse applica-
tions in a real production environment. The results of the
experimental evaluation provide support for harvesting spare
computing resources across geo-distributed data centers as this
approach can accelerate large-scale Big Data services, such as
the evaluated data warehouse service. Finally, in Section 1V,
we conclude the paper and outline directions for future work.

II. BACKGROUND AND MOTIVATION

In this section, we discuss the main challenges faced in this
paper with an analysis of the computing resource utilization
of a real production enterprise computing cluster. Then we
evaluate the two proposed types of deployment to estimate
the performance and cost of network transmission between
geo-distributed data centers.

A. Characterizing the resource utilization of computing clus-
ters

We leverage data collection with an internal monitor plat-
form, Big Data Platform Eye (BDPEYE), which is used in
production services. With BDPEYE, users can collect different
types of metrics from different components (hardware metrics,
application metrics, cluster metrics, etc.). We select metrics
from schedulers (YARN and K8S) to show the computing
resource utilization of different data centers.

BDPEYE collects monitoring information every 30 sec. As
part of this work, we collected one month (August 2018) of
monitoring information from two different production com-
puting clusters. To show the available computing resource
for Spark, we leverage CPU and memory utilization from
clusters in Fig. 1. Based on the computing resource utilization
of the computing clusters, we classify the potential states
of the computing clusters into three categories: overloaded
(applications waiting in the queue), healthy (no applications
waiting in the queue), and free (the cluster can offer computing
resources to other clusters).

Resource limitations in a single data center. With the
limited space and power supply in the same geo-location, it is
difficult to expand the data center and provide the abstraction
of unlimited servers. Because of this reality, in many cases,
large production services cannot achieve good performance
with limited computing resources. In practice, large Spark
applications usually cannot get enough executors (consisting

938

of CPU and memory) on time, which causes a significant
performance loss in the production environment. As we can
see from the analysis above, we have to find an efficient way
to solve these performance challenges with existing computing
resources.

B. Harvesting spare resources

distributed data centers

computing within ~ geo-

Existing work has proposed mechanisms for harvesting
spare computing resources within the same data center [8],
[9]. As opposed to existing work, and based on the observation
from the analysis above, we efficiently utilize computing
resources across geo-distributed data centers.

Geo-distributed data centers. Existing work [3], [5]-
[7] has explored the potential and methods for utilizing geo-
distributed data centers with limited network bandwidth. How-
ever, these methods cannot meet the performance requirement
for large enterprise data-centric services, which can consist of
hundreds or even thousands of applications. This challenge is
explained in detail and analyzed in section III.

Building a disaggregated computing resource pool be-
tween geo-distributed data centers. As we can see in Fig. 2,
four data centers are distributed in four different regions:
Beijing Daxing district (DC #1), Beijing Haidian district (DC
#2), Beijing Tongzhou district (DC #3), and Langfang city
(DC #4).

Table I shows the network bandwidth and straight-line
distance between the four data centers. The real network
transmission distance is longer than the straight-line distance.
Considering the availability of the high bandwidth network, we
formulate two design choices of Big Data analytics with geo-
distributed data centers. As shown in the table (the capabilities
delivered by the data centers with fast and high-capacity
fabric interconnections), Big Data analytics has the potential
to benefit from additional remote spare computing resources.

TABLE I
NETWORK BANDWIDTH (GBPS)/STRAIGHT-LINE DISTANCE (KM)
BETWEEN THE FOUR GEO-DISTRIBUTED DATA CENTERS

DC #1 DC #2 DC #3 DC #4
DC #1 -/ - - /38 -/33 760 / 37
DC #2 -/ 38 -/ - -/43 760 /70
DC #3 -/33 -/43 -/ - 960 / 38
DC #4 | 760 /37 | 760 /70 | 960 / 38 -/ -

C. Spark-based services on Cloud resources

Currently, cloud computing service provider AWS (Amazon
Web Services), Google Cloud and Tencent Cloud provide
various Big Data analytics services, including ETL (extract,
transform, load), data processing, machine learning, etc. Cloud
computing service providers usually provide elastic computing
resources with a core storage cluster. Furthermore, some
of them also provide auto-scaling services for dynamically
increasing storage capabilities (i.e., avoiding data loss). For
example, AWS, Google Cloud and Tencent Cloud [10]-
[12] provide elastic computing clusters for Spark services and
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Fig. 1. Vcores and memory utilization of three different computing clusters in geo-distributed data centers
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Fig. 2. Geographic locations of the four data centers and the network
connection between the data centers. This map is a sketch and does not provide
the exact location of the data centers
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Google Cloud provides auto-scaling services for the storage
layer (HDEFS).

In the use case scenario discussed in this paper we have
the same Spark service within several different geo-distributed
data centers.
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Fig. 3. Architecture of geo-distributed data centers, which is a common
architecture in Cloud environments

D. Modeling the computing cost across data centers

Because the elastic computing cluster is built with geo-
distributed data centers, we have to estimate the cost of
network transmission across data centers. Based on our for-
mulation, we can see that it is more realistic for us to
use separate computing clusters than one computing cluster.
Existing work [4], [13]-[15] proposed network models to
calculate the network transmission for Big Data analytics (e.g.,
MapReduce Hadoop, Spark, Flink, etc.). We adapt the model
to fit the targeted elastic cluster model to run with Big Data
analytics.
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To formulate the cost of network transmission, we use Spark
[16] with HDFS [17] as a driving use case. The main costs
of data transmission over the network in Spark are read data
from HDFS, shuffle, and write the result back to HDFS. Fig.
4 shows the basic data flow for Spark. Spark can implement
efficient data locality mechanisms when Spark executors read
data blocks from a local node or in a small computing cluster;
however, it is harder for Spark to read data blocks from a
local node in a large-scale environment. In contrast to the
data locality of input data and output data, Spark has good
data locality within JVM (memory persistence) and a local
disk (disk persistence) for intermediate data. To simplify the
formulation, we assume all input and output data is transmitted
through the network while intermediate data is not. Thus, the
cost of the (network) data transmission () can be abstracted
as follows:

N =

anut + Mhufﬁe + -/V:)utput (1)

Spark assigns a set of operations, which process part of the
data within a single process individually. Thus, the Spark per-
formance model can be abstracted as a MapReduce problem.
In a traditional MapReduce problem, the performance pattern
can be abstracted as a directed acyclic graph G € {V,£}.

« Stage is the basic process step in Spark, which is divided
by the shuffle operation. V is a set of stages.

o & is a set of edges, which represent the execution time
of the stages.

Before we formulate the cost of each edge £, we need to
elaborate on the shuffling process in Spark. In this paper, we
consider the sort-based shuffle in Spark, which is used in
the production environment. Spark shuffle can be classified
into shuffle write and shuffle read. Shuffle write happens in
the “map” phase, while shuffle read happens in the “reduce”
phase. Different from MapReduce in Hadoop, Spark does not
offer network overlapping transmission for shuffle data. The
“reducers” read shuffle data after all “mappers” are finalized
in Spark. We can formulate the performance of a single task in
a “reducer” as Tk = Texecution + Taisk + Tnet and in “mapper”
as 7Iask = 7;xecution + 7Elisk)-

o Texecution 18 the task computing time.

o Taisk is task disk I/O time, which includes the disk per-
sistence time, shuffle write time in the “mapper” phase,
and shuffle read time in the “reducer” phase. We can
formulate the disk I/O time for Spark as Tgisk = gj‘:t
Saisk is the shuffle data size for a single task, and Bgsk
is the disk bandwidth.

o Thet is the task network transmission time. Furthermore,
the main network communication cost are shuffle and
fetching input data, and writing output data. To further
formulate the network transmission time of shuffle, we
use the a« — 8 model [18]. Although there are more
models, « — 8 model is suitable for the problem that we
address. Thus, we can formulate the network transmission
time Toer @ Tnet = a% + S is the latency for
sending a message, (3 is the network bandwidth between
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two nodes, S, is the size of shuffle read, and n is the
size of each message.
Thus, we can formulate the execution time (7gpplication) for
Spark as follows:
n
>

n
7:1pplicalion = E Tlage = max (Iﬁask)
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Fig. 4. Spark data flow
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To calculate the cost of network transmission intra-data
centers and across data centers, we adopt the equations ( 1)
and ( 2) in the targeted geo-distributed computing cluster
model. The total network transmission (JV') can be divided into
intra-data center transmissions (Minra) and across-data centers
transmissions (NV;cross). Currently, we use Kubernetes [8], [19]
as the primary scheduler for Spark. In this paper, we address
two types of deployment to implement the elastic computing
cluster for Spark, as shown in Fig. 3.

Scheduling applications within a single computing pool
and individual computing pools. We use the driving example
to illustrate the cost of network data transmission between
geo-distributed data centers for a single Spark application. For
the single computing pool condition, Spark gets the available
executors, the basic computing unit of Spark, from all four
geo-distributed data centers. We assume Spark gets the same
number of executors from n data centers in this scenario. For
the individual computing pool condition, Spark gets all input
data from the local data center or a single remote data center.
Thus, we can calculate the cost of network data transmission
across data centers for a single computing pool as follows:

n-1

-A/across = Mhufﬂe) (3)

We calculate the cost of network data transmlssion across data
centers for multiple individual computing pools as follows:

j\/;cross = (4)

For example, warehouse application #6 is a Spark SQL job
with 2,666 GB input data, 3,714 GB shuffle data, and 16 GB
output data. We assume that this warehouse application runs
on a 300-node computing cluster. The volume of network data
transmission across the data centers is 222 x % x 3714 + % X

300
(2666 + 16) = 4789GB for single computing pools, and

n-1
n (anut + Noutpul +

n-1

n (anut + -/\/output)
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Soo X 2666 = 2657GB for multiple individual computing
pools. The latency between the data centers is longer than
the latency within a data center, and the shuffle in Spark
could be small all-to-all data communication. The IOPS for
shuffle is usually very large [20], which results in high
overhead for Spark shuffle data transmission. This calculation
does not consider the network transmission, because of the
delay scheduler in Spark [21], and metadata transmission with
the master node. Note that when this is taken into account,
the network transmission could be even higher for a single
computing cluster environment.

We adopt the performance equation (2) for geo-distributed
data centers. Because of the hardware performance gap be-
tween different data centers, Spark can have a significant
performance gap or imbalance for different tasks in the
same stage. Further, the data skew phenomena are typically
found in large-scale enterprise computing clusters with real
production data [22]. Scheduling a heavy task in Spark in
a low-performance node could cause a significant execution
imbalance between different tasks in the same stage.

Based on the analysis above, we can characterize the
features of geo-distributed data centers as follows:

o The hardware performance in different data centers can
have significant differences. For example, because a new
data center may use a newer and better-performing CPU
and memory with larger network bandwidth, the perfor-
mance of Spark in the new data center (DC #4) can save
in practice 30% to 50% execution time compared to the
old data center (DC #3), depending on the application.

o The data source of the applications is usually in a single
data center. Because the volume of the existing data
source is huge, it is very challenging to make a copy
in each data center.

o The total network bandwidth between data centers is
smaller than the total bandwidth within the data center.
With fast fabric interconnection between data centers,
we can afford part of the network transmission in Spark
across geo-distributed data centers.

Long tail problem. In practice, if we have a Spark appli-
cation running in several data centers, the Spark application
could suffer the long tail problem because of hardware hetero-
geneity. As we can see from equation (2), the execution time
Texecution Strongly depends on the performance of the CPU.
However, the variability in the CPU performance of servers
in different data centers can be significant. Thus, the long tail
problem can lead to a large waste of computer resources. As a
result, we try to schedule the application within the same geo-
location rather than across geo-distributed data centers, when
possible.

[II. EXPERIMENTAL EVALUATION

In this section, we characterize the core services of the data
warehouse application running in the production environment.
Then we use the data warehouse application workloads to
evaluate the performance of the system, locally and with a
configuration that uses remote resources.
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A. Characterizing data warehouse applications

Data warehouse applications provide data services to var-
ious businesses, which include user information, order infor-
mation, shipping information, storage information, etc. In the
time scale, the core service of the data warehouse processes all
historical data and provides the data for second-day services.
In JD, hundreds of PBs of data are stored in an HDFS cluster,
and the data warehouse service has to process about a PB
of data every day. For large-scale warehouse applications,
tens and even hundreds of data requests are fetched from the
distributed file system, and tens of TBs of shuffle data are
generated during runtime. Thus, the computing cluster has to
provide a large volume of computing resources to allow Spark
to provide a reasonable performance.

The services in the enterprise generate an incredibly large
volume of data every day. Therefore, the data is stored in a
high-compression format to save storage space. Furthermore,
there are thousands of input tables, and some of the appli-
cations are dependent, so the whole warehouse chain can be
divided into seven layers. Figure 5 shows the dependency
relationship of the warehouse applications.

Fig. 5. Dependency relationship between the services of the data warehouse
use case. This dependency graph has 435 warehouse applications (143 core
data warehouse applications), including basic data movement and a data
checker, among others
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Fig. 5 shows the relationship between all warehouse ap-
plications, including data processing, data movement, data
scanning, etc. In the experimental evaluation, we selected the
core services of the data warehouse as the target workloads.

The core services of the data warehouse involve a large
number of applications, and the data warehouse applications
involve a large volume of data that varies in size. Figure 6
shows the input, output, and shuffle(r/w) size of 20 (out of 143)
data warehouse applications from the enterprise production
environment.

We observe that the core data service of the data warehouse
has the following requirements and characteristics:

« High-performance requirements. Because the data service
provides data support for other services, the service must
be finished as soon as possible.

Large volume of data with a high-compression format.
With the incredible increasing volume of data, high-
compression formats can help distributed file systems
provide sufficient storage space.

Large number of applications with several dependent
layers. The data warehouse application has pre-requested
data warehouse applications in the data pipeline. Thus,
the data warehouse application in the next layer cannot
start before all applications from the previous layer have
finished.

The input data varies in size. The input data size of
the warehouse applications can be significantly diverse,
which can cause a big imbalance in the required comput-
ing resources.

Resource limitation in Spark applications Currently, the
core service of the data warehouse runs on a computing cluster
with about 3,700 compute nodes, and includes 143 Spark
SQL applications. However, it is hard for each data warehouse
application to obtain sufficient computing resources on time,
especially applications that require a large volume of data
(i.e., require more computing resources to deliver a reasonable
performance). In practice, although we use 1,000 executors,
sometimes, the application can get only about 400 executors
from the computing cluster.

The executor is the minimum computing resource unit,
which is composed of virtual cores and memory, in Spark.
Currently, each unit has the same number of virtual cores and
memory; therefore, we can calculate the number of available
executors for certain application as follows:

Ajernoryavailable Vcoreavailable

Ezecutorayaitapie = Min( ,
]\/IenLoryemecutor Vcoreemecutor

B. Testbed

Our testbed is composed of 294 nodes in a production com-
puting cluster. The servers have two Intel(R) Xeon(R) CPU
ES5-2640 v2 @ 2.00GHz processors, and the configuration used
in this work includes 256 GB DRAM, and 40 GbE network
connectivity between each server. We configure the big data
framework, container management system, local distributed
file system as the baseline with the same configuration as

)
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with the remote distributed file system. Spark version 2.3 was
deployed using Kubernetes version 1.10, CentOS version 7.5
and HDEFS version 2.7. We reserve one core (3.1%) and 2 GB
(0.8%) memory for Kubernetes, and three cores (9.4%) and 9
GB (3.5%) memory for the operating system.

C. Workloads

As we discussed in section II, our target is building an
elastic computing pool with individual computing clusters.
However, in the geo-distributed environment, the location of
data storage could be different than the computing resources.
We decide to place the Spark application in different data cen-
ters without considering data location based on two reasons:
(1) It is hard for engineering to predict the available computing
resource in data centers, and (2) most of the existing data
is located on the single data center. Thus, it is important
for us to find a way to use spare geo-distributed computing
resource efficiently. Based on this condition, we evaluate the
performance of Spark with remote HDFS and local HDFS.
Finally, we use two deployed HDFS systems on data centers
#3 and #4, individually.

To evaluate the performance gap between the local data
source and remote data source, we select six (typical) ware-
house applications from the core service of the data warehouse
as shown in table II. We use the input data from production
HDFS as standard data. Further, table II shows the input
and output size of warehouse applications. Since we need to
meet SLA (Service Level Agreement) requirements, we use
the most performant configuration for warehouse applications.
Thus, we allocate enough memory resource to every executor.
The number of cores in each executor is based on the best
practices in production environments, which can fully use the
I/O throughput for both JVM and disk in the same executor.
Furthermore, to evaluate the different type of warehouse appli-
cations, we choose different types of applications from the core
service of data warehouse, including (1) compute-intensive
application: CPU bound application, (2) shuffle intensive ap-
plication: Spark write and read shuffle data into local disk
[23], thus shuffle intensive application is network and disk
I/O intensive application, and (3) I/O intensive application:
disk I/0O bound application.

D. Experimental results

We use Spark with local HDFS as a performance baseline.
Then we evaluate the performance of Spark with remote
HDFS, which has a separate storage cluster and computing
cluster. For each test, we run it five times and use the average
execution time as a reference for the performance of the
warehouse applications using Spark with local HDFS and
Spark with remote HDFS.

Fig. 7 shows the normalized execution time of the ware-
house applications. We can observe that the execution time
of Spark with the local data source and with the remote data
source is almost the same.

In a real production environment, to ensure that the exe-
cution time for the data warehouse core services is within
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Fig. 6. Input, output and shuffle size of core warehouse applications (20 out of 143)

TABLE II
CHARACTERIZATION AND CONFIGURATION OF WAREHOUSE APPLICATIONS

zZzz272222222

[y
~

F

V227777277777

EEeereue
P27

=
0o
=
(=)

Application index | Input Size (GB) | Output Size (GB) | Shuffle Size (GB) | Number of Executors | Executor Memory (GB) | Executor Cores

#1 795 2.6 1.00 1000 20 5

#2 165 309 110 1000 20 5

#3 1843 421 2031 1250 24 5

#4 2.85 2.92 2.44 1 20 5

#5 15.1 4.6 7.4 300 20 5

#6 2666 16 3714 1000 20 5
o 110% In this simulation, based on the existing production en-
E 108% | ®Local HDFs & Remote HDFS | vironments, we assume that we have one storage cluster in
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Fig. 7. Normalized execution time of Spark with local HDFS and remote
HDEFES (with respect to the execution time of Spark with local HDFS)

the SLA constraints, we have to suspend all requests from
other queues until the core service has finished. The main
reason is that the computing resources in the same geo-
location are not enough for such a large service. Thus, we
want to harvest the spare computing resource from other data
centers. Furthermore, existing research has explored pre-data
movement methods based on computing resource prediction.
However, because of the growth of and change in existing
workloads, the pre-data movement is very challenging to
implement in practice. Currently, it is also hard for us to
transmit the required data to remote computing clusters based
on the computing resource availability before runtime. Thus,
transmitting runtime data across data centers is an efficient
way to reduce the burden of computing resource utilization in
a single computing cluster.

Because we cannot experiment with the performance and
resource utilization of the core service of a data warehouse
with four data centers, we implement a simulator to reproduce
the performance and resource utilization of this system across
four geo-distributed data centers. We simulate the execution
time for the core services of the data warehouse, and the CPU
and memory utilization for four geo-distributed data centers.
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data center 1, and an elastic computing cluster across four
different geo-distributed data centers. The performance of a
single node in the computing clusters of the various data
centers differs. However, to simplify the model, we assume
that different computing clusters in different data centers have
similar performances.

Data Source: To simulate the overall performance of the
elastic computing cluster with the warehouse applications, we
use the workloads of the core warehouse applications as shown
in Fig. 7. We profile the core utilization, memory utilization,
and running time of 143 core warehouse applications in a
production environment. The simulation scheduler policy is
described as follows:

We mark the co-located computing cluster, which has the
same geo-location as a storage cluster, as the highest priority
in the scheduling algorithm. It tries to assign applications
to cluster 1. Once computing cluster 1 cannot offer enough
computing resources to the application, the scheduler assigns
remote computing clusters to the application following a
round-robin policy. The scheduler then checks the available
computing resources in each remote computing cluster before
assigning one. Next, the scheduler places the application in the
computer cluster that has more available computing resources
in different data centers. Further, we divide the core service of
the data warehouse into seven layers based on the dependency
relationship of their services. Thus, the scheduler cannot start
a data warehouse application without finishing the prerequisite
data warehouse applications first. Furthermore, we assume that
each computing cluster has 10,000 CPU cores with 53 TB
of memory. Figure III shows the execution time of the data
warehouse core service within a single data center, and with
harvesting spare computing resources across geo-distributed
data centers, based on the approach described above.
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Algorithm 1: Task scheduler policy.

1 Function Storage Device Priority ;

Inpllt APPpoola Appindea:s Appprm‘equest, Appcores’
Appmemory, APPtime, Clusterindes,
ClUSterindew_coTes, ClUStersindex_memory

OUtPUt: Texecution

1: start time;
2: while APP,,,; is not empty do
3:  fori=1;i <= Appindez;i + + do
4: if Appprerequest == true then
hE if Appeores >= CIUSterl_cm'es&Appcorcs >=
Clusteri_memory then
Assign Application into cluster 1;
else if FindMax(Clustera—4) then
8: if
Appcm*es >= CZUSteTindea:_corcs&Appmemory >=
Clusterindec_memory then

N

9: Assign Application into cluster_index;
10: end if

11: else

12: No cluster available;

13: end if

14: end if

15:  end for

16: end while

17: end time;
return (Tewecution);

TABLE III
EXECUTION TIME OF CORE SERVICE OF DATA WAREHOUSE

Scenario | Computing cluster | execution time (s)
#1 #1 8,408
#2 #1,#2 5,908
#3 #1,#2#3 5,272
#4 #1,#2,#3,#4 5,272

IV. CONCLUSION AND FUTURE WORK

In this paper, we characterized the computing resource
utilization of four different geo-distributed computing clusters.
Then we introduced the use of fast fabric interconnections
across the geo-distributed data centers. We explored the po-
tential deployment with these data centers. Then, we evaluated
the performance of the system based on Spark, HDFS, and
Kubenetes in a production enterprise environment. Based on
the results, we explored the potential of using fast fabric
interconnection to harvest spare computing resources across
geo-distributed data centers. We built a simulation based on
a data warehouse core service, and then we verified that we
could build an elastic computing cluster across geo-distributed
data centers, which can speed up large data warehouse enter-
prise services. Our future work includes exploring in-memory
distributed file systems, such as Alluxio, for supporting elastic
computing clusters across geo-distributed data centers, and
exploring co-design aspects related to Big Data frameworks
and next-generation network interconnections.
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