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Abstract—Large-scale enterprise computing systems are grow-
ing rapidly, to address the increasing demand for data pro-
cessing; however, in many cases, the computing resources in a
single data center may not be sufficient for critical data-centric
workloads, and important factors, such as space limitations,
power availability, or company policies, limit the possibilities of
expanding the data center’s resources. In this paper, we explore
the potential of harvesting spare computing resources across geo-
distributed data centers with fast fabric interconnection for real-
world enterprise applications. We specifically characterize the
computing resource utilization of four large-scale production data
centers, and we show how to efficiently combine local storage
and computing clusters with remote and elastic computation
resources. The primary challenge is incorporating the available
remote computing resources efficiently. To achieve this goal, we
propose leveraging the capabilities of Kubernetes-based elastic
computing clusters to utilize the spare computing resources
across geo-distributed data centers for Big Data applications.
We also provide an experimental performance evaluation based
on real-use case scenarios via an empirical execution and a
simulation, which shows that the proposed system can accelerate
Big Data services by employing existing computing resources
more efficiently across geo-distributed data centers.

Index Terms—Geo-distributed Data Centers, Apache Spark,
Kubernetes, Elastic Computing Cluster, Fast Fabric Intercon-
nection.

I. INTRODUCTION

To process large volumes of data, Big Data applications

require a large number of computing resources. However,

expanding the size of the data center computing clusters

within the same geo-location is challenging for large-scale

organizations due to several reasons, including space and

power supply limitations. For example, we have a comput-

ing cluster in Beijing, with about 3,700 servers to support

warehouse applications, which has reached the data center’s

limits. However, these warehouse applications support the data

supply for all departments and, as a result, the demand to

reduce their execution time is increasing. Furthermore, the cost

of expanding the computing capabilities by purchasing more

servers can substantially increase the total cost of ownership of

enterprise data centers [1], [2], as considerable infrastructure

investments might be needed to support additional resources.

To reduce the total cost of ownership of enterprise data centers,

we harvest spare computing resources from existing computing

clusters.

Current research efforts [3]–[7] mostly focus on low-

bandwidth cloud environments. The data transmission time

for a task across data centers can determine the execution

time of applications. In most of these cases, data distribution

and caching are reasonable solutions; however, with existing

fast fabric interconnections, we integrate computing clusters

as an elastic computing resource pool across geo-distributed

data centers.

We found the computing resource utilization of different

data centers differs in the time scale and the spatial scale. For

example, the computing resource utilization of online service

clusters (e.g., a search and online shopping service) can be

much lower than off-line service clusters during particular pe-

riods, because the system has to reserve computing resources

for periods requiring peak computing capabilities (e.g., 200%

computing resources compared to normal operations). Another

difference is in the time scale, as the busy time of online ser-

vice clusters is typically daytime, while offline service clusters

can be busy at that time (e.g., running Extract, Transform,

Load workloads). As the resource utilization of offline service

clusters is usually high (70% to 90%), running online services

simultaneously may require significant additional resources

to avoid resource contention and/or workload performance

degradation.

With the consideration of network latency and bandwidth as

key factors, we explore the use of fast fabric interconnections

to overcome this problem. In this paper, we focus on a data

warehouse service, which deals with a large volume of data

(hundreds of GBs to tens of TBs per application at a PB-

level data warehouse). To better understand the performance

of different methods with fast fabric interconnection, we first

characterize two different situations:

• Performance of data warehouse applications with a stor-

age cluster (HDFS) within the same data center.

• Performance of data warehouse applications with a re-

mote storage cluster (HDFS).

Based on the findings from our empirical performance

evaluation, we investigate methods for fully utilizing the com-

puting resources between two geo-distributed data centers with

fast fabric interconnection and the abstraction of an elastic

computing cluster. To the best of our knowledge, no previous

work has explored the execution of enterprise applications with

an elastic computing cluster using geo-distributed data centers

with fast fabric interconnection. The main contributions of this

paper are as follows:
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• We characterize the performance of real warehouse ap-

plications with fast fabric interconnection between geo-

distributed data centers.

• We explore the potential of the elastic computing cluster

abstraction with Kubernetes across data centers.

• We explore scheduling strategies for data warehouse

applications.

• We provide meaningful evaluations of the proposed ap-

proach in real-world large-scale computing cluster de-

ployments.

The rest of the paper is organized as follows. In Section II,

we provide background and related work, which motivates the

proposed approach. In Section III, we characterize warehouse

applications and resource utilization of warehouse applica-

tions in a real production environment. The results of the

experimental evaluation provide support for harvesting spare

computing resources across geo-distributed data centers as this

approach can accelerate large-scale Big Data services, such as

the evaluated data warehouse service. Finally, in Section IV,

we conclude the paper and outline directions for future work.

II. BACKGROUND AND MOTIVATION

In this section, we discuss the main challenges faced in this

paper with an analysis of the computing resource utilization

of a real production enterprise computing cluster. Then we

evaluate the two proposed types of deployment to estimate

the performance and cost of network transmission between

geo-distributed data centers.

A. Characterizing the resource utilization of computing clus-
ters

We leverage data collection with an internal monitor plat-

form, Big Data Platform Eye (BDPEYE), which is used in

production services. With BDPEYE, users can collect different

types of metrics from different components (hardware metrics,

application metrics, cluster metrics, etc.). We select metrics

from schedulers (YARN and K8S) to show the computing

resource utilization of different data centers.

BDPEYE collects monitoring information every 30 sec. As

part of this work, we collected one month (August 2018) of

monitoring information from two different production com-

puting clusters. To show the available computing resource

for Spark, we leverage CPU and memory utilization from

clusters in Fig. 1. Based on the computing resource utilization

of the computing clusters, we classify the potential states

of the computing clusters into three categories: overloaded

(applications waiting in the queue), healthy (no applications

waiting in the queue), and free (the cluster can offer computing

resources to other clusters).

Resource limitations in a single data center. With the

limited space and power supply in the same geo-location, it is

difficult to expand the data center and provide the abstraction

of unlimited servers. Because of this reality, in many cases,

large production services cannot achieve good performance

with limited computing resources. In practice, large Spark

applications usually cannot get enough executors (consisting

of CPU and memory) on time, which causes a significant

performance loss in the production environment. As we can

see from the analysis above, we have to find an efficient way

to solve these performance challenges with existing computing

resources.

B. Harvesting spare computing resources within geo-
distributed data centers

Existing work has proposed mechanisms for harvesting

spare computing resources within the same data center [8],

[9]. As opposed to existing work, and based on the observation

from the analysis above, we efficiently utilize computing

resources across geo-distributed data centers.

Geo-distributed data centers. Existing work [3], [5]–

[7] has explored the potential and methods for utilizing geo-

distributed data centers with limited network bandwidth. How-

ever, these methods cannot meet the performance requirement

for large enterprise data-centric services, which can consist of

hundreds or even thousands of applications. This challenge is

explained in detail and analyzed in section III.

Building a disaggregated computing resource pool be-
tween geo-distributed data centers. As we can see in Fig. 2,

four data centers are distributed in four different regions:

Beijing Daxing district (DC #1), Beijing Haidian district (DC

#2), Beijing Tongzhou district (DC #3), and Langfang city

(DC #4).

Table I shows the network bandwidth and straight-line

distance between the four data centers. The real network

transmission distance is longer than the straight-line distance.

Considering the availability of the high bandwidth network, we

formulate two design choices of Big Data analytics with geo-

distributed data centers. As shown in the table (the capabilities

delivered by the data centers with fast and high-capacity

fabric interconnections), Big Data analytics has the potential

to benefit from additional remote spare computing resources.

TABLE I
NETWORK BANDWIDTH (GBPS)/STRAIGHT-LINE DISTANCE (KM)

BETWEEN THE FOUR GEO-DISTRIBUTED DATA CENTERS

DC #1 DC #2 DC #3 DC #4
DC #1 - / - - / 38 - / 33 760 / 37
DC #2 - / 38 - / - - / 43 760 / 70
DC #3 - / 33 - / 43 - / - 960 / 38
DC #4 760 / 37 760 / 70 960 / 38 - / -

C. Spark-based services on Cloud resources

Currently, cloud computing service provider AWS (Amazon

Web Services), Google Cloud and Tencent Cloud provide

various Big Data analytics services, including ETL (extract,

transform, load), data processing, machine learning, etc. Cloud

computing service providers usually provide elastic computing

resources with a core storage cluster. Furthermore, some

of them also provide auto-scaling services for dynamically

increasing storage capabilities (i.e., avoiding data loss). For

example, AWS, Google Cloud and Tencent Cloud [10]–

[12] provide elastic computing clusters for Spark services and
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Cluster #1 Cluster #1

Cluster #2 Cluster #2

Cluster #3

Number of Allocated VCores

Cluster #3

Size of Allocated Memory

Fig. 1. Vcores and memory utilization of three different computing clusters in geo-distributed data centers

Fig. 2. Geographic locations of the four data centers and the network
connection between the data centers. This map is a sketch and does not provide
the exact location of the data centers

Google Cloud provides auto-scaling services for the storage

layer (HDFS).

In the use case scenario discussed in this paper we have

the same Spark service within several different geo-distributed

data centers.

Data Center

Spark Cluster

Data Center

HDFS Cluster

Spark Cluster

Data Center

HDFS Cluster

Spark Cluster

Data Center

Spark Cluster

Global 
Network 

Agent

Fig. 3. Architecture of geo-distributed data centers, which is a common
architecture in Cloud environments

D. Modeling the computing cost across data centers

Because the elastic computing cluster is built with geo-

distributed data centers, we have to estimate the cost of

network transmission across data centers. Based on our for-

mulation, we can see that it is more realistic for us to

use separate computing clusters than one computing cluster.

Existing work [4], [13]–[15] proposed network models to

calculate the network transmission for Big Data analytics (e.g.,

MapReduce Hadoop, Spark, Flink, etc.). We adapt the model

to fit the targeted elastic cluster model to run with Big Data

analytics.
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To formulate the cost of network transmission, we use Spark

[16] with HDFS [17] as a driving use case. The main costs

of data transmission over the network in Spark are read data

from HDFS, shuffle, and write the result back to HDFS. Fig.

4 shows the basic data flow for Spark. Spark can implement

efficient data locality mechanisms when Spark executors read

data blocks from a local node or in a small computing cluster;

however, it is harder for Spark to read data blocks from a

local node in a large-scale environment. In contrast to the

data locality of input data and output data, Spark has good

data locality within JVM (memory persistence) and a local

disk (disk persistence) for intermediate data. To simplify the

formulation, we assume all input and output data is transmitted

through the network while intermediate data is not. Thus, the

cost of the (network) data transmission (N ) can be abstracted

as follows:

N = Ninput +Nshuffle +Noutput (1)

Spark assigns a set of operations, which process part of the

data within a single process individually. Thus, the Spark per-

formance model can be abstracted as a MapReduce problem.

In a traditional MapReduce problem, the performance pattern

can be abstracted as a directed acyclic graph G ∈ {V, E}.
• Stage is the basic process step in Spark, which is divided

by the shuffle operation. V is a set of stages.

• E is a set of edges, which represent the execution time

of the stages.

Before we formulate the cost of each edge E , we need to

elaborate on the shuffling process in Spark. In this paper, we

consider the sort-based shuffle in Spark, which is used in

the production environment. Spark shuffle can be classified

into shuffle write and shuffle read. Shuffle write happens in

the “map” phase, while shuffle read happens in the “reduce”

phase. Different from MapReduce in Hadoop, Spark does not

offer network overlapping transmission for shuffle data. The

“reducers” read shuffle data after all “mappers” are finalized

in Spark. We can formulate the performance of a single task in

a “reducer” as Ttask = Texecution + Tdisk + Tnet and in “mapper”

as Ttask = Texecution + Tdisk).

• Texecution is the task computing time.

• Tdisk is task disk I/O time, which includes the disk per-

sistence time, shuffle write time in the “mapper” phase,

and shuffle read time in the “reducer” phase. We can

formulate the disk I/O time for Spark as Tdisk = Sdisk

Bdisk
.

Sdisk is the shuffle data size for a single task, and Bdisk

is the disk bandwidth.

• Tnet is the task network transmission time. Furthermore,

the main network communication cost are shuffle and

fetching input data, and writing output data. To further

formulate the network transmission time of shuffle, we

use the α − β model [18]. Although there are more

models, α− β model is suitable for the problem that we

address. Thus, we can formulate the network transmission

time Tnet as Tnet = αSnet

n + Snet

β . α is the latency for

sending a message, β is the network bandwidth between

two nodes, Snet is the size of shuffle read, and n is the

size of each message.

Thus, we can formulate the execution time (Tapplication) for

Spark as follows:

Tapplication =
∑n

i=0
Tstage =

∑n

i=0
max(Ttask)

=
∑n

i=0
max(Texecution + Tdisk + Tnet)

=
∑n

i=0
max(Texecution +

Sdisk

Bdisk

+ α
Snet

n
+
Snet

β
)

(2)

Fig. 4. Spark data flow

To calculate the cost of network transmission intra-data

centers and across data centers, we adopt the equations ( 1)

and ( 2) in the targeted geo-distributed computing cluster

model. The total network transmission (N ) can be divided into

intra-data center transmissions (Nintra) and across-data centers

transmissions (Nacross). Currently, we use Kubernetes [8], [19]

as the primary scheduler for Spark. In this paper, we address

two types of deployment to implement the elastic computing

cluster for Spark, as shown in Fig. 3.

Scheduling applications within a single computing pool
and individual computing pools. We use the driving example

to illustrate the cost of network data transmission between

geo-distributed data centers for a single Spark application. For

the single computing pool condition, Spark gets the available

executors, the basic computing unit of Spark, from all four

geo-distributed data centers. We assume Spark gets the same

number of executors from n data centers in this scenario. For

the individual computing pool condition, Spark gets all input

data from the local data center or a single remote data center.

Thus, we can calculate the cost of network data transmission

across data centers for a single computing pool as follows:

Nacross =
n-1

n
(Ninput +Noutput +

n-1

n
Nshuffle) (3)

We calculate the cost of network data transmission across data

centers for multiple individual computing pools as follows:

Nacross =
n-1

n
(Ninput +Noutput) (4)

For example, warehouse application #6 is a Spark SQL job

with 2,666 GB input data, 3,714 GB shuffle data, and 16 GB

output data. We assume that this warehouse application runs

on a 300-node computing cluster. The volume of network data

transmission across the data centers is 299
300 × 3

4 × 3714 + 3
4 ×

(2666 + 16) = 4789GB for single computing pools, and
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299
300 × 2666 = 2657GB for multiple individual computing

pools. The latency between the data centers is longer than

the latency within a data center, and the shuffle in Spark

could be small all-to-all data communication. The IOPS for

shuffle is usually very large [20], which results in high

overhead for Spark shuffle data transmission. This calculation

does not consider the network transmission, because of the

delay scheduler in Spark [21], and metadata transmission with

the master node. Note that when this is taken into account,

the network transmission could be even higher for a single

computing cluster environment.

We adopt the performance equation (2) for geo-distributed

data centers. Because of the hardware performance gap be-

tween different data centers, Spark can have a significant

performance gap or imbalance for different tasks in the

same stage. Further, the data skew phenomena are typically

found in large-scale enterprise computing clusters with real

production data [22]. Scheduling a heavy task in Spark in

a low-performance node could cause a significant execution

imbalance between different tasks in the same stage.

Based on the analysis above, we can characterize the

features of geo-distributed data centers as follows:

• The hardware performance in different data centers can

have significant differences. For example, because a new

data center may use a newer and better-performing CPU

and memory with larger network bandwidth, the perfor-

mance of Spark in the new data center (DC #4) can save

in practice 30% to 50% execution time compared to the

old data center (DC #3), depending on the application.

• The data source of the applications is usually in a single

data center. Because the volume of the existing data

source is huge, it is very challenging to make a copy

in each data center.

• The total network bandwidth between data centers is

smaller than the total bandwidth within the data center.

With fast fabric interconnection between data centers,

we can afford part of the network transmission in Spark

across geo-distributed data centers.

Long tail problem. In practice, if we have a Spark appli-

cation running in several data centers, the Spark application

could suffer the long tail problem because of hardware hetero-

geneity. As we can see from equation (2), the execution time

Texecution strongly depends on the performance of the CPU.

However, the variability in the CPU performance of servers

in different data centers can be significant. Thus, the long tail

problem can lead to a large waste of computer resources. As a

result, we try to schedule the application within the same geo-

location rather than across geo-distributed data centers, when

possible.

III. EXPERIMENTAL EVALUATION

In this section, we characterize the core services of the data

warehouse application running in the production environment.

Then we use the data warehouse application workloads to

evaluate the performance of the system, locally and with a

configuration that uses remote resources.

A. Characterizing data warehouse applications

Data warehouse applications provide data services to var-

ious businesses, which include user information, order infor-

mation, shipping information, storage information, etc. In the

time scale, the core service of the data warehouse processes all

historical data and provides the data for second-day services.

In JD, hundreds of PBs of data are stored in an HDFS cluster,

and the data warehouse service has to process about a PB

of data every day. For large-scale warehouse applications,

tens and even hundreds of data requests are fetched from the

distributed file system, and tens of TBs of shuffle data are

generated during runtime. Thus, the computing cluster has to

provide a large volume of computing resources to allow Spark

to provide a reasonable performance.

The services in the enterprise generate an incredibly large

volume of data every day. Therefore, the data is stored in a

high-compression format to save storage space. Furthermore,

there are thousands of input tables, and some of the appli-

cations are dependent, so the whole warehouse chain can be

divided into seven layers. Figure 5 shows the dependency

relationship of the warehouse applications.
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Fig. 5. Dependency relationship between the services of the data warehouse
use case. This dependency graph has 435 warehouse applications (143 core
data warehouse applications), including basic data movement and a data
checker, among others
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Fig. 5 shows the relationship between all warehouse ap-

plications, including data processing, data movement, data

scanning, etc. In the experimental evaluation, we selected the

core services of the data warehouse as the target workloads.

The core services of the data warehouse involve a large

number of applications, and the data warehouse applications

involve a large volume of data that varies in size. Figure 6

shows the input, output, and shuffle(r/w) size of 20 (out of 143)

data warehouse applications from the enterprise production

environment.

We observe that the core data service of the data warehouse

has the following requirements and characteristics:

• High-performance requirements. Because the data service

provides data support for other services, the service must

be finished as soon as possible.

• Large volume of data with a high-compression format.

With the incredible increasing volume of data, high-

compression formats can help distributed file systems

provide sufficient storage space.

• Large number of applications with several dependent

layers. The data warehouse application has pre-requested

data warehouse applications in the data pipeline. Thus,

the data warehouse application in the next layer cannot

start before all applications from the previous layer have

finished.

• The input data varies in size. The input data size of

the warehouse applications can be significantly diverse,

which can cause a big imbalance in the required comput-

ing resources.

Resource limitation in Spark applications Currently, the

core service of the data warehouse runs on a computing cluster

with about 3,700 compute nodes, and includes 143 Spark

SQL applications. However, it is hard for each data warehouse

application to obtain sufficient computing resources on time,

especially applications that require a large volume of data

(i.e., require more computing resources to deliver a reasonable

performance). In practice, although we use 1,000 executors,

sometimes, the application can get only about 400 executors

from the computing cluster.

The executor is the minimum computing resource unit,

which is composed of virtual cores and memory, in Spark.

Currently, each unit has the same number of virtual cores and

memory; therefore, we can calculate the number of available

executors for certain application as follows:

Executoravailable = Min(
Memoryavailable
Memoryexecutor

,
V Coreavailable
V Coreexecutor

)

B. Testbed

Our testbed is composed of 294 nodes in a production com-

puting cluster. The servers have two Intel(R) Xeon(R) CPU

E5-2640 v2 @ 2.00GHz processors, and the configuration used

in this work includes 256 GB DRAM, and 40 GbE network

connectivity between each server. We configure the big data

framework, container management system, local distributed

file system as the baseline with the same configuration as

with the remote distributed file system. Spark version 2.3 was

deployed using Kubernetes version 1.10, CentOS version 7.5

and HDFS version 2.7. We reserve one core (3.1%) and 2 GB

(0.8%) memory for Kubernetes, and three cores (9.4%) and 9

GB (3.5%) memory for the operating system.

C. Workloads

As we discussed in section II, our target is building an

elastic computing pool with individual computing clusters.

However, in the geo-distributed environment, the location of

data storage could be different than the computing resources.

We decide to place the Spark application in different data cen-

ters without considering data location based on two reasons:

(1) It is hard for engineering to predict the available computing

resource in data centers, and (2) most of the existing data

is located on the single data center. Thus, it is important

for us to find a way to use spare geo-distributed computing

resource efficiently. Based on this condition, we evaluate the

performance of Spark with remote HDFS and local HDFS.

Finally, we use two deployed HDFS systems on data centers

#3 and #4, individually.

To evaluate the performance gap between the local data

source and remote data source, we select six (typical) ware-

house applications from the core service of the data warehouse

as shown in table II. We use the input data from production

HDFS as standard data. Further, table II shows the input

and output size of warehouse applications. Since we need to

meet SLA (Service Level Agreement) requirements, we use

the most performant configuration for warehouse applications.

Thus, we allocate enough memory resource to every executor.

The number of cores in each executor is based on the best

practices in production environments, which can fully use the

I/O throughput for both JVM and disk in the same executor.

Furthermore, to evaluate the different type of warehouse appli-

cations, we choose different types of applications from the core

service of data warehouse, including (1) compute-intensive

application: CPU bound application, (2) shuffle intensive ap-

plication: Spark write and read shuffle data into local disk

[23], thus shuffle intensive application is network and disk

I/O intensive application, and (3) I/O intensive application:

disk I/O bound application.

D. Experimental results

We use Spark with local HDFS as a performance baseline.

Then we evaluate the performance of Spark with remote

HDFS, which has a separate storage cluster and computing

cluster. For each test, we run it five times and use the average

execution time as a reference for the performance of the

warehouse applications using Spark with local HDFS and

Spark with remote HDFS.

Fig. 7 shows the normalized execution time of the ware-

house applications. We can observe that the execution time

of Spark with the local data source and with the remote data

source is almost the same.

In a real production environment, to ensure that the exe-

cution time for the data warehouse core services is within
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Fig. 6. Input, output and shuffle size of core warehouse applications (20 out of 143)

TABLE II
CHARACTERIZATION AND CONFIGURATION OF WAREHOUSE APPLICATIONS

Application index Input Size (GB) Output Size (GB) Shuffle Size (GB) Number of Executors Executor Memory (GB) Executor Cores
#1 795 2.6 1.00 1000 20 5
#2 165 309 110 1000 20 5
#3 1843 421 2031 1250 24 5
#4 2.85 2.92 2.44 1 20 5
#5 15.1 4.6 7.4 300 20 5
#6 2666 16 3714 1000 20 5

Fig. 7. Normalized execution time of Spark with local HDFS and remote
HDFS (with respect to the execution time of Spark with local HDFS)

the SLA constraints, we have to suspend all requests from

other queues until the core service has finished. The main

reason is that the computing resources in the same geo-

location are not enough for such a large service. Thus, we

want to harvest the spare computing resource from other data

centers. Furthermore, existing research has explored pre-data

movement methods based on computing resource prediction.

However, because of the growth of and change in existing

workloads, the pre-data movement is very challenging to

implement in practice. Currently, it is also hard for us to

transmit the required data to remote computing clusters based

on the computing resource availability before runtime. Thus,

transmitting runtime data across data centers is an efficient

way to reduce the burden of computing resource utilization in

a single computing cluster.

Because we cannot experiment with the performance and

resource utilization of the core service of a data warehouse

with four data centers, we implement a simulator to reproduce

the performance and resource utilization of this system across

four geo-distributed data centers. We simulate the execution

time for the core services of the data warehouse, and the CPU

and memory utilization for four geo-distributed data centers.

In this simulation, based on the existing production en-

vironments, we assume that we have one storage cluster in

data center 1, and an elastic computing cluster across four

different geo-distributed data centers. The performance of a

single node in the computing clusters of the various data

centers differs. However, to simplify the model, we assume

that different computing clusters in different data centers have

similar performances.
Data Source: To simulate the overall performance of the

elastic computing cluster with the warehouse applications, we

use the workloads of the core warehouse applications as shown

in Fig. 7. We profile the core utilization, memory utilization,

and running time of 143 core warehouse applications in a

production environment. The simulation scheduler policy is

described as follows:
We mark the co-located computing cluster, which has the

same geo-location as a storage cluster, as the highest priority

in the scheduling algorithm. It tries to assign applications

to cluster 1. Once computing cluster 1 cannot offer enough

computing resources to the application, the scheduler assigns

remote computing clusters to the application following a

round-robin policy. The scheduler then checks the available

computing resources in each remote computing cluster before

assigning one. Next, the scheduler places the application in the

computer cluster that has more available computing resources

in different data centers. Further, we divide the core service of

the data warehouse into seven layers based on the dependency

relationship of their services. Thus, the scheduler cannot start

a data warehouse application without finishing the prerequisite

data warehouse applications first. Furthermore, we assume that

each computing cluster has 10,000 CPU cores with 53 TB

of memory. Figure III shows the execution time of the data

warehouse core service within a single data center, and with

harvesting spare computing resources across geo-distributed

data centers, based on the approach described above.
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Algorithm 1: Task scheduler policy.

1 Function Storage Device Priority ;
Input : APPpool, Appindex, Appprerequest, Appcores,

Appmemory , Apptime, Clusterindex,
Clusterindex cores, Clustersindex memory

Output: Texecution

1: start time;
2: while APPpool is not empty do
3: for i = 1; i <= Appindex; i++ do
4: if Appprerequest == true then
5: if Appcores >= Cluster1 cores&Appcores >=

Cluster1 memory then
6: Assign Application into cluster 1;
7: else if FindMax(Cluster2−4) then
8: if

Appcores >= Clusterindex cores&Appmemory >=
Clusterindex memory then

9: Assign Application into cluster index;
10: end if
11: else
12: No cluster available;
13: end if
14: end if
15: end for
16: end while
17: end time;

return (Texecution);

TABLE III
EXECUTION TIME OF CORE SERVICE OF DATA WAREHOUSE

Scenario Computing cluster execution time (s)
#1 #1 8,408
#2 #1,#2 5,908
#3 #1,#2,#3 5,272
#4 #1,#2,#3,#4 5,272

IV. CONCLUSION AND FUTURE WORK

In this paper, we characterized the computing resource

utilization of four different geo-distributed computing clusters.

Then we introduced the use of fast fabric interconnections

across the geo-distributed data centers. We explored the po-

tential deployment with these data centers. Then, we evaluated

the performance of the system based on Spark, HDFS, and

Kubenetes in a production enterprise environment. Based on

the results, we explored the potential of using fast fabric

interconnection to harvest spare computing resources across

geo-distributed data centers. We built a simulation based on

a data warehouse core service, and then we verified that we

could build an elastic computing cluster across geo-distributed

data centers, which can speed up large data warehouse enter-

prise services. Our future work includes exploring in-memory

distributed file systems, such as Alluxio, for supporting elastic

computing clusters across geo-distributed data centers, and

exploring co-design aspects related to Big Data frameworks

and next-generation network interconnections.

ACKNOWLEDGEMENTS

We thank JD cloud engineers for their support of this

project. This work is supported in part by National Science

Foundation via grants OAC 1640834, OAC 1835692, OAC

1826997, and OCE 1745246.

REFERENCES

[1] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a computer:
An introduction to the design of warehouse-scale machines,” Synthesis
lectures on computer architecture, vol. 8, no. 3, pp. 1–154, 2013.

[2] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: research problems in data center networks,” ACM SIGCOMM
computer communication review, vol. 39, no. 1, pp. 68–73, 2008.

[3] I. Cano, M. Weimer, D. Mahajan, C. Curino, and G. M. Fu-
marola, “Towards geo-distributed machine learning,” arXiv preprint
arXiv:1603.09035, 2016.

[4] A. C. Zhou, Y. Gong, B. He, and J. Zhai, “Efficient process mapping in
geo-distributed cloud data centers,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. ACM, 2017, p. 16.

[5] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling jobs across geo-
distributed datacenters,” in Proceedings of the Sixth ACM Symposium
on Cloud Computing. ACM, 2015, pp. 111–124.

[6] A. Rajabi, H. R. Faragardi, and T. Nolte, “An efficient scheduling
of hpc applications on geographically distributed cloud data centers,”
in International Symposium on Computer Networks and Distributed
Systems. Springer, 2013, pp. 155–167.

[7] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “Clarinet: Wan-
aware optimization for analytics queries.” in OSDI, vol. 16, 2016, pp.
435–450.

[8] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Tenth European Conference on Computer Systems. ACM, 2015, p. 18.

[9] Y. Zhang, G. Prekas, G. M. Fumarola, M. Fontoura, Í. Goiri, and
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