COMET: Distributed Metadata Service for
Multi-cloud Experiments

Komal Thareja, Cong Wang, Paul Ruth, Anirban Mandal, Ilya Baldin, Michael Stealey
Renaissance Computing Institute (RENCI)
{kthare10, cwang, pruth, anirban, ibaldin, stealey}@renci.org

Abstract—A majority of today’s cloud services are indepen-
dently operated by individual cloud service providers. In this
approach, the locations of cloud resources are strictly constrained
by the distribution of cloud service providers’ sites. As the pop-
ularity and scale of cloud services increase, we believe this tra-
ditional paradigm is about to change toward further federated
services, a.k.a., multi-cloud, due to the improved performance,
reduced cost of compute, storage and network resources, as well
as increased user demands. In this paper, we present COMET, a
lightweight, distributed storage system for managing metadata on
large scale, federated cloud infrastructure providers, end users,
and their applications (e.g. HTCondor Cluster or Hadoop Clus-
ter). We showcase use case from NSF’s, Chameleon, ExoGENI
and JetStream research cloud testbeds to show the effectiveness
of COMET design and deployment.

I. INTRODUCTION

The emergence of cloud computing has substantially
affected how scientists and engineers think about Internet
architecture. Cloud computing provides a shared pool of
re-configurable computing resources, such as computing
servers, storage, application engines, or network links that
can be deployed and destroyed based on user needs.

This provides great flexibility for a wide spectrum of
users to rapidly obtain resources from a few “Internet-scale”
providers like Google, Microsoft and Amazon, whose
resources are concentrated in a relatively small number of
data centers strategically located around the globe. However,
today’s cloud application developers can only enjoy the
conveniences from these cloud providers when they deploy
applications on a specific cloud. There are significant
difficulties for developers to develop, automate and manage
distributed applications spanning multiple clouds. We believe
this traditional, individually managed cloud architectural
pendulum is about to change towards the direction of open,
unified services. This change motivates researchers to rethink
today’s centralized network-cloud architecture as a widely
distributed multi-provider, a.k.a.,multi-cloud, marketplace
that allows end-users to choose providers based on cost,
distance, jurisdiction, capabilities, and specific tasks they
need to perform within their application stacks. This paper
focuses on metadata management services for a multi-cloud
architecture. Metadata services store information about
compute, networking, or storage resources provisioned for
the tenants, such as host names, public keys, list of IP and
MAC addresses, instance status, network VLAN tags, etc.

U.S. Government work not protected by U.S. copyright

/ COMET Service \

¥ -
7 Cloud Service =~
/ 3
Provider 1 {COMET Service i \ } Domain }
e | ST 1
I N - =
| i : : ‘
S L, i : ]
< | || H ] )
I
| i

Vi REST API

N

____________ Token
Exchange

Key
Exchange

COMET Logic

Backend (Accumulo)

Figure 1. COMET Metadata service architecture

Many public and private cloud implementations include
metadata services, such as AWS metadata service [1],
OpenStack metadata service [2] or AWS SSM [3], which
are essential for bootstrapping the tenant software stacks. A
major drawback is that, the current metadata services are
constrained to a specific cloud provider domain or tied to
a specific provider authorization infrastructure. To launch
applications (e.g. HTCondor or Hadoop Cluster) across
multiple cloud domains, the tenants must be able to post and
retrieve metadata from resources deployed across multiple
cloud providers in a secure way.

In this paper, we propose a lightweight metadata man-
agement framework—COMET [4]—to support distributed,
key-value oriented metadata for both the cloud infras-
tructures and user applications. We also demonstrate
the use cases of COMET. The COMET Service [5] is
currently hosted at RENCI and accessible from Headnode
(comet-hnl.exogeni.net) and used by the DyNamo
Mobius [6] platform and ExoGENI users.

II. DESIGN

COMET is designed to provide a global, universal metadata
service that stores data from any node that was created by
one or more cloud orchestration services. Fig. 1 depicts the
COMET structure for two cases: COMET can be deployed
inside a single cloud service (Cloud Service Provider 1); it can
also be deployed on a third-party service domain to coordinate
multiple cloud services. COMET is RESTful and stateless,
which makes it scale up well.

III. DATA SECURITY

The COMET entry structure is depicted in Table I
COMET extends Accumulo by storing a serialized object as
Accumulo’s value entry. The object contains the WriteToken,
which allows the client to perform write or delete operations

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 02,2020 at 20:50:12 UTC from IEEE Xplore. Restrictions apply.



Table 1
COMET TABLE SCHEMA

Key
Row ID Column Time
Stamp
Family ‘ Qualifier | Read Token
Value
: Write Context COMET Delete
itDeleted Token Value Version TS

only if the correct token is presented. ifDeleted keeps track
of deleted entries: when a metadata entry is deleted, COMET
flags the data as "deleted" and keep records of deletion
timestamps for debugging purposes.

COMET provides two level data security. First, it verifies
a client’s SSL certificate to ensure that the data entries are
created only by the applications or users presenting a certifi-
cate that is signed by a Trusted Authority. Second, it uses a
combination of read and write tokens to ensure each data entry
is managed by the right user.

IV. Wany COMET?

Without a global meta data service like COMET, automatic
deployment and configuration of applications like Hadoop
cluster or HT Condor cluster across multiple clouds requires
either manual intervention or complex scripting. We describe
the problem with the example of HT Condor Cluster(used by
DyNamo [6]) configuration below.

HT Condor cluster has 3 kinds of nodes - master, submit
and worker nodes. A user requires the following information
to configure a condor cluster:

o Master node’s hostname - must be shared with submit

and worker nodes

o Exchange public keys for root user (assuming condor is

running as root) between all nodes

o Specify the network subnet in condor config file on each

node

o Every node in the cluster must know hostname and IP

address of rest of the nodes in the cluster

e Add or Delete the newly added/deleted nodes in

/etc/hosts file and authorized keys

COMET provides an easy, secure and extensible mechanism
to automate deployment and configuration of applications like
HT Condor Cluster across multiple clouds.

V. EXPERIMENTAL USE CASE

COMET is used by the Mobius [7] platform in DyNamo [6]
as depicted in Fig. 2 to spawn a HTCondor cluster across
ExoGENI, Chameleon Cloud and JetStream testbeds. All the
resources within a cluster are identified as workflow. A user
or experimenter could add or delete resources dynamically to
a workflow. Mobius has a Python based provisioning client,
which provisions resources on various clouds for a workflow.
It also creates a context in COMET protected by read and write
tokens via a COMET client [8]. It creates two entries shown

below within the context for each Compute Node. Read and
Write tokens are passed to each Compute Node. All compute
nodes share same read token but have individual write tokens.
o "family": "hostsall", "key": "hostname", "value": ""
o "family": "pubkeysall", "key": "hostname", "value":
Each of the Compute Node has a HostKey Daemon [9]
running on it. The HostKey Daemon does the following using
the COMET Client:
o Pushes nodes’s IP address and Public Key to the COMET
in hostsall and pubkeysall family respectively
o Periodically pulls all the entries from hostsall family and
updates nodes’s /etc/hosts to reflect the current clus-
ter topology
« Periodically pulls all the entries from pubkeysall family
and updates nodes’s authorized keys
COMET makes the exchange of host names, IP addresses
and public keys seamless and enables easy automation of the
HT Condor Cluster configuration.

(\,\QmeIeOn

Comet Service

W Accumulo Backend

Jetstream

HostKey Daemon

€xoGENI

Figure 2. Hostname and public key sharing across CI via COMET.

VI. CONCLUSIONS

In this paper, we discussed the COMET metadata manage-
ment service that focuses on security and flexibility for multi-
cloud applications. We discussed the design, implementation
and experimental use of such a service by DyNamo to auto-
mate configuration of applications running across ClIs.

REFERENCES

[1] AWS Metadata Service, https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/ec2-instance-metadata.html.

[2] OpenStack Metadata Service, https://docs.openstack.org/nova/latest/user/
metadata-service.html.

[3] AWS SSM Service, https://docs.aws.amazon.com/systems-manager/
latest/userguide/ssm-agent.html.

[4] C. Wang, K. Thareja, M. Stealey, P. Ruth, and I. Baldin, “Comet:
A distributed metadata service for federated cloud infrastructures,” in
High Performance Extreme Computing Conference (HPEC), Sep 2019,
to appear.

[5] COMET github
COMET-Accumulo.

[6] E. Lyons, G. Papadimitriou, C. Wang, K. Thareja, P. Ruth, J. Villalobos,
I. Rodero, E. Deelman, M. Zink, and A. Mandal, “Toward a dynamic
network-centric distributed cloud platform for scientific workflows: A
case study for adaptive weather sensing,” in /5th IEEE eScience Con-
ference, 2019, to appear.

[7] Mobius github repository, https://github.com/RENCI-NRIG/Mobius.

[8] COMET Client github repository, https:/github.com/RENCI-NRIG/
COMET-Client.

[9] Host-Key Daemon github repository, https://github.com/RENCI-NRIG/
host-key-tools.

repository, https://github.com/RENCI-NRIG/

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 02,2020 at 20:50:12 UTC from IEEE Xplore. Restrictions apply.



