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Using highly improved staggered quark (HISQ) Ny =2+ 1 + 1 MILC ensembles with five different
values of the lattice spacing, including four ensembles with physical quark masses, we perform the most
precise computation to date of the K — w#£v vector form factor at zero momentum transfer,
&= 0) = 0.9696(15) 44 (12)ys- This is the first calculation that includes the dominant finite-volume
effects, as calculated in chiral perturbation theory at next-to-leading order. Our result for the form factor
provides a direct determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element
[Vis| = 0.22333(44) ¢ )(42)yp» With a theory error that is, for the first time, at the same level as the
experimental error. The uncertainty of the semileptonic determination is now similar to that from leptonic
decays and the ratio f g+ /f,+, which uses |V,4| as input. Our value of |V | is in tension at the 2-2.6¢ level
both with the determinations from leptonic decays and with the unitarity of the CKM matrix. In the test of
CKM unitarity in the first row, the current limiting factor is the error in |V, 4|, although a recent determination

of the nucleus-independent radiative corrections to superallowed nuclear 8 decays could reduce the |V,,|?
|2

exp’

uncertainty nearly to that of |V ,|*. Alternative unitarity tests using only kaon decays, for which improvements
in the theory and experimental inputs are likely in the next few years, reveal similar tensions and could be
further improved by taking correlations between the theory inputs. As part of our analysis, we calculated the
correction to £X7(0) due to nonequilibrated topological charge at leading order in chiral perturbation theory,
for both the full-QCD and the partially quenched cases. We also obtain the combination of low-energy
constants in the chiral effective Lagrangian [C}, + C5, — (L5)*](M,) = (292 £0.31) x 1075
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I. INTRODUCTION

High-precision tests of the unitarity of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, as predicted by the
Standard Model (SM), are at the forefront of the current
flavor physics program. Any violation of the unitarity of the
CKM matrix, which describes flavor-changing interactions,
would be evidence of the existence of physics beyond the
Standard Model (BSM).

In particular, first-row unitarity, which requires that

(1.1)

vanish, is currently the most precisely tested condition.
Even in the absence of deviations, high-precision determi-
nations of the CKM matrix elements involved in the test in
Eq. (1.1) put important constraints on the scale of the
allowed new physics [1].

At the current level of precision one can neglect |V, |? in
Eq. (1.1). Of the other two CKM matrix elements involved,
|V 4| is precisely determined from superallowed nuclear
decays [2]. It can also be extracted from measurements of
the neutron lifetime [3] and pion f decay [4], albeit with
much larger errors [5]. Improved experimental measure-
ments of these processes would be interesting because they
are theoretically cleaner.

The best determinations of |V | are from kaon decays
[6]. The extraction of |V,,| from semileptonic kaon (K 3)
decay requires knowledge of the form factor at zero
momentum transfer, f57(0), which is still the largest source
of uncertainty on |V,|. On the experimental side, it is
expected that the ongoing and forthcoming experiments
(NA62, OKA, KLOE-2, LHCb and TREK E36) could
reduce the experimental error to ~0.12% within 5 years [7].
Reducing the theoretical error in the vector form-factor
calculation is therefore a crucial task: it is this task that we
take up in this paper.

Determinations of |V,| from leptonic kaon and pion
decays (K, and 7,,), combined with fx/f, from lattice
QCD, currently have somewhat smaller errors than those
from K 3. The total error in |V,| from leptonic decays is
0.25% [8-16], while from semileptonic decays it is 0.34%
[6]. These leptonic determinations are indirect, however,
because they require an external input for |V,,|, namely
Ref. [2]. The direct extraction of |V,| from only kaon
leptonic decays using fx as nonperturbative input gives
a larger error of 0.46%."

Currently, the value of |V | obtained from leptonic kaon
decay is ~2¢ larger than the value from semileptonic kaon
decay [16]. The leptonic decay is mediated by the axial-
vector current while the semileptonic decay by the vector
current. According to the SM, both approaches should give

Au = |Vud|2 + |Vux|2 + ‘Vub|2 -1

"This error is based on the N s =2+ 1 FLAG average for fg
[6], which includes only calculations which do not use f,, and
thus |V,,], to set the lattice scale [10,13,15].

the same |V |, because the W boson current has a V — A
structure. Thus, any significant difference should be care-
fully analyzed.

In addition, if |V | is taken from Ref. [2], the leptonic
value of |V, is consistent with unitarity, Eq. (1.1), but the
semileptonic value of |V | leads to a ~2¢ disagreement
with unitarity. As we were finishing this work, a paper
appeared with a new calculation of the nucleus-independent
electroweak radiative corrections involved in the extraction
of |V,4| from superallowed f decays with a new approach
based on dispersion relations [17]. If this calculation is
confirmed, the resulting value of |V ,,| would increase the
present tension with unitarity. Investigating the origin of
these tensions and performing even more stringent tests is
crucial for the internal consistency of the Standard Model.
It is thus necessary to reduce the error on both the
experimental and the lattice-QCD inputs entering determi-
nations of |V /.

In this paper, we focus on semileptonic kaon decay. The
(photon-inclusive) decay rate for K° can be written [18]

D(K® —» 770 w,(y))
_ Gimy
12848

0~ 0 07~
Sewl Vs 57 ()1, (1+ 6 + 8575,

(1.2)

where G is the Fermi constant as determined by muon
decay, Sgw = 1.0232(3) is the universal short-distance
5?0) , is a phase-space
integral which depends on the shape of the f f}’)ﬁ (¢*) form
factors given in Eq. (1.4) below. The long-distance electro-
magnetic corrections are parametrized by (ng . The strong
isospin-breaking parameter 5%(2) is defined as a correction

electroweak correction [19—21],2 and [

with respect to the K° decay:

. fKﬂ(O) 2
5§<U = 5 -1,

P

(1.3)

so that 5?&’([2) =0. The KT
I'(K* — 2°%*v,(y)), can be obtained by multiplying the
right-hand side of Eq. (1.2) with the Clebsch-Gordan

coefficient C%. =1/2 and replacing I;?O) P 8K, and

5§8’6) with the analogous IE?Z , oK, and 5&}(”20). The
long-distance electromagnetic corrections, which are
mode dependent, were calculated to O(e?p?) in
Ref. [22] and are incorporated into the experimental
average for |V, ffo”f(O), adding a 0.11% uncertainty to
the experimental errors.

decay  rate,

*This value of Skw 1s from Ref. [21]. We use it because it is the
value used for the experimental average in Ref. [7].
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The input needed from lattice QCD in Eq. (1.2) is
the vector form factor at zero momentum transfer,

K" (g% = 0), defined by

(r|VHIK?) = 57 () [Pl + Pl + X7 (4Pl — Pi]
i} mi — m2
=I5 | Pk + ph ==
) m% — m>2
K7 () = q". (1.4)

where V¥ = sy*u and g = px — Py
The most precise value for fK ™ (¢* =0) to date is
provided by the Ny =2+ 1+ 1 Fermilab Lattice/MILC

calculation in Refs. [23,24], "7 (0) = 0.9704(£0.33%).
More recent lattice-QCD calculations by the RBC/UKQCD
(Nyp=2+1) [25] and ETMC (N;=2+1+1) [26]
collaborations agree very well with the Fermilab Lattice/
MILC central value but with larger errors. Earlier Ny =
2 41 calculations with unphysically heavy pions by the
Fermilab Lattice/MILC [27] and RBC/UKQCD [28,29]
collaborations, as well as the more recent JLQCD calcu-
lation in Ref. [30], yielded smaller values for fX7(0),
but with larger errors. With the exception of the
earliest calculation [29], these Ny =2+ 1 results are
compatible with the newer N, =2+ 1+ 1 ones. For
comparison, the average of the relevant experimental input
[7], |Vm,|f§0”_ (0) =0.21654(41), has a 0.19% error. This
average includes the strong isospin and electromagnetic
corrections in Eq. (1.2) for each decay mode.

In this work we reduce the main sources of uncertainty in
our previous calculation of fX* (4% = 0) to reach a total
error of 0.19%, obtaining the most precise calculation to date,
and matching the current experimental uncertainty, for the
first time. The main improvements over our previous
calculation [23,24] are increased statistics in some key
ensembles, the addition of a new (smaller) lattice spacing,
and the correction of finite-volume effects at next-to-leading
order (NLO) in chiral perturbation theory (ChPT).
Preliminary results were presented in Refs. [31,32].

There are other ways to determine |V,,|. Semileptonic
hyperon decays unfortunately lack sufficiently precise
knowledge of the SU(3)-breaking corrections, which pre-
cludes a competitive determination. A conservative esti-
mate of such effects yields an uncertainty of ~2% [33].
Inclusive hadronic 7 decays have, in the past, yielded values
of |V,,| smaller than the semileptonic kaon determination
and, thus, were in even more disagreement with unitarity
[34]. A more recent analysis [35] uses lattice QCD to
compute dimension-larger-than-4 condensates and, more
importantly, employs a dispersive technique to obtain the
Kr branching fractions. It points to an inclusive-z value
of |V, compatible with unitarity [35], although it still
remains on the low side. An even more promising approach

also based on inclusive strange hadronic 7 decay data is
presented in Ref. [36]. Its basic ingredients are replacing
the operator-product expansion in the relevant sum rules by
lattice hadronic vacuum polarization functions and opti-
mizing the weight functions to suppress contributions from
the high-energy region, where the experimental data have
poor precision. Preliminary results in Ref. [36] are com-
patible with both semileptonic and leptonic determinations
(and thus with unitarity), but have larger errors than either.
Because the total errors on |V,| in Refs. [35-37] are
dominated by experimental uncertainties, it is expected that
these determinations will be significantly improved with
new data from the Belle II experiment [38]. Determinations
of |V,| from exclusive 7 decays, which use the same
nonperturbative inputs as the leptonic kaon decay deter-
minations, namely fg+ and fg-/f,+, are still in tension
with unitarity [39], but this could also change with future
experimental measurements.

This paper is organized as follows. In Sec. Il we describe
the methodology of the numerical lattice-QCD simulations
and the details of the ensembles, actions, and correlation
functions used. Section III shows how, following the ChPT
approaches of Refs. [40] and [41], one can correct for
leading-order finite-volume effects and for the effects of
nonequilibrated topological charge on the ensemble with
finest lattice spacing (a = 0.042 fm), respectively. We
discuss the joint chiral interpolation and continuum
extrapolation of our data to the physical point in
Sec. IV. Section V analyzes the statistical and systematic
uncertainties. Final results for the form factor f fo”f, as well
as for the relevant O(p®) low-energy constants, are pre-
sented in Sec. VI. In Sec. VII, we use our form-factor result
to extract a value of |V | from kaon semileptonic exper-
imental data and discuss the implications of this value for
phenomenology. Finally, we present our conclusions and
the prospects for further improvement in Sec. VIII.

II. LATTICE SETUP AND ANALYSIS

The methodology in this work largely follows that of our
previous work in Refs. [23,24,27]. The approach, pio-
neered by HPQCD [42], is based on the Ward-Takahashi
identity relating the matrix elements of a vector current to
that of the corresponding scalar density:

g (x| VI IK)Zy = (my = m,) (7| S9K)Zs,  (2.1)
with Zy and Zg the lattice renormalization factors for the
vector current and scalar density, respectively, where the
scalar density is defined as the product of the scalar current
and the quark masses (m, — m, ). Working with staggered
fermions, and choosing V}f“ to be the partially conserved,
taste singlet, vector current, and Slat o be its divergence, we
have Z, = Zg=1. Thus, S™ is a local, taste-singlet
density, with the same flavor content as the vector current,
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TABLE L

Parameters of the Ny =2 + 1 + 1 gauge-field ensembles used in this work, and details of the correlation functions

generated. A dagger at the end of a row indicates an ensemble that is new since our work in Ref. [23]; an asterisk indicates that the
statistics have been increased. N, is the number of configurations included in the analysis; N, the number of time sources used on
each configuration; and L and L, the spatial and temporal sizes of the lattice, respectively. The column labeled 7 lists the source-sink
separations for the three-point functions generated on each ensemble. The m, values are in MeV, with m, p the Goldstone (pseudoscalar

taste) 7 mass, and mRMS

is used solely for the study of finite-volume effects.

the root-mean-squared (over all tastes) z mass. The ensemble with a = 0.12 fm, m;/m; = 0.1 and m, pL = 3.2

Na(fm) n/ll/'niea mn,PL L3 X Lr Nconf X Nsrc T amiea aml{al mgy p mEMS
0.15 0.035 3.2 323 x 48 1000 x 4 12,13,15,16,17,18 0.0647 0.069 05 130 314
0.12 0.2 4.5 243 x 64 1053 x 8 15,18,20,21,22 0.0509  0.0535 299 364
0.1 3.2 243 x 64 1020 x 8 15,18,20,21,22 0.0507 0.053 221 303 T
0.1 4.3 323 x 64 993 x 4 15,18,20,21,22 0.0507  0.053 216 299
0.1 5.4 403 x 64 1029 x 8 15,18,20,21,22 0.0507 0.053 214 298 *
0.035 3.9 483 x 64 945 x 8 15,18,20,21,22 0.0507 0.0531 133 246
0.09 0.2 4.5 323 x 96 773 x 4 23,27,32,33,34 0.037 0.038 301 323
0.1 4.7 483 x 96 853 x 4 23,27,32,33,34 0.0363 0.038 215 221
0.035 3.7 64% x 96 950 x 8 23,27,32,33,34 0.0363 0.0363 130 176 *
0.06 0.2 4.5 483 x 144 1000 x 8 34,41,48,49,50 0.024 0.024 304 308 *
0.035 3.7 96° x 192 692 x 6 31,39,40,48,49 0.022 0.022 135 144 T
0.042 0.2 4.3 64% x 192 432 x 12 40,52,53,64,65 0.0158 0.0158 294 296 T

S = su. With the above identity and the definition of the
form factors in Eq. (1.4), one can extract the scalar form
factor f(q?) at any value of the momentum transfer ¢> by
using

m

-m,
= 27n/12<ﬂ'|S|K>q2

87 (%) = g (2.2)

In addition, a kinematic constraint requires /57(0)=f&7(0),
so this relation can be employed to calculate fX7(0) from
3-point correlation functions with a scalar insertion. As
already discussed in our first work [27], the use of a local
scalar density instead of a vector current has two main
advantages: avoiding the use of a renormalization factor and
avoiding the use of noisier correlation functions with either a
nonlocal vector current or external non-Goldstone mes-
ons [42,43].

A. Lattice actions, parameters,
and correlation functions

We perform our calculation on the highly improved
staggered quark (HISQ) Ny =2+ 1+ 1 MILC configu-
rations [44-46] with sea quarks simulated with the HISQ
action [47]. We also employ the HISQ action for the
valence quarks. We have already seen in our previous work
that the use of the HISQ action greatly reduces discretiza-
tion effects [23,24]. The charm-quark and strange-quark
masses on the Ny =2+ 1+ 1 MILC configurations are
always tuned to values close to the physical ones, while the
light-quark masses vary between 0.2m and m,/27, with
the latter approximately the physical value. In this work, we
include data generated at five different values of the lattice
spacing down to a = 0.042 fm, with sea pion masses

ranging from 319 to 134 MeV. Table I lists the key
parameters of the ensembles analyzed here and the corre-
lation functions calculated on them. The ensembles include
four with physical quark masses and a = 0.15,0.12,0.09,
0.06 fm. Ensembles that are new since our analysis in
Refs. [23,24] are marked with a dagger in the last column;
those where we have increased the statistics are marked
with an asterisk. Table I also lists the pseudoscalar-taste
(physical) pion mass m, p and the root-mean-squared pion
mass mRMS for each ensemble. The difference is a measure
of the dominant discretization effects, which arise from
taste-changing interactions. As expected, they decrease
rapidly as the lattice spacing is reduced. The data included
in this analysis are graphically depicted in Fig. 1.

The structure of the three-point function with a scalar
insertion that we generate to access the matrix element in
Eq. (2.2) is the same as in our previous work [23,24,27].
We generate light quarks at a time slice 7, and extended
strange propagators at a fixed distance T from the source.
For each configuration we have N, time sources placed
at fty. =ty,to+ L;/Nge,to +2L;/Ngc..., where L, is
the temporal length of the lattice. The time #, varies
randomly from configuration to configuration in an interval
[0,L,/Ng.] to reduce autocorrelations. Roughly following
Ref. [48] we use random-wall sources at the pion source
time 7,.. On that spatial time slice, we choose four
stochastic color-vector fields from a Gaussian distribution,
with support on all three colors, and compute light-quark
propagators from each of the four sources. Between the
source and the kaon sink at time 7., + 7', we contract the
extended strange propagator with a light propagator to form
the scalar density. We then study the ¢ dependence to isolate
the desired matrix element.
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FIG. 1. Gauge-field ensembles analyzed in this work (param-
eters of these gauge-field ensembles are listed in Table I). The
area of each disk is proportional to the statistical sample size
Neont X N Ensembles on which we have increased the statistics
or we have added since our earlier work in Ref. [24] are indicated
with black outlines. The three disks with a % 0.12 fm and m, ~
200 MeV correspond to the three ensembles with m;/m{™ = 0.1
and different volumes (smaller to larger from top to bottom) in
Table I. The yellow disk (smallest volume) is not included in the
final analysis but used only to study finite-volume effects.

The light-quark masses are always the same in the sea
and valence sectors, while the sea and valence strange-
quark masses are slightly different in some of the ensem-
bles3; see Table I. Table I also lists the number of
configurations and time sources on each ensemble. We
compute three-point functions as described above for 5 or 6
different values of the source-sink separation 7', listed in
Table I, which correspond to approximately the same
physical distances across ensembles. We include both even
and odd values of 7T to disentangle the effects from
oscillating states in the correlation functions.

We simulate directly at zero momentum transfer, g> ~ 0,
by tuning the external momentum of the pion using
partially twisted boundary conditions. In particular, we tune

. L 2 2\ 2
6. :—\/ (M)
/4 2mg

with 52 the twist angle of the daughter propagator going
from the pion to the current. The rest of the propagators are
generated with periodic boundary conditions, the same as
in the sea sector. We always have diagonal twist angles,

(2.3)

JAt the time the analysis began, the physical value of am, on
those ensembles had been determined more accurately than when
the ensembles were generated. We used the more accurate values
for the valence strange-quark mass to be closer to the physical
point.

TABLE II. Twisting angles and external momenta injected in
sea

the three-point functions. The quark masses am; and ami** are
the same as in Table I, and 52 is the twisting angle for the light
daughter propagator in the pion, defined in Eq. (2.3). The
superscript P in the pion masses refers to the pseudoscalar taste.

0.25 ~ a(fm) my/ms? m, pL ‘§2| lapp]
0.15 0.035 3.2 1.80966 0.17766
0.12 0.2 4.5 0.84749 0.11094
0.1 3.2 0.98192 0.12853
0.1 4.3 1.30923 0.12853
0.1 5.4 1.63653 0.12853
0.035 3.9 2.16464 0.14168
0.09 0.2 4.5 0.82675 0.08117
0.1 4.7 1.45024 0.09492
0.035 3.7 2.08413 0.10230
0.06 0.2 4.5 0.81673 0.05345
0.035 3.7 2.01756 0.06602
0.042 0.2 4.3 0.78006 0.03829

6> = |6,|(1.1,1)/1/3, which turn out to give smaller finite-
volume effects than twisting in only one direction [40]. The
values of |52| for each ensemble, as well as the correspond-
ing momentum of the pion, are given in Table II.

For each ensemble, we generate zero-momentum two-
point 7 and K correlation functions and two-point z
correlation functions with external momentum given by

the twist angle 52, defined in Eq. (2.3). These correlators
are given by

_ 1 5 5t =
o) =3 SO 1+ 1) (Ete)). (24)
iy

where the interpolating operator <I>§T (X, 1) creates a meson
P =&, K at time ¢ with momentum p. The random wall
sources automatically implement the sum over X. We also
generate three-point correlation functions with the kaon at
rest:

Cg(p?ﬂ(l_sm ﬁ[{ = 0;t, tye, T)

1 5e=0 - - B
= (O e + TISE NP (b)), (25)

X, ¥.Z

where the pion recoil momentum p,, is either equal to zero
or to the values listed in Table II. The scalar density is a
local taste-singlet.

B. Fit methods and statistical analysis

The fitting strategy we follow to extract the physical
quantities from our correlation functions has already been
discussed in Refs. [27,49]. We fit the two-point correlation
functions for a pseudoscalar meson P to the expression
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=

(_1)m(l+])(Z’}:l)2(e—E7v‘t 4 e_EA”“'(L'_Z)),
0

Cgpt(ﬁl’; [) =

3
Il

(2.6)

using Bayesian techniques. In Eq. (2.6), L, is the temporal
size of the lattice. The oscillating terms with (—1)"(*+1) do
not appear for a zero-momentum z. We fit the three-point
correlation functions to
Cg(p?”(ﬁﬂ’ﬁ[(;h T)
Netp

— Z (—1)’"(“’1)(—1)"(T"+1)Am”(q2)Z’n’12,’f

m,n=0

X (e—E;ft + e—E,':‘(L,—z))(e—E’;((T—t) 4 e—E’,‘((L,—TM)), (2'7)
where the pion and kaon energies and amplitudes, E, E%.,
Z7 and ZK, are the same as those appearing in the two-point
fit functions.

We first fit the two-point functions one by one on each
ensemble and check the stability of the ground state
masses/energies and amplitudes under the choice of fitting
range, t € [fyin, fmax)>» and the number of exponentials
included in the fit function [N, in Eq. (2.6)]. We always
include the same number N of regular and oscillating states
in those fits, i.e., Ney =2N. To evaluate the relative
quality of the fits we use the y?/dof and the Q value
defined in Ref. [50], a quality of fit statistic adapted for fits
with Bayesian priors that is similar to the standard p value
[3]. By construction, Q € [0, 1] with larger Q values
indicating greater compatibility between the data and fit
function given the prior constraints—see Ref. [50] for
details and explicit formulas. In particular, we disregard
any fit with QO <0.1. We also disregard fits with
x%/dof <0.05, since those low y?/dof are generally an
indication of a bad identification of the ground state and the
corresponding fits tend to be unstable with the variation of
I'min» DUmMber of exponentials, and/or bootstrap resampling.

We observe that for most of the choices of time range and
for all ensembles, fits stabilize when including 2 + 2 or
3 + 3 states. From that parameter-scanning procedure, we
select an optimal set of fit parameters for the two-point
functions, with a common t,,;, for all the functions on the
same ensemble. Fixing N =3, the chosen f,;, is the
smallest value for which the ground state parameters for
all relevant two-point functions reach a plateau and, in
addition, for which the fit results (central values, errors, and
quality) are stable under variations of the number of
exponentials and bootstrap resampling. For a fixed #;,,
max 1S chosen, in general, as the value for which fit results
are insensitive to the addition of late-time data for which
statistical errors are larger.

We then use those [fpin, fmax] Tanges to perform a fully
correlated combined Bayesian fit including the two- and

three-point functions needed to extract /57 (0): & two-point
correlation functions with and without momentum; K two-
point correlation functions without momentum; and Ny
three-point correlation functions with ¢? ~ 0, where Ny is
the number of source-sink separations 7 included in the
combined fit. In general, we include three-point functions
only at Ny = 3 or 4 different values of T out of the 5 or 6,
for which we have data. However, the T values included in
the combined fits generally cover most of the available
range, corresponding to a physical range of ~0.5-1.0 fm.
This allows us to resolve excited states while at the same
time including data with good ground state contributions.
We find that the resulting fits are stable under variations of
time range, number of exponentials, and bootstrap resam-
pling. We also find that adding more T values does not
improve the quality (error and stability) of the fits. Table III
lists our parameter choices for the combined three-point
function fits.

In general, we use three-point data in the combined fits
with t € [fin, T — fmin], Where 2., is the value optimized
for the two-point functions. However, on some ensembles,
especially the largest ones, we need to either shorten the
three-point fit range or thin the three-point data in order to
obtain an acceptable fit, as measured by the y?/dof and
Q value. A comparison of fit results to data for the
a =~ 0.09 fm ensemble with physical quark masses, one of
the most relevant in our analysis, is given in Fig. 2. This
is a typical case, the comparisons of the fits and data on
the other ensembles are similar. The figure plots the
rescaled three-point functions, in which the time-
dependent contributions of the kaon and pion ground
states are removed:

TABLE III.  Values of the source-sink separation 7" and #,,;, in
our preferred fits; results for the vector form factor at zero
momentum transfer; and one-loop finite-volume corrections,
AYf,(0) = fY(0) — f2(0), on each ensemble—see Sec. III A
for details of the calculation of AV f_(0). The errors in f(0)
are statistical only. They are generated with a 500-bootstrap
distribution.

za(fm) ’nl/’niea ml[.PL T Tinin

0.15 0.035 32

f+(0)  AYF.(0)
12,16,17 4 0.9744(24) —0.0007

0.12 0.2 45 152122 5 0.9874(24) 0.0002
0.1 32 15,1821 4 0.9830(31) —0.0003
0.1 43 15,1821 4 0.9808(22) —0.0001
0.1 54 15,18,21 4 0.9809(17) —4 x 1073
0.035 3.9 1821,22 6 0.9707(18) —0.0003
0.09 0.2 45 273233 3 0.9868(18) 0.0006
0.1 47 232732 6 0.9807(22) 0.0002
0.035 3.7 232732 8 0.970927) —0.0001
0.06 0.2 45 34414950 8 0.9862(16) 0.0008
0.035 3.7 31,40,49 10 0.9697(33) 0.0005

0042 02 43 40,52,53 12 0.9856(37) 0.0010
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%§§§M’\§/§\§i§§%%
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g

—— Fitted correlator (fit range)
o Fitted correlator
= Correlator data

3pt, normalized

C

x* Idof =0.75

FIG.2. Comparison of data and fit results for the rescaled three-
point functions defined in Eq. (2.8) on the a = 0.09 fm ensemble
with physical quark masses. Green squares are the data points and
orange circles are obtained from the fit posteriors. The fit includes
the three three-point functions shown, with 7 = 23, 27, 32, in the
fit ranges shown by the orange lines. Correlators with 7' = 27, 23
are given a vertical offset, different for each 7', so results for the
three correlators do not lie on top of each other. Errors are
statistical only.

C3pt,rescaled

Cfpj’”(p,,,o t,T)

- ZgZ{)((e‘E?r’ + e_E?z(Lt_t))( —Ex(T=1) 4 o

ES (L, T+t))

(2.8)

In the absence of excited state contributions Csp rescaled
would be time independent. Figure 2 shows the

0.976

0.974

0.972

0.970

£.(0)

0.968

0.966

Nep=3+3

0.964

3 4 5 6 7 8 9

1 1 1 1
10 11 12 13 14
tmin

FIG. 3.

comparison of the rescaled correlation functions included
in the fit (filled green points) with the results from the fit
(open orange circles). We see that the Csp rescalea €Xhibit
plateaus with a mild oscillation that is more pronounced
for the smaller 7 value, but which can be accounted for
almost entirely by the first oscillating state included in the
fit. The agreement between data and the fit is excellent,
especially for the time ranges included in the fit, marked
by the orange lines. For times closer to the source or
the sink, the large errors on the orange points indicate
a substantial contribution from the excited states included
in the fit that the data cannot constrain accurately.
Nevertheless, the falloff of the correlators is well
described by the fit functions.

From the combined fits, we extract the scalar form factor
at zero momentum transfer via

= 24%(0)\/Eymg —2 =L
( ) lrmez _mizr

K

67(0) (2.9)

where A%(0) is the ground state three-point parameter in
Eq. (2.7), the meson masses and energies are the values
extracted from the combined fits and m, and m,; are the
valence strange and light-quark masses simulated.

We check the stability of the combined fit results under
the variation of fit ranges, number of states, and number and
values of source-sink separations included, and choose a
preferred fit for each ensemble so the shift on the central
value with those variations is well under the statistical error,
and the error is also stable. Examples of these stability
studies are shown in Fig. 3. On a few ensembles, the
stability tests lead to slight adjustments of our chosen value
of tin, from the f,;, determined in the two-point only fits

0.976

0.974

0.972

0.970

£.(0)

0.968

0.966

0.964

Nexp

Variation of the fit result for . (0) with #,;, (left panel) and Ny, (right panel) for the ensemble with a ~ 0.09 fm and physical

light-quark masses. The errors are statistical, generated with a 500-bootstrap distribution. The black point on each figure corresponds to

our preferred fit with 7., = 8 and N, =3 + 3.

114509-7



A. BAZAVOV et al.

PHYS. REV. D 99, 114509 (2019)

0.9775+ 1

0.975}

£.(0)

0.9725+

0 1 2 3 4 5 6 7 8 9
Nblock

FIG. 4. Variation of f, (0) with the block size for the ensemble
with a ~0.15 fm and physical quark masses. The errors are
statistical, generated with a 500-bootstrap distribution. The black
point corresponds to our preferred fit with Ny = 4.

discussed above. Our final choices of 7., correspond to
very similar physical distances, approximately 0.6-0.7 fm,
on each ensemble. The number of exponentials is always
chosen to be 3 + 3, since also for these combined fits
adding more exponentials does not change the fit results
and also does not improve fit stability. The parameter
values used in the preferred combined fits are listed in
Table I1I.

We study the effect of autocorrelations by blocking the
data by increasing numbers of successive configurations
and redoing the analysis. We do not see evidence of
significant autocorrelations on all ensembles, but for those
where we do see significant changes in central value and
error, stability is reached with a block size of 4. For
ensembles where we observe significant changes in central
value and error for the form factor with blocking, those
effects stabilize when blocking by 4. An example for the
ensemble with a =~ 0.15 fm and physical quark masses is
given in Fig. 4. Similar results are obtained for the other
ensembles. An alternate estimate of autocorrelation effects
can be obtained by calculating the integrated autocorrela-
tion time. We find that the integrated autocorrelation times
in the two-point correlation functions included in our
analysis are all smaller than 1.4, suggesting that a reason-
able block size would be 3 or less. We thus choose to
account for autocorrelation effects and block the data in all
ensembles by 4. In another test, we construct the covariance
matrix from the correlation matrix obtained with the
unblocked data together with the variances obtained from
the blocked data [46]. Using the same fit setup and
parameter choices as before, we find results that are
essentially the same as those obtained with our preferred
fit method.

0.995 T T T T
0.99+ 1
0.985 1
T o.98f ~
S
= 0975t 1
%—T
0.97 4 a=0.042fm 7
v a=0.06fm
B a=~0.09fm
0.9651 ® a=012fm ]
A a=0.15fm
0.96 . . . .
0.05 0.1 0.15 0.2 0.25

am,; /am™

FIG. 5. Form factor fX'7(0) vs light-quark mass. The data
points are the raw results listed in Table III before applying the
corrections described in Sec. III. Errors shown are statistical only,
obtained from 500 bootstrap resamples. Different symbols and
colors denote different lattice spacings. Data at the same light-
quark mass but different lattice spacing are offset horizontally.
The open orange circle corresponds to the smallest volume
ensemble with a ~ 0.12 fm and m;/m; = 0.1.

In Table III and Fig. 5, we show the raw results for the
vector form factor at zero momentum transfer from the
combined fits described above. The statistical errors shown
in the table and the figure as a function of am;/amt™¥ "
come from 500 bootstrap resamples and range from 0.16%
to 0.38%. The fully correlated covariance matrix is recal-
culated on each bootstrap resample. In the figure, one can
see that for a fixed value of the light-quark mass, m;, the
points with different shapes, which correspond to different
values of the lattice spacing, lie on top of each other, with
the exception of the data point for the 0.15 fm ensemble
with physical quark masses (in the leftmost cluster of
points). This is the only ensemble where we observe
statistically significant discretization effects.

III. FORM-FACTOR CORRECTIONS

Before performing the chiral-continuum fit, we correct
the form-factor results listed in Table III and shown in
Fig. 5 for the leading-order finite-volume effects and the
nonequilibrated topological charge in our finest ensemble.
These corrections are described in the following two
subsections.

A. Finite volume

In this work we use NLO ChPT to correct our form-
factor results for finite-volume effects, whereas in our
previous calculation [23,24] we simply estimated the
associated systematic error from a comparison of the lattice
data at two different spatial volumes, with other parameters
held fixed. The partially twisted boundary conditions used
in our calculation introduce several complications in the
analysis. In particular, an extra form factor £, is required to
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parametrize the weak-current matrix element in finite
volume:
(VK (D) = Fo(py + Pl) + F oty +hye (1)
The three form factors depend on the choice of twisting
angles, as well as the value of g2

We apply the one-loop formulas in Ref. [40] in the
staggered partially twisted partially quenched case to all
ensembles included in our calculation for the choices of
twist angles in Table III. Because we are calculating the
vector form factor at zero momentum transfer via the
relation in Eq. (2.2), and the quantity we obtain at finite
volume on the lattice is (z|S|K) (m; — m;)/(m% — m2), the
FV correction to our results is given by

AVf(0)=fY(0)-f3(0)
_ (my—mg)AY (z|S|K)
(mk)* = (my)?
_ (my—my)(z|S|K)" (A mi — AVm3)

[(mie)? = (mz)?? ’

where the meson masses in the denominators are the ones
from the simulations, and quantities that are second order
in the finite-volume corrections have been neglected. In
Eq. (3.2), the FV correction for a given quantity X, AVX, is
defined as AYX = XV — X*. Notice that, since we extract
the meson masses from correlation functions where all the
propagators have zero momentum, the FV corrections to
the meson masses should be calculated from the formulas
in Ref. [40] with zero twisting angles.

The resulting FV corrections are listed in the last column
of Table III. We find that they are < 0.1% on all ensembles.
Some of the values for AV £, (0) are particularly small due
to the cancellation between the two contributions in
Eq. (3.2). We subtract the AY £, (0) from the finite-volume
/X7 (0) (listed in the next-to-last column in Table III) before
performing the chiral-continuum fit discussed in Sec. IV.

(3.2)

B. Nonequilibrated topological charge

The HISQ N;=2+1+1 MILC simulations with
smallest lattice spacings have reached a regime where
the distribution of the topological charge Q is not properly
sampled [41,51], which affects the physical observables
calculated on those ensembles. The issue is relevant here
for the ensemble with the finest Ilattice spacing,
a ~0.042 fm. On the other hand, the topological charge
is reasonably well equilibrated on the other ensembles,
which have a = 0.06 fm.

In order to correct for this systematic effect, one can use
ChPT to study the Q-dependence of a given observ-
able [41,52,53]. The recent ChPT study in Ref. [41] has
already been applied to the calculation of heavy-light

meson decay constants and masses in Refs. [46,54].
Here, we extend the analysis of Ref. [41] to fX7(0).

The three-point correlation functions relevant for this
study, as well as any meson mass calculated in a finite
volume V and at fixed Q, satisfy [52,53]

(-2 ol o

where B on the right-hand side is the infinite-volume value
of the quantity of interest averaged over Q; B” is its second
derivative with respect to the vacuum angle 0, evaluated at
0 =0; and y; = limy_.(Q?)/V is the infinite-volume
topological susceptibility. Knowing the dependence on Q
or, equivalently, on @, one can calculate the appropriate
correction to B to account for the difference between the
correct (Q%) and the simulation (Q%)pie-

With Eq. (3.3), we follow Ref. [41] to calculate the
correction as

Afoﬂ (0) = fﬂ (O)sample - fﬁﬂ (O>equil

Lty (1=l o

_ZZTV xrV

where f57(0)gpe 1S the simulation value.

Although we extract f%7(0) from the scalar-density
matrix element in Eq. (2.2) it is simpler to first calculate
the @ dependence of the vector-current matrix element
directly. In ChPT, the vector current with the relevant
flavor is

f2

e =L
4

(OMZE — ZTOHE) 5, (3.5)
where X is the SU(3) chiral matrix. In the presence of 6, and
for the m,, = m,; = m; and full QCD case (the case relevant
for this work), the O(p?) ChPT Lagrangian is

£, =L w0,50,5) " e (M + MED, (36

x*gr(y u )_Tr( AZ+M,ET), (3.6

where f is the chiral-limit value of the meson decay
constant, and u the low-energy constant that relates meson
and quark masses at leading order (LO)—see Eq. (4.3).
Here M, = /3 M, with M the usual quark mass matrix
in the absence of 6.

When 6 # 0, X gets the vacuum expectation value

er 0 0
=0 e« o (3.7)
0 0 e—2ia

The parameter @ encodes the dependence on 6, with
a(@ = 0) = 0. The relation between a and @ is obtained
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by minimizing the potential energy term in the Lagrangian,
which gives the condition

0 0
my sin <a—§> + my sin (2a+§> =0. (3.8

For the expansion of the relevant observables, one needs o/,
the first derivative of @ with respect to 0 evaluated at 6 = 0.
Equation (3.8) implies [41]

! ml - mS

o :m. (3.9)

One may expand X around its vacuum expectation
value via

NN )

with @ the 3 x 3 matrix of meson fields. With this result
substituted into Eq. (3.5), at tree level there are two possible
diagrams, shown in Fig. 6, that may contribute to the matrix
element (z|V#|K). The strong three-point vertex in the
right-hand diagram is forbidden by parity when 6 = 0, but
here comes from the mass term in Eq. (3.6), which violates
parity symmetry unless one also takes & — —6 (which is
called “extended parity”). The weak vertex in the right-
hand diagram generates a factor of ¢*, implying that
diagram contributes only to the form factor f_. From the
left-hand diagram, one finds

K7(0) = cos (%a).

Finally, from Eq. (3.9), the result needed to adjust the form
factor via Eq. (3.4) is

(3.10)

(3.11)

1 _ 2
E;;(O)// - _ - (ml ms)

3 (my 1 2m )2 (3.12)

Because we actually use Eq. (2.2) to calculate fX7(0), it
is important to check that we can reproduce Eq. (3.12) by

14

p K-

KO T

FIG. 6. Diagrams contributing to (z|p|K) at tree level, where p
is either the vector current V* or the scalar density S. The squares
are weak vertices with the insertion of the current or density and
the black dot is a strong vertex.

calculating the matrix element of the scalar density that
appears in the @ # 0 Ward identity at g*> = 0,

F57(0) = wE —mZ (z[S|K) o

(3.13)
with § =1y [/, M)y, and A; € SU(N;) the appropriate
flavor matrix to select the su current. Note that it is no
longer convenient to take out a factor of m, — m; from S, as
we do for S in Eq. (2.2), because the quark masses now
carry factors of exp(+i6/3). In ChPT,

2
5 —%,u(ZMj; FE My = MAE - M) . (3.14)
Evaluating the diagrams in Fig. 6, we find
- a 0
(131K - =l = ) cos (5 +5)
n 2 my L2 sin a n 0
3 om; F\2T3
0 0
X {ms sin <2a + §> — 2m; sin <a - gﬂ ,
(3.15)

where the contributions in the first and second lines
come from the propagator and vertex diagrams in Fig. 6,
respectively.

The Ward identity in Eq. (3.13) is then satisfied trivially
at LO for @ = 0. For 0 # 0, we may calculate fX7(0)” from
Eq. (3.13) using Eq. (3.9), the fact that o’ =0 (which
follows from extended parity), and the second derivatives

2

m
n_ _ O 7S’
my mﬂ'( )2<ml + zms)z
" mymg
= s 1
mg mK(O) Z(ml +2ms)2 (3 6)

from [41]. After some algebra, we find that the result agrees
with Eq. (3.12), as expected. We have also checked analyti-
cally that the Ward identity holds for arbitrary ¢ and 6.
Following the procedure in Ref. [41] for the partially
quenched case, we may generalize Eq. (3.12) to

1 mim?2  (my—my)?
Kr(0) = —— s X y 3.17
f+ ( ) 4 (m[ + 2ms)2 m%m% ) ( )

where x and y are the active valence quarks [the valence up
and strange for ff)”_ (0)], and m; and my are the light and
strange sea quark masses. In deriving Eq. (3.17), we have
set the spectator quark mass (the d quark mass for f’f)”*)
equal to the light sea mass m;; in other words, the spectator
quark is unitary, not partially quenched. This has allowed
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us to avoid analyzing the case of three partially quenched
quarks, which was not treated in Ref. [41]. Since the mass
of the spectator quark does not affect X" (0) to LO, we
believe Eq. (3.17) will remain valid even when the spectator
quark is partially quenched. As expected, Eq. (3.17)
reduces to Eq. (3.12) when m, = m; and m, = mj.

As discussed at the beginning of this section, the
correction is only needed on the finest ensemble included
in this analysis, with a~0.042 fm. We calculate the
correction of Eq. (3.4) using Eq. (3.12), the value of the
average of the topological charge measured on that ensem-
ble, (Q%)qmple = 27.59 [41], and the correct (Q?) as
estimated by the LO ChPT expression for the topological
susceptibility [55,56]

_f2 1
AT =y 2mﬁ?,—|—m;§, ’

where the singlet meson sea masses are defined in Eq. (4.3),
below. The resulting correction A, f%7(0) = 0.00018 is
subtracted from the f57(0) e value listed in the last row
of Table III before performing the chiral-continuum fit.

(3.18)

IV. CHIRAL-CONTINUUM INTERPOLATION/
EXTRAPOLATION

We follow a methodology very similar to that in our
previous analyses [23,24] in order to combine our simu-
lation data into physical results in the continuum limit and
with the correct quark/meson masses. Here we summarize
the main ingredients and then discuss in more detail the
new features added in order to accurately account for finite-
volume and isospin-breaking corrections. Accounting for
these effects turns out to be essential, given the improve-
ments in the simulation data.

Our methodology is developed in the framework of
chiral perturbation theory, which allows us to incorporate
effects due to mass dependence, discretization, finite
volume, and isospin breaking in a systematic way. In
particular, in the isospin limit, we can write f47(0) as a
chiral expansion

fEO)=1+fr+ fatfot--, (4.1)
where the functions f; are chiral corrections of O(p?). The
Ademollo-Gatto (AG) theorem [57] ensures that the vector
form factor goes to 1 in the limit m; — m,, and that
corrections to this limit are second order. That means that
the functions f; are proportional to (m, — m,)?* or, equiv-
alently, (m% — m2)2. The theorem thus implies that, in the
continuum, the O( pz) (one-loop) contribution, f,, is
completely fixed in terms of experimental quantities: the
decay constant f, and meson masses.

The specific fit function we employ for the extrapolation
to the continuum and interpolation to the physical quark

masses is the same as in Ref. [23]. It consists of a NLO
partially quenched staggered ChPT (PQSChPT) expression

[58] fEBPT(4), plus NNLO continuum ChPT terms [59]
£, plus extra analytic terms to parametrize higher-order
discretization and chiral effects. Schematically, it can be
written

Kn(0) = 1+ £ (@) + f9" + g1,

+ réll(m% - m%{)z[éél + gZ,a + hm,,]’ (42)
where the functions g, , and g, , account for higher-order
discretization effects, and the function 4, includes ana-
lytical terms that parametrize higher-order chiral effects.
We have taken the pure counterterm contribution at two
loops out of f3°™ and written it separately. This contribu-
tion corresponds to the term proportional to C,, which is
given by the combination of low-energy constants (LECs)
Ci» + C34 — L2. The O(p*) LEC Ljs can be extracted from
global fits or from lattice-QCD calculations of light-light
quantities, but the O(p®) LECs C, and Cs, [60,61] are not
known. (Only model-based estimates and imprecise global
fit values exist.) We therefore take C, as a constrained fit
parameter. All dimensionful quantities entering in the fit
function in Eq. (4.2) are converted into r; units by using the
values of r;/a in Table IV.

Since our simulations are performed in the isospin limit,
m, = my, fo and f, are evaluated for degenerate up and
down quarks. The explicit NLO PQSChPT function

gQSChPT(a) can be found in Ref. [58]. It incorporates
the dominant discretization effects coming from the taste-
symmetry breaking of staggered fermions. The function

gQSChPT(a) depends on the HISQ taste splittings Ag
through the sea meson masses

mi = = u(m; +mj) + a’Ag, (4.3)

with m;, m; sea quark masses, the slope y to be determined

by fits of the ChPT expressions to experimentally measured

meson masses, and 2 labeling the meson taste. Values of
Ag for each ensemble are given in Table IV. The function

gQSChP T(a) also depends on the taste-violating hairpin
parameters, &), and &, which come from ChPT discon-
nected diagrams. We fix the taste splittings in the fit
function to their values in Table IV since they are precisely
enough known that the corresponding errors do not affect
our results significantly. The values are from Ref. [45], as
well as unpublished updates with better statistics and the
inclusion of new ensembles not previously analyzed. The
uncertainty in the hairpin parameters is, however, quite
large. We therefore treat them as constrained fit parameters
with central values and widths equal to those in Table V,
determined from fits to light-light meson quantities [66].
Their uncertainty is thus propagated to the final fit errors.
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TABLE IV.

Inputs for the parameters taken as fixed in the fit function. The | /a values are obtained from a mass-

independent scale setting [45,62]. The absolute scale r; is from Ref. [63]. The value of the decay constant f, is taken
from Ref. [3]; its error, though shown, is negligible in our calculation. Taste splittings r?a*Ag are taken from
Ref. [45] and more recent updates; slopes ay come from the analysis presented in Ref. [64], although they were not
published there. We do not consider errors either on the taste splittings or on the slopes because they also have a
negligible effect on the final results. Notice that taste splittings for the a &~ 0.042 fm ensemble are not measured but
obtained from the 0.06 fm results, by applying the expected scaling factor a2a>. The LECs L, and Lg, both central
values and errors, are taken from fit BE14 in Ref. [65].

~a (fm) 0.15 0.12 0.09 0.06 0.042 Continuum

r 0.3117 £ 0.0022 fm
fx 130.50 +0.13 MeV
Ayry = M,r 1.2163

au 2.0565 1.6994 1.2820 0.8873 0.6986

r/a 2.090(6) 2.608(4) 3.588(7) 5.442(10) 7.143(24)

ria*Ap 0 0 0 0 0

ria*Ay 0.301197 0.167563 0.052723 0.009542 0.004794

ria®Ap 0.204127 0.103326 0.034894 0.006974 0.003504

r2a’A, 0.106046 0.053983 0.018187 0.003588 0.001803

rra’A, 0.399862 0.209269 0.066393 0.012493 0.006276

L5(A,) x 10 —0.34 +0.09
Lg(A,) x 10° 0.47 £0.10

TABLE V. Priors for the fit parameters entering in Eq. (4.2), as
well as the posterior values obtained for those parameters in our
preferred fit. The dimensionless yPT parameter s is given by the
quantity 1/(87%(r,f,)?) ~ 0.3. The priors listed for the hairpin
parameters are for the a ~ 0.12 fm ensembles, and those for the
other lattice spacings are obtained by rescaling these numbers,
assuming that the hairpin parameters scale like the average of the
Az. These values are obtained from fits to light-light quantities
using two-loop PQChPT [66]. The uncertainty includes statistical
and systematic errors. The prior central values for the NLO LECs
are from fit BE14 in Ref. [65] with A, = 0.77 GeV, while the prior
widths are twice the errors in Ref. [65]. We fix the LECs L, and Lg
and give their values in Table IV, as explained in the text. The entries
“—0.000” denote small negative numbers that round to zero.

Gaussian priors ChPT fit
Fit parameters (central value + width) posteriors
rta*sl, 0.050 + 0.024 0.050 + 0.024
ras, —0.0946 +0.0094  —0.0958 + 0.0093
K, 04 0.01 0.001 4+ 0.010
K, 04 0.03 0.001 4 0.030
K, 040.81 0.083 4 0.063
K; 0+0.015 -0.000 £ 0.015
Cy 0+ s? —0.052 + 0.006
Cs 0+ s 0.006 =+ 0.022
Cq 0+ s* —0.000 + 0.008
Lj(A,) x 10° 0.534+0.12 0.55+0.12
L5(A,) x 10° 0.81 +0.08 0.81 +£0.08
Li(A,) x 10° —-3.07 £0.40 -3.03+0.40
[2L; — L}(A,)] x 103 —-0.02+0.10 —0.01 £0.11
LL(A,) x 10° 1.01 +0.12 1.00 +0.12
Li(A,) x 10° 0.14 +£0.10 0.13 £0.09

For some of the meson masses that appear in f, there are
no experimental measurements or lattice results, as for
example, for m!e"® or for the sea-valence meson masses
involving strange quarks. Because we use values given by
NLO ChPT for these masses, our f, function has some
dependence on the corresponding O(p*) LECs L;. This is
the best approximation we have, and we find that different
implementations of higher-order corrections result in
changes to the central values that are significantly smaller
than the statistical errors.

The continuum NNLO ChPT function f$°" also depends
on the O(p*) LECs. We take most of them as constrained fit
parameters with prior central values equal to the posteriors
obtained in the O(p®) global fit BE14 in Ref. [65]. We take
as an input parameter the combination 2L — L, instead of
L, because the fit is more sensitive to that combination and
because L, is fixed in fit BE14. The prior widths are set to
twice the errors in Ref. [65]. The chiral scale, at which the
LECs and chiral logarithms in the ChPT expression of
Eq. (4.2) are evaluated, is set equal to the mass of the p
meson, i.e., A, = M,. The O(p*) LECs from Ref. [65],
used as priors here, agree within errors with (but are more
precise than) the only realistic lattice calculations available
at the moment: the Ny =2 + 1 MILC [13] and the Ny =
2+ 1+ 1 HPQCD [12] calculations. The prior central
values and widths used in our chiral-continuum fit to
Eq. (4.2) are listed in Table V.

The O(p*) LECs L, and Lg appear only in the isospin
corrections and in the NLO expressions for some of the
meson masses in f, and f,. Their effect on f, and f, in the
isospin limit is, however, negligibly small, and their main
impact is via the isospin-breaking corrections, which are
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added after performing the chiral-continuum fit (see
Sec. VF). We choose then to take L, and Lg as fixed
parameters in the chiral-continuum fit and include their
uncertainties in the total error as described in Sec. V B.
Once the O(a?a?) taste-violating discretization errors for
staggered fermions are removed through the explicit

dependence on a of ngSChP T(a), the dominant discretiza-
tion errors at O(p?) in ChPT are O(a,a?) and O(a*). Since
we are forced to use continuum ChPT at O(p*), the
discretization errors there are O(a,a®) and O(aZa?). We
take these errors into account through the functions g; , and

2.0 in Eq. (4.2):

_ 2 4
gl,u = Kl r%azA <£> + K3 (ﬁ) N (44&)

8 r

a2 i
Do = Koy | Pa?A <“> +K\2a?A,  (4.4b)
, \/ .

where the K; are fit parameters, A = % (Ap +4A,+
6Ar +4Ay + A;) is the average taste splitting, and
r2a*A is a proxy for aa®. Table V lists the priors employed
for the K;’s. The terms proportional to K, and K/ are
generic terms parametrizing discretization effects of
O(a,a?) and O(a?a?), respectively, obeying the AG theo-
rem. We include the terms proportional to K; and K5 to
account for O(a,a?) and a* violations of the AG theorem at
finite lattice spacing arising from symmetry-breaking dis-
cretization effects in the form-factor decomposition,
Eq. (1.4), and in the continuum dispersion relation. We
find that adding an O(a*) term instead of the one propor-
tional to K, yields fit results that are nearly identical.

As in Refs. [23,24], we also add generic analytical terms
corresponding to higher orders in the chiral expansion until
the error of the chiral-continuum fit saturates, i.e., until the
central value, the error and the y?/dof (and Q) value do not
change appreciably. That happens at N*LO [O(p?)]—see
Sec. V. The function #,, in Eq. (4.2), which collects these
effects, therefore takes the form

hy, = Cor2m?2 + Cyrim?. (4.5)
The terms proportional to C and Cg are O(p®) and O(p?),
respectively. The C; are constrained fit parameters; the
priors for them can be found in Table V. Further discussion
of the fit function, priors used in the Bayesian approach,
and tests performed can be found in Refs. [23,24].

A. Fit results

We fit our finite-volume corrected form-factor data to the
functional form in Eq. (4.2) with the functions g, , and &,,_
given in Egs. (4.4) and (4.5), respectively. All the results

0.99]- x*dof =0.29 Q=0.98 i
. 0.98r b
S
NII
&
=
M
“0.97F <4 a=0. 1
v a=0.
B a=o
® a=012fm
A a=0.15fm
Fit value
0.96 Chiral int. in the cont. and isospin limit (stat. error)
—— Chiral interpolation in the continuum and isospin limit
I I | I
0.05 0.1 0.15 0.2 0.25

am, /(am, )P

FIG. 7. Form factor fX’7(0) vs light-quark mass. The data
points correspond to the results in Table III and are corrected for
the one-loop finite-volume effects also listed in that table.
Different symbols and colors denote different lattice spacings.
The data point at the a~0.042 fm ensemble includes the
correction given in Sec. III B. The error bars on the data points
are statistical only, obtained from 500 bootstrap resamples. Data
points at the same light-quark mass but different lattice spacings
are offset horizontally. The gray continuous line shows the
continuum extrapolation in the isospin limit as a function of
the light-quark mass, and the yellow star is the continuum result
interpolated to the physical light-quark masses. The cyan error
band, as well as the error bar on the physical point, is the
statistical chiral-continuum fit error (obtained using 500 boot-
strap resamples), which includes discretization and higher-order
chiral errors, as well as the uncertainty from some of the input
parameters, as discussed in the text. The continuum extrapolation
line is obtained by setting the valence and sea light-quark masses
equal, setting m to its physical value, turning off all discretiza-
tion effects, and considering m, = my,, i.e., without isospin-
breaking effects. On the other hand, the yellow star is the
interpolation to the physical masses and includes strong iso-
spin-breaking effects at NNLO.

listed in Table III are included in our central-value fit, except
for the ensemble with a ~ 0.12 fm and m, pL = 3.2, which
we use only to check finite-volume effects. We then
extrapolate to the continuum limit and interpolate to the
pure-QCD meson masses, i.e., with electromagnetic effects
removed, using the parameters determined from the fit
described above together with the continuum isospin-break-
ing NNLO ChPT expressions in Ref. [67], plus the N°LO
and the N*LO chiral terms in Eq. (4.5), which do not vanish
in the continuum limit. We take the pure-QCD masses from

Ref. [46]" mY " =497.567 MeV, m " = 491.405 MeV,

m&P = 135.142 MeV, m3 > = 134.977 MeV. For the

70

K° - 7z~ ¢v case we find

“The 7z° QCD mass is just the experimental one, and the 7"
QCD mass includes the estimate of the small isospin-breaking
correction, which comes from Ref. [68].
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57 (0) = 0.9696 + 0.0015, (4.6)
where the error is from the fit only, and does not yet include
all systematic effects. The statistical error is estimated by
fitting to a set of 500 bootstrap samples for each ensemble.
On each of those fits, we randomly change the central values
of all the priors sampling over Gaussian distributions,
keeping the same widths as in Table V. The plot in
Fig. 7 shows, as a function of the light-quark mass, the
central interpolation curve as well as its error band in the
continuum and with the strange-quark mass adjusted to its
physical value. In order to make the comparison to data
clearer, the curve in Fig. 7 does not include any strong
isospin-breaking effects, i.e., m; = m, = m,. The point at
the physical masses (yellow star) in Fig. 7, however, is our
central result in Eq. (4.6), which includes strong isospin-
breaking effects at NNLO.

The result in Eq. (4.6) includes isospin corrections up to
NNLO—see Sec. VF for more details. For K decays,
isospin corrections enter only at NLO (f,) and beyond, and
are small, < 0.15%. It also includes corrections for the
leading-order finite-volume effects as described in
Sec. ITA.

The second column in Table V shows the posteriors for
the fit parameters of the chiral-continuum fit that leads to
the result in Eq. (4.6). We cannot determine the coefficients
K; accurately since there is very little a> dependence in our
results. In fact, if we remove the a ~0.15 fm point we
could fit our data without including discretization effects at
all. Our lattice data also provide little constraint on the

£57(0)

|

{

| N I S

0.96 0.97 0.97

FIG. 8.

individual values of the O(p*) LECs. As seen in Table V,
the posterior fit values of the L are generally the same as
the priors.

V. SYSTEMATIC ERROR ANALYSIS

The error in Eq. (4.6) includes statistical, chiral-extrapo-
lation, and discretization errors, as well as the uncertainties
associated with the inputs that are treated as constrained fit
parameters: O(p*) LECs (except L;g) and taste-violating
hairpin parameters. The uncertainties of the data and
constrained input parameters are propagated through the
fit via 500 bootstrap resamples.

In this section, we further study these sources of
uncertainty, perform tests of the stability of our preferred
fit strategies, and estimate the other sources of systematic
error entering in our calculation of fX7(0): uncertainty in
the inputs, scale error, partial-quenching effects, higher-
order finite-volume effects, isospin-breaking corrections,
and the effects of nonequilibrated topological charge.

A. Fit function, discretization
error and chiral interpolation

Because we have data at the physical light-quark masses,
the chiral fit is an interpolation, and is largely independent
of the precise form of the fit function and the values of the
ChPT parameters. We have performed a number of tests to
check this stability under variations in the fit function and
to estimate the effect of higher-order terms in the chiral and
Symanzik expansions. Figure 8 shows the tests performed

Q

base I ‘ I cl
NNLO L
N°LO o
fx vs f; at two loops L
NNLO analytic L
N°LO analytic e
N“LO analytic o

no analytic a’ .
o@az(m?—mi) <
a?a’(mZ-ms) + a, a* <
no a= 0.15fm o

continuum, no a= 0.15fm °
continuum + analytic a* °
no a= 0.042fm o
no physical mass data L
only physical mass data °
no FV L
ms* vs my! o
I Il

1
0.2 0.5 0.8 1.0

Stability of the continuum extrapolation and chiral interpolation with respect to the choice of fit function. The blue band

corresponds to our preferred fit function (labeled “base”). Notice that the analytical parametrization is applied only at NNLO and
beyond. The PQSChPT expression is used at NLO, including isospin corrections. The Q value for each fit is shown in the right-hand-
side plot. The red point on that plot corresponds to a fit with y?>/dof < 0.05. See the text for the explanation of the different tests

performed.
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and discussed in this subsection, together with the results
from additional fits discussed in the following subsections,
which we use to estimate several systematic uncertainties.

First of all, in order to be sure that effects due to higher-
order terms in the chiral expansion are properly included in
the Bayesian analysis that leads to the fit error shown in
Eq. (4.6), we need to check that this error stabilizes as we
add higher-order chiral terms. The point labeled NNLO in
Fig. 8 includes only terms up to NNLO, i.e., without
the h,, function in Eq. (4.2). Only minimal changes in the
central value and errors are produced by the addition of the
N3LO term Cg(m% — m2)>m2 from Eqs. (4.5) and (4.2).
The difference between this and the base fit is the N*LO
term Cg(m% — m2)?>m, and we see that it has a negligibly
small effect.

Different values of the decay constant used in the two-
loop (NNLO) term f$°™ are equivalent up to omitted
higher-order terms, and therefore should have a negligible
effect on our analysis. In contrast, the decay constant at one
loop has to be set equal to the physical pion decay constant,
[, 1n order to be consistent with the particular expression
chosen for f$°". In the base fit, we use f, as the chiral
expansion parameter in f$°". We check that other possible
choices, such as fx = (155.6 +£0.4) MeV [16] (labeled
“fx vs f, at two loops” in Fig. 8) and an estimate of the
decay constant in the chiral limit, f, = (113.5 £+ 8.5) MeV
[13], shift the central value in Eq. (4.6) by less than 0.06%,
well under the statistical error.

As another test of the ChPT fit and errors, we replace the
continuum two-loop ChPT expression in Eq. (4.2), f3°™, by
an analytic function, and consecutively add N3LO and
N*LO analytic terms—see results labeled “NNLO analyt.,”
“N°LO analyt.” and “N*LO analyt.,” respectively, in
Fig. 8. All the results agree very well with our base fit
within statistics, being nearly identical once the N*LO
analytic term is included.

The three results labeled “no analyt. @ (which corre-
sponds to a fit without including ¢, , and g,, in the fit
function), “a?a®(m*zr—m%)”, and “a?a*(m2—m%)+asa*”
in Fig. 8 represent a check that the discretization errors are
properly included in the fit error of Eq. (4.6). Once we
include the term of order a?a®(m% — m2)?* (proportional to
K’) in Eq. (4.4), which is required to get a fit of similar
quality to our base fit (see Fig. 8), the central value and
errors barely change with the addition of a,a® corrections
[the result labeled “a?a’(m2 — m%) + a,a®’]. Adding the
two remaining discretization terms in g; , and g, ,, which
returns us to the base fit, makes no noticeable difference.
The rapid stabilization of the fit reflects the tiny lattice-
spacing dependence of our data.

Of all the data in Fig. 5, only the point at @ ~ 0.15 fm
shows what appear to be significant discretization effects.
Dropping that data point has the effect of increasing the
errors (see result labeled “no a ~ 0.15 fm”), since the other

it}

ensembles provide very little constraint of the analytical a®
fit parameters. In fact, after dropping that point, we can fit
our remaining data with a continuum fit function, although
we see from Fig. 8 (result labeled “continuum, no
a=0.15 fm”) that the result is larger than our central
result by about two standard deviations, measured in terms
of the fit errors, and the quality of the fit significantly drops.
Adding analytical discretization corrections via the func-
tions g; , and g, , to the continuum fit function allows us to
fit all our data, giving a result that is consistent with the
base fit and with a similar Q value (see result labeled
“continuum + analyt. a>”), although with a larger error.

In contrast to the noticeable effect of the coarsest
ensemble on the total error, the effect of our finest lattice
spacing, a ~ 0.042 fm, on the central value and the error is
very small since statistics in this ensemble is limited and, in
addition, it has m; = 0.2my, so it is relatively far from the
physical point.

As shown in Fig. 8, both the ensembles with physical
quark masses and those with unphysical masses are
important in fixing the central value and reducing the fit
error. The larger error of the fit including only physical-
quark-mass ensembles reflects the weaker constraints on
the higher-order discretization terms and the lack of
constraints on the higher-order chiral terms, which can
have an effect on the results from nominally “physical”
ensembles due to mistunings of the strange and light-quark
masses. On the other hand, the larger error of the fit
including only the unphysical-quark-mass ensembles
reflects primarily the error of the chiral extrapolation.

Finally, we test the robustness of our Bayesian error
estimation strategy similarly to our previous work [23,24],
by obtaining separate estimates of each source of error from
central value variations observed with simpler fits with and
without the corresponding higher-order terms—see
Ref. [23] for details. Taking the total error as their
quadrature sum, we find that this procedure yields smaller
uncertainties than those in Eq. (4.6).

For the reasons discussed above, the statistical fit error
shown in Eq. (4.6), which is obtained with our base fit
using Eq. (4.2), together with the higher-order chiral and
discretization terms in Eqs. (4.4) and (4.5), properly
includes the errors from higher-order discretization effects
and chiral corrections in addition to the statistical errors.
The inclusion of the unphysical light-quark-mass data in
our ChPT description gives us a handle on these higher-
order effects and allows us to robustly correct for mass
mistunings and estimate the error associated with the
truncation of the corresponding series.

B. Inputs for the fixed parameters in the chiral function

The values and errors of the fixed inputs we use in our
chiral-continuum fit are listed in Table IV. The HISQ taste
splittings are known precisely enough that their errors have
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TABLE VI. Error budget for ff)”_ (0) in percent.

Error fX"7(0)

Source of uncertainty (%)

Statistical 4 discretization + chiral interpolation 0.154
L;q 0.079
Scale r, 0.080
m}/al ;é miea 0.013
Higher-order finite-volume corrections 0.053
Higher-order isospin corrections 0.015
Isospin-breaking parameter R 0.002
Total error 0.199

no impact on the final uncertainty. Similarly, when we
change the pion decay constant within its error and repeat
the fit, results for the form factor are unchanged at the
precision we quote. The uncertainty is small because the
dependence on f, enters through the coefficients and
parameters in the ChPT fit function, which, as discussed
above, already have little effect on the results. Finally, by
varying A, in the range M, + 0.5 GeV, we have checked
that our results are independent of the chiral scale, as they
should be. We therefore do not need to add an uncertainty
due to the errors in the inputs or the choice of chiral scale to
the statistical fit error.

However, the LECs L and Lg (which we treat as fixed
input parameters, unlike the other LECs), do have an
impact on the form-factor error, mainly through their effect
on the isospin corrections. We estimate this uncertainty by
varying their central values by their respective standard
deviations, repeating the fit, and recalculating the form
factor (including isospin corrections). We take the shift that
this variation produces as the uncertainty associated with
these LECs, and add it in quadrature to the fit error, as
shown in Table VI. The above procedure does not under-
estimate the error due to these LECs, since if we treat L,
and Lg as constrained fit parameters instead, the same as the
other O(p*) LECs, we obtain a slightly smaller total error.

C. Lattice scale

We rewrite all the dimensionful quantities entering in the
two-loop ChPT fit function in r; units, where the r; scale is
obtained from the static-quark potential [69,70]. The lattice
parameters are converted to r; units by multiplying by
the values of the relative scales r;/a in Table IV, while
the physical parameters are converted by using r; =
0.3117(22) fm [63].

The form factor fX7(0) is a dimensionless quantity, and
thus the effect of the error in the lattice scale is small. When
we change the scale r| by its error, the central value only
shifts by +0.0008. We include this variation as a systematic
error in Table VI. The errors in the relative scales r;/a, on
the other hand, have no significant impact on our results.

D. Partial-quenching effects in m, at NNLO

The valence and sea strange-quark masses differ on some
of the ensembles as explained in Sec. II, leading to partial-
quenching effects—see Table 1. These effects can be
exactly treated at NLO within the PQSChPT framework,
but at NNLO only the full-QCD ChPT expressions are
available. We then have the choice of using either the sea or
the valence m,; at NNLO and beyond. In practice, this
ambiguity only affects f3°™ in Eq. (4.2) since the factor
(m% — m%)? in that equation comes from the valence sector.

The result in Eq. (4.6) is obtained using the valence
strange-quark masses at NNLO. If we use the sea strange-
quark masses at NNLO instead, ffo”_ (0) shifts by 0.013%,
which we include on the line labeled “m}* # m®” in the
error budget. This systematic effect is small because the sea
strange-quark masses are generally well tuned on the HISQ
N; =2+ 1+ 1MILC ensembles, and m}* = mi** on the
most relevant ensembles in the chiral-continuum interpo-
lation/extrapolation, the ensembles with physical quark
masses and a ~ 0.09,0.06 fm.

E. Higher-order finite-volume corrections

In our previous calculation [23,24], the uncertainty due
to finite-volume effects was one of the two dominant
sources of error. (The other was the fit error.) The finite-
volume error was estimated to be of the same order as the
statistical error from a comparison of the lattice data from
two different volumes, with other parameters held fixed.
Then, although very small, 0.2%, this error turned out to be
a limiting factor for precision. In this work we have
increased the statistics on the ensembles analyzed in
Refs. [23,24] to check finite size effects. We have also
sharpened this direct comparison by generating data on a
third, smaller, volume. The three ensembles are those with
a~0.12 fm and m;/m{* = 0.1 in Table I and Fig. I.
Table III gives the values for fX7(0) on these three
volumes. The results on the two largest volumes are
essentially the same, while that on the smallest volume
differs from the others by less than the statistical error.
From this comparison alone we could conclude that finite-
volume effects are smaller than 0.17%, the smallest
statistical error on the three ensembles.

To reduce the error further we use NLO staggered
partially twisted partially quenched ChPT [40] to correct
the form factor prior to the chiral-continuum fit, as
described in Sec. III A. The resulting finite-volume cor-
rections are < 0.1% on all ensembles. If we did not correct
our data for finite-volume effects at one loop, the result for

fo”_(O) would shift by 0.00051. Although we expect
NNLO finite-volume corrections to be suppressed by a
typical one-loop suppression factor, we conservatively take
this shift as the estimate for the higher-order finite-volume
effects. This gives a 0.053% error that we include in the
error budget in Table VI.
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TABLE VII. Form factor f ’f)”_ (0) as extracted from the most recent lattice calculations (first half of the table),
from phenomenological approaches using two-loop ChPT, and from the 1984 calculation by Leutwyler and Roos,
which uses one-loop ChPT and a quark model for higher-order terms. For those calculations based on two-loop
ChPT, we also indicate the method used in the estimate of the O(p®) LECs.

Group K= (0) Method

This work 0.9696(15)(12) Staggered fermions (N =2+ 1+ 1)
ETM [26] 0.9709(45)(9) Twisted-mass fermions (Ny =2+ 1+ 1)
Fermilab Lattice/MILC [23] 0.9704(24)(22) Staggered fermions (N =2+ 1+ 1)
JLQCD [30] 0.9636(36)(f§§) Overlap fermions (N =2+ 1)
RBC/UKQCD [25] 0.9685(34)(14) Domain-wall fermions (Ny =2+ 1)
Bijnens and Ecker [65,72] 0.970(8) ChPT + NNLO global fit

Kastner and Neufeld [73] 0.986(8) ChPT + large N + dispersive
Cirigliano ef al. [74] 0.984(12) ChPT + large N..

Jamin, Oller, and Pich [75] 0.974(11) ChPT + dispersive (scalar form factor)
Bijnens and Talavera [59] 0.976(10) ChPT + Leutwyler and Roos
Leutwyler and Roos [76] 0.961(8) One-loop ChPT + quark model

F. Isospin-breaking corrections

Isospin-breaking corrections accounting for the differ-
ence between the up- and down-quark masses can be
calculated in the ChPT framework and thus written as a
chiral expansion starting at NLO for neutral kaons

Kn

Aisospinffjn (O> = fﬁon (O) — J +,isospin limit(o)
= \/g(cg?(o”— + C.(S'(,’;(Oﬂ‘ . ')’

where the parameters ¢ Esl?K%*
corrections. In our result for f’f)”*(O) in Eq. (4.6), we
include both NLO [O((m, —my)p*)] and NNLO
[O((m, — my)p®)] corrections calculated in Refs. [68]
and [67], respectively. These corrections depend on the
lowest-order z° — # mixing angle ¢?), or, alternatively, the
quantity R= (my—m)/(my—m,) with i = (m, + my)/2.
In order to arrive at the number in Eq. (4.6), we use the
expressions in Ref. [67], the QCD meson masses quoted in
Sec. IV A, and the values of the LECs obtained from our fits
and shown in Table V (for L} and Lg we take the input
values in Table IV). The only combination of O(p®) LECs
that enters at this order in the isospin-breaking terms for
K° — 7~ fv decays is C}, + Csq. This combination, which
we obtain from our fitting procedure, is the same one that
appears in the isospin limit.

We use a power-counting estimate for the error due to
isospin corrections not included in our result, N3LO and
higher, by taking the calculated NNLO correction and
multiplying it by a typical chiral-loop suppression factor.
For quantities involving a strange quark, we may estimate
this factor to be m% /(87%f2) ~ 0.18. The size of the ratio of

the isospin limit NNLO and NLO contributions to f° I_Eo’f (0)
that we obtain in this work is a bit larger, ~0.26. We
conservatively multiply the calculated NNLO isospin-
breaking correction, —0.00057, by the larger number,
which yields a 0.015% uncertainty.

(5.1)

are O((m, —my)p') isospin

Another source of error is the parametric uncertainty in
the isospin-breaking quantity R used to obtain the correc-
tions in Eq. (5.1). We use the value

+88

R= 35.59(21)Stm(_96

) [35]EM—scheme' (5 2)
syst

The analysis that yields to this result is the same as in
Ref. [46], except that we have included more configura-
tions at the ensembles with a ~ 0.06 fm and a ~ 0.042 fm,
and included the a = 0.15 fm data in the central fit. The
electromagnetic errors are estimated as in Ref. [71].

We estimate the error on the form factor coming from the
uncertainty on R by varying this quantity within its error
and redoing the fit. As expected, the impact on the form
factor for the neutral mode is nearly negligible, 0.002%.
Nevertheless, we include it in our error budget.

G. Nonequilibrated topological charge

As described in Sec. III B, a correction due to improper
sampling of the topological charge is needed only on the
a ~0.042 fm ensemble with m; = 0.2m,, where we obtain
Ao f%7(0) = 0.000 18. Not surprisingly, given that (i) this
ensemble has little influence on the chiral-continuum
interpolation/extrapolation (see Fig. 8 for the effect of
removing the ensemble completely), and (ii) the correction
is much smaller than the statistical error on the ensemble
(see Table III), the effect of the correction on the physical
value of f%7(0) is negligible. We therefore do not add an
uncertainty due to this effect to our error budget.

VI. RESULTS

Our final result for the vector form factor is

FE7(0) = 0.9696(15),,,(12), = 0.9696(19), (6.1)

syst

where the first error in the middle expression is the
combined statistical, discretization and chiral interpolation

114509-17



A. BAZAVOV et al.

PHYS. REV. D 99, 114509 (2019)

KO -
£,"(0)
— &+ This work
+
i
¥ —— FLAG Ni=2+1+1
~
I . ETM 2016
b4
—— Fermilab Lattice/MILC 2014
— - FLAG N¢=2+1
+
W . RBC/UKQCD 2015
4 . Fermilab Lattice/MILC 2012
8 —e— Bijnens & Ecker 2014
'.B‘ e Kastner & Neufeld 2008
o e Cirigliano et al 2005
& f—— Jamin et al 2004
o —e— Bijnens & Talavera 2003
Z R — Leutwyler & Roos 1984
n 1 L n I 1 n I Il L Il 1
0.94 0.96 0.98 1 1.02 1.04

FIG. 9. Comparison of ffo”_ (0) from this analysis with
previous lattice results entering in the FLAG averages [6]
together with those averages for N;,=2+1+1 and
Ny =2+ 1, as well as nonlattice determinations based on ChPT.
The beige band corresponds to our result. The references and
numerical results for all determinations are given in Table VII.

error discussed in Sec. IVA, and the second the sum in
quadrature of all the systematic errors discussed in Sec. V.
Table VI summarizes all sources of error in our calculation.
The total uncertainty is the smallest achieved to date.

We compare our result for "% (0) with the results from
the most recent lattice calculations and phenomenological
approaches in Table VII, and with the results entering the
FLAG average and those from phenomenological
approaches in Fig. 9. Our value for fX’#(0) agrees within
errors with previous Ny =2+1 and Ny =2+1+1
lattice calculations. In particular, the value is close to the
other Ny = 2 + 1 + 1 results, but with significantly smaller
errors. It also agrees with the most recent phenomenologi-
cal determinations [65,72], which are based on two-loop
ChPT with LECs determined by NNLO global fits. The
lattice results in Table VII and in Fig. 9 do not include
isospin corrections, with the exception of the Fermilab
Lattice/MILC result in Ref. [23] (only NLO corrections)
and our result here (up to NNLO corrections).

A. O(p®) LEC combination C}, +C5,

The parameter C, in the two-loop ChPT fit function that
we use to interpolate fX7(0) to the physical point—see
Eq. (4.2)—is related to the combination of O(p*) and
O(p®) LECs

~ 8
C4:_F

/4

[Cip + C3q — L3). (6.2)
We can thus use the values of C, and L 5 from our fit output

in Table V to extract the combination of O(p®) LECs
involved. Taking correlations into account, we find

TABLE VIII.  Error budget for the LEC combinations of order
P [Ch, + Ci,](M,) and [CT, + C3, — (Lg)z](Mp)~
[Cl,+Ch]  [Cf, + Chy = (LE)]

Source of uncertainty (M /)) x 10° (Mp) x 10°
Stat. 4 disc. + chiral inter. 0.36 0.23
Lig 0.12 0.13
Scale r| 0.13 0.14
myA £ mse 0.02 0.02
Finite volume 0.09 0.08
Total error 0.41 0.031

[CTQ + C§4](M/)) = 3'93(36)stat(20)syst X 10_6' (63)

The first error in Eq. (6.3) includes statistics, chiral
extrapolation and discretization errors, as well as the
uncertainty from the LECs (except L, and Lg) and the
taste-violating hairpin parameters, as discussed in Sec. V.
The second error is the sum in quadrature of the rest of the
systematic uncertainties. The detailed error budget is in
Table VIII. We obtain all the errors in the same way as for
/%7(0). Isospin corrections do not apply to this quantity
since it is defined in the isospin limit. In practice, the values
of LECs coming from a fit may be significantly affected by
the presence or absence of higher-order chiral terms in the
fit function. Therefore, applications of our result in
Eq. (6.3) should allow the same type of corrections as in
(the continuum limit of) Eq. (4.2). The complete error
budget for this quantity can be found in Table VIII.

Our result in Eq. (6.3) agrees with nonlattice determi-
nations in Refs. [74-76]. In those papers, the contribution
to £, (0) from C}, + C34 was calculated using the large N
approximation, a coupled-channel dispersion relation
analysis, and a quark model, respectively. However, the
value for C; + C3y — L% found in Ref. [73], which is
based on ChPT, large N, estimates of the LECs, and
dispersive methods, is ~3c smaller than our value,
[Cry + Chy = (LE)?(M,,) = (2.92 £ 0.31) x 1075

The result in Eq. (6.3) also agrees very well with our
previous calculation of this combination of LECs in
Ref. [27], on the MILC N; = 2 + 1 asqtad configurations,
although with greatly reduced errors. In fact, all sources of
error are reduced due to several factors: the use of the
MILC Ny =2+ 1+ 1 HISQ configurations with smaller
discretization errors than the asqtad action, data at smaller
lattice spacings, data with physical light-quark masses,
better tuning of the strange sea quark masses, and including
NLO finite-volume corrections explicitly. The agreement
with the JLQCD result in Ref. [30] is borderline, but the
JLQCD calculation relies on simulations at a single lattice
spacing, although a systematic error is quoted for it, and it
does not include data at the physical light-quark masses.
Those systematics could affect more strongly the value of
the combination of LECs than the form factor itself.
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FIG. 10. Summary of recent |V | determinations. The semileptonic determinations, labeled K3, use inputs for 7 (0) from the most
recent lattice calculations in Refs. [23,25,26], respectively. The leptonic determinations, labeled K, use as inputs the 2 4 1-flavor
lattice-QCD average f from FLAG [6], which only includes calculations where the lattice scale is set from physical inputs other than
Sz and the most recent and precise determination of f =+ /f,+ from Ref. [46]. The inclusive hadronic z-decay determinations are the
most recent ones, from Boyle ef al. 2018 [36] and Hudspith ez al. 2017 [35]. The second value from Ref. [36] comes from relating the
7 — KZv branching fraction to the K, branching fraction to get the experimental contribution from the K pole. The two values in
Ref. [35] correspond to using the normalization for 7 decays into Kz modes as obtained in Ref. [37] or as given by HFLAV [39]. For the
exclusive 7 determination we follow the calculation by the HFLAV group [39], but we update the value of the ratio fg=+/f,+ to that in

Ref. [46]. The unitarity value is taken to be |V ;| = \/1 — |V 4|*> with |V 4| from Ref. [2]. RC stands for radiative corrections. The
dotted magenta vertical lines correspond to this unitarity value. The gray vertical band corresponds to our result in Eq. (7.1).

VII. PHENOMENOLOGICAL IMPLICATIONS

A. Determination of |V,|

Combining the form factor in Eq. (6.1) with the latest
experimental average |V,|fX"" = 0.21654(41) from
Ref. [7], we obtain
Vsl = 0.22333(44)f+(0) (42)

=022333(61),  (7.1)

exp

where the first error is from the uncertainty on the form
factor, and the second is the experimental uncertainty. Both
errors are now of the same size. The experimental error in
Eq. (7.1) includes the uncertainty on the long-distance
electromagnetic and strong isospin-breaking corrections,
St and 687 ,), which are taken into account when doing

the experimental average of the neutral and charged modes
[7]. This uncertainty is however dominated by the errors in
the lifetime and branching-ratio measurements of the
neutral-kaon modes [7]. Other uncertainties such as those
from the phase-space integrals are insignificant [7].

In Fig. 10 we compare our extraction of |V | from K
semileptonic decays with other determinations using K
semileptonic and leptonic decays, and hadronic 7 decays.
Our semileptonic determination of |V | is the most precise
to date not relying on an external input for |V,,|. The
central value agrees very well with the most recent lattice

and nonlattice semileptonic calculations, as well as with
those based on hadronic tau decay; the latter have much
larger errors. Our result, however, is in tension with the
leptonic determination using fx/f, and with the unitarity
prediction given by |V,,| = /1 — |V,4|* with |V,,| from
Ref. [2]. The agreement with the leptonic determination
using fx is borderline. The sizes of the disagreements
—2.60 with unitarity and 2.2¢ with the leptonic determi-
nation using f g/ f ,—are similar to those using other recent
lattice calculations for the semileptonic vector form factor.

As a consistency check of the semileptonic extraction of
|V.sl, we can consider the neutral- and charged-kaon
modes separately. Using our result in Eq. (6.1)
together with the experimental average for neutral modes
only [7], |Vl /X" (0) = 0.2163(5),” we can compare
|V.s| as extracted exclusively from neutral-kaon decays:
|V s | k0 2 :0.22309(44)f+(0) (44)“10(25)55&4 =0.22309(67).
In this case, we can disentangle the purely experimental

Notice that in order to perform the separate averages,
Moulson [7] uses the phase-space integrals as extracted from
the overall average of form-factor parameters. Although the
phase-space factors are affected by isospin-breaking corrections,
those corrections are expected to have a negligible impact at this
level of precision since the uncertainty on the phase-space
integrals currently has an insignificant impact on the experimen-
tal averages [7].
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error from the uncertainty in the long-distance electromag-
netic corrections, 55, which is the same for all neutral
modes, ~0.22% [77,78]. This result is in very good
agreement with the value in Eq. (7.1) within errors, which
constitutes a good test of the ChPT calculation of isospin
(larger for the charged modes) and EM (larger for the
neutral modes) corrections included in the total experi-
mental average, as was already made clear by the results
in Ref. [7].

B. Tests of CKM unitarity

Using our main result for |V,| in Eq. (7.1), the value
|V.al = 0.97420(21) from superallowed nuclear  decays
[2], and noting that |V ;| is negligible, we find that the
measure of deviation from first-row CKM unitarity in
Eq. (1.1) is

A, = ‘Vud|2 =+ |Vus|2 + |Vub|2 -1
= —0.00104(27), (41), .

us

(7.2)

which is ~2.1¢ away from the unitarity prediction, with an
error dominated by the uncertainty on |V ,,|. This makes
revisiting the determination of |V,,| a priority for CKM
tests. In this vein, one should examine not only super-
allowed f decays but also other approaches.

At present, the precision in the extraction of |V | from
the measurement of the neutron lifetime [3] or pion f
decays [4] is still far from that obtained from superallowed
f decays. In the case of superallowed f decays, additional
measurements will have a small effect on |V,4|. At the
moment, the greatest improvement would come from a
calculation of the short-distance radiative correction, which
is the main source of uncertainty [2]. A very recent
calculation of the nucleus-independent contribution to
those corrections, following a new methodology based
on dispersion relations [17], obtains a value around 2¢
larger than the current best determination by Marciano and
Sirlin [79] and with a significant reduction of the error. The
increased electroweak radiative correction, when combined
with the superallowed f decay results [2], results in a lower
value of |V,,|. The authors of Ref. [17] quote
|V.al = 0.97366(15). Together with our result for |V,
this value of |V,4| considerably increases the tension with
unitarity:

A, = |Vud|2 + |Vus|2 + |V’4b|2 -1
= —0.00209(27), (29)y .

s

(7.3)

a more than 5¢ discrepancy. We discuss further
phenomenological implications of this new calculation in
Sec. VIID. For the remainder of this section, we use the
result by Marciano and Sirlin [79], which leads to |V 4| =
0.97420(21) and Eq. (7.2).

0.2325r Unitarity 0*-0" ]

0.23
0.2275
E 0.225
0.2225
0.22
0.2175F |Vea| + unitarity ]
0.215"""J""“""\"‘7
0.96 0.965 0.97 0.975 0.98
|Vud|
FIG. 11. Constraints on |V,4| and |V | from our results (K3),

kaon leptonic decays (K,), superallowed nuclear f decays,
unitarity, and |V.4|, as discussed in the text. Blue ellipses
correspond to the allowed region from K;; and one of the other
two constraints with a 68% probability. Both regions have no
overlap with unitarity (black line). Correlations between K, and
K3 are not taken into account. The orange horizontal line in the
yellow region corresponds to the central value for |V, | as
extracted from |V ,|.

To avoid using |V, as an input, we can instead perform
a unitarity test relying only on experimental kaon-decay
measurements [7], on the lattice input from the most recent
determination of fy+/f,+ [46], and on our result in

Eq. (6.1) for f%°7 (0). The result of the unitarity test using
those inputs, noting again that |V,,| is negligible, is°®

Au = |Vud|2 + |Vus|2 + |Vub|2 -1

where the 2.2¢ deviation from unitarity is a reflection of the
tension between the leptonic and semileptonic determina-
tions of CKM matrix elements. These results are shown in
Fig. 11, together with the test that takes |V,,| from
superallowed f decays as input. No correlation between
K, and K inputs, either on the theory or experimental
sides, has been taken into account in this test.

®The disentanglement of the EM and experimental errors in
Eq. (7.4) is approximate, and intended only to indicate the relative
size of these errors. The separation of the sources of error is
precise for leptonic decays, but for semileptonic decays we
assume an overall 0.11% EM error in the uncertainty of the
experimental average. This should be a fairly good approxima-
tion, however, since the average is dominated by the neutral
modes for which the error is indeed 0.11%.
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One can perform another test of the unitarity of the
CKM matrix by comparing |V,| with |V.,|, which in
the SM should be equal up to corrections of O(4),
with |V,s| =2+ O(47). Including the O(43) corrections,
which only affect the last significant digit, the most precise
determination of |V 4| = 0.2151(6), (49)cx(6)gy from
leptonic  decays [46] implies the value |V, =
0.2158(52). This value of |V,,| agrees at the 1.4 level
with our result in Eq. (7.1), although with an uncertainty
that is an order of magnitude larger. The uncertainty is
dominated by the experimental error on the leptonic decay
rate DT — £*v, which is expected to be reduced by BESIII
and Belle II. This result is also depicted in Fig. 11. As is the
case for our main result, |V |y | is in tension with first-row
CKM unitarity by about 26 when it is used together with
|V ,.q| from superallowed nuclear § decays in Eq. (1.1).

Note that, in order to perform this test, we change the
normalization of the decay constant fp+ obtained in
Ref. [46] to account for a change in the scale-setting
quantity in that work, f,~, from the PDG value
[z =130.50 £0.13 MeV [3] to the FLAG average
[t =1302+0.8 MeV [6]. That gives us fp+=
212'2(0'3)stat(0'4)syst(1'2)fﬂ,FLAG[0'2]EMscheme'7 The rea-

son for that change is that the PDG value relies on an
external input for |V ,,|, which is taken from superallowed
nuclear f decays, which obscures the comparison. The
FLAG number, however, is an average of direct lattice
determinations of f,+. With this choice of f,+, the errors
are fairly large, and the value of |V,| extracted from
experimental data on pion leptonic decays [16] agrees
within ~1.5¢ with both |V 4| from superallowed nuclear /3
decays and the value from kaon decays only that we
discuss below.

C. Ratio of leptonic and semileptonic decays

Another way of analyzing the tension between SM kaon
leptonic and semileptonic decays is by looking at ratios of
decay widths of leptonic and semileptonic decays, where
the dependence on |V | cancels. We can construct two
ratios

(K= ¢v) ( fre ))2’

['(K - #tv) k=0
DK = )T =) 1 (fe/fe)?
MK > ats) Vil < 7 (0) ) - (73)

The first ratio does not depend on any CKM matrix
elements, while the second one is proportional to

" Although the dependence of £+ on the scale-setting quantity
is much more complicated than a simple linear relation, this
estimate should capture most of the effect and, thus, be good
enough for this comparison, since its uncertainty is dominated by
that of the D* — #Tv decay rate.

1/|V,4l?. In addition, the short-distance radiative correc-
tions cancel between numerator and denominator in the
first ratio, but not in the second.

Taking experimental averages for the kaon decays
and assuming the SM, we obtain® [7,16]

K{Lf = 162.05(40) MeV,
E70)] .
1 foe/fo
% — 1.2745(30). (7.6)
[Vad f77(0) exp.

With our result in Eq. (6.1) for ffo”f (0), the average of
lattice calculations for fg+ = 155.6(0.4) MeV from

Ref. [16], fx+/f, from Ref. [46], and |V,| =
0.97420(21) from [2], those ratios are
e | 160.58(79) MeV,
K'n
+ (0) latt
1 + + 31
fﬁoﬁ — 1.2651 (+ ) (7.7)
|Vud|f+ T (O) latt =35

where we have not taken into account any correlation
between the decay constants and the form factor.
Comparing Egs. (7.6) and (7.7), we see some tension,
~1.7¢ and 2.20, respectively, between the SM predictions
and the experimental measurements. The error from lattice
QCD is the main limiting factor in this comparison, but that
can be reduced by taking into account the correlation
between the numerator and denominator in Eq. (7.7), which
we plan to do in the future.

Alternatively, one can compare the ratio [fg+/
Ft)/[IVual fX7(0)] as extracted from experiment and
theory to get a value of the CKM matrix element
|V.al, and compare it with the value from superallowed
nuclear S decays. The result of such an exercise
is |Vl = 0.9669(19)f+ f{g)fk/f”(%)exp = 0.9669(132),
approximately 2.1¢ lower than the value from superallowed
f decays. This result is seen in Fig. 11 at the intersection of
the two bands for K,; and K,,. It also deviates from the
unitarity condition.

The unitarity test comparing |V ,|/|V.l with
\Vusliv,|/|Vual> again including corrections up to o(»),
and taking the decay constants f g+ /f,+ and fp+/f,+ from
Ref. [46] and the experimental data on leptonic experi-
mental data from Ref. [16], fails at the 2o level. This test is

SWe take T’ (K = lv) from Ref. [16], which does not use the
same value of the universal short-distance electroweak correction
Sew as [7] (from which we take the other experimental averages).
The imperfect cancellation is too small to affect the conclusion
drawn here.
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FIG. 12. Comparison of the unitarity point using |V, = 0.97366(15) with the results in this work, and with the unitarity point
corresponding to |V, = 0.97420(21). RC stands for radiative corrections.

limited by the experimental error on the D™ leptonic
decay rate.

D. Implications of the new extraction of V|

If the decrease of the central value and uncertainty of the
nucleus-independent electroweak radiative corrections
involved in the extraction of |V,,| from superallowed /8
decays in Ref. [17] is confirmed, the new value |V ,,| =
0.97366(15) would exacerbate some of the tensions we
have just discussed.

First, as shown above, this value of |V,,| and our
semileptonic result for |V,,| would imply a greater than
5S¢ violation of first-row CKM unitarity. The tension
between our semileptonic value of |V,| and the one
extracted from kaon leptonic decays and fg=/f +, how-
ever, would be slightly reduced to 20, since a smaller value
of |V,4| would give a smaller value of the leptonic |V,
closer to our semileptonic extraction. For the same reason,
the tension between the ratios involving |V 4| in Egs. (7.6)
and (7.7) would be slightly lessened.

In Fig. 12, as an example, we show the comparison of the
unitarity prediction /1 — |V 4[> for |V,| using both
|V.al = 0.97366(15) and |V,4| = 0.97420(21), together
with the results in this work. Given the important impli-
cations of a value of |V,4| with a smaller error and a smaller
central value, it is very important to confirm the new
calculation of radiative corrections in Ref. [17], and to
understand the discrepancy with the previous best deter-
mination in Ref. [79].

VIII. CONCLUSIONS AND OUTLOOK

Using the HISQ Ny =2 + 1 + 1 MILC ensembles, we
have performed the most precise computation to date of the
vector form factor at zero momentum transfer, fX'7 (0),
and the first one to include the dominant FV effects, as
calculated in ChPT at NLO. Our result for the form factor
enables a direct determination of the CKM matrix element
|V,s| from semileptonic kaon decays with a theory error
that is, for the first time, at the same level as the
experimental error. Further, the uncertainty in this direct
determination is now similar to those from indirect deter-
minations based on leptonic decays with |V ,,| as input.

A key to achieving this level of precision is simulating
at near-physical values of the quark masses, which
drastically reduces the systematic errors associated with
the chiral extrapolation (replacing it with an interpola-
tion), as well as the error coming from the chiral LECs that
are inputs to the analysis. The finite-volume effects, one of
the main sources of uncertainty in our previous analyses,
have also been significantly reduced by explicitly includ-
ing them at NLO (the leading nontrivial order) in ChPT.
The dominant remaining source of error is now statistics,
which could be reduced by extending the key ensembles
with physical quark masses, and including the existing
MILC physical-mass ensemble with a finer lattice spacing
of a~0.042 fm.

Another important error arises from the uncertainty in
the ChPT LECs of order p° That uncertainty could be
reduced by performing a combined analysis of form-factor
data together with light meson masses and decay constants,
which would put more constraints on the ChPT LECs. In
particular, the error from Lg is comparable to, but greater
than, that from L,, and the combined analysis could
significantly reduce the Lg error. Errors from L,, Ls,
and Lg would also be reduced, but they have a much
smaller effect on the total error here.

We find that the extraction of |V | from semileptonic
kaon decays is in tension both with the extraction from
leptonic kaon decays and with unitarity at the ~2-2.6¢
level. In particular, the unitarity test based only on kaon
decay data, without any external input for |V 4|, and having

as nonperturbative inputs ffo”_(O) from this work and
fr+/f+ from Ref. [46], shows a ~2.2¢ tension. While
unitarity tests based on |V ,,| are currently limited by the
uncertainty in that matrix element, the tension with uni-
tarity would raise to the 5o level if the new calculation of
radiative corrections involved in the extraction of |V,|
from superallowed f decays [17] is confirmed.

The test based on kaon-decay data has similarly sized
uncertainties arising from both theory and experiment. In
order to shed light on these tensions, improvements from
both the theoretical and experimental sides are urgently
needed, as are improvements in other approaches. A new
round of experiments is expected to reduce the experi-
mental error to ~0.12% in the next few years [7].
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More importantly, the new high-statistics data will help to
check the consistency of current fits, and to perform a more
thorough study of systematic errors on the experimental
averages.

For the experimental determination of |V,|f fo”f,
electromagnetic and isospin effects are currently being
estimated using phenomenology and ChPT techniques.
Although they are not yet a dominant source of error
(EM effects make a 0.11% correction to the individual
neutral channels), with the reduction of other sources of
error and the forthcoming improvement in the experimen-
tally measured branching ratios and lifetimes, they will
eventually need to be included directly in the lattice-QCD
simulations. Recent efforts in that direction can be found in
Refs. [80-83].

Isospin corrections are numerically important for the
charged kaon channels, where those effects enter already at
LO through 7°-7 mixing. The NNLO ChPT estimate of the
corrections for the charged modes has large errors [67] due
to the unknown value of the O(p®) LECs. Fortunately, the
experimental average is dominated by the neutral-kaon
channels, so the charged-mode uncertainty does not have a
large effect on the final experimental average. The strong
isospin-breaking correction gy () used in the experimental
average is a NLO ChPT estimate that partially includes
NNLO effects; it does not include the uncertainty asso-
ciated with higher-order terms in the chiral expansion.
However, the fact that the value used in the average and the
one extracted from experiment are so close [2.45(19)% vs
2.82(38)% [7]], that the result for |V,| using only the
neutral modes agrees with the one using all decay modes
(see Sec. VI A), and that neutral modes are the dominant
ones in the average, indicates that the experimental average
using this estimate is robust.

The uncertainties from the phase-space integrals are
insignificant at present in the final error for the exper-
imental average. It is therefore not crucial at present to have
a better representation of those, i.e., to have the ¢°
dependence of the form factors. In the future, however,
lattice calculations of fX7(¢?) could provide better deter-
minations of the form-factor slope than those relying on
experimental data [7,26].

An important future step in the investigation of the
tensions observed in the first-row unitarity relation, and in
the value of |V | extracted from different sources, will be
to perform a correlated analysis of semileptonic and
leptonic kaon decays. That analysis would provide a more
precise value of the ratio [fx«/f=]/[|Vualf5*(0)] and
potentially give an insight into the tensions. Another key
point in the study of those tensions is clarifying the role of
the electroweak radiative corrections in the extraction of
|V .q| from superallowed f decays, as well as reducing the
error of that CKM matrix element as extracted, not only
from superallowed f decays, but from other sources.
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