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Abstract: Advancements in technology have generated abundant high-dimensional
data, enabling us to integrate multiple relevant studies. In terms of variable selec-
tion, the significant computational advantage of variable screening methods based
on marginal correlations has resulted in these becoming promising alternatives to
the popular regularization methods. However, these screening methods have thus
far been limited to single studies. In this study, we consider a general frame-
work for variable screening across multiple related studies. As such, we propose
a novel two-step screening procedure, based on a self-normalized estimator, for
high-dimensional regression analyses within this framework. Compared with the
one-step procedure and rank-based sure independence screening (SIS) procedures,
the proposed procedure greatly reduces the false negative rate, while keeping a low
false positive rate. From a theoretical perspective, we show that our procedure pos-
sesses the sure screening property, with weaker assumptions on the signal strengths,
and allows the number of features to grow at an exponential rate with the sample
size. In addition, we relax the commonly used normality assumption and allow sub-
Gaussian distributions. Simulations and a real transcriptomic application illustrate
the advantage of our method over the rank-based SIS method.

Key words and phrases: Multiple studies, partial faithfulness, self-normalized esti-
mator, sure screening property, variable selection.

1. Introduction

In many scientific disciplines, such as omics studies (including genomics,
transcriptomics, etc.), biomedical imaging, and signal processing, high-dimensio-
nal data with number of features that far larger than the respective sample
sizes (i.e., p > n) have become the rule rather than the exception. For exam-
ple, biologists may wish to predict certain clinical outcome (e.g., survival) using
gene-expression data, where they have far more genes than they do samples.
Advancements in technology and a reduction in the price of biomedical research
have yielded increasing numbers of experiments being performed on related hy-
potheses or that explore the same scientific question. Individual studies may have
small sample sizes with limited statistical power. Thus integrating the data from
multiple studies can improve statistical power, estimation accuracy, and repro-
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ducibility. However, the direct merging of data (i.e., a “mega-analysis”) is usually
less favored, owing to the inherent discrepancies between studies (Tseng, Ghosh
and Feingold (2012)). New statistical methodologies and theories are required to
solve high-dimensional problems that integrate multiple related studies.

Various regularization methods are used for feature selection in high-dimen-
sional regression problems. Popular methods include, but are not limited to, the
Lasso (Tibshirani (1996)), SCAD (Fan and Li (2001)), elastic net (Zou and Hastie
(2005)), and adaptive Lasso (Zou (2006)) methods. When a group structure ex-
ists among the variables (e.g., a set of gene features belong to a prespecified
pathway), a group version of the regularization methods can be applied (Yuan
and Lin (2006); Meier, Van De Geer and Biithlmann (2008); Nardi and Rinaldo
(2008)). Refer to Fan and Lv (2010) and Huang, Breheny and Ma (2012) for a
detailed overview of variable selection and group selection in high-dimensional
models. When the number of features grows significantly larger than the sample
size, most regularization methods perform poorly, owing to the simultaneous chal-
lenges of computational efficiency, statistical accuracy, and algorithmic stability
(Fan, Samworth and Wu (2009)). As an alternative, variable screening methods
first reduce the dimension of the problem, and then perform variable regulariza-
tion. Fan and Lv (2008) proposed a sure independent screening (SIS) method
to select features based on their marginal correlations with the response, in the
context of linear regression models, showing that their fast selection procedure
enjoys the “sure screening property”. Since the development of the SIS method,
many screening methods have been proposed for generalized linear models (Fan,
Samworth and Wu (2009); Fan and Song (2010); Chang, Tang and Wu (2013)),
nonparametric additive models or semiparametric models (Fan, Feng and Song
(2011); Chang, Tang and Wu (2016)), quantile linear regressions (Ma, Li and Tsai
(2017)), and Gaussian graphical models (Luo, Song and Witten (2014); Liang,
Song and Qiu (2015)) that exploit more robust measures for sure screening (Zhu
et al. (2011); Li, Zhong and Zhu (2012); Li, Liu and Lou (2017)). However, these
screening methods have thus far been limited to single studies.

In this paper, we first propose a general framework for simultaneous variable
screening across multiple related studies. Including multiple studies provides
additional evidence with which to reduce the dimension and, thus, increase the
accuracy and efficiency of removing unimportant features during screening. To
the best of our knowledge, ours is the first work to employ multiple studies for
variable screening in a high-dimensional linear regression model. Such a frame-

work provides a novel perspective of the screening problem and opens a door to
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the development of methods using multiple studies to perform screening under
different types of models or with different marginal utilities. In this framework,
it is natural to apply a screening procedure to each individual study. However,
important features with weak signals in some studies may be incorrectly screened
out in this case. To avoid such false negative errors and to fully take advantage
of multiple studies, we propose a two-step screening procedure. Here, in addition
to the traditional one-step procedure, we include a step that combines studies
with potential zero correlation as a second check. This procedure can potentially
to save those features with weak signals in individual studies, but that have a
strong aggregate effect across studies during the screening stage. Compared with
the naive multiple study extension of the SIS method, our procedure greatly re-
duces the false negative error rate, while keeping a low false positive rate. These
merits are confirmed by our theoretical analysis. Specifically, we show that our
procedure possesses the sure screening property, with weaker assumptions on the
signals, and allows the number of features to grow at an exponential rate with
the sample size. Furthermore, we require only that the data have a sub-Gaussian
distribution using novel self-normalized statistics. Thus, our procedure can be ap-
plied to a more general distribution family than the Gaussian distribution, which
is considered in Fan and Lv (2008) and Biithlmann, Kalisch and Maathuis (2010)
for a related screening procedure under single study scenarios. After screening,
we apply two general variable selection algorithms: a multiple study extension of
the PC-simple algorithm proposed by Bithlmann, Kalisch and Maathuis (2010),
and a two-stage feature selection method, which we use to choose the final model
in a lower dimension.

The rest of the paper is organized as follows. In Section 2, we present a
framework for variable screening with multiple related studies, as well as the
notations used in this paper. Then, we propose our two-step screening procedure
in Section 3. Section 4 provides the theoretical properties of our procedure,
and demonstrates the benefits of including multiple related studies, as well as
the advantages of our procedure. General algorithms for variable selection that
follow from our screening procedure are discussed in Section 5. Sections 6 and 7
present the simulation studies and a real-data application based on three breast
cancer transcriptomic studies, respectively, which illustrate the advantage of our
method over the rank-based SIS method in terms of reducing false negative errors,
while retaining important features. We conclude and discuss possible extensions
of our procedure in Section 8. Section 9 provides technical proofs of the major

theorems.
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2. Model and Notation

Suppose we have data from K related studies, each with n observations.
Consider a random design linear model in each study k € [K] ([K] =1,...,K):
p

k k
Yy =57 M x4 ®), (2.1)
j=1
where each Y(®) € R; each X(F) = (ka), e XI(,k))T € RP, with E(X®)) = ,ug’;)

and cov(X®)) = Zg;); each €®) € R, with E(¢(®)) = 0 and var(e(®)) = 52, such
that € is uncorrelated with ka), e ,X,(,k); and ) = (ng), e ,,BZ(,k))T € RP,
We assume implicitly that E(Y*)?) < oo and E{(Xj(k))Z} < oo, for j € [p]
([Pl =1,....,p).

When p is very large, we usually assume that only a small set of covariates
are true predictors that contribute to the response. In other words, we assume

most of 3; = (BJ(.U, e ,6](.K))T, where j € [p], are equal to a zero vector. Here we

) is either zero or nonzero in all K studies. This framework

further assume that Bj(k
is partially motivated by an existing high-dimensional linear random effect model
considered in the literature (e.g.,Jiang et al. (2016)). More specifically, we have
8= (/8(71), 07)T', where B1) is the vector of the first s nonzero components of 3
(1 <59 < p). Consider a random effect model, where only the true predictors of
cach study are treated as the random effect; that is, %) = (ﬁéf)) ,0)T and Béf)) is
distributed as N (5(1), 721,,), where 72 is independent of ¢ and X. Consequently,

,Bj(ﬁ) is are either zero or nonzero in all K studies, with probability one. In
practice, for example, genome-wide association studies (GWAS) usually contain
millions of SNPs, but only a few SNPs are important and predictive. The vast
majority of SNPs are not associated with the outcome in any study, thus giving
consistent sparse patterns across studies. For the few important SNPs, it is
possible that signals in other studies have varying strengths, owing to population
heterogeneity. Ma, Huang and Song (2011) considered a two-norm group bridge
penalty for variable selection with multiple high-dimensional -omics data sets
(e.g., gene expression data), where the regression coefficients of the same feature
from multiple studies are treated as a group. A group is either selected or not
(i.e., “all-in-or-all-out”). The selection of a group leads to nonzero estimated
coefficients in all studies, but allows for different strengths of associations in the
studies. A different and less constrained model, allowing sparsity across studies,
has also been investigated in the literature (Li and Tseng (2011); Li et al. (2014));
however, this is beyond the scope of this study.
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With n independent and identically distributed (i.i.d.) observations from
model (2.1), our purpose is to identify the nonzero (). Thus we define the
following index sets for active and inactive predictors:

A={jeplB#0}=1{jepl; 8" #0 for all k};
AC = {j € [pl: B; = 0} = {j € [p): B = 0 for all k},

where A is our target. Clearly, under our setting, A and A® are complementary

(2.2)

to each other, such that the identification of A® is equivalent to the identification
of A. Let |A| = so, where | - | denotes the cardinality.

3. Screening Procedure for Multiple Studies
3.1. Sure independence screening

For a single study (K = 1), Fan and Lv (2008) proposed a variable screening
method called sure independence screening (SIS) that ranks the importance of
variables according to their marginal correlation with the response. As such, they
were able to show its power in preliminary screening and dimension reduction for
high-dimensional regression problems. Biithlmann, Kalisch and Maathuis (2010)
later introduced a partial faithfulness condition, which states that a zero partial
correlation for some separating set S implies a zero regression coefficient, showing
that it holds almost surely for a joint normal distribution. In the extreme case,
when S = (), it is equivalent to the SIS method.

The purpose of sure screening is to identify a set of moderate size d (with
d < p) that still contains the true set A. Equivalently, we can try to identify
A or subsets of A%, that contain unimportant features that need to be screened
out. There are two potential errors that may occur in any sure screening methods
(Fan and Lv (2010)):

1. False Negative (FN): Important predictors that are marginally uncorre-
lated, but that are jointly correlated with the response, fail to be selected.

2. False Positive (FP): Unimportant predictors that are highly correlated
with the important predictors can have a higher priority of being selected
than other relatively weaker important predictors.

The current framework for variable screening with multiple studies resolves
FP errors significantly. Indeed, we have multiple studies in our model setting.
Thus, we have greater evidence with which to exclude noise and reduce FP errors
than if we were using a single study only. In addition, sure screening is used to
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reduce the dimension at the first stage. Therefore, we can include second-stage
variable selection methods, such as the Lasso or Dantzig selection, to further
refine the set and, thus, reduce FP errors.

The FN errors occur when signals are falsely excluded after screening. Sup-
pose p; is the marginal correlation of the jth feature with the response, which we
use to identify the set {j : pj = 0} for the screening out process. Under the as-
sumption of partial faithfulness (defined in Section 4.3), these variables have zero
coefficients for sure, which means the FN errors are guaranteed to be excluded.
However, this might not be true for the empirical version of a marginal correla-
tion. For a single study (K = 1), to eliminate the FN errors in the empirical case,
it is well known that the signal-to-noise ratio has to be large (at least of order
(log p/n)'/?, after a Bonferroni adjustment). In the current setting with multiple
studies, the requirement on strong signals remains the same if we naively perform
one-step screening in each individual study. However, we propose a novel two-
step screening procedure that allows weak signals in individual studies, as long
as the aggregate effect is sufficiently strong. Therefore our procedure reduces FN
errors in the framework with multiple studies.

Before closing this section, note that to perform a screening test, one usually
applies Fisher’s Z-transformation to the sample correlation (Biithlmann, Kalisch
and Maathuis (2010)). However, this requires a bivariate normality assumption.
As an alternative, we propose using the self-normalized estimator of the corre-
lation, which works well, in general, even for non-Gaussian data (Shao (1999)).
Similar ideas have been applied to estimations of large covariance matrices (Cai
and Liu (2016)).

3.2. Two-step screening procedure for multiple studies

Given multiple studies, we have greater evidence with which to reduce the
(k)
J

On the one hand, it is possible for features with zero 3; to have multiple nonzero

pg-k). On the other hand, a nonzero 3; has nonzero pg.k)

dimension, where p:~ = 0, for any k, implies a zero coefficient for that feature.

in all studies. Thus, we
aim to identify the following two complementary sets while performing screening
using multiple studies:

A = (j e [pl: min|p{| = 0},
AW = {j € fpl: min o] # 0},

We know for sure that A% C A€ and A C .A[l], with the partial faithfulness

(3.1)
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assumption. For j € A% the chance of detecting a zero marginal correlation in at
least one study greatly increases with increasing K. Thus, unimportant features
are more likely be screened out than they are in the single study scenario.

(k)

One way to estimate A is to test Hy : pi~) = 0, for each k and each feature

j. If any of the K tests are not rejected for]a feature, we exclude this feature
from Al (we call this the “one-step sure independence screening” procedure,
or “OneStep-SIS”). This can be viewed as an extension of the screening test
to a multiple study scenario. However, in reality, it is possible for important
features to have weak signals, and thus small | pg-k) |, in at least one study. These
features might be incorrectly classified as part of A because weak signals can
be indistinguishable from null signals in individual testing. This will lead to the
serious problem of false excluding important features (FN) from the final set
during screening.

This can be significantly improved by adding a second step that combines
those studies with potential zero correlation (i.e., failed to reject the null Hy :
pgk) = 0) identified in the first step, and then performs another aggregate test.
For features with weak signals in multiple studies, as long as their aggregate
test statistics is sufficiently large, they will be retained. This procedure is more
conservative when screening features than is the first step alone, but it guarantees
a reduction in the false negative rate.

For simplicity, we assume n i.i.d. observations (XZ.(k),Y;(k)), for i € [n], are
obtained from all K studies. It is straightforward to extend the current proce-
dure and analysis to scenarios with different sample sizes across multiple studies;
therefore, this is omitted here. Our proposed “two-step aggregation sure in-
dependence screening” procedure (“T'SA-SIS” for short) is formally described
below.

Step 1. Screening in each study

In the first step, we perform a screening test in each study k € [K]; thus, we

obtain an estimate of the study set with potential zero correlations Zj, for each

J € [pl, as:

(k)
~ ~ ~ nao ;
P Y U N G S C I/ AP
J J 2 J é(k)

J

where :'J(-k) = (1/n) Z?Zl()il(f) — )}(;k))(};(k) —Y®) s ;he sample cozariance,
and 0% = (1/n) X0 (X — XYY — v ®) — 60120 Here, TV is the
self-normalized estimator of the covariance between X J(k) and Y®)_ & is the CDF
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of the standard normal distribution, and «; is a prespecified significance level.

In each study, we test whether ]Tj(k)| > &7 11 — a1 /2); if not, we include
study k in l}. This step does not screen out any variables, but instead separates
potential zero and nonzero study-specific correlations, in preparation for the next
step. Define the cardinality of l}- as kj = \l}| If #; = 0 (i.e., no potential
zero correlation), we for sure retain feature j, and do not consider it in step 2;
Otherwise, we move on to step 2.

Remark 1. By the scaling property of Tj(k)

on the standardized variables: W®*) = (Y — E(Y(k)))/(\/var(Y(’“))),Z](-k) =
(XJ(.k) - E(Xj(k)))/( V&I’(Xj(k))). Thus, Tj(k) can also be treated as a self-norma-
lized estimator of the correlation. We thus define 9](_14) = Var(Zj(-k)W(k)) and

aj(k) = COV(Z](-k), wk) = ;k).

, it is sufficient to impose assumptions

Remark 2. In our analysis, the index set in (3.2) is shown to coincide with
Li(j € .A[O]) and [;(j € AU]); see Section 4.

Step 2. Aggregate screening
In the second step, we test whether the aggregate effect of the potential zero
correlations in l} identified in step 1 is strong enough to be retained. Define
the statistics ﬁj =D kel (Tj(k))Q, which approximately follows a X%j distribution,
with degrees of freedom #; under the null. Thus, we estimate ALl by:
APl = {j € [pl; Lj < ¢;'(1 — az) and &; # 0}, (3.3)
or, equivalently, estimate Alll by:
AN = {j € [pl; L; > o7 (1 — ag) or &; = 0}, (3.4)

where @z, is the CDF of the chi-square distribution with degrees of freedom equal
to A;, and ap is the prespecified significance level.

The second step takes the sum of the squares of Tj(k) from studies with
potential zero correlation as the test statistic. For each feature j, we test whether
2 kei, (T](k))2 > tpgjl(l — ag). If rejected, we conclude that the aggregate effect
is strong and the feature needs to be retained; otherwise, we screen it out. This
step performs a second check in addition to the individual testing in step 1, and
potentially saves those important features with weak signals in individual studies,
but that have a strong aggregate effect.

The procedure proposed here involves two tuning parameters: «; and as.
Because the actual screening test is performed in the second step, commonly used
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Table 1. Toy example to demonstrate the strength of the two-step screening procedure.

S1 (signal) S2 (signal) N1 (noise)

k=1 |TP|=3711 |T{Y|=3.70 17| = 0.42

k=2 |T¥| =316 |T¥|=271 1T8%)| = 0.54

k=3 |T¥ =346 |7 =265 1T83)| = 0.56

k=4 |TW| =363 |T\Y| =268 1T = 0.12

k=5 |T\Y|=324 |7V =1.04 1789 | = 0.69

L 0 {2,3,4,5} {1,2,3,4,5}
i 0 4 5

TSA-SIS L, - 25.31 > ©4(0.95)  1.27 < ©5(0.95)

Al N N Y
Al Y Y N
Al N Y Y
OneStep-SIS Al , N (FN) N

significance levels such as ag = 0.05, are recommended to reduce false negative
errors, following Biihlmann, Kalisch and Maathuis (2010). In general, there is
a trade-off between false negative errors and false positive errors, determined
by the choice of «y. To further reduce the rate of false negative errors during
screening, we recommend using a small a; (e.g., le-4) in practical applications.
A sensitivity analysis on the choices of these two parameters is performed in
Section 6; the results supported our recommendation.

In Table 1, we use a toy example to demonstrate our idea and compare
the two approaches (OneStep-SIS vs. TSA-SIS). Suppose we have five studies
(K = 5) and three features (two signals and one noise). S1 is a strong signal,
with 8 = 0.8 in all studies, S2 is a weak signal, with 5 = 0.4 in all studies,
and N1 is noise, with 8 = 0. In THE hypothesis tests, both small 8 and zero
yield a small marginal correlation, and are sometimes indistinguishable. Suppose
T = 3.09 is used as the threshold (corresponding to «; = 0.001). For the strong
signal S1, all studies have large marginal correlations; thus both OneStep-SIS
and TSA-SIS include it correctly. The weak signal S2 has small correlations in
many studies. As a result, it is incorrectly screened out by OneStep-SIS (FN).
However, the TSA-SIS procedure saves it in the second step (with ae = 0.05).
Both methods tend to remove the noise N1 after screening.
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4. Theoretical Properties
4.1. Assumptions and conditions

We impose the following conditions to establish the model selection consis-
tency of our procedure:

(C1) (Sub-Gaussian Condition) There exist constants M; > 0 and 7 > 0, such
that, for all |t| <n, j € [p], k € [K]:

E{exp(tZ"*)} < My,  E{exp(tW®?)} < M.
In addition, there exist 79 > 0, such that min; HJ(.]C) > 70.

(C2) The number of studies K = O(p?), for some constant b > 0. The dimension
satisfies log®(p) = o(n) and x;log? p = o(n), where &; is defined next.

(C3) For j € A 1;(j € A0y = {k;p§~k) = 0} and k; = [l;|. If k ¢ [}, then

p(k) > C3+/logp/n 1.019<k), where C3 = 3(L + 1 +b).
J J

(C4) Forj € AW, 1;(j € AY) = {k; "] < C1y/log p/n(/0.996"} and w; = |11,
where C1 = L+ 1+0b. If k ¢ [;, then |p§»k)| > ng/logp/n\/l.owj(.k). In

addition, we require } -, |,0§-k)|2 > (Cy(log? p + \/k;log p))/n, where Cy is

some large positive constant.

The first condition (C1) assumes that each standardized variable Z](-k) or
W®) for j € [p], k € [K], marginally follows a sub-Gaussian distribution in each
study. This condition relaxes the normality assumption in (Fan and Lv (2008);
Biithlmann, Kalisch and Maathuis (2010)). The second part of (C1l) assumes
there always exists some positive 79 not greater than the minimum variance
of ZJ(.k)W(k). In particular, if (X](k),Y(k)) jointly follows a multivariate normal
distribution, then 9§k) =1+ pg-k)Q > 1; thus, we can always pick 79 = 1.

The second condition (C2) allows the dimension p to grow at an exponen-
tial rate with the sample size n, which is a fairly standard assumption in high-
dimensional analyses. Many sure screening methods (e.g. SIS, DC-SIS, TPC) use
this assumption (Fan and Lv (2008); Li, Zhong and Zhu (2012); Li, Liu and Lou
(2017)). Although the PC-simple algorithm (Biithlmann, Kalisch and Maathuis
(2010)) assumes a polynomial growth of p, as a function of n, this can be re-
laxed to assume exponential growth with n. We further require that the product
Kj log? p be small. This is used to control the errors in the second step of our
screening procedure, and is always true if K log?p = o(n).
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Condition (C3) assumes a lower bound on nonzero correlations (i.e., k ¢ [;)
for features from Al%. In other words, if the marginal correlation | pg-k)| is not
zero, then it needs to be larger than the signal-to-noise ratio. Although this is a
key assumption for a single study in many sure screening methods (Fan and Lv
(2008); Biithlmann, Kalisch and Maathuis (2010); Li, Zhong and Zhu (2012); Li,
Liu and Lou (2017)), we only impose this assumption for j € A% rather than
on all j € [p]. This condition is used to control for type-II errors in step 1 for
features from A,

Condition (C4) gives assumptions on features from A, We assume the
correlations are small for k € [, and large for k ¢ [;, such that studies with
strong or weak signals can be well identified in the first step. For studies in [},
we further require that the sum of the squares of their correlations be greater
than a threshold; this controls for type-II errors in step 2. This condition is
different to those of methods based on single studies, which they usually assume
a lower bound on each marginal correlation for features from Al as in (C3).
We relax this condition, placing restriction on their Ls norm only. This allows
features from Al to have weak signals in each study, but a strong combined
signal. To appreciate this change, we compare the minimal requirements with
and without step 2. For each j € A in order to detect this feature, we need
|p§k)| > C(logp/n)'/?, with some large constant C, for all k € I; and, thus, at
least Zkelj |p§k)|2 > C?kjlogp/n. By comparison, the assumption in (C4) is
much weaker in reasonable settings x; > logp.

4.2. Consistency of the two-step screening procedure
The first theorem addresses the consistency of the screening in step 1.

Theorem 1. Consider a sequence of linear models, as in (2.1), that satisfy
Assumptions and Conditions (C1)—(C4), and define the event A = {ZJ =1; for
all j € [p]}. Then, there exists a sequence oy = ai(n,p) — 0 as (n,p) — oo,
where oy = 2{1 — ®(yy/logp)}, with v = 2(L + 1 +b), such that:

P(A)=1-0(p %) =1 as (n,p) — oo. (4.1)

The proof of Theorem 1 can be found in Section 9. This theorem states that
the screening in our first step correctly identifies the set [; for features in both
Al and Al (in which strong and weak signals are well separated), and that
the chance of incorrect assignment is low. Given the results in Theorem 1, we
can now show the main theorem for the consistency of the two-step screening
procedure.
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Theorem 2. Consider a sequence of linear models, as in (2.1), that satisfy
Assumptions and Conditions (C1)—(C4). We know there exists a sequence
a; = aj(n,p) = 0 and as = as(n,p) — 0 as (n,p) — oo, where a; =
2{1 — ®(yy/logp)} with v = 2(L +1+1b), as = 1 — ¢y, (1s,) with v, =
Kj + C4(log2p + m), and some constant Cy > 0, such that:

P{AMN (a1, c0) = Ay =1 - 0(p™F) = 1 as (n,p) — 0. (4.2)

The proof of Theorem 2 can be found in Section 9. The result shows that
the two-step screening procedure enjoys the model selection consistency property,
and identifies the model specified in (3.1) with high probability. The significance
levels that yield consistency are a; = 2{1 — ®(yy/Iogp)} and ap = 1 — ¢y, (v, ) -

Remark 3. Condition (C3) is not needed if our goal is to obtain P{AM (o, ) O
AV =1 — O(p~%), rather than the model selection consistency. In addition,
the separation requirement in Condition (C4), ]p§k)] > ng/logp/m/l.owj(.k),
for all k£ ¢ [;, can be removed if we are willing to assume stronger conditions on
the sample size, with an additional sample-splitting procedure (Wasserman and
Roeder (2009)). To make our procedure and analysis transparent, we impose
such a mild separation requirement in Theorems 1—2.

4.3. Partial faithfulness and the sure screening property

Bithlmann, Kalisch and Maathuis (2010) were the first to derive the par-
tial faithfulness assumption, which theoretically justifies the use of a marginal

correlation or a partial correlation in screening, as follows:
pjis = 0 for some S C {7}¢ implies §; = 0, (4.3)

where S is the set of variables conditioned on. For independence screening, S = ().

Under two conditions (the positive-definiteness of X x, and nonzero regres-
sion coefficients being realized from some common absolutely continuous distri-
bution), they showed that partial faithfulness holds almost surely (Theorem 1
in Bithlmann, Kalisch and Maathuis (2010)). Because the random effect model
described in Section 2 also satisfies the two conditions, the partial faithfulness
condition holds almost surely in each study.

Thus, we can readily extend their Theorem 1 to a scenario with multiple
studies, as follows.

Corollary 1. Consider a sequence of linear models, as in (2.1), that satisfy the
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partial faithfulness condition in each study, and are true active and inactive sets,
as defined in (2.2). Then, the following holds for every j € [p]:

py\g =0 for some k for some S C {j}¢ implies Bj = 0. (4.4)

(k)
Jls
k, then with partial faithfulness, we have B](k) = 0 for that particular k. Because

The proof is straightforward, and is thus omitted: if p},; = 0, for some study

we only consider features with zero or nonzero B](k) in all studies in (2.2), we have

B; = 0. In the case of independence screening (i.e., S = 0), p&k) = 0, for some k
implies a zero §;.

With the model selection consistency in Theorem 2 and the extended partial
faithfulness condition in Corollary 1, the sure screening property of our two-step

screening procedure follows immediately.

Corollary 2. Consider a sequence of linear models, as in (2.1), that satisfy
Assumptions and Conditions (C1)—(C4), as well as the extended partial faith-
fulness condition in Corollary 1. Then, there exists sequences a; = a1 (n,p) — 0
and ay = as(n,p) = 0, as (n,p) — oo, where a; = 2{1 — ®(y/logp)} with
v=2(L+1+b), and as =1 — ¢, (Vs,) with v, = ; + Ca(log? p + Vkjlogp),
such that:

P{AC AM(a, a0l =1-0(p 1) =1 as (n,p) = oco. (4.5)

The proof of this corollary simply combines the results of Theorem 2 and
the extended partial faithfulness and, thus, is omitted.

5. Algorithms for Variable Selection with Multiple Studies

Usually, performing sure screening once may not remove enough unimportant
features. In our case, because we have data from multiple studies, we expect our
two-step screening procedure to remove more unimportant features than if we
had data from a single study only. If the dimension is still high after applying
our two-step screening procedure, we can readily extend our procedure to an
iterative variable selection algorithm by testing the partial correlation with a
gradually increasing size of the conditional set S. Because this method is a
multiple study extension of the PC-simple algorithm in Biihlmann, Kalisch and
Maathuis (2010), we call it the “Multi-PC” algorithm (Section 5.1).

On the other hand, if the dimension has been greatly reduced by the two-
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step screening procedure, we can simply add a second-stage group-based feature-
selection technique to select the final set of variables (Section 5.2).

5.1. Multi-PC algorithm

We start from S = (), (i.e., our two-step screening procedure) to build a first
set of candidate active variables:

A = AN = (5 € [p]; L; > gogjl(l —ap) or k; = 0}. (5.1)

We call this set the stage; active set, where the first index in [,] corresponds
to the stage of our algorithm, and the second index corresponds to whether the set
contains active variables ([, 1]) or inactive variables ([, 0]). If the dimensionality
has already been decreased by a large amount, we can directly apply group-based
feature selection methods, such as the group Lasso, to the remaining variables
(introduced in Section 5.2).

However, if the dimension is still very high, we can reduce it further by
increasing the size of S and considering partial correlations, given the variables
in A1, We follow a similar two-step procedure, but now use a partial correlation
of order one instead of the marginal correlation, which yields a smaller stages
active set:

AP = {j e AN Ly, > op ! (1= ag) or &g =0, for all g € AM\(5}3,
(5.2)
where each self-normalized estimator of the partial correlation is computed using
the residuals from the regression over the variables in the conditional set.
We continue screening high-order partial correlations, resulting in a nested
sequence of m active sets:

Al .o c AR ¢ A, (5.3)

Note that the active and inactive sets at each stage are nonoverlapping, and
that the union of active and inactive sets at a stage m is the active set in the
previous stage m — 1; that is, A1 U A0 = Am=11 This is very similar to
the original PC-simple algorithm, but we now perform the two-step procedure at
each order-level. The algorithm can stop at any stage m when the dimension of
Alm1] drops to a low-to-moderate level, and other common group-based feature
selection techniques can be used to select the final set. Alternatively, we can
continue the algorithm until the candidate active set no longer changes. The
algorithm is summarized as follows:
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Algorithm 1: Multi-PC algorithm for variable selection.

Step 1. Set m = 1, and perform the two-step screening procedure to construct
the stage; active set:

ALY = (5 e [pl; Ly > gogjl(l — ) or kj = 0}.
Step 2. Set m = m + 1. Construct the stage,, active set:
A = € AW s gl (1 ) or Ayjs =0,
for all S € A1\ {5} with |S| =m — 1}.

Step 3. Repeat Step 2 untilAm = Myeach, Where
Mreqch, = min{m : |A[m’1}| < m}.

5.2. Two-stage feature selection

As an alternative to the “Multi-PC” algorithm for variable selection, we
introduce here a two-stage feature selection algorithm that combines our two-step
screening procedure with other regular feature selection methods. For a single
study, Fan and Lv (2008), for example, perform sure independence screening in
the first stage, and then apply model selection techniques, including the adaptive
Lasso, Dantzig Selector, and SCAD, which they refer to as SIS-AdaLasso, SIS-DS
and SIS-SCAD, respectively.

In our case, because the feature selection is group based, we adopt a model
selection technique that uses a group Lasso penalty in the second stage:

K
min Y ™ — X8G5+ 4 D 18], (5.4)
k=1 je Al
where A is the active set identified from our two-step screening procedure,
and the tuning parameter \ can be chosen using cross-validation or the BIC in
practice, just as in a regular group Lasso problem. We call this two-stage feature
selection algorithm TSA-SIS-groupLasso.
In addition, if the dimension drops to a moderate level at any stage while
running the Multi-PC algorithm, the group Lasso-based feature selection tech-

niques can take over to select the final set of variables.

6. Numerical Evidence

In this section, we demonstrate the advantage of the TSA-SIS procedure by
comparing it with the multiple study extension of SIS (called “Min-SIS”), which
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ranks features by the minimum absolute correlation between all studies. We
simulated data according to the linear model in (2.1), including p covariates with
a zero mean and covariance matrix EZ(-? = =7l where EE? denotes the (i, j)th
entry of Z‘g’;).

In the first part of the simulation, we fixed the sample size n = 100, p = 1,000,
and the number of studies K = 5, and performed B = 1,000 replications in each
setting. We assume that the true active set consists of just 10 variables, and
that all other variables have zero coefficients (i.e., so = 10). The indices of
nonzero coefficients are evenly spaced between 1 and p. The variance of the
random error term in the linear model is fixed as 0.52. We randomly drew r
from {0,0.2,0.4,0.6} and allowed r to vary across studies. We considered the
following four settings:

1. Homogeneous weak signals across all studies: nonzero 3; generated from
Unif(0.1,0.3) and 8\ = 8% = ... = g% = ;.

2. Homogeneous strong signals across all studies: nonzero 3; generated from

Unif(0.7,1) and 8\ = 8 = ... = g0 — ;.

3. Heterogeneous weak signals across all studies: nonzero [3; generated from
Unif(0.1,0.3) and 8" ~ N(8;,0.52).

4. Heterogeneous strong signals across all studies: nonzero 3; generated from
Unif(0.7,1) and 8" ~ N(8;,0.5%).

We evaluated the performance of Min-SIS using receiver operating char-
acteristic (ROC) curves, which measure the accuracy of the variable selection
independently of choosing good tuning parameters (for Min-SIS, the tuning pa-
rameter is the top number of features d). The OneStep-SIS procedure is actually
a special case of the Min-SIS procedure (thresholding at «q). In presenting our
TSA-SIS procedure, we fixed av; = 0.0001 and as = 0.05, so the result was just
one point on the sensitivity vs. 1-specificity plot. We also performed a sensitivity
analysis on the two cutoffs, based on the first simulation (see Table 2), and found
the two values to be optimal because they both had high sensitivity and high
specificity. Thus, we suggest fixing these two values in all simulations.

Figure 1 shows the results of simulation 1—4. When the signals are homoge-
neously weak in all studies, as in (1), TSA-SIS clearly outperforms the Min-SIS
procedure (it lies above its ROC curve). The TSA-SIS procedure reached about
90% sensitivity with controlled false positive errors (specificity ~ 95%). In order
to reduce false negatives, Min-SIS has to sacrifice specificity and increase the rate
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Table 2. Sensitivity analysis on the choice of a; and «s in the simulation (Sensitiv-
ity /Specificity).

Sensitivity /Specificity ~— ag = 0.15 0.05 0.01 0.001
a; = 0.01 0.793/0.901 0.525/0.984 0.210/0.999 0.142/1.000
0.001 0.947/0.826  0.864/0.943 0.691/0.990 0.373/0.999
0.0001 0.966/0.816 0.922/0.932 0.840/0.985 0.681/0.998
Note: All values are based on the average results from B = 1,000 replications.
(1) Homogeneous weak (2) Homogeneous strong
o = e
¢ :
(3) Heterogeneous weak (4) Heterogeneous strong
| IR
3 ? 3 ]

T T T T T T T T T T
0.0 0.2 04 0.6 08 1.0 0.0 0.2 04 0.6 08 1.0
1-Specificity 1-Specificity

Figure 1. Simulation results 1-4: the ROC curve applies to Min-SIS, and the black point
denotes our TSA-SIS using a; = 0.0001 and as = 0.05.

of false positives, thus losing the benefits of performing screening (i.e. it keeps
too many features). When the signals became strong, as in (2), both proce-
dures performed equally well. This fits our motivation and theory, and shows the
strength of our two-step procedure in saving weak signals, without increasing the
false positive rate significantly. When the signals become heterogeneous, as in
(3) and (4), both procedures perform worse than before. However, the Min-SIS
procedure never outperforms the TSA-SIS procedure, because it only examines
the minimum correlation between all studies, whereas the two-step procedure
also considers the aggregate statistics.
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7. Real Data Application

We next demonstrate our method using three microarray data sets of triple-
negative breast cancer (TNBC, sometimes called basal-like), an aggressive sub-
type of breast cancer, usually with a poor prognosis. Previous studies have shown
that the tumor suppressor protein “p53” plays an important role in breast can-
cer prognosis, and its expression is associated with both disease-free survival and
overall survival in TNBC (Yadav, Chanana and Jhamb (2015)). Our purpose
is to identify the genes most relevant and predictive to the response, namely,
the expression level of the T'P5% gene, which encodes the p53 protein. The three
data sets are publicly available on the authors’ website or at the GEO repository,
including METABRIC (a large cohort consisting of roughly 2000 primary breast
tumours), GSE25066, and GSE76250 (Curtis et al. (2012); Itoh et al. (2014); Liu
et al. (2016)). We filter the data to focus on TNBC cases only, which yielded
275, 178, and 165 TNBC samples for the three data sets, respectively. After rou-
tine preprocessing and filtering by including genes sufficiently expressed and with
enough variation, a total of 3,377 genes remained in common for the analysis.

We applied our Multi-PC algorithm and compared the results with those of
the Min-SIS method using d = n/log(n) = 49 (as suggested by their paper).
We used a7 = 0.0001 and ap = 0.05 (as determined by the sensitivity analysis
in the simulation); the Multi-PC algorithm ran up to the first order only (i.e.,
m = 2), and stopped with six features. This again shows the power of screening
using multiple studies. After the feature selection, we fit the linear model in each
study to obtain the coefficient estimates and adjusted R%. Table 3 shows the
coefficient estimates and standard errors of the final set of six genes selected by
our procedure. We have added two columns to indicate whether they were also
retained by the Min-SIS procedure and their relative rank, respectively. As we
can see from the table, all six genes selected by our procedure were missed by Min-
SIS. These genes typically had weak signals in one or more studies, and thus were
very likely to be incorrectly excluded by a one-step screening procedure. Because
the METABRIC study had a larger sample size, the coefficients all appear to be
more significant than for the other two studies. Furthermore, the final Min-SIS
model with 49 features had a much larger BIC (mean BIC = —189.17) than that
of the model in our procedure with only six features (mean BIC = —313.07),
showing the advantage of our model selection procedure.

The gene EXOC1 and p53 are both components of the Ras signaling pathway,
which is responsible for cell growth and division, and can ultimately lead to
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Table 3. The six genes selected by our TSA-SIS procedure.

Gene METABRIC GSE25066 GSET76250 Min-SIS Rank in
Est (SE) Est (SE) Est (SE) d =49 Min-SIS
Intercept 7.600 (1.502) 0.213 (0.553) —1.783 (0.971) - -
EXOC1 0.251 (0.081)** 0.278 (0.157):  0.293 (0.167)- N 164
ITGB1BP1 —0.134 (0.045)** 0.003 (0.111) —0.178 (0.194) N 123
RBM23 0.168 (0.078)*  0.144 (0.167) 0.367 (0.168)* N 152
SETD3 —0.166 (0.081)*  0.366 (0.184)* —0.080 (0.175) N 101
SQSTM1 —0.114 (0.050)*  0.029 (0.099) 0.245 (0.183) N 98
TRIOBP —0.126 (0.062)*  0.084 (0.118) 0.628 (0.261)* N 91
Adjusted- R? 0.151 0.522 0.359
Note: “.” indicates a significance level of 0.1, “x” denotes a level of 0.05, “xx” denotes a

level of 0.01.

cancer (Rajalingam et al. (2007)). RBM23 encodes for an RNA-binding protein
implicated in the regulation of estrogen-mediated transcription, and has been
found to be associated with p53 indirectly via a heat shock factor (Asano et al.
(2016)). ITGB1BP1 encodes for an integrin protein that is essential for cell
adhesion and other downstream signaling pathways that are also modulated by
p53 (Brakebusch et al. (2002)).

8. Discussion

In this paper, we proposed a two-step screening procedure for a high-dimen-
sional regression analysis of multiple related studies. In a fairly general frame-
work, with weaker assumptions on the signal strength, we showed that our pro-
cedure possesses the sure screening property for exponentially growing dimen-
sionality, without requiring the normality assumption. We have shown through
simulations that our procedure consistently outperforms the rank-based SIS pro-
cedure, independent of their tuning parameter d. To the best of our knowledge,
our study is the first to perform variable screening in a high-dimensional regres-
sion when there are multiple related studies. In addition, we introduced two
variable selection algorithms that follow the two-step screening procedure.

In our procedure, we used the self-normalized estimator of the correlation
to perform the screening test in order to relax the Gaussian assumption to sub-
Gaussian assumptions. This relaxation is especially beneficial compared with
Fisher’s Z-transformation, because in many real scenarios, the normality assump-
tion is violated. Cai and Liu (2016) discuss the same self-normalized sample
correlation as that in our procedure to perform a large-scale correlation test. In
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some other scenarios, self-normalized estimators enjoy the normal approximation
property only under certain weak moment conditions and, thus, are more robust.
We refer interested readers to Pena, Lai and Shao (2008) for more general results
and examples.

Variable selection in regressions with multiple studies have been studied in a
subfield of machine learning called multi-task learning (MTL). The general proce-
dure is to apply regularization methods by including a group Lasso penalty, fused
Lasso penalty, or trace norm penalty (Argyriou, Evgeniou and Pontil (2007);
Zhou et al. (2012); Ji and Ye (2009)). However, at ultrahigh dimensions, such
regularization methods usually fail, owing to challenges related to computation
efficienciency, statistical accuracy, and algorithmic stability. Instead, sure screen-
ing can be used as a fast algorithm for preliminary feature selection, and as
long as it exhibits comparable statistical performance both theoretically and em-
pirically, its computational advantages make it a good choice (Genovese et al.
(2012)). Our method provides an alternative for high-dimensional multi-task
learning problems. Our scenario is related to meta-analysis, and the procedure
in a broader sense can be regarded as a two-stage meta-analysis-based variable
screening method. Here, we first compute the statistics for each study with initial
screening and then combine the results for the aggregate test. From a variable
selection point of view, our general framework is a homogeneous meta-analysis
setting that assumes that the coefficients are either zeros or nonzeros in all stud-
ies. However, the magnitudes of the nonzero coefficients may still vary across
studies, allowing for potential study-to-study heterogeneity.

The current two-step screening procedure is based on a linear model, but
relaxes the Gaussian assumption to a sub-Gaussian distribution. We can apply a
modified Fisher’s Z-transformation estimator rather than our self-normalized esti-
mator to readily accommodate general elliptical distribution families (Li, Liu and
Lou (2017)). In biomedical applications, noncontinuous outcomes, such as cate-
gorical, count, or survival outcomes, are more commonly observed. Fan and Song
(2010) extended the SIS and proposed a more general independent learning ap-
proach for generalized linear models by ranking the maximum marginal likelihood
estimates. Fan, Feng and Song (2011) further extended the correlation learning
to marginal nonparametric learning for screening in ultrahigh-dimensional ad-
ditive models. Other researchers have exploited more robust measures for the
correlation screening (Zhu et al. (2011); Li, Zhong and Zhu (2012); Balasubra-
manian, Sriperumbudur and Lebanon (2013)). These measures are all potential
extensions to our method by modifying the marginal utility used in the screening
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procedure. In addition, the idea of performing screening with multiple studies
is quite general, and is applicable to relevant statistical models other than the
regression model (e.g. a Gaussian graphical model for multiple studies). We
leave these interesting problems for future research.

9. Proofs

We start by introducing three technical lemmas that are essential for the
proofs of the main results. By the scaling property of Tj(k) and Remark 1,
without loss of generality, we assume E(X](k)) = E(Y®) =0 and Var(X](.k)) =
var(Y(®)) = 1, for all k € [If]ls j € [p]. Therefore in the proof we do not dis-

tinguish between U§k and p;’. The first lemma describes the concentration

()

inequalities of the self-normalized covariance and 0]-

Lemma 1. Under the Assumptions (C1) and (C2), for any 6 > 2 and M > 0,
we have:

. ~(k k) k: —
(i) P(maxj,k](oj(- ) ]( )/((6; (k) )Y > 64/ (logp)/n) =O((log p)~1/2p=0+1+b),
(i) P(max; |67 —6/] = Cyy/Togp)/n) = Op~™),
where Cy 1s a positive constant depending on My, n, and M only.

The second and third lemmas, Wthh are used in the proof of Theorem 2, de-
scribe the concentration behaviors of H ((l/f) S X x k) —X}k))(Y(k) —

)

) — /\/‘97 706 168 — (nplt /\/Tanng(k) = ((1/vn)

D <X““ Y, /\ﬁ

Lemma 2. There exists some constant ¢ > 0, such that,

2
- (k)2 AT
P H;"" —1 <2 — —
g [H; I >t] < exp< cmm[ﬁj,t ]),

kel;
where ¢ depends on My and n only.
Lemma 3. There exists some constant Cir > 0, such that,

2
2(k) (k) log”p} _ 1 _m
P n;’z}fx|Hj —H;”|>Ch - =0 ),

y N log?
p maX’Hj(k)Q _ H](k)2’ > Cy %8 P _ o(p~™),
Jik n
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where Cg depends on My, n, M, and 19 only.

The proofs of the three lemmas are provided in the Supplementary Material.

Proof of Theorem 1. We first define the following error events:

B = {|T(’“|><I>< ‘);)andjeA[O},kezj},

E]{QAIDJ _ {‘j}(k)] <! (1 2 and j € AV k¢ 1},
Ejv,;‘“”:{m(’“)pcp 1(1 O;) andjeA[l,kelj},
Eﬁ’““m - {|’_f‘j(k)| <P~ 1(1 O;) and j € ANk ¢ lj}.
To show Theorem 1 that P(A) = O(p~F), it suffices to show that
1,40 I1,A0°) _
P U(Ej,k UEj,k )¢ =0 L)7 (9.1)
7,k
and
[7A[1] ILA[” _
PJE UERT) p =00"). (9.2)
j.k

We can apply Lemma 1 to bound each component in (9.1) and (9.2), with a; =
2{1 — ®(y+/logp)} and v = 2(L + 1 4+ b). Specifically, we obtain that,

UEM < max ITA}k)\Z'y\/logp>

JEALL kel

_ O<11gp—v+1+b) —o(p D), (9.3)

ogp
where the second equality follows from Lemma 1 (i) with 6 = ~, noting that
(k) =0 and T( ) = n&](-k)/\ / éj(k) In addition, we have that

L_JEIA[1 { max k)\>ry\/1og }

jeAM kel;

NON pgk)

p< S il
5(k)
cAlll k:el (' )1/2

1 (e _
O( logpp (v Cl)+1+b> +0(p L)

IN

> (y—C1) 10?) +0(p™ ")
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=0(™"), (9.4)
where the inequality on the second line is the result of Assumption (C4) on [; for
je Al Lemma 1 (i) with M = L, and Assumption (C1) min; Hj(k) > 7p; that
is, G(k > 6 — Cy(logp/n)Y/? > 0. 999( ). The equality on the third line follows

from Lemma 1 (i), where § =y — Cy = L + 1+ b. Finally, we obtain that,
p II AL E.H.A )
],k
P< lax x |1 |<7\/10gp>
~ (k) (k)
o; " —p; log p _
<P | > (Cs— op~t
= (ﬁ? @2 | = Cs=ny =, > o)
J
1
— —(Cs ’Y)+1+b>
p +0(™)
(x/logp
=0(p™"), (9.5)

where the inequality on the second line follows from Assumptions (C3) and (C4)
on l;, Lemma 1 (i) with M = L, and Assumption (C1) on sub-Gaussian distri-
butions; that is, éj(k) < 9§k) + Cy(logp/n)1/? < 1.019§k). In particular, we have

(k)

implicitly used the fact that max;; Hj is upper bounded by a constant depend-

ing on M; and n only. The equality on the third line follows from Lemma 1 (i),
where 6 =C3 —vy=L+1+0b.
Finally, we complete the proof by combining (9.3)-(9.5) to show (9.1)—(9.2).

Proof of Theorem 2. We first define the following error events:
EJA[O]’2 ={|L;] > ¢ (1 — ag) or &; = 0} for j € AL
EJAM’Q = {|L;] < ¢7'(1 — ag) and &; # 0} for j € AL,

To prove Theorem 2, we only need to show that

Pl U B =00t and P |J EM?) =000,  (96)
jEAl] jeAll

with g, =1 — ¢y, [k + Cy( log p+ +/kjlogp) — @, (Vk,)-
Recall the event A defined in Theorem 1. Thus, we have that

[o] [1]
P { ( Ujean B} ’2> U (UjeAm B 2>}
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< P(A®) + p max P 72 5 + max P TH2 <~
< PAY) eyt ;% J Ll IR i ;; e

Therefore, given the results in Theorem 1, it suffices to show that

Py TW2 >, | =0 ") for any j € A, (9.7)
k;el,-
and
Py T®? <y, | =0(p ") for any j € AM and x; > 0. (9.8)

kel
We first prove equation (9.7). Because j € A we have H J(.k) = Tj(k)
wé;k)/@](.k). We are ready to bound the probability of Zkelj Tj(k)z > Yy, be-

low:

(k)2
P ZTJ > Ve

kel;
<p Zﬁ(k)Q 1 Co [logp O(p-L-1
y 7 > - 7@ + (p )
kel, oy n
3
- (k)2 Cy [logp log” p
<P H;"" -1 1—-— — ki — kiC
hS I;IJ(J )>< P n)% kj — kj“CH n
+O0(p~ "1
) Cy | K7logp
=P z:(HJ(.k)2 —1) > k; + Cy(log® p + \/; log p) — 7_—9 ]T
0
kel;

CyC log® K log? log?
Loy \/ g p+\/ j 108 P — kj — k;Ch gp _|_O(p—L—1)
T0 n n n

<P Y@ —1) > Chlog? p+ /rslogp) | + O LY
kel;

=0~ " h).

The inequality on the second line follows from Assumption (C1) that
min; 9§k) > 79 > 0, and from Lemma 1 (ii) with M = L 4+ 1. The inequal-
ity on the third line follows from Lemma 3 with M = L + 1. The inequality on
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the fifth line is the result of the choice of ~,,, with a sufficiently large Cy > 0,
and Assumption (C2) that log® p = o(n) and r;log? p = o(n). The last equality
follows from Lemma 2.

Lastly, we prove (9.8) as follows:

2
®\ 2 40
(k)2 N 2y, Vo) Y
P(E:Tj <%j)_P S AW+ 5 <,

kel kel; ; 0;

<P[> (8" + fp] ( log )’y@ +O0(p~ "

kel

l
<P Z(H(k) </<;]C’HH —nj ( ng) Vi
kel,
(k log? p \F|P
S a5 a0 s 5O
kel kel,

+O0(p~t . (9.9)

The first inequality follows from Assumption (C1) that min; Hj(-k) > 719 >0,
and Lemma 1 (ii) with M = L + 1. The last inequality follows from Lemma 3
(both equations) and minj7k(9](-k))_1 := Cp, > 0, guaranteed by the sub-Gaussian
assumption in Assumption (C1).

We can upper bound the term 2C+/ (log? p)/n Zkelj(\/ﬁ|p§k)|)/( 9](-k)) in
(9.9) as follows:

1 1
5C ogpzf‘P,‘ <20y ng Zp

kel; \/(9](- kel;

=0 n Z pgk)z . (9.10)
kel

The first inequality follows from the Cauchy—Schwarz inequality and Assump-
tion (C1), and the second equality follows from (C2) that #;log®p = o(n).

We next upper bound the term —23-, ﬂ](k)(\/ﬁpgk))/ (9](-k) with a high
probability. Note that Oj(-k) is bounded below and above; that is, 79 < 6?](-k) <ct

by Assumption (C1). In addition, H J(k) has a zero mean and is sub-exponential
with bounded constants, by Assumption (C1). From the Bernstein inequality
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(Proposition 5.16 in Vershynin (2010)), we have, with some constant ¢’ > 0,

(k)
. n\p.;
P |22 Hj(k)M S ¢
kel 0§k)
t2 t
nY kel p§k>2 maxye, \/ﬁfpg-k)’

We select t = Cp \/ ny, kel pg-k)Q log? p with a large constant C'g in the inequality

<2exp | —=¢ min

(9.11)

above, and apply (9.10) to reduce (9.9), as follows:

(k)2
P ZTJ'() < Ve

kel,
= ( D =) < =Cun 3 420 Y0 log p
kel kel kel

+2C4+/kjlogp + 2Cy log? p) +0(p~

< P(Z(ﬁﬁﬂ —1) < —CpCy(log? p + \/x; log p)

kel,

+2Cp \/02 log? p(log® p + / r;logp)

+2C4+/kjlogp +2Cy log? p) +0(p~ 7Y

< P(Z(ﬁ;kﬂ —1) < ~C4(log®p + \/; logp)) +0@p

kel
=0 ")

The inequality on the first line is obtained by the choice of ~,,, with the
chosen Cy; > 0 and Assumption (C2) that x;log?p = o(n). The inequalities on
the second and third lines follows from Assumption (C4) that 3, | ,og-k)|2 >
(Co(log? p + \/m)) /n, for a sufficiently large Cy > 0. The last equality
follows from Lemma 2.

This completes the proof of (9.7) and (9.8), which yields

P{ ( UjeA[O] E;A[O]’Q) U (UjeA[l] Ef[l]g)} — O(p_L)7

with the results from Theorem 1. Therefore we have completed the proof of
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Theorem 2.

Supplementary Material

The online Supplementary Material contains the proofs of the three lemmas.
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