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Fish schools and bird flocks exhibit complex collective dynamics whose self-organization principles are
largely unknown. The influence of hydrodynamics on such collectives has been relatively unexplored
theoretically, in part due to the difficulty in modeling the temporally long-lived hydrodynamic interactions
between many dynamic bodies. We address this through a novel discrete-time dynamical system (iterated
map) that describes the hydrodynamic interactions between flapping swimmers arranged in one- and two-
dimensional lattice formations. Our 1D results exhibit good agreement with previously published
experimental data, in particular predicting the bistability of schooling states and new instabilities that
can be probed in experimental settings. For 2D lattices, we determine the formations for which swimmers
optimally benefit from hydrodynamic interactions. We thus obtain the following hierarchy: while a side-by-
side single-row “phalanx” formation offers a small improvement over a solitary swimmer, 1D in-line and
2D rectangular lattice formations exhibit substantial improvements, with the 2D diamond lattice offering
the largest hydrodynamic benefit. Generally, our self-consistent modeling framework may be broadly
applicable to active systems in which the collective dynamics is primarily driven by a fluid-mediated

memory.
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I. INTRODUCTION

The complex collective dynamics of fish schools and
bird flocks have long fascinated physicists, biologists, and
mathematicians [1,2]. In addition to their biological rel-
evance, they are living examples of active systems [3—6] in
which energy input by the individual constituents gives rise
to organized collective phenomena. While there has been
considerable experimental and theoretical progress in
characterizing “dry” active systems (e.g., shaken granular
rods [7,8]) and the collective behavior of biological systems
at the microscale (e.g., bacterial suspensions [9-12]),
significantly less is known about the role of hydrodynamic
interactions in mediating schooling and flocking behavior
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in collectives of larger animals. More generally, the
influence of inertial fluid flows and the consequent
long-lived hydrodynamic interactions on collective
behavior remains poorly understood. In contrast to the
low-Reynolds number (Stokes) regime in which micro-
swimmers operate, fluid-mediated memory could signifi-
cantly impact animal schools and also nonliving systems
dominated by wave-particle interactions. As an example of
the latter, oil droplets bouncing on a vertically vibrating
fluid bath [13] are known to exhibit crystal-like bound
states [14,15] as a result of their coupling through surface
waves. We present here a modeling framework for the long-
lived hydrodynamic interactions between swimmers, with a
view to understanding how their collective dynamics might
be mediated by flow-induced forces.

The influence of hydrodynamics on schooling and flock-
ing behavior in biological systems has been the subject
of intense debate in the scientific literature. While some
analyses of starling cluster flock data [16,17] focus on
the behavioral mechanisms behind flocking, a recent
analysis [18] of flying ibises in V formations demonstrated
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coherence of the birds’ wing tip paths, which enables
upwash capture from their neighbors to be maximized.
Individual fish have been shown to sense and respond to
environmental hydrodynamic cues [19], and benefit from
external flows by harnessing the energy from vortices
[20-22]. While some studies have argued against a hydro-
dynamic function for fish schools [23] and instead focused
on the social interactions between fish [24-26], a number of
observations [27-30] have indicated that schooling fish
could benefit from hydrodynamic interactions by realizing
significant energy savings.

Theoretical models of flocks and schools have also
largely ignored hydrodynamic interactions, and instead
have shown that self-organized collective behavior may
emerge from a relatively simple set of behavioral inter-
action rules [31,32]. Examples are the seminal works of
Huth and Wissel [33] and Viscek er al. [34], which have
been extended to other discrete-time models with more
elaborate interaction rules [35]. Far-field hydrodynamic
interactions have been recently incorporated into self-
propelled particle models of swimmers subject to pheno-
menological behavioral rules [36,37], but such models
neglect the vorticity-induced forces thought to be relevant
for schooling fish [21].

Fish schools and bird flocks can exhibit orderly lattice-
like formations, although field observations are diverse
and sometimes contradictory [1,2]. Prior observations
revealed that fish schools may adopt lattice configurations
in a statistical sense [38]. A number of fish species (e.g.,
minnow, bream, saithe, herring) adopt schooling forma-
tions reminiscent of 3D tetrahedral and cubic lattices, but
others (e.g., cod) adopt less ordered configurations [39,40].
Relatively rigid school structures, which are treated in this
paper, have also been observed. For example, there are a
number of accounts of fish swimming in linear chains
[41]. In their studies of red nose tetra fish, Ashraf and co-
workers [30,42] noted a prevalence of 2D diamond lattice
formations at low swimming speeds and “phalanx” for-
mations at higher speeds, the latter being a side-by-side
arrangement of swimmers roughly equispaced in a single
line perpendicular to the swimming direction. These two
schooling formations have also been observed in bluefin
tuna [43], for which small schools tend to adopt a phalanx
formation while larger schools adopt a diamond Ilattice.
With respect to bird flocks, ibises have been observed to
obtain aerodynamic and energetic benefits from in-line
formation flight [18]. Certain species (e.g., pelicans [44],
Canada geese [45], ibises [18]) are thought to benefit from
their observed V-formation flight, while it is claimed that
others (e.g., pigeons [46], pink-footed geese [47]) do not.
Corcoran and Hedrick [48] have recently identified a
new type of ordered configuration in shorebird flocks,
the ‘“compound V formation”, wherein a given bird
commonly flies roughly one wingspan to the side and to
the back from the bird in front of it. Such an ordered

structure is observed at all spatial scales within an extended
flock, unlike the purely local structure exhibited by starling
cluster flocks [16,17].

In an attempt to explain such ordered structures, the
seminal papers of Weihs [49,50] considered vortex-induced
hydrodynamic interactions in a 2D lattice of swimmers. By
positing that fish seek to minimize their hydrodynamic drag
while avoiding large flow velocity gradients, Weihs argued
that a diamond lattice is the energetically optimal arrange-
ment. While this model has been highly influential, it has
not been developed further, due to the lack of experimental
confirmation and various modeling assumptions. Speci-
fically, the school’s swimming dynamics was not accounted
for; hence, the speed and efficiency were not self-
consistently calculated, and there was no consideration
of the stability of the most efficient state. Moreover, the
influence of the streamwise spacing between swimmers
was largely neglected, as the swimmers were assumed to be
separated by at least five flapping wavelengths. These
deficits are addressed through the model we present herein.

Various groups have conducted numerical simulations of
the Navier-Stokes equations coupled to an immersed
body’s dynamics, and have thus studied flapping wings
[51-55] and deformable bodies with more realistic fishlike
kinematics [56-63]. Hemelrijk et al. [64] and Daghooghi
et al. [65] modeled a fish school by numerically simulating
a swimmer with doubly periodic boundary conditions in
2D and 3D, respectively, and found that swimmers move
faster in schools than in isolation. However, neither study
examined the dependence of the speed on the streamwise
distance between swimmers. While these studies allowed
for the complex flow structures around flapping bodies to
be quantitatively studied, simulations of fish schools are
computationally challenging because of the large Reynolds
number of the associated flow and the number of interact-
ing bodies, prohibiting a detailed parametric study of lattice
formations.

Understanding the role of hydrodynamic interactions in
fish schools may thus benefit from a simplified physical
system amenable to theoretical analysis. An example is
the recent experimental work of Becker e al. [66], who
realized an in-line formation of swimmers using freely
translating, periodically heaving wings in a cylindrical
water tank. They observed that the system exhibited a
bistability of “schooling states” and spontaneously
locked into either a slow mode or a fast mode, the latter
of which exhibited a significant speed increase relative
to an isolated swimmer. The experiments were extended
by Ramananarivo et al. [67] to allow tandem swimmers
to dynamically select both their speeds and relative
positions.

We present here a modeling framework for understand-
ing the hydrodynamic interactions among flapping
swimmers at high Reynolds number. Our conceptually
simple model is rich enough to incorporate the essential
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features of the swimmers’ hydrodynamic interactions,
while allowing for analytical determination of the model’s
exact solutions and their stability properties. Crucially, our
model differs from other self-propelled particle models in
that the swimmers’ shed vortices are accounted for, so the
thrust on a swimmer depends on the system’s history. The
swimmers thus interact through a fluid-mediated memory,
stored through the collective shed vorticity, and we self-
consistently solve for the formation’s emergent speed. The
model yields insight into experiments on interacting wings
[66] and predicts instabilities that can be explored in the
laboratory. We also extend our model to 2D and determine
the lattice formations that allow for the greatest speed and
efficiency, thus addressing the questions first posed by
Weihs [49,50]. Specifically, we obtain the following
hierarchy: while a phalanx formation (Sec. IV B) offers a
small improvement over a solitary swimmer, 1D in-line
(Sec.IV A) and 2D rectangular lattice formations (Sec. IV C)
exhibit substantial improvements, with the 2D diamond
lattice (Sec. IV D) offering the largest hydrodynamic
benefit.

II. SIMPLE MODEL OF AN IN-LINE FORMATION

We first consider the simplest model for a school: an
infinite line of swimmers modeled as heaving rigid wings
driven periodically with prescribed vertical position y(z) =
ho sin(2zft) and coupled by nearest-neighbor interactions,
as shown in Fig. 1(a). We assume the swimmers to be
separated by a fixed distance L, so the only degree of
freedom is the formation’s speed U. Our goal is to construct
the governing equations for this system and determine the
dependence of U on the kinematic parameters sy and f.
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FIG. 1. In-line formation of flapping swimmers. (a) The

swimmers oscillate periodically with flapping frequency f and
amplitude /. The distance L between swimmers is fixed, and the
formation’s speed U is determined by the balance of drag and
thrust on the swimmers. The swimmers interact with their nearest
neighbors, as indicated by the shaded box. (b) Diagram of the
theoretical model in Eq. (1), presented in the complex plane
z=x+iy. The formation’s dynamics is determined by the
swimmer at the center, and we track its position x,,, horizontal
velocity u,, and vertical velocity v, = (—1)"2zfh, at the mid-
plane y = 0. Vortices of positive (negative) circulation 4y are
shed from the swimmers’ trailing edges at the peaks (troughs)
y = thy of their trajectories, indicated by the dashed curves.

The Reynolds number of the flow around the wings used in
experiments [66] is typically large, Re = Uc/v ~ 10°-10°,
where c¢ is the chord length and v the fluid’s kinematic
viscosity. Such a flow is complex and difficult to quantita-
tively characterize, both experimentally and numerically. We
thus make the simplifying assumption that the flow is two
dimensional, inviscid, and incompressible, and that the flow
structures may be approximated by point vortices shed from
the swimmers’ trailing edges at the extrema of their trajec-
tories [Fig. 1(b)]. These vortices mediate the interactions
between swimmers. We fix the vortex strength as y =
(C,/2x) [T ¥(t)>dt = C,wh}f/2, where C, is a free param-
eterand 7 = 1/(2f) is the flapping half-period [68,69]. We
also assume that the vortex strength decays exponentially
over a timescale 7, an assumption that accounts for turbulent
breakdown of vortical structures at high Reynolds number
[65,67,70]. Both of these assumptions are discussed in detail
in Supplemental Material Sec. II B [71]. We are primarily
concerned with trajectories for which the swimming speed is
much larger than the characteristic advection speed of
vortices [72], U > y/A, A being the distance between vortices
of the same sign, and thus assume the vortices to be
stationary.

We now construct evolution equations for the swimmers’
position and velocity, with the relevant variables listed in
Supplemental Material Table I [71]. Since the swimmers
interact through vortices shed by their nearest neighbors, and
the distance between them is fixed, the formation’s trajectory
is determined by that of a single swimmer. Instead of modeling
the swimmer’s continuous-time motion, we evolve its hori-
zontal position x,, and velocity u,, on the midplane y = 0 atthe
discrete times #,, = nT. Ateach time step, the swimmer sheds
a point vortex of positive (negative) circulation at the peak
(trough) of its trajectory for odd (even) n, which generates
the characteristic reverse von Karman wake [20] of a self-
propelling swimmer [Fig. 1(b), and Movie 1 in Supplemental
Material [71]]. The swimmer moves under the influence
of two forces: a drag Fp(u) and a propulsive thrust
F.[x,, u,,v,,®,(z)], where w,(z) is the fluid vorticity in
the complex plane z = x + iy, and v, = (=1)"2zfhy is the
swimmer’s vertical velocity. The equations of motion are thus

T
Upp1 = Uy +m7{FD(”n) +Fx[xn’un#vn’wn(z)]}’
e

Xpp1 =X, + un+1T7

041(2) = 0,(2)e "+ (=1)"r Y 8(2 = [zs1 +JL]).

where Int+1 = 2a +'%n+l + i(_l)nho’ (1)

the trailing edge of a swimmer centered at the origin is at
z=2a, %41 = (Xy41 +x,)/2, and m, is the swimmer’s
effective mass per unit span, defined in Supplemental Material
Sec. I [71]. We impose the boundary-layer drag law
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Fp(u) = —Cpp+/cv|u|'/?u, where p is the fluid density and
Cp the drag coefficient. Crucially, the propulsive force F,
depends on the swimmers’ dynamically generated vorticity
field w,(z).

We compute the propulsive force F, using the method
detailed in Supplemental Material Sec. I [71]. In summary,
we model the swimmers as up-down symmetric wings in
the complex plane. Such a wing is represented through the
action of the so-called Joukowski map J({) =¢ + ¢, +
a*/(¢ +¢.) onacircle of radius r = |a — £, | in the ¢ plane,
where (. € R sets the swimmers’ vertical thickness
d; = maxy_,{Im[J({)]} and a~c/4 roughly sets the
chord length. The central vortex strength y,. is obtained
by imposing the Kutta condition at the swimmer’s sharp
trailing edge z = 2a, which ensures that the flow remains
smooth there. To make the calculation tractable, we assume
that the swimmers influence each other only through their
shed vortices and not through their body dynamics, an
assumption we expect to be valid in the regime L > c. We
thus obtain an explicit form for the iterated map Eq. (1) that
evolves the swimmer’s position and velocity, given in
Supplemental Material Eq. (12) [71].

We note that a similar method was used by
Ramananarivo et al. [67] to calculate the hydrodynamic
force on a wing due to shed point vortices. However, that
work neglected consideration of the wings’ dynamics,
which is explicitly accounted for by our iterated map
Eq. (1). For this reason, our work goes beyond theirs in
two significant ways. First, we are able to assess the
stability of steady schooling states, which yields important
information about which states are observed experimentally
[66] and thus which lattice configurations are hydrody-
namically optimal. Second, we are able to capture time-
dependent schooling states, which we find to emerge
naturally in 1D flocks (Sec. III). Moreover, while the prior
work was limited to a 1D configuration, modeling 2D
diamond lattices requires consideration of time-dependent
schooling states, as shown in Sec. IV D.

Our theoretical model for the flow field generated by a
flapping wing exhibits satisfactory agreement with the
measurements of Becker et al. [66] using particle image
velocimetry, with upstrokes and downstrokes producing
upward and downward fluid flows (Supplemental Material
Fig. 1 [71]). Our model thus exhibits qualitative similarity
with their ad hoc 1D kinematic model (i.e., swimmers’
inertia is neglected and forces directly determine the
swimming speed), which posits an interaction force
between swimmers that oscillates sinusoidally on the
flapping period and also decays in time. However, our
model is derived from a detailed physical description of
vortex-induced fluid forces, thus permitting quantitative
comparison to experimental data (Sec. III) and treatment
of 2D formations (Sec. IV). We also explicitly incorporate
the swimmers’ inertia, allowing for an assessment of the
stability of steady schooling states (Sec. III).

Our considerable simplification of the flow structures
allows the formation’s dynamics to be analyzed mathemati-
cally. Moreover, simulation of the governing equations is
inexpensive, which allows us to assess the dependence of
the dynamics on the kinematic parameters /iy and f. As
shown in Supplemental Material Sec. I [71], the governing
equations can be written in the dimensionless form

Xppl = Xy + Upiqs

Upp) = Uy + FD(un

1 n
=Y Gl =% —jL.uy.n—k). (2)

j=—1k=—c

) = Fo

where G is Material

Eq. (17) [71].

specified in Supplemental

III. COMPARISON WITH EXPERIMENT

We seek steadily translating solutions to Eq. (2) and
assess their stability, first with the goal of rationalizing
the experimental observations of Becker et al. [66]. The
analysis of Eq. (2) is nontrivial due to the temporal
nonlocality of the formation’s dynamics: updating the
velocity u,, requires knowledge of the swimmer’s history,
which is a generic feature of flow-induced interactions at
high Reynolds number.

Substituting the steady state x, = Un,u, = U into
Eq. (2), we find that U satisfies the algebraic equation

F0+ZZG

j=—1m=

m+1/2] - jL,U,m). (3)

This equation is solved numerically using a bisection
method. The linear stability analysis of such steady-state
solutions is given in Supplemental Material Sec. III [71].
In summary, we linearize Eq. (2) around the steady-state
solution, and find the eigenvalues of the linear stability
problem using the discrete Laplace transform. We show
that the eigenvalues are given by the zeros of the function

F(2) = (= e~ [+ Fp(U) - 0]} ~36(2)( + 1)

+ 922, (4)

where the constants g,, g, and function G(z) are specified
in Supplemental Material Sec. III [71]. The steady-state
solution is stable if all of the roots of F(z) lie inside the unit
disk in the complex plane, |z| < 1, and is unstable other-
wise. We use a numerical contour integration method [73]
to find the roots of F(z) in the annular region 1 < z < R,
where R is a sufficiently large number. The stability
properties of the steady-state solution u#,, = U are dictated
by the location of the root z* of F(z) that is largest in
magnitude.

041024-4



LATTICES OF HYDRODYNAMICALLY INTERACTING FLAPPING ...

PHYS. REV. X 9, 041024 (2019)

Figure 2 shows the comparison between theory (curves)
and experiment [66] (triangles) for an in-line formation.
In the experiments of Becker et al. [66], the distance L
between swimmers is fixed, while the flapping frequency f
and amplitude h, are varied. The measured swimming
speed |U| is shown in Fig. 2(a). The data in Fig. 2(b) are
plotted in terms of the schooling number S = Lf/|U],
which denotes the number of wavelengths separating the
swimmers [66]. That is, integer values of S indicate
trajectories for which the swimmers traverse identical
paths, and half-integer values indicate trajectories for which
neighboring swimmers traverse paths that are perfectly out
of phase. The steady-state solutions predicted by Eq. (3) are
color coded according to their stability: specifically, blue
denotes stable states, red denotes unstable states for which
Re(z*) > 0 and Im(z*) = 0, and green denotes oscillatory
states, which may destabilize via either a flip bifurcation
[Re(z*) < 0 and Im(z*) = 0] or a Neimark-Sacker bifur-
cation [Im(z*) # 0]. The physical significance of these
instabilities is explained at the end of this section.

The theoretical predictions in Fig. 2 exhibit generally
excellent agreement with the experimental data of Becker
et al. [66]. At the lowest flapping amplitude considered,
ho = 0.75 cm, the agreement between theory and experi-
ment is less good, presumably owing to the breakdown of
the point-vortex approximation at low flapping amplitudes.
We note that three free parameters, namely, Cp (drag
coefficient), v (vortex time decay), and C, (initial vortex
strength), are chosen once to best fit all of the experimental
data across flapping frequency f and amplitude h,. The
numerical values of these parameters exhibit good agree-
ment with results in the existing literature, as detailed in
Supplemental Material Sec. II B [71]. Indeed, our fit value

Schooling number S

0 1 2 3 4
Flapping frequency f (Hz)

w
(V)
[

2.25

1.25

0.25

7~ 2 s compares well with the value 7 ~ 5 s inferred from
the data of Newbolt et al. ([74], Supporting Information),
who measured the temporal decay of the flow generated by
a flapping wing in a water tank. Generally, the correspon-
dence between theory and experiment makes clear that
our simplified approach to modeling the flow and the
swimmers’ dynamics captures the key features of the
hydrodynamic interactions between swimmers at high
Reynolds number.

The experiments of Becker et al. [66] provided evidence
for the bistability of steady states and the emergence of
coexisting “slow modes” and “fast modes” for the same
flapping frequency f and amplitude /. Our theoretical
predictions explain these observations in terms of the
stability properties of the steady-state solutions. Indeed,
branches of stable (blue) solutions are separated by
unstable (red) branches, as shown in Fig. 2. Specifically,
schooling numbers S~ s + 1/4 for s € N are favored by
the system when the wings are moving fast due to their
large flapping frequency, a regime in which hydrodynamic
interactions are the strongest. The unstable branches
typically run through schooling numbers S = s+ 3/4,
which are thus avoided by the system. The emergence
of these schooling numbers is explained analytically in
Supplemental Material Sec. I A [71]. We note that the
oscillatory structure of the predicted solutions is a conse-
quence of the hydrodynamic coupling between swimmers,
as the speed is a monotonically increasing function of the
flapping frequency f for an isolated swimmer.

In addition to explaining the bistability of steady states,
the linear stability analysis in Fig. 2 hints that in-line
formations may show unsteady behavior, which is con-
firmed by numerical simulations of Eq. (2). Specifically,

® Stable
® Unstable
® Oscillatory

A Experiments

fr

FIG.2. Model validation. Comparison between the experimental data of Becker ez al. [66] (triangles) and the theoretical predictions of
Eqgs. (2) and (3) (curves). In (a), the formation’s speed U is plotted as a function of the flapping frequency f. In (b), the speed U is plotted
in terms of the schooling number S = Lf/|U]|, and the flapping frequency is made nondimensional by the vortex decay time z. The
theoretically predicted solutions are color coded according to their stability, as outlined in Sec. III: blue indicates stable solutions, red

unstable solutions, and green oscillatory solutions.
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Supplemental Fig. 2(a) shows a simulation conducted in a
parameter regime in which the steady-state solution u,, = U
goes unstable via a flip bifurcation, so the swimmer’s
velocity oscillates on the flapping period [71]. In experi-
ments, one would thus expect the swimming speed to change
appreciably during a single flap, but to be roughly the same
at the start of each flap. More interestingly, Supplemental
Fig. 2(c) shows that a steady schooling state may also
undergo a Neimark-Sacker bifurcation, in which the swim-
ming speed oscillates over a period long relative to the
flapping period, Ty ~ z[Im(log z*)]~' ~ 6T for the param-
eter regime explored here [71]. Because of its simplicity, our
model furnishes testable predictions for the manner in which
steady schooling states destabilize, and the parameter
regimes in which they do so.

IV. COMPARATIVE ANALYSIS
OF DIFFERENT FORMATIONS

Having benchmarked our theoretical model against
experimental data, we analyze how hydrodynamic inter-
actions impact the performance of different lattice forma-
tions. We consider two performance measures, the
formation’s speed U and cost of transport C, and compare
these with the corresponding speed Uy, and cost of transport
Cy of a single isolated swimmer. The cost of transport
C = (P,/|u,|) is a “gallons-per-mile” measure of effi-
ciency that quantifies the formation’s energy consumption
per unit distance [75], where P, is the instantaneous
mechanical power output of the swimmer at time ¢, =
nT and (-) denotes a time average. A formula for P, is
given in Supplemental Material Sec. IV [71].

We compute the speed U and cost of transport C of in-
line (Sec. IVA), phalanx (Sec. IV B), rectangular lattice
(Sec. IV C), and diamond lattice (Sec. IV D) formations as
a function of the distance between swimmers. Our goal is to
identify the lattice formations that maximize the speed and
minimize the cost of transport relative to that of a single
swimmer, values U/U, > 1 and C/C, < 1 indicating a
benefit due to collective hydrodynamic interactions. In this
section, we restrict our attention to a single representative
set of flapping kinematics, f = 1.5 Hz and Ay = 1.5 cm,
for which hy/c = 0.25 and St=2h,f/U,~ 0.1, the low
Strouhal number regime St < 1 being biologically relevant
for fish schools [20]. All distances are reported in units of
the swimmer’s approximate body length 4a.

A. In-line formation

We first solve Eq. (3) to find the dependence of the
swimming speed U on the streamwise distance L between
swimmers in a line. As in Sec. III, we assume the
formation’s dynamics to be dominated by nearest-neighbor
interactions in the streamwise direction. The results are
shown in Fig. 3. As expected from the discussion in Sec. III,
a slow mode (U/U, < 1) and fast mode (U/U, > 1) may
coexist for a given value of L [Fig. 3(a)]. The maximum

Eo 1 ‘\,-4 /L—Z\//L—Z//
=)
ol W~ T Y
0 2 4 6 8 10 12 14 16 18
L
(b) |, ——————————————————
> \’J\ N\ r~—\ /

O 0.25 0.5 0.75 1 1.251.51.75 2 22525275 3 3.25
S

FIG. 3. Speed-up and cost of transport in an in-line formation.
(a) Speed U of an in-line formation of swimmers separated by a
distance L, as predicted by Eq. (3), compared to the speed U, of a
single isolated swimmer. The fastest formation has U/U, = 1.17
for L = 4.6, corresponding to S = 0.73 (black dot). (b) Speed-up
U/ U, from (a) plotted in terms of the schooling number S. (c) Cost
of transport C compared to that of a single swimmer C,,. The most
efficient state has C/Cy, = 0.75 for L = 6.3, corresponding to
S = 1.26 (black dot). In (a)—(c), blue denotes stable or oscillatory
states, red denotes unstable states, and the black dots indicate the
fastest [(a),(b)] and most efficient [(c)] states. (d) Fluid flow (thick
blue arrows) associated with the reverse von Karman street shed by
a flapping swimmer. For a swimmer (not shown) located at a
dimensionless distance S downstream, regions of downflow (up-
flow) are typically associated with speed-up (slowdown) and
higher (lower) cost of transport in (b) and (c). Dashed line indicates
the upstream swimmer’s trajectory.

speed-up of 17% corresponds to a state with S = 0.73,
while the largest slowdown by 19% corresponds to a state
with S = 0.96 [Fig. 3(b)]. The lowest cost of transport is
C/Cy =0.75 and corresponds to a state with S = 1.26,
indicating a maximum energy savings of 25%, while the
highest cost of transport C/Cy = 1.42 corresponds to a
state with § = 0.75 [Fig. 3(c)]. Plotting U/ U, as a function
of § [Fig. 3(b)] shows that states with S > s+ 1/4 and
S <s+3/4 typically have the highest speeds, whereas
those with S<s and S <s+ 1/4 have the lowest.
Conversely, Fig. 3(c) shows that states with S <s+ 3/4
typically have the highest cost of transport, whereas those
with § <5 and S < s+ 1/4 have the lowest. Comparing
Figs. 3(b) and 3(c), we observe that high-speed states
(U/Uy > 1) are typically associated with an increased cost
of transport (C/Cy > 1), indicating a trade-off between
speed and energy consumption.

To understand the oscillatory dependence of U/U, on L,
we derive an approximate form for the thrust F} and lift F§
on a swimmer due to the vortices shed by its neighbors,
assuming that the vortices (with positions z; € C and
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strengths y;) are far from the body, |z;|>r. In
Supplemental Material Sec. I [71], we show that

F{~4rnprVV, and

where V, = Im <Z Tk >

% Z— 2y

F;f I~ —4ﬂprUVf,

(5)

z=0

is the vertical velocity of the flow induced by the neighbor-
ing swimmers’ shed vortices and (U, V) is the swimmer’s
velocity. Figure 3(d) shows a schematic of the reverse von
Karmaén (thrust) wake and associated fluid flow generated
by a flapping swimmer. A swimmer moving upward
(V > 0) in its neighbor’s wake would experience a con-
structive interaction force F? < 0 and thus a speed-up
(U/Uy> 1) for s +1/4 < S < s+ 3/4, and the opposite
for s +3/4 < S < s+ 5/4, according to Eq. (5). We note
that these conclusions may be justified mathematically by
adapting the argument in Supplemental Material Sec. I A
[71], in which we derive an approximate form for the
interaction force Eq. (5) in the biologically relevant low-
Strouhal number limit St <« 1 [20].

A similar argument may be used to qualitatively under-
stand the trade-off between speed and cost of transport. A
wing moving up (V > 0) in a high-speed state (U/U, > 1)
experiences a downward flow from its neighbor’s wake
(V; < 0), which implies F§ <0 by Eq. (5). High-speed
states are thus typically associated with an increased power
consumption, as the wing’s vertical motion is opposed by
its neighbor’s induced flow. In the low-Strouhal number
limit St < 1, the increase in cost of transport C due to the
increased power consumption dominates the decrease in C
associated with the higher speed, as shown in Supplemental
Material Sec. IVA [71].

We may use the foregoing arguments to draw conclu-
sions about an in-line formation in which the nearest
neighbors flap perfectly out of phase with respect to each
other. For such a configuration, the right-hand sides of the
formulas in Eq. (5) for F{ and F§ would simply have their
signs reversed. We thus expect a speed-up and larger cost of
transport for schooling numbers s +3/4 < S <s+5/4,
and a slowdown with lower cost of transport for s 4+ 1/4<
S<s+3/4. That is, Figs. 3(b) and 3(c) would be
qualitatively unchanged, apart from a shift of the horizontal
axis, S > S+ 1/2.

B. Phalanx

Motivated by the experimental observations of Ashraf
et al. [30], we now consider a phalanx of swimmers:
infinitely many swimmers equally spaced by a distance d in
the lateral (y) direction and, following Weihs [50], flapping
in antiphase with respect to their neighbors, as shown in
Fig. 4 and Supplemental Material Movie 2 [71]. As
discussed in Supplemental Material Sec. VA, Weihs [50]
and Stocker [76] argued that in-phase flapping would result
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FIG. 4. Speed-up and cost of transport in a phalanx. The
phalanx formation consists of infinitely many swimmers equally
spaced by a distance d in the lateral direction, flapping in
antiphase with respect to their neighbors. Black arrows indicate
the swimmers’ instantaneous vertical velocity. Dashed lines
indicate the swimmers’ trajectories, with associated shed vortices
(blue). The speed (black curve) and cost of transport (red curve)

evidently decrease as the lateral distance d between swimmers is
increased.

in an increased drag force on the downstream fish, due to
the anomalously large induced velocity in the y direction
[71]. Such an argument is in agreement with the exper-
imental observations of Ashraf et al. [42], who found that
pairs and triplets of red nose tetra fish preferentially flap in
antiphase with respect to their lateral neighbors. We also
restrict our attention to the parameter regime d > d;, =
2(hy + dy) to ensure that the swimmers do not collide with
each other during a flapping cycle.

A straightforward extension of the iterated map pre-
sented in Sec. II permits consideration of this formation, as
shown in Supplemental Material Sec. V [71]. Following the
procedure detailed in Sec. III, we find that the swimming
speed U satisfies an algebraic equation of the form Eq. (3)
with L = 0. The interaction function G describes the
hydrodynamic thrust due to a side-by-side arrangement
of swimmers flapping in antiphase, and is defined in
Supplemental Material Eq. (41). The solutions to this
equation are shown in Fig. 4. The phalanx formation
evidently does not exhibit the multistability of steady states
seen for in-line formations (Sec. IV A). By generalizing the
linear stability analysis of steady-state solutions presented
in Sec. III, we find that the steady state is stable for all
values of d. As shown in Fig. 4, the formation exhibits a
slight speed-up for all values of d, with the maximum
speed-up of roughly 5% occurring when the swimmers are
most tightly packed, d = d,,;,. However, such a formation
also increases the cost of transport by roughly 4%, with the
cost of transport decreasing as d — oo. Similar to the 1D
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formations discussed in Sec. IV A, the phalanx formation
exhibits a trade-off between speed and cost of transport,
although both measures exhibit relatively small variations
over a range of values d.

C. Rectangular lattice

We now consider the rectangular lattice of swimmers
shown in Fig. 5(a) and Supplemental Material Movie 3 [71]:
swimmers separated by a streamwise distance L and a
vertical distance d, starting at the positions z = jL + ikd
for j, k € Z. Swimmers flap in phase (antiphase) with respect
to their streamwise (lateral) neighbors. As in Sec. II, a
swimmer at the origin [red box in Fig. 5(a)] interacts with the
swimmers in the neighboring columns at x = 0, L. Note
that the lattice is effectively an in-line formation in the limit
d — oo. In Supplemental Material Sec. V, we show that the
steady speed U satisfies the algebraic equation (3), with the
function G defined in Supplemental Material Eq. (41).

We numerically solve this equation to find the depend-
ence of the steady speed U on the geometric parameters L
and d. We then perform numerical simulations of the
evolution equations, with initial conditions determined
by these steady-state solutions, and compute the trajec-
tory’s time-averaged velocity U,,. Figure 5(b) shows the
normalized velocity U,,/U, as a function of L and d. As
with the in-line formation, there may be multiple steady-
state solutions for a given set of parameters; in such cases,
we perform multiple simulations and plot the time-
averaged speed of the fastest state. The simulations reveal
the existence of multiple coexisting states within the
regions of geometric parameter space bounded by the gray
curves in Fig. 5(b). As the lateral distance d between
swimmers is decreased progressively, these regions of
multistability typically shrink, but new regions of multi-
stability may also emerge.

We find that the formation experiences a maximum
speed-up of 18% for a roughly square geometry, L = 2.1
(§=0.33) and d =1.94. The black curves in Fig. 5
indicate dy (L) = argmax,[U,,(L,d)/U,], the optimal
lateral spacing for a given streamwise spacing, and the
corresponding speed Uy (L) = |U, (L, dy(L))|. Note
that, unlike the phalanx (Fig. 4), the greatest speed-up is
not necessarily achieved by packing the swimmers tightly
in the y direction, so dy;(L) is not identically equal to d;,.
A comparison between the rectangular lattice and in-line
formation is shown in Fig. 5(d). The most salient feature is
that the slow modes (U/U, < 1) for an in-line formation all
exhibit speed-up in the corresponding rectangular lattice
with the minimum lateral spacing, dy; (L) = d,,;,- However,
the fast modes (U/U, > 1) for an in-line formation benefit
minimally from the rectangular geometry, and the corre-
sponding optimal lateral spacing dy (L) is often much
larger than d,,;,. Indeed, the fastest rectangular lattice
formation is only marginally faster than the fastest in-line
formation.
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FIG. 5. Speed-up in a rectangular lattice. (a) Schematic of the

rectangular lattice of swimmers that maximizes the speed-up
U, /Uy. This state has U,,/U,=1.18 for L =2.1 and
d =194, corresponding to § = 0.33, and is indicated by the
pink dot in (b)—(d). The formation’s dynamics is determined by
that of the swimmer at the origin (red box), and black arrows
indicate the swimmers’ instantaneous vertical velocity. Dashed
lines indicate the trajectories of the swimmers in the upstream
column, with associated vortices (blue) and fluid flows (thick
blue arrows). (b) The color map shows the normalized time-
averaged speed U,,/U, as a function of L and d, based on
numerical simulations of rectangular lattice formations. The
black curve dy(L) indicates the optimal lateral spacing as a
function of the streamwise spacing L. Multiple coexisting states,
obtained by changing the initial conditions, are found in the
regions bounded by the gray curves. (c) Optimal lateral spacing
dy (L) plotted as a function of the schooling number S. (d) The
associated speed-up U,,.c/Uy (black), superimposed on top of
the results for an in-line formation from Fig. 3(b). The dashed
portions of the black curves in (b)-(d) are guides to the eye.

Figure 6 shows the corresponding results for the cost of
transport of a rectangular lattice of swimmers. For the
regions of parameter space in which multiple states coexist,
Fig. 6(b) shows the cost of transport of the most efficient one.
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FIG. 6. Cost of transport in a rectangular lattice. (a) Schematic
of the rectangular lattice of swimmers that minimizes the cost of
transport C/C,. The minimal cost of transport C/C, = 0.75 at
L = 6.3 and S = 1.26 corresponds to that of an in-line formation
[Fig. 3(c)], for which d — oo. This state is indicated by the pink
dot in (b)—(d). (b) The color map shows the normalized cost of
transport C/C, as a function of L and d, based on numerical
simulations of the rectangular lattice formation. The black curve
de(L) indicates the optimal lateral spacing as a function of the
streamwise spacing L. (c) Optimal lateral spacing d(L) plotted
as a function of the schooling number S. (d) The associated cost
of transport C,;,/Co (black), superimposed on top of the results
for an in-line formation from Fig. 3(c).

The cost of transport assumes the minimum value for an
effectively in-line formation (d — o), for which C/C, =
0.75 and S = 1.26 [Fig. 3(c)]. The black curves in Fig. 6
correspond to d-(L) = arg min,C(L, d), the optimal lateral
spacing for a given streamwise spacing, and the correspond-
ing cost of transport Cp,(L) = C(L,dc(L)). Unlike
dy(L), which exhibits a nontrivial dependence on the
streamwise spacing L [Fig. 5(b)], d¢(L) typically assumes
the values d. = dy;, and d- = oo [Fig. 6(b)]. Figure 6(d)
shows that the states for which d¢ = d,;, typically corre-
spond to inefficient states (C/C, > 1) for which the rec-
tangular lattice formation affords a slight hydrodynamic
advantage over the in-line formation. Conversely, the states
for which d- = oo typically correspond to efficient states
(C/Cy < 1) for which the lattice geometry actually
increases the cost of transport, making the in-line formation
the most efficient.

Taken together, the results in Figs. 5(d) and 6(d) make
clear the dominance of streamwise interactions between

swimmers in determining both the speed and cost of
transport of a rectangular lattice of swimmers. The physical
picture given in Sec. IV A may thus be used to qualitatively
understand how the lattice geometry influences both the
speed and cost of transport. Recall that the in-line formation
typically experiences a speed-up (U/U, > 1) and a de-
crease in efficiency (C/Cy>1) when a swimmer at z=0
swims up into the downflow generated by its upstream
neighbor at z = —L (Fig. 3). For such values of L, cor-
responding to schooling number s + 1/4 < S < s+ 3/4,
the upstream swimmers at z = —L £ id in a rectangular
lattice contribute an upflow [Fig. 5(a)], decreasing the thrust
but increasing the lift according to Eq. (5). These effects
contribute to a decrease in speed but an increase in efficiency
for a rectangular lattice as compared to an in-line formation,
making it advantageous to increase (decrease) the lateral
spacing d when optimizing for speed (efficiency).
Conversely, the in-line formation is relatively efficient
(C/Cy < 1) but slow (U/U, < 1) for values of L corre-
sponding to s + 3/4 < § < s + 5/4, the parameter regime
in which the upstream swimmers at z = —L £ id in the
rectangular lattice generate a downflow. This contributes to
an increase in speed but a decrease in efficiency, making it
advantageous to decrease (increase) the lateral spacing d
when optimizing for speed (efficiency).

D. Diamond lattice

We now consider the diamond lattice shown in Fig. 7(a)
and Supplemental Material Movie 4 [71]: swimmers
separated by a streamwise distance L and lateral distance
d, starting at the positions z = (j +[/2)L + i(k+1/2)d
for j,ke€ Z and [ € {0,1}. As in the previous section,
swimmers flap in phase (antiphase) with respect to their
streamwise (lateral) neighbors, and a swimmer at the origin
[red box in Fig. 7(a)] interacts with the swimmers in the
neighboring columns at x =0, +L/2,+L.

The complete equations are detailed in Supplemental
Material Eq. (45) [71]. Since the lattice is no longer
symmetric about the midplane y = 0, the steady state
u, = U is not a solution to the governing equations, but
the period-2 trajectory u, = U + (—1)"U; is. The un-
knowns U and U, satisfy the pair of algebraic equations

+2U, + Fp(U+U,)

2 © 1 U]
=Fy+ ZZG(U[m%—E} +

j=—2m=0

iL
_%ZFa]dﬂUiUhm)’ (6)

where a; = mod (j,2)/2 accounts for the vertical shift in
the columns at x = +L/2. This equation describes the
balance of drag and vorticity-induced thrust on a swimmer,
both of which depend on the swimmer’s instantaneous
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FIG.7. Speed-up in a diamond lattice. The procedure described
in the caption of Fig. 5 is repeated for a diamond lattice. The
fastest state has U,,/Uy=1.22 for L =4.4 and d = d,,
corresponding to § = 0.67.

flapping phase. We describe how to solve these equations
numerically, and extend the methodology described in
Sec. III to assess the stability of these period—2 solutions,
in Supplemental Material Secs. V and VI, respectively.

We then numerically simulate the governing equations
for a diamond lattice with initial conditions determined by
the period-2 base states. As with the rectangular lattice
described in Sec. IV C, the simulations reveal the existence
of multiple coexisting states, indicated by the regions of
parameter space bounded by the gray curves in Fig. 7(b).
In such cases, Fig. 7(b) shows the normalized average
speed-up U,,/U, of the fastest state. We find that the
formation experiences a maximum speed-up of 22% for
L = 4.4 and d = d,,;,, which corresponds to § = 0.67. As
with the rectangular lattice considered in Sec. IV C, dy; (L)
is not identically equal to d;,, although the lateral spacing
is indeed minimized for the fastest lattice.

These results may also be qualitatively understood using
a simple argument based on fluid flows, and by comparing
the diamond lattice and in-line formation in Fig. 7(d). As
with the rectangular lattice, the slow modes (U/U, < 1)
for an in-line formation exhibit speed-up in a diamond
lattice with the minimum lateral spacing, dy (L) = dpjn.
Most fast modes for an in-line formation (U/U, > 1)

benefit minimally from the diamond geometry; however,
those with S < s + 3/4 experience a speed-up of 3%—5%
relative to the in-line formation, also with d = d,,;;,,. This is
due to the existence of an entirely new branch of fast modes
that emerges for d 2 d;,, as shown in Supplemental
Material Fig. 3 [71]. These fast modes may be attributed
to the beneficial dipolar structure generated by the
swimmer’s upstream neighbors at z = —L/2 + id/2, as
shown in Fig. 7(a). The fluid flow induced by this dipole at
the midplane y = 0 does not have a vertical component,
and its horizontal component is negative, effectively
imparting additional thrust to the swimmer and increasing
its speed. The next flap generates a dipole of opposite sign,
which imparts a drag; however, this contribution is weaker
than the previous thrust contribution, since the associated
vortices are farther from the body.

Figure 8 shows the corresponding results for the cost of
transport of a diamond lattice of swimmers. The cost of
transport assumes the minimum value C/C, = 0.67 for a
state with S = 0.5 and d = d,;,, indicating that a tightly
packed diamond lattice formation realizes a substantial
increase in efficiency due to hydrodynamic interactions.
Figure 8(b) shows that, for a given streamwise spacing L,
the optimal lateral spacing is typically d¢(L) = dpy, or

02505075 1 125615175 2 22525275 3 3.25
S

FIG. 8. Cost of transport in a diamond lattice. The procedure
described in the caption of Fig. 6 is repeated for a diamond lattice.
The state with the lowest cost of transport has C/C, = 0.67 for
L =2.8 and d = d,;,, corresponding to S = 0.5.
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dc(L) = oo. This effect is similar to that observed for the
rectangular lattice, and may be rationalized by the physical
argument presented in Sec. IV C. However, the diamond
lattices for which S ~ s + 1/2 are noticeably more efficient
than their in-line formation counterparts, an effect that is
absent for rectangular lattices. This finding may also be
explained by the beneficial dipolar structure generated by
the swimmer’s upstream neighbors at z = —L/2 £ id/2
[Fig. 8(a)], which provides an additional lift force as the
swimmer accelerates upward.

While the distinct optimal diamond lattice formations
shown in Figs. 7(a) and 8(a) correspond to stable period-2
states, closer examination of the simulated solutions reveals
that they often exhibit a complex nonlinear dynamics.
This finding indicates that hydrodynamic interactions may
significantly influence schooling behavior when the
swimmers are interacting strongly, particularly in the
regime d 2 d;,- We note that we also observed chaotic
solutions in our model for the in-line formation, and leave
the complete characterization of the system’s nonlinear
dynamics for future work.

V. DISCUSSION

We present a new model for the hydrodynamic inter-
actions between swimmers in high-Reynolds number
flows. While numerical simulations of such systems are
computationally challenging, our model offers a simple
framework by which to interpret the formation’s dynamics:
the swimmers shed vortices during each stroke, and in turn
are propelled due to the vorticity-induced flow field.
Despite neglecting consideration of the details of the
flapping kinematics and the associated flow structures,
our model exhibits good agreement with experimental data
on interacting wings [66], while using only three fitting
parameters (Cp, 7, and C,). As shown in Fig. 2, the
observed bistability of slow and fast states is a consequence
of overlapping branches of stable (blue) steady-state
solutions, which are separated by unstable (red) branches.
The multistability of states has not been observed in prior
theoretical investigations, but is a generic feature of our
model: indeed, multiple coexisting states are found in the
in-line, rectangular, and diamond lattice formations for
appropriate values of the geometric parameters. Our model
also predicts new schooling instabilities (Supplemental
Material Fig. 2 [71]) through which the speed oscillates
in time, an effect that can be probed experimentally. Animal
schools might employ active control mechanisms in order
to mitigate the effects of such instabilities.

Despite the apparent complexity of the hydrodynamic
interactions, we show that the interaction thrust force
between two swimmers is approximately proportional to
the vertical velocity of a swimmer and the vertical velocity
of the flow induced by its neighbor [Eq. (5)]. This shows
that the speed of an in-line formation is sensitive to the
streamwise spacing, as a self-propelling flapping swimmer

generates a spatially oscillatory flow field in its wake
Fig. 3(d). For the set of flapping kinematics considered, we
find that an in-line formation may move up to 17% faster
than an isolated swimmer, provided the distance between
swimmers L is such that the schooling number S < 0.75
[Fig. 3(b)]. By contrast, a phalanx formation of swimmers
flapping in antiphase moves roughly 5% faster than a single
swimmer (Fig. 4), with the optimal speed-up occurring
when the lateral distance between swimmers is minimized.
While the fastest rectangular lattice provides a marginal
advantage over an in-line formation (Fig. 5), the fastest
diamond lattice is able to move 22% faster than a single
swimmer (Fig. 7), provided that the lateral distance
between swimmers is minimized. This effect may be
attributed to the advantageous horizontal flow generated
by a swimmer’s upstream neighbors [Fig. 7(a)].

By using the cost of transport to measure the energetic
efficiency, we find that in-line formations may realize an
energy savings of 25% over an isolated swimmer, provided
the distance between swimmers L is such that the schooling
number S 2 1.25 [Fig. 3(c)]. While our finding that the
phalanx formation affords a speed-up is in agreement with
the experimental observations of Ashraf et al. [30], we also
find such formations to be slightly less efficient than an
isolated swimmer (Fig. 4). Generally, we observe that in-
line and phalanx formations exhibit a trade-off between
speed and efficiency. While all rectangular lattices have a
higher cost of transport than the most efficient in-line
formation (Fig. 6), the most efficient diamond lattice has an
energy savings of 33% over an isolated swimmer, an effect
that can also be attributed to the effective vortex dipole
generated by the swimmer’s upstream neighbors [Fig. 8(a)].
Taken together, our results show that the fastest and most
efficient diamond lattice formations are distinct, and that
they outperform the other geometries in speed and effi-
ciency, respectively. Based on the argument presented at the
end of Sec. IV A, we expect qualitatively similar results for
a model in which the swimmers flap perfectly out of phase
with respect to their streamwise neighbors in both in-line
and 2D lattice formations. While most of the relevant
schooling numbers will be shifted, S - S+ 1/2, we still
expect the diamond lattices with S=s+1/2 to be
particularly efficient [Fig. 8(d)], owing to the vortex dipole
shed by a swimmer’s upstream neighbors.

Our finding that the most efficient state is realized by a
diamond lattice with the minimal lateral spacing d = d;,
is consistent with the results of Weihs [49,50]. However,
our results differ in that the curves d; (L) and d(L) [black
curves in Figs. 7(d) and 8(d), respectively] are not mon-
otonic, implying that there is not an optimal lattice angle.
While Weihs argued that it is disadvantageous for a
swimmer to swim directly behind another, we find that
this is not necessarily the case (Fig. 3). We note that our
model differs from Weihs’s in some important ways. First,
we model flapping swimmers, and find that the formation’s
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speed is influenced by the relationship between the
swimmer’s kinematics and oncoming fluid flow (Sec. IV A).
More sophisticated computational models [63,77] of fishlike
swimming have also highlighted the importance of this
relationship. Second, we allow the vortex strength to decay
in our model, which sets an effective interaction distance
~Urt between swimmers. Third, we explicitly account for
the formation’s dynamics and thus the schooling modes’
stability, which was not possible in Weihs’s framework.

Our results may also be compared with recent theoretical
and computational studies of a swimmer in a doubly periodic
domain, which generates a lattice of swimmers flapping
in phase. Recently, Hemelrijk et al. [64] conducted 2D
numerical simulations using a multiparticle collision
dynamics model and also found that the diamond lattice
provides the largest speed-up relative to a single swimmer
(23%), but that the maximum occurred for d = 2, the largest
lateral spacing considered. Similarly, the diamond lattice for
d = 1.75 was found to have the highest Froude efficiency, or
the ratio of the useful power to the total power input.
However, Hemelrijk ez al. [64] did not consider the influence
of the streamwise spacing L, which we find to play a
dominant role. Daghooghi and Borazjani [65] conducted 3D
large eddy simulations of rectangular lattices of swimmers
at high Reynolds number. They found that the swimming
speed and efficiency increase as the lateral distance d
decreases, but also did not consider the influence of the
streamwise spacing and instead fixed L = 1. They attributed
the observed hydrodynamic advantage to channeling or
wake blockage; this effect is beyond the scope of our model,
since we assume the vortices to remain in place once shed.
Nevertheless, in our simulations of rectangular lattices of
swimmers that flap in antiphase with respect to their lateral
neighbors, we find that the swimming speed and efficiency
do not necessarily exhibit a monotonic dependence on d,
but instead are nontrivially influenced by both L and d
[Figs. 5(b) and 6(b)]. Tsang and Kanso [78] proposed a far-
field hydrodynamic model of swimmers as finite-sized
vortex dipoles, and found that swimmers in both rectangular
and diamond lattices actually move slower than they would
in isolation. They attributed this result to the absence of shed
vorticity in their model, which has been shown to mediate
the near-field interactions between swimmers [67]. Our
dynamical model builds on these studies by explicitly
modeling both the flapping kinematics and shedding of
vortices. The model’s mathematical simplicity allows us to
analytically show the multistability of states in in-line,
rectangular, and diamond lattice formations, a result absent
from all of the studies described above. Moreover, the
model’s computational tractability allows us to conclusively
determine the dependence of the speed and cost of transport
on the geometric parameters L and d.

We now compare some of our results to schooling
formations reported in the literature, despite the current
sparsity of quantitative data. In their observations of red

nose tetra fish, Ashraf et al. [30,42] reported that high-
speed schools typically adopt phalanx formations with
nearest neighbors separated by 0.5-0.6 body lengths. This
observation is consistent with our theoretical prediction that
the fastest phalanx formation is realized for the minimum
lateral distance considered, d = 0.7 body lengths (Fig. 4).
Similarly, Atlantic bluefin tuna have been observed to
adopt phalanx formations with an average lateral spacing
between 1 and 1.5 body lengths [27,43]. When in relatively
large schools, this fish species has also been observed to
adopt diamond-lattice-like formations with a mean first-
and second-nearest neighbor separation angle between 14°
and 17° (Fig. 5 in Ref. [27]). This observation is roughly
consistent with our theoretical prediction that the diamond
lattice with the lowest cost of transport has a separation
angle of 13° (Fig. 8). However, the red nose tetra fish has
been observed to adopt diamond lattice formations with a
typical separation angle of approximately 37° [Fig. 2(b) in
Ref. [30]]. Moreover, this fish species tends to adopt the
phalanx over the diamond lattice formation at high swim-
ming speeds [30], an observation that runs counter to our
prediction that the fastest and most efficient states are
realized by diamond lattice formations. We note that the
spatial phase synchronization between neighboring fish, as
measured through the schooling number S, is not typically
reported, which prevents further quantitative comparison
between our theoretical predictions and field observations.
Such detailed comparison against biological swimmers
would also benefit from more accurate modeling of the
swimming kinematics and body shape. Considerations
beyond hydrodynamics, such as social cues and predator
avoidance, undoubtedly also impact the structure of schools
observed in nature.

We expect the results presented herein to be most
relevant for understanding fish schools, since we neglected
the influence of lift forces on the dynamics. While a recent
study of shorebird flocks found no evidence of temporal or
spatial phase synchronization between birds [48], ibis
flocks were observed to preferentially assume V formations
with median schooling number S~ s+ 1/4, and in-line
formations with S~ s+ 1/2 (Supplemental Fig. 2 in
Ref. [18]). Extensions of our model might shed light on
these phenomena, for which lift generation is an important
consideration [70]. We also note that a conceptually similar
iterated map model may readily be applied to 3D flocks and
schools; however, new techniques would be required to
capture fully 3D dynamics, since the complex-variable
techniques used herein cannot simply be extended to
calculate the vortex-induced flow and associated forces
on the bodies. Our work may also have limited application
to “disordered” schools and cluster flocks, which deviate
significantly from ordered lattice formations. The model
may be generalized to allow for more general body
kinematics, including pitching, turning, and adaptive spac-
ing between swimmers [67,74].
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While the quantitative results presented in this paper
depend on the model parameters used, our reduced model-
ing framework may be applied to understand temporally
long-lived hydrodynamic interactions in active systems.
Indeed, models for the pilot-wave dynamics of droplets
bouncing on a vibrating fluid bath have a similar math-
ematical structure [13], and may be extended to probe the
droplet’s complex collective dynamics [14,15]. Generally,
we expect models of the type described herein to be broadly
applicable to systems of active particles interacting via their
collective histories.
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I. DERIVATION OF THE HYDRODYNAMIC FORCE ON A WING

We here employ the formulation described by Streitlien and Triantafyllou [1] to compute the force on a Joukowski
wing centered at the origin moving with instantaneous velocity W = U + iV, in the presence of point vortices of
strengths v, at positions 2z € C. Here, v, > 0 denotes a vortex of positive circulation. The argument is similar to
that presented by Ramananarivo et al. [2] (Supplemental Material), but is repeated here for the sake of completeness.
The vortex positions in the (-plane satisfy z; = J((x), and the velocity potential w(() is

wmzwum—o—TJz%m()—Q}W%(gcﬂﬁa) 1)

where J(¢) = ¢+ (. +a?/(¢ + ) for a,(. € R, r = |a — (.| and 7. is the central vortex strength. Using an extension
of the Blasius force formula for unsteady flow [3], Streitlien & Triantafyllou [1] derive a formula for the complex force
F = F, +iF, on the wing:

% =U [2m(a® — %) + A] + iV [—27(a® + 1) + A]

2m‘[W<nyk%> ka( 4 - <k2a> (20 ) 2 dezk], @
k

where z; is the location of the kth vortex in a coordinate system fixed in the frame of the wing, and A =
r? (1 —a*/(r? — |¢c|*)?) is the wing’s area (interpreted as a region in R?). Using the facts that

dz,  dz P — SR Gy A—
i T C N N e el CACNERY) (3)
where wg(z) = w(z) + iyx log(z — zx), we find that F' has the form
L U [2m(a® — r?) + A] + iV [—27(a® + %) + A] + 2miW .
p
1 [ — r? 1 — d~,
+ 2mi — (W (z) - W)+ = - wi(z1) — W) | — 2mi(2a — ¢, c. 4
w§wbmﬂku> )+ 5 s (ke ﬂ ri(2a - )& (W

Since the point vortices are assumed to move slowly relative to the wing, |W/| > |w/, (2, )], this expression reduces to

o 2 2 v 2, .2 , w rr W dve
;—U[Qﬂ'(a — %)+ Al +iV [2n(a® + %) + A] — 2mi lW’chrzk:’Yk <m+<i~m>+(2a@) dt]'

()
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We choose the central vortex strength +,. to satisfy the Kutta condition dw/d¢ = 0 at the trailing edge ¢ = r:

=2Vr+ ny Gl - and thus dye =2Vr+ TZ%RG [W}
Gk — |2 dt - T (k) (G — )2

(6)

The latter follows from the fact that d¢x/dt =~ —W/J'((}) provided |W| > |w] (2y)]|. We thus obtain the formula

Foo .
n =U [2n(a® —r®) + A] +iV [-2n(a® + r®) + A] + 4niWVr — 47i(2a — ()rV
. w 7‘2 W ‘<k|2 w
—2m ) | 50—~ t+ = —|— (2a —C)rRe | —F7+—— | | - (7)
Xk: <J'(Ck) c T |§k - |2 J'(Ce) (G — 7)?
The terms proportional to U and V may be interpreted as added mass contributions, so we write
F_ 2.2 ey 2, .2
;:U[27T(a 7T)+A]+F7¢+Z{V[727T(a +r)+A747rT(2a—Cc)]+Fy}, (8)

where the horizontal and vertical components of the hydrodynamic force are, respectively,

o o ‘Ck‘Q _ ’I"2 B w 7,2 . w
F, = —4mpV*r — 27p gk Vi <V|Ck —F Im [J/(Ck) + Zfi J’(Ck)]) (9)
and
_ gl —r? wo o W Ra=G)r
Fy“‘”prw‘mzk W’“( G- PTG T E Tt J'@k)(ck—r)?D' (10)

In the asymptotic regime in which the vortices are far from the wing, |(x| > r, we may approximate J((x) = (k
and thus obtain an approximate expression for the force FV = F}' + iF}’ due to the vortices:

oo |Gkl — 72 2
F* = —ZWZpWZ’Yk 1- o — 1] +O(|r/¢l”)
k

= —4miprW Im (d(];i'}) +0(r/Gl?), wo(z) = —Zi% log(z — zi). (11)
k

2=0

is the vertical component of the

z=0

That is, FY ~ 4mprVVy and Fy ~ —4mprUVy, where V; = Tm (dw,/dz)

vortex-induced fluid velocity at the origin.

II. ITERATED MAP FOR AN IN-LINE FORMATION

We now write the iterated map for an in-line formation of swimmers of mass mg separated by a distance L interacting
with their nearest neighbors, as considered in §II and Fig. 1 of the Main Text. The variables used are listed in Table I.
Note that the U term in Eq. (8) is an added mass term that contributes to the swimmer’s effective mass per unit
span m, =mg + p [2m(r? — a*) — A]. Equation (1) in the Main Text thus has the explicit form

T+l = Tp + Up 1T,

Fp(un) —dmpopr —27py > (=1 e QG wn, vn) | (12)

j=—1k=—o0

Up4+1 = Up +

where

Q¢ u,v) = 11||<<2__T|T; —Im rf]::g)v (1 — ZZ)} and  (pnj = J ! (2a 4+ jL 4+ &g —xpn + i(—l)k+1h0) ) (13)



To simplify Eq. (12), we note that

Cenj = Re (Chy) +i(=1)"Im ((f;) . where Gy =J 7" (20 + JL + & — @y + (=1)" " ihg) . (14)
This follows from the fact that .J is real on the real axis, J(() = J(¢), since a,(. € R by assumption. By factoring
out a (—1)", Eq. (12) may be written as

Tn+1 = T + Un+1T,

1
T
Upt1 = Up + — | Fp(uy) — dmpv®r — 2mpy Z Z (—1)"‘k+1e_("_k)T/TQ(§,’;nj,un,v) ) (15)

€ j=—1k=—00
where v = 27 fhy.

We make this equation dimensionless by using the approximate chord length 4a as the length scale and flapping
half-period T as the timescale, so © — x/4a and u — uT/4a. Recalling from §IT of the Main Text that Fp(u) =
—Cppy/ev|ul'?u and v = C,mhf/2, we obtain the iterated map

xn+1 :xn+un+17 un+1 —un+FD un E) Z Z G _ﬁk_jLaunan_k)a (16)
j=—1k=—0c0
where Fy = w2un*¢ is a dimensionless thrust and Fp(u) = —D|u|'/?u a dimensionless drag. Here, we define the
function
C 1
6o wom) = PR (=1 QG ), where Gola) = (5 = ki1 )5 (7

the dimensionless parameters

CppViaT cv 47p(4a)? ¢ T h 1
Copvialer |, _Amplal =g G yo T g2l eolog (18)

D=
Me ’ Me 4a T’ 4a’

and the dimensionless analogues of the original conformal map J, its derivative and its inverse:

1 1
— S =1 ——,
ey 7O ey
The function @ in Eq. (17) is obtained from Eq. (13) by replacing » — £. The function G(z,u, m) is the dimensionless

force experienced by a wing moving with horizontal velocity u due to a point vortex shed by a wing that, m flapping
half-periods in the past, was located a distance z upstream (if z > 0) or downstream (if z < 0).

JQO=Cret I @=24y(5) - & (19)
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A. Asymptotic analysis of steady states in the limit St < 1

We here explain the observation from §IIT of the Main Text that the equilibrium schooling numbers for an in-line
formation may be approximated by S = s+ 1/4 and S = s+ 3/4 for s € N, provided that the flapping frequency f is
sufficiently large. The former (latter) correspond to stable (unstable) steady states, as shown in Fig. 2b of the Main
Text. The argument is similar to that presented by Ramananarivo et al. [2] (Supplemental Material), but we repeat
it here for completeness.

For the sake of simplicity, we assume that L/|U| < 7, or that the swimmers interact over a timescale short relative
to the vortex decay time. This assumption allows us to neglect the vortex decay, and is satisfied provided the flapping
frequency f (and thus the associated speed U) is sufficiently large. We also assume that the vortices are far from the
body, hg > r. The hydrodynamic thrust force (11) on a wing centered at the origin may thus be written as

k+1

Fgﬁzélﬂ'pVQT flJrfRe ZZ )

j=—1k=0

1 1
where zj; = jL+ 27 + g; <k+ ) +i(=1)*hy = g; <2jS+ k+ 3 +q+i(—=1)F! St) . (20)



Variable Definition

T, Un, Un, wing horizontal position, horizontal velocity, vertical velocity at time t, = nT,n € N
U (Up), C (Co)|schooling speed, cost of transport (for a single swimmer)

mo, (1) me, A |wing mass, (dimensionless) effective mass, planform area
Fp,Cp, D wing drag force, drag coefficients

z, C physical, conformal complex planes

a, c Joukowski map parameter, wing chord length

Cey & dimensional, dimensionless Joukowski map parameter

r, & dimensional, dimensionless radius of circle in conformal (—plane
J(Q) Joukowski transform

f,T flapping frequency, half-period

ho, dimensional, dimensionless flapping amplitude

P,V fluid density, kinematic viscosity

wn(z) vorticity field

T, M dimensional, dimensionless vortex decay time

v, Cy shed vortex strength, dimensionless coefficient

L,d streamwise, lateral spacing between swimmers

St = 2hof/|U| |Strouhal number

S=Lf/|U| schooling number

TABLE 1. List of the variables appearing in the Main Text and Supplemental Material.

Here, the wing’s trailing edge is located at zp = 2a, ¢ = 227 f/|U|, St = 2hof/|U| < 1 is the Strouhal number,
and S = Lf/|U| = O(1) the schooling number. Note that, since v = 7C,h3f/2, the j = 0 and j = 1 terms in the
summation above are O(St) and may be neglected. In the limit St — 0, we obtain the approximation [2]

2w fry
\uv

F, ~ 4npV?r [1 — Re csc (m (28 —1/2 — g+ St))] . (21)

Writing St = €S for e = 2ho/L < 1, we obtain

(22)

Fy ~ drpV2r {1 B GCUWS cosh(emS) sin[w (25 — 1/2 — q)] ] .

4 sinh®(enS) + sin?[r(25 — 1/2 — q))

The thrust is evidently an oscillatory function of the schooling number S. The speed U is determined by the balance
of thrust and drag forces on the wing:

(23)

h i 25 -1/2 —
Cop/a U0 = dmpV?s {_1 _erﬂ'S cosh(erS) sin[r (25 — 1/2 — q)] } 7

4 sinh®(enS) + sin’[r(2S — 1/2 — q)]

or

(SO>3/2 1+ CymS  cosh(emS) sin[r (25 —1/2 — q)]
_— = €

Lf 4V % )2/ 5
. where Sy = =L and Uy = L (4
S 4 sinb2(enS) +sil[m (25 — 12— q)] 0T g, e ( (24)

CpJev

We seek solutions to this equation of the form S = (k+1/2)/2+ 8¢Sy, where k € N. Noting that ¢ = €S(27/hq) < e,
we find that S satisfies the following equation at leading order in e:

( So )3/2_ Co (—1)*(2k +1)5,
(k+1/2)/2) 4 S+ (2k+1)2

(25)

Since the RHS is a bounded function of Sj, we conclude that the equation above has a solution provided that

1 1 o\ 3 1 1 o\ 3
- ) (1= - bl I (5 QIR B 2
2<k+2>< 8) <So<2<k+2><+8> (26)

This criterion may be rewritten in terms of the flapping frequency f:

fr fr
(1+C,/8)° (1-C,/8)%

L3C%cv
w(2m)°(k + 1/2)3(h(2)7")2 '

<f<

where fi =



That is, the equilibrium states may be approximated as S = (k + 1/2)/2 to leading order in the Strouhal number
St, provided that the flapping frequency is inside the interval specified by Eq. (27). The solutions for even values of
k = 2s correspond to the stable states with S = s 4+ 1/4, while those for odd values of k = 2s + 1 correspond to the
unstable states with S = s+ 3/4.

B. Parameter values

The experiments of Becker et al. [4] used NACA0017 wings with chord ¢ = 6 cm. The model in this work was thus
analyzed using Joukowski wings with parameters ¢ = 1.5 cm and (. = —0.2 cm. The fluid is water, with density
p=1g/cm?® and dynamic viscosity v = 1072 cm?/s. In Fig. 2 of the Main Text, the distance between swimmers is
L = 82 cm, as in Becker et al.’s experiments. We assume the wing to be ten times denser than the fluid, mo = 10pA.

The fitting parameters in Fig. 2 of the Main Text are C,, = 2.20, Cp = 47.93 and 7 = 2.26 s. In §IV of the Main
Text, we consider a single representative set of flapping kinematics, with flapping frequency f = 1.5 Hz and amplitude
ho = 1.5 cm. The corresponding dimensionless parameters have the numerical values D = 0.477, p = 12.998,
& =—1/30, M =6.791 and n = 0.25. We now relate the numerical values of C,,, Cp and 7 to results in the existing
literature. Specifically, we will show that the fitting parameters agree reasonably well with previously established
results, which enhances the plausibility of our iterated map model.

1. Vortex strength coefficient C',

Schnipper et al. [5] estimated the vorticity ejected at separation off a sharp edge in unsteady motion. They proposed
the relationship v = C,mh3f/2 and argued that C, = 1/2 was likely an underestimate of the vorticity generated.
In their combined experimental and theoretical study of the drag on a flapping body, Agre et al. [6] assumed that
C, = O(1) but ultimately chose C,, = 1/2 to describe their experimental results. Panah & Buchholz [7] conducted
experiments on a plunging flat-plate airfoil with Reynolds number Re ~ 10°, and measured the circulation of the
trailing edge vortex structures. They obtained C, = 4 for dimensionless flapping amplitudes hg/c between 0.2 and
0.3, and the lowest Strouhal number considered, St = 0.2, which roughly agrees with the parameter regime explored
in our work. These results suggest that our value C, ~ 2 corresponds to a reasonable estimate for the vorticity
generated by the trailing edge of a heaving wing.

2. Drag coefficient Cp

Munson et al. [8] (p. 521, Fig. 9.22) show experimental data on the drag coefficient of an airfoil as a function
of the Reynolds number Re. We recast the data using the formula for the boundary-layer drag per unit span,
Fp(U) = Cp(Re) py/cvU?/? and find that Cp = O(10) for the range Re ~ 10* — 10°. While we expect Cp to vary
with Re and to be sensitive to the details of the wing geometry, this shows that our fit value for C'p has the correct
order of magnitude.

3. Vortex decay time T

Cimbala et al. [9] conducted experiments on the von Kérmén vortex street shed by a stationary cylinder immersed in
a steady flow with Reynolds number Re = O(10%). They showed that the flow velocity fluctuations decay exponentially
with distance from the cylinder, a result that was corroborated by the numerical simulations of Kumar & Mittal [10].
These results provide support for our phenomenological model for the exponential decay of the shed vortex strength
with time. The typical decay time 7 may be estimated using experimental observations of decaying vortices. For
example, Sarpkaya [11] conducted an experimental investigation of vortex breakdowns in a swirling flow, and found
the breakdown time to be on the order of one second. The Reynolds number was Re = O(10%), and circulation
number was = 27vy/(UD) & 1, where U & 30 cm/s is the flow speed, D ~ 4 cm the characteristic channel size and
v ~ 30 cm? /s for the parameter regime considered in our work. More recently, Ghimire & Bailey [12] conducted an
experimental study of vortex decay in a turbulent flow, and found the vortex breakdown time to be on the order of 10
seconds. In their experiments on tandem flapping wings in a cylindrical water tank, Newbolt et al. [13] (Supporting



Information) used particle image velocimetry (PIV) to measure the temporal decay of the flow generated by the wings’
shed vortices. Their data showed that the flow speed decayed exponentially over a time scale 7 = 5 seconds. Taken
together, these results support the plausibility of our phenomenological model and the fit value 7 =~ 2 seconds.

III. LINEAR STABILITY ANALYSIS OF STEADY STATES FOR AN IN-LINE FORMATION

We now determine the stability of the (dimensionless) steady state solution x,, = Un, u, = U. To this end, we
substitute x,, = Un + €&, H, and u,, = U + e, H, into Eq. (16), where 0 < ¢ < 1 and H,, is the unit step function,
H, =1 for n > 0 and 0 otherwise. This corresponds to perturbing the steady solution at time n = 0. Retaining
terms at leading order in €, we obtain linear equations for the perturbations &, @, for n > 0 (henceforth dropping
the tildes):

Tn4+1 = Tn + Un+1,

1 n
Unt1 = Up + FH(U)uy, — Z Z [0.G(U(n—k+1/2) —jL,U,n — k)u,

j=—1k=—00

H, 1 Hy—
+8,G(U(n—k+1/2) — jL,U,n — k) (xn _ Tk Tk “;’“ L7k 1” . (28)
To solve this system of equations, we take the discrete Laplace transform of both sides. We define
X(z)=Z[zn) =Y anz ", Uz)=Zun] =) upz ", (29)
n=0 n=0

and use the facts Z[x, 1] = 2(X(2) — 20), Z[fn * x| = Z[fn]X(2) and Z[f,, * xp_1Hp—1] = Z[fn]X(2)/z, where
fnxx, = ZZ:O fn—kxE is the convolution of the sequences f, and x,. We thus obtain a system of linear equations
in the unknowns X(z) and U(z):

2( X —20) =X +2(U—ug), 2U—u)=U[1+Fs{U)—g,+& {gz + %g(z) <1 + i)] , (30)

where
1 1 00
G(2)=Z | 0:.G(U(n+1/2)—jL,Un)| and gg= > > 9,G(U(m+1/2)—jL,Um). (31)
j=—1 j=—1m=0
Equation (30) has the solution

_ 20+ Fp(U) = gu) (uo — o) + z20] (39(2)(z +1) — gs2) (w0 — o) +uo2z(z — 1)

X(z) = = 32
where F(z) is defined in Eq. (4) of the Main Text. To evaluate F(z) explicitly, we need the formulae
/'“TCU 2 m+1_—m/M 1 §2
0uG(x,u,m) = —?77 (—1)m*le /MTm [J’(Cm) (1 — g ,

Cv — m 2_ ¢ - P R 7m 7/n

tIm {W (J”(cm) (20 () + J"(Cm)<m>)] } (33)

2
G

where ¢/, = d¢,,/dz.

The eigenvalues of the linear stability problem correspond to the poles of X'(z) and U(z) in the complex plane.
Since the initial conditions xg, ug are arbitrary, the poles of X'(z) and U(z) are given by the zeros of F(z). It is clear
that F(z) is analytic in the region |z| > e~/ because G(Un,U,n) decays like e=/M as n — co. Note that the zero
of F at z = 1, which arises because G(1) = g, reflects the translation invariance of our governing equations and is
thus ignored.



To find the nontrivial zeros of F(z), we use the contour integration method developed by Delves & Lyness [14];
that is, we compute the integrals p, = (1/2mi) [, dz 2°F'(2)/F(z) for 0 < b < po, where C is the contour shown
in Supplemental Fig. 4. In fact, we can simply double the real part of the integral over the top-half of C, since
F(2) = F(z). The contour C in Supplemental Fig. 4 is defined in terms of the curves Cg, C. and C;, whose
definitions are given in the figure caption.

IV. COST OF TRANSPORT

The cost of transport [15] is defined as C' = (P, /|u,|), where P, is the instantaneous mechanical power output of
the swimmer at time t,, = nT and (-) denotes a time average. In a continuous-time description of a wing’s velocity
W(t) = U(t) +iV(t), the instantaneous power is P(t) = Fying(t)V, where Fying is the vertical component of the force
exerted by the wing. To determine Fying, we note that the wing’s vertical dynamics is governed by the equation

moV = Fying + Im(F) — D|U|Y?V, (34)

where F is the hydrodynamic force on the wing and D = Cp pv/cv. The drag term above follows from the expression
—D|W/['?W for the boundary-layer drag on a wing with velocity W = U + iV. Expanding this expression in the
low-Strouhal number regime of interest, |V/U| < 1, we obtain a drag force —D|U|/2(U + iV, as desired. Since

V =0 at the midplane y = 0, we have
Fuing = —F, + D|U['?V and thus P(t) = |-F, + D|U['?V |V, (35)

where F, is given by Eq. (10). We can thus compute the power output P at every time point ¢ = nT in the simulation,
which allows us to compute the cost of transport.

A. Cost of transport in an in-line formation

We here provide a qualitative rationale for the observation that the high-speed modes U/Uy > 1 are typically
associated with a larger cost of transport C/Cy > 1 in an in-line formation, as shown in Fig. 3b—c of the Main Text.
Without loss of generality, suppose the wings are moving up, so V' > 0. In §I we show that, if the vortices are far
from the wing, |Cx| > r, the hydrodynamic force Fy, 4 iF, on a wing, as given by Egs. (9)—(10), may be approximated
as Fp = —Fy+ kVVy and F, = —(U/V)F,, where Fy > 0 and k = 4mpr. The balance of forces in the horizontal
direction for a steady state may thus be expressed as D|U|"2U = —Fy + kV V.

We seek an approximation for the cost of transport C' in the low Strouhal number regime of interest, St = V/|Up| <
1. Note that Vy ~ /A, where v ~ V?2/f is the vortex strength and A ~ |U|/f the characteristic distance between
vortices. Defining e = kVV;/Fy, we conclude that |e] = O(St), and thus approximate the formation’s speed as
U =~ Uy(1 — 2¢/3) + O(e?), where Uy = —(Fy/D)?? is the speed of a single isolated swimmer. This approximation
may be justified by the fact that the speed U is within 20% of Uy for the parameter regime considered in Fig. 3 of
the Main Text.

The cost of transport C' may thus be written as

(—Fy + D|U\1/2V) 1%
C = = CO + FO

€ €
Tif + O(e%), (36)

—1+ 1 Z ’
3\ Uo
where Cy = Fy + DV?//[Uo| = Fy [(1 + (V/Up)?] is the cost of transport for a single isolated swimmer. In other

words, C = Cp(1 —€) + O(€?). We conclude that high-speed states, for which V¢ < 0 and € < 0, have a higher cost of
transport than low-speed ones.

V. ITERATED MAP FOR 2D LATTICE FORMATIONS

We now generalize the iterated map in Eq. (16) to describe the unidirectional motion of a 2D lattice of swimmers,
as considered in §IV of the Main Text. Suppose that the swimmers start at the positions z; = L; +14d; in the complex
plane. Let o; = £1 be their flapping phases, where two swimmers are flapping in (out of) phase with respect to each



other if they have the same (different) phase. Following the procedure described in §II, we obtain the dimensionless
equations

n
7Cy o

Tnt1 = Tn + Unt1, Unt1 = Un + Fp(us) — Fo — MTU Zaj Z (=) Le= =R/ MO (i U, T,
7 k=—oc0
1
where  Cpnj = J ! <2 —(@n — &K — Ly) +id; + iaj(l)kﬂn) and 7, = (—1)"n. (37)

As in §II, we may factor out the (—1)"-term from 7, and (,; and obtain the equations

Tn+41 :xn+un+l7 Un+1 —un+FD un FO_Z Z G k_Ljaun7n_k7(_1)n)7 (38)
j k=—o
where
Cy _ (1 . .
Gj(x,u,m, U) = %UZUj(il)erle m/JV[Q(gmjvuvﬂ-n) and ij(I, U) =J ! <2 -+ Zadj =+ Zaj(l)mHU)

(39)

for o = £1.
The phalanx formation considered in §IV B of the Main Text corresponds to L; = 0, o; = (—1)7 and d; = jd for
j € Z. It can be shown that Egs. (38)—(39) reduce to

Tn+1 :xn+un+1; Un+1 :Un+FD(Un) _FO_ Z G(xn _i‘kaunan_k‘)a (40)
k=—oc0
where
Cy 1 . . ;
G(z,u,m) = M%’f( e m/M Z Q(Cmgru,7), Gy () = T (2 —xz+ijd+ z(l)mﬂ“n> .
j=—0o0
(41)
In practice, the summation in G runs from 5 = —100 to j = 100, and is computed efficiently using a series acceleration

technique based on Chebyshev polynomials [16]. The steady speed U satisfies the algebraic equation
Fp(U)=Fo+ Y GU(m+1/2),U,m). (42)

The rectangular lattice formation considered in §IV C of the Main Text is modeled using a straightforward general-
ization of Eq. (40):

Tn+1 :xn+un+17 Un4-1 —un+FD un FO - Z Z G _‘%k —jL,Un,’fL—k), (43)

j=—1k=—0c0

where G is given by Eq. (41). The steady speed U thus satisfies the algebraic equation

Fp(U)=Fo+ Y i GU(m+1/2) — jL,U,m). (44)

j=—1m=0

We note that the stability analysis for steadily translating solutions z,, = Un,u, = U in phalanx and rectangular
lattice formations is identical to that for an in-line formation, as presented in §III.

For the diamond lattice formation considered in §IV D of the Main Text, it can be shown that Eqs. (38)—-(39) reduce
to

Upt1 = Up + Fp(u,) — Fy — Z Z G(xyn — 2 — jL/2 —i(—1)"ajd, up,n — k), (45)
j=—2k=—



where G is given by Eq. (41) and «; = mod(j,2)/2. The base state is a period-2 solution of the form z, =
Un+U((-1)"=1)/2, u, = U+ (—1)"U;. Substituting this ansatz into Eq. (45), we obtain a system of two algebraic
equations in the unknowns U and Uy:

2 [e%s)
20U + Fp(U+U) = Fo+ >, Y GU(m+1/2) £ U1/2 - jL/2F ia;d, U £ Uy, m). (46)

j=—2m=0

Equations (42) and (44) have a single unknown U and are solved using bisection. Equation (46) has two unknowns
(U and U;) and is solved numerically using MATLAB’s root-finding algorithm by continuation in the parameter
d € [dmin, dmax), Where dmax = 10 and dmin = 2(ho + dy)/4a = 0.66 for the parameters considered in §IV of the
Main Text. The continuation procedure is done twice, once increasing d from d = dy,;, and once decreasing d from
d = dpax- The root-finding algorithm requires an initial guess: to solve Eq. (46) for a value of d # dmin, dmax, We
use the solution for d + Ad as the initial guess, where Ad = 0.01. The solutions for d = d,;, are found using initial
guesses in the intervals U/Uy € [0.5,1.5] and Uy /Uy € [—0.3,0.3]. The initial guess for d = dpax is given by the steady
state solutions for in-line formations, where U satisfies Eq. (3) of the Main Text and U; = 0.

A. Antiphase flapping of swimmers in a side-by-side arrangement

In §IV B (phalanx formation), §IV C (rectangular lattice) and §IV D (diamond lattice) of the Main Text, we assume
that swimmers arranged side-by-side (perpendicular to the swimming direction) flap out-of-phase with respect to their
neighbors. This assumption was made by Weihs [17] and Stocker [18], who argued that in-phase flapping would result
in an anomalously large induced velocity in the y-direction and thus an increased drag force on the downstream fish.
Indeed, note that a phalanx of swimmers flapping in-phase generates a vertical line of vortices during a single flap,
with velocity potential w(z) and vertical velocity v given by the formulae

o0

w(z) = —iy Z log [z — (2a +i(nd + hy))], v=Im (dw/dz) =7 Z (&~ 2a)?

n=-—oo n=—oo

T — 2a
+ (—y +nd + ho)?

We observe that

Y T o) = T eoth ™ L 0 () 5 0T
v=" Z x2+(nd)2+0(x ) dcothd—i—O(az )—) g T — 00.

n=—oo

Conversely, the velocity potential w(z) associated with a phalanx of swimmers flapping in antiphase has the formula

w(z)=—iy Y (~1)"log[z = (2a+i(nd + (=1)"ho))],

n=-—oo

with the associated vertical velocity v decaying relatively rapidly in the far-field, v ~ 273 as 2 — co. We conclude

that a phalanx of swimmers flapping in-phase would generate a substantially larger downstream vertical flow than its
antiphase counterpart, thus increasing the likelihood of observing the latter.

VI. LINEAR STABILITY ANALYSIS OF PERIOD-2 STATES

We here present the linear stability analysis of period-2 states, as considered for diamond lattice formations in
8IV D of the Main Text. We proceed by linearizing the governing equations around the base state, and so substitute
T =Un+U;((-1)"—=1)/2+4 €X,Hp, u, = U + (=1)"U; + €, H,, into Eq. (45) and retain terms at leading order in
€, H, being the unit step function. We note that, given a function f, we can write f(z +y) = f*(x,y) £ f~(z,y) for
fH(x,y) = (f(x +y) £ f(x —y))/2. We thus define the quantities

2
FLULU) = f+f, and Z 9,G(U(m~+1/2) U1 /2 - jL/2 Fic;d, U £ Uy, m) = G (m) £ G, (m),

j=—2
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where ¢ = x or u, and obtain the linearized equations (henceforth dropping all tildes)

Tptl = Tpn + Upt1,

n

Uns1 = tn + (f5 + (0" fp) un = Y (G (n—k)+ (=1)"G; (n = k) (z — &)

k=—o0

= Y (GE =R+ ()G (n— K) (47)

k=—o00

As in §III, we solve these equations using the discrete Laplace transform. Defining G*(2) = Z[GE(n)] and the
constants g~ = > o Gflt (m) for ¢ = z and u, we obtain the algebraic equations

z2(X(2) —xo) = X(2) + 2(U(z) — up),
2U(z) —uo) = (L+ f5 —gb ) UE) + (fp — 92 ) U(=2) — X(2)g) — X(=2)g,
+ % (X (2)(1+1/2)G7(2) + X(=2)(1 = 1/2)G™ (=2)] . (48)

To solve this system of equations, we first eliminate U by writing U(z) = ug — zo + (1 — 1/2)X(z), and obtain an
equation for X (2): M1 (2)X(z) + M~ (2)X(—z) = c(z), where

M*(z) =[5z~ 1) = f5 +62] (LT 1/2) + g — 265 ()1 £1/2),

(2) = (uo — o) [L+ f5 + fp — 9 — 94 | + w02, (49)
and s =1, s~ = 0. Eliminating X' (—z), we obtain the solution
M (=z)e(z) — M~ (2)e(—2)
X(z) = . 50
) = S (o) = M () M (=) (50)
The eigenvalues of the linear stability problem are thus given by the roots of
F(z) =Mt ()Mt (—2) — M~ (2)M~(—2). (51)

Note that M*(1) = M~ (—1) = 0, so F(z) has trivial roots at z = +1. As described in §III, we use the contour
integration method of Delves & Lyness [14] to find the nontrivial roots of F(z). We use the contour in Supplemental
Fig. 4, with an additional arc of radius € centered at z = —1 to avoid the trivial root at z = —1.
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SUPPLEMENTARY FIGURES

>-| 3 # o o IR o
e
G NNN i . ~ N

<-1

FIG. 1. Flow field of a flapping swimmer. Comparison between the theoretically predicted flow field in Eq. (1) of the
Supplemental Material (left) and that obtained in the experiments of Becker et al. [4] using particle image velocimetry (right,
figure reproduced with permission). The color map indicates the vertical component of the velocity vector field, with red
indicating upward and blue downward flows. The color bar on the left plot has units cm/s. Both plots exhibit the same
qualitative behavior, with upstrokes and downstrokes producing upward and downward fluid flows, respectively.
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FIG. 2. Oscillatory schooling modes. (a) Numerically simulated oscillatory state that arises via a flip bifurcation, for
flapping frequency f = 0.7 Hz and amplitude ho = 2 cm. The schooling number S,, = Lf/|u,| oscillates between two values.
(b) Minima and maxima of the schooling number S for such period-2 states with ho = 2 cm. (¢) Numerically simulated
oscillatory state that arises via a Neimark-Sacker bifurcation, for flapping frequency f = 2.29 Hz and ho = 1.5 cm. (d) Mean
value of S, (black curve) and standard deviation (error bars) for such oscillatory states, as a function of flapping frequency.
The period of oscillation Tose = 7/Im[log z*] (red curve) is given in units of the flapping period, z* being the root of F(z) (Eq.
(4) of the Main Text) that is largest in magnitude. The theory predicts that Tosc increases with f, and that the swimming
speed fluctuations are maximized at a critical value of f for both instabilities (panels (b) and (d)).
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FIG. 3. Fast modes in diamond lattice formations. The curves show the velocities U (left) and U; (right), normalized by
the velocity Up of a single isolated swimmer, for period-2 solutions u, = U+ (—1)"U; to the iterated map model (45) describing
diamond lattice formations. Equation (46) is solved to determine U and U; for L = 4.4, which is the streamwise spacing that
yields the fastest formation, with U/Uy = 1.22 for d = dmin (Fig. 7 of the Main Text). The solutions are color-coded according
to their stability, blue (red) indicating stable (unstable) solutions. As detailed in §VI, the linear stability problem for the
unstable solutions has a pair of real eigenvalues +z with |z| > 1, which are roots of Eq. (51).
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FIG. 4. Linear stability analysis of steady states. Contour used to assess the linear stability of the steady state x, = Un,
un = U to the iterated map in Eq. (16) for an in-line formation. The contour Cr is defined by z = Re® where 0 < 0 < 27.
The contour C. is an arc of radius € centered at z = 1, defined by z = 1 + ee"®, where —6; < 0 < 6; and 6; = cos™*(—¢/2).
The contour Cs is nearly the unit circle, defined by z = ¢'?, where 2 < 0 < 2 — 2 and 62 = tan™"(e\/1 — (¢/2)2/(1 — €2/2)).
We use the parameter values e = 1072 and R = 10 for the stability analysis conducted in the Main Text.



14

SUPPLEMENTARY MOVIE CAPTIONS

MOVIE 1

Animation of an in-line formation of flapping swimmers, as considered in §II of the Main Text. The formation’s
dynamics is determined by the blue swimmer, which interacts with its nearest neighbors (colored black and red). The
instantaneous horizontal velocity and flapping phases are indicated by the horizontal and vertical arrows, respectively.
Vortices of positive and negative circulation, whose strengths decay over time, are shed from the swimmers’ trailing
edges at the peaks and troughs of their trajectories (dashed curves). The flapping half-period is denoted by T'.

MOVIE 2

Animation of a phalanx formation, as considered in §IV B of the Main Text. The formation’s dynamics is determined
by the swimmer in the gray box, which interacts with all of the other swimmers.

MOVIE 3

Animation of a rectangular lattice formation, as considered in §IV C of the Main Text. The formation’s dynamics
is determined by the swimmer in the gray box, which interacts with the swimmers in the columns upstream (black)
and downstream (red).

MOVIE 4

Animation of a diamond lattice formation, as considered in §IV D of the Main Text. The formation’s dynamics is
determined by the swimmer in the gray box, which interacts with the swimmers in the columns upstream (black and
yellow) and downstream (red and green).



