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We consider a class of spin networks where each spin in a 
certain set interacts, via Ising coupling, with a set of central
spins, and the control acts simultaneously on all the spins. Due 
to the permutation symmetries of the network, the system is 
not globally controllable but it displays invariant subspaces 
of the underlying Hilbert space. The system is said to be 
subspace controllable if it is controllable on each of these 
subspaces. We characterize the given invariant subspaces and 
the dynamical Lie algebra of this class of systems and prove 
subspace controllability in every case.
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1. Introduction

Controllability of finite dimensional quantum systems, described by a Schrödinger 
equation of the form

* Corresponding author.
E-mail addresses: francesca.albertini@unipd.it (F. Albertini), daless@iastate.edu (D. D’Alessandro).
https://doi.org/10.1016/j.laa.2019.09.034
0024-3795/© 2019 Published by Elsevier Inc.

https://doi.org/10.1016/j.laa.2019.09.034
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:francesca.albertini@unipd.it
mailto:daless@iastate.edu
https://doi.org/10.1016/j.laa.2019.09.034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2019.09.034&domain=pdf


2 F. Albertini, D. D’Alessandro / Linear Algebra and its Applications 585 (2020) 1–23
|ψ̇〉 = (A +
∑

j

Bjuj(t))|ψ〉, (1)

is usually assessed by computing the Lie algebra G generated by the matrices in u(N), 
A and Bj (see, e.g., [7], [12], [16]). The Lie algebra G is called the dynamical Lie alge-
bra. Here uj = uj(t) are the (semiclassical) control electromagnetic fields and |ψ〉 is the 
quantum mechanical state varying in a finite dimensional Hilbert space H. If eG denotes 
the connected component containing the identity of the Lie group associated with G, 
then the set of states reachable from |ψ0〉 by choosing the control fields is (dense in) 
{|ψ〉 := X|ψ0〉 ∈ H | X ∈ eG}. In particular if G = u(N) or G = su(N), the system is said 
to be (completely) controllable and every unitary operation, or special unitary operation 
in the su(n) case, can be performed on the quantum state. This is important in quantum 
information processing [15] when we want to ensure that every quantum operation can be 
obtained for a certain physical experiment (universal quantum computation). Although 
controllability is a generic property (see, e.g., [4], [14]), often symmetries of the physical 
system prevent it and the dynamical Lie algebra G is a proper subalgebra of su(N). In 
this case, the given representation of the Lie algebra G splits into its irreducible compo-
nents which all act on an invariant subspace of the full Hilbert space H on which the 
system state |ψ〉 is defined. It is therefore of interest to study whether, on each subspace, 
controllability is verified, so that, in particular, one can perform universal quantum com-
putation and-or generate interesting states on a smaller portion of the Hilbert space (see, 
e.g., [9], [11]). This situation has recently been studied in detail for networks of particles 
with spin in the papers [18], [19]. In particular, in [19], various topologies of the spin 
network were considered for various possible interactions among the spins and results 
were proven concerning the controllability of the first excitation space, that is, the in-
variant subspace of the network of states of the form 

∑
j aj |000 · · · 00100 · · · 000〉, i.e., 

superpositions of states where only one spin is in the excited state. In [18], only chains
with next neighbor interactions were considered (instead of general networks) but more 
comprehensive controllability results were given on all the invariant subspaces of this 
type of systems. In both these papers, the control affects only one of the spins in the 
network, which may be placed in various places in the network.

In this paper, we shall consider situations where the control acts on all the spins si-
multaneously. We want to study the structure of the dynamical Lie algebra and subspace 
controllability in this case. The symmetries of the network originate from the following 
physical fact: The spins are arranged in two sets, a set P and a set C. The set C is called 
of central spins. Spins in the set P (C) interact in the same (Ising) way with the set of 
spins in the set C (P ). We shall initially assume that no (symmetric) interaction exists 
among spins in the set P or C although we shall later see (in Section 5) how to relax 
such an assumption. The systems we have in mind may be networks of spins arranged 
in a molecule where the distances from spins in the set P from one or two central spins 
are equal so that spins in the set C interact in the same way with a bath of surrounding 
spins as in Fig. 1. The interaction between spins is physically a function of the type of 
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Fig. 1. Schematic representation of a spin network with one (a) and two (b) central spins C depicted with 
black bullets as opposed to empty circles (spins in P ).

spins and of the distance between the spins. It is therefore impossible to have three or 
more spins in both sets C and P and therefore we assume that the set with smaller 
cardinality, which we assume to be C, has at most two spins. Systems of this type admit 
symmetries. In particular, by permuting the spins in the set C and-or the spins in the 
set P , the Hamiltonian describing the dynamics of the system as in (1) is left unchanged 
(see next section for details). Then, if nc is the cardinality of the set C and np is the 
cardinality of the set P , the group of symmetries is the product between the symmetry 
group on nc elements, Snc

, and the symmetry group on np elements, Snp
. In the mathe-

matical study of controllability of spin networks, the bipartite case considered here can 
be seen as the first intermediate case between the fully asymmetric case studied in [1]
where all the spins are distinct and the fully symmetric case studied in [2], [8], [6] where 
the spins are all equal and interact in the same way with each-other. In this context, 
the results of this paper are the first step towards developing a theory for controllability 
of spin networks where symmetries are ‘localized’ within certain subsets of the network. 
Furthermore our results contribute to the recently growing literature on the dynamical 
analysis and control of a central spin surrounded by a number of bath spins (see, e.g., [5], 
[20] and references therein). This model is of practical interest in applications and serve 
as a simplified example for the study of controlled quantum dynamics in the presence of 
decoherence.

In general terms, if there is a discrete group G of symmetries for a quantum mechanical 
system, the dynamical Lie algebra G associated with the system will be a subalgebra 
of LG, the largest subalgebra of u(N) (N being the dimension of the system) which 
commutes with G. If G is equal to LG, subspace controllability is satisfied for each of the 
invariant subspaces of the system (cf. Theorem 2 in [8]). However G might be a proper
Lie subalgebra of LG and subspace controllability may not be satisfied. For the systems 
we consider in this paper we will see that G is not exactly equal to LG. However, this does 
not affect the subspace controllability of the system for each of its invariant subspaces 
which, we will prove, is still verified.

The paper is organized as follows. In the next section, we set up the notations and 
the basic definitions, so that we can precisely describe the model we want to treat and 
the problem we want to consider. We also prove a number of preliminary results which 
will be used later in the paper. The main results are given in section 3 where we describe 
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the dynamical Lie algebra for Ising networks of spins with one or two central spin under 
global control. Subspace controllability will come as a consequence of this in section 4. 
Some concluding remarks are given in section 5 where we also give generalizations of our 
results to 1) the case of different interactions among the spins 2) nonzero interactions 
among the spins in the set C and-or in the set P . We also discuss how the results are 
affected by small changes in the dynamical Hamiltonian which break the symmetries of 
the model.

2. Preliminaries

2.1. Notations, basic definitions and properties

In the following, we will have to compute a basis for a Lie algebra generated by a given 
set of matrices. In these calculations, it is not important whether we obtain a matrix A
or a matrix kA with k ∈ R, k �= 0. Therefore we shall use the notation [A, B] � D to 
indicate that the commutator of A and B ([A, B] := AB − BA) is kD for some k �= 0
and therefore D belongs to the Lie algebra that contains A and B. We shall also often 
use the formula

[A ⊗ B, C ⊗ D] = 1
2{A, B} ⊗ [B, D] + 1

2 [A, C] ⊗ {B, D},

where {A, B} denotes the anti-commutator of A and B, i.e., {A, B} := AB + BA. We 
will do this routinely without explicitly referring to this formula. In u(n) we shall use 
the inner product 〈A, B〉 := Tr(AB†). One property of this inner product which will be 
useful is given by the following:

Lemma 2.1. If A commutes with B and C, then it is also orthogonal to and commutes 
with [B, C].

Proof. Commutativity follows from the Jacobi identity. Moreover, Tr(A[B, C]†) =
−Tr(A[B, C]) = −Tr(ABC − ACB) = −Tr(BAC − CAB) = −Tr(BAC − BCA) =
−Tr(B[A, C]) = 0. �

The Pauli matrices σ(x,y,z) are defined as

σx :=
(

0 1
1 0

)
, σy :=

(
0 i

−i 0

)
, σz :=

(
1 0
0 −1

)
. (2)

If 1n denotes the n × n identity matrix, the Pauli matrices satisfy

σxσx = σyσy = σzσz = 12,

σxσy = −iσz, σyσz = −iσx, σzσx = −iσy

σ σ = iσ , σ σ = iσ , σ σ = iσ

, (3)

y x z z y x x z y
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which give the commutation relations

[iσx, iσy] = 2iσz, [iσy, iσz] = 2iσx, [iσz, iσx] = 2iσy. (4)

We shall often use just the symbol 1 for the identity matrix in different dimensions as 
the dimensions will be clear from the context. In the most general setting, our model 
consists of nc + np spin 1

2 particles, with nc of a type C (for example nc nuclei) and np

of the type P (for example np electrons). In our conventions, the first nc positions in a 
tensor product refer to operators on the spins in the set C, while the following np refer 
to operators on the set P . We shall assume without loss of generality nc ≤ np. Our main 
results on the characterization of the dynamical Lie algebra and subspace controllability 
will concern the physical case of nc = 1 and nc = 2. We start giving some general results 
valid for arbitrary nc.

We denote by SC(P )
(x,y,z) the sum of nc(p) tensor products 

∑nc(p)
j=1 1 ⊗ · · · ⊗ σ(x,y,z) ⊗ 1 ⊗

· · · ⊗ 1 where the Pauli matrix σ(x,y,z) varies among all the possible nc(p) positions. For 
example, if nc = 2, SC

x := σx ⊗1 +1 ⊗σx. When it is not important or it is clear whether 
we refer to the set C or the set P , we shall simply denote this type of matrices by S(x,y,z). 
We notice that S(x,y,z) satisfy the same commutation relations as σ(x,y,z) and therefore 
iS(x,y,z) give a representation of su(2) in the appropriate dimensions.

We shall denote the 3-dimensional Lie algebra spanned by iS(x,y,z) with S. We shall 
also denote by I

C(P )
(x,y,z)(x,y,z) matrices which are sum of the tensor products of 2 × 2

identities, 1, except in all possible pairs of positions which are occupied by σ(x,y,z) and 
σ(x,y,z). For example, if nc = 3, we have

IC
xx := σx ⊗ σx ⊗ 1 + σx ⊗ 1 ⊗ σx + 1 ⊗ σx ⊗ σx,

IC
xy := σx ⊗ σy ⊗ 1 + σy ⊗ σx ⊗ 1 + σx ⊗ 1 ⊗ σy+

+σy ⊗ 1 ⊗ σx + 1 ⊗ σx ⊗ σy + 1 ⊗ σy ⊗ σx.

As before, when it is not important, or it is clear in the given context, whether we refer 
to the set C or P , we omit the superscript C or P . IC(P ) denotes the 6-dimensional 
span of IC(P )

(x,y,z)(x,y,z), while IC(P )
0 denotes the 5-dimensional subspace of IC(P ) spanned 

by {I
C(P )
xy , IC(P )

xz , IC(P )
yz , IC(P )

xx − I
C(P )
yy , IC(P )

yy − I
C(P )
zz }. Generalizing this notation, we 

shall denote by Ix(nxtimes)y(nytimes)z(nztimes) the sum of symmetric tensor products with 
nx σx’s, ny σy’s and nz, σz’s. We omit the zeros. Therefore, for instance, Sx := Ix and, 
for n = 3, Ixxx := σx ⊗ σx ⊗ σx.

Lemma 2.2.

[S, iI] = [S, iI0] = iI0. (5)

Furthermore, if A := iIzz or iIxx or iIyy,
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[S, span{A}] ⊕ [S, [S, span{A}]] = iI0. (6)

Proof. Formula (5) follows by direct verification using the indicated bases for I, I0 and 
S. For the second property take for example iIzz. We have

[iSx, iIzz] � iIyz, [iSy, iIzz] � iIxz,

in [S, span{A}], and

[iSx, iIyz] � iIzz − iIyy, [iSy, iIxz] � iIzz − iIxx,

[iSx, iIxz] � iIxy,

which are in [S , [S, span{A}]]. �
With LG, we denote the full Lie algebra of matrices in u(n), which commute with 

the symmetric group Sn. The dimension of LG was calculated in [2] and it is given by 
M(n) :=

(
n+3

n

)
. With L, we shall denote the Lie algebra generated by i{Sx, Sy, Sz, Ixx −

Iyy, Iyy −Izz}. The dimensions of the matrices in LG (and L) are 2n ×2n. The number n
will be often clear from the context. In some places n = nc. In some other cases n = np. 
The following fact was one of the main results of [2].

Theorem 1. Consider n spin 1
2 particles and Izz, S(x,y,z) matrices of the corresponding 

dimension 2n. Then iIzz, iS(x,y,z), generate all LG ∩ su(2n).

The matrix J := Ixx +Iyy +Izz, will be important in our description of the dynamical 
Lie algebra. The Lie algebra L above defined is the same as LG ∩ su(2n) except for iJ . 
More precisely:

Proposition 2.3.

LG ∩ su(2n̂) = L ⊕ span{iJ}. (7)

Proof. The inclusion ⊇ follows from the fact that iJ commutes with every permutation 
and so do the generators of L, which are iS(x,y,z) and {i(Ixx − Iyy), i(Iyy − Izz)}, and 
therefore all of L. Moreover both J and the generators of L are in su(2n). To show 
the inclusion ⊆ it is enough to show that a set of generators of LG ∩ su(2n) belong to 
L ⊕span{iJ}. For this, we use Theorem 1, and take as generators iS(x,y,z) and iIzz. The 
matrices iS(x,y,z) are already in L by definition of L. Since

iIzz = −1
3 i(Ixx − Iyy) − 2

3 i(Iyy − Izz) + 1
3 iJ

and {i(Ixx−Iyy), i(Iyy−Izz)} are also in L, we have that iIzz belongs to L ⊕span{iJ}. �
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We shall also use the following property of the matrix J .

Lemma 2.4. The matrix iJ commutes with L.

Proof. We only need to prove that iJ commutes with the generators of L. We start 
with iS(x,y,z). By symmetry we only need to consider one among iS(x,y,z). Take iSx, and 
calculate [iSx, iJ ] = [iSx, i(Ixx + Iyy + Izz)] = [iSx, i(Iyy + Izz)] = [iSx, iIyy] +[iSx, iIzz]. 
The first term, using (4), gives iIzy (it is clear that it contains sum of matrices with all 
identities except in two positions, one occupied by σz and one occupied by σy; moreover 
it has to be invariant under permutations and the only matrices with this property are 
proportional to iIyz; the fact that the proportionality factor is 1 follows from the fact 
that σz in the first place can only occur once). Using again (4), the second term gives 
−iIzy, thus these two terms sum up to zero.

As for i(Ixx − Iyy) and i(Iyy − Izz), again by symmetry, we need to consider only one 
of them. We consider i(Ixx − Iyy). We have [i(Ixx − Iyy), iJ ] = [i(Ixx − Iyy), i(Ixx + Iyy +
Izz)] = [iIxx, iIyy] + [iIxx, iIzz] − [iIyy, iIxx] − [iIyy, iIzz] =

2[iIxx, iIyy] + [iIxx, iIzz] − [iIyy, iIzz]. (8)

In the commutator [iIxx, iIyy], writing Ixx and Iyy as symmetric sums of tensor products 
the only terms that do not give zero are the ones where the two positions in Ixx occupied 
by σx and the two positions of Iyy occupied by σy have only one index in common (e.g., 
positions (1, 2) and position (2, 3)). The commutator gives a term with a single σx, a 
single σy and a single σz. Using the fact that the Lie bracket has to be permutation 
invariant, we obtain that [iIxx, iIyy] must be proportional to iIxyz. The proportionality 
factor is in fact 1. This can be seen by writing Ixx as Ixx = σx ⊗ Sx + 1 ⊗ In−1

xx , where 
In−1

xx is Ixx but on n −1 positions, and, analogously Iyy = σy ⊗Sy +1 ⊗In−1
yy . Taking the 

commutator one can see that the coefficients of the terms having σz in the first place is 
1, and therefore, by permutation symmetry this is the coefficient if iIxyz as well. With an 
analogous reasoning, the commutator [iIxx, iIzz] in (8) gives −iIxyz and the commutator 
[iIyy, iIzz] in (8) gives iIxyz, so that the sum in (8) gives zero. �

Using Proposition 2.3, we have

Corollary 2.5. The matrix iJ commutes with LG.

Lemma 2.6. If n = 2, for each A ∈ L,

JA = AJ = A (9)

Proof. Formula (9) can be directly verified for the generators of L using (3), and it is 
extended to commutators by J [A, B] = J(AB − BA) = (JA)B − (JB)A = AB − BA =
[A, B]. �
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2.2. The model

Spin 1
2 particles in a network are divided into two sets, C and P . Each spin in the set 

C interacts via Ising interaction with each spin in the set P but there is no (significant) 
interaction within spins in the set C (P ) (see, Section 5 for generalizations). The system is 
controlled by a common electro-magnetic field which is arbitrary in the x and y direction. 
Up to a proportionality factor, the quantum mechanical Hamiltonian of the system can 
be written as

H = SC
z ⊗ SP

z + ux(γCSC
x ⊗ 1 + γP 1 ⊗ SP

x )+
+uy(γCSC

y ⊗ 1 + γP 1 ⊗ SP
y ).

(10)

Here the term SC
z ⊗ SP

z models the Ising interaction of each spin of the set C with each 
spin of the set P . The functions ux := ux(t) and uy := uy(t) are control electromagnetic 
fields in the x and y directions. The parameters γC and γP are (proportional to) the 
gyromagnetic ratios of the spins in set C and set P , respectively. The dimensions of the 
identity matrices 1 in (10) are 2nc or 2np , according to whether 1 is on the left or on 
the right, respectively, of the tensor product. The Schrödinger equation for the system 
takes the form (1) where A +

∑
j Bjuj = −iH with H in (10).

2.3. Dynamical Lie algebra and subspace controllability

We want to describe the possible evolutions that can be obtained by changing the 
controls in (10) and therefore we want to describe [12] the dynamical Lie algebra G
generated by

{iSC
z ⊗ SP

z , i(γCSC
x ⊗ 1 + γP 1 ⊗ SP

x ), i(γCSC
y ⊗ 1 + γP 1 ⊗ SP

y )}.

Once G is determined, its elements will take, in appropriate coordinates, a block diagonal 
form which describes the sub-representations of G. The Hilbert space H for the quantum 
state is accordingly decomposed into invariant subspaces. Subspace controllability is 
verified if, on each subspace, G acts as u(m) or su(m) where m is the dimension of the 
given subspace. Our problem is to determine the Lie algebra G and then find all its 
sub-representations and prove subspace controllability.

As a preliminary step, we remark that, letting

W = [iγCSC
x ⊗ 1 + iγP 1 ⊗ SP

x , iγCSC
y ⊗ 1 + iγP 1 ⊗ SP

y ],

then

[iγCSC
x ⊗ 1 + iγP 1 ⊗ SP

x , W ] � iγ3
CSC

y ⊗ 1 + iγ3
P 1 ⊗ SP

y .

Therefore, since the Lie algebra contains iγCSC
y ⊗ 1 + iγP 1 ⊗ SP

y also, assuming |γC | �=
|γP |, we have that iSC

y ⊗ 1 and i1 ⊗ SP
y belong to G. Taking the Lie brackets of iγCSC

x ⊗
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1 + iγP 1 ⊗ SP
x with iSC

y ⊗ 1 and i1 ⊗ SP
y , we obtain that iSC

z ⊗ 1 and i1 ⊗ SP
z are in G, 

and taking the Lie bracket between iSC
y ⊗ 1 (i1 ⊗ SP

y ) and iSC
z ⊗ 1 (i1 ⊗ SP

y ) we obtain 
iSC

x ⊗ 1 (i1 ⊗ SP
x ). Therefore G contains the 3-dimensional subspaces

AC := span{iSC
(x,y,z) ⊗ 1}, AP := span{i1 ⊗ SP

(x,y,z)}, (11)

under the assumption that |γC | �= |γP |. We shall assume this to be the case in the 
following. Therefore the dynamical Lie algebra G is the Lie algebra generated by AC , 
AP and iSC

z ⊗ SP
z .

3. Description of the dynamical Lie algebra

3.1. Results for general nc ≥ 1

Consider the group Ĝ, Ĝ := Snc
⊗Snp

, where Snc
is the group of permutation matrices 

(symmetric group) on the first nc positions, corresponding to spins of the type C and 
Snp

is the group of permutation matrices (symmetric group) on the second np positions, 
corresponding to spins of the type P . This means, for C (and analogously for P ) that if 
Q is a matrix in Snc

and A belongs to u(2nc) QAQ−1 is obtained from A by (possibly) 
permuting certain positions in the tensor products which appear once one expands A
in the standard (tensor product type) of basis in u(2nc). This is a group of symmetries
for the system described by the Hamiltonian (10) since for every element QC ⊗ QP ∈
Snc

⊗ Snp
, we have

[iSC
z ⊗ SP

z , QC ⊗ QP ] = 0,

[i(γCSC
x ⊗ 1 + γP 1 ⊗ SP

x ), QC ⊗ QP ] = 0,

[i(γCSC
y ⊗ 1 + γP 1 ⊗ SP

y ), QC ⊗ QP ] = 0.

The generators of G all commute with Ĝ and therefore all of G commutes with Ĝ. This 
implies that the dynamical Lie algebra G must be a Lie subalgebra of the maximal 
subalgebra LĜ of u(2nc+np) which commutes with Ĝ. We have LĜ = iLG ⊗ LG. Notice 
that here the first iLG is in u(2nc), while the second is in u(2np). A basis of LĜ can be 
obtained by taking tensor products of the basis of the two LG, and the dimension of LĜ

is M(nc)M(np).
In fact, G is a Lie subalgebra of a slightly smaller Lie algebra.

Lemma 3.1. The Lie algebra

L̂ =
(
iL ⊗ LG

)
+

(
iLG ⊗ L

)
, (12)

is a super Lie algebra of G.
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Proof. To see that (12) is a Lie algebra, we can notice that it is the orthogonal comple-
ment in LG ⊗ LG to the Abelian Lie algebra

J := span{i1 ⊗ 1, i1 ⊗ J, iJ ⊗ 1, iJ ⊗ J},

for the appropriate dimensions of the identity 1 and J on the left and on the right (this 
in the case nc = 1 reduces to J := span{i1 ⊗1, i1 ⊗J}) and commutes with it because of 
Lemma 2.4 and Corollary 2.5. Therefore is closed under commutation from Lemma 2.1. 
Moreover all generators of G belong to L̂. �

We shall see that in the case nc = 1, G = L̂, while for nc = 2 G �= L̂. We now identify 
certain subspaces of L̂ which belong to the dynamical Lie algebra G.

Proposition 3.2. The following vector spaces belong to G:

B := span{iSC
x,y,z ⊗ SP

x,y,z},

D1 := span{iSC
(x,y,z) ⊗ IP

(x,y,z)(x,y,z)},

D2 := span{iIC
(x,y,z)(x,y,z) ⊗ SP

(x,y,z)}.

(13)

Remark 3.3. Notice that the above subspaces have the following dimensions: dim(B) = 9, 
dim(D1) = 18 unless the set P has cardinality 1, in which case D1 = {0}, dim(D2) = 18
unless the set C has cardinality 1, in which case D2 = {0}.

Proof. The indicated basis of B can be obtained from iSz⊗Sz by taking Lie brackets with 
elements of the basis of AC and AP in (11). Now assume that the set P has cardinality 
strictly bigger than 1 and take the Lie bracket of the two elements in B, iSx ⊗ Sz and 
iSy ⊗ Sz, which is [iSx, iSy] ⊗ S2

z � iSz ⊗ (1 + Izz). Since we know that iSz ⊗ 1 is in G, 
as it belongs to AC , we have that iSz ⊗ Izz is in G. By taking Lie brackets with iSC

x ⊗ 1
and iSC

y ⊗ 1 we obtain iS(x,y,z) ⊗ Izz. By taking (possibly) repeated Lie brackets with 
1 ⊗ SP

(x,y,z) (using possibly the fact that iS(x,y,z) ⊗ Izz belongs to G) we obtain all other 
elements of the form iS(x,y,z) ⊗ I(x,y,z)(x,y,z). Analogously we obtain the elements in the 
indicated basis of D2. �
3.2. Dynamical Lie algebra for nc = 1

In the case nc = np = 1, AC ⊕ AP ⊕ B is equal to su(4), so that G = su(4). In this 
case the system is completely controllable and our analysis terminates here. We shall 
therefore assume that np > 1, and therefore D1 �= {0} in (13) while D2 = {0}.

Take B in SP and D in IP . The Lie bracket of the matrices Sz ⊗ B := σz ⊗ B ∈ B
and Sz ⊗ iD = σz ⊗ iD ∈ D1 gives

[Sz ⊗ B, Sz ⊗ iD] = S2
z ⊗ [B, iD] = 1 ⊗ R, (14)

for an arbitrary R in iIP
0 according to (5) of Lemma 2.2. We have therefore:
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Lemma 3.4. If nc = 1, the dynamical Lie algebra G contains

E1 := 1 ⊗ iIP
0 . (15)

Theorem 2. If nc = 1 and for any np ≥ 2 the dynamical Lie algebra G is given by

G :=
(
(span {σx,y,z}) ⊗ LG

)
⊕ ((span {1}) ⊗ L) = L̂. (16)

Proof. Using elements in E1 and elements of AP , since L is the Lie algebra generated by 
iI0 and iS(x,y,z) we obtain anything in (span{1}) ⊗ L. Now we know from Theorem 1
that iIP

zz, iSP
(x,y,z) and i1 generate all of LG. Therefore, basis elements of LG ∩ su(2np)

are obtained by (repeated) Lie brackets of iIP
zz and iSP

(x,y,z). Define the ‘depth’ of a basis 
element K1 as the number of Lie brackets to be performed to obtain K1. In particular, the 
generators iIzz, iS(x,y,z) are element of depth zero. We show by induction on the depth of 
the basis element K1 that all elements of the form σ(x,y,z)⊗K1 can be obtained. For depth 
zero, we already have iσ(x,y,z)⊗S(x,y,z) ∈ B and iσ(x,y,z)⊗Izz ∈ D1, from Proposition 3.2. 
For depth d ≥ 1, assume by induction that we have all elements iσ(x,y,z) ⊗ K1 for K1 in 
the basis of LG ∩ su(2np), K1 of depth d − 1. If K2 = [K1, iS(x,y,z)], we can obtain

[σ(x,y,z) ⊗ K1, i1 ⊗ Sx,y,z] = σ(x,y,z) ⊗ [K1, iS(x,y,z)]
= σ(x,y,z) ⊗ K2.

If K2 := [K1, iIzz], write
iIzz = 1

3 i(Ixx − Iyy) − 2
3 i(Ixx − Izz) + 1

3 iJ , so that

K2 =
[
K1, 1

3 i(Ixx − Iyy) − 2
3 i(Ixx − Izz) + 1

3 iJ
]

=
[
K1, 1

3 i(Ixx − Iyy) − 2
3 i(Ixx − Izz)

]
.

This is true because iJ commutes with LG according to Corollary 2.5. This shows that 
K2 ∈ [K1, L] and since we have σ(x,y,z)⊗K1 ∈ G (by inductive assumption) and 1 ⊗L ∈ G
(because we showed it above), we have

[
σ(x,y,z) ⊗ K1, 1 ⊗ iIzz

]
= σ(x,y,z) ⊗ [K1, iIzz]
∈ σ(x,y,z) ⊗ [K1, L] ∈ G.

These arguments show that, in (16), the right hand side is included in the left hand side. 
We already know that G ⊆ L̂ by Lemma 3.1, so the theorem is proved. �

The result of Theorem 2 (and Lemma 3.1) show that, in general, G �= LĜ ∩su(21+np). 
In particular span{i1 ⊗ J} belongs to LĜ ∩ su(21+np) but it is orthogonal to G. This 
fact could also be proved without knowing Theorem 2 and using the general membership 
criteria of [5]. Consider for instance the case np = 2. The set P ∪ i1 ⊗ J , where P is the 
set of generators for our model, has an Abelian commutant in u(8) spanned by i12 ⊗ 14
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and i12 ⊗ J . Using this basis, a direct calculation shows that rank condition B of Result 
1 of [5] is not verified so that the Lie algebras generated by P and {P ∪ i1 ⊗ J} (which 
is included in LĜ ∩ su(21+np)) are different.

3.3. Dynamical Lie algebra for nc = 2

We start with some considerations for general np ≥ nc = 2. Then we will give separate 
results for the case np = 2 and np > 2.

Lemma 3.5. If nc = 2, G contains the spaces

iIC
0 ⊗ IP

0 , (1 + 1
3J) ⊗ iIP

0 . (17)

Proof. Using (14), we have S2
z ⊗ [B, iD] = (1 + Izz) ⊗ R ∈ G, for each R ∈ iIP

0 . Taking 
(repeated) Lie brackets with elements of the form AC ⊆ G and using formula (6) of 
Lemma 2.2 with A := iIC

zz we obtain the first one of (17). Repeating the calculation in 
(14) with Sz replaced by Sx or Sy, we obtain i(1 +Ixx) ⊗IP

0 ∈ G and i(1 +Iyy) ⊗IP
0 ∈ G, 

which together with the corresponding one for x gives the second one in (17). �
Proposition 3.6. If nc = 2 and for all np ≥ 2, it holds that:

Sx,y,z ⊗ A, (18)

with A ∈ LG belongs to G.

Proof. The proof is by induction on the depth of A, with the generators iSx,y,z, iIzz and 
i1 of LG. We know that the matrices:

iSx,y,z ⊗ 1, iSx,y,z ⊗ Sx,y,z, iSx,y,z ⊗ Izz,

are in G, since the first type belongs to AC in (11), the second type belongs to B and the 
third one to D1 in (13). Thus equation (18) holds for A of depth 0. Assume that it holds 
for all B of depth k. If A has depth k + 1, then either A = [B, Sx,y,z] or A = [B, Izz], 
and Sx,y,z ⊗ B ∈ G by inductive assumption. In the first case, we have:

[Sx ⊗ B, 1 ⊗ iSx,y,z] = Sx ⊗ A ∈ G.

In the second case, we have:

A = [B, iIzz] = [B,
1
3J + 1

3 i(Ixx−Iyy)− 2
3 i(Ixx−Izz)] = [B,

1
3 i(Ixx−Iyy)− 2

3 i(Ixx−Izz)],

since J commutes with B because of Corollary 2.5. We also have
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(1 + Ixx) ⊗ 1
3 i(Ix,x − Iy,y) − 2

3 i(Ix,x − Iz,z) ∈ G,

because of (17). Therefore we calculate

[Sx ⊗ B, (1 + Ixx) ⊗ 1
3 i(Ix,x − Iy,y) − 2

3 i(Ix,x − Iz,z)] =

= 1/2{Sx, (1 + Ixx)} ⊗ [B,
1
3 i(Ix,x − Iy,y) − 2

3 i(Ix,x − Iz,z)] =

= (Sx + SxIxx) ⊗ [B, iIzz] = (Sx + SxIxx) ⊗ A ∈ G.

Since for nc = 2, SxIxx = Sx, we have Sx ⊗ A ∈ G, and analogously for Sy ⊗ A and 
Sz ⊗ A. �
Proposition 3.7. If nc = 2, then all matrices of the type

(Ixx − Izz) ⊗ A, and (Iyy − Izz) ⊗ A (19)

with A ∈ L belong to G.

Proof. We will prove the statement by induction on the depth of the matrix A, by taking 
iSx,y,z and i(Ixx −Izz) and i(Iyy −Izz) as generators of L (by definition). By Lemma 3.2, 
we know that all matrices:

i(Ixx − Izz) ⊗ Sx,y,z, i(Iyy − Izz) ⊗ Sx,y,z

are in G. Moreover from equation (17) we get also that the matrices:

i(Ixx − Izz) ⊗ (Ixx − Izz), i(Ixx − Izz) ⊗ (Iyy − Izz),

and

i(Iyy − Izz) ⊗ (Ixx − Izz), i(Iyy − Izz) ⊗ (Iyy − Izz),

are in G. Thus the elements (19) are in G, when A is of depth 0.
On the other hand, if the depth of A ∈ L is k > 0, then either A = [B, iSx,y,z] or 

A = [B, i(Ixx − Izz)] or A = [B, i(Iyy − Izz)], for B ∈ L of depth k − 1. In the first case, 
we have:

[(Ixx − Izz) ⊗ B, 1 ⊗ Sx,y,z] = (Ixx − Izz) ⊗ A ∈ G,

and similarly also (Iyy −Izz) ⊗A ∈ G. For the second case, we know from Proposition 3.6
that Sx ⊗ B ∈ G, and from Lemma 3.2, iSx ⊗ (Ixx − Izz) ∈ G. Thus

[Sx ⊗ B, Sx ⊗ i(Ixx − Izz)] = S2
x ⊗ [B, i(Ixx − Izz)] = 2(1 + Ixx) ⊗ A ∈ G.
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Using Sz instead of Sx, we get also the matrix 2(1 + Izz) ⊗ A is in G. Thus also (Ixx −
Izz) ⊗ A is in G. Similarly, we prove that also (Iyy − Izz) ⊗ A ∈ G, as desired. �
Proposition 3.8. (1 + 1

3J) ⊗ L, belongs to G.

Proof. Using the last ones of (11) and (13) we know that G contains (1 + 1
3J) ⊗ iSx,y,z. 

Using the second one of (17) we also know that G contains (1 + 1
3J) ⊗ I0. Therefore, for 

every generator of L, A, (1 + 1
3J) ⊗ A belongs to G. Now for two elements of L, A and 

B, we have that

[(1 + 1
3J) ⊗ A, (1 + 1

3J) ⊗ B] = (1 + 1
3J)2 ⊗ [A, B] = 4

3(1 + 1
3J) ⊗ [A, B],

since a direct calculation gives (1 + 1
3J)2 = 4

3 (1 + 1
3J). Therefore (1 + 1

3J) ⊗ A is in G
whether A is a generator of L or it is a Lie bracket of two elements of L. This implies 
that it is in G for any A in L. �

The following theorem summarizes the spaces included in G which we have identified 
so far for nc = 2.

Theorem 3. Assume nc = 2. Then the dynamical Lie algebra G contains the following 
subspaces:
i)

iL ⊗ L (20)

ii)
(1 + 1

3J) ⊗ L (21)

iii)
L ⊗

(
1 + 2

3np
J

)
(22)

iv) AC and AP from (11).

Proof. The subspace in (20) comes from (18) of Proposition 3.6 and (19) of Proposi-
tion 3.7 by taking Lie brackets of the elements in (19) with iSx,y,z ⊗ 1 (which are in 
(18)) to obtain the rest of I0 ⊗ L. For the subspace in (22), recalling that in the case 
nc = 2, L = S ⊕ iI0, the part in (22) with S on the right comes from (18). The subspace 
iI0 ⊗ (1 + 2

3np
J) can be obtained as follows: By induction on np, we have

(SP
x,y,z)2 = np1 + 2IP

xx,yy,zz. (23)

Take for instance Sx for np = n which we denote by Sx,n. We have Sx,n = Sx,n−1 ⊗ 1 +
1 ⊗ σx, and
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S2
x,n = (Sx,n−1 ⊗ 1 + 1 ⊗ σx)2 = S2

x,n−1 ⊗ 1 + Sx,n−1 ⊗ σx + Sx,n−1 ⊗ σx + 1.

Using the inductive assumption on the first term we have

S2
x,n = (n − 1)1 + 2Ix,x(n−1) ⊗ 1 + 2Sx,n−1 ⊗ σx + 1 = n1 + 2Ix,x(n),

since we have collected in Ix,x(n) the terms containing pairs (σx, σx) in the first n − 1
terms, which are in Ix,x(n−1) ⊗ 1, and the terms displaying σx in the last factor, which 
are in 2Sx,n−1 ⊗ σx. Summing (23) for x, y and z, we obtain

1
3np

((SP
x )2 + (SP

y )2 + (SP
z )2) = 1 + 2

3np
J. (24)

Now using (18) and D2 in (13) with A ∈ S and B ∈ iI, which are in G, we have 
[A ⊗Sx, B ⊗Sx] = [A, B] ⊗S2

x and analogously for y and z. Summing them all and using 
(24), we have that in G we also have [A, B] ⊗ (1 + 2

3np
J), and using (5) of Lemma 2.2, 

we obtain the space iI0 ⊗
(

1 + 2
3np

J
)

to complete (22). �
3.3.1. Case np = 2

Theorem 4. Assume nc = 2 and np = 2. Then the dynamical Lie algebra is the direct 
sum of the subspaces (20), (21), (22), AC , and AP , that is, of all subspaces listed in 
Theorem 3.

Proof. For np = 2, the subspaces (20), (21), (22), AC , and AP , listed in Theorem 3, 
summarize as

iL ⊗ L, (1 + 1
3J) ⊗ L, L ⊗ (1 + 1

3J), 1 ⊗ S, S ⊗ 1. (25)

Since these spaces contain the generators of the dynamical Lie algebra L, it is enough 
to prove that their direct sum is closed under commutation. Denote the direct sum of 
the first three spaces in (25) as L̃, so that we have to show that L̄ := L̃ ⊕ AC ⊕ AP

is closed under commutation. It is obvious that [AC , AC ], [AC , AP ], [AP , AP ], [L̃, AC ], 
and [L̃, AP ] are all in L̄. Therefore, we only have to show that [L̃, L̃] ⊆ L̄. To this aim, 
it is useful to introduce the spaces O1 := (1 − J) ⊗ iI0, O2 := iI0 ⊗ (1 − J), so that 
O1 ⊕ O2, is the orthogonal complement of L̃ ⊕ AC ⊕ AP in L̂. Using Lemma 2.6 and 
J2 = 314 − 2J , one can verify that the first three subspaces in (25) commute with O1

and O2. Therefore, the commutator of any two elements, according to Lemma 2.1 is 
orthogonal to O1 and O2, and therefore it belongs to L̄. �

Notice that in this case G is a proper subalgebra of L̂.
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3.3.2. Case np > 2

Theorem 5. Assume nc = 2 and np > 2 then

G =
(
iL ⊗ LG

)
⊕

((
1 + 1

3J

)
⊗ L

)
⊕ (1 ⊗ S) (26)

Proof. First, we see that the right hand side is included in G. The last two terms of the 
direct sum are in AP in (11) and in (21). Moreover consider A, an arbitrary element of 
S, and B, an arbitrary element of iI0. Then A ⊗ Sx ∈ iL ⊗ L ⊆ G because of (20) and 
B ⊗ Ixxx ∈ iL ⊗ L ⊆ G because of (20). We calculate

[A ⊗ Sx, B ⊗ Ixxx] = [A, B] ⊗ SxIxxx.

[A, B] can be an arbitrary element of iI0 according to (5) of Lemma 2.2, while SxIxxx

is a linear combination with nonzero coefficients of Ixx and (if np ≥ 4) Ixxxx. Since 
iIxxxx ∈ L, [A, B] ⊗ Ixxxx ∈ iL ⊗ L which is already in G because of (20). Therefore 
[A, B] ⊗ Ixx ∈ G. Repeating this calculation with x replaced by y or z and summing 
all the terms, we obtain that iI0 ⊗ J ∈ G. We also have iI0 ⊗ 1 because of (22), S ⊗ 1
because of (11), S ⊗ J because of (22) and iL ⊗ L because of (20). These together give 
iL ⊗ LG.

To show the fact that G is included in the right hand side we notice that all the gen-
erators of G are in the right hand side of (26). Moreover we can check the commutations 
of the subspaces in (26). We report only the checks that are not immediate. We have

[iL ⊗ LG, iL ⊗ LG] = [L, L] ⊗ {LG, LG} + {L, L} ⊗ [LG, LG] ⊆ iL ⊗ LG + {L, L} ⊗ L.

In the last term in the right hand side {L, L} must be a linear combination of 1 + 1
3J and 

elements in iL because it is in iLG and orthogonal to 1 − J because of Lemma 2.6. In 
fact, for A and B in L, we have Tr((1 −J)(AB +BA)) = Tr(AB +BA −AB −BA) = 0. 
Therefore these commutators are in the right hand side of (26).

[iL ⊗ LG, (1 + 1
3J) ⊗ L] = {L, (1 + 1

3J)} ⊗ [LG, L] + [L, (1 + 1
3J)] ⊗ {LG, L}.

The last term is zero because of Lemma 2.4 while the first term is in iL ⊗ L because of 
Lemma 2.6. Moreover

[
(1 + 1

3J) ⊗ L, (1 + 1
3J) ⊗ L

]
⊆ (1 + 1

3J)2 ⊗ L = 4
3(1 + 1

3J) ⊗ L. �
We remark that G in (26) is always a proper subalgebra of L̂ in (12). In fact, if C is 

a subspace in L orthogonal to S, the subspace in L̂, (1 − J) ⊗ C belongs to L̂ but it 
is orthogonal to G in (26). Nevertheless, we will see in the next section that subspace 
controllability is verified in all cases considered in this paper.
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4. Subspace controllability

In general terms, if a system of the form (1) admits a discrete group of symmetries Ĝ, 
i.e., a group Ĝ such that [A, P ] = 0, [Bj , P ] = 0, ∀P ∈ Ĝ, the maximal Lie subalgebra 
of u(n) which commutes with Ĝ, acts on certain invariant subspaces Hj of the Hilbert 
space H as u(dim(Hj)). Each of such subspaces is an irreducible representation of LĜ

(cf., [8] Theorem 4). In an appropriate basis of H, therefore, such a maximal Lie algebra 
can be written in block diagonal form, where each block can take values in u(dim(Hj)). 
The dynamical Lie algebra associated with a system having Ĝ as a group of symmetries 
also displays a block diagonal form in the same basis although not necessarily equal to 
the full maximal Lie algebra. In the preferred basis however one can study the action 
of the dynamical Lie algebra on each subspace and determine subspace controllability. 
This is the plan we follow here.

A method to find the desired basis was described in [8] and it uses the so-called Gen-
eralized Young Symmetrizers (GYS) where the word ‘Generalized’ refers to the fact that, 
in the case where the group Ĝ is the symmetry group, they reduce to the classical Young 
symmetrizers of group representation theory as described for instance in [17]. More pre-
cisely, consider the representation of Ĝ on H and the group algebra of Ĝ (i.e., the algebra 
over the complex field generated by a basis of Ĝ), C[Ĝ]. Then the GYS are elements of 
C[Ĝ], and operators on H, Πj satisfying C) (Completeness): 

∑
j Πj = 1; O) (Orthogonal-

ity): ΠjΠk = δj,kΠj , where δj,k is the Kronecker delta; P) (Primitivity): ΠjgΠj = λgΠj , 
where λg is a scalar which depends only on g (and not on j) H) (Hermiticity): For every 
j, Π†

j = Πj . If the GYS are known for a given group Ĝ on a Hilbert space H, then the 
images of the various Πj : H → H give the subspace decomposition of H which block 
diagonalizes the maximal Lie algebra in u(n) commuting with Ĝ. In the cases where Ĝ
is the symmetric group Sn over n objects, the (generalized) Young symmetrizers can be 
found using the classical method of Young tableaux (see, e.g., [17]) modified in references 
[3] [13] to meet the Orthogonality and Hermiticity requirements. A method is given in [8]
to compute the GYS in the case where Ĝ is Abelian. However, the calculation of GYS for 
general discrete groups is in general an open problem. We observe that if H : HC ⊗ HP

the tensor product of two Hilbert spaces HC , HP , as in bipartite quantum systems, and 
Ĝ is the product of two groups Ĝ := ĜC ⊗ ĜP , with ĜC(P ) acting on HC(P ), then the 
GYS can be found as tensor products of GYS on HC(P ) for ĜC(P ), ΠC

j ⊗ΠP
k . It is indeed 

readily verified that if {ΠC
j } and {ΠP

k } satisfy the requirements (C,O,P,H) above on 
HC and HP , respectively, then {ΠC

j ⊗ ΠP
k } satisfy the same requirements (C,O,P,H) on 

HC ⊗ HP . The invariant subspaces are Hj,k := (Im ΠC
j ) ⊗ (Im ΠC

k ) and, in this basis, 
the (maximal) invariant Lie algebra takes the corresponding block diagonal form.

For the systems treated in this paper, the symmetry groups ĜC and ĜP are the 
symmetric groups on nc and np objects, Snc

and Snp
, respectively. The decomposition 

is obtained using the GYS of [3], [13], [17]. Let G be now the symmetric group on n

objects and, as we have done before, denote by LG the maximal Lie subalgebra of u(n)
which commutes with G. Consider the matrix J defined in Lemma 2.4 and Corollary 2.5
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in the basis determined by the GYS. In this basis, the elements of LG are block diagonal 
and every block can be an arbitrary matrix in u(m) for appropriate m (cf. Theorem 2 in 
[8]). Since each block of the matrices in LG can be an arbitrary skew-Hermitian matrix 
of appropriate dimensions, iJ is also a block diagonal matrix, i.e.,

iJ :=

⎡
⎣

iJ1
. . .

iJd

⎤
⎦ ,

with iJk, k = 1, ..., d commuting with the corresponding block of the matrices in LG. 
Since such a block defines an irreducible representation of u(m) for appropriate dimen-
sions m, it follows from Schür’s Lemma (see, e.g., [10]) that all iJk are scalar matrices. 
Consider now the matrices in L and LG and their restrictions to one of the subspaces 
ImΠk, of dimensions mk. A basis for LG restricted to ImΠk is given by a basis of u(mk)
while a basis of L contains at least a basis of su(mk) since the restriction of L to ImΠk

differs by u(mk) at most by multiples of the identity. This is due to Proposition 2.3, 
along with the fact, seen above, that iJ acts as a scalar matrix on ImΠk.

We are now ready to conclude subspace controllability for all the situations treated 
in this paper. Consider first the case nc = 1, and np ≥ 1, for which we have proved 
in Theorem 2 that the dynamical Lie algebra is L̂ in (12). The only GYS on HC is 
the identity, and the only invariant subspaces for the whole system are HC ⊗ ΠkHP , 
where the Πk are the GYS’s for the system P . A basis of G = L̂ is given by {σx,y,z ⊗
BL, σx,y,z ⊗ {i1, iJ}, 1 ⊗ BL}, where with BL we have denoted a basis of L. Since, as 
we have seen above, L acts on ΠkHP as u(mk), mk := dim(ΠkHP ), except possibly 
for multiples of the identity, a basis for the restriction of G to HC ⊗ ΠkHP , contains 
σx,y,z ⊗ Uk, iσx,y,z ⊗ 1 and 1 ⊗ Uk, where Uk is a basis of su(mk). Therefore it contains a 
basis of su(2mk) and therefore controllability is verified. Consider now the case nc = 2, 
np = 2, where the dynamical Lie algebra is described by Theorem 4. If BL is a basis 
of L, a basis for G is given by iBL ⊗ BL, (1 + 1

3J) ⊗ BL, BL ⊗ (1 + 1
3J), 1 ⊗ iσx,y,z, 

iσx,y,z ⊗ 1. Consider two GYS, ΠC
j and ΠP

k , and the invariant space ΠC
j HC ⊗ ΠP

j HP

with dimensions mj × mk, mj := dim(ΠC
j HC), mk := dim(ΠC

k Hk). A basis for the 
restriction of G to ΠC

j HC ⊗ ΠP
j HP contains iUj ⊗ Uk, 1 ⊗ Uk, Uj ⊗ 1, and therefore it 

contains a basis of su(mjmk). Analogously, consider the case nc = 2, np > 2. A basis 
for the dynamical Lie algebra G described in Theorem 5 is, with the above notation, 
{iBL ⊗ BL, BL ⊗ {1, J}, (1 + 1

3J) ⊗ BL, 1 ⊗ iSx,y,z} whose restriction to ΠC
j HC ⊗ PiP

j HP

contains iUj ⊗ Uk, Uj ⊗ 1, 1 ⊗ Uk, and therefore su(mjmk). We have therefore with the 
following theorem.

Theorem 6. The system (1) with one or two central spins (nc = 1 or nc = 2) with any 
number np ≥ nc of surrounding spins, simultaneously controlled, is subspace controllable.

Example 4.1. To illustrate some of the concepts and procedures described above, we 
consider the system of one central spin nc = 1 along with np = 3 surrounding spins. 
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The symmetric group on the central spin is trivial being made up of just the identity. 
There is a single GYS given by the identity. For the symmetric group S3 on the P part 
of the space, we obtain the GYS using the method of [3], [13], [17], based on the Young 
tableaux. We refer to these references for details on the method. For n = 3 there are 
three possible partitions of n and therefore three possible Young diagram (also called 
Young shapes). Recall that a partition of an integer n is a sequence of positive integers 
λ1 ≥ λ2 ≥ · · · ≥ λd, with λ1 + λ2 + · · · + λd = n and the corresponding Young diagram 
is made up of boxes arranged in rows of length λ1, λ2, ..., λd. Therefore for n = 3, we 
have the partitions (3), (2, 1), (1, 1, 1) which correspond to the Young diagrams

, , , (27)

respectively. To each Young diagram, there corresponds a certain number of Standard 
Young Tableaux obtained by filling the boxes of the Young diagram with the numbers 1
through n (3 in this case) so that they appear in strictly increasing order in the rows and 
in the columns. The following are the possible standard Young tableaux corresponding to 
the Young diagrams in (27). In particular, the first one corresponds to the first diagram 
in (27), the second and third one correspond to the second one in (27) and the fourth 
one corresponds to the third one in (27)

1 2 3 , 1 2
3 , 1 3

2 ,
1
2
3

. (28)

To each tableaux there corresponds a GYS whose image is an invariant subspace for the 
Lie algebra representation. We refer to [8] for a summary of the procedure to obtain such 
GYS’s. In our case the GYS corresponding to the first diagram in (28) has 4-dimensional 
image, the ones corresponding to the second and third have two-dimensional images 
and the one corresponding to the last one has zero dimensional image. Therefore the 
invariant subspaces for the system with one central spin and np = 3 surrounding spin, 
simultaneously controlled, have dimensions 2 × 4, 2 × 2 and 2 × 2.

We conclude the section by discussing in general the dimension of the invariant (con-
trollable) subspaces and how it increases with np. We recall (see, e.g., [8]) that there is an 
explicit general formula to obtain the dimension of the image of a GYS, ΠT , correspond-
ing to a Young tableaux T . Such formula specializes to our case (where the dimension 
of the underlying subspace is 2) as

dim(ImPT ) =
∏r

l=1
∏λl

k=1(2 − l + k)
Hook(T ) . (29)

Here r is the number of rows in the Young diagram associated with T , λl is the number 
of boxes in the l-th row, and Hook(T ) is the Hook length of the Young diagram associated 
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with T . It is calculated by considering, for each box, the number of boxes directly to 
the right + the number of boxes directly below + 1 and then taking the product of 
all the numbers obtained this way. Using formula (29) it is possible to derive, for each 
np, the dimensions of all invariant subspaces. Fix n = np. From formula (29), Young 
diagrams with more than two rows give zero dimensional spaces. So we have to consider 
only Young diagrams with one or two rows. There is only one diagram with one row, T1, 
i.e., the diagram containing np boxes, and in (29) r = 1 and λ1 = n. For this diagram, 
the Hook length is n!. We thus have:

dim(ImPT1) =
∏n

k=1(1 + k)
n! = n + 1.

For diagrams with two rows, the possible partitions are of the type λ1 = n − k and 
λ2 = k, with k integer and k ≤ n

2 . For example

is the Young diagram for the case n = 10 and k = 3. For the diagram corresponding to 
a given k, T k

2 , the Hook length is

Hook(T k
2 ) = (n + 1 − k)(n − k) · · · (n − 2k + 2) · (n − 2k)! · k!.

Thus we have

dim(ImPT k
2

) =
∏n−k

j=1 (1 + j)
∏k

j=1 j

(n + 1 − k)(n − k) · · · (n − 2k + 2) · (n − 2k)! · k! = n − 2k + 1.

So, for this central spin model, the dimension of the invariant subspaces grows linearly 
with n. The largest space has dimension n + 1. The dimensions of the full invariant 
subspaces of the model with 1 and 2 central spins are obtained by multiplying the 
dimensions obtained for HP by the dimensions of the invariant subspaces of HC , which, 
with the same method of Young tableaux, can be shown to be 2 in the case nc = 1 and 
1 or 3 in the case nc = 2. The largest possible dimension is therefore obtained for nc = 2
and it is 3(np +1). This behavior is different from the one of the system considered in the 
paper [18], where the dimension of one of the invariant subspaces grows exponentially 
with the number of spins. This is essentially due to a much larger number of symmetries 
in our case.

5. Conclusions and generalizations

We have considered spin networks where the spins are arranged in two sets, a set 
P and a set C, and where the Ising interaction is exclusively between each spin of the 
set C and each spin of the set P . The model Hamiltonian is symmetric with respect to 
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permutations on the spins in C and the spins in P . We now consider the possibility that 
the interaction between the spins in C and the spins in P is still symmetric but more 
general than Ising and-or that there are internal interactions within the set C and P . 
More specifically we replace the term SC

z ⊗ SP
z in (10) with the more general

H+ := Sz ⊗ Sz + aSx ⊗ Sx + bSy ⊗ Sy + HC ⊗ 1 + 1 ⊗ HP , (30)

for real parameters a and b and HC (HP ) represents the internal interactions of spins in 
C (P ). We notice that the argument at the end of subsection 2.3 still holds. Therefore 
the Lie algebras AC and AP in (11) are still subalgebras of the dynamical Lie algebra. 
Moreover, a direct verification shows that

[[[[iH+, iSx ⊗ 1], 1 ⊗ iSy] , 1 ⊗ iSy] , iSx ⊗ 1] � iSz ⊗ Sz.

Therefore iSz ⊗Sz is still in the dynamical Lie algebra along with AC and AP and there-
fore the resulting Lie algebra includes the dynamical Lie algebra for the case considered 
in the above sections. It follows that subspace controllability is verified in these cases as 
well.

The assumption that all the coupling constants between elements in the set C and 
elements in the set P are equal is an idealization. However, more realistic systems where 
such couplings are nearly equal could be theoretically controllable [1] but require very 
high amplitude or long time control. Therefore they can in fact be considered uncon-
trollable for all practical purposes and satisfactorily approximated with the models we 
have considered. Small perturbations of the couplings appear to preserve the subspace 
controllability property we have proved and this generalizes the known fact that com-
plete controllability is a property of quantum systems robust to small perturbations [4], 
[14]. For example, assume three spins in P and one in C. If there is in-homogeneity of 
the interaction strengths between one of the spins in P and the spin in C, then the 
Hamiltonian σz ⊗ Sz of (10) is replaced by

Hε = σz ⊗ Sz + εσz ⊗ σz ⊗ 12 ⊗ 12.

By taking the commutator [iHε, 1 ⊗ Sx], we obtain iσz ⊗ Sy + iεσz ⊗ σy ⊗ 1 ⊗ 1, and 
calculating the commutator of this last one with iHε, we obtain i1 ⊗ σx ⊗ 1 ⊗ 1. Analo-
gously we can obtain i1 ⊗ σy ⊗ 1 ⊗ 1, and therefore also i1 ⊗ σz ⊗ 1 ⊗ 1. By, repeated Lie 
brackets with iHε we can separate the term σz ⊗σz ⊗1 ⊗1 from σz ⊗1 ⊗(σz ⊗1 +1 ⊗σz). 
Therefore, once again, the dynamical Lie algebra contains the Lie algebra calculated in 
the fully symmetric Ising case and subspace controllability is preserved.

The calculation of the dynamical Lie algebra of a quantum system is the method of 
choice to study its controllability properties [7]. However such direct calculation might 
be difficult in cases of very large systems and in particular networks of spins where 
the dimension of the underlying full Hilbert space grows exponentially with the number 
of particles. For this reason, it is important to device methods to assess controllability 
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from the topology of the network and its possible symmetries. Symmetries, in particular, 
prevent full controllability and determine a number of invariant subspaces on which the 
system evolves. In this paper we have considered a configuration of indistinguishable spins 
divided into sets interacting with each other. This is the first intermediate case between 
two extremes cases of all indistinguishable and all distinguishable spins previously treated 
in the literature. The full symmetric group acts on each set of spins without modifying 
the Hamiltonian which describes the dynamics. A common electromagnetic field is used 
for control. We have computed the dynamical Lie algebra and proved that such a system 
is subspace controllable, that is full controllability is verified on each invariant subsystem. 
Quantum evolution is a parallel of the evolution of various subsystems and we can use 
one of them to perform various tasks of, for instance, quantum computation and-or 
simulation.
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