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is usually assessed by computing the Lie algebra G generated by the matrices in u(NV),
A and Bj (see, e.g., [7], [12], [16]). The Lie algebra G is called the dynamical Lie alge-
bra. Here u; = u,;(t) are the (semiclassical) control electromagnetic fields and |¢) is the
quantum mechanical state varying in a finite dimensional Hilbert space #. If 9 denotes
the connected component containing the identity of the Lie group associated with G,
then the set of states reachable from [¢g) by choosing the control fields is (dense in)
{|9) == X|1po) € H| X € €9}. In particular if G = u(N) or G = su(N), the system is said
to be (completely) controllable and every unitary operation, or special unitary operation
in the su(n) case, can be performed on the quantum state. This is important in quantum
information processing [15] when we want to ensure that every quantum operation can be
obtained for a certain physical experiment (universal quantum computation). Although
controllability is a generic property (see, e.g., [4], [14]), often symmetries of the physical
system prevent it and the dynamical Lie algebra G is a proper subalgebra of su(N). In
this case, the given representation of the Lie algebra G splits into its irreducible compo-
nents which all act on an invariant subspace of the full Hilbert space H on which the
system state |¢) is defined. It is therefore of interest to study whether, on each subspace,
controllability is verified, so that, in particular, one can perform universal quantum com-
putation and-or generate interesting states on a smaller portion of the Hilbert space (see,
e.g., [9], [11]). This situation has recently been studied in detail for networks of particles
with spin in the papers [18], [19]. In particular, in [19], various topologies of the spin
network were considered for various possible interactions among the spins and results
were proven concerning the controllability of the first excitation space, that is, the in-
variant subspace of the network of states of the form 3. a;|000---00100---000), ie.,
superpositions of states where only one spin is in the excited state. In [18], only chains
with next neighbor interactions were considered (instead of general networks) but more
comprehensive controllability results were given on all the invariant subspaces of this
type of systems. In both these papers, the control affects only one of the spins in the
network, which may be placed in various places in the network.

In this paper, we shall consider situations where the control acts on all the spins si-
multaneously. We want to study the structure of the dynamical Lie algebra and subspace
controllability in this case. The symmetries of the network originate from the following
physical fact: The spins are arranged in two sets, a set P and a set C. The set C is called
of central spins. Spins in the set P (C) interact in the same (Ising) way with the set of
spins in the set C' (P). We shall initially assume that no (symmetric) interaction exists
among spins in the set P or C although we shall later see (in Section 5) how to relax
such an assumption. The systems we have in mind may be networks of spins arranged
in a molecule where the distances from spins in the set P from one or two central spins
are equal so that spins in the set C interact in the same way with a bath of surrounding
spins as in Fig. 1. The interaction between spins is physically a function of the type of
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Fig. 1. Schematic representation of a spin network with one (a) and two (b) central spins C depicted with
black bullets as opposed to empty circles (spins in P).

spins and of the distance between the spins. It is therefore impossible to have three or
more spins in both sets C' and P and therefore we assume that the set with smaller
cardinality, which we assume to be C, has at most two spins. Systems of this type admit
symmetries. In particular, by permuting the spins in the set C' and-or the spins in the
set P, the Hamiltonian describing the dynamics of the system as in (1) is left unchanged
(see next section for details). Then, if n. is the cardinality of the set C' and n,, is the
cardinality of the set P, the group of symmetries is the product between the symmetry
group on n. elements, S, _, and the symmetry group on n, elements, S, . In the mathe-
matical study of controllability of spin networks, the bipartite case considered here can
be seen as the first intermediate case between the fully asymmetric case studied in [1]
where all the spins are distinct and the fully symmetric case studied in [2], [8], [6] where
the spins are all equal and interact in the same way with each-other. In this context,
the results of this paper are the first step towards developing a theory for controllability
of spin networks where symmetries are ‘localized’ within certain subsets of the network.
Furthermore our results contribute to the recently growing literature on the dynamical
analysis and control of a central spin surrounded by a number of bath spins (see, e.g., [5],
[20] and references therein). This model is of practical interest in applications and serve
as a simplified example for the study of controlled quantum dynamics in the presence of
decoherence.

In general terms, if there is a discrete group G of symmetries for a quantum mechanical
system, the dynamical Lie algebra G associated with the system will be a subalgebra
of LY, the largest subalgebra of u(N) (N being the dimension of the system) which
commutes with G. If G is equal to £, subspace controllability is satisfied for each of the
invariant subspaces of the system (cf. Theorem 2 in [8]). However G might be a proper
Lie subalgebra of £& and subspace controllability may not be satisfied. For the systems
we consider in this paper we will see that G is not exactly equal to £L%. However, this does
not affect the subspace controllability of the system for each of its invariant subspaces
which, we will prove, is still verified.

The paper is organized as follows. In the next section, we set up the notations and
the basic definitions, so that we can precisely describe the model we want to treat and
the problem we want to consider. We also prove a number of preliminary results which
will be used later in the paper. The main results are given in section 3 where we describe



4 F. Albertini, D. D’Alessandro / Linear Algebra and its Applications 585 (2020) 1-23

the dynamical Lie algebra for Ising networks of spins with one or two central spin under
global control. Subspace controllability will come as a consequence of this in section 4.
Some concluding remarks are given in section 5 where we also give generalizations of our
results to 1) the case of different interactions among the spins 2) nonzero interactions
among the spins in the set C' and-or in the set P. We also discuss how the results are
affected by small changes in the dynamical Hamiltonian which break the symmetries of
the model.

2. Preliminaries
2.1. Notations, basic definitions and properties

In the following, we will have to compute a basis for a Lie algebra generated by a given
set of matrices. In these calculations, it is not important whether we obtain a matrix A
or a matrix kA with k£ € R, k # 0. Therefore we shall use the notation [A, B] F D to
indicate that the commutator of A and B ([A, B] := AB — BA) is kD for some k # 0
and therefore D belongs to the Lie algebra that contains A and B. We shall also often
use the formula

1 1
[A® B,C® D] = 5{A,B} ® [B, D] + §[A,C] ® {B, D},
where {A, B} denotes the anti-commutator of A and B, i.e., {A, B} := AB + BA. We
will do this routinely without explicitly referring to this formula. In u(n) we shall use
the inner product (A, B) :== Tr(AB'). One property of this inner product which will be
useful is given by the following;:

Lemma 2.1. If A commutes with B and C, then it is also orthogonal to and commutes

with [B, C].

Proof. Commutativity follows from the Jacobi identity. Moreover, Tr(A[B,C]") =
—Tr(A[B,C]) = =Tr(ABC — ACB) = —-Tr(BAC — CAB) = —Tr(BAC — BCA) =
—-Tr(B[A,C])=0. O

The Pauli matrices oy, ) are defined as

(3 e (e (b 0)

If 1,, denotes the n x n identity matrix, the Pauli matrices satisfy

040y = 0y0y = 0,0, = 1o,
Ou0y = —i0,, 0y0, = —i0g, 0,04 = —i0y , (3)
OyOp =10, 0,0y =005, 0,0, =10y
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which give the commutation relations
[iog,ioy] = 2i0,, [ioy,i0,] = 2i0y, [i0,,i0,] = 2i0,. (4)

We shall often use just the symbol 1 for the identity matrix in different dimensions as
the dimensions will be clear from the context. In the most general setting, our model
consists of n. + n, spin % particles, with n. of a type C' (for example n. nuclei) and n,
of the type P (for example n, electrons). In our conventions, the first n. positions in a
tensor product refer to operators on the spins in the set C, while the following n,, refer
to operators on the set P. We shall assume without loss of generality n. < n,. Our main
results on the characterization of the dynamical Lie algebra and subspace controllability
will concern the physical case of n, = 1 and n. = 2. We start giving some general results
valid for arbitrary n..

We denote by nglyi)z) the sum of n.(,) tensor products Z?jf) 1® Q04,2 @1®
-++® 1 where the Pauli matrix o(, , ) varies among all the possible n(,) positions. For
example, if n, = 2, Sg =0, ®14+1R0,. When it is not important or it is clear whether
we refer to the set C or the set P, we shall simply denote this type of matrices by S, ,, ).
We notice that S, , .y satisfy the same commutation relations as () and therefore
iS(z,y,2) give a representation of su(2) in the appropriate dimensions.

We shall denote the 3-dimensional Lie algebra spanned by iS(, , .y with §. We shall
c(P)

(z,y,2)(2,y,2)
identities, 1, except in all possible pairs of positions which are occupied by o, , ., and

also denote by I matrices which are sum of the tensor products of 2 x 2

O(z,y,2) For example, if n, = 3, we have

I, =000, 9140, 100, +1®0, ® 0y,
Ig’; =0, ®00,®14+0,®0,®1+0,R1RD0y+
+o,®1R0,+1R0, R0y +1R 0y ® 05.

As before, when it is not important, or it is clear in the given context, whether we refer
to the set C' or P, we omit the superscript C' or P. Z¢(P) denotes the 6-dimensional
((; E;)z) (2.,2)" while Ig (") denotes the 5-dimensional subspace of Z¢(P) spanned
by {I%(P),IEZ(P) I@,C;(P),If%P) _ I%(P),I%(P)

shall denote by I (5, times)y(n, times)z(n.times) the sum of symmetric tensor products with

span of I

- IZCZ(P)}. Generalizing this notation, we

)

Ng 03'S, Ny 0y’s and n,, 0.’s. We omit the zeros. Therefore, for instance, S, := I, and,
forn=3, Liyp := 0, @0, Q0.

Lemma 2.2.
[Sa ZI] = [Sa 'LIO] = iZp. (5)

Furthermore, if A :=1il,, orily, orily,,
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[S,span{A}] & [S, [S, span{A}]] = iZp. (6)

Proof. Formula (5) follows by direct verification using the indicated bases for Z, Zy and
S. For the second property take for example ¢I,.. We have

[0Sy, i1..] E il

Yyz» [iSy7 Z']zz] F ilxm

in [S, span{A}], and

(1S, iL,.) E il —ilyy, [iSy,ils.] E il —ilp,,
1Sy, il,.] E il

which are in [S,[S,span{A}]]. O

With £, we denote the full Lie algebra of matrices in u(n), which commute with
the symmetric group S,,. The dimension of £ was calculated in [2] and it is given by
M(n) := (”ZS) With £, we shall denote the Lie algebra generated by i{S,, Sy, Sz, Iz —
Iy, I, —I..}. The dimensions of the matrices in £& (and £) are 2" x 2". The number n
will be often clear from the context. In some places n = n.. In some other cases n = n,,.

The following fact was one of the main results of [2].

Theorem 1. Consider n spin % particles and I.., S, ,.-) matrices of the corresponding
dimension 2". Then il.., iS(y,y. ), generate all £ N su(2m).

The matrix J := I, + Iy, + 1., will be important in our description of the dynamical
Lie algebra. The Lie algebra £ above defined is the same as £& N su(2") except for i.J.
More precisely:

Proposition 2.3.
L8 N su(2™) = L @ span{iJ}. (7)

Proof. The inclusion D follows from the fact that iJ commutes with every permutation
and so do the generators of £, which are S, ») and {i(Izz — Iyy),i(Iy, — I.2)}, and
therefore all of £. Moreover both J and the generators of £ are in su(2"). To show
the inclusion C it is enough to show that a set of generators of £& N su(2") belong to
L@ span{iJ}. For this, we use Theorem 1, and take as generators iS(,,, .y and il... The
matrices iS(, , ) are already in £ by definition of L. Since

. 1. 2. 1.
il,, = —g’t(fm —1I,) — gz(lyy —I.)+ ng

and {i(Iye—1Iyy),1(Iyy—1,,)} are also in £, we have that iI,, belongs to LEspan{iJ}. O
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We shall also use the following property of the matrix J.
Lemma 2.4. The matrix iJ commutes with L.

Proof. We only need to prove that ¢J commutes with the generators of £. We start
with iS(, , -). By symmetry we only need to consider one among iS(; .. Take iS;, and
calculate [iSy,1J] = [1Sy, 1(Ipg + Lyy + 1.2)] = [0Ss,i(Iyy + 1,2)] = [Se, i1yy] + [0S4, i1..].
The first term, using (4), gives il,, (it is clear that it contains sum of matrices with all
identities except in two positions, one occupied by o, and one occupied by o,; moreover
it has to be invariant under permutations and the only matrices with this property are
proportional to il,.; the fact that the proportionality factor is 1 follows from the fact
that o, in the first place can only occur once). Using again (4), the second term gives
—il,,, thus these two terms sum up to zero.

As for i(Iyy — Iyy) and i(Iy, — I,,), again by symmetry, we need to consider only one
of them. We consider i(I,; — Iyy). We have [i(lpe — Iy ), iJ] = [i(Ige — Lyy), i(lpe + Ly +
L)) = [ilpa, ilyy] + [idyg,il..) — [ilyy, ilps] — [iyy,il..] =

iy, ilyy] + [ipe, i) — [11yy, 11,]. (8)

In the commutator [il,,ly,], writing I, and I, as symmetric sums of tensor products
the only terms that do not give zero are the ones where the two positions in I, occupied
by o, and the two positions of I, occupied by o, have only one index in common (e.g.,
positions (1,2) and position (2,3)). The commutator gives a term with a single o,, a
single o, and a single o,. Using the fact that the Lie bracket has to be permutation
invariant, we obtain that [il5,%],,] must be proportional to i¢l,,.. The proportionality
factor is in fact 1. This can be seen by writing I, as I, = 0, ® Sp + 1 ® I% 1, where
I is I, but on n— 1 positions, and, analogously Iy=0,05,+1 ®Igy_1. Taking the
commutator one can see that the coefficients of the terms having o, in the first place is
1, and therefore, by permutation symmetry this is the coefficient if i1,,. as well. With an
analogous reasoning, the commutator [il,,,i/..] in (8) gives —il,,. and the commutator
[i1yy,11,,] in (8) gives il ., so that the sum in (8) gives zero. O

Using Proposition 2.3, we have
Corollary 2.5. The matriz iJ commutes with L& .
Lemma 2.6. If n = 2, for each A € L,
JA=AJ=A (9)
Proof. Formula (9) can be directly verified for the generators of £ using (3), and it is

extended to commutators by J[A, B] = J(AB — BA) = (JA)B— (JB)A= AB— BA =
[A,B]. O
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2.2. The model

Spin % particles in a network are divided into two sets, C' and P. Each spin in the set
C interacts via Ising interaction with each spin in the set P but there is no (significant)
interaction within spins in the set C' (P) (see, Section 5 for generalizations). The system is
controlled by a common electro-magnetic field which is arbitrary in the x and y direction.
Up to a proportionality factor, the quantum mechanical Hamiltonian of the system can
be written as

H= S¢S +u.(veSY @14 vp1 @ SH)+

10
+uy (eSS @ 1+ yp1® SP). (10)

Here the term S¢ ® ST models the Ising interaction of each spin of the set C' with each
spin of the set P. The functions u, := u,(t) and u, := u,(t) are control electromagnetic
fields in the = and y directions. The parameters v¢ and yp are (proportional to) the
gyromagnetic ratios of the spins in set C' and set P, respectively. The dimensions of the
identity matrices 1 in (10) are 2™ or 2"», according to whether 1 is on the left or on
the right, respectively, of the tensor product. The Schrédinger equation for the system
takes the form (1) where A+ 3, Bju; = —iH with H in (10).

2.8. Dynamical Lie algebra and subspace controllability

We want to describe the possible evolutions that can be obtained by changing the
controls in (10) and therefore we want to describe [12] the dynamical Lie algebra G
generated by

(i8¢ © ST i(ye Sy @ 1+9p1® 87),i(veSy ®1+7p1®S,)}.

Once G is determined, its elements will take, in appropriate coordinates, a block diagonal
form which describes the sub-representations of G. The Hilbert space H for the quantum
state is accordingly decomposed into invariant subspaces. Subspace controllability is
verified if, on each subspace, G acts as u(m) or su(m) where m is the dimension of the
given subspace. Our problem is to determine the Lie algebra G and then find all its
sub-representations and prove subspace controllability.

As a preliminary step, we remark that, letting

W = [iveSS @ 1+iypl @ SEiveSy @ 1+ivpl® Sy,
then
[iveSS ®@ 1 +ivpl ® SE, W E indST @1 +ivp1 @ ST

Therefore, since the Lie algebra contains i'ycS’yc R1+ivpl® S; also, assuming |y¢| #
|vp|, we have that iSyC ®1and il® Sf belong to G. Taking the Lie brackets of i7cSS ®



F. Albertini, D. D’Alessandro / Linear Algebra and its Applications 585 (2020) 1-23 9

1+iypl ® ST with ng ®1landil® S;, we obtain that iS¢ ® 1 and i1 ® SI” are in G,
and taking the Lie bracket between iSyC ®1 (i1®S]) and iS¢ ®1 (i1® SY) we obtain
iS¢ ® 1 (i1 ® ST). Therefore G contains the 3-dimensional subspaces

AC = span{iS((’;,y,Z) ®1}, A" := span{il ® S(I;y’z)}, (11)

under the assumption that |yc| # |yp|. We shall assume this to be the case in the
following. Therefore the dynamical Lie algebra G is the Lie algebra generated by A¢,
AP and iS¢ ® ST

3. Description of the dynamical Lie algebra
3.1. Results for general n. > 1

Consider the group G, G = Sn.®Sy,, where Sy, is the group of permutation matrices
(symmetric group) on the first n. positions, corresponding to spins of the type C and
Sy, is the group of permutation matrices (symmetric group) on the second n,, positions,
corresponding to spins of the type P. This means, for C' (and analogously for P) that if
Q is a matrix in S,,. and A belongs to u(2") QAQ~! is obtained from A by (possibly)
permuting certain positions in the tensor products which appear once one expands A
in the standard (tensor product type) of basis in u(2"). This is a group of symmetries
for the system described by the Hamiltonian (10) since for every element Q¢ @ Qp €
Shn, @ Sp,, we have

[ZSZC X vaQC ® QP] - 07
[i(7eSy ®1+7p1®5;),Qc ® Qp] =0,
(eSS ®1+7p1®5)),Qc ® Qp] = 0.
The generators of G all commute with G and therefore all of G commutes with G. This
implies that @he dynamical Lie algebra G must be a Lie subalgebra of the maximal
subalgebra £ of u(2"*t"») which commutes with G. We have £& = iLC ® [ZC{. Notice
that here the first i£% is in u(2"¢), while the second is in u(2"#). A basis of L& can be
obtained by taking tensor products of the basis of the two £, and the dimension of £
is M (ne)M(np).
In fact, G is a Lie subalgebra of a slightly smaller Lie algebra.

Lemma 3.1. The Lie algebra
L=(iLaL%+ (i L), (12)

is a super Lie algebra of G.
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Proof. To see that (12) is a Lie algebra, we can notice that it is the orthogonal comple-
ment in L% ® LY to the Abelian Lie algebra

J i =span{il®1,i1® J,iJ®1,iJ ® J},

for the appropriate dimensions of the identity 1 and J on the left and on the right (this
in the case n, = 1 reduces to J := span{il®1,i1®J}) and commutes with it because of
Lemma 2.4 and Corollary 2.5. Therefore is closed under commutation from Lemma 2.1.
Moreover all generators of G belong to L. O

We shall see that in the case n. =1, G = ﬁ, while for n, =2 G # L. We now identify
certain subspaces of £ which belong to the dynamical Lie algebra G.

Proposition 3.2. The following vector spaces belong to G:

B = span{iSlC.:%z ® Siy,z ,
Dy = span{iSC , O I , )yt (13)
Dy = span{il( )4y @ Slayy -

Remark 3.3. Notice that the above subspaces have the following dimensions: dim(B) = 9,
dim(D;) = 18 unless the set P has cardinality 1, in which case D; = {0}, dim(D3) = 18
unless the set C has cardinality 1, in which case Dy = {0}.

Proof. The indicated basis of B can be obtained from S, ® S, by taking Lie brackets with
elements of the basis of A” and A" in (11). Now assume that the set P has cardinality
strictly bigger than 1 and take the Lie bracket of the two elements in B, ¢S, ® S, and
iSy ® S, which is [iS,,iS,] ® S2 EiS, ® (14 I..). Since we know that iS, ® 1 is in G,
as it belongs to AY, we have that iS, ® I, is in G. By taking Lie brackets with ZSE ®1
and iS?? ® 1 we obtain S, , ) ® I... By taking (possibly) repeated Lie brackets with
1® S(lz,,y’z) (using possibly the fact that iS(; , .y ® I.. belongs to G) we obtain all other
elements of the form iS, , .y ® I(5,y 2)(a,y,-)- Analogously we obtain the elements in the
indicated basis of Dy. O

3.2. Dynamical Lie algebra for n. =1

In the case n, = n, = 1, AY ® A” @ B is equal to su(4), so that G = su(4). In this
case the system is completely controllable and our analysis terminates here. We shall
therefore assume that n, > 1, and therefore D; # {0} in (13) while Dy = {0}.

Take B in S and D in ZF. The Lie bracket of the matrices S, ® B := 0, @ B € B
and S, ®iD =0, ®iD € D gives

[S.®B,S,®iD] = S?® [B,iD] =1® R, (14)

for an arbitrary R in iZ according to (5) of Lemma 2.2. We have therefore:
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Lemma 3.4. If n. = 1, the dynamical Lie algebra G contains
& =1®iIf. (15)
Theorem 2. If n. =1 and for any n, > 2 the dynamical Lie algebra G is given by
G = ((spanfosy.-}) @ £9) @ ((span{1}) © £) = L£. (16)

Proof. Using elements in £; and elements of A", since L is the Lie algebra generated by
iZp and iS(,,, .) we obtain anything in (span{1}) ® £. Now we know from Theorem 1
that il iS(I;y,Z) and i1 generate all of L. Therefore, basis elements of L& N su(2"»)
are obtained by (repeated) Lie brackets of il and iS(I;yJ). Define the ‘depth’ of a basis
element K as the number of Lie brackets to be performed to obtain K;. In particular, the
generators i/, iS(;,y,.) are element of depth zero. We show by induction on the depth of
the basis element K that all elements of the form o, , .)®K; can be obtained. For depth
zero, we already have io(, , -)®S54,y,.) € Band io(, . &1, € D1, from Proposition 3.2.
For depth d > 1, assume by induction that we have all elements io(, , .) ® K7 for K7 in

the basis of L& N su(2™), K of depth d — 1. If Ky = [K1,iS(5,y,2)], Wwe can obtain

[U(m,y,z) ®K1,11® Sz,y,z] = O(z,y,2) ® [Klu ZS('r,y,z)]
= O(zy,z) @ K.

If K2 = [Kl,ijzz], write

il.. = 3i(low — Lyy) — 3i(le — I.2) + 3iJ, so that
i(Ioa — Iyy) —
i(Ioa — Iyy) —

(L

K2: [Kla
= ([z

i(Iw — I.2) + 3iJ ]
[Kl& { r [zz)] .

Wl
ool

This is true because i.J commutes with £ according to Corollary 2.5. This shows that
K5 € [Ky, £] and since we have o, ,, .y®K; € G (by inductive assumption) and 19L € G
(because we showed it above), we have

[O—(%%Z) & Kla 1® Z‘Izz] = O(z,y,2) (%9 [Kl, ’i]zz]
€ U(w,y,z) & [KL E] S g

These arguments show that, in (16), the right hand side is included in the left hand side.
We already know that G C L by Lemma 3.1, so the theorem is proved. 0O

The result of Theorem 2 (and Lemma 3.1) show that, in general, G # £én su(21me).
In particular span{i1 ® J} belongs to £én su(21772) but it is orthogonal to G. This
fact could also be proved without knowing Theorem 2 and using the general membership
criteria of [5]. Consider for instance the case n, = 2. The set P Uil ® J, where P is the
set of generators for our model, has an Abelian commutant in ©(8) spanned by ilo ® 14
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and ils ® J. Using this basis, a direct calculation shows that rank condition B of Result
1 of [5] is not verified so that the Lie algebras generated by P and {P Uil ® J} (which
is included in £ N su(2'+7)) are different.

3.83. Dynamical Lie algebra for n, = 2

We start with some considerations for general n, > n. = 2. Then we will give separate
results for the case n, = 2 and n, > 2.

Lemma 3.5. If n. = 2, G contains the spaces
1
1§ @Iy, (1+37) @i (17)

Proof. Using (14), we have S? ® [B,iD] = (1+ I,,) ® R € G, for each R € iZ{. Taking
(repeated) Lie brackets with elements of the form A® C G and using formula (6) of
Lemma 2.2 with A := IS, we obtain the first one of (17). Repeating the calculation in
(14) with S, replaced by S, or S, we obtain i(1+I,,)®ZF € G and i(1+1,,)QZIE € G,
which together with the corresponding one for z gives the second one in (17). O

Proposition 3.6. If n. = 2 and for all n, > 2, it holds that:
with A € LC belongs to G.

Proof. The proof is by induction on the depth of A, with the generators ¢S, , ., i1, and
i1 of LY. We know that the matrices:

ZSx,y,z ®1, ZSac,y,z & Sﬂc,y,Za ZSx,y,z ® I,

are in G, since the first type belongs to A in (11), the second type belongs to 13 and the
third one to D; in (13). Thus equation (18) holds for A of depth 0. Assume that it holds
for all B of depth k. If A has depth k + 1, then either A = [B, S, , .| or A = [B,I..],
and S, 4. ® B € G by inductive assumption. In the first case, we have:

[Se ® B,1®1iS34.] =S ®A€gG.

In the second case, we have:

. 1 1, 2 1. 2
A =[B,il..] =B, §J+§z(lm—ly )—gz(Im—Izz)] = [B, gz(Im—Iy )—gz(.TM—IZZ)]7

since J commutes with B because of Corollary 2.5. We also have



F. Albertini, D. D’Alessandro / Linear Algebra and its Applications 585 (2020) 1-23 13

1 2
(]— + Iza:) ® gl(-[m,z - Iy,y) - gz(-[z,z - Izﬁz) € ga

because of (17). Therefore we calculate

1. 2.
[Sa: ® B, (1 + I:cx) & gz(lx,x - Iy,y) - gz(lx,x - Iz,z)] =
1. 2.
=1/2{8, (1 + L.2)} ® [B, gZ(Ifc@ —1Iyy) — EZ(IZ@ —1..)] =

= (Se + Spliz) @ [B,il,.] = (Se + Seles) ® AEG.

Since for n. = 2, Syl = Sz, we have S, ® A € G, and analogously for S, ® A and
S, QA O

Proposition 3.7. If n. = 2, then all matrices of the type

(Ipo — I..) @A, and (Iyy,—I..)®@A (19)
with A € L belong to G.
Proof. We will prove the statement by induction on the depth of the matrix A, by taking

1S3y,» and i(Iy —I.,) and i(I,, —I..) as generators of £ (by definition). By Lemma 3.2,
we know that all matrices:

i(Low — L:2) @ Supyes 1Ly — L22) @ Soy
are in G. Moreover from equation (17) we get also that the matrices:
(oe = 122) @ (low = L), illow = L22) @ (Iyy = Lz),
and
i(Lyy = Le2) @ (Iow = L22), i(lyy = I2z) © (Iyy — I22),

are in G. Thus the elements (19) are in G, when A is of depth 0.

On the other hand, if the depth of A € £ is k > 0, then either A = [B,iS,, .| or
A= B,i(Ilys — I..)] or A= [B,i(I,, — I,,)], for B € L of depth k — 1. In the first case,
we have:

[(Imm - Izz) (24 B, 1® Sm,y,z] = (Ixr - Izz) ® A€ ga

and similarly also (I, —I..)® A € G. For the second case, we know from Proposition 3.6
that S, ® B € G, and from Lemma 3.2, iS; ® (I — I..) € G. Thus

[Se @ B, Sy @i(Ipy — I..)] = S2 @ [Byi(Ipw — I..)] = 2(1 + I,,) ® A€ G.
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Using S, instead of S, we get also the matrix 2(1 4+ I,,) ® A is in G. Thus also (I, —
I..)® Ais in G. Similarly, we prove that also (I, — I..) ® A € G, as desired. O

Proposition 3.8. (1 + %J) ® L, belongs to G.

Proof. Using the last ones of (11) and (13) we know that G contains (1 + 3J) ® iSy,y.-.
Using the second one of (17) we also know that G contains (1 + 3.J) ® Zo. Therefore, for
every generator of £, A, (1 + %J ) ® A belongs to G. Now for two elements of £, A and
B, we have that
1 1 1, 4,1
[(1+ §J) ®A 1+ §J) ®B]=(1+ §J) ®[4,B] = g(l + §J) ® [A, B],

since a direct calculation gives (14 £J)? = 4(1 4 £.J). Therefore (1+1J)® Aisin G
whether A is a generator of £ or it is a Lie bracket of two elements of £. This implies
that it is in G for any A in £. O

The following theorem summarizes the spaces included in G which we have identified
so far for n, = 2.

Theorem 3. Assume n. = 2. Then the dynamical Lie algebra G contains the following
subspaces:

i)

iL®L (20)

ii) 1
(1+3)@L (21)
W co(1+-2J 22
®< +§ﬁ ) (22)

iv) A and AT from (11).

Proof. The subspace in (20) comes from (18) of Proposition 3.6 and (19) of Proposi-
tion 3.7 by taking Lie brackets of the elements in (19) with ¢S, . ® 1 (which are in
(18)) to obtain the rest of Zyp ® L. For the subspace in (22), recalling that in the case
ne =2, L =8 @iZp, the part in (22) with S on the right comes from (18). The subspace
iZo® (1+ %J ) can be obtained as follows: By induction on n,, we have

(Saliy,z)z = np]' + 2Ialcjac,yy,zz' (23)
Take for instance S; for n, = n which we denote by S; ,. We have S;, , = Sy -1 ® 1+
1®o,, and
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S;?;,n = (Sz,nfl ®1+1® O—a:)g = S§7n71 ®1+ Sz,nfl Koy + Sx,nfl N 1.

Using the inductive assumption on the first term we have

S =Mm=1)142L, (1) ® 1+ 25 1 ® 0y + 1 =nl+ 21, 1),

since we have collected in I, ,(,) the terms containing pairs (0;,0;) in the first n — 1
terms, which are in I, ;(,—1) ® 1, and the terms displaying o, in the last factor, which
are in 25, ,,—1 ® 0,. Summing (23) for z, y and z, we obtain

1 2
—((SE?+ (S + (SE)?) =14 —J. 24
S (ST (874 (S1) = 1+ - (24)
Now using (18) and D; in (13) with A € S and B € ¢Z, which are in G, we have
[A®S,, B®S,] = [A, B]® 52 and analogously for y and z. Summing them all and using
(24), we have that in G we also have [A, B] ® (1 + %J), and using (5) of Lemma 2.2,

we obtain the space iZy ® (1 + %J) to complete (22). O
3.8.1. Casen, =2

Theorem 4. Assume n. = 2 and n, = 2. Then the dynamical Lie algebra is the direct
sum of the subspaces (20), (21), (22), AC, and AT, that is, of all subspaces listed in
Theorem 3.

Proof. For n, = 2, the subspaces (20), (21), (22), A%, and A" listed in Theorem 3,
summarize as

1 1
iL®L, (1+§J)®L, £®(1+§J), 108, S®I1. (25)

Since these spaces contain the generators of the dynamical Lie algebra L, it is enough
to prove that their direct sum is closed under commutation. Denote the direct sum of
the first three spaces in (25) as £, so that we have to show that £ := £ ® A® @ A"
is closed under commutation. It is obvious that [A®, AT, [AC, AT], [A”, AT, £, A°],
and [£, A”] are all in £. Therefore, we only have to show that [£,£] C £. To this aim,
it is useful to introduce the spaces O; := (1 — J) ® iZy, Oz 1= iZp ® (1 — J), so that
01 & Oy, is the orthogonal complement of £ & A° & AP in L. Using Lemma 2.6 and
J? = 314 — 2J, one can verify that the first three subspaces in (25) commute with O
and Oy. Therefore, the commutator of any two elements, according to Lemma 2.1 is
orthogonal to ©@; and O, and therefore it belongs to £. O

Notice that in this case G is a proper subalgebra of L.
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3.3.2. Case ny > 2

Theorem 5. Assume n. =2 and n, > 2 then
. I 1
G=(iLo L)@ L+2J)oL)e1es) (26)

Proof. First, we see that the right hand side is included in G. The last two terms of the
direct sum are in A” in (11) and in (21). Moreover consider A, an arbitrary element of
S, and B, an arbitrary element of iZy. Then A® S, € iL ® L C G because of (20) and
B ® Iz €L ® L C G because of (20). We calculate

[A & Sw; B® Ix;cx] = [A7 B} oy lexmc

[A, B] can be an arbitrary element of iZy according to (5) of Lemma 2.2, while S, [,
is a linear combination with nonzero coefficients of I, and (if n, > 4) I,u4. Since
lpzar € Ly [A,B] ® Ipges € L ® L which is already in G because of (20). Therefore
[A, B] ® I, € G. Repeating this calculation with x replaced by y or z and summing
all the terms, we obtain that iZy ® J € G. We also have iZy ® 1 because of (22), S® 1
because of (11), S ® J because of (22) and £ ® L because of (20). These together give
iL® LS.

To show the fact that G is included in the right hand side we notice that all the gen-
erators of G are in the right hand side of (26). Moreover we can check the commutations
of the subspaces in (26). We report only the checks that are not immediate. We have

L@ LY iL®LC) =[L,L)@{LY LEY+{L, L} [LC, L) CiLo LY +{L,L} L.

In the last term in the right hand side {£, £} must be a linear combination of 14 £.J and
elements in i£ because it is in i£% and orthogonal to 1 — .J because of Lemma 2.6. In
fact, for A and B in £, we have Tr((1—J)(AB+BA)) =Tr(AB+BA—-AB—-BA) =0.
Therefore these commutators are in the right hand side of (26).

liL® L% 1+ %J) @ L ={L,(1+ %J)} ® L9 L) +[L,(1+ éJ)] ®{L% L}

The last term is zero because of Lemma 2.4 while the first term is in £ ® £ because of
Lemma 2.6. Moreover

1 1 1 4 1
(1+§J)®£,(1—|—§J)®/J g(1+§J)2®£:§(1+§J)®£. O

We remark that G in (26) is always a proper subalgebra of £ in (12). In fact, if C is
a subspace in £ orthogonal to S, the subspace in L, (1 — J) ® C belongs to L but it

is orthogonal to G in (26). Nevertheless, we will see in the next section that subspace
controllability is verified in all cases considered in this paper.
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4. Subspace controllability

In general terms, if a system of the form (1) admits a discrete group of symmetries G,
i.e., a group G such that [A, P] = 0, [B;,P] =0, VP € G, the maximal Lie subalgebra
of u(n) which commutes with G, acts on certain invariant subspaces H; of the Hilbert
space H as u(dim(?;)). Each of such subspaces is an irreducible representation of ¢
(cf., [8] Theorem 4). In an appropriate basis of H, therefore, such a maximal Lie algebra
can be written in block diagonal form, where each block can take values in w(dim(#;)).
The dynamical Lie algebra associated with a system having G asa group of symmetries
also displays a block diagonal form in the same basis although not necessarily equal to
the full maximal Lie algebra. In the preferred basis however one can study the action
of the dynamical Lie algebra on each subspace and determine subspace controllability.
This is the plan we follow here.

A method to find the desired basis was described in [8] and it uses the so-called Gen-
eralized Young Symmetrizers (GYS) where the word ‘Generalized’ refers to the fact that,
in the case where the group G is the symmetry group, they reduce to the classical Young
symmetrizers of group representation theory as described for instance in [17]. More pre-
cisely, consider the representation of G on H and the group algebra of G (i.e., the algebra
over the complex field generated by a basis of G), C[G]. Then the GYS are elements of
C[G), and operators on H, T1; satisfying C) (Completeness): >~;1I; = 1; O) (Orthogonal-
ity): IL;II, = 0, 511;, where 0; 1 is the Kronecker delta; P) (Primitivity): I1;gI1; = A I1;,
where )4 is a scalar which depends only on g (and not on j) H) (Hermiticity): For every
7, H;r. = II;. If the GYS are known for a given group G on a Hilbert space H, then the
images of the various II; : H — H give the subspace decomposition of H which block
diagonalizes the maximal Lie algebra in u(n) commuting with G. In the cases where G
is the symmetric group S,, over n objects, the (generalized) Young symmetrizers can be
found using the classical method of Young tableaux (see, e.g., [17]) modified in references
[3] [13] to meet the Orthogonality and Hermiticity requirements. A method is given in [§]
to compute the GYS in the case where G is Abelian. However, the calculation of GYS for
general discrete groups is in general an open problem. We observe that if H : Ho @ Hp
the tensor product of two Hilbert spaces H¢e, Hp, as in bipartite quantum systems, and
G is the product of two groups G := G¢ @ Gp, with Gc(p) acting on Hc(p), then the
GYS can be found as tensor products of GYS on H¢(py for éc(p), HJC ®IIF. It is indeed
readily verified that if {HJC} and {IIf'} satisfy the requirements (C,0,P,H) above on
He and Hp, respectively, then {HJC ® I} satisfy the same requirements (C,0,P,H) on
He ® Hp. The invariant subspaces are H; , := (Im HJC) ® (ImTI{) and, in this basis,
the (maximal) invariant Lie algebra takes the corresponding block diagonal form.

For the systems treated in this paper, the symmetry groups Ge and Gp are the
symmetric groups on n. and n, objects, S, and S, , respectively. The decomposition
is obtained using the GYS of [3], [13], [17]. Let G be now the symmetric group on n
objects and, as we have done before, denote by £ the maximal Lie subalgebra of u(n)
which commutes with G. Consider the matrix J defined in Lemma 2.4 and Corollary 2.5
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in the basis determined by the GYS. In this basis, the elements of L& are block diagonal
and every block can be an arbitrary matriz in u(m) for appropriate m (cf. Theorem 2 in
[8]). Since each block of the matrices in £& can be an arbitrary skew-Hermitian matrix
of appropriate dimensions, i.J is also a block diagonal matrix, i.e.,

(S
1Jq

with iJy, k = 1,...,d commuting with the corresponding block of the matrices in L.
Since such a block defines an irreducible representation of u(m) for appropriate dimen-
sions m, it follows from Schiir’s Lemma (see, e.g., [10]) that all i.J) are scalar matrices.
Consider now the matrices in £ and £& and their restrictions to one of the subspaces
Imlly, of dimensions my. A basis for £ restricted to Imlly is given by a basis of u(my)
while a basis of £ contains at least a basis of su(my,) since the restriction of £ to ImIl
differs by u(my) at most by multiples of the identity. This is due to Proposition 2.3,
along with the fact, seen above, that iJ acts as a scalar matrix on I'mlIly.

We are now ready to conclude subspace controllability for all the situations treated
in this paper. Consider first the case n. = 1, and n, > 1, for which we have proved
in Theorem 2 that the dynamical Lie algebra is £ in (12). The only GYS on HC is
the identity, and the only invariant subspaces for the whole system are HC @ II,H',
where the IIj, are the GYS’s for the system P. A basis of G = £ is given by {02,y ®
Bl oy, ® {il,iJ},1 ® BL}, where with BL we have denoted a basis of £. Since, as
we have seen above, £ acts on Iy HT as u(my), my = dim(IIyH?), except possibly
for multiples of the identity, a basis for the restriction of G to H¢ ® I HF, contains
Ou,y,z QUp, 104.4,. @1 and 1 ® Uy, where U}, is a basis of su(myg). Therefore it contains a
basis of su(2my,) and therefore controllability is verified. Consider now the case n. = 2,
np = 2, where the dynamical Lie algebra is described by Theorem 4. If BL is a basis
of L, a basis for G is given by iBY @ BF, (1 + %J) ® Bl BE @ (1 + %J), 1®io.,y,2,
104,y ® 1. Consider two GYS, H]C and I17, and the invariant space Hf’HC ® Hf’HP
with dimensions m; x my, m; = dim(II§H), my, := dim(II{H*). A basis for the
restriction of G to HJCHC ® HfHP contains ilf; @ Uy, 1 @ Uy, U; ® 1, and therefore it
contains a basis of su(mj;my). Analogously, consider the case n. = 2, n, > 2. A basis
for the dynamical Lie algebra G described in Theorem 5 is, with the above notation,
{iB* @B, BL @ {1,J},(1+3J) © B*,1®iS, ..} whose restriction to IIfH @ PifHP
contains i; @ Uy, U; ® 1, 1 ® Uy, and therefore su(m;my). We have therefore with the
following theorem.

Theorem 6. The system (1) with one or two central spins (n. = 1 or n. = 2) with any
number n, > n. of surrounding spins, simultaneously controlled, is subspace controllable.

Example 4.1. To illustrate some of the concepts and procedures described above, we
consider the system of one central spin n, = 1 along with n, = 3 surrounding spins.
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The symmetric group on the central spin is trivial being made up of just the identity.
There is a single GYS given by the identity. For the symmetric group S3 on the P part
of the space, we obtain the GYS using the method of [3], [13], [L7], based on the Young
tableaux. We refer to these references for details on the method. For n = 3 there are
three possible partitions of n and therefore three possible Young diagram (also called
Young shapes). Recall that a partition of an integer n is a sequence of positive integers
A > Ao > > Ag, with Ay + Ao + - - - + Ag = n and the corresponding Young diagram
is made up of boxes arranged in rows of length A1, Ao, ..., A\y. Therefore for n = 3, we
have the partitions (3), (2,1), (1,1,1) which correspond to the Young diagrams

(T | 7 (27)

respectively. To each Young diagram, there corresponds a certain number of Standard
Young Tableaux obtained by filling the boxes of the Young diagram with the numbers 1
through n (3 in this case) so that they appear in strictly increasing order in the rows and
in the columns. The following are the possible standard Young tableaux corresponding to
the Young diagrams in (27). In particular, the first one corresponds to the first diagram
in (27), the second and third one correspond to the second one in (27) and the fourth
one corresponds to the third one in (27)

DEIER R L)

L= = 3

. (28)

[eero] ]

To each tableaux there corresponds a GYS whose image is an invariant subspace for the
Lie algebra representation. We refer to [8] for a summary of the procedure to obtain such
GYS’s. In our case the GYS corresponding to the first diagram in (28) has 4-dimensional
image, the ones corresponding to the second and third have two-dimensional images
and the one corresponding to the last one has zero dimensional image. Therefore the
invariant subspaces for the system with one central spin and n, = 3 surrounding spin,
simultaneously controlled, have dimensions 2 x 4, 2 x 2 and 2 x 2.

We conclude the section by discussing in general the dimension of the invariant (con-
trollable) subspaces and how it increases with n,,. We recall (see, e.g., [8]) that there is an
explicit general formula to obtain the dimension of the image of a GYS, Ilr, correspond-
ing to a Young tableaux T'. Such formula specializes to our case (where the dimension
of the underlying subspace is 2) as

dim(InPy) — L= Hzoti{(é) Ltk (29)

Here r is the number of rows in the Young diagram associated with 7', \; is the number
of boxes in the I-th row, and Hook(T') is the Hook length of the Young diagram associated
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with T'. It is calculated by considering, for each box, the number of boxes directly to
the right + the number of boxes directly below + 1 and then taking the product of
all the numbers obtained this way. Using formula (29) it is possible to derive, for each
np, the dimensions of all invariant subspaces. Fix n = n,. From formula (29), Young
diagrams with more than two rows give zero dimensional spaces. So we have to consider
only Young diagrams with one or two rows. There is only one diagram with one row, 77,
i.e., the diagram containing n, boxes, and in (29) r = 1 and A\; = n. For this diagram,
the Hook length is n!. We thus have:

o (1+k
dim(ImPr, ) = —Hk:l(' k) =n+1.
n!

For diagrams with two rows, the possible partitions are of the type Ay = n — k and
Ao = k, with k integer and k < % For example

is the Young diagram for the case n = 10 and k = 3. For the diagram corresponding to
a given k, T, the Hook length is

Hook(Ty) = (n+1—k)(n—k)---(n— 2k +2) - (n — 2k)! - kL.

Thus we have

T+ )T, g
(n+1—k)(n—Fk)--(n—2k+2)-(n—2k)! k!

dim(ImPry) = =n-2k+1.

So, for this central spin model, the dimension of the invariant subspaces grows linearly
with n. The largest space has dimension n + 1. The dimensions of the full invariant
subspaces of the model with 1 and 2 central spins are obtained by multiplying the
dimensions obtained for #* by the dimensions of the invariant subspaces of H®, which,
with the same method of Young tableaux, can be shown to be 2 in the case n. = 1 and
1 or 3 in the case n. = 2. The largest possible dimension is therefore obtained for n. = 2
and it is 3(ny, +1). This behavior is different from the one of the system considered in the
paper [18], where the dimension of one of the invariant subspaces grows exponentially
with the number of spins. This is essentially due to a much larger number of symmetries
in our case.

5. Conclusions and generalizations
We have considered spin networks where the spins are arranged in two sets, a set

P and a set C, and where the Ising interaction is exclusively between each spin of the
set C and each spin of the set P. The model Hamiltonian is symmetric with respect to
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permutations on the spins in C' and the spins in P. We now consider the possibility that
the interaction between the spins in C and the spins in P is still symmetric but more
general than Ising and-or that there are internal interactions within the set C' and P.
More specifically we replace the term S¢ ® SF in (10) with the more general

Hy:=5,®8,+aS,®8, +bS,®S, + Ho®1+1® Hp, (30)

for real parameters a and b and He (Hp) represents the internal interactions of spins in
C' (P). We notice that the argument at the end of subsection 2.3 still holds. Therefore
the Lie algebras A and A" in (11) are still subalgebras of the dynamical Lie algebra.
Moreover, a direct verification shows that

[[[[tH4,iS: ®1],1 ®14Sy],1®1S,],iS; ® 1] EiS, ® S..

Therefore iS, ® S, is still in the dynamical Lie algebra along with A¢ and A” and there-
fore the resulting Lie algebra includes the dynamical Lie algebra for the case considered
in the above sections. It follows that subspace controllability is verified in these cases as
well.

The assumption that all the coupling constants between elements in the set C' and
elements in the set P are equal is an idealization. However, more realistic systems where
such couplings are nearly equal could be theoretically controllable [1] but require very
high amplitude or long time control. Therefore they can in fact be considered uncon-
trollable for all practical purposes and satisfactorily approximated with the models we
have considered. Small perturbations of the couplings appear to preserve the subspace
controllability property we have proved and this generalizes the known fact that com-
plete controllability is a property of quantum systems robust to small perturbations [4],
[14]. For example, assume three spins in P and one in C. If there is in-homogeneity of
the interaction strengths between one of the spins in P and the spin in C, then the
Hamiltonian o, ® S, of (10) is replaced by

H5:Uz®sz+€az®az®12®12~

By taking the commutator [iH.,1 ® S;], we obtain ic, ® S, + ieo., ® 0, ® 1 ® 1, and
calculating the commutator of this last one with iH., we obtain i1 ® 0, ® 1 ® 1. Analo-
gously we can obtain i1 ® o, ® 1 ® 1, and therefore also i1 ® 0, ® 1 ® 1. By, repeated Lie
brackets with ¢ H, we can separate the term 0, ®0,1®1 from 0, 1R® (0, 1+1R0,).
Therefore, once again, the dynamical Lie algebra contains the Lie algebra calculated in
the fully symmetric Ising case and subspace controllability is preserved.

The calculation of the dynamical Lie algebra of a quantum system is the method of
choice to study its controllability properties [7]. However such direct calculation might
be difficult in cases of very large systems and in particular networks of spins where
the dimension of the underlying full Hilbert space grows exponentially with the number
of particles. For this reason, it is important to device methods to assess controllability
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from the topology of the network and its possible symmetries. Symmetries, in particular,
prevent full controllability and determine a number of invariant subspaces on which the
system evolves. In this paper we have considered a configuration of indistinguishable spins
divided into sets interacting with each other. This is the first intermediate case between
two extremes cases of all indistinguishable and all distinguishable spins previously treated
in the literature. The full symmetric group acts on each set of spins without modifying
the Hamiltonian which describes the dynamics. A common electromagnetic field is used
for control. We have computed the dynamical Lie algebra and proved that such a system
is subspace controllable, that is full controllability is verified on each invariant subsystem.
Quantum evolution is a parallel of the evolution of various subsystems and we can use
one of them to perform various tasks of, for instance, quantum computation and-or
simulation.
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