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Abstract—Single-cell genomics is used to advance our
understanding of diseases, such as cancer. Microfluidic solu-
tions have recently been developed to classify cell types or
perform single-cell biochemical analysis on preisolated types of
cells. However, new techniques are needed to efficiently classify
cells and conduct biochemical experiments on multiple cell types
concurrently. Nondeterministic cell-type identification, system
integration, and design automation are major challenges in this
context. To overcome these challenges, we present a hybrid
microfluidic platform that enables complete single-cell analysis on
a heterogeneous pool of cells. We combine this architecture with
an associated design-automation and optimization framework,
referred to as co-synthesis (CoSyn). The proposed framework
employs real-time resource allocation to coordinate the pro-
gression of concurrent cell analysis. Besides this framework, a
probabilistic model based on a discrete-time Markov chain is
also deployed to investigate protocol settings, where experimental
conditions, such as sonication time, vary probabilistically among
cell types. Simulation results show that CoSyn efficiently utilizes
platform resources and outperforms baseline techniques.

Index Terms—Cyberphysical integration, design automation,
graph search, hybrid system, Markov chains, microfluidics,
synthesis.

I. INTRODUCTION

S INGLE-CELL analysis using affordable microfluidic tech-
nologies has now become a reality [1], [2]. Thousands of

heterogeneous cells can be explored in a high-throughput man-
ner to investigate the link between gene expression and cell
types, thereby providing insights into diseases, such as can-
cer [3]. Microfluidic techniques have recently been developed
to conduct each step of the following single-cell experimental
flow.

Manuscript received October 22, 2017; revised February 3, 2018; accepted
May 17, 2018. Date of publication June 12, 2018; date of current version
June 18, 2019. The work of M. Ibrahim was supported by the U.S. National
Science Foundation under Grant CCF-1702596 and Grant CCF-1135853.
The work of K. Chakrabarty was supported in part by the U.S. National
Science Foundation under Grant CCF-1702596 and Grant CCF-1135853, and
in part by the Technische Universität München—Institute for Advanced Study,
through the German Excellence Initiative and the European Union Seventh
Framework Programme under Grant 291763. This paper was recommended
by Associate Editor S. Reda. (Corresponding author: Mohamed Ibrahim.)

M. Ibrahim and K. Chakrabarty are with the Department of Electrical and
Computer Engineering, Duke University, Durham, NC 27708 USA (e-mail:
mohamed.s.ibrahim@duke.edu; krishnendu.chakrabarty@duke.edu).

U. Schlichtmann is with the Chair of Electronic Design Automation,
Technical University of Munich, 80333 Munich, Germany (e-mail:
ulf.schlichtmann@tum.de).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2846662

1) Cell Encapsulation and Differentiation: Heterogeneous
cells are isolated, encapsulated inside droplets, and dif-
ferentiated according to their identity (type); e.g., their
shape, size, cell-cycle stage, or lineage.

2) Droplet Indexing (Barcoding): Each droplet is manip-
ulated through a sequence of biochemical procedures,
such as cell lysis and mRNA analysis. At the end of
these steps, the in-situ type of the encapsulated cell
may no longer be available for down-stream analysis [4].
Therefore, indexing of droplets using barcodes is needed
to keep track of their identity [5].

3) Type-Driven Cell Analysis: Single-cell studies are
increasingly being used to measure cell properties that
are not directly observable in a cell population. Single-
cell bioassays, such as chromatin immunoprecipitation
(ChIP) are carried out using microfluidics, where the
selection of a bioassay relies on the cell type that has
been identified in step 1 [1]. To draw meaningful con-
clusions, the experimental outcomes are associated with
droplet barcodes injected in step 2 [6].

To tackle the myriad complexities associated with
the above flow, microfluidics design-automation (“syn-
thesis”) is essential. Independent multiple sample path-
ways need to be supported for concurrent manipulation
of cells. Current synthesis techniques are not able to
cross the formidable barrier that separates biochip design
from practical single-cell studies. The following discus-
sion highlights the main challenges in integrated single-cell
studies.

A. Integration of Heterogeneous Single-Cell Methods

Not all the above steps can be efficiently miniaturized using
a single microfluidics technology. Valve-based techniques
are used to rapidly separate and isolate biomolecules with
high resolution, making them suitable for cell encapsulation
(step 1) [1]. On the other hand, digital-microfluidic biochips
(DMFBs) enable real-time decision making for sample pro-
cessing and genomic-analysis protocols, such as quantitative
polymerase chain reaction (qPCR) [7] (step 3). However,
DMFBs are not as effective for interfacing to the external
world [8]. Hence, there is a need for a hybrid microfluidic
system that combines the advantages of the two domains, and
a synthesis method that controls single-cell experiments in a
dual-domain microfluidic setting.

B. Scalable Droplet Indexing

A single-cell analysis flow may involve hundreds of
cell types, each of which requires a distinct barcode for
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down-stream analysis using digital microfluidics. Therefore,
droplet indexing on a DMFB requires either the use of pre-
stored droplets that host individual barcoding hydrogels [6]
(not feasible when a large number of cells are being inves-
tigated) or a specific input reservoir for each cell type.
The latter solution increases the fabrication cost dramat-
ically. Furthermore, since reservoir control is not readily
automated [9], it is unrealistic to assume that each dispensed
droplet contains only one barcoding particle.

C. Dynamic Synthesis

Due to the inherent uncertainty about cell types, cyber-
physical integration can play a key role in streamlining
microfluidic cell-type identification and single-cell analysis.
However, employing cyberphysical integration for processing
every cell requires a dynamic synthesis capability, which can
effectively explore resource space and also provide a prompt
solution. As a result, the need for such a capability introduces
a tradeoff between synthesis performance, e.g., protocol com-
pletion time, and system responsiveness—this tradeoff has yet
to be investigated.

D. Stochasticity of Protocol Conditions

Despite the efforts made toward standardization of single-
cell protocols, many protocol steps, such as the duration
of sonication in ChIP, are deemed to be cell-type-specific.
For example, CD4+ white-blood cells require significantly
longer sonication time compared to other red blood cells [10].
Failing to characterize the variation in sonication time and
other parameters among cell types may lead to degradation
in down-stream immunoprecipitation (IP) and thus the over-
all ChIP performance [11]. Hence, it is important to take into
consideration such stochasticity when defining the protocol
guidelines.

In this paper, we address the above challenges by intro-
ducing the first hybrid microfluidic platform for integrated
single-cell analysis. We present a synthesis method, referred
to as co-synthesis (CoSyn), to control the dual-domain plat-
form. We also develop a probabilistic model that employs a
discrete-time Markov chain (DTMC) to capture protocol set-
tings, where experimental parameters vary among cell types.
The main contributions of this paper are as follows.

1) We present an architecture of a hybrid microfluidic
platform that integrates digital-microfluidic and flow-
based domains (using valves) for large-scale single-cell
analysis.

2) We describe CoSyn, which enables coordinated control
of the microfluidic components, and allows dual-domain
synthesis for concurrent sample pathways.

3) We propose two schemes for valve-based routing (graph-
theoretic and incremental methods), which enable
dynamic routing of concurrent samples within a recon-
figurable valve-based system.

4) We construct a DTMC model, which utilizes probabilis-
tic information related to protocol steps and experiment
budget to investigate the efficiency of probabilistic pro-
tocol decisions.

5) We evaluate system performance and reconfigurability
while exploring various configurations of the valve-
based system.

The rest of this paper is organized as follows. Section II
presents an overview of related prior work and probabilistic
formal methods that are relevant to this paper. An overview
of the hybrid microfluidic platform and its use for single-
cell analysis are presented in Section III. Next, we formalize
the single-cell analysis flow in Section IV and describe
the proposed synthesis framework (CoSyn) in Section V.
Subsequently, details of the valve-based synthesizer are intro-
duced in Section VI, and probabilistic protocol modeling
is presented in Section VII. Our experimental evaluation is
presented in Section VIII and the conclusions are drawn in
Section IX.

II. PRELIMINARIES

In this section, we review synthesis methods for microfluidic
biochips and relevant modeling techniques related to stochastic
processes.

A. Synthesis of Microfluidic Platforms

A DMFB manipulates picoliter droplets, and consists of a
2-D array of electrodes and a set of on-chip resources [12].
Valve-based biochips, on the other hand, rely on special-
purpose components (e.g., microvalves and micro-pumps) to
manipulate liquid flow [13].

Considerable research efforts have been devoted to the syn-
thesis of biochemical applications for a specific microfluidic
technology, e.g., either digital-microfluidic systems or valve-
based systems. Early synthesis methods for both technologies
focused on scheduling, droplet routing, chip-level routing,
and sharing of control pins (or pressure sources) [14]–[26].
However, these methods are inadequate for single-cell analy-
sis since they can only be applied to single biochemical assays.
Moreover, real-time coordination between different single-cell
microfluidic techniques is not possible using these methods.

Cyberphysical synthesis techniques have enabled online
error recovery [27]–[30], volume precision [31], termination
of biochemical applications, such as qPCR [32], and protocols
for multiple samples [33], [34]. However, a key limitation of
the above methods is that they fail to support heterogeneous
single-cell analysis, and considerable manual effort is required
to coordinate biochemical procedures.

Recently, a flow-based design methodology has been intro-
duced to support high-throughput single-cell applications [35].
This design employs a delay model of pressure-driven
transport to satisfy a given throughput constraint, enabling
single-cell applications to be efficiently executed. This paper,
however, considers only the early stages of single-cell analysis,
namely cell isolation and barcoding, and it does not consider
the complete analysis flow.

Therefore, to close the gap between microfluidics and
single-cell genomics, there is a need for a synthesis framework
that can coordinate single-cell analysis techniques.

B. Discrete-Time Markov Chains and Stochastic Systems

DTMCs constitute a formal method to model stochastic
systems, such as in biology [36], that exhibit a discrete state
space [37]. DTMCs are similar to finite-state machines, but
enriched with probabilistic transitions to model random phe-
nomena. A transition from state si to state sj is associated with
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a one-step transition probability that must depend only on the
two states and not on the previous transitions—this property
is referred to as Markov property.

Formally, a DTMC D is specified as a tuple D =
〈S, sinit,U ,J 〉, where: 1) S is a finite set of states (state space)
and sinit ∈ S is the initial state; 2) U : S×S → [0, 1] is a tran-
sition probability matrix such that

∑
s′∈S U(s, s′) = 1 ∀s ∈ S;

and 3) J : S → 2AP is a labeling function that assigns
each state to a set of atomic propositions from a denumer-
able proposition set AP [37]. These labels can be utilized by
a probabilistic model-checking tool to express DTMC model
properties with the help of temporal logic.

Properties of a DTMC model can be described using prob-
abilistic computation tree logic (PCTL) [38]. PCTL Formulas
are interpreted over the DTMC states. For instance, consider
a predicate φ that is always satisfied in state s (i.e., s |= φ),
we can use the following PCTL formulas to describe path or
numerical queries.

1) Q1 := P≥0.95[♦φ], which inquires if the modeled
system can eventually reach a state that satisfies φ with
a probability that is greater than or equal to 0.95. The
operator ♦ means “eventually.”

2) Q2 := Pmax=?[♦<10φ], which seeks the maximum
probability that the system will eventually reach a state
s satisfying φ in less than ten steps.

The query Q1 is considered to be a reachability query,
whereas Q2 is a numerical query. These queries and others can
be used to investigate the evolution of a stochastic system that
is modeled using DTMC. More details about DTMC model
checking and PCTL syntax can be found in [38].

III. HYBRID PLATFORM AND SINGLE-CELL ANALYSIS

Single-cell analysis relies on the concurrent manipulation
of sample droplets, where each sample cell is run through
the protocol flow discussed in Section I. An efficient on-
chip implementation of the single-cell analysis protocol is
accomplished using a hybrid platform. Fig. 1 shows the plat-
form components matched with different protocol stages. The
two domains are connected through a capillary interface; this
technique has been successfully adopted in practice [9].

A. Cell Encapsulation and Flow Control

As shown in Fig. 1, on-chip operation starts with the
encapsulation of single cells in droplets, which is efficiently
accomplished using flow-based microfluidics [9]. A flow-based
system can be configured to function as a droplet-in-channel
device, allowing a two-phase flow to be generated. More
specifically, encapsulation of individual cells is easily accom-
plished by considering three intersecting flows; an aqueous
flow (containing cells) and two oil flows. These flows are
pressure-driven by syringe pumps and therefore they can be
carefully balanced, allowing aqueous droplets (containing sin-
gle cells) to be automatically formed with a surrounding oil
phase. Next, the resulting two-phase flow is transported to
the digital microfluidic device through a capillary interface.
Fig. 2 shows cell encapsulation and droplet generation using
a two-phase flow.

On the other hand, the digital microfluidic device consists
of two parallel plates. The gap that separates the two plates
is flooded with oil, which acts as a filler medium. According

(a)

(b)

(c)

Fig. 1. Schematic of the hybrid platform for single-cell analysis. (a) Flow-
based biochip used for cell encapsulation and droplet generation, (b) DMFB
used for quantitative analysis, and (c) Reconfigurable valve-based fabric used
for barcoding.

Fig. 2. Flow-based device used to generate aqueous droplets containing
single cells as part of a two-phase flow [9].

to [9], the rate of oil injection between the two plates can
be controlled using a feedback system in order to prevent the
evaporation of droplets that are collected from the flow-based
side. The oil medium also facilitates the injection of the two-
phase flow into the digital side through the capillary interface.

To efficiently integrate both sides, the droplet generator
uses the syringe pumps such that the flow rate of pressure-
driven droplets can be automatically controlled via feedback.
A capacitive sensor is placed at the interfacing electrode (ec in
Fig. 1) on the digital side to sense a droplet [39]. When the
digital array is unable to accommodate additional droplets, it
stops the flow by switching off the pump.

Note that an actuator is used in the flow-based component,
whereas a sensor is placed on the digital side. To synchronize
the two domains, the flow-control procedure (capacitive sens-
ing and pump control) is invoked at the same frequency as
droplet actuation in the digital domain (1 to 10 Hz).

B. Cell Differentiation

Automated cell-type identification can be achieved by ana-
lyzing signaling events in single cells in situ. Similar to the
miniaturization of gene-expression analysis (GEA) [40], a
green fluorescent protein (GFP) reporter is used for cell differ-
entiation. In each cell, the fluorescence intensity from the GFP
(detected in real-time using an on-chip fluorescence detector
or imaging apparatus) is used to account for differences in
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(a) (b) (c)

Fig. 3. Droplet barcoding using (a) DMFB, (b) valve-based biochip with
one-to-one mapping between pumps and DMFB ports, and (c) valve-based
biochip with many-to-many mapping.

expression level among cells; this is equivalent to classifying
cells into functional clusters that represent cell types.

Although a valve-based biochip can also be used for cell
differentiation, we consider a DMFB for this purpose due to its
demonstrated ability to carry out high-throughput fluorescence
detection and distinguish between hundreds of cell types; this
feature is not supported by valve-based mechanisms.

C. Droplet Barcoding

Since thousands of cells (and hundreds of cell types) can
be involved in an analysis protocol, a barcoding droplet must
be dispensed on demand, and mixed with a sample droplet
and other reagents according to the cell type [6]. If we con-
sider a population with n cell types, droplet barcoding on a
digital-microfluidic array requires n reservoirs, each of which
typically covers a 3-electrode space. An additional electrode
is needed for separation; see Fig. 3(a). In this case, to accom-
modate n reservoirs, a lower bound on the array perimeter is
4n+k electrodes, where k is a constant that represents the num-
ber of electrodes covered by other reservoirs. This approach
is therefore impractical because of the significant increase in
chip size with the number of target cell types. It also requires
the dispensing of a single hydrogel particle per droplet; this
feature has not been implemented yet using reservoir control.

To overcome the above limitations, a valve-based biochip
is connected to the DMFB to exploit its pressure-driven ports
that have smaller footprints than reservoirs; see Fig. 3(b).

This biochip is used to generate barcoding droplets via a
syringe pump; the droplets are routed to appropriate loca-
tions on the digital-microfluidic array through a capillary
interface [6]. With this hybrid configuration, the lower bound
on the digital-array perimeter is reduced to 2n+ k electrodes
for n cell types. A one-electrode gap is needed to prevent
accidental mixing of droplets. This hybrid configuration,
however, overprovisions the number of concurrently utilized
ports; it is unlikely that all cell types will simultaneously
request barcoding.

As a cost-effective solution, we utilize a reconfigurable
valve-based fabric that has n input ports and m output
ports [41]; see Fig. 3(c). This routing fabric acts as a crossbar
since it allows routing of barcoding droplets from any of the
n input ports to any of the m output ports, where n>>m. The
full connectivity offered by this crossbar allows droplets to be
easily rerouted and therefore it intrinsically supports fault tol-
erance. The m-output valve-based fabric is then stitched to the
DMFB; hence the lower bound on the perimeter is decreased
to 2m + k. By unlocking this capability of valve-based

(a) (b)

(c) (d)

Fig. 4. Valve-based routing fabric for droplet barcoding (a) 2-input full
transposer, (b) 2-input half transposer, (c) 4-level, 8-to-2 routing fabric, and
(d) 6-level, 8-to-2 fabric.

crossbars, we shift the scaling complexity from the digital
domain to the flow-based domain, which is known to have
a cost-effective fabrication process and efficient peripheral
components.

In addition to the above advantages, the use of a recon-
figurable valve-based fabric is important since it allows us to
employ a design methodology that investigates the tradeoff
between biochip cost and single-cell throughput and therefore
provides more choices for biochip designers. For example, a
biochip designer may prefer to utilize a cost-effective design,
in which fewer electrodes are used at the digital side. To
achieve this goal, i.e., to optimize for cost, sharing of flow
channels among several barcoding inputs gains significant
importance in order to minimize the number of peripherals
to the DMFB. In other words, the role of the reconfigurable
valve-based fabric becomes more significant. On the other
hand, if a designer opts for a high-throughput platform, in
which a large DMFB size is utilized, then sharing of flow chan-
nels among barcoding particles can be reduced, and therefore
the role of the reconfigurable valve-based system becomes less
significant. This observation has been studied and the results
are reported in Section VIII-C.

We utilize the “transposer” primitive introduced in [41]. As
shown in Fig. 4(a) and (b), a valve-based transposer appears
in two forms: 1) a two-input, two-output transposer, which is
composed of six valves, controlled via two pneumatic inputs
(full transposer) and 2) a two-input, one-output transposer,
which consists of two valves controlled via two pneumatic
inputs (half transposer). Note that only a full transposer allows
simultaneous dispensing of two barcoding droplets, wherein
the droplets can be driven “straight” or “crossed.”

The use of transposers to construct an n-to-m valve-based
crossbar leads to various design problems that must be tack-
led; see Table I. An architectural design challenge arises
because various configurations of transposers can be exploited
to achieve the required number of input and output ports. For
example, an 8-to-2 crossbar can be constructed using four
“vertical” levels, as shown in Fig. 4(c), or using six levels,
as shown in Fig. 4(d). A six-level crossbar, while incurring
higher cost, provides a higher degree of reconfigurability and
flexibility in routing. In Section VI-D, we study valve-based
routing using various configurations of the crossbar.
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TABLE I
DESIGN PROBLEMS FOR ASSEMBLING AND INTEGRATING

AN n-TO-m VALVE-BASED CROSSBAR

D. Type-Driven Single-Cell Protocol

After a droplet is barcoded, a single-cell analysis protocol
is applied to the constituent cell in the DMFB, where protocol
specifications are determined based on the cell type. For exam-
ple, an investigator might be interested in identifying the gene
expression of a specific genomic loci for a certain cell type A.
Another cell type B might show unexpected heterochromatic
state at a certain loci, and the investigator might be interested
in identifying the protein interactions (i.e., causative proteins)
or chromatin modifications causing this behavior. For type A,
it is sufficient to perform GEA using qPCR [7], [40], whereas
ChIP protocol followed by qPCR must be used for type B
to reveal the DNA strains contributing in the activity of the
causative proteins.

Ultimately, by supporting type-driven analysis, biologists
can launch multiple single-cell applications, aiming for draw-
ing a holistic picture of the interactions between different
biomolecules (e.g., DNA, mRNA, protein, etc.). Note that our
proposed framework can support the execution of multiple
applications, a single application for all cell types, or even
multiple applications for a stream of cells that are of the same
type (cell barcoding can be used to distinguish these cells at
the end of down-stream analysis).

E. Platform Throughput and Scalability

By combining the two microfluidic formats (flow-based
and digital microfluidics), we can maintain scalable single-
cell analysis. As described earlier, flow-based microfluidics
is efficient in generating thousands of droplets that encapsu-
late individual cells using a two-phase format. However, on
the negative side, flow-based microfluidics relies on an etched
micro-structure that, despite its capability in droplet prepa-
ration, fails to support reconfigurable analysis at the down-
stream part. To overcome this drawback, digital microfluidics
comes into play–digital microfluidics is well-suited for adding
reagents in parallel, and reagents can be mixed on demand
without the requirement of optimal and precise flow rates.

A DMFB is scalable in terms of handling multiple cells con-
currently. In [7], a 230-electrode chip can be used to process
20 cells concurrently. By using our design-automation tech-
nique, the number of cells can be drastically increased since
we allow resource sharing among pathways. However, note
that a DMFB still provides a lower throughput compared to the
flow-based devices; this observation does not mean that digi-
tal microfluidics cannot process droplets quickly, but it means
that a DMFB is burdened with the largest portion of work
for single-cell analysis. Further increase in the chip size can
also increase the number of cells manipulated concurrently,

(a) (b)

(c)

Fig. 5. Mapping a valve-based crossbar to a graph model. (a) Full transposer.
(b) Half transposer. (c) 4-to-2 crossbar.

thus leading to a higher throughput. Nevertheless, it needs
to be clear that our objective is not to achieve the optimal
throughput; our objective is to provide a cost-effective design
methodology that employs the hybrid platform to process a
continuous stream of cells with a reasonable throughput.

Based on the above discussion, flow-based microfluidics
offers temporal scalability (high-throughput), whereas digi-
tal microfluidics offers reconfigurability and spatial scalability
(concurrent single-cell analysis). Combining both technologies
with an adequate feedback system (to synchronize throughput
rates at both domains) provides spatio-temporal scalability for
complete single-cell analysis.

IV. MAPPING TO ALGORITHMIC MODELS

A. Modeling of Valve-Based Crossbar

We represent the set of transposers and their
interconnections as a directed acyclic graph (DAG)
T = (X ,Z), where a vertex xi ∈ X is a transposer
node, and an edge zi ∈ Z represents a connection between
two transposers. Within a transposer, the point at which a
droplet can be routed either straight or crossed is defined as a
decision point. We map an n-to-m valve-based crossbar (with
a transposer network T ) into a DAG Fn×m = (Dn×m,Sn×m),
where a vertex di ∈ Dn×m is a flow-decision node, and
an edge si ∈ Sn×m represents a channel that connects two
decision nodes. To simplify the discussion, we do not include
T in the notation for the crossbar DAG. We can view a full
(half) transposer as a 2-to-2 (2-to-1) valve-based crossbar;
thus, we represent fluid-flow control in a full (half) transposer
as a DAG F2×2 (F2×1); see Fig. 5(a) and (b). The cost ci
of si represents the time needed to transport fluid between
the two connected nodes, measured in flow time steps (Tf ).
We assume that the routing time of a droplet on a straight
channel between two decision nodes is a unit of Tf . For
example, as shown in Fig. 5(a), c1 is equal to Tf , whereas c2
is equal to 2 Tf , since even though a diagonal is shown in
Fig. 4 as a fluidic path, routing of such paths in a transposer
is implemented only along the x- and y-directions and the
distances along these dimensions are equal [41]. Fig. 5(c)
depicts the graph F4×2 for a 4-to-2 crossbar with 4 levels of
transposers and 5 levels of nodes (denoted henceforth by q;
q = 5 in this case).

B. Modeling of Digital-Microfluidic Biochip

While DMFBs are highly reconfigurable and can support
a diverse set of transport paths, we reduce the burden of
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Fig. 6. CFG of type-driven analysis for a single cell pathway.

managing droplet transport in real-time by considering a
unidirectional ring-based architecture, as shown in Fig. 1.
Connected to this ring are on-chip resources. Since there
is always a route between any pair of on-chip resources, a
ring-based DMFB is modeled as a strongly connected DAG
G = (V, E), where a vertex vi ∈ V represents the fluid-
handling operation offered by an on-chip resource, and a
directed edge ei ∈ E represents a path (over the ring) that
connects two resources. The cost cei of ei indicates the num-
ber of digital time steps (Td) needed to transport a droplet.
We assume that the durations corresponding to Tf and Td
are equal, which can be achieved in practice by tuning the
actuation frequency (Hz) and the flow rate (mL/min).

C. Protocol Model and Cell State Machine

To solve the synthesis problem for single-cell analysis, we
take into account the complexity imposed by the bar-coding
mechanism. Similar to the design methodology in [40], we rep-
resent the protocol as a control flow graph (CFG) A = (H,L),
in which every node hi ∈ H (referred to as a supernode)
models a bioassay, such as qPCR; see Fig. 6. A directed edge
li ∈ L linking two supernodes {hj, hk} indicates that a potential
decision can be made at runtime to direct the protocol flow to
execute the bioassay hk after hj. A supernode hi, in turn, encap-
sulates the sequencing graph that describes the fluid-handling
operations of a bioassay and the interdependencies among
them. Since there is inherent uncertainty about the type of
barcoding droplets for a sample cell at design time, we extend
the basic CFG model by incorporating an internal supernode
(barcode propagation) that describes all possible dispensing
options of barcoding droplets. Note that this model is agnostic
about the type of the microfluidic technology used for imple-
menting the protocol. Yet, the synthesis of each supernode is
accomplished in a technology-aware manner using CoSyn.

The model shown in Fig. 6 represents a protocol, where
a dispensed cell can be processed using one of two bio-
chemical procedures, namely GEA and ChIP procedures. As
shown in the CFG model, the execution of the protocol starts
with dispensing an aqueous sample droplet (sample dispense
supernode). The type of the sample is then identified and
mixed with an associated barcoding droplet that is routed
through the reconfigurable valve-based fabric (identification
and labeling supernode). Next, according to the cell type,
either GEA or ChIP procedures will be executed. If GEA is

TABLE II
NOTATION USED IN THE ALGORITHMS

selected, then fluid-handling operations of cell-lysis, mRNA
preparation, control preparation, and qPCR will be carried
out. At the end of each bioassay, a detection operation is per-
formed to ensure that the efficiency of the resulting solution is
above a certain threshold [33]. Similarly, if ChIP is selected,
then fluid-handling operations of post-fixation, cell-lysis, chro-
matin shearing, immuno-precipitation, DNA washing, control
preparation, and qPCR will be performed.

In addition to the CFG model, a state machine is utilized
to model the progression of each cell along the single-cell
pipeline. Typically, the hybrid platform can iteratively process
thousands of cells; such cells might be scattered across the
platform domains at any given point in time. Therefore, this
state machine (Fig. 6) is necessary to keep track of the cells
that are being processed simultaneously.

V. CO-SYNTHESIS METHODOLOGY

In this section, we describe the synthesis problem and
present an overview of the proposed CoSyn methodology.

A. Problem Formulation

To approach the co-synthesis problem, we introduce the
problem formulation as follows.

Inputs:
1) The protocol CFG A.
2) A matrix C; each vector Ci ∈ C corresponds to a cell,

and consists of integers that encode cell state machine,
cell type, and the assigned bioassays in A.

3) The configuration of the valve-based system; this infor-
mation includes the graph Fn×m, the number of inputs
n, and the number of outputs m.

4) The types of resources corresponding to the DMFB, their
operation time, and the routing distance between each
pair of resources.

Output: Allocation of chip modules by the individual cells,
protocol completion time Tcomp.

Objective: Minimize Tcomp to provide high throughput and
minimize Tresp to improve system responsiveness.

The notation used in this paper is summarized in Table II.

B. Proposed Solution

The proposed CoSyn scheme, depicted in Fig. 7, consists
of four components: 1) valve-based synthesizer, which is used
to route barcoding droplets through the valve-based cross-
bar; 2) DMFB synthesizer, which is utilized for allocating
DMFB resources, e.g., mixers and heaters, to sample path-
ways; 3) biology-sample model, which records the progress
of a sample (cell) within the protocol CFG and also pro-
vides updated resource preferences; and 4) time-wheel engine,
which seamlessly coordinates real-time interactions between
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Fig. 7. Overview of the proposed CoSyn methodology.

Algorithm 1 DMFB Resource Allocation
Input: Ci, G, current simulation time “t”
Output: Assigned Resource “r”

1: R̃← GetCurrentlyUnoccupiedResources(G, t);
2: if (R̃ is empty) then return NULL;
3: y← GetOperationType(Ci);
4: s← CalculateMinimumCostAllAvailableResources(y, R̃);
5: if (s = ∞) then return NULL; // No suitable resource
6: r← GetSelectedResource(s); return r;

the individual sample models and the synthesizers of the
hybrid system. Note that the stages of the single-cell pipeline,
simulated by this scheme, match the states of the cell state
machine (Fig. 6).

The time-wheel interacts with other components through
APIs. For example, whenever the time-wheel locates an avail-
able fluorescence detector at the DMFB, a new sample model
is initialized (Fig. 7) and the associated cell is allocated to the
detector in order to perform type identification. Next, when
the cell type is identified and there are available valve-based
routes to route the associated barcoding droplet, the time-
wheel triggers the valve-based synthesizer to start the pipelined
routing process of the barcoding droplet; valve-based routing
is performed through iterations until the droplet reaches the
electrode interface at the digital-microfluidic side and is mixed
with the cell. We discuss two methods for valve-based routing
in Section VI.

When a DMFB resource is available to further process the
cell, the previously reserved valve-based channels are released
by the time-wheel. Hence, real-time resource allocation for
the DMFB is also initiated by the time-wheel, which in turn,
commits a cell pathway whenever its particular single-cell
bioassays have executed. Based on an intermediate decisions
whose outcome is communicated to the sample model, the cell
might also be discarded during analysis.

C. DMFB Synthesizer

We use a greedy method to solve the resource-allocation
problem in the DMFB; the pseduocode is shown in
Algorithm 1. We denote a DMFB resource by r ∈ Rd,
where Rd encapsulates all DMFB resources. Thus, the cost
of allocating resource r to execute a fluidic operation of
type y ∈ Y (the set Y incorporates all operation types) is
ρ(r̂, r, y) = γ (r, y) + E(r̂, r), where γ (r, y) is the operation
time on r and E(r̂, r) is the routing distance from r̂ (the cur-
rently occupied resource) to r. The worst-case computational
complexity of this algorithm is O(|V|).

(a)

(b)

Fig. 8. Valve-based routing of four barcoding droplets (4-to-2 biochip).
(a) With pipelining and (b) without pipelining.

VI. VALVE-BASED SYNTHESIZER

Our goal is to design a fully connected fabric such that a
droplet can be forwarded from any of the n inputs to any of the
m output ports. We present a sufficient criterion for achieving
a fully connected fabric. The proof can be found in [42].

Theorem 1: An n-to-m, q-level valve-based crossbar is a
fully connected fabric if n and m are even integers, and q ≥
[(m+ n)/2].

Using this theorem, we can automatically generate the graph
model Fn×m, thereby guaranteeing that any barcoding input
can reach all m outputs. The algorithm is described in [42].
Using this model, a systematic methodology for droplet rout-
ing can be developed. In Section VI-A, we introduce the
formulation of the routing problem and the solution approach.

A. Problem Formulation and Solution Approach

To approach the valve-based routing problem, we introduce
the problem formulation as follows.

Inputs:
1) The fabric model Fn×m, the number of inputs n and the

number of outputs m.
2) The matrix C that encodes the cell state machine; each

vector Ci ∈ C corresponds to a cell (Section V).
Constraints:
1) A droplet must be routed through a path from its

specified input port to any output port.
2) A droplet requires at least one time step to be trans-

ported from an intermediate vertex to another directly
connected vertex (i.e., no jumps allowed).

3) At any time t, the routing paths of different droplets
cannot overlap.

Output: Allocation of the graph vertices to barcoding
droplets at all time steps.

An n-to-m valve-based crossbar allows only m barcoding
droplets to be delivered simultaneously to the DMFB. We
increase throughput by allowing pipelined routing of droplets.
With pipelining, the routing algorithm allows a droplet to be
routed even though a complete path to an output is unavail-
able. In this case, a droplet is immobilized at the furthest
intermediate decision point that is not reserved by other
droplets (a pipeline stage), then allowed to move forward when
a path is freed. Fig. 8 illustrates pipelined and nonpipelined
routing.

In the following sections, we introduce two schemes for
solving the routing problem. The first scheme in Section VI-B
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Algorithm 2 Pipelined Valve-Based Routing
Input: Ci, Fn×m, current simulation time “t”
Output: Generated routing path “P,” is P complete “θ”

1: U ← GetCurrentlyUnoccupiedSubGraph(Fn×m, t);
2: d← GetVertexCurrentlyHoldingBarcode(Ci, Fn×m);
3: P← GenerateVertexDisjointShortestPath(d, U);
4: if (P is empty) then return {NULL, false};
5: else if (P is complete) then return {P, true};
6: else return {P, false};

uses graph search to efficiently route barcoding droplets,
whereas the second scheme in Section VI-C aims to improve
system responsiveness (i.e., reduce computation time) via an
incremental routing procedure.

B. Method 1: Graph-Theoretic Routing

We utilize a graph-theoretic algorithm to find vertex-disjoint
shortest paths [43]; see Algorithm 2. By computing disjoint
paths, we ensure that different barcoding droplets do not
interfere with each other during routing. The routing algorithm
is invoked whenever a cell transitions from the identification
state to the barcoding state. If all the m outputs of the chip
are currently reserved, the algorithm generates a partially dis-
joint shortest-length path from the input source to the furthest
node (Fig. 8). This is equivalent to routing the associated bar-
coding droplet up to an intermediate point, and holding the
droplet until another disjoint path (partial or complete) can
be computed to advance the droplet. The channels currently
reserved for routing a barcoding droplet cannot be accessed
by any other droplet until the droplet being held moves out of
the valve-based crossbar.

Since the vertices of Fn×m are generated in topologi-
cal order, the computation of shortest paths can be sim-
plified; the worst-case complexity of this algorithm is
O(|Dn×m| + |Sn×m|).

C. Method 2: Incremental Routing

Method 1 is computationally expensive, despite the use of
topological ordering, because it performs exhaustive search
to find a vertex-disjoint shortest-length path whenever a bar-
coding droplet is allowed to move forward. Therefore, to
reduce the computation time, we need to limit the size of
the search space so that the routing of a droplet can be deter-
mined quickly. For this purpose, we replace the graph-theoretic
method (line 3 in Algorithm 2) with an incremental routing
procedure, which computes the route of a droplet only for
the next time step. Hence, by using this approach, the search
space for routing a droplet is limited to three choices only:
1) move straight; 2) move crossed; or 3) stay immobilized. The
reduction in the search space can potentially reduce the over-
all computation time, although this procedure will be executed
more often compared to the graph-theoretic method.

To facilitate the making of a routing decision, the valve-
based synthesizer adopts the following priority scheme: 1) a
barcoding droplet must stay immobilized if both the straight
and crossed channels are occupied; 2) a droplet must move
straight (crossed) if only the straight (crossed) channel is unoc-
cupied; and 3) a droplet must move straight if both the straight

Fig. 9. Incremental routing of four droplets (4-to-2 biochip).

(a) (b) (c)

Fig. 10. Architectural variants of a 16-to-8 crossbar. (a) F1
16×8, (b) F2

16×8,

and (c) F4
16×8.

and crossed channels are unoccupied. Fig. 9 illustrates incre-
mental routing using a 4-to-2 crossbar. The computational
complexity of this procedure is O(1).

D. Droplet Routing Using Variants of Crossbar Architecture

Our discussion so far has focused on valve-based rout-
ing using a fully connected crossbar Fn×m, which exhibits
the highest degree of routing flexibility and fault toler-
ance. According to Theorem 1, this design requires at least
(n+ m/2) vertical levels. A drawback of using this number
of vertical levels is that it increases the number of time steps
needed to transport a barcoding droplet from an inlet to the
DMFB side, which in turn may increase the total completion
time. Therefore, we need to investigate the tradeoff between
routing flexibility (or fault tolerance) and system performance.

To perform this paper, we explore various configurations of
an n-to-m crossbar; these configurations differ in the number of
vertical levels and therefore channel connectivity. For example,
a 16-to-8 crossbar can be constructed using one of five differ-
ent configurations, three of which are shown in Fig. 10. It is
obvious that the configuration in Fig. 10(a) provides the high-
est connectivity, but it uses the largest number of vertical levels
(12 levels). In contrast, the configuration in Fig. 10(c) offers
the lowest connectivity, but it utilizes the smallest number of
vertical levels (3 levels).

We observe that a crossbar configuration can be constructed
hierarchically using a set of fully connected crossbars. For
instance, a 16-to-8 configuration can be constructed using a
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single 8-to-4 crossbar F8×4 and two 4-to-2 crossbars F4×2
[Fig. 10(c)], or it can be designed using a single 16-to-8 fully
connected crossbar F16×8 [Fig. 10(a)]. Clearly, the hierarchical
design approach not only facilitates the control of the cross-
bar connectivity, but it also allows us to reuse the definitions
and routing methods proposed earlier for fully connected fab-
rics. In other words, we can automatically generate the graph
models of such crossbar variants using the algorithm described
in [42]; only a minor modification is required to systematically
combine the graph models associated with the constituting
fully connected crossbars into a unified model.

A formal discussion of a crossbar configuration can be
established by partitioning the crossbar outputs into clusters.
The output ports within a single cluster are accessible to the
same set of input ports, i.e., a cluster forms a fully connected
crossbar. On the other hand, the output ports that belong to two
different clusters cannot be accessed from the same input. By
using this characterization mechanism, we can define a cross-
bar configuration based on the number of output clusters cl.
For example, the configuration in Fig. 10(a) has a single clus-
ter (cl = 1), the configuration in Fig. 10(b) has two clusters
(cl = 2), and the configuration in Fig. 10(c) has four clus-
ters (cl = 4). Hence, we denote a crossbar configuration by
Fcl

n×m, where n and m are the number of inputs and outputs,
respectively. Also, note that we can use F1

n×m and Fn×m inter-
changeably since F1

n×m is the only crossbar variant that is fully
connected.

The proposed crossbar configurations can be employed to
route droplets using our methods from the previous sections.
Our algorithms will automatically comply with the cluster-
ing constraints imposed by the new crossbar connectivity,
since these constraints are captured by the graph model. In
Section VIII, we study the impact of crossbar configurations
on single-cell performance via simulations.

VII. PROTOCOL MODELING USING MARKOV CHAINS

In this section, we present a probabilistic scheme to address
the stochasticity of protocol conditions. The outcome of this
step is used as an input to CoSyn.

A. Probabilistic Modeling Approach

While the graph model described in Section IV can effec-
tively support type-driven single-cell execution, it suffers from
the following drawbacks: 1) it assumes that the protocol
conditions (e.g., fixation time and incubation temperature)
are insensitive to cell types and consequently they do not
have an impact on the protocol efficiency and 2) it also
assumes that the optimal settings of these conditions can
be uniquely defined. These assumptions, however, may not
be valid in many real-life scenarios, particularly due to the
inherent stochasticity in cellular interactions.

To analyze the stochastic behavior of single-cell protocols,
we collected experimental data for a population of yeast cells
after conducting several benchtop implementations of the ChIP
protocol. The collected data (Table III) shows the normalized
IP value, i.e., protocol efficiency,1 while varying some exper-
imental conditions, such as the number of washing steps after

1The higher the IP value, the more “enriched” the DNA is in the specific
chromatin mark; i.e., leading to higher efficiency.

TABLE III
EXPERIMENTAL DATA DESCRIBING PROTOCOL-CONDITION

SPACE FOR CHIP USING YEAST CELLS

IP; this table is referred to as protocol-condition space. By ana-
lyzing the obtained data, we observe that changing the protocol
settings leads to different IP outcomes; the settings shown in
case #6 provide the highest efficiency. In addition, despite the
use of biological replicates in each case, the results obtained
by these replicates are not identical and they follow a normal
distribution N (μ, σ 2). Hence, according to this analysis, it is
necessary to redesign the protocol model to address the above
challenges.

An effective solution to this problem is based on a prob-
abilistic approach. The steps of this approach are given
below.

1) For each cell type, we collect data from previous exper-
iments and construct the associated protocol-condition
space, similar to the example in Table III.

2) We specify an arbitrary lower-bound threshold � for the
protocol efficiency. For example, we choose � = 16.5
for the example in Table III. Based on this threshold,
we classify cell population (replicates) into two sets: a
set of cells that contributes to high efficiency, denoted
by (HE), and another set of cells that contributes to low
efficiency, denoted by (LE).

3) Let A be an event that an arbitrary input cell belongs
to HE . We compute the probability that the input cell
contributes to high efficiency, i.e., belongs to HE , as
follows: P(A) = [(|HE |)/(|HE | + |LE |)]. Based on
Table III, P(A) = (26/73) = 0.36.

4) Consider a certain protocol condition, such as the fix-
ation time. We extract all possible settings Si of this
condition from the table. According to Table III (fixa-
tion time), S1: 5-min, S2: 8-min, S3: 10-min, S4:15-min,
and S5: 30-min.

5) Let Bi be an event that an arbitrary cell is processed
using the setting Si. We compute the probability that
an arbitrary cell will be processed using the setting Si
as follows: P(Bi) = [|Si|/(∑i |Si|)], where |Si| rep-
resents the number of replicates processed using Si.
By considering (S3: 10-min) from Table III, we obtain
P(B3) = (51/73) = 0.7.

6) We next compute the conditional probability P(Bi|A) =
[(P(Bi ∩ A))/P(A)], which represents the probability
that an arbitrary cell will be processed using Si given
that this cell belongs to HE . The probability P(Bi ∩ A)

represents the percentage of cell population that satisfy
the following conditions: 1) the cells are processed using
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Fig. 11. DTMC model for a single-cell protocol that considers three cell types.

the setting Si and 2) the cell belong to HE . In the exam-
ple shown in Table III, P(B3 ∩A) = (14/73) = 0.2, and
therefore P(B3|A) = 0.53.

7) We apply Bayesian inference to estimate the poste-
rior probability P(A|Bi), which indicates the probability
that an arbitrary cell contributes to high performance
given that this cell is processed using the setting Si—
Bayes’ theorem mathematically states that P(A|Bi) =
[(P(Bi|A) · P(A))/P(Bi)]. According to the example in
Table III, P(A|B3) = [(0.53× 0.36)/0.7] = 0.27.
We can also compute P(A|B1), P(A|B3), and the other
posterior probabilities similarly.

8) We normalize P(A|Bi) using the following relation:
P̂(A|Bi) = [(P(A|Bi))/(

∑
i(A|Bi))].

By adopting the above systematic approach, we are able to
capture the inherent stochasticity in the protocol environment.
This approach therefore allows us to redefine the protocol
interactions via a Markov-chain model.

B. Modeling Using Discrete-Time Markov Chains

Consider a given sequence of cells, where each cell belongs
to one of τ cell types. We consider that cell-type selection
follows a uniform distribution P(X); X is a random variable
associated with the percentage of the cell-population count
for each type. Based on the probabilistic approach discussed

earlier, each cell type is associated with specific experimental
steps for single-cell analysis and unique probabilistic distribu-
tions for selecting protocol settings in each step. We also take
into account cost limitations of the overall experimental envi-
ronment, such as the maximum quantities of master mixes and
washing liquids. Such cost limitations (also known as experi-
ment budget) play a key role in tuning the overall performance
of the protocol.

Based on the above characteristics, our objective is defined
as follows. Given a certain experiment budget, find the protocol
strategy for a given sequence of cells that maximizes the prob-
ability that the cells contribute to high efficiency. To achieve
this goal, we model the execution of single-cell analysis as
a DTMC and solve the strategy synthesis problem via proba-
bilistic model checking. Strategy synthesis is a problem that
is concerned with finding a strategy, in our case a sequence of
protocol steps, which satisfies a property or optimizes a long-
term objective, such as the probability of protocol success [44].
Strategy synthesis has widely been used in many applications
including planning of robots motion under uncertainty, secu-
rity analysis via synthesis of malicious strategies, and dynamic
power management using optimal control strategies.

The outcome of strategy synthesis can then be fed into
CoSyn for resource allocation. In the future, we plan to inte-
grate both strategy synthesis and resource allocation (CoSyn)
into a single unified framework.

Authorized licensed use limited to: Duke University. Downloaded on June 02,2020 at 22:11:12 UTC from IEEE Xplore.  Restrictions apply. 



IBRAHIM et al.: SYNTHESIS OF CYBERPHYSICAL HYBRID MICROFLUIDIC PLATFORM FOR SINGLE-CELL ANALYSIS 1247

Fig. 11 shows a DTMC model for single-cell analysis for
τ = 3. The model constitutes a finite set of states S, which
represents a sequence of biochemical operations (e.g., mRNA
Prep) or analysis procedures (e.g., Estimate cost). In addition
to the set S, we define a transition probability matrix U : S×
S → [0, 1] that represents decisions related to the protocol
conditions and the associated probabilities; these probabilities
are highlighted in red in Fig. 11. Recall that we compute these
probabilities using Bayesian inference as discussed earlier.

To model the experiment budget constraints (and other con-
straints), we augment the state transitions of the proposed
DTMC model with a set of guards, which ensure the fulfill-
ment of these constraints and therefore transition the system
toward success (Within budget) or failure (Over budget). For
example, in Fig. 11, the transition from state “success” to state
“dispense cell” is possible only if the number of processed
cells is still below the total population count Ctot. Clearly,
these guards, which are tuned based on the experiment bud-
get, play a key role in computing the optimal protocol strategy.
In Section VIII-E, we examine the budget’s role in controlling
the protocol efficiency using PCTL.

Note that the above discussion considers a static DTMC
model, which is computed only once based on the protocol-
condition space. However, since stochasticity is ubiquitous in
single-cell applications, protocol conditions can significantly
change over time, and therefore there is a need to update the
transition probabilities in the DTMC model. To cope with this
dynamic behavior, a closed-loop system can be constructed,
where multiple iterations can be performed. In this closed-loop
system, the results obtained by the hybrid microfluidic system
are added to the protocol-condition space, allowing a new set
of transition probabilities to be computed; the new DTMC
model is then used in the next iteration of strategy synthe-
sis and single-cell analysis. The number of cells per iteration
can be specified by the user. By following this approach, the
DTMC model can be changed to adapt to protocol dynamics.

VIII. SIMULATION RESULTS

We implemented CoSyn using C++. All evaluations were
carried out using a 2.7 GHz Intel i5 CPU with 8 GB RAM.
The set of bioassays constituting the single-cell analysis pro-
tocol (Section III) were used as a benchmark. Cell types were
assigned to the cells using a uniform distribution function.

Since this is the first work on synthesis for hybrid microflu-
idic platforms, we have developed two baseline frameworks:
1) architectural baseline (ArcSyn), wherein the barcoding fab-
ric is valveless and it utilizes a one-to-one mapping between
syringe pumps and DMFB ports as in Fig. 3(b) and 2) algorith-
mic baseline (ReSyn), in which resource allocation is initially
performed for each microfluidic domain separately. However,
we must ensure that the system behavior at the boundary
between the two domains is deterministic—the synthesis tool
for the DMFB must be aware of the order of the barcoding
droplets generated from the valve-based crossbar. The only
way to meet this constraint is to disallow pipelining in the
valve-based system; thus an upper bound on the number of
barcoding droplets that can be processed simultaneously is
equal to m. Since we consider a large number of cells, we
divide the cells into batches, each of a maximum size of m
cells, such that ReSyn executes them iteratively.

(a) (b)

Fig. 12. Comparison between CoSyn, ArcSyn, and ReSyn in terms of
completion time (a) using 20 barcoding inputs and (b) using 40 barcoding
inputs.

In the rest of this section, we assume a microfluidic
platform that contains a fully connected crossbar, except
Section VIII-D, in which we investigate variants of the
crossbar architecture.

A. Comparison With Baselines

We evaluate the performance of CoSyn, ArcSyn, and ReSyn
in terms of the total completion time for the protocol, mea-
sured in minutes (we assume Tf = Td = 0.2 s). For
valve-based routing, we consider the graph theoretic scheme
(i.e., Method 1 from Section VI-B). We fix the number of input
cells to 100, and we consider 20 and 40 barcoding inputs (or
cell types). To ensure that this evaluation is independent of the
platform architecture, the results were obtained using a DMFB
with no resource constraints.

Fig. 12 compares the three synthesis frameworks in terms
of completion times. ReSyn leads to the highest completion
times due to the loose coordination between the DMFB and the
valve-based crossbar. The completion time of CoSyn is close
to the lower bound, which is obtained using ArcSyn. ArcSyn
uses the maximum number of barcoding outputs due to the
one-to-one mapping between the barcoding inputs and outputs.
Hence, these results indicate that pipelined valve-based routing
and the coordination between the components of CoSyn play
a key role in increasing cell-analysis throughput.

B. Tradeoffs of Valve-Based Routing Schemes

Next, we evaluate the performance and the computation
time of the valve-based routing schemes by using CoSyn sim-
ulations. We refer to CoSyn that utilizes the graph-theoretic
method (Method 1) and the incremental method (Method 2) as
CoSyn-Graph and CoSyn-Inc, respectively. We fix the num-
ber of input cells to 1000 and we consider a DMFB with
no resource constraints. Fig. 13(a) and (b) compare CoSyn-
Graph and CoSyn-Inc in terms of completion times and overall
computation times, respectively, while varying the number of
inputs n and outputs m in the crossbar.

As shown in Fig. 13(a), we observe that the completion
times of both methods exhibit a parabolic behavior with
respect to the crossbar size n×m. First, the completion times
decrease when we increase the crossbar size from 20 × 8 to
50 × 20; the increase in the crossbar size within this range
allows more barcoding droplets to be consumed by the cross-
bar, which in turn overshadows the negative impact of adding
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(a) (b)

Fig. 13. Comparison between CoSyn-Graph and CoSyn-Inc (a) completion
time and (b) computation time (logarithmic scale).

more vertical levels. However, when the size increases beyond
50×20, the impact of having additional vertical levels appears
to be more prominent, leading to an increase in the completion
times for both methods. Finally, we also observe that the com-
pletion time obtained by CoSyn-Inc is at least the completion
time obtained by CoSyn-Graph, and the difference in the com-
pletion time between CoSyn-Graph and CoSyn-Inc becomes
significant when the crossbar size is increased.

Despite the high performance gained by using CoSyn-
Graph, Fig. 13(b) shows that the computation time of CoSyn-
Graph dramatically increases when larger crossbar designs are
used. Therefore, it is obvious that CoSyn-Inc needs to be used
to dynamically synthesize large-scale single-cell analysis.

C. Design-Quality Assessment

We also evaluate the quality of the designs generated by
CoSyn-Graph in terms of the number of single-cell exper-
iments that can be completed for a given time limit and
the given number of DMFB resources. In addition, we also
quantify the fraction of input cells that can be processed simul-
taneously by the given set of DMFB resources. Our objective
here is to investigate the conditions under which CoSyn-Graph
is effective. Therefore, we introduce the following terms.

Cell-Analysis Density: The number of cells (samples) that
completed analysis during a specific window of time (cell
throughput), using a given array of electrodes. The time win-
dow is set to be a minute and the size of the array is equal to
100 electrodes.

DMFB Capacity: A real number z ∈ [0, 1] that provides
the fraction of input cells that can be processed simultaneously
using DMFB resources. For example, a capacity of 1 indicates
that there are sufficient resources to process all the cells simul-
taneously. On the other hand, a capacity of 0.5 means that the
existing resources are sufficient for simultaneously processing
only half of the cells.

We investigate the design-quality for valve-based crossbars
by evaluating the cell-analysis density of CoSyn-Graph and
ArcSyn. We simulate the execution of 50 cells using 4 bar-
coding outputs [Fig. 14(a)], 8 barcoding outputs [Fig. 14(b)],
12 barcoding outputs [Fig. 14(c)], and 20 barcoding out-
puts [Fig. 14(d)]. The density values are computed while the

(a) (b)

(c) (d)

Fig. 14. Comparison between CoSyn-Graph and ArcSyn in terms of cell-
analysis density using (a) 4 barcoding outputs, (b) 8 barcoding outputs, (c) 12
barcoding outputs, and (d) 20 barcoding outputs.

TABLE IV
FLEXIBILITY OF CROSSBAR VARIANTS (fx)

capacity is varied. By comparing the density values for CoSyn-
Graph and ArcSyn, we observe two regimes: 1) Regime I in
which the cell-analysis density of CoSyn-Graph is higher, i.e.,
it is more effective and 2) Regime II in which the density of
CoSyn-Graph is less than or equal to the density of ArcSyn.
Regime I highlights the fact that CoSyn-Graph efficiently
exploits valve-based barcoding, and the power of valve-based
pipelining is evident when the DMFB resources are limited.
On the other hand, the overprovisioning of resources leads
to Regime II, where a lower cell-analysis density is reported.
Finally, we note that Regime I shrinks as we increase the num-
ber of barcoding outputs; this is expected since CoSyn-Graph
is more effective in the realistic case of a limited number of
barcoding interfaces.

D. Crossbar Connectivity: Performance Versus Flexibility

We also study the impact of crossbar connectivity on the
system performance and the routing flexibility. We use archi-
tecture variants Fcl

n×m of an n-to-m crossbar; the parameters
n, m, and cl denote the number of crossbar inputs, the num-
ber of crossbar outputs, and the number of output clusters,
respectively, (Section VI-D). For evaluation purposes, we sim-
ply measure the flexibility, denoted by fx(m, cl), of a crossbar
variant Fcl

n×m using the following relation: fx(m, cl) = (m/cl),
which represents the effective number of output ports reach-
able from an input port. Also, we simulate the execution of
1000 cells using CoSyn-Inc, and we consider an 80-to-32
crossbar (n = 80 and m = 32). Moreover, to ensure that this
evaluation applies to any DMFB architecture, the results were
obtained using three DMFBs that have the following resource
capacities z: 0.6, 0.8, and 1.
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Fig. 15. Comparison between crossbar variants using protocol completion
time.

(a) (b)

Fig. 16. Impact of experiment budget on the probability of successful com-
pletion of single-cell analysis under the optimal protocol strategy (a) with
varying number of washing steps and (b) with varying fixation time.

As shown in Table IV, as the number of output clusters
increases, the flexibility fx of the crossbar design decreases.
On the other hand, as shown in Fig. 15, we observe that the
total completion time decreases when the number of clusters
increases—this result is due to the reduction in the number of
vertical levels q and thus the routing distance of the barcoding
droplets.

E. Analysis of Markov Model

To understand the impact of protocol conditions and experi-
ment budget on the protocol efficiency, we run model checking
on the DTMC model described in Fig. 11, where the num-
ber of cells is equal to 6. We investigate the impact of three
experimental factors: the number of washing steps (WTot), the
number of fixation time steps (fixTimeTot), and the number of
master mixes (MixesTot). For this purpose, we use PRISM [45]
to implement the DTMC model along with the following
PCTL query that expresses the model objective:

Q := Pmax=?
[
(�(!Failure)) U (♦ WithinBudget)

]
.

The query Q seeks the maximum probability that the pro-
tocol will globally avoid the state Failure “until” eventually
reaching the success state, i.e., the state WithinBudget. The
operator � means “globally,” the operator U means until, and
the operator ♦ means eventually. The maximum probability
can be computed using value iteration algorithm [46]. By
running this query using PRISM, we can obtain the optimal

protocol strategy that maximizes the probability of satisfying
the target predicate, i.e., the processed cells contribute to high
efficiency and the experiment budget is not exceeded.

Fig. 16 shows the obtained results, which illustrate the
impact of experiment budget on the probability that single-
cell analysis completes successfully under the optimal protocol
strategy. It is obvious that the success probability increases
when we increase the experiment budget. We also observe
that the success probability is close to 1 only if there are suf-
ficiently large quantities of washing liquid and master mixes
and if we allow more time for fixation.

These results highlight the need to incorporate stochas-
tic behavior of a single-cell protocol into any synthesis
methodology since it has a significant impact on the protocol
efficiency.

IX. CONCLUSION

We have introduced the first automated design method for
single-cell analysis using a cyberphysical microfluidic plat-
form. This design coordinates the control of diverse microflu-
idic components and concurrently processes a large number
of sample pathways. We have also presented a probabilistic
model of the single-cell analysis protocol based on DTMCs.
This model captures experimental settings where protocol con-
ditions are specified in a probabilistic manner. The proposed
platform has been evaluated on the basis of the time needed
for analysis and the biochip size needed for realistic test cases.
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