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Abstract—Recent advances in microfluidic technology offer
efficient platforms to emulate complex molecular networks of
biological pathways (biocircuits) on a lab-on-chip. The behavior
of biocircuits is governed by a number of gene-regulatory pa-
rameters. A fundamental challenge in synthesizing and verifying
biocircuits is the lack of design tools that implement biocircuit-
regulatory scanning (BRS) assays to explore the large parameter-
space efficiently, while optimizing synthesis time and reagent cost.
In this paper, we introduce an optimization flow named BioScan
for systematic exploration of the parameter-space of a biocircuit.
BioScan includes: (1) a statistical approach to determine a subset
of mixing ratios of reagents that span the entire parameter
space as densely as possible under cost constraints; (2) an ILP-
based synthesis method that implements a BRS-assay on a micro-
electrode dot-array biochip. Simulation results show that BioScan
reduces reagent cost and enhances space-filling properties.

I. INTRODUCTION

Synthetic biology has emerged recently with the goal of engi-
neering biological parts that can perform new and useful func-
tions. Applications of synthetic biology include environmental
monitoring, therapeutics, and creation of new materials [1].
Such applications can be assembled via pathways that function
like integrated circuits, enabling synthetic biocircuits [2].

A synthetic biocircuit consists of a cell-free regulatory
network of genetic parameters that interact through gene-
expression activities. For example, consider a simple biocircuit
that has the following parameters (Fig. 1(a)) [2]: (1) X;, a
gene that expresses “AraC” (a transcription activator); (2) Xo,
a gene that expresses “TetR” (a transcription repressor); (3) Xs,
a gene that expresses GFP (the fluorescent protein output of the
circuit). As shown in Fig. 1(a), the activity of “AraC” regulates
(through activation) both X5 and X3, but the activity of “TetR”
in Xy regulates (through repression) X3. Such interactions are
demonstrated in the regulatory network diagram in Fig. 1(b).
Clearly, there are two incoherent regulations of GFP expression
at X3. As a result, careful modulation of X7, X5, and X35 is
necessary to allow rapid testing of the biocircuit in vitro and
to achieve the desired function [1].

An essential step toward reliable performance of synthetic
biocircuits is to maintain the expression of circuit parameters
in an optimal range. Such an optimization can be realized using
a technique known as parameter-space exploration (PSE) [2],
which scans all possible combinations of circuit parameters.
In practice, PSE can be implemented by generating numerous
droplets (a droplet is referred to as a mixture M;) of equal
volume with varying volumetric ratios of biochemical reagents.
A volumetric ratio of a reagent j in M, is referred to as
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a concentration factor (CF) and is denoted by c(; ;). This
ratio can also be used to stimulate gene transcription and
translation of biocircuit parameters. Such an assay is referred
to as biocircuit-regulatory scanning (BRS). For example, to
study the parameter space of the circuit in Fig. 1(a), we can
implement a BRS assay that generates three mixtures M,
Mo, and M3, as shown in Fig. 1(c). Each mixture constitutes
four types of reagents: (1) Y7, which modulates parameter
X1; (2) Y, which modulates parameter X5; (3) Y3, which
modulates parameter X3; (4) distilled water Yy, which is used
to ensure that the droplet volume remains constant. Also, each
mixture contains a unique combination of CFs, referred to
as the CF profile, as shown in Fig. 1(d). For simplicity, we
allow Y] to have a fixed CF value (c(;1) = 0.2) among all
mixtures, whereas the CF values of Y5, Y3, and Y, are changed.
The CF profiles of the three mixtures are selected such that
their representation in the CF space can fill as much space as
possible; see Fig. 1(c).

Ideally, by generating numerous droplets, the range of any
constituent CF can span the full concentration range between
0% and 100% of a droplet volume. This process, however, is
cost-prohibitive, especially with the exponential growth in the
number of parameters. Hence, a barrier facing PSE is the need
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Fig. 1: Study of a 3-parameter biocircuit [2]: (a) schematic of the
biocircuit; (b) a gene-expression regulatory network representation of
the biocircuit; (c) CF space associated with the biocircuit (reduced to
a 2-D space); (d) CF profiles of three mixtures used for PSE.
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for a systematic methodology that enables dense scanning of
the CF space. Recently, a framework based on a flow-based
biochip supported with dynamic control of reagent-flow rates
has enabled PSE for the circuit of Fig. 1(a) [2]. Despite the
novelty of this design, it suffers from the following drawbacks:
(1) Scalability Limitation: The flow-based solution performs
passive mixing, which relies only on molecular diffusion of
fluids without any external energy. Therefore, passive mixing
in flow-based systems is prohibitively slow.
(2) Manual Configuration: The above design utilizes sinu-
soidal flow rates of reagents with pre-computed function periods
to scan a large volume of the CF space. As the number of
reagents is varied, a new set of sinusoidal functions must be
computed; such a process can be a significant challenge when
a large number of reagents is involved.
(3) Abandoned CF Subspace: A fixed droplet volume cannot
be maintained unless an input flow of distilled water (DW) is
introduced. Note that the flow-rate of DW is computed based
on the other sinusoidal functions. This technique allows all
mixtures to have equal volume; however, they contain large
amounts of DW and therefore this approach causes a large
CF subspace to be abandoned. For example, by applying the
above technique to a 3-CF setting, the value of each CF can
vary only between 0% and 33% (i.e., 100%/3); see Fig. 1(c).

To overcome the above limitations, we need a PSE microflu-
idic framework that offers reconfigurable mixing and droplet-
actuation capabilities, thus enabling flexible composition of
biochemical reagents. This requirement can be met using a
digital microfluidic biochip (DMFB), which allows the manip-
ulation of nanoliter droplets using an array of electrodes [3].
We consider a specific DMFB architecture referred to as the
micro-electrode-dot-array (MEDA), which can support mixing
of reagents with considerably higher resolution [4].

In this paper, we introduce the first optimization flow,
called BioScan, for PSE in synthetic biology based on MEDA
biochips. The key contributions of this paper are as follows:

o BioScan uses a statistical sampling method that scans the
CF space and generates a representative collection of CF
profiles. The proposed method is scalable in terms of the
number of mixtures and space dimensionality, and it ensures
that the selected CF profiles fill the entire space.

o We present a synthesis method based on integer linear
programming (ILP) that maps the generated CF profiles
to a BRS assay on MEDA.

II. PRELIMINARIES
A. MEDA Microfluidic Biochips

Digital microfluidics has shown exceptional promise for
synthetic biology experiments, including DNA assembly, trans-
formation, culturing, and biocircuits [5]. Advantages of DMFBs
are further extended by MEDA, which consists of an array of
identical basic microfluidic units called microelectrode cells
(MCs); see Fig. 2(a-b) [4]. Each MC consists of a microelec-
trode and a control/sensing circuit. Using this configuration,
MEDA biochips can employ the concept of a sea-of-micro-
electrodes, where microelectrodes can be dynamically grouped
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Fig. 2: Droplet actuation in MEDA biochip: (a) side view; (c) top
view; (c) MEDA-enabled (m,n) mixing model.
to form a single micro-component (e.g., mixer or diluter) that
can perform on-chip biochemical operations.

By using a conventional DMFB, a mixture that comprises
several reagents can be systematically prepared using a se-
quence of (1 : 1) mix-and-split operations only. In this (1 : 1)
model, an intermediate droplet is generated by mixing two
reagent droplets of equal volume, and a large droplet can be
split only into two small droplets of equal volume. Clearly, this
model has limitations, especially if the constituent CFs need to
have different values. MEDA, on the other hand, utilizes the
dynamic grouping of microelectrodes to extend the above model
to a general (m : n) mixing-splitting model [6]; thus enabling
droplets with different volumes to be mixed or split with high
resolution. As shown in Fig. 2(c), MEDA enables two reagent
droplets of volume 15 and 22 nL to be mixed to generate a 37
nL mixture with CFs 40% and 60%, respectively. We exploit
such a powerful mixing-splitting model to generate mixtures
with a variety of CF profiles used for PSE in biocircuits.

B. Prior Synthesis Techniques

Advances in genomic analysis and sample preparation on
DMEFBs have motivated a number of design automation tools
in this domain. Although these methods help in bridging the
gap between microfluidics and genomics, they are not adequate
for handling PSE in synthetic biology [5].

Early research on sample preparation focused on optimizing
the dilution process for a single sample with the goal of
minimizing reactant-cost, the number of mixing steps, or
waste droplets [7]. In [6], the process of sample dilution
has been optimized using the (m : n) mixing model offered
by MEDA. However, these methods are not capable of
handling mixtures that contain three or more reagents. To
support dilution gradients in quantitative analysis, multi-target
sample-preparation techniques have been introduced [8]. These
techniques generate droplets that contain mixtures of only two
fluids: sample and buffer. However, these methods are limited
to (1 : 1) mixing and they cannot support the preparation of
multiple mixtures that constitute a large number of reagents.

For producing a desired multi-reagent mixture, synthesis
methods have been developed to generate a bottom-up mixing
tree that encodes the successive composition of reagent
volumetric ratios [9]. These methods can be easily adapted to
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our space-exploration problem by running multiple iterations
of the algorithm; every iteration specifies the mixing of an
individual mixture. This approach, however, may lead to a
significant increase in the amount of waste droplets and in the
protocol completion time.

To make DMFBs useful for dense PSE in synthetic biology,
we need a new top-down optimization flow that allows concur-
rent production of several mixtures with maximum precision,
especially in the presence of reagent-usage constraints. Next,
we present two enabling components of our proposed flow
(BioScan): sampling of the CF space (Section III), and ILP-
based synthesis (Section IV). Studies of other components are
left for future work.

ITI. SAMPLING OF CONCENTRATION FACTOR SPACE
A. Stratified Sampling: Latin Hypercubes

Consider a continuous space X C [0,1)" constructed
using input variables R, = {R(;1), R(z,2), s Rz,r)} € X.
We seek a sampling technique that selects an ensemble
of n samples © = {x1,x9,....,2,} C X, where z; =
{23,1),%3,2), - T HE(i,j) € Rz,5)» such that it provides
enhanced space-filling properties, i.e., it must ensure that all
the space regions are roughly evenly sampled. Theoretically,
space-filling criterion can be assessed using the Euclidean
maximin (E,,) distance, which is defined to be the smallest
distance between a pair of points in the sampling space [10].
Let d = [d(1,2) d(1,3) - d(n—1,n)],» Where d(; 1,y is computed
as follows:

diig) = \/(95(1',1) —z)? o (@) — ) 1<k

The E,, distance is the smallest d; ) € d. A larger value of
E,, indicates that the distance between the closest points is
big, indicating a better space-filling property.

It is known that pseudo-random sampling methods such as
Monte Carlo sampling may result in poor space filling [11]. We
overcome this limitation by using a classical stratified sampling
technique known as Latin Hypercube sampling (LHS) [10],
which divides the range of each input variable R, ;) € R, into
n equally probable strata and samples once from each stratum.
For each R, ;) € R,, the n sampled input values are assigned
at random to the n strata, with all n! possible permutations
being equally likely. This process is applied independently to
each variable R, ;). LHS can be further enhanced by dividing
the sampling space into [ equally probable subdivisions, and
each subdivision is sampled with the same density; such
an enhancement is known as Orthogonal Array-based Latin
Hypercube sampling (OA-LHS) [10]. Fig. 3 compares these
methods using n = 9 samples in a 2-D (r = 2) space.

According to the above definition, the range of R, ;) is
defined as R(, ;) € [0,1), and no other constraints are applied
to the coordinates z(; jy € R(s,5) of the n samples. However,
to apply OA-LHS to the CF space to generate a set of n
CF profiles {M1, Mo, ..., M,,}, we must ensure that the sum
of CFs in any CF profile (mixture) must equal 1. In other
words, for any mixture M;, the following condition must
be satisfied: Z;Zl Z(;,5) = 1. Such a requirement cannot be
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Fig. 3: Sampling 9 points in a 2-D space using: (a) random sampling,

(b) LHS, (c) OA-LHS (I = 9).

fulfilled through direct application of OA-LHS to the CF space.

We explain how to overcome this limitation in Section III-B.

X

B. Mapping to CF Space

Consider a continuous space ) C [0,1)” constructed using
input variables R, = {R(, 1), R(y,2), ---» R(y,r} € Y. A point
y in the space ) is defined as y = {y1,y2, ..., Yn} C ), where
Yi = Y1), Y(i.2)» -+ Yiir) HY(ig) € Ry.5)» and it must satisfy
the following condition }~7_, y(; j) = 1;Vi € {1,...,n}. The
space Y can be graphically represented using a simplex that is
formed using a barycentric coordinate system [12]. Fig. 4(a)
depicts the shapes of 1-simplex (2-D space) and 2-simplex
(3-D space).

To adapt OA-LHS to the “simplex” CF space, we seek
a mapping function f; that is defined as f; : X — .
A trivial implementation of the function f; is to uniformly
sample points in the space X using OA-LHS then re-scale the
points using the relation y; ;) = 2;:(112”, this method is
referred to as scaling-based mapping . However, this approach
severely degrades space filling since it tampers with the
stratification property; see Fig. 4(b). We develop an alternative
implementation of fs that does not change the uniformity
of the sampling by using the Dirichlet distribution, which
is an exponential family distribution over a simplex, i.e.,
positive vectors that sum to one. Formally, if z(; ;) € [0,1) is
sampled using OA-LHS based on a uniform distribution, then
fs 1 T(,5) — Y5 can be defined as

e L)

a—1 —xT N —1
x,. se .9
(i,9) )

x?‘ } 2(i.j)
2(i,5) = = — DY) = e
7 ['(a) (= 1)! P Y Zag)

Note that >-7_, y(i,;) = 1. A key property of this mapping,
referred to as Dirichlet-based mapping, is that it applies
an affine transformation that does not alter the space-filling
properties in the simplex space [12]; see Fig. 4(c).

IV. SYNTHESIS METHODOLOGY

BioScan is designed to be an iterative PSE flow that enables
composition of new mixtures on a MEDA biochip; new
iterations are executed if the accuracy of the constructed model
needs to be enhanced. A cost-effective design can generate the
new mixtures not only using reagents stored on chip, but also
by exploiting mixtures generated during previous iterations.
Target Mixtures: At any iteration of the flow, BioScan aims
to compute the synthesis solution associated with n new target
mixtures {M*, M§, ..., M!}. The CF profile of a mixture M}
is defined as the set {cfi,l), e sz’,r)} ={Y@i,1) - Y@, }: the
values y(; ;) are obtained from the sampling step (Section IID).
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Fig. 4: Mapping OA-LHS-sampled data to simplex CF space: (a)
graphical representation of 1-simplex and 2-simplex; (b) scaling-
based mapping leads to poor space filling; (c) Dirichlet-based mapping
(e = 3) preserves enhanced space filling.

Also, each M! is characterized with a “reference” volume V!
that the synthesis framework aims to produce. Note that a
potential solution for reducing reagent usage during mixture
production is to reduce V.

For simplicity (but without loss of generality), we con-
sider the same reference volume for all target mixtures, i.e.,
Vi : V' = V*, and we also assume that a droplet volume is
represented as a natural number that is multiple of the droplet
volume on a single microelectrode. We refer to this measure
of volume as a microelectrode (MC) unit.

Source Mixtures and Reagents: To generate target mixtures,
a number of m source mixtures { M7, M5, ..., M2}, generated
in a previous iteration, are used along with r reagent fluids
{G1, Ga, ..., G, }—recall that r is also equal to the number of
CF-space dimensions. The CF profile of a source mixture M}
is defined as the set {c(; ), ....¢{} )} Also, the CF profile
of a reagent fluid G; is defined as the set {c{; |, ....c{; 1 };
where cgjﬂ =1 only if j = a, and C?j,a = 0 otherwise.
Aliquots: MEDA biochips enable the afiquoting of a source
mixture M, of volume V7 or a reagent fluid G; of volume
erq into smaller droplets that can vary in volume. Hence,
an aliquot of volume 7(; ;) < V7 from a source mixture
M contributes to the generation of a target mixture M.
Similarly, an aliquot of volume 0; ;) < ng from a reagent G;
contributes to the generation of the same mixture M. Note that
the lower bounds on 7(; 1) and 6(; ;), denoted by V;7 . and
mem, respectively, are controlled by the aliquoting constraints
imposed by MEDA [13].

Degree of Concentration Accuracy: MEDA biochips dis-
cretize the CF space. We define parameter J§ as the degree
of concentration accuracy, whereby any concentration Cfi,j)
can be expressed as C(; ;) = (czm)/ﬂ, where C{; ;) is an
integer. Similarly, sz‘,j) = [cfm.)/%}. For example, if 6 = 128,
a concentration of 64% is expressed as [0.64/ 35| = 82. We
use C(tm.) or C’Slw.) to represent a CF in our synthesis flow.

Note that the largest number of target mixtures n is
impacted by )—by using stars-and-bars combinatorics, 7 can be

computed as follows: n = (f:l) = %. For example,
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Fig. 5: Preparation of three target mixtures using aliquots from two

source mixtures and three reagent fluids (§ = 8).

with 6 = &8 and r = 4, we find that n = 35.
BioScan Imprecision: The first objective of BioScan is to
compute the values of 7(; 1) and 6, ;) that enable the production
of target mixtures, considering the reference volume V*.
However, if V! is small, the search space of all feasible values
of 7(; ) and 0; ;) becomes limited. As a result, the “actual”
volume, denoted by Vit, that is computed by BioScan may
not be the same as V*. The value of V;' can be computed as
follows: X:/it =k T(ik) + 2o 0i.j)- Intuitively, the variation
between V;/ and V' also leads to a variation between the target
CF C(ti’ ;) and the “actual” CF, denoted by C‘(tl - The actual
Zk(c(sk,j)""A(i,k))"'";'g('i,j)]
Vi

To assess the impact of the variation between V't and Vit,

we introduce a metric named synthesis imprecision A\, where

1 At 7t t t
A= Zk(i,j) = SZ‘C“J) Vi=CujyV ‘
¥ Y

1
= 5 2230 (- 76 + 8- 86y = Cleyy - V)|

ij ok

CF is computed as follows: C‘& n=1

Hence, our goal is to minimize A while also minimizing
>, 0(i,j) (reagent usage).

Fig. 5 shows an example that illustrates the working principle
of the synthesis method. In this example, three target mixtures
of volume 32 MC units are generated using aliquots from two
source mixtures of volume 16 MC units and three reagent fluids
of volume 30 MC units. Using MEDA, our synthesis method
first applies split or aliquot operations (to generate the aliquots)
followed by mixing operations (to produce the target mixtures).
Therefore, we present new types of operation models, namely
split-and-mix and aliquot-and-mix, that replace the classical
mix-and-split model in previous sample-preparation algorithms.

A. Problem Formulation

We describe the optimization problem as follows:
Inputs: (i) The number of target mixtures n and source
mixtures m. (ii) The number of reagents r. (iii) The degree of
accuracy J. (iv) The source mixtures, each with concentration
factors (C7y 1), Cfy 0y5 -+ Cfjy ,y) and volume V7. (v) The
target mixtures, each with reference concentration factors
(C(tiyl),Cfi’Q),...,C(tw)) and volume V*. (vi) Total liquid
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volume V of reagent G;.

Output: (i) Volume of allquots T(i,k) and 6 ;). (ii) Actual
CF profile {C’(Z 1) C(l -} and actual volume Vit of every
target mixture M/. (iii) BRS assay.

Objectives: (i) Minimize reagent usage. (ii) Minimize synthesis
imprecision. (iif) Minimize the completion time of BRS.

To solve the above problem, we develop a two-stage synthesis
framework. The objectives of the first stage are to minimize
reagent usage and synthesis imprecision; the objective of the
second stage is to minimize the protocol completion time.

B. ILP-Based High-Level Synthesis

High-level synthesis can be optimally solved by mapping the
problem to an ILP model. The proposed model is developed
to co-optimize synthesis imprecision and reagent usage. The
model is described below.

Vie{l,...,p}je{l,. q ljg {1,....,m}
minimize -— 29(1,3) + () (1)
5 ,J
subject to:
Vi min < Tk < Vi ZT(M) < Vg 2)
Vimin < 0Gj) < Vs Z%‘a‘) <V 3)
DT+ Oq V20 @

k J
Aig) = Z(C(sk,j) (i) + 0005 —Clijy- V=0 )
k

In (1), we describe the multi-objective function, which aims
to minimize reagent usage (by minimizing ), 0(1 7)) and syn-
thesis imprecision (by minimizing %, )\(, j)) simultaneously.
The two objectives are contradlctlng, thus proper modeling
of the problem requires the two objectives to be normalized.
For this purpose, we first optimize each objective individually,
then divide the related objective term by the corresponding
optimum value [14]. The parameters f* and g* represent the
optimal values of the first and second objectives, respectively.

The parameter S € [0,1] is introduced to represent the
weights for the problem objectives. If 3 = 1, then the
objective is to minimize reagent usage regardless of the
synthesis imprecision. On the other hand, if 8 = 0, then
achieving the lowest imprecision becomes the only objective.
Inequalities (2)-(3) specify volume constraints related to the
aliquots. Inequality (2) (Inequality (3)) ensures that the volume
of any source aliquot 7(; 1) (reagent aliquot ¢, ;)) is bounded.
We also capture the variation between V' and Vit using
inequality (4) and the associated impact on the synthesis
imprecision using inequality (5).

It is obvious that the value of V' has a significant impact
on the reagent usage and synthesis imprecision; therefore, it
needs to be carefully selected. A small value of V! may lead
to reduction in the reagent usage, but it may also increase
synthesis imprecision. On the other hand, a large value of
V't may lower synthesis imprecision, but it may also increase
reagent usage, thus raising platform cost. In Algorithm 1, we
provide a solution to this challenge; We investigate the impact
of V! on the synthesis performance in Section V.
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Algorithm 1 High-Level Synthesis

1: B« Initialization() Sol « 0;

2 AV min» Vi'min} < ComputeLowerBoundVolumes(Vy;, V,7);

3: for V' € V do >V[1]<VH
4: {T(z k) 0(1 ) )‘(z ])} — SOlVCILP(Vt, 67 Vk min»y Vv]gmzn)

5: if 37, 005 > To OR 37, - A ;) > T then break;

6 else Sol + SOlU{T(, k),6‘<2 9)7)‘(%])}

7

. BestSol < SelectLowestImprecision(Sol); return BestSol;

C. Physical-Level Synthesis

The objective of physical-level synthesis is to map the high-
level synthesis solution to a sequence of microfluidic operations
that implements a BRS assay with the lowest completion time.
The droplet-aliquot operation is a key enabler of fine-grained
mixture production [13].

Hence, a BRS assay consists of a sequence of MEDA-enabled
operations (mixing, splitting, and droplet aliquoting), which
can be modeled as a directed acyclic graph B = (A,U),
named a composition graph. A vertex a; € A represents a
MEDA-enabled operation, which can be one of four types: (1)
mixing; (2) splitting; (3) aliquoting. Each operation type A
is associated with a cost value p(A), where p(aliquoting) >
p(mixing) > p(splitting)—mixing and splitting are easier and
quicker in execution compared to aliquoting. Also, an edge
up = {(a;i, a;),wr} € U models the interdependency between
a pair of operations a; and a;, and uy, is associated with a
parameter wy, that captures the droplet volume resulting from
a; and used by a;. The efficient generation of a composition
graph is left for future work.

V. SIMULATION RESULTS

We implemented BioScan using C++. We solved the ILP
model using Ipsolve, which was integrated in our C++ environ-
ment. We assess two aspects of the proposed flow: (1) space
filling of the CF profiles, evaluated based on the E,, metric;
(2) performance of the synthesis method, evaluated in terms of
the synthesis imprecision A and the average reagent volume
consumed by a target mixture (6 = %)
A. Analysis of CF Sampling

Recall that the sampling of the CF space is accomplished in
two steps: regular sampling within the interval [0, 1] followed
by mapping of samples to the simplex CF space. Therefore,
we evaluate the space filling of the CF profiles based on
these two steps; we compare four sampling approaches: (1)
OA-LHS (stratified sampling) followed by Dirichlet-based
mapping where o = 3; (2) OA-LHS followed by Dirichlet-
based mapping where @ = 20; (3) OA-LHS followed by
scaling-based mapping; (4) uniform sampling followed by
scaling-based mapping. The number of CFs, i.e., reagents r,
is set to 8, and the number of sampling trials in each case
is 1000. Results based on other values of r also lead to the
same conclusion, showing that our methodology is scalable
with r—results were not reported here due to lack of space.

Fig. 6(a) compares the above sampling approaches using
F,, as a metric while varying the number of targeted samples
n. We observe that scaling-based mapping degrades the
space-filling property, i.e., reduces F,,, regardless of which
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Fig. 6: Assessment of BioScan: (a) Impact of sampling and mapping techniques on the space filling. (b) Impact of 3 and V* on the synthesis

performance. (c) The trade-off between A and 6.

sampling method is utilized. This is expected since scaling-
based mapping tamper with the stratification property. We
also observe that space filling can be severely degraded if the
Dirichlet-based mapping is not properly tuned. As shown in
Fig. 6(a), Dirichlet-based mapping with o = 20 leads to the
lowest FE,,. Large values of « cause the generated samples to
be highly concentrated instead of being uniformly distributed.
In the following evaluations, we use OA-LHS with Dirichlet-
based mapping where o = 3.

B. Impact of 3 and V!

We next evaluate the impact of 3 and V* on the performance
of the high-level synthesis using the example in Fig. 5. For this
purpose, we compare four sets of synthesis solutions associated
with V't = {8,16,24,32}; comparison is performed in terms
of the synthesis imprecision A. In each set, we compute 11
synthesis solutions by varying the value of 3 from 0 to 1 using
0.1 as the increment between two subsequent values.

Based on Fig. 6(b), we observe that increasing the value of
V't from 8 to 32 gradually lowers the synthesis imprecision.
This result corroborates our argument that using a small value
of V* may limit the search space of all feasible aliquots, thus
increasing synthesis imprecision (Section IV). We also note that
the impact of 3 becomes less significant when V! is increased.

C. Synthesis Imprecision vs. Reagent Usage

We next investigate the trade-off between synthesis impre-
cision and reagent usage. For this study, we consider a more
complex setting where the number of reagents r is 6 and the
degree of accuracy ¢ is 128. The number of source mixtures m
is 10 and the number of target mixtures n is 20. We compute
the optimal values of A\ and 6 while varying the target volume
Vt=1{8,9,10,...,1000} and 8 = {0,0.1, ..., 1} in the second
iteration. We then sort these results based on # and plot the
values of A against the associated values of 6 to perform the
trade-off analysis.

Fig. 6(c) shows the trade-off curve and the associated feasible
region obtained using the above steps. A first observation is that
the lowest values of A, denoted by \*, is 28.3; this indicates
that the problem setting described above is complex enough
that the optimal synthesis solution cannot reach zero synthesis
imprecision. Reducing the problem complexity (by minimizing
n, m, and r) can result in A = 0. We also observe that
increasing the amount of reagents beyond 6(\*) causes increase
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in the synthesis imprecision \. This counter-intuitive result is
observed when V'* becomes significantly large, and even though
ct )~ Cfi ;) Vi, j. The reason for such a finding is that when

ij X
V' is increased, a large volume difference ) . (V') — nV*!

outweighs the impact of C'(tz o C(ti j)- This observation is
S @t instead of \. We use A

to analyze the performance because this allows us to determine
the global minimum A* and the associated 6(A\*).

VI. CONCLUSION

We have introduced an optimization framework for PSE in
synthetic biology. We formulated the PSE problem in terms
of a BRS assay that is implemented on a MEDA biochip.
The proposed framework uses statistical sampling to select
reagent mixtures and ILP-based synthesis to generate the
reagent mixtures using a BRS assay. Simulation results have
shown the effectiveness of BioScan in implementing BRS while
minimizing reagent usage and synthesis imprecision.
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