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Abstract—Recent advances in microfluidic technology offer
efficient platforms to emulate complex molecular networks of
biological pathways (biocircuits) on a lab-on-chip. The behavior
of biocircuits is governed by a number of gene-regulatory pa-
rameters. A fundamental challenge in synthesizing and verifying
biocircuits is the lack of design tools that implement biocircuit-
regulatory scanning (BRS) assays to explore the large parameter-
space efficiently, while optimizing synthesis time and reagent cost.
In this paper, we introduce an optimization flow named BioScan
for systematic exploration of the parameter-space of a biocircuit.
BioScan includes: (1) a statistical approach to determine a subset
of mixing ratios of reagents that span the entire parameter
space as densely as possible under cost constraints; (2) an ILP-
based synthesis method that implements a BRS-assay on a micro-
electrode dot-array biochip. Simulation results show that BioScan
reduces reagent cost and enhances space-filling properties.

I. INTRODUCTION

Synthetic biology has emerged recently with the goal of engi-

neering biological parts that can perform new and useful func-

tions. Applications of synthetic biology include environmental

monitoring, therapeutics, and creation of new materials [1].

Such applications can be assembled via pathways that function

like integrated circuits, enabling synthetic biocircuits [2].

A synthetic biocircuit consists of a cell-free regulatory

network of genetic parameters that interact through gene-

expression activities. For example, consider a simple biocircuit

that has the following parameters (Fig. 1(a)) [2]: (1) X1, a

gene that expresses “AraC” (a transcription activator); (2) X2,

a gene that expresses “TetR” (a transcription repressor); (3) X3,

a gene that expresses GFP (the fluorescent protein output of the

circuit). As shown in Fig. 1(a), the activity of “AraC” regulates

(through activation) both X2 and X3, but the activity of “TetR”

in X2 regulates (through repression) X3. Such interactions are

demonstrated in the regulatory network diagram in Fig. 1(b).

Clearly, there are two incoherent regulations of GFP expression

at X3. As a result, careful modulation of X1, X2, and X3 is

necessary to allow rapid testing of the biocircuit in vitro and

to achieve the desired function [1].

An essential step toward reliable performance of synthetic

biocircuits is to maintain the expression of circuit parameters

in an optimal range. Such an optimization can be realized using

a technique known as parameter-space exploration (PSE) [2],

which scans all possible combinations of circuit parameters.

In practice, PSE can be implemented by generating numerous

droplets (a droplet is referred to as a mixture Mi) of equal

volume with varying volumetric ratios of biochemical reagents.

A volumetric ratio of a reagent j in Mi is referred to as
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a concentration factor (CF) and is denoted by c(i,j). This

ratio can also be used to stimulate gene transcription and

translation of biocircuit parameters. Such an assay is referred

to as biocircuit-regulatory scanning (BRS). For example, to

study the parameter space of the circuit in Fig. 1(a), we can

implement a BRS assay that generates three mixtures M1,

M2, and M3, as shown in Fig. 1(c). Each mixture constitutes

four types of reagents: (1) Y1, which modulates parameter

X1; (2) Y2, which modulates parameter X2; (3) Y3, which

modulates parameter X3; (4) distilled water Y4, which is used

to ensure that the droplet volume remains constant. Also, each

mixture contains a unique combination of CFs, referred to

as the CF profile, as shown in Fig. 1(d). For simplicity, we

allow Y1 to have a fixed CF value (c(i,1) = 0.2) among all

mixtures, whereas the CF values of Y2, Y3, and Y4 are changed.

The CF profiles of the three mixtures are selected such that

their representation in the CF space can fill as much space as

possible; see Fig. 1(c).

Ideally, by generating numerous droplets, the range of any

constituent CF can span the full concentration range between

0% and 100% of a droplet volume. This process, however, is

cost-prohibitive, especially with the exponential growth in the

number of parameters. Hence, a barrier facing PSE is the need
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Fig. 1: Study of a 3-parameter biocircuit [2]: (a) schematic of the
biocircuit; (b) a gene-expression regulatory network representation of
the biocircuit; (c) CF space associated with the biocircuit (reduced to
a 2-D space); (d) CF profiles of three mixtures used for PSE.
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for a systematic methodology that enables dense scanning of

the CF space. Recently, a framework based on a flow-based

biochip supported with dynamic control of reagent-flow rates

has enabled PSE for the circuit of Fig. 1(a) [2]. Despite the

novelty of this design, it suffers from the following drawbacks:

(1) Scalability Limitation: The flow-based solution performs

passive mixing, which relies only on molecular diffusion of

fluids without any external energy. Therefore, passive mixing

in flow-based systems is prohibitively slow.

(2) Manual Configuration: The above design utilizes sinu-

soidal flow rates of reagents with pre-computed function periods

to scan a large volume of the CF space. As the number of

reagents is varied, a new set of sinusoidal functions must be

computed; such a process can be a significant challenge when

a large number of reagents is involved.

(3) Abandoned CF Subspace: A fixed droplet volume cannot

be maintained unless an input flow of distilled water (DW) is

introduced. Note that the flow-rate of DW is computed based

on the other sinusoidal functions. This technique allows all

mixtures to have equal volume; however, they contain large

amounts of DW and therefore this approach causes a large

CF subspace to be abandoned. For example, by applying the

above technique to a 3-CF setting, the value of each CF can

vary only between 0% and 33% (i.e., 100%/3); see Fig. 1(c).

To overcome the above limitations, we need a PSE microflu-

idic framework that offers reconfigurable mixing and droplet-

actuation capabilities, thus enabling flexible composition of

biochemical reagents. This requirement can be met using a

digital microfluidic biochip (DMFB), which allows the manip-

ulation of nanoliter droplets using an array of electrodes [3].

We consider a specific DMFB architecture referred to as the

micro-electrode-dot-array (MEDA), which can support mixing

of reagents with considerably higher resolution [4].

In this paper, we introduce the first optimization flow,

called BioScan, for PSE in synthetic biology based on MEDA

biochips. The key contributions of this paper are as follows:

• BioScan uses a statistical sampling method that scans the

CF space and generates a representative collection of CF

profiles. The proposed method is scalable in terms of the

number of mixtures and space dimensionality, and it ensures

that the selected CF profiles fill the entire space.

• We present a synthesis method based on integer linear

programming (ILP) that maps the generated CF profiles

to a BRS assay on MEDA.

II. PRELIMINARIES

A. MEDA Microfluidic Biochips

Digital microfluidics has shown exceptional promise for

synthetic biology experiments, including DNA assembly, trans-

formation, culturing, and biocircuits [5]. Advantages of DMFBs

are further extended by MEDA, which consists of an array of

identical basic microfluidic units called microelectrode cells

(MCs); see Fig. 2(a-b) [4]. Each MC consists of a microelec-

trode and a control/sensing circuit. Using this configuration,

MEDA biochips can employ the concept of a sea-of-micro-

electrodes, where microelectrodes can be dynamically grouped

Droplet

(a)

(b)

Droplet

(a)

(b) (c)

Top plate

Dielectric layer

Hydrophobic layer

Microelectrode cell

Ground electrode

Actuated microelectrode

15 nL

22 nL

37 nL

Fig. 2: Droplet actuation in MEDA biochip: (a) side view; (c) top
view; (c) MEDA-enabled (m,n) mixing model.

to form a single micro-component (e.g., mixer or diluter) that

can perform on-chip biochemical operations.

By using a conventional DMFB, a mixture that comprises

several reagents can be systematically prepared using a se-

quence of (1 : 1) mix-and-split operations only. In this (1 : 1)

model, an intermediate droplet is generated by mixing two

reagent droplets of equal volume, and a large droplet can be

split only into two small droplets of equal volume. Clearly, this

model has limitations, especially if the constituent CFs need to

have different values. MEDA, on the other hand, utilizes the

dynamic grouping of microelectrodes to extend the above model

to a general (m : n) mixing-splitting model [6]; thus enabling

droplets with different volumes to be mixed or split with high

resolution. As shown in Fig. 2(c), MEDA enables two reagent

droplets of volume 15 and 22 nL to be mixed to generate a 37
nL mixture with CFs 40% and 60%, respectively. We exploit

such a powerful mixing-splitting model to generate mixtures

with a variety of CF profiles used for PSE in biocircuits.

B. Prior Synthesis Techniques

Advances in genomic analysis and sample preparation on

DMFBs have motivated a number of design automation tools

in this domain. Although these methods help in bridging the

gap between microfluidics and genomics, they are not adequate

for handling PSE in synthetic biology [5].

Early research on sample preparation focused on optimizing

the dilution process for a single sample with the goal of

minimizing reactant-cost, the number of mixing steps, or

waste droplets [7]. In [6], the process of sample dilution

has been optimized using the (m : n) mixing model offered

by MEDA. However, these methods are not capable of

handling mixtures that contain three or more reagents. To

support dilution gradients in quantitative analysis, multi-target

sample-preparation techniques have been introduced [8]. These

techniques generate droplets that contain mixtures of only two

fluids: sample and buffer. However, these methods are limited

to (1 : 1) mixing and they cannot support the preparation of

multiple mixtures that constitute a large number of reagents.

For producing a desired multi-reagent mixture, synthesis

methods have been developed to generate a bottom-up mixing

tree that encodes the successive composition of reagent

volumetric ratios [9]. These methods can be easily adapted to
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our space-exploration problem by running multiple iterations

of the algorithm; every iteration specifies the mixing of an

individual mixture. This approach, however, may lead to a

significant increase in the amount of waste droplets and in the

protocol completion time.

To make DMFBs useful for dense PSE in synthetic biology,

we need a new top-down optimization flow that allows concur-

rent production of several mixtures with maximum precision,

especially in the presence of reagent-usage constraints. Next,

we present two enabling components of our proposed flow

(BioScan): sampling of the CF space (Section III), and ILP-

based synthesis (Section IV). Studies of other components are

left for future work.

III. SAMPLING OF CONCENTRATION FACTOR SPACE

A. Stratified Sampling: Latin Hypercubes

Consider a continuous space X ⊂ [0, 1)r constructed

using input variables Rx = {R(x,1), R(x,2), ..., R(x,r)} ∈ X .

We seek a sampling technique that selects an ensemble

of n samples x = {x1, x2, ..., xn} ⊂ X , where xi =
{x(i,1), x(i,2), ..., x(i,r)}|x(i,j) ∈ R(x,j), such that it provides

enhanced space-filling properties, i.e., it must ensure that all

the space regions are roughly evenly sampled. Theoretically,

space-filling criterion can be assessed using the Euclidean

maximin (Em) distance, which is defined to be the smallest

distance between a pair of points in the sampling space [10].

Let d = [d(1,2) d(1,3) ... d(n−1,n)], where d(i,k) is computed

as follows:

d(i,k) =
√

(x(i,1) − x(k,1))2 + ...+ (x(i,r) − x(k,r))2; i < k

The Em distance is the smallest d(i,k) ∈ d. A larger value of

Em indicates that the distance between the closest points is

big, indicating a better space-filling property.

It is known that pseudo-random sampling methods such as

Monte Carlo sampling may result in poor space filling [11]. We

overcome this limitation by using a classical stratified sampling

technique known as Latin Hypercube sampling (LHS) [10],

which divides the range of each input variable R(x,j) ∈ Rx into

n equally probable strata and samples once from each stratum.

For each R(x,j) ∈ Rx, the n sampled input values are assigned

at random to the n strata, with all n! possible permutations

being equally likely. This process is applied independently to

each variable R(x,j). LHS can be further enhanced by dividing

the sampling space into l equally probable subdivisions, and

each subdivision is sampled with the same density; such

an enhancement is known as Orthogonal Array-based Latin

Hypercube sampling (OA-LHS) [10]. Fig. 3 compares these

methods using n = 9 samples in a 2-D (r = 2) space.

According to the above definition, the range of R(x,j) is

defined as R(x,j) ∈ [0, 1), and no other constraints are applied

to the coordinates x(i,j) ∈ R(x,j) of the n samples. However,

to apply OA-LHS to the CF space to generate a set of n
CF profiles {M1,M2, ...,Mn}, we must ensure that the sum

of CFs in any CF profile (mixture) must equal 1. In other

words, for any mixture Mi, the following condition must

be satisfied:
∑r

j=1 x(i,j) = 1. Such a requirement cannot be

(a) (b) (c)

Vertical stratum Horizontal stratum Subdivision 1

Subdivision 8x1x1 x1

x2

Unsampled

Fig. 3: Sampling 9 points in a 2-D space using: (a) random sampling,
(b) LHS, (c) OA-LHS (l = 9).

fulfilled through direct application of OA-LHS to the CF space.

We explain how to overcome this limitation in Section III-B.

B. Mapping to CF Space

Consider a continuous space Y ⊂ [0, 1)r constructed using

input variables Ry = {R(y,1), R(y,2), ..., R(y,r)} ∈ Y . A point

y in the space Y is defined as y = {y1, y2, ..., yn} ⊂ Y , where

yi = {y(i,1), y(i,2), ..., y(i,r)}|y(i,j) ∈ R(y,j), and it must satisfy

the following condition
∑r

j=1 y(i,j) = 1; ∀i ∈ {1, ..., n}. The

space Y can be graphically represented using a simplex that is

formed using a barycentric coordinate system [12]. Fig. 4(a)

depicts the shapes of 1-simplex (2-D space) and 2-simplex

(3-D space).

To adapt OA-LHS to the “simplex” CF space, we seek

a mapping function fs that is defined as fs : X → Y .

A trivial implementation of the function fs is to uniformly

sample points in the space X using OA-LHS then re-scale the

points using the relation y(i,j) =
x(i,j)∑

r
j=1 x(i,j)

; this method is

referred to as scaling-based mapping . However, this approach

severely degrades space filling since it tampers with the

stratification property; see Fig. 4(b). We develop an alternative

implementation of fs that does not change the uniformity

of the sampling by using the Dirichlet distribution, which

is an exponential family distribution over a simplex, i.e.,

positive vectors that sum to one. Formally, if x(i,j) ∈ [0, 1) is

sampled using OA-LHS based on a uniform distribution, then

fs : x(i,j) → y(i,j) can be defined as

z(i,j) =
xα−1
(i,j)e

−x(i,j)

Γ(α)
=

xα−1
(i,j)e

−x(i,j)

(α− 1)!
; y(i,j) =

z(i,j)∑r
j=1 z(i,j)

Note that
∑r

j=1 y(i,j) = 1. A key property of this mapping,

referred to as Dirichlet-based mapping, is that it applies

an affine transformation that does not alter the space-filling

properties in the simplex space [12]; see Fig. 4(c).

IV. SYNTHESIS METHODOLOGY

BioScan is designed to be an iterative PSE flow that enables

composition of new mixtures on a MEDA biochip; new

iterations are executed if the accuracy of the constructed model

needs to be enhanced. A cost-effective design can generate the

new mixtures not only using reagents stored on chip, but also

by exploiting mixtures generated during previous iterations.

Target Mixtures: At any iteration of the flow, BioScan aims

to compute the synthesis solution associated with n new target

mixtures {M t
1,M

t
2, ...,M

t
n}. The CF profile of a mixture M t

i

is defined as the set {ct(i,1), ..., ct(i,r)} = {y(i,1), ..., y(i,r)}; the

values y(i,j) are obtained from the sampling step (Section III).
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Fig. 4: Mapping OA-LHS-sampled data to simplex CF space: (a)
graphical representation of 1-simplex and 2-simplex; (b) scaling-
based mapping leads to poor space filling; (c) Dirichlet-based mapping
(α = 3) preserves enhanced space filling.

Also, each M t
i is characterized with a “reference” volume V t

i

that the synthesis framework aims to produce. Note that a

potential solution for reducing reagent usage during mixture

production is to reduce V t
i .

For simplicity (but without loss of generality), we con-

sider the same reference volume for all target mixtures, i.e.,

∀i : V t
i = V t, and we also assume that a droplet volume is

represented as a natural number that is multiple of the droplet

volume on a single microelectrode. We refer to this measure

of volume as a microelectrode (MC) unit.

Source Mixtures and Reagents: To generate target mixtures,

a number of m source mixtures {Ms
1 ,M

s
2 , ...,Ms

m}, generated

in a previous iteration, are used along with r reagent fluids

{G1, G2, ..., Gr}—recall that r is also equal to the number of

CF-space dimensions. The CF profile of a source mixture Ms
k

is defined as the set {cs(k,1), ..., cs(k,r)}. Also, the CF profile

of a reagent fluid Gj is defined as the set {cg(j,1), ..., c
g

(j,r)};

where cg(j,a) = 1 only if j = a, and cg(j,a) = 0 otherwise.

Aliquots: MEDA biochips enable the aliquoting of a source

mixture Ms
k of volume V s

k or a reagent fluid Gj of volume

V g
j into smaller droplets that can vary in volume. Hence,

an aliquot of volume τ(i,k) ≤ V s
k from a source mixture

Ms
k contributes to the generation of a target mixture M t

i .

Similarly, an aliquot of volume θ(i,j) ≤ V g
j from a reagent Gj

contributes to the generation of the same mixture M t
i . Note that

the lower bounds on τ(i,k) and θ(i,j), denoted by V s
k.min and

V g
j.min, respectively, are controlled by the aliquoting constraints

imposed by MEDA [13].

Degree of Concentration Accuracy: MEDA biochips dis-

cretize the CF space. We define parameter δ as the degree

of concentration accuracy, whereby any concentration ct(i,j)
can be expressed as Ct

(i,j) = 	ct(i,j)/ 1
δ

, where Ct

(i,j) is an

integer. Similarly, Cs
(i,j) = 	cs(i,j)/ 1

δ

. For example, if δ = 128,

a concentration of 64% is expressed as 	0.64/ 1
128
 = 82. We

use Ct
(i,j) or Cs

(k,j) to represent a CF in our synthesis flow.

Note that the largest number of target mixtures n̂ is

impacted by δ—by using stars-and-bars combinatorics, n̂ can be

computed as follows: n̂ =
(
δ−1
r−1

)
= (δ−1)!

(r−1)!(δ−r)! . For example,
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Fig. 5: Preparation of three target mixtures using aliquots from two
source mixtures and three reagent fluids (δ = 8).

with δ = 8 and r = 4, we find that n̂ = 35.

BioScan Imprecision: The first objective of BioScan is to

compute the values of τ(i,k) and θ(i,j) that enable the production

of target mixtures, considering the reference volume V t.

However, if V t is small, the search space of all feasible values

of τ(i,k) and θ(i,j) becomes limited. As a result, the “actual”

volume, denoted by V̂ t
i , that is computed by BioScan may

not be the same as V t. The value of V̂ t
i can be computed as

follows: V̂ t
i =

∑
k τ(i,k) +

∑
j θ(i,j). Intuitively, the variation

between V̂ t
i and V t also leads to a variation between the target

CF Ct
(i,j) and the “actual” CF, denoted by Ĉt

(i,j). The actual

CF is computed as follows: Ĉt
(i,j) = 	

∑
k
(Cs

(k,j)·τ(i,k))+δ·θ(i,j)

V̂ t
i


.

To assess the impact of the variation between V t and V̂ t
i ,

we introduce a metric named synthesis imprecision λ, where

λ =
∑
i,j

λ(i,j) =
1

δ

∑
i,j

∣∣∣Ĉt
(i,j) · V̂ t

i − Ct
(i,j) · V t

∣∣∣

=
1

δ

∑
i,j

∣∣∣
∑
k

(
(Cs

(k,j) · τ(i,k)) + δ · θ(i,j) − Ct
(i,j) · V t

)∣∣∣

Hence, our goal is to minimize λ while also minimizing∑
j θ(i,j) (reagent usage).

Fig. 5 shows an example that illustrates the working principle

of the synthesis method. In this example, three target mixtures

of volume 32 MC units are generated using aliquots from two

source mixtures of volume 16 MC units and three reagent fluids

of volume 30 MC units. Using MEDA, our synthesis method

first applies split or aliquot operations (to generate the aliquots)

followed by mixing operations (to produce the target mixtures).

Therefore, we present new types of operation models, namely

split-and-mix and aliquot-and-mix, that replace the classical

mix-and-split model in previous sample-preparation algorithms.

A. Problem Formulation

We describe the optimization problem as follows:

Inputs: (i) The number of target mixtures n and source

mixtures m. (ii) The number of reagents r. (iii) The degree of

accuracy δ. (iv) The source mixtures, each with concentration

factors (Cs
(k,1), C

s
(k,2), ..., C

s
(k,r)) and volume V s

k . (v) The

target mixtures, each with reference concentration factors

(Ct
(i,1), C

t
(i,2), ..., C

t
(i,r)) and volume V t. (vi) Total liquid
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volume V g
j of reagent Gj .

Output: (i) Volume of aliquots τ(i,k) and θ(i,j). (ii) Actual

CF profile {Ĉt
(i,1), ..., Ĉ

t
(i,r)} and actual volume V̂ t

i of every

target mixture M t
i . (iii) BRS assay.

Objectives: (i) Minimize reagent usage. (ii) Minimize synthesis

imprecision. (iii) Minimize the completion time of BRS.

To solve the above problem, we develop a two-stage synthesis

framework. The objectives of the first stage are to minimize

reagent usage and synthesis imprecision; the objective of the

second stage is to minimize the protocol completion time.

B. ILP-Based High-Level Synthesis

High-level synthesis can be optimally solved by mapping the

problem to an ILP model. The proposed model is developed

to co-optimize synthesis imprecision and reagent usage. The

model is described below.
∀i ∈ {1, ..., n}; j ∈ {1, ..., r}; k ∈ {1, ...,m}
minimize

β

f∗
·
∑
i,j

θ(i,j) +
1− β

g∗
·
∑
i,j

λ(i,j) (1)

subject to:
V s
k.min < τ(i,k) ≤ V s

k ;
∑
i

τ(i,k) ≤ V s
k (2)

V g
j.min < θ(i,j) ≤ V g

j ;
∑
i

θ(i,j) ≤ V g
j (3)

∑
k

τ(i,k) +
∑
j

θ(i,j) − V t ≥ 0 (4)

λ(i,j) =
∑
k

(Cs
(k,j) · τ(i,k)) + δ · θ(i,j) − Ct

(i,j) · V t ≥ 0 (5)

In (1), we describe the multi-objective function, which aims

to minimize reagent usage (by minimizing
∑

i,j θ(i,j)) and syn-

thesis imprecision (by minimizing
∑

i,j λ(i,j)) simultaneously.

The two objectives are contradicting, thus proper modeling

of the problem requires the two objectives to be normalized.

For this purpose, we first optimize each objective individually,

then divide the related objective term by the corresponding

optimum value [14]. The parameters f∗ and g∗ represent the

optimal values of the first and second objectives, respectively.

The parameter β ∈ [0, 1] is introduced to represent the

weights for the problem objectives. If β = 1, then the

objective is to minimize reagent usage regardless of the

synthesis imprecision. On the other hand, if β = 0, then

achieving the lowest imprecision becomes the only objective.

Inequalities (2)-(3) specify volume constraints related to the

aliquots. Inequality (2) (Inequality (3)) ensures that the volume

of any source aliquot τ(i,k) (reagent aliquot θ(i,j)) is bounded.

We also capture the variation between V t and V̂ t
i using

inequality (4) and the associated impact on the synthesis

imprecision using inequality (5).

It is obvious that the value of V t has a significant impact

on the reagent usage and synthesis imprecision; therefore, it

needs to be carefully selected. A small value of V t may lead

to reduction in the reagent usage, but it may also increase

synthesis imprecision. On the other hand, a large value of

V t may lower synthesis imprecision, but it may also increase

reagent usage, thus raising platform cost. In Algorithm 1, we

provide a solution to this challenge; We investigate the impact

of V t on the synthesis performance in Section V.

Algorithm 1 High-Level Synthesis

1: β ← Initialization(); Sol← ∅;
2: {V s

k.min, V
g
j.min} ← ComputeLowerBoundVolumes(V s

k , V
g
j );

3: for V t ∈ V do � V [1] < V [2]
4: {τ(i,k), θ(i,j), λ(i,j)} ← SolveILP(V t, β, V s

k.min, V
g
j.min);

5: if
∑

i,j
θ(i,j) > Tθ OR

∑
i,j

λ(i,j) > Tλ then break;
6: else Sol← Sol ∪ {τ(i,k), θ(i,j), λ(i,j)};

7: BestSol← SelectLowestImprecision(Sol); return BestSol;

C. Physical-Level Synthesis

The objective of physical-level synthesis is to map the high-

level synthesis solution to a sequence of microfluidic operations

that implements a BRS assay with the lowest completion time.

The droplet-aliquot operation is a key enabler of fine-grained

mixture production [13].

Hence, a BRS assay consists of a sequence of MEDA-enabled

operations (mixing, splitting, and droplet aliquoting), which

can be modeled as a directed acyclic graph B = (A,U),
named a composition graph. A vertex ai ∈ A represents a

MEDA-enabled operation, which can be one of four types: (1)

mixing; (2) splitting; (3) aliquoting. Each operation type Δ
is associated with a cost value ρ(Δ), where ρ(aliquoting) >
ρ(mixing) > ρ(splitting)—mixing and splitting are easier and

quicker in execution compared to aliquoting. Also, an edge

uk = {(ai, aj), wk} ∈ U models the interdependency between

a pair of operations ai and aj , and uk is associated with a

parameter wk that captures the droplet volume resulting from

ai and used by aj . The efficient generation of a composition

graph is left for future work.

V. SIMULATION RESULTS

We implemented BioScan using C++. We solved the ILP

model using lpsolve, which was integrated in our C++ environ-

ment. We assess two aspects of the proposed flow: (1) space

filling of the CF profiles, evaluated based on the Em metric;

(2) performance of the synthesis method, evaluated in terms of

the synthesis imprecision λ and the average reagent volume

consumed by a target mixture (θ =
∑

i,j
θ(i,j)

n
).

A. Analysis of CF Sampling

Recall that the sampling of the CF space is accomplished in

two steps: regular sampling within the interval [0, 1] followed

by mapping of samples to the simplex CF space. Therefore,

we evaluate the space filling of the CF profiles based on

these two steps; we compare four sampling approaches: (1)

OA-LHS (stratified sampling) followed by Dirichlet-based

mapping where α = 3; (2) OA-LHS followed by Dirichlet-

based mapping where α = 20; (3) OA-LHS followed by

scaling-based mapping; (4) uniform sampling followed by

scaling-based mapping. The number of CFs, i.e., reagents r,

is set to 8, and the number of sampling trials in each case

is 1000. Results based on other values of r also lead to the

same conclusion, showing that our methodology is scalable

with r—results were not reported here due to lack of space.

Fig. 6(a) compares the above sampling approaches using

Em as a metric while varying the number of targeted samples

n. We observe that scaling-based mapping degrades the

space-filling property, i.e., reduces Em, regardless of which
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Fig. 6: Assessment of BioScan: (a) Impact of sampling and mapping techniques on the space filling. (b) Impact of β and V t on the synthesis
performance. (c) The trade-off between λ and θ.

sampling method is utilized. This is expected since scaling-

based mapping tamper with the stratification property. We

also observe that space filling can be severely degraded if the

Dirichlet-based mapping is not properly tuned. As shown in

Fig. 6(a), Dirichlet-based mapping with α = 20 leads to the

lowest Em. Large values of α cause the generated samples to

be highly concentrated instead of being uniformly distributed.

In the following evaluations, we use OA-LHS with Dirichlet-

based mapping where α = 3.

B. Impact of β and V t

We next evaluate the impact of β and V t on the performance

of the high-level synthesis using the example in Fig. 5. For this

purpose, we compare four sets of synthesis solutions associated

with V t = {8, 16, 24, 32}; comparison is performed in terms

of the synthesis imprecision λ. In each set, we compute 11

synthesis solutions by varying the value of β from 0 to 1 using

0.1 as the increment between two subsequent values.

Based on Fig. 6(b), we observe that increasing the value of

V t from 8 to 32 gradually lowers the synthesis imprecision.

This result corroborates our argument that using a small value

of V t may limit the search space of all feasible aliquots, thus

increasing synthesis imprecision (Section IV). We also note that

the impact of β becomes less significant when V t is increased.

C. Synthesis Imprecision vs. Reagent Usage

We next investigate the trade-off between synthesis impre-

cision and reagent usage. For this study, we consider a more

complex setting where the number of reagents r is 6 and the

degree of accuracy δ is 128. The number of source mixtures m
is 10 and the number of target mixtures n is 20. We compute

the optimal values of λ and θ while varying the target volume

V t = {8, 9, 10, ..., 1000} and β = {0, 0.1, ..., 1} in the second

iteration. We then sort these results based on θ and plot the

values of λ against the associated values of θ to perform the

trade-off analysis.

Fig. 6(c) shows the trade-off curve and the associated feasible

region obtained using the above steps. A first observation is that

the lowest values of λ, denoted by λ∗, is 28.3; this indicates

that the problem setting described above is complex enough

that the optimal synthesis solution cannot reach zero synthesis

imprecision. Reducing the problem complexity (by minimizing

n, m, and r) can result in λ = 0. We also observe that

increasing the amount of reagents beyond θ(λ∗) causes increase

in the synthesis imprecision λ. This counter-intuitive result is

observed when V t becomes significantly large, and even though

Ĉt
(i,j) ≈ Ct

(i,j); ∀i, j. The reason for such a finding is that when

V t is increased, a large volume difference
∑

i(V̂
t
i ) − nV t

outweighs the impact of Ĉt
(i,j) ≈ Ct

(i,j). This observation is

confirmed by computing λ∑
i
(V̂ t

i
)−nV t

instead of λ. We use λ

to analyze the performance because this allows us to determine

the global minimum λ∗ and the associated θ(λ∗).

VI. CONCLUSION

We have introduced an optimization framework for PSE in

synthetic biology. We formulated the PSE problem in terms

of a BRS assay that is implemented on a MEDA biochip.

The proposed framework uses statistical sampling to select

reagent mixtures and ILP-based synthesis to generate the

reagent mixtures using a BRS assay. Simulation results have

shown the effectiveness of BioScan in implementing BRS while

minimizing reagent usage and synthesis imprecision.
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