

The Case for Enzymatic Competitive Metal Affinity Methods

2 David J. Reilley, Matthew R. Hennefarth, and Anastassia N. Alexandrova*

Cite This: <https://dx.doi.org/10.1021/acscatal.9b04831>

Read Online

ACCESS |

 Metrics & More

 Article Recommendations

3 **W**e often want to know which metal will bind to a protein
 4 most readily, which metal or metals actually bind *in*
 5 *vivo*, and which one will be the best at enzymatic catalysis. It is
 6 not guaranteed that a single metal could satisfy all of the above
 7 for a given natural metalloenzyme. For artificial metal-
 8 loenzymes (ArMs), we also want to know if the protein can
 9 bind to the desired metal and if the metal would then function
 10 as a catalyst with the desired activity and selectivity. Hence,
 11 being able to compute the metal binding affinities to proteins is
 12 desirable in the studies of enzymatic catalysis and enzyme
 13 design. Unfortunately, this goal is nontrivial. Efforts toward
 14 solving this problem are the focus of this article.

15 The first step to determine metal affinity is to identify the
 16 metal binding site, yet as this is already firmly established for
 17 the functional metals of many interesting systems, we will not
 18 extensively cover it here. Other papers discuss the develop-
 19 ment of computational tools to address this particular problem
 20 for unstudied, poorly resolved, or less accessible biomolecules.
 21 While some of these methods can start from a sequence,^{1,2} all
 22 eventually require some sort of structure to identify possible
 23 binding sites.^{3–5} With this constraint, X-ray crystallography
 24 remains the most reliable and broadly applicable approach for
 25 proteins, even if costly. As with protein folds in general, crystal
 26 structures gathered over the last 50 years provide the most
 27 likely binding site for a broad range of proteins. As many
 28 natural metalloenzymes bind their strongly held metals
 29 alongside specifically tailored cofactors, substrates, and
 30 scaffolds, the likelihood of other significant binding sites is
 31 frequently minimal. However, static structures determined for
 32 a predominant metal do not answer all questions of metal
 33 affinity and function.

34 The questions of which metal is used in a natural enzyme
 35 and which metal we want to employ in an artificial enzyme are
 36 not easily answerable because different forces drive the
 37 evolution of enzymes in nature and the priorities of man-
 38 made catalysts. Instead of maximizing enzyme activity, biology
 39 caps it to maintain the complex equilibria of homeostasis.
 40 Biology prioritizes the bioavailability of the starting materials
 41 and fold stability but also ensures that enzymes can be readily
 42 destroyed when needed. These constraints also apply to the
 43 way in which metals are selected for natural metalloenzymes.^{6,7}
 44 Furthermore, the catalytically relevant metals for many
 45 metalloproteins are not truly known. Many enzymes are
 46 assumed to be Zn(II) dependent on the basis of the X-ray
 47 crystal structures, but this can be an artifact of experimental
 48 conditions.⁸ Follow-up studies on systems such as histone
 49 deacetylase^{9,10} carbonic anhydrase,⁸ S-ribosylhomocysteine

50 nase,¹¹ and peptide deformylase¹² show that sometimes
 51 other metals can bind and report significant activity. In some
 52 cases, the metal reported by crystallography is not even a
 53 particularly significant contributor to the protein's function.⁵⁴
 54 Without considering the binding affinity of different metals, *in*
 55 *vitro* and computational studies of metalloproteins could be
 56 based on a false or incomplete picture of metal preferences.⁵⁷

57 A major goal in the design of artificial metalloenzymes is
 58 maximal catalytic performance, with less emphasis on stability
 59 in their simpler *in vitro* environment of operation. Previous
 60 efforts already found that, while proteins provide powerful
 61 platforms for new catalysts, the reactions they can perform, and
 62 sometimes their catalytic rates, have hard limitations.^{13,14}⁶³
 63 Recently, directed evolution has become an indispensable tool
 64 to develop new ArMs or refine existing ones.^{15–19}⁶⁵ However,
 65 directed evolution is constrained by the roles for which a given
 66 protein scaffold has evolved.^{13,14,20}⁶⁷ While there is promiscuity
 67 of function in many proteins, some reactions are simply out of
 68 reach of conventional methodologies. Metals that are not
 69 natively bioavailable can expand the space of accessible
 70 reactions. For example, recent efforts show that noble metals
 71 can expand the repertoire of porphyrin-dependent enzymes.²¹⁷²
 72 However, nonphysiological metals must bind sufficiently
 73 strongly to their protein scaffolds, whose amino acids did not
 74 originally evolve to ligate nonphysiological metals. Thus, the
 75 determination of metal affinity is required. Additionally, as we
 76 will show shortly, the affinity of the metal to the protein (e.g.,
 77 the stability gain upon metal binding) and the catalytic activity
 78 may follow a nontrivial and nonlinear mutual dependence via
 79 the Brønsted–Evans–Polanyi (BEP) relation.⁸⁰

81 Lastly, metal–protein affinity is of broader interest than
 82 biocatalysis. It is relevant to metal transport about the body,
 83 particularly the activity of metal chaperones, which unlike
 84 many proteins, bind metals in a highly selective manner and in
 85 specific environments.^{22–25}⁸⁶ Chaperones help maintain the
 87 distinct metal concentrations in different organ systems,
 88 tissues, and even different subcellular organelles within
 89 cells.²⁶⁸⁷ Tracking the metal affinity of these proteins in different
 88 contexts is important for metal toxicology. A large number of
 89 transition and heavy metals are now bioavailable with their use
 90 in modern industries, including industrial catalysis. Some
 91

Received: November 7, 2019

Published: January 17, 2020

92 metals, such as Cd(II), Hg(II), As(III), and Pb(II), are highly
93 toxic and lead to nonspecific syndromes.^{27,28} The extent of
94 cytotoxicity of other metals, such as Al(III), Ti(IV), and
95 Ga(III), is unclear but demands an investigation as they are
96 introduced into the body both from the environment and for
97 medical purposes.^{29–33} Metal binding may even play a role in
98 neurodegenerative diseases, hypothetically facilitating the
99 protein–protein aggregation and fibril formation.³⁴ Ultimately,
100 it is of high interest to know the metal–protein affinity and
101 have ways to calculate it.

102 ■ EXISTING METHODS AND THEIR LIMITATIONS

103 Dedicated computational tools to investigate protein–metal
104 binding, which we will refer to as competitive metal affinity
105 (CMA) methods, are hard to come by. The ideal CMA would
106 incorporate an accurate energy evaluation and significant
107 dynamical sampling to capture configurational entropy in order
108 to fully describe the thermodynamics of metal binding. Clearly,
109 the expense of the accurate energy calculations severely limits
110 the amount of sampling that can be afforded. While there are
111 many methods to study metalloprotein behavior in general, not
112 all are suited to form the basis of a CMA method.

113 Classical force field based methods can be parametrized to
114 model some metalloenzyme structures but are typically
115 insufficient to obtain thermodynamic values. Force field
116 parameters for metals are based on a point charge
117 supplemented with various harmonic terms and operate on
118 the basis of a fixed metal coordination (e.g., octahedral,
119 tetrahedral) that cannot change significantly as a function of
120 protein dynamics. These potentials can contain bonding and
121 nonbonding interactions but are generally fitted to capture the
122 structure (within limits) rather than energy.^{35–38} In this
123 respect, they can be fairly successful for systems containing
124 closed shell metals with ideal geometries (Zn(II), Mg(II),
125 Mn(II), Cd(II)), remaining stable over long molecular
126 dynamics (MD) simulations and providing some thermody-
127 namic data.^{39–41} However, even the most successful
128 applications of these methods do not obtain reliable energies
129 for catalytic studies.

130 Electronic structure calculations are necessary to obtain
131 accurate metal binding energies. One possible approach is to
132 use a small cluster model of the active site and treat it quantum
133 mechanically. However, this approach ignores the entropy of
134 the protein scaffold and the impact of the protein dynamics on
135 the energy and entropy of the active site. The only portion of
136 the entropy in the free energy of the active site that this
137 approach captures is the vibrational entropy, typically
138 calculated within the harmonic approximation and subject to
139 the constraints imposed by the rest of the protein structure.
140 While cluster models are useful for catalytic mechanism
141 mapping^{42,43} and as such can play a role in artificial
142 metalloenzyme design,^{44–46} these applications rely on the
143 cancellation of errors when protein entropy is ignored
144 equivalently throughout the reaction profile. On the other
145 hand, many metal exchange phenomena are inaccessible to the
146 approach, as enzymes frequently undergo some amount of
147 restructuring when a new metal binds.

148 A more promising avenue to obtain metal binding free
149 energies based on electronic structure calculations are mixed
150 QM/MM simulations. This class of methods combines a
151 quantum mechanical description of the metal center and its
152 surrounding environment and molecular mechanical modeling
153 of the rest of the protein (Figure 1). Statistical mechanical

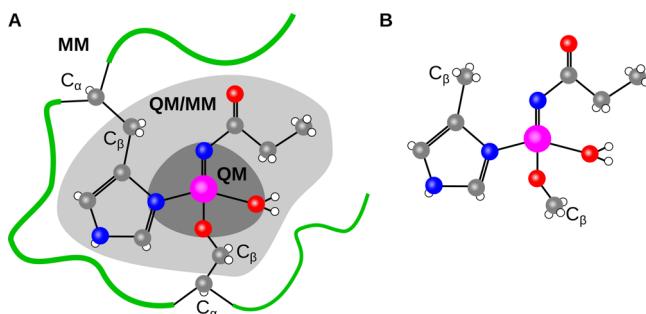


Figure 1. Diagrams demonstrating the active space of (A) QM/MM and (B) small cluster methods. QM/MM models the entire protein with QM for the active site (the dark and light gray regions) and MM for the rest of the protein (the white region). In some forms of QM/MM, such as QM/DMD, there is an overlapping region treated with both QM and MM (in light gray) and MM modeling is only excluded from a small central region (in the case of this diagram, the metal and its first coordination sphere in dark gray). Small cluster methods, in contrast, only model the QM region.

sampling of the protein becomes possible within QM/MM, and there has been intensive research into the development of these methods over the last two decades.^{47–49} Sufficient sampling is still a problem, however, for most established QM/MM methods. Our group developed the QM/DMD method,⁵⁰ which combines DFT with discrete molecular dynamics (DMD)⁵¹ for enhanced sampling. DMD is based on simplified square-well potentials, ballistic equations of motion, and slight coarse graining, which permit extensive conformational sampling of the full protein. QM/DMD divides the protein into three regions: a QM only region comprising the metal center(s) and ligating atoms, a DMD only region comprising the bulk of the protein, and a region treated with both QM and DMD made up of the rest of the active site (normally composed of 50 to 200 atoms). The overlapping region modeled with both theories allows the geometric and energetic information to pass between QM and DMD calculations. Typically, one step of a QM/DMD simulation involves 10 000 DMD steps followed by a loosely converged DFT geometry optimization. We have used QM/DMD to successfully study many aspects of metalloprotein behavior, including the effect of mutagenesis on structure and function,^{50,53,53} metal-dependent catalytic activity,^{10,54–56} redox functionality,^{50,57} and recently, metal affinity.^{10,58} Because of the sampling efficiency and capability of dynamically changing the metal coordination sphere, QM/DMD is suitable for building a CMA technology.

The exact form of the necessary free energy terms is another major complication in the CMA evaluation. One would think that metal affinities could be calculated from some combination of the free energies of the bound metalloprotein, the apoprotein, and the solvated metal ion. This is the approach of standard tools for free energy calculation in QM/MM biomolecular simulations^{59,60} including adaptations of thermodynamic integration (TI)⁶¹ and free energy perturbation (FEP).⁶² These methods cannot be simply applied to metal binding processes. First, while it would be attractive for metal swapping, there is no accurate way to perform an alchemical transformation directly from one metal to another owing to their distinct electronic structures. Barring this, to obtain metal affinities, these methods would need to model the process of metal binding from solution to protein. However,

196 the accuracy of the free energies for these states will depend on
 197 the precision of evaluating the entropy change upon binding,
 198 which requires complete sampling of the conformational space
 199 of the protein both with and without the metal. Such full
 200 equilibration is practically impossible.⁶³ Additionally, evalua-
 201 tions of the free energy of the solvated metal ion require
 202 expensive and laborious quantum mechanical treatment,
 203 explicit solvent, and sufficient sampling of solvent config-
 204 urations (on the order of 10^6). As metals are charged, ionic
 205 species, obtaining accurate, equilibrated results is more difficult
 206 than for the organic molecules to which TI and FEP are
 207 applied. Furthermore, this charged nature means that metal ion
 208 free energies cannot be directly obtained by the experiment
 209 either.^{64–66} In what follows, we describe our CMA method
 210 that avoids all complications described in this paragraph. We
 211 will discuss several diverse applications of the method and its
 212 current limitations and propose further directions to improve
 213 upon it. To the best of our knowledge, this technique is
 214 unprecedented.

215 ■ THERMODYNAMIC CMA METHOD

216 Our method calculates the relative metal binding free energy,
 217 $\Delta\Delta G$, with respect to one metal chosen as a reference. For
 218 many applications, relative free energies are sufficient as at least
 219 one metal is already known to bind. The approach combines
 220 QM/DMD sampling with a semiempirical thermodynamic
 221 cycle that avoids ill-defined terms. First, we employ QM/DMD
 222 simulations run to convergence (on the order of 20–100 steps
 223 per replicate, which is approximately 10–50 ns of sampling
 224 within DMD) of the protein with each considered metal. In
 225 the second step, we determine the lowest energy QM region
 226 for each metal with optimization of the low-lying structures to
 227 tighter convergence and calculate its Gibbs free energy using
 228 the harmonic approximation. This approach concentrates on
 229 swiftly calculating a limited, but accurate, free energy term for
 230 the region about the metal rather than pursuing an arduous
 231 and insufficiently accurate full protein free energy. Finally, we
 232 use these free energies in a thermodynamic cycle shown in
 233 Figure 2. The cycle consists of the metal ions going into the
 234 protein from a complex with a chelating agent (typically
 235 EDTA, which we exclusively used in all systems described in
 236 this article) rather than directly from solution. Hence, instead

of using a dubious, calculated value for the free energy of a ²³⁷ metal in solution, this cycle uses computationally tractable ²³⁸ metal–chelator complexes. The free energies of metal ²³⁹ complexation from solution to the chelator are readily available ²⁴⁰ from the experiment. The final step of the cycle cancels the ²⁴¹ chelator terms through the computed free energies of metal ²⁴² exchange in the protein (from QM/DMD) and in the chelator ²⁴³ complex (from *ab initio* or DFT calculations and harmonic ²⁴⁴ vibrational entropies). Closing the thermodynamic cycle yields ²⁴⁵ the $\Delta\Delta G$ of one metal, M_a , binding to the protein relative to ²⁴⁶ the other metal, M_b . This means that, when comparing the ²⁴⁷ results of this method to the experiment, only the trend can be ²⁴⁸ reproduced, not the absolute free energies of metal binding. ²⁴⁹

250 ■ METHOD BENCHMARK

251 We have successfully applied the described CMA method to a ²⁵¹ series of problems of catalytic and biological relevance. To ²⁵² illustrate the method's performance and accuracy, we now ²⁵³ describe several diverse examples, each with principally ²⁵⁴ different biological functionality and chemistry. We consider ²⁵⁵ a mononuclear oxidase, a mononuclear metal-dependent ²⁵⁶ hydrolase, and a metal transporter protein. ²⁵⁷

258 Acireductone dioxygenase (ARD) can tightly bind different ²⁵⁸ metals and performs different reactions depending on which ²⁵⁹ metal binds. The protein is involved in the methionine salvage ²⁶⁰ pathway and acts on the substrate 1,2-dihydroxy-3-keto-5-²⁶¹ (methylthio)pentene, oxidizing it to two possible sets of ²⁶² products.^{67,68} ARD bound with Ni(II) catalyzes the formation ²⁶³ of methylthiopropionate, while ARD bound with Fe(II) ²⁶⁴ catalyzes the formation of 2-keto-4-methylthiobutyric acid, a ²⁶⁵ precursor of methionine (Figure 3).⁶⁹ The bound metal does ²⁶⁶ not change the structure of the protein or the way in which the ²⁶⁷ substrate binds to it, as we showed with QM/DMD. This ²⁶⁸ means that the properties of the metal itself dictate catalytic ²⁶⁹ selectivity. As such, ARD is the subject of many mechanistic ²⁷⁰ studies.^{55,70,71} We showed that the mechanistic bifurcation ²⁷¹ relies on the differences in charge transfer from the metal ²⁷² ligands, through the metal, and to the dioxygen bound to the ²⁷³ substrate. Experimental binding studies show that ARD has an ²⁷⁴ appreciable affinity for both Ni(II) and Fe(II).^{72,73} The ²⁷⁵ measured activity and metal binding affinities together ²⁷⁶ demonstrate that both ARD reactive pathways are meaningful. ²⁷⁷ The ARD's preference for the metal should then be context ²⁷⁸ dependent. Hence, the relative affinity of ARD to Fe(II) versus ²⁷⁹ Ni(II) in the absence of other environmental factors is of ²⁸⁰ interest. ²⁸¹

282 The application of our CMA method to the catalytic metals ²⁸² in ARD, including Co(II), is illustrated in Table 1. To calculate ²⁸³ the binding affinities of Fe(II), Ni(II), and Co(II) to ARD, we ²⁸⁴ started with QM/DMD trajectories from our previous ²⁸⁵ studies.⁵⁵ We selected the three lowest energy structures of ²⁸⁶ the QM regions for each metal variant of ARD. We tested all ²⁸⁷ feasible spin states of the metals with further geometry ²⁸⁸ optimizations on these systems, looking for the multiplicity ²⁸⁹ that minimizes the electronic energy. Our calculations showed ²⁹⁰ that the multiplicity of Fe(II) was a singlet or quintet ²⁹¹ (depending on the structure), Ni(II) was a triplet, and Co(II) ²⁹² was a doublet. For each multiplicity, we then performed ²⁹³ frequency calculations and selected the lowest free energy ²⁹⁴ among them. The calculations were done with Turbomole ²⁹⁵ (version 6.6).⁷⁴ The pure meta-GGA TPSS DFT functional⁷⁵ ²⁹⁶ with the D3 dispersion correction⁷⁶ was used. The metal was ²⁹⁷ treated with the triple- ζ basis set def2-TZVPP while all other ²⁹⁸

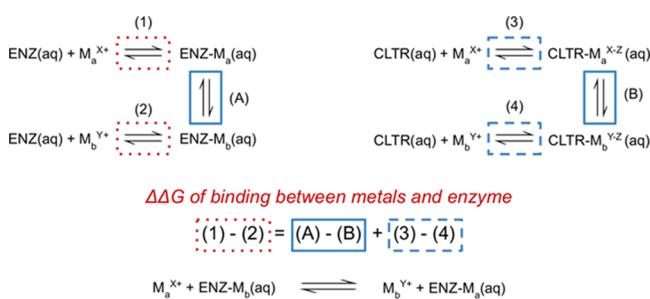
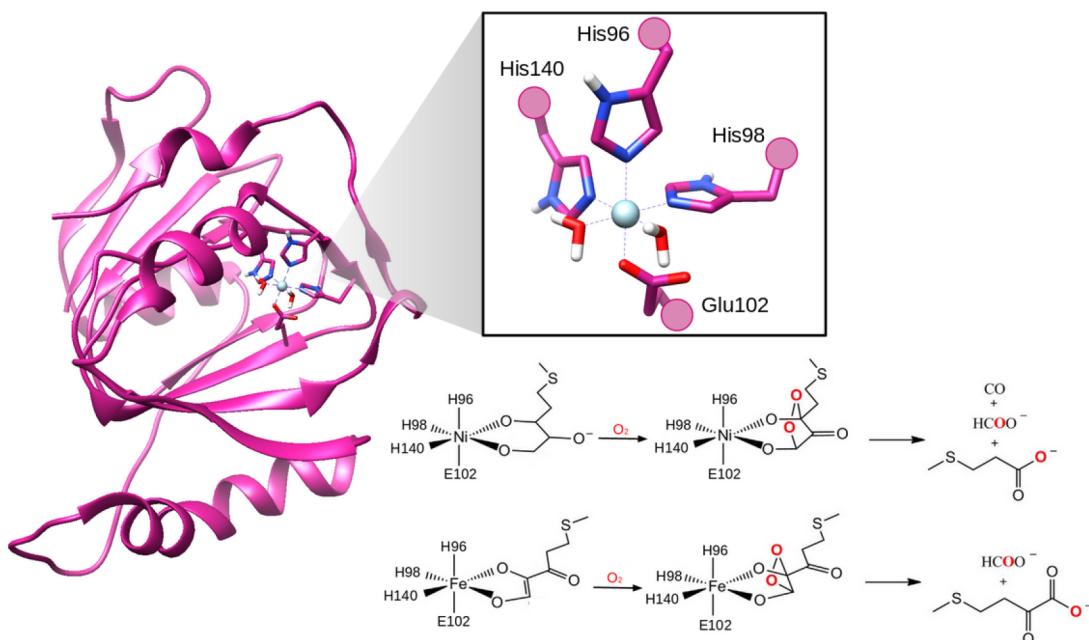



Figure 2. Thermodynamic cycles for the relative free energy of metal binding method. The left cycle of direct enzyme (ENZ) binding is intractable as the structure of the free metal ions in the solution is not defined (dashed red boxes). The right cycle uses experimentally available data for chelator (CLTR) binding to avoid this problem (dashed blue boxes). The sum of this cycle and the easily calculated transition from CLTR to the protein (solid blue boxes) gives the free energy of exchanging metals in the protein by canceling all the CLTR terms.

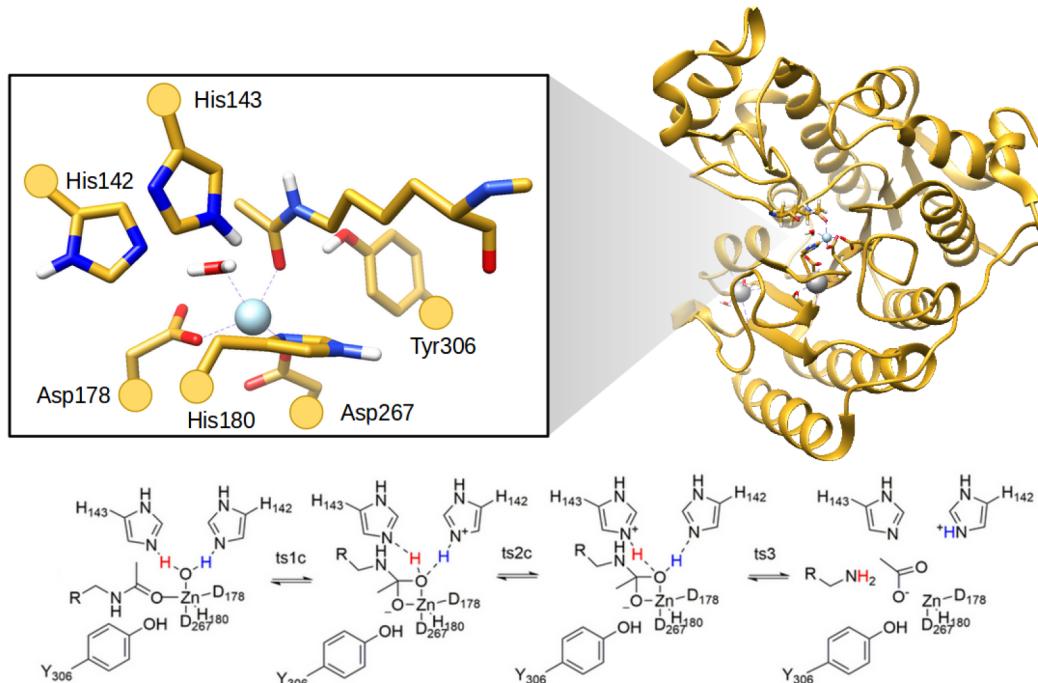

Figure 3. Structure of ARD (PDB ID: 1ZRR) and its active site and the mechanisms of the metal-dependent reactions the protein can perform. The Ni(II) and Fe(II) bound forms of ARD preferentially bind different substrates and therefore perform different reactions.

Table 1. Experimental (Dai and Chai) and Calculated Binding Affinities to ARD^a

	Fe(II)	Ni(II)	Co(II)
Dai (kcal/mol)	0.0	-1.23	-0.65
Chai (kcal/mol)	0.0	-0.28	N/A
calc. (kcal/mol)	0.0	-3.76	0.38

^aThe energies are relative to Fe(II), which correspondingly has a value of 0 kcal/mol. The experimental values here are based on Boltzmann weighted ratios of molar metal content.

atoms were treated with the double- ζ def2-SVP basis set. The conductor-like Screen Model (COSMO) with a constant dielectric of 20 was used to approximate the screening and solvation effects in the partially buried active site of the protein.⁷⁷ We selected this value on the basis of the precedent of our previous, successful simulations of partially exposed active sites (such as the other examples we cover in this article). These settings are consistent with the initial QM/DMD runs. The results correctly capture that the affinity of the

Figure 4. Structure of HDAC8 (PDB ID: 2V5W) and its active site with an example substrate and the most plausible mechanism of the deacetylation reaction it performs.

Table 2. Experimental k_{cat} and Calculated K_{rel} Values for HDAC8^a

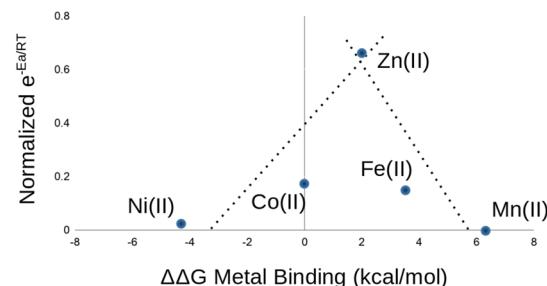
	Co(II)	Zn(II)	Fe(II)	Ni(II)	Mn(II)	Mg(II)
exp. k_{cat} (s ⁻¹)	1.2	0.90	0.48	N/A	N/A	N/A
calc. K_{rel}	7.64×10^{-11}	1.27×10^{-11}	1.75×10^{-13}	1.89×10^{-8}	1.37×10^{-17}	1.46×10^{-23}

^aWhile the exact values are not comparable, the qualitative order of the two catalytic measures match. Notice that Ni(II) is an exception, with the highest K_{rel} despite its experimental inactivity. Also note that Mg(II) and Mn(II) have K_{rel} values that are many orders of magnitude lower than Co(II), meaning that they are consistent with their inactive experimental result.

308 protein for Ni(II) is stronger than for Fe(II) and that ARD's
 309 affinity for Co(II) is about the same as for Fe(II). The
 310 quantitative difference between the computational and
 311 experimental values is about 1 to 2 kcal/mol (Table 1).
 312 Note that this approaches chemical accuracy (generally
 313 accepted as 1 kcal/mol), which is rarely achievable with
 314 DFT.^{78,79} Given the many approximations needed along the
 315 way and despite the cancellation of errors in the relative
 316 calculations, the qualitative agreement with the experiment we
 317 obtained is still satisfying.

318 Our next system is a histone deacetylase (HDAC), which is
 319 part of a class of enzymes that remove acetyl groups from
 320 histone lysines and potentially some nonhistone proteins.^{80,81}
 321 Alongside histone acetyltransferases, which add acetyl groups,
 322 HDACs regulate how tightly histones bind to DNA and
 323 therefore gene regulation.^{82–84} Overexpression of HDACs is
 324 associated with many pathologies, particularly cancer, while
 325 inhibition leads to the activation of genes related to growth
 326 arrest and tumor cells.^{84,85} Consequently, many anticancer
 327 drugs are HDAC inhibitors.^{86,87} Many of these bind to the
 328 transition metal center of their HDAC targets, including FDA
 329 approved suberanilohydroxamic acid (Vorinostat)⁸⁸ and
 330 FK228 (Romidepsin).⁸⁹ To reliably develop tighter binding
 331 drugs with computational methods, knowledge of which metal
 332 or metals bind to HDAC is necessary.

333 The catalytically relevant metals for histone deacetylases are
 334 not well understood. Historically, researchers assumed that
 335 HDACs are Zn(II) enzymes on the basis of X-ray structures
 336 and kinetic studies.^{90,91} While Zn(II) is clearly a catalytically
 337 active metal in HDACs, as discussed earlier in this article, the
 338 promiscuity of metalloproteins means that crystallographic
 339 data does not preclude the relevance of other metals. Indeed,
 340 kinetic studies report significant activity for both Co(II) and
 341 Fe(II) in HDAC8, with Co(II) showing much higher activity
 342 than Zn(II).⁹ This variety in metals that HDAC8 can use has
 343 important implications in traditional mechanistic studies.


344 Binding affinities from our method proved necessary to
 345 properly identify the catalytically relevant metals besides
 346 Zn(II) in HDAC8 and calculate their activities. Our group
 347 recently investigated the mechanism of HDAC8 and how it
 348 varies with physiologically abundant metals (Zn(II), Fe(II),
 349 Co(II), Mn(II), Ni(II), and Mg(II); Figure 4).¹⁰ Pairing a
 350 traditional transition state search with QM/DMD simulations,
 351 we mapped the mechanism and calculated the activation
 352 barrier of the reaction for each metal. However, these results
 353 do not capture the experimental catalytic order and suggest
 354 that experimentally inactive Mn(II), Ni(II), and Mg(II) are
 355 reactive. We theorized that the binding affinities of these
 356 metals to HDAC8 contributes to their *in vitro* catalytic activity.
 357 We calculated the $\Delta\Delta G$ for each metal and combined this with
 358 our computed barriers (ΔG^\ddagger) to get a series of K_{rel} :

$$K_{\text{rel}} = \exp\left(-\frac{\Delta G^\ddagger}{RT}\right) \exp\left(-\frac{\Delta\Delta G_{\text{binding}}}{RT}\right)$$

359 which in contrast to the barriers, match the experimental
 360 catalytic order and identify Mn(II) and Mg(II) as inactive
 361 (Table 2). The K_{rel} of Ni(II) is the one outlier, with
 362 calculations suggesting that it is highly reactive, driven by its
 363 predicted high $\Delta\Delta G_{\text{binding}}$ rather than ΔG^\ddagger . Ultimately, our
 364 study of HDAC8 demonstrates the utility of our metal binding
 365 $\Delta\Delta G$ method when the catalytic metal or metals of a natural
 366 metalloenzyme are not known.

367 As an aside, we further hypothesize that in some cases the
 368 metal binding affinity could be a descriptor of enzymatic
 369 catalytic activity. Specifically, by the BEP principle,^{92,93} the
 370 binding of the rate-determining intermediate to the active site
 371 should be neither too strong nor too weak for the maximal
 372 catalytic activity to emerge. On the other hand, the stability of
 373 the active site itself and the metal ion in it should impact the
 374 stability of the intermediate of interest. That is because both
 375 the binding energy of the metal to its ligands and the binding
 376 energy of the metal to the reaction intermediate depend on the
 377 spatial extent of the orbitals of the metal.³⁷⁷ Therefore, there
 378 should be some relationship between the
 379 affinity of the protein to the metal and the catalytic activity of
 380 the metalloenzyme. We tested this conjecture using the
 381 computational data that we generated for the different metal
 382 variants of HDAC8, focusing just on the rate-determining,
 383 second step of the reaction (as shown in Figure 4). We
 384 excluded Mg(II) from the data set, since it is known from the
 385 experiment to not bind appreciably to HDAC8. We correlate
 386 the $\Delta\Delta G$ of the metal ion binding to the protein to the
 387 Boltzmann weighted reaction barriers $e^{-E_a/RT}$ (which are the
 388 calculated k_{cat} normalized to remove the pre-exponential factor,
 389 which we may assume to be approximately the same for all
 390 considered metals). The result is shown in Figure 5. We
 391 observe a classic volcano plot (a standard of heterogeneous
 392 catalysis analysis for the last 50 years)⁹⁴ that all metals obey,
 393 even Ni(II), demonstrating peak activity for a binding affinity

Volcano Plot of HDAC8 Activity

Figure 5. Volcano plot showing the scaling relation of HDAC8 between binding $\Delta\Delta G$ and the reaction rate. We calculated the reaction rates as the Boltzmann weighted ratios between each calculated k_{cat} and the Co(II) reference. The plotted values are normalized to remove the pre-exponential factor, which we may assume to be approximately the same for all considered metals. Notice how even Ni(II) is consistent with this trend.

394 around that of Zn(II). While we cannot assume that all
 395 metalloenzymes obey this sort of scaling relation, this
 396 demonstrates the utility of CMAs for yet another catalytic
 397 application.

398 Human serum transferrin (hTF) is an example of how
 399 CMAs could be used in a different context. This protein is not
 400 catalytic but is interesting for the purpose of this article
 401 because it can uptake and also release metals through pH-
 402 dependent protein conformations with potentially profound
 403 implications in metal toxicology. The protein natively moves
 404 iron into cells by receptor-mediated endocytosis. Since it can
 405 cross the blood–brain barrier and its receptor is overexpressed
 406 in some cancer cells, hTF brings its cargo into particularly
 407 sensitive parts of the body.^{95,96} Alarmingly, *in vitro* binding
 408 studies show that hTF can bind other metals besides
 409 Fe(III),^{97–99} including the potentially cytotoxic Ti(IV),
 410 Al(III), and Ga(III).^{29,33} The promiscuity of hTF is of medical
 411 concern as these toxic metals are increasingly bioavailable with
 412 their use in modern industries, including in therapeutic
 413 drugs.^{32,33,100,101} Previous studies provide some structural
 414 details on how hTF transports metals, but none access its full
 415 *in vivo* activity. Two domains comprise the protein, each of
 416 which binds a single metal atom between two, highly similar
 417 subdomain lobes. Crystal structures and X-ray absorption fine
 418 structure spectroscopy studies of the N-terminal domain
 419 suggest that the lobes hinge open in the endosome
 420 environment (Figure 6).¹⁰² Such a conformational change

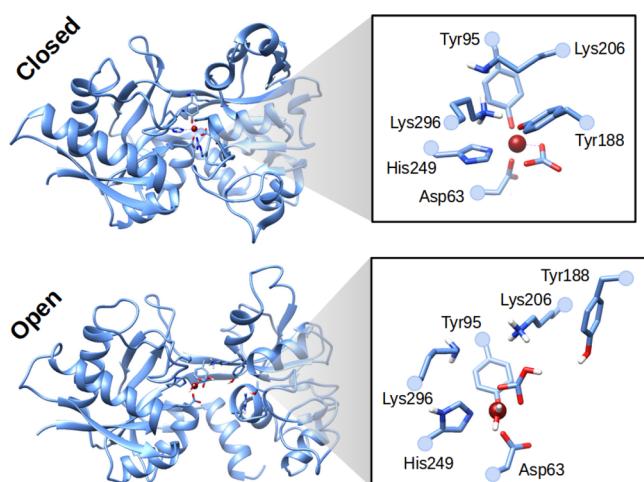
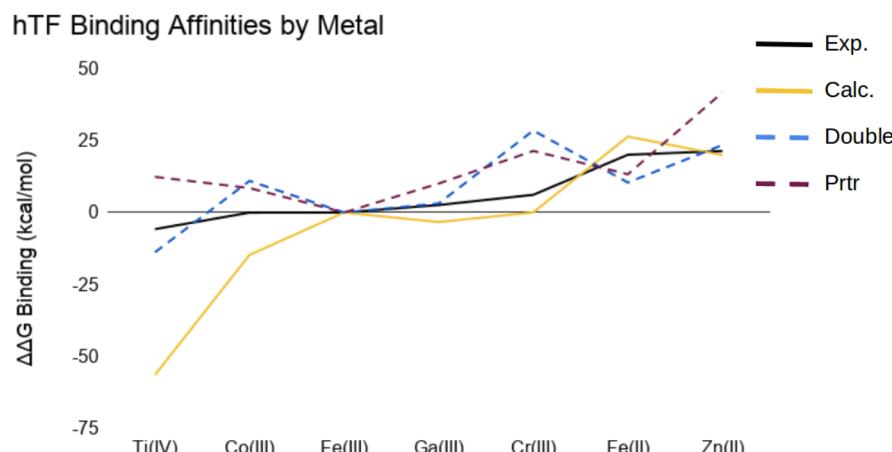


Figure 6. Structure of hTF and its active site in the closed and open forms of the protein. The closed form is associated with the pH of the blood serum, while the open form is associated with the low pH conditions of the endosome. The closed structure was obtained by X-ray crystallography (PDB ID: 3V83), while the open structure was obtained from computational studies.⁵⁸

421 encourages metal release. Previous classical MD simulations
 422 could access the protein opening^{103,104} but not the
 423 thermodynamic data about the metal release.

424 We used our CMA method to get the first insight into the
 425 toxic metal transport abilities of hTF *in vivo* conformational
 426 states. We calculated metal binding affinities relative to
 427 physiological Fe(III) for Ti(IV), Co(III), Ga(III), Cr(III),
 428 Fe(II), and Zn(II) in both uptake and release implicated forms
 429 of hTF (Figure 7).⁵⁸ The order of the binding affinities in the
 430 uptake form of the protein is qualitatively consistent with the
 431 experiment. Accordingly, as Ti(IV), Co(III), Ga(III), and


432 Cr(III) demonstrate $\Delta\Delta G$ that are negative or about 0 in this
 433 form, our results show that hTF can uptake these given metals
 434 competitively with Fe(III). In contrast, the results for the
 435 release states vary for these metals, with Co(III) and Cr(III)
 436 reporting consistently large $\Delta\Delta G$ but Ti(IV) and Ga(III)
 437 reporting small or negative $\Delta\Delta G$ in one form. This suggests
 438 that hTF releases Co(III) and Cr(III) much more readily than
 439 Fe(III) but releases Ti(IV) and Ga(III) about as readily as
 440 Fe(III). Since Ti(IV) and Ga(III) strongly bind to both the
 441 closed and open states, these cytotoxic metals may sequester
 442 some of the protein. Further, our study identified the protein
 443 residues that are most likely to be responsible for opening and
 444 closing at changing pH values as well as a collection of
 445 geometric and electronic factors that are responsible for the
 446 different affinities of hTF to the studied metals.
 447

■ LIMITATIONS AND OUTLOOK

448 Further research into CMA methods is important, especially as
 449 our method is not without limitations. Its reliance on chelating
 450 agents introduces other problems besides limiting calculations
 451 to referential $\Delta\Delta G$. The best way to calculate the
 452 thermodynamic terms involving the chelating agent is unclear.
 453 Experimental stability constants for EDTA and many related
 454 chelating agents are fortunately available for most metals in
 455 their common oxidation states.¹⁰⁵ Unfortunately, the corre-
 456 sponding structures of these metal complexes are not fully
 457 known, and they are necessary to accurately calculate the free
 458 energy associated with the transition from the chelator
 459 complex to the protein. In the studies we discuss above, we
 460 assume full chelation of each metal with no other ligands in the
 461 complexes. This makes most metals conform to an octahedral
 462 geometry. This is likely fine for large transition metals but
 463 breaks down for small and low charge metals such as Li(I) and
 464 Mg(II). Indeed, crystallographic studies of Mg-EDTA binding
 465 show that a water molecule is also a ligand in the complex.¹⁰⁶
 466 One way to mitigate these problems would be a benchmark
 467 study of a wide range of chelators on a system that has been
 468 experimentally well characterized for many metals. Calculating
 469 the set of $\Delta\Delta G$ for each chelator without varying any other
 470 parameters would reveal which chelator can be used most
 471 accurately for each metal.

472 Our method is also limited to proteins that undergo only
 473 minor conformational changes upon the binding of different
 474 metals. The first concern here is that the QM regions must
 475 share the same atoms besides the metal center to satisfy the
 476 thermodynamic cycle. Metals that bind entirely different sites
 477 on a protein are consequently inaccessible to our current
 478 method. A second concern largely involves computational
 479 scaling, as a significant rearrangement (like refolding) upon
 480 metal binding requires even more expensive structural
 481 sampling in order to accurately assess the entropy component
 482 of $\Delta\Delta G$. While this is a general problem with protein and
 483 metalloprotein simulations, enhanced sampling for the specific
 484 purpose of metal binding affinities would be impactful.
 485 Solutions to both of these concerns would render many
 486 systems more accessible, particularly metal chaperones as these
 487 proteins can adopt different folds for different metals.²⁴
 488

489 Our current CMA is also limited in accuracy and chemical
 490 scope by its use of DFT. Traditionally, DFT struggles with
 491 multireference systems, where one Slater determinant or
 492 configuration state function is insufficient, especially metal
 493 clusters. Certain post-Hartree–Fock wave function methods
 494 can appropriately treat these cases and are particularly
 495

Figure 7. Metal binding affinities to hTF from the experiment (solid black line) and from our method. All affinities are relative to Fe(III), which correspondingly has a value of 0 kcal/mol for all lines. The experimental values are based on Boltzmann weighted ratios of binding constants. The solid yellow line shows the values from the uptake form of the protein. Notice that it matches the shape and order of the experimental line. Furthermore, note that Ti(IV), Co(III), Ga(III), and Cr(III) all have values that are negative or around 0 for this line. The dashed light blue and dark purple lines are the values from the release forms of the protein (called “Double” and “Prtr”). The difference between the two forms is minor but significant; the structure represented with the light blue line contains an additional water molecule in its active site. Notice that, for at least one of the dashed lines, both Ti(IV) and Ga(III) bind about the same or better than Fe(III).

494 important for accurate energies. There is already much
 495 discussion on the use of these tools in heterogeneous
 496 catalysis.¹⁰⁷ As multireference post-Hartree–Fock methods
 497 tend to be computationally intensive, the multiconfiguration
 498 pair-density functional theory that blends wave function
 499 methods with DFT is promising for CMA applications because
 500 of their affordability.¹⁰⁸ Future CMAs could use such methods
 501 specifically for the free energy calculations on the QM region
 502 to obtain more accurate energies without increasing computa-
 503 tional cost too drastically.

504 Further advancements in CMA methods would greatly
 505 propel the understanding of natural metalloenzymes and the
 506 design of new ArMs. Such techniques could determine the
 507 catalytically relevant metals in natural metalloenzymes, which
 508 cannot be taken for granted from crystal structures. CMA
 509 calculations would be indispensable in the effort to better
 510 understand metal transport pathways throughout the body,
 511 especially with regards to metal toxicology. In the design of
 512 ArMs, replacing the bound metal in an existing metalloprotein
 513 scaffold can introduce new functions, often inaccessible to
 514 current design methodologies like directed evolution. Placing a
 515 metal into a specifically designed artificial scaffold is also an
 516 attractive opportunity for ArMs catalysis. For all such design
 517 tasks, it is critical to assess the metal affinity and its ability to
 518 outperform other metals that might be present in the synthesis
 519 conditions. New tools such as CMAs will expand the catalytic
 520 space of metalloenzymes.

521 ■ AUTHOR INFORMATION

522 Corresponding Author

523 **Anastassia N. Alexandrova** — Department of Chemistry and
 524 Biochemistry and California NanoSystems Institute, University
 525 of California, Los Angeles, Los Angeles, California 90095-1569,
 526 United States; orcid.org/0000-0002-3003-1911;
 527 Phone: +1 310 8253769; Email: ana@chem.ucla.edu

528 Authors

529 **David J. Reiley** — Department of Chemistry and Biochemistry,
 530 University of California, Los Angeles, Los Angeles, California
 531 90095-1569, United States

Matthew R. Hennefarth — Department of Chemistry and
 532 Biochemistry, University of California, Los Angeles, Los Angeles,
 533 California 90095-1569, United States
 534

Complete contact information is available at:
<https://pubs.acs.org/10.1021/acscatal.9b04831>

537 Notes

The authors declare no competing financial interest.

539 ■ ACKNOWLEDGMENTS

We thank the Institute for Digital Research and Education at
 540 UCLA and the Extreme Science and Engineering Discovery
 541 Environment for supercomputer time. The support for this
 542 work over the years came from the NSF-CAREER Award
 543 CHE-1351968, NSFCHE-1903808, and NIGMS
 544 1R01GM134047.

546 ■ REFERENCES

- Levy, R.; Edelman, M.; Sobolev, V. Prediction of 3D Metal Binding Sites From Translated Gene Sequences Based on Remote-Homology Templates. *Proteins: Struct., Funct., Genet.* **2009**, *76*, 365–374.
- Passerini, A.; Lippi, M.; Frasconi, P. MetalDetector v2.0: Predicting the Geometry of Metal Binding Sites From Protein Sequence. *Nucleic Acids Res.* **2011**, *39*, W288–W292.
- Sodhi, J. S.; Bryson, K.; McGuffin, L. J.; Ward, J. J.; Wernisch, L.; Jones, D. T. Predicting Metal-Binding Site Residues in Low-Resolution Structural Models. *J. Mol. Biol.* **2004**, *342*, 307–320.
- Zheng, H.; Chordia, M. D.; Cooper, D. R.; Chruszcz, M.; Müller, P.; Sheldrick, G. M.; Minor, W. Validation of Metal-Binding Sites in Macromolecular Structures With the CheckMyMetal Web Server. *Nat. Protoc.* **2014**, *9*, 156.
- Giambas, G. M.; Case, D. A.; York, D. M. Predicting Site-Binding Modes of Ions and Water to Nucleic Acids Using Molecular Solvation Theory. *J. Am. Chem. Soc.* **2019**, *141*, 2435–2445.
- Kepp, K. P. Heme: From Quantum Spin Crossover to Oxygen Manager of Life. *Coord. Chem. Rev.* **2017**, *344*, 363–374.
- Valdez, C. E.; Smith, Q. A.; Nechay, M. R.; Alexandrova, A. N. Mysteries of Metals in Metalloenzymes. *Acc. Chem. Res.* **2014**, *47*, 3110–3117.

569 (8) Tripp, B. C.; Bell, C. B.; Cruz, F.; Krebs, C.; Ferry, J. G. A Role 570 for Iron in an Ancient Carbonic Anhydrase. *J. Biol. Chem.* **2004**, *279*, 571 6683–6687.

572 (9) Gant, S. L.; Gattis, S. G.; Fierke, C. A. Catalytic Activity and 573 Inhibition of Human Histone Deacetylase 8 is Dependent on the 574 Identity of the Active Site Metal Ion. *Biochemistry* **2006**, *45*, 6170– 575 6178.

576 (10) Nechay, M. R.; Gallup, N. M.; Morgenstern, A.; Smith, Q. A.; 577 Eberhart, M. E.; Alexandrova, A. N. Histone Deacetylase 8: 578 Characterization of Physiological Divalent Metal Catalysis. *J. Phys. 579 Chem. B* **2016**, *120*, 5884–5895.

580 (11) Zhu, J.; Dizin, E.; Hu, X.; Wavreille, A.-S.; Park, J.; Pei, D. S- 581 Ribosylhomocysteinase (LuxS) is a Mononuclear Iron Protein. 582 *Biochemistry* **2003**, *42*, 4717–4726.

583 (12) Rajagopalan, P. R.; Yu, X. C.; Pei, D. Peptide Deformylase: a 584 New Type of Mononuclear Iron Protein. *J. Am. Chem. Soc.* **1997**, *119*, 585 12418–12419.

586 (13) Renata, H.; Wang, Z. J.; Arnold, F. H. Expanding the Enzyme 587 Universe: Accessing Non-Natural Reactions by Mechanism-Guided 588 Directed Evolution. *Angew. Chem., Int. Ed.* **2015**, *54*, 3351–3367.

589 (14) Hyster, T. K.; Ward, T. R. Genetic Optimization of 590 Metalloenzymes: Enhancing Enzymes for Non-Natural Reactions. 591 *Angew. Chem., Int. Ed.* **2016**, *55*, 7344–7357.

592 (15) Fasan, R.; Meharennna, Y. T.; Snow, C. D.; Poulos, T. L.; 593 Arnold, F. H. Evolutionary History of a Specialized P450 Propane 594 Monoxygenase. *J. Mol. Biol.* **2008**, *383*, 1069–1080.

595 (16) Lewis, J. C.; Bastian, S.; Bennett, C. S.; Fu, Y.; Mitsuda, Y.; 596 Chen, M. M.; Greenberg, W. A.; Wong, C.-H.; Arnold, F. H. 597 Chemoenzymatic Elaboration of Monosaccharides Using Engineered 598 Cytochrome P450BM3 Demethylases. *Proc. Natl. Acad. Sci. U. S. A.* 599 **2009**, *106*, 16550–16555.

600 (17) Rentmeister, A.; Brown, T. R.; Snow, C. D.; Carbone, M. N.; 601 Arnold, F. H. Engineered bacterial mimics of human drug 602 metabolizing enzyme CYP2C9. *ChemCatChem* **2011**, *3*, 1065–1071.

603 (18) Yu, F.; Cangelosi, V. M.; Zastrow, M. L.; Tegoni, M.; Plegaria, 604 J. S.; Tebo, A. G.; Mocny, C. S.; Ruckthong, L.; Qayyum, H.; 605 Pecoraro, V. L. Protein Design: Toward Functional Metalloenzymes. 606 *Chem. Rev.* **2014**, *114*, 3495–3578.

607 (19) Reetz, M. T. Directed Evolution of Artificial Metalloenzymes: A 608 Universal Means to Tune the Selectivity of Transition Metal 609 Catalysts? *Acc. Chem. Res.* **2019**, *52*, 336–344.

610 (20) Prier, C. K.; Arnold, F. H. Chemomimetic Biocatalysis: 611 Exploiting the Synthetic Potential of Cofactor-Dependent Enzymes to 612 Create New Catalysts. *J. Am. Chem. Soc.* **2015**, *137*, 13992–14006.

613 (21) Natoli, S. N.; Hartwig, J. F. Noble-Metal Substitution in 614 Hemoproteins: An Emerging Strategy for Abiological Catalysis. *Acc. 615 Chem. Res.* **2019**, *52*, 326–335.

616 (22) Finney, L. A.; O'Halloran, T. V. Transition Metal Speciation in 617 the Cell: Insights from the Chemistry of Metal Ion Receptors. *Science* 618 **2003**, *300*, 931–936.

619 (23) Tottey, S.; Harvie, D. R.; Robinson, N. J. Understanding How 620 Cells Allocate Metals Using Metal Sensors and Metallochaperones. 621 *Acc. Chem. Res.* **2005**, *38*, 775–783.

622 (24) Tottey, S.; Waldron, K. J.; Firbank, S. J.; Reale, B.; Bessant, C.; 623 Sato, K.; Cheek, T. R.; Gray, J.; Banfield, M. J.; Dennison, C.; 624 Robinson, N. J. Protein-Folding Location Can Regulate Manganese- 625 Binding Versus Copper- or Zinc-Binding. *Nature* **2008**, *455*, 1138.

626 (25) Foster, A. W.; Osman, D.; Robinson, N. J. Metal Preferences 627 and Metallation. *J. Biol. Chem.* **2014**, *289*, 28095–28103.

628 (26) Xiao, Z.; Wedd, A. G. The Challenges of Determining Metal- 629 Protein Affinities. *Nat. Prod. Rep.* **2010**, *27*, 768–789.

630 (27) Pieczenik, S. R.; Neustadt, J. Mitochondrial Dysfunction and 631 Molecular Pathways of Disease. *Exp. Mol. Pathol.* **2007**, *83*, 84–92.

632 (28) Ibrahim, D.; Froberg, B.; Wolf, A.; Rusyniak, D. E. Heavy Metal 633 poisoning: clinical Presentations and Pathophysiology. *Clin. Lab. Med.* 634 **2006**, *26*, 67–97.

635 (29) Exley, C.; Burgess, E.; Day, J. P.; Jeffery, E. H.; Yokel, R. A. 636 Aluminum Toxicokinetics. *J. Toxicol. Environ. Health* **1996**, *48*, 569– 637 584.

638 (30) Tinoco, A. D.; Thomas, H. R.; Incarvito, C. D.; Saghatelian, A.; 639 Valentine, A. M. Cytotoxicity of a Ti (IV) Compound is Independent 639 of Serum Proteins. *Proc. Natl. Acad. Sci. U. S. A.* **2012**, *109*, 5016– 640 5021.

641 (31) Guo, M.; Sun, H.; McArdle, H. J.; Gambling, L.; Sadler, P. J. 642 TiIV Uptake and Release by Human Serum Transferrin and 643 Recognition of TiIV-Transferrin by Cancer Cells: Understanding 644 the Mechanism of Action of the Anticancer Drug Titanocene 645 Dichloride. *Biochemistry* **2000**, *39*, 10023–10033.

646 (32) Jakupc, M. A.; Keppler, B. K. Gallium in Cancer Treatment. 647 *Curr. Top. Med. Chem.* **2004**, *4*, 1575–1583.

648 (33) Exley, C. Human Exposure to Aluminium. *Environ. Sci.: 649 Processes Impacts* **2013**, *15*, 1807–1816.

650 (34) Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Copper 651 Homeostasis and Neurodegenerative Disorders (Alzheimer's, Prion, 652 and Parkinson's diseases and Amyotrophic Lateral Sclerosis). *Chem. 653 Rev.* **2006**, *106*, 1995–2044.

654 (35) Hoops, S. C.; Anderson, K. W.; Merz, K. M., Jr Force Field 655 Design for Metalloproteins. *J. Am. Chem. Soc.* **1991**, *113*, 8262–8270.

656 (36) Dal Peraro, M.; Spiegel, K.; Lamoureux, G.; De Vivo, M.; 657 DeGrado, W. F.; Klein, M. L. Modeling the Charge Distribution at 658 Metal Sites in Proteins for Molecular Dynamics Simulations. *J. Struct. 659 Biol.* **2007**, *157*, 444–453.

660 (37) Neves, R. P.; Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. 661 Parameters for molecular dynamics simulations of manganese- 662 containing metalloproteins. *J. Chem. Theory Comput.* **2013**, *9*, 663 2718–2732.

664 (38) Cho, A. E.; Goddard, W. A., III *Metalloproteins: theory, 665 calculations, and experiments*; CRC Press: Boca Raton, FL, 2015.

666 (39) Dal Peraro, M.; Vila, A. J.; Carloni, P.; Klein, M. L. Role of Zinc 667 Content on the Catalytic Efficiency of B1Metallo β -lactamases. *J. Am. 668 Chem. Soc.* **2007**, *129*, 2808–2816.

669 (40) Zhang, J.; Yang, W.; Piquemal, J.-P.; Ren, P. Modeling 670 Structural Coordination and Ligand Binding in Zinc Proteins with a 671 Polarizable Potential. *J. Chem. Theory Comput.* **2012**, *8*, 1314–1324.

672 (41) Panteva, M. T.; Giambasu, G. M.; York, D. M. Force Field for 673 Mg²⁺, Mn²⁺, Zn²⁺, and Cd²⁺ Ions that Have Balanced Interactions 674 with Nucleic Acids. *J. Phys. Chem. B* **2015**, *119*, 15460–15470.

675 (42) Rydberg, P.; Sigfridsson, E.; Ryde, U. On the Role of the Axial 676 Ligand in Heme Proteins: a Theoretical Study. *JBIC, J. Biol. Inorg. 677 Chem.* **2004**, *9*, 203–223.

678 (43) Tantillo, D. J. How an Enzyme Might Accelerate an 679 Intramolecular Diels-Alder Reaction: Theozymes for the Formation 680 of Salvileucalin B. *Org. Lett.* **2010**, *12*, 1164–1167.

681 (44) Kries, H.; Blomberg, R.; Hilvert, D. De Novo Enzymes by 682 Computational Design. *Curr. Opin. Chem. Biol.* **2013**, *17*, 221–228.

683 (45) Kiss, G.; Çelebi-Ölçüm, N.; Moretti, R.; Baker, D.; Houk, K. 684 Computational Enzyme Design. *Angew. Chem., Int. Ed.* **2013**, *52*, 685 5700–5725.

686 (46) Vaissier Welborn, V.; Head-Gordon, T. Computational Design 687 of Synthetic Enzymes. *Chem. Rev.* **2019**, *119*, 6613–6630.

688 (47) Blomberg, M. R.; Borowski, T.; Himo, F.; Liao, R.-Z.; 689 Siegbahn, P. E. Quantum Chemical Studies of Mechanisms for 690 Metalloenzymes. *Chem. Rev.* **2014**, *114*, 3601–3658.

691 (48) Ryde, U. In *Methods in Enzymology*; Elsevier, 2016; Vol. 577; 692 pp 119–158.

693 (49) Ahmadi, S.; Barrios Herrera, L.; Chehelamirani, M.; Hostaš, J.; 694 Jalife, S.; Salahub, D. R. Multiscale Modeling of Enzymes: QM- 695 Cluster, QM/MM, and QM/MM/MD: A Tutorial Review. *Int. J. 696 Quantum Chem.* **2018**, *118*, e25558.

697 (50) Sparta, M.; Shirvanyants, D.; Ding, F.; Dokholyan, N. V.; 698 Alexandrova, A. N. Hybrid Dynamics Simulation Engine for 699 Metalloproteins. *Biophys. J.* **2012**, *103*, 767–776.

700 (51) Ding, F.; Tsao, D.; Nie, H.; Dokholyan, N. V. Ab Initio Folding 701 of Proteins with All-Atom Discrete Molecular Dynamics. *Structure* **2008**, *16*, 1010–1018.

703 (52) Valdez, C. E.; Morgenstern, A.; Eberhart, M. E.; Alexandrova, 704 A. N. Predictive Methods for Computational Metalloenzyme 705

706 Redesign – A Test Case with Carboxypeptidase A. *Phys. Chem. Chem. Phys.* **2016**, *18*, 31744–31756.

707 (53) Reiley, D. J.; Popov, K.; Dokholyan, N. V.; Alexandrova, A. N.

708 Uncovered Dynamic Coupling Resolves the Ambiguous Mechanism

709 of Phenylalanine Hydroxylase Oxygen Binding. *J. Phys. Chem. B* **2019**,

710 *123*, 4534–4539.

711 (54) Valdez, C. E.; Alexandrova, A. N. Why Urease is a Di-Nickel

712 Enzyme Whereas the CcrA β -lactamase is a Di-Zinc Enzyme. *J. Phys.*

713 *Chem. B* **2012**, *116*, 10649–10656.

714 (55) Sparta, M.; Valdez, C. E.; Alexandrova, A. N. Metal-Dependent

715 Activity of Fe and Ni Acireductone Dioxygenases: How Two

716 Electrons Reroute the Catalytic Pathway. *J. Mol. Biol.* **2013**, *425*,

717 3007–3018.

718 (56) Valdez, C. E.; Gallup, N. M.; Alexandrova, A. N. Co^{2+}

719 Acireductone Dioxygenase: Fe^{2+} Mechanism, Ni^{2+} Mechanism, or

720 Something Else? *Chem. Phys. Lett.* **2014**, *604*, 77–82.

721 (57) Nedd, S.; Redler, R. L.; Proctor, E. A.; Dokholyan, N. V.;

722 Alexandrova, A. N. Cu, Zn-Superoxide Dismutase Without Zn is

723 Folded but Catalytically Inactive. *J. Mol. Biol.* **2014**, *426*, 4112–4124.

724 (58) Reiley, D. J.; Fuller, J. T., III; Nechay, M. R.; Victor, M.; Li,

725 W.; Ruberry, J. D.; Mujika, J. I.; Lopez, X.; Alexandrova, A. N. Toxic

726 and Physiological Metal Uptake and Release by Human Serum

727 Transferrin: Insight from QM/MM Dynamics Simulations. **2019**,

728 submitted for publication.

729 (59) Kästner, J.; Senn, H. M.; Thiel, S.; Otte, N.; Thiel, W. QM/

730 MM Free-Energy Perturbation Compared to Thermodynamic

731 Integration and Umbrella Sampling: Application to an Enzymatic

732 Reaction. *J. Chem. Theory Comput.* **2006**, *2*, 452–461.

733 (60) Giese, T. J.; York, D. M. Development of a Robust Indirect

734 Approach for MM QM Free Energy Calculations That Combines

735 Force-Matched Reference Potential and Bennett's Acceptance Ratio

736 Methods. *J. Chem. Theory Comput.* **2019**, *15*, 5543–5562.

737 (61) Kirkwood, J. G. Statistical Mechanics of Fluid Mixtures. *J.*

738 *Chem. Phys.* **1935**, *3*, 300–313.

739 (62) Zwanzig, R. W. High-Temperature Equation of State by a

740 Perturbation Method. I. Nonpolar Gases. *J. Chem. Phys.* **1954**, *22*,

741 1420–1426.

742 (63) Genheden, S.; Ryde, U. Will Molecular Dynamics Simulations

743 of Proteins Ever Reach Equilibrium? *Phys. Chem. Chem. Phys.* **2012**,

744 *14*, 8662–8677.

745 (64) Guggenheim, E. The Conceptions of Electrical Potential

746 Difference Between Two Phases and the Individual Activities of Ions.

747 *J. Phys. Chem.* **1929**, *33*, 842–849.

748 (65) Klotz, I. M.; Rosenberg, R. M. *Chemical Thermodynamics*;

749 Wiley: New York, NY, 1994.

750 (66) Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. Aqueous Solvation

751 Free Energies of Ions and Ion- water clusters Based on an Accurate

752 Value for the Absolute Aqueous Solvation Free Energy of the Proton.

753 *J. Phys. Chem. B* **2006**, *110*, 16066–16081.

754 (67) Myers, R. W.; Wray, J.; Fish, S.; Abeles, R. Purification and

755 Characterization of an Enzyme Involved in Oxidative Carbon-Carbon

756 Bond Cleavage Reactions in the Methionine Salvage Pathway of

757 Klebsiella pneumoniae. *J. Biol. Chem.* **1993**, *268*, 24785–24791.

758 (68) Oram, S. W.; Ai, J.; Pagani, G. M.; Hitchens, M. R.; Stern, J. A.;

759 Eggener, S.; Pins, M.; Xiao, W.; Cai, X.; Haleem, R.; Jiang, F.;

760 Pochapsky, T. C.; Hedstrom, L.; Wang, Z. Expression and Function of

761 the Human Androgen-Responsive Gene ADI1 in Prostate Cancer.

762 *Neoplasia* **2007**, *9*, 643.

763 (69) Dai, Y.; Wensink, P. C.; Abeles, R. H. One Protein, Two

764 Enzymes. *J. Biol. Chem.* **1999**, *274*, 1193–1195.

765 (70) Wray, J. W.; Abeles, R. H. The Methionine Salvage Pathway in

766 Klebsiella pneumoniae and Rat Liver Identification and Character-

767 ization of Two Novel Dioxygenases. *J. Biol. Chem.* **1995**, *270*, 3147–

768 3153.

769 (71) Borowski, T.; Bassan, A.; Siegbahn, P. E. DFT Study of the

770 Uncatalyzed Dioxygenation of Acireductone. *J. Mol. Struct.*

771 *THEOCHEM* **2006**, *772*, 89–92.

772 (72) Dai, Y.; Pochapsky, T. C.; Abeles, R. H. Mechanistic Studies of

773 Two Dioxygenases in the Methionine Salvage Pathway of Klebsiella

774 pneumoniae. *Biochemistry* **2001**, *40*, 6379–6387.

775 (73) Chai, S. C.; Ju, T.; Dang, M.; Goldsmith, R. B.; Maroney, M. J.;

776 Pochapsky, T. C. Characterization of Metal Binding in the Active

777 Sites of Acireductone Dioxygenase Isoforms from Klebsiella ATCC

778 8724. *Biochemistry* **2008**, *47*, 2428–2438.

779 (74) Turbomole, V. 6.6; Turbomole GmbH: Karlsruhe, Germany,

780 2014.

781 (75) Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P.

782 Comparative Assessment of a New Nonempirical Density Functional:

783 Molecules and Hydrogen-Bonded Complexes. *J. Chem. Phys.* **2003**,

784 *119*, 12129–12137.

785 (76) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and

786 Accurate Ab Initio Parametrization of Density Functional Dispersion

787 Correction (DFT-D) for the 94 Elements H–Pu. *J. Chem. Phys.* **2010**,

788 *132*, 154104.

789 (77) Klamt, A. Conductor-Like Screening Model for Real Solvents: a

790 New Approach to the Quantitative Calculation of Solvation

791 Phenomena. *J. Phys. Chem.* **1995**, *99*, 2224–2235.

792 (78) Cramer, C. J.; Truhlar, D. G. Density Functional Theory for

793 Transition Metals and Transition Metal Chemistry. *Phys. Chem. Chem.*

794 *Phys.* **2009**, *11*, 10757–10816.

795 (79) Mardirossian, N.; Head-Gordon, M. Thirty Years of Density

796 Functional Theory in Computational Chemistry: an Overview and

797 Extensive Assessment of 200 Density Functionals. *Mol. Phys.* **2017**,

798 *115*, 2315–2372.

799 (80) Kouzarides, T. Acetylation: a Regulatory Modification to Rival

800 Phosphorylation? *EMBO J.* **2000**, *19*, 1176–1179.

801 (81) Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M. L.; Rehman,

802 M.; Walther, T. C.; Olsen, J. V.; Mann, M. Lysine Acetylation Targets

803 Protein Complexes and Co-Regulates Major Cellular Functions.

804 *Science* **2009**, *325*, 834–840.

805 (82) Phillips, D. The Presence of Acetyl Groups in Histones.

806 *Biochem. J.* **1963**, *87*, 258.

807 (83) Allfrey, V.; Faulkner, R.; Mirsky, A. Acetylation and

808 Methylation of Histones and Their Possible Role in the Regulation

809 of RNA Synthesis. *Proc. Natl. Acad. Sci. U. S. A.* **1964**, *51*, 786–794.

810 (84) Gallinari, P.; Di Marco, S.; Jones, P.; Pallaoro, M.; Steinkühler,

811 C. HDACs, Histone Deacetylation and Gene Transcription: From

812 Molecular Biology to Cancer Therapeutics. *Cell Res.* **2007**, *17*, 195.

813 (85) Haberland, M.; Montgomery, R. L.; Olson, E. N. The Many

814 Roles of Histone Deacetylases in Development and Physiology:

815 Implications for Disease and Therapy. *Nat. Rev. Genet.* **2009**, *10*, 32.

816 (86) Marks, P. A.; Breslow, R. Dimethyl Sulfoxide to Vorinostat:

817 Development of This Histone Deacetylase Inhibitor as an Anticancer

818 Drug. *Nat. Biotechnol.* **2007**, *25*, 84.

819 (87) West, A. C.; Johnstone, R. W. New and Emerging HDAC

820 Inhibitors for Cancer Treatment. *J. Clin. Invest.* **2014**, *124*, 30–39.

821 (88) Lobera, M.; Madauss, K. P.; Pohlhaus, D. T.; Wright, Q. G.;

822 Trocha, M.; Schmidt, D. R.; Baloglu, E.; Trump, R. P.; Head, M. S.;

823 Hofmann, G. A.; Murray-Thompson, M.; Schwartz, B.; Chakravorty,

824 S.; Wu, Z.; Mander, P. K.; Kruidenier, L.; Reid, R. A.; Burkhardt, W.;

825 Turunen, B. J.; Rong, J. X.; Wagner, C.; Moyer, M. B.; Wells, C.;

826 Hong, X.; Moore, J. T.; Williams, J. D.; Soler, D.; Ghosh, S.; Nolan,

827 M. A. Selective Class IIa Histone Deacetylase Inhibition Via a

828 Nonchelating Zinc-Binding Group. *Nat. Chem. Biol.* **2013**, *9*, 319.

829 (89) Furumai, R.; Matsuyama, A.; Kobashi, N.; Lee, K.-H.;

830 Nishiyama, M.; Nakajima, H.; Tanaka, A.; Komatsu, Y.; Nishino,

831 N.; Yoshida, M.; Horinouchi, S. FK228 (Depsi peptide) as a Natural

832 Prodrug That Inhibits Class I Histone Deacetylases. *Cancer Res.* **2002**,

833 *62*, 4916–4921.

834 (90) Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.;

835 Rifkind, R. A.; Marks, P. A.; Breslow, R.; Pavletich, N. P. Structures of

836 a Histone Deacetylase Homologue Bound to the TSA and SAHA

837 Inhibitors. *Nature* **1999**, *401*, 188.

838 (91) Drummond, D. C.; Noble, C. O.; Kirpotin, D. B.; Guo, Z.;

839 Scott, G. K.; Benz, C. C. Clinical Development of Histone

840

841 Deacetylase Inhibitors as Anticancer Agents. *Annu. Rev. Pharmacol.*
842 *Toxicol.* **2005**, *45*, 495–528.

843 (92) Bell, R. P. The Theory of Reactions Involving Proton Transfers.
844 *Proc. R. Soc. London, Ser. A* **1936**, *154*, 414–429.

845 (93) Evans, M.; Polanyi, M. Further Considerations on the
846 Thermodynamics of Chemical Equilibria and Reaction Rates. *Trans.*
847 *Faraday Soc.* **1936**, *32*, 1333–1360.

848 (94) Balandin, A. In *Advances in Catalysis*; Elsevier, 1969; Vol. 19; pp
849 1–210.

850 (95) Li, H.; Qian, Z. M. Transferrin/Transferrin Receptor-Mediated
851 Drug Delivery. *Med. Res. Rev.* **2002**, *22*, 225–250.

852 (96) Gupta, Y.; Jain, A.; Jain, S. K. Transferrin-Conjugated Solid
853 Lipid Nanoparticles for Enhanced Delivery of Quinine Dihydro-
854 chloride to the Brain. *J. Pharm. Pharmacol.* **2007**, *59*, 935–940.

855 (97) Li, H.; Sadler, P. J.; Sun, H. Rationalization of the Strength of
856 Metal Binding to Human Serum Transferrin. *Eur. J. Biochem.* **1996**,
857 *242*, 387–393.

858 (98) Tinoco, A. D.; Valentine, A. M. Ti (IV) Binds to Human Serum
859 Transferrin More Tightly Than Does Fe (III). *J. Am. Chem. Soc.* **2005**,
860 *127*, 11218–11219.

861 (99) Tinoco, A. D.; Incarvito, C. D.; Valentine, A. M. Calorimetric,
862 Spectroscopic, and Model Studies Provide Insight Into the Transport
863 of Ti (IV) by Human Serum Transferrin. *J. Am. Chem. Soc.* **2007**, *129*,
864 3444–3454.

865 (100) Sun, H.; Li, H.; Sadler, P. J. Transferrin as a Metal Ion
866 Mediator. *Chem. Rev.* **1999**, *99*, 2817–2842.

867 (101) Cini, M.; Bradshaw, T. D.; Woodward, S. Using Titanium
868 Complexes to Defeat Cancer: the View From the Shoulders of Titans.
869 *Chem. Soc. Rev.* **2017**, *46*, 1040–1051.

870 (102) Baker, H. M.; Nurizzo, D.; Mason, A. B.; Baker, E. N.
871 Structures of Two Mutants that Probe the Role in Iron Release of the
872 Dilysine Pair in the N-lobe of Human Transferrin. *Acta Crystallogr.,*
873 *Sect. D: Biol. Crystallogr.* **2007**, *63*, 408–414.

874 (103) Mujika, J. I.; Escribano, B.; Akhmatkaya, E.; Ugalde, J. M.;
875 Lopez, X. Molecular Dynamics Simulations of Iron- and Aluminum-
876 Loaded Serum Transferrin: Protonation of Tyr188 is Necessary to
877 Prompt Metal Release. *Biochemistry* **2012**, *51*, 7017–27.

878 (104) Rinaldo, D.; Field, M. J. A Computational Study of the Open
879 and Closed Forms of the N-lobe Human Serum Transferrin
880 Apoprotein. *Biophys. J.* **2003**, *85*, 3485–3501.

881 (105) Dojindo Molecular Technologies, Inc. *I. Metal Chelates.*
882 Accessed: 2019–09–18.

883 (106) Passer, E.; White, J.; Cheng, K. The Crystal Structure of
884 $Mg_2EDTA \cdot 9H_2O$. *Inorg. Chim. Acta* **1977**, *24*, 13–23.

885 (107) Gagliardi, C. A.; Stoneburner, S. J.; Cramer, C. J.; Gagliardi, L.
886 Beyond Density Functional Theory: the Multiconfigurational
887 Approach to Model Heterogeneous Catalysis. *ACS Catal.* **2019**, *9*,
888 8481–8502.

889 (108) Gagliardi, L.; Truhlar, D. G.; Li Manni, G.; Carlson, R. K.;
890 Hoyer, C. E.; Bao, J. L. Multiconfiguration Pair-Density Functional
891 Theory: A New Way to Treat Strongly Correlated Systems. *Acc.*
892 *Chem. Res.* **2017**, *50*, 66–73.