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Abstract

Clustering large and complex data sets whose partitions may adopt arbitrary shapes
remains a difficult challenge. Part of this challenge comes from the difficulty in defining
a similarity measure between the data points that captures the underlying geometry of
those data points. In this paper, we propose an algorithm, DCG++ that generates such
a similarity measure that is data-driven and ultrametric. DCG++ uses Markov Chain
Random Walks to capture the intrinsic geometry of data, scans possible scales, and
combines all this information using a simple procedure that is shown to generate an
ultrametric. We validate the effectiveness of this similarity measure within the context
of clustering on synthetic data with complex geometry, on a real-world data set
containing segmented audio records of frog calls described by mel-frequency cepstral
coefficients, as well as on an image segmentation problem. The experimental results
show a significant improvement on performance with the DCG-based ultrametric
compared to using an empirical distance measure.

Introduction

Given a set of objects O, usually referred to as data points, each characterized by some
measured properties, or features D, it is natural to think of comparing them and
possibly grouping them into categories, such that objects that belong to the same

category are deemed to be more similar to each other than to objects in other categories.

In this context, similarity is defined by comparison of the features. This way of
organizing data is the underlying mechanism behind classification, or categorization, a
fundamental process currently used in nearly all scientific endeavors. The choice of
similarity measure, or equivalently of a distance between objects built from their
features is still an unsolved problem, usually referred to as the metric learning
problem [1-3]. In this paper, we focus on this concept of distance between data points,
and how the choice of such a distance influences the quality of classification of the data
points, as measured by clustering applications. We emphasize that the idea of distance
and its properties are not universal and depend on the domain of application. In physics
for example, there are usually well established theories behind the data points that are
studied; those theories define the metric to be used when comparing those data points.
However, in biological problems notions of distance are usually defined from some
intuitively attractive measures of similarity; it is unclear as to how much significance
can be attached to such distances that may not be metric, particularly at large scales.
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In addition, the data themselves may be embedded into a complex manifold that cannot
be detected by linear procedures. The classical K-means clustering procedure for
example assumes compact, convex clusters, such that data points within a cluster are
nearer to each other than they are to data points in other clusters; this may not be true
if the data are embedded in non convex clusters. Multiple solutions have been
developed to solve this problem. Most rely on the idea of defining a local metric that
captures the geometry of the data. Examples include the definition of a geodesic
distance for dimension reduction, the ISOMAP procedure [4], the introduction of a
Gaussian kernel to capture local neighborhoods around data points as implemented in
spectral clustering techniques [5], in diffusion maps methods [6,7], or for defining
density peaks [8], or more sophisticated topological and geometric approaches to
capture the hierarchical organization of the data [9-12].

Most of the methods that implement a concept of a local metric rely on the
construction of an e-graph on the data, where € is a parameter that defines the size of
the neighborhood of a data point. This parameter is either set to a bright cutoff, such
as in the original implementation of ISOMAP [4], or to the width a of a Gaussian
kernel, as it is usually implemented in spectral clustering techniques [13]. The values
given to € is clearly data dependent, and usually set by trials and errors. Following
previously published preliminary studies [14,15] we argue in this paper that exploring
the range of possible values for the scale parameter € allows us to automatically capture
the hierarchical geometry of the data points under study, much akin to the persistent
homology used in topological data analysis [10]. Based on this idea, we proposed a
method inspired from statistical physics that makes use of a temperature parameter T'
(equivalent to the e parameter) to monitor phase transitions [14]. Similar to the graph
theoretic approaches, we assimilated the set of data points to a weighted graph, with
the weight of an edge set to a function of the empirical distance between the
corresponding vertices, and the temperature factor T. By equating this weight with a
ferromagnetic potential, the weighted graph is seen as equivalent to a potential
landscape, typically characterized by many wells with various depths. It is then possible
to explore this landscape and therefore define its geometry by using a dynamic Monte
Carlo approach. A random walk identifies the many wells of the potential, as well as the
probability of jumping from one well to another. This leads to a new weighted graph on
the data, whose weights are temperature dependent. Similar to spectral clustering, we
then study the Laplacian of that graph. Analysis of the eigenvectors and eigenvalues
provides information about the number of clusters and corresponding cluster
membership of the data points. By repeating this procedure at different temperatures,
we derived the geometric hierarchy of the data points in the form of an ultrametric
matrix than can then be used as input to traditional clustering techniques [15]. This
method is similar in spirit to the granular model, which achieves clustering by a
sequence of phase transitions on a paramagnetic potential landscape [16,17].

This paper develops previous preliminary studies [14,15]. In those studies, we had
introduced the concept of computing an ultrametric matrix over a set of data points
using the method described above, and dubbed DCG, for Data Cloud Geometry.
Implementations of this method, however, were of limited use because of high
computing costs and the need to significant manual tuning. In this paper we describe a
complete rewriting of the algorithm that implement this methods, with the two main
goals of reducing its computational cost and improving its automation. In particular, we
have developed a procedure for automatic detection of the temperatures leading to
phase transitions for the ferromagnetic potential. We have implemented a spectral
clustering algorithm for analyzing the weighted probability graph generated with the
Monte Carlo random walks, with an automatic detection of clusters. Finally, we have
fully rewritten its implementation in a new software package, DCG++, written in C++
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with modest parallelization such that it can be used on moderate size data sets, with up
to tens of thousand of data points.

The rest of this paper is organized as follows. The next section covers related work.
In Section 3, we describe our algorithm and its implementation. Section 4 presents and
discusses the results obtained by our algorithm on synthetic as well as real test cases.
We conclude the paper with a discussion on future developments of the method itself.

Related Work

Our focus in this paper is metric learning, namely the derivation of a metric (in fact
even an ultrametric) from the data directly. The method we have developed for this
problem (this work, and two preliminary studies, see [14,15]) is intricately related to
clustering, as it is by monitoring how data points cluster at multiple scales that we
design our distance measure. We review here some of the clustering techniques, namely
those that are derived from physics, the graph theoretic methods, and the diffusion
maps, that are most related to those used in our procedure.

Statistical physics and clustering

The idea of adapting a technique from statistical physics to perform clustering of data
points is not new [18]. Following the observation that clusters appear naturally in
Potts-like models, Domany and colleagues [16,17], based on ideas related to the Ising
model [19,20], the Potts model [21], and their generalization in the random cluster
model [22], proposed that the clustering problem can be formulated as the relaxation of
a ferromagnetic Potts-like model. The relaxation terminates at some minimum of an
energy function, and points with the same spin value are then assigned to the same
cluster. The energy function is akin to the Hamiltonian of a Potts model,

H=> Jijd(si,s;) (1)
(1.9)

where s; is the (integer) state of data point 4, ¢ is the Dirac delta function (namely
d(a,b) =1if a = b, and 0 otherwise), and J;; is a positive decreasing function of the
distance between the two points ¢ and j. In their original formulatiQOIl, Domany and
d(;’ag) ) where d(i,7) is
the given distance between points ¢ and j, and a width a that relates to the “scale” of
the data, set to the average nearest neighbor distance among all pairs of points [16].

colleagues have set J to be a Gaussian, i.e. J(i,j) = exp (—

The choice of the scale however is problem dependent and somewhat arbitrary [6,8,16].

In addition to the applications of statistical physics techniques, it is worth mentioning
the use of quantum mechanics for clustering [23], leading to the concept of quantum
clustering [24, 25].

Graph theoretic algorithms for clustering

The idea of expressing clustering as a graph partitioning problem has been explored in

many different forms [26-32]. All those methods use a graph representation of the data.

Formally, given the set of objects O and the empirical distance function on those
objects, a weighted undirected graph G = {V, E, w} is defined such that V = O, the
edges in E capture the relationship between the objects, and w;; = f(d,;) for all pairs of
objects (0;,0;) € O?. The function f relates the distances to the weights of the graph;
it can be simply the identity, but most often it is set to a kernel, such as a Gaussian
kernel. Clustering algorithms then assume a certain structure of this graph. In general
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they assume k£ components with strongly connected objects, the clusters, with weak
connections between them [33,34]. The precise assumptions vary from algorithms to
algorithms. Zahn for example constructed a minimum spanning tree on the graph and
then detected clusters by deleting the edges with the largest weights [26]. [27,28]
identified clusters based on the idea that they correspond to subgraphs whose vertices
are highly connected. This idea was later refined by [30]. Graph partitioning remains

however a difficult problem as it relies on the geometry and topology of the graph [35].

Spectral clustering [5,13] is another class of graph-based clustering algorithms. They
first appeared in the early 1970s [36,37]. The basic idea is still to embed the data points
into a graph and identify clusters of points with communities in this graph. The graph
is constructed either using an e cutoff, a k-nearest neighbor graph, or a fully connected
graph, with the edges weighted with a Gaussian kernel whose width defines the size of
the local neighborhood of the data points [13]. Spectral clustering methods are then
based on the spectral analyses of the Laplacian of that graph. The Laplacian matrix is
a discrete analog of the Laplacian operator and serves a similar purpose: it measures to
what extent a graph differs at one vertex from its values at nearby vertices. The eigen
decomposition of this matrix provides a set of eigenvalues and their corresponding
orthogonal eigenvectors (corresponding to a basis for the underlying space). If the graph
contains N disconnected sub-graphs, the eigenvalue 0 appears N times, and the
corresponding eigenvectors are directly cluster indicators. If the graph is fully

connected, the eigenvalue 0 appears once, and its corresponding eigenvector is constant.

The following eigenvectors then carry the information about the clusters. This
information is retrieved by assigning “coordinates” for the data points based on those
eigenvectors. The data points are then clustered based on this new representation, using
K-means, or variants of K-means [13]. As expected, this algorithm is now used
extensively for detecting communities in graphs (for review, see [35]).

Limitations of spectral clustering however have been highlighted [38]. First, spectral
clustering algorithms start from local information encoded in the weighted graph
representing the data but generate clusters according to the global eigenvectors of the
corresponding Laplacian matrix. The link between local and global features of the data
is unclear. Path-based clustering have been proposed for example to capture that
link [39—41]. Further, even with a suitable measure of local geometry, a few eigenvectors
of the Laplacian matrix cannot successfully cluster datasets that contain structures at
different scales of size and density. This problem led to the development of
diffusion-based methods that are briefly discussed below.

Exploring the space of data

The similarity or distance between experimental data points is usually computed by
comparing the features describing those data points. As those features can be seen as a
vector of real values, distance measures are then maps that compare such vectors,
including the Euclidean distance between those vectors, a cosine operator, a correlation
coefficient, ...Such “empirical” distance measures however do not capture well the actual
geometry of the data. For example, the Euclidean distance between points in space
would not capture well the geometry of these points if they were embedded on the Swiss
roll [4]. To circumvent this problem, one approach is to derive a new distance that is
more amenable to describe the geometry. In ISOMAP, this “geodesic” distance is
derived by building an € graph on the data and generating a new distance matrix based
on shortest distance along this graph. The eigen decomposition of this matrix provides
a low dimensional embedding of the data that reflects their geometry [4].

The diffusion map algorithm [6, 7] is another method for dimension reduction that
relies on the idea of defining a distance that better reflects the geometry of the data. It
is anchored in the concept of heat diffusion and random walk Markov chains. The basic
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idea is that if we take a random walk on the data, walking from one point to a nearby
point is more likely to happen than walking to another that is far away. The random
walk is not performed explicitly. Instead, a diffusion map algorithm starts by building a
kernel K on the data, akin to the function J;; in equation 1. This kernel is usually set
to a Gaussian kernel, with a width a that relates to the scale of the data. This kernel is
then normalized into a probability matrix, M, such that the value M (i, j) between two
data points ¢ and j reflects the probability of walking from 7 to j in one step of a
random walk. By running the chain forward in time, namely by taking larger and larger
powers t of M, a set of graphs is generated on the data. Eigen decompositions of the
Laplacian of those graphs (computed from the powers of M) provides new coordinates
for the data points, from which a new distance is computed, the diffusion distance. This
family of graphs and related diffusion distances reveal the geometric structure of the
data points. While diffusion maps are mainly used for manifold learning [6], they
provide information that can provide partitioning of the data into clusters. Indeed, the
notion of a cluster in the data set is then quantified as a region in which the probability
of escaping this region is low, within a certain time ¢. The drawback of this method is
that it requires the computation of multiple powers of the matrix, which may become
prohibitive in computing time if the number of data points is large.

Method

Basic Idea

The DCG++ algorithm takes its inspiration from the different methods described above.

It is a graph-theoretic approach; namely, we represent the data points as an undirected
weighted graph such that the weights on the edges are functions of the empirical
distance on the data, and a temperature scale, T'. We assimilate this graph to a
ferromagnetic potential and use a Monte Carlo algorithm to generate random walks
designed to capture the geometry of the data. The result of the random walks is a
ensemble matrix, akin to a new adjacency matrix of the graph. The eigen decomposition
of the Laplacian of that matrix is used to identify clusters. Information on how the data

points are split among those clusters is summarized in the form of a membership matrix.

The procedure is then repeated at multiple temperatures, in order to identify the phase
transitions of the potential defined on the weighted graph representing the data. The
resulting membership matrices are then combined to generate a new distance matrix on
the data. We note that this procedure bears similarity with the idea of a diffusion
distance computed by the diffusion map algorithms [6], with the main difference that we
explore the geometry of the data based on scanning over the parameter defining the
local scale of the data, namely the temperature parameter in our approach, rather than
scanning the extent with which the random walks are generated, namely the time
parameter in the diffusion map algorithms.

The rest of this section provides details on the essential steps of the DCG++
algorithm. Briefly, the clustering method we propose involves four main steps: (i)
Equipping the high dimensional space of the data with a temperature dependent
potential energy inspired from statistical mechanics, (ii) Algorithm 1: At any
temperature T, explore the corresponding energy landscape using random walks to
generate a graph, and analyze this graph using a spectral clustering approach, and (iii)
Algorithm 2: Repeat steps (i)-(ii) at different temperatures to detect phase transitions,
and combine the corresponding information into a new distance matrix that is shown to
correspond to an ultrametric.

We note that DCG++ is an extension of previous work in our group. In [14], we had
defined a ferromagnetic potential based on the weighted graph representing the data
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and had proposed a random walk algorithm to explore this potential. The resulting
ensemble matrix was then analyzed using spectral clustering to derive a partitioning of
the data. In Ref. [15] we proposed to repeat the process at multiple temperatures to
generate a new distance matrix on the data points. The whole procedure was named
Data Cloud Geometry, in short, DCG. However, DCG had multiple shortcomings, some
of which significantly limiting its ability to perform on a large class of data sets. Its
major limitation was that the temperatures were considered as parameters that had to
be provided as input. In many cases, the range of temperatures and specific values
within that range are difficult to define for a specific dataset. Finding a way to define
those temperatures automatically from the data was a major driving force behind
designing DCG++ described in this paper. In the process of designing DCG++, we
have revisited all steps of the DCG procedure. In the following, we describe the new
algorithms and justify the changes that were implemented.

Algorithm 1: Partitioning the data at one scale (temperature) T
Exploring the data at a temperature T

Let S = {s1,82,...sn} be the set of N data points considered, and let d be the empirical
distance measure on S, assumed given as input . This distance d is usually computed by
comparing features of those data points, either using a Euclidean distance between
those features, or a correlation coefficient, or any other measure of dissimilarity between
vectors. For sake of generality, we do not assume that d is a metric on S. Instead, we
only assume that it corresponds to a positive, symmetric kernel, namely that it satisfies
the following two properties for all (s;,s;) € S2,

d(si, Sj) Z 0
d(8i7 Sj) = d(Sj, 87;)
We then define a kernel on the data points:
exp <7d(;f,sj)) si s,

0 8; = 8,

W(si,85) = { (2)
W is also a positive symmetric kernel. It constitutes our definition of the local geometry
of S, captured by the “scale” parameter T', which we refer to as a temperature (this will
be explained in the next subsection). We then construct a fully connected weighted
undirected graph G = {V, E,w} on the data such that V' = 5, the edges in E include all
pairs (si, s;), and the weight w(s;, s;) = W (s;, s;) for all pairs of objects (s;,s;) € S2.
Setting W (s;, s;) to zero therefore refers to removing self-edges in this graph.

From the graph GG, we can construct a reversible Markov chain on S. Let us set

D(s;) = Zw(si, 55)

N
Jj=1

to be the weighted degree of vertex s; and let us define:

Krsio5) = ) Q

We write K with subscript T" to indicate that it is a function of T'. K keeps the positive
property of w but it is no more symmetric. However, K1 does satisfy the conservation

property

N
ZKT(SZ'; Sj) = 1
j=1
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for all vertices s; in V. K can therefore be viewed as the transition kernel of a Markov
chain on S. In other words. Kr(s;,s;) is interpreted as the probability p(s;,s;) of
transition from s; to s; in one step at a given scale T'. For ¢t € N, let p(t)(si, s5)
represent the probability of transition in ¢ time steps from s; to s;; note that p) is the
kernel associated to the matrix K. As shown in [42], running the Markov chain
forward, or equivalently taking powers of Krp, reveals relevant geometric structures of S.
In particular, small powers of K7 will segment the data set into several smaller clusters,
while at larger time ¢ the clusters evolve and merge together until in the limit as ¢ — oo
the data set is grouped into one cluster.

To compute the transition probabilities after exactly t steps of the Markov chain, we
can either directly compute K%, or explicitly perform random walks with ¢ steps
starting from each of the vertices in the graph. The former solution involves multiple
matrix products; as we do not filter (i.e. we do not apply a cutoff that sets small values
in the matrix to zero) the transition matrix Ky, it is dense and therefore the complexity
of computing one matrix multiplication is O(N?3). We note that there are faster
algorithms for matrix multiplication, such as the Strassen algorithm originally
introduced as early as in 1969 [43]; we did not implement any of those algorithms and
relied instead on the BLAS implementation of matrix multiplication as it is readily
parallelized [44]. Computing K% has then a complexity of O(tN?), which can be
prohibitive for large IV and t. We have therefore implemented the latter solution, namely
computing the random walks explicitly. Each random walk starts from a seed vertex s
and continues for ¢ steps, with the probability of jumping from a vertex s; to a vertex s;
along the walk set to Kr(s;,s;). P independent random walks are performed for each
sg. For each t-step random walk starting at si, we accumulate the number of visits to
vertices s; as V(k,j). The output of this process is an ensemble matrix Er defined by:

P
> (Vi 5) + V(j.i)
Br(i,j) = "=

2Pt )

The matrix Er is a symmetric approximation of K%. Note that the complexity of
computing Er is O(PtN).

Differences with DCG The original implementation of the data exploration with
DCG [14] follows a similar algorithm, with two significant differences. First, in the
original DCG the random walks are performed with removal of vertices, once those
vertices have been visited frequently. We found however that this vertex removal led to
problems when trying to capture non convex geometries. Second, the ensemble matrix
was computed by monitoring the energy along the walk, and identifying significant
changes in energy due to the system jumping from one local minimum of the potential
to another. Finding the threshold to use to characterize these “significant” changes in
energy value proved to be a problem for large, well-connected sets of data points. The
procedure described here follows a more traditional random walk approach.

Partitioning the graph based on the ensemble matrix

The ensemble matrix Er defines a new set of weights for the graph representing the
data points, that are expected to better capture the geometry of that graph than the
original weight matrix W. Given this new weight matrix, we compute a partitioning of
the graph using a modified version of the spectral clustering algorithm proposed by Ng
and colleagues [5]. We first compute the normalized symmetric Laplacian of the graph
from its weighted adjacency matrix Er:

Ly =1-By?EpBy° (5)
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N
where By is the diagonal degree matrix of Ep, i.e. Br(i,i) = Z Er(i,7) and
j=1

Br(i,j) = 0 when i # j. We assume that the number of clusters corresponding to Er is
between 1 and M, where M is considered to be sufficiently larger than the actual
number of clusters K (T'). We then compute the M smallest eigenvalues of Ly,

A= (M,...,An), and the corresponding eigenvectors V = (v1,...,vpm). The
eigenvalues are given in non-decreasing order. Note that they are all expected to be
between 0 and 1. The actual number of clusters K (T') is then set to the number of
eigenvalues that have a magnitude smaller than a prescribed threshold C. The data
point s; is then assigned a set of K(T") coordinates, X (i, k), such that:

oy vk (4)
X(i k) = - 73 (6)

> v,(i)’

Jj=1

where vy (%) is the i-th component of the eigenvector vi. The N data points in S,
represented at this stage in a M-dimensional space with coordinates defined above are
then partitioned into K (7') clusters using the K-means++ algorithm [45]. The
procedure is repeated k times, using different seed centers for the cluster, and the
partitioning that gives the smallest sum of variances is selected. This result of this
partitioning is then stored as a binary membership matrix, denoted as M, with
Mr(i,j) =1if s; and s; are found to be in the same cluster and M (4,j) =0
otherwise.

Differences with DCG Compared to the original implementation of the data
exploration with DCG [14], we only compute the top M eigen pairs of the symmetric,
normalized Laplacian to reduce the computing time, and use an automatic selection of
the number of clusters, based on the threshold C'.

Algorithm 2: Exploring the energy landscapes at multiple
temperatures

Algorithm 1 described above rests on two main parameters: the scale, or temperature T
that defines the size of the neighborhood around each point, and the time ¢ for the
Markov chains that explore the weighted graph whose adjacency matrix is based on T.
In diffusion map algorithms, it is argued that T is a characteristics of the data that
should be considered as given, while the time t is a reaction coordinate that enables
exploration of the geometry of the data. DCG++ is based on a dual concept. We
assimilate the weighted graph to a potential landscape, typically characterized by many
wells with various depths. A random walk on this landscape will identify the many wells
of the potential, as well as the probability of jumping from one well to another. At a
high temperature T', the walk will transition from any points to most of the other points
with more or less equal probabilities: the graph will be seen as complete, with a single
cluster. At a low temperature however, the Markov chain tends to get trapped in
potential wells for various periods of time depending on the sizes of the wells before it
can escape. The analysis of the Markov chain will then result in the detection of many
clusters. The temperature T' becomes then a reaction coordinate that allows us to
detect the multiple scales of the geometry of the data. Algorithm 2 in DCG++
implements the exploration of this reaction coordinate 7" in an automated manner.
Starting with the empirical distance matrix d, and a prescribed number of clusters M,
where M is considered to be sufficiently larger than the actual number of clusters K (7T),
algorithm 2 proceeds in three steps:
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i) Set the lower limit for T, Ty. As described above, at a low temperature, the
data are expected to be partitioned into a large number of clusters. We initialize
T to the average nearest neighbor distance among all pairs of points [16]. We then
apply algorithm 1 with this temperature; if the number of clusters detected is
smaller than the prescribed value M, T' is decreased by a factor 2. The procedure
is then repeated until the number of clusters is at least M, in which case Ty is set
to the current T'. The corresponding number of clusters may be larger than M, in
which case M is updated to that value.

ii) Set the upper limit for T, T,,q.. At a high temperature, the data are
expected to belong to a single cluster. We initialize T" to be twice Ty and apply
Algorithm 1. If the number of clusters is larger than 1, we double T' again, and
reapply algorithm 1. This procedure is repeated until the number of clusters
detected is 1, in which case T),,4. is set to the current 7.

iii) Find the transition temperatures between Ty and T,,q.. As the
temperature increases from Ty to Th,qz, the geometry of the graph representing
the data will change, with clusters progressively evolving and merging until a
single cluster remains. As the transitions are revealed at discrete values for the
number of clusters, these transitions are more step functions than smooth
functions. We reveal those transitions with a simple bracketing procedure based
on a binary search. For a given expected number of clusters k, we initialize the
bracket [Tjow, Thign] based on information from the search at £ — 1 (for example,
for k =2, [Tiow; Thigh) = [T0; Tmaz)). We then set T}, to the middle of the
bracket. If the number of clusters identified by algorithm 1 for T},, is equal to k,
Tyry is stored and we move to the next value of k. Otherwise, Tjo, or Thign are
updated to 13,,, and the procedure is iterated until the number of clusters
matches with k, or when the size of the bracket goes below a threshold €. In the
former case, the temperature is recorded, while in the latter case, no temperature
is recorded for that value of k. The procedure is then repeated until k = M — 1.
Note that the total number of recorded temperatures may be smaller than M, as
the procedure may have “failed” for some specific cluster number, when the
bracket interval becomes too small.

The output of this algorithm is a set of temperatures, one at each change in the number
of clusters (see above). To improve the sampling of the transition curve, we add to this
set intermediate temperatures, set at the midpoints of the consecutive temperature
intervals. This leads to a new set ST = {To,T1,. .., Timas} such that |ST| < 2M + 1.

Differences with DCG The initial version of DCG selected the transition
temperatures manually. We observed that this lead to a crude representation of the full
transition. We therefore designed algorithm 2 to provide an automatic selection of those
temperatures.

Generating a new distance matrix on the data

Algorithm 1 is then run for each temperature T}, in the set ST generated by algorithm
2. Each of these runs leads to a binary membership table Mz, € RV*Y. These
membership tables are then combined into a matrix U as follows.

Recall that the entry (7, j) of ensemble matrix M1, indicates whether the data point
s; and s; were found to belong to the same cluster at temperature 7). For each pair of
points (s;, s;), we have then a sequence of indicators that the points are co-clustered
over the range of temperatures, {Mr, (4, 7), M, (¢,7), ..M, (i,5)}. We construct a
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matrix U € R¥*Y whose entries record from which temperature two points consistently

belong to the same cluster. Namely,

K
U(i,j) =min{T | [][Mux(i,j) >0} (7)

=k

Note that the cluster-sharing sequence for a pair of points (s;, s;) may contain more
than one switch from zero to one. Such repeated switches can be seen as noise, not
unexpected due to the heuristic nature of the random walks in algorithm 1 (among
other possible sources of noise). Equation 7 handles this noise by selecting the last

0-to-1 switch. This scheme also leads to the matrix U corresponding to an ultrametric.

Finally, the matrix U is scaled with a monotonic increasing linear transformation so
that its elements fall in the interval [1,100], where 100 is chosen arbitrarily to spread the
distance values over a wide range.

Proposition 1. The DCG++ generated distance matriz U is an ultrametric distance
matriz.

Proof. Given a set of N points S = {sg,...,Sny-1}, and a matrix distance D on S, D is
said to be an ultrametric distance if it satisfies the three conditions for all
(i,5,k) € [1, N]*:

(1) D(i,j) =0
(2) D(i,j) = D(j,1)
(3) D(i,j) < max(D(i, k), D(j, k))-

We note first that the distance matrix U generated by DCG++ satisfies conditions (1)
and (2) by construction, as the temperatures T’s are positive, and all the membership
matrices My are symmetric, resulting in U being symmetric.

We prove condition (3) for U (the strong triangular inequality), namely that
D(i,7) < max(D(i, k), D(j,k)) for any three points with indices 4, j, and k in S. let us
define T;; = U(4,j), Ti = U(3, k), and Tji = U(J, k). By definition of the matrix U
(see Equation 7), we have:

VI > Ty — Mr(ik) =1

and a similar property for Tj. Therefore, VI' > max(Tix, Tj), we have My (i, k) =1
and Mr(j, k) = 1. This means that VI' > max(Tjx, Tjx), the three data points s;, s;,
and sy, are found to belong to the same cluster with algorithm 1. In particular, (s;, s;)
are in the same cluster for all those T'; using again the definition of the matrix U, we
have T;; < max(T;x,Tjx). Replacing the T's with their definitions with respect to U
validates condition (3), which then concludes the proof. O

Implementation

DCG++ was designed as a stand-alone applications written mainly in C++, with some
calls to libraries in Fortran (see below). The source code of DCG++ is available at
https://github.com/pkoehl/DCG. Here we briefly describe some specifics of the
implementation and review all the parameters that need to be set when running the
program.

For a data set with N points, algorithm 1 starts with performing NP random walks,
where P is the number of independent repeats for one point, each of length ¢, where ¢ is
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the time, corresponding to the number of steps. As the NP walks are independent from
each other, their computations can be trivially parallelized. We have used the standard
pthread library from C to implement this parallelization.

Once the random walks have been completed, algorithm 1 proceeds by generating
the normalized symmetric Laplacian Ly of the corresponding ensemble matrix and
computing the eigen decomposition of this matrix. We note that we do not need to
compute the full spectrum of this eigen decomposition, which may be prohibitively
expensive when the number of points IV is large. Instead, we only compute a small
number of the eigenpairs, those corresponding to the eigen values with smallest
magnitude. Those eigen pairs can be efficiently computed using a Lanczos method [46];
we have used the Fortran package ARPACK [47] for this task.

In addition to the data points and the empirical distance measure on those data
(provided either directly in the form of a distance matrix, or with the data characterized
by features and an option for computing the distance between those features, such as
Euclidean distance, correlation distance, or Hamming distance for binary data),
DCG++ requires input for the values of its parameters. Random walks are
characterized by two parameters, the number P of randoms walks for each data point,
and the number of steps ¢ in each random walk. Defaults values for those parameters
are set to P =5, and ¢t = N, where N is the number of data points (although smaller
values for ¢ are often used when N is large, see the experimental analyses below). In
algorithm 1, the cutoff values for defining the number of clusters C' and the number of
repeats for the Kmeans++ algorithm are set to 0.2 and 50. Finally in algorithm 2, the
tolerance € for the bracketing procedure is set to 0.005. Those values have been found to
work well for the test cases presented below.

Experimental analysis

Experimental setting and assessment measures

We validate and verify the effectiveness of the DCG++ algorithm on several synthetic
and real data sets that were downloaded from the UCI Machine Learning repository
https://archive.ics.uci.edu/ml/index.php. As DCG++ is designed to generate a
new (ultrametric) distance on the given data points based on an empirical distance, it is
not a clustering algorithm per se. Therefore, the validations focus on the improvements
that the new distance may induce, compared to using directly the empirical distance
provided with the data. Such validations are performed using two assessment tools,
namely a Receiver Operator Characteristics (ROC) analysis, and classification
experiments.

ROC analysis We quantify the effectiveness of a distance measure in identifying
correctly that two data points belong to the same cluster using the ROC analysis. A
pair of points is defined as similar, or “positive”, if they belong to the same cluster, and
“negative” otherwise. All pairs of points in a dataset are then compared using a
similarity measure. For varying thresholds of the measure, pairs whose corresponding
distance falls below the threshold are assumed positive, and all above it are negative.
The pairs that agree with the standard are called true positives (TP), while those that
do not are false positives (FP). ROC analysis compares the rate of TP as a function of
the rate of FP; it is scored with the Area Under the corresponding Curve, namely the
AUC. An AUC score of 1 indicates that all TP are detected first: this corresponds to an
ideal measure. On the other hand, an AUC score of 0.5 corresponds to the first
diagonal: TP and FP appear at the same rate, and the measure is not discriminative.
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Fig 1. Clustering the 3-spiral data set. The spiral dataset includes 312 points,
partitioned into three spirals, each with 104 points. (a) The Euclidean distance matrix
for the 312 points, ordered by partition ID. We see structures within each partition, but
also significant interactions between the partitions. Hierarchical clustering with Ward
linkage is applied on this matrix; the corresponding tree is cut at 3 clusters, (b), and 6
clusters (c), respectively. The clusters are compact and do not map with the actual
spirals. (d) The ultrametric matrix U derived by DCG++. The three partitions are
clearly identified, with additional structures within each group. Hierarchical clustering
with Ward linkage is applied on this matrix; the corresponding tree is cut at 3 clusters,
(e), and 6 clusters (f), respectively. The clusters map with the spirals.

Classification experiments The ROC analysis described above ranks distances
between data points and assesses if this ranking is compatible with an existing
classification; it does not perform the classification itself. We extend the ROC analysis
to the actual problem of pattern recognition by performing a second set of
computational experiments. Each experiment involves a data set of points, D and a
distance measure, d. We begin by randomly dividing the sets of points in D into two
groups of approximately equal size. The first group serves as a training set, while the
second group serves as a test set. A test point is classified by assigning it to the nearest
cluster in the training set. Here nearest cluster is defined in two different ways. It is
either the cluster of the training point that is closest to the test point (“single linkage”),
or it is obtained by computing first the mean distance between the test point and all
points in the training set that belongs to a given cluster, for all clusters, and then
taking the smallest of those mean distances (“average linkage”). The results are stored
in a confusion matrix, C', whose element C(i, j) reports the number of points that
belong to cluster ¢ but have been classified as belonging to cluster j. The accuracy of
the distance d as a classifier is then defined to be the ratio of the trace of the confusion
matrix over the sum of all its elements (i.e. the percentage of correctly classified data
points). To remove the influence of the initial division of the data set into test and
training sets, the procedure is repeated 10000 times.

Results are also presented visually, using hierarchical clustering based on the two
distance matrices, the Empirical Distance and Ultrametric distance. We will use the
acronym ED-HC and UD-HC when referring to the former and latter, respectively.

All experiments were conducted on an Apple computer with an Intel i7 4GHz
processor with 4 cores and 64 Gb of RAM.

A toy problem: the spiral test case

The first test set we consider is the 3-spiral data set (see figure 1) [41]. This data set is
not unusually complex, as the concept of clusters is well defined, with 3 clusters
corresponding to the 3 spirals. It highlights however the possible shortcomings of the
similarity measure used to compare the points. While the Euclidean distance is a
natural metric for comparing the positions of points on the plane, it does not capture
the geometry of the spirals, as illustrated in figure 1 (a). Indeed, while short distances
correspond to the local neighborhood within a spiral, medium and long distance values
are not discriminative, i.e. two points whose Euclidean distance is large have the same
probability to be on the same spiral than to be on different spirals. Hierarchical
clustering based on this Euclidean distance leads to compact clusters that partition the
plane into convex regions that do not match with the spirals, as illustrated in figure 1
(b) and (c). Applying the DCG procedure described here does correct the shortcomings
of the Euclidean distance. DCG++ was run with ¢, the number of steps in the random
walks set to 700, P, the number of random walks per point set to 5, and the upper limit
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Fig 2. Two clusters based on two 2D Gaussian distributions with varying widths

Fig 3. Analyzing the two-cluster dataset at varying level of overlap. (a) The
transition curves that relate the number of clusters found in the dataset to the scale
defining the local geometry are shown for varying values of the width of the Gaussian
distributions defining the clusters. (b) We compare the efficiency of the Euclidean
distance (red) and the ultrametric distance U to detect cluster memberships as a
function of the cluster width SD. Results are derived from ROC analyses and reported
as AUC values, with large and small AUC values corresponding to good and poor
discrimination, respectively.

to the number of clusters set to 10. In figure 1 (d), the heatmap for the ultrametric
distance U clearly identifies three main clusters, with internal structures within those
clusters. In figure 1 (e) and (f), we show that the three clusters observed on the heat
map map to the three spirals, while the internal structures within the clusters lead to
partitioning of the spirals themselves, each with the same number of sub clusters. We
note that DCG++ is not the only solution for analyzing this data set correctly. The
ISOMAP procedure for example was designed to circumvent the same deficiencies of the
Euclidean distance measure [4], while path-based spectral clustering improved upon
using a simple modification of the Euclidean distance with a Gaussian kernel [41].
DCG++ is an equivalently easy procedure to implement, with a broader range of
applications, as illustrated below.

A second toy problem: two overlapping clusters

The second test set we consider is again academic. It includes two clusters whose points
have been generated based on 2D Gaussian distributions, with varying widths SD (see
figure 2 and [48]). Those clusters are compact, as opposed to the non-linear geometry of
the spirals considered above; however the concept of clusters itself becomes more
difficult to discern, as those clusters show significant overlaps for large values of SD.
For each value of SD, there are 2048 points total, 1024 per cluster. We have run
DCG + + with ¢t = 100 steps per random walk, P = 5 repeats for each data point, and
a upper limit of 40 for the number of clusters. We have tested whether the Euclidean
distance, or the ultrametric distance U can identify cluster membership at varying
amounts of overlaps using ROC analysis. Results are shown in figure 3.

The DCG++ algorithm works by assessing the partitions of the data when the
“temperature” or scale of its kernel increases, i.e. as we change the definition of the local
geometry. In figure 3 (a), we plot the number of the partitions IV, found as a function
f(T) of the local scale, for different versions of the two cluster datasets. When SD is
small (10 or 30), the two clusters are well separated and f(7") shows a clear transition
between 2 and 3 clusters. When SD is large however (70 or 100, i.e. close to the
distance between the centers of the clusters), the transition curve f(7') is noisier and
does not allow for a clear definition of a number of clusters.

As expected, the curves AUC = f(SD) for both the Euclidean distance and
ultrametric distance U are monotonically decreasing (see figure 3 (b)): for small values
of SD, the clusters are well separated and a small distance is a good indicator of cluster
membership, while at large values of SD the two clusters overlap and distances are no
more discriminative. These two curves differ however for “medium” values of SD, in
which case the ultrametric distance is seen to provide a better detection of cluster
membership.
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Synthetic data: clusters with complex geometry

Our next benchmark involves multiple datasets representing clusters with complex
geometries, as illustrated in figure 4. The two moons dataset [49] is a standard toy
problem used to assess clustering techniques on non-convex clusters, the aggreg
dataset [50] includes compact clusters of various sizes and various inter cluster distances,
the flame dataset [51] is similar in difficulty to the moons data set, with the additional
presence of two spurious data points, the compound [26] dataset includes clusters within
cluster, while the path [41] dataset was designed to test path-based spectral clustering
techniques. We added the 3-spiral dataset already discussed above, as it fits with this
set of data with complex geometry. For each dataset, we computed two distance
matrices over all the points they contain, namely the Euclidean distance and the
ultrametric distance U derived by the DCG procedure. The latter was computed with
t = 1000 steps per random walk, P = 5 repeats for each data point, and a upper limit of
20 for the number of clusters. We then analyzed how well those distance matrices
capture the partitioning of the data, using a ROC analysis, as well as a set of
computational classification experiments.

Table 1. Euclidean distance vs DCG distance for detection partitions in datasets with
complex geometries

Euclidean Distance Ultrametric DCG Distance
Dataset AUC?® Single-CAP Ave-CA © AUC ?® Single-CA P Ave-CA °©
Two moons  80.0  100.0 (0.05) 88 (2) 100.0  100.0 (0.3) 100.0 (0.3)
Aggreg 98.0 100 (0.2) 94 (1.1) 99.5 99.5 (0.4) 93.5 (1.1)
Spiral 50.0 100.0 (0.5)  46.1 (8.4) 100.0 100.0 (0) 100.0 (0)
Flame 73.3 99.0 (0.9) 86.2 (2.4) 98.0 99.2 (1.0) 99.0 (0.9)
Path 726 99.1 (0.8)  64.4 (1.0) 840  98.0 (1.1)  63.6 (0.4)
Compound 94 97.3 (0.9) 50.6 (2.2) 99.2  94.0 (1.2)  90.6 (1.5)

3) Area Under the Curve, AUC, in percent based on ROC analysis of the power of the distance
as an indicator of cluster membership. The higher the AUC, the better the distance is.

b) Accuracy (in percent) when the distance is used for classification, with a single linkage for
assigning a test point to a training cluster; standard deviation based on 10000 classification
experiments is provided in parenthesis. The higher the accuracy, the better the distance is
for classification purpose.

©) Accuracy (in percent) when the distance is used for classification, with an average linkage for
assigning a test point to a training cluster; standard deviation based on 10000 classification
experiments is provided in parenthesis.

The ROC analysis we have implemented is designed to assess the extent with which
a distance between data points reveals if those points belong to the same cluster. The
area under this curve, AUC, should be large for distances that map well with cluster
membership, and small otherwise. For the Euclidean distance, the AUC is expected to
be large when the clusters are compact. Indeed, it is found to be 98% for the aggreg
dataset, table 1. The AUC however is lower when the geometry of the cluster is not
convex, reaching 50%, i.e. the expected value for a random assignment of data points to
clusters, for the spiral data set. In contrast, the ultrametric distance computed with
DCG performs consistently well, with large AUC values above 98%, independent of the
geometry of the cluster (table 1). We do note however one exception, the path dataset.
For this dataset, the ultrametric distance does lead to an improvement compared to the
Euclidean distance, but not to the same extent as what is observed with the other test
cases (with an improvement in AUC of 10% for the path dataset, compared to
improvements of 25% and 50% for the Flame and spiral datasets, for example) . It is
unclear at this stage why this is the case.
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Fig 4. Test cases with clusters with complex geometries (see text for details). All these
datasets were obtained from https://cs.joensuu.fi/sipu/datasets/.

The ROC analysis described above detects similarity. We extended to the problem of
detecting partition in the data by performing a set of computational classification
experiments (see subsection above). The results of those experiment are stored in a
confusion matrix. The accuracy of the distance as a classifier is then defined as the ratio
of the trace of that matrix over the number of test points, i.e. the percentage of
correctly classified points. This classification accuracy (CA) is named Single-CA and
Ave-CA for the single linkage and average linkage experiments, respectively. Results for
both the Euclidean distance and ultrametric distance are given in table 1. The
Euclidean distance is found to be an accurate support for classification when the single
linkage is used. This is expected, as local distance reflects cluster membership, even for
the complicated geometry of the 3-spiral dataset. When the average linkage is used
however, the classification accuracy based on the Euclidean distance drops significantly
for the data set with complex geometry. In contrast, the ultrametric distance leads to
accurate classification for both linkages. We do note that we observe the same exception
than for the ROC analysis, namely the path dataset. We are currently exploring why
this is the case.

For illustration purpose, we show in figure 4 the results of clustering the different
data sets using hierarchical clustering based on the Ultrametric distance with the Ward
linkage, with the resulting tree cut at the actual number of clusters in the data set
(except for the flame dataset, see below). All resulting clusterings match with visual
intuition, with the known exception of the path dataset (see above). For the flame
dataset, we cut the hierarchical tree at 3 clusters. The two main clusters remain
unaltered compared to a cutting at two clusters, and the two spurious point on the left
top corner of the figure form a cluster on their own.

Real data: clustering frogs based on their vocalization capability

Real data differ significantly from the test problems described above. Their data points
usually do not have “coordinates” and cannot be displayed directly. Instead, they are
characterized by features, in many cases a large number of them. The definition of a
distance measure for comparing those features is then not as straightforward as using

the Euclidean distance when comparing the positions of two points in a Euclidean space.

The choice of the distance is not universal, and depends on the specifics of the data
considered. In this section, we compare such a proposed empirical distance measure
with its modified ultrametric version derived by DCG++4 on a dataset of time series
that capture the calls of anurans.

Amphibians are directly affected by changes in the environment [52,53]. Many
scientists then monitor the decline in amphibian populations and use it as an indicator
of environmental problems. The most studied species in that regard are anurans (frogs
and toads). Scientists take advantage of their vocalization capability and apply acoustics
surveys to identify their numbers. Interestingly, time series of their calls have also been
used to identify families, genera, and species among those anurans [54]. In fact, there is
a large body of literature on that topic that goes beyond the scope of this paper. We
consider one data set of such time series, available at the UCI Machine Learning
Repository https://archive.ics.uci.edu/ml/index.php under the name MFCC.

The dataset was created by segmenting 60 audio records belonging to 4 different
families, 8 genus, and 10 species of anurans. Each record corresponds to one frog. These
records were collected in situ, in South America. From the segmentation of those record,
7195 syllables were derived, which form the data points for our analysis. Each syllable is
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Fig 5. ROC analyses of two measures of sound similarity. We compare the
efficiency of two distances, the Euclidean distance and the Ultrametric DCG-derived
distance, to detect similarities between frogs at the family (a), genus (b), and species (c)
level. Curves close to the first diagonal indicate poor performance, while the curves that
are close to the top right corner indicate good performance.

then characterized by 22 features, Mel-Frequency cepstral coefficients (MFCC, hence
the name of the dataset). These MFCCs have been normalized between -1 and 1. The
family, genus, and species assignments are known for each of those syllables, and used
for assessment. We consider two distances on those syllables, namely the Euclidean
distance between their MFCCs, and the ultrametric distance U derived from the
Euclidean distance with the DCG algorithm. DCG++ was run with ¢ = 500 steps in
the random walks, P = 5 repeats for data point, and a upper limit of 20 for the number
of clusters. These distance measures were then assessed in their ability to identify
families, genera, and species using the ROC analysis.

Figure 5 compares the ROC curves derived from the Euclidean distance and DCG
ultrametric U at three levels of classification of the syllables, family (a), genus (b), and
species (c¢). The AUC for the Euclidean distance are 69%, 73%, and 94% at the family,
genus, and species levels, respectively, while the corresponding AUC for the ultrametric
distance are 77%, 83%, and 96%, revealing a consistent improvement induced by DCG
at all three levels. The ROC curves illustrate that short distances (both Euclidean and
DCG) map well with the partitioning of the frogs at all three levels. The differences
between the Euclidean distance and ultrametric distance become apparent for larger
distances, especially at the family and genus levels. Medium to large Euclidean distances
are less discriminative, a fairly common problem of empirical distances. In contrast, the
ultrametric distance consistently performs better for this range of distances.

Image segmentation

Our last benchmark is an image segmentation problem. Analysis is performed based on
visual inspection only, as the “ground truth” is not available. We consider a small image
of ten stylized characters standing next to each other (see figure 6 (a)). Those
characters appear in different colors, blue, purple, orange, red, and green with some
variations within some of those colors (for example the three blue characters show
different intensities of blue). The image is size 205x104, i.e. it contains 26,000 pixels.
Each pixel is defined by three coordinates in the L*a*b (i.e. Lightness, L, and two color
components a and b capturing green-red and blue-yellow, respectively) color space. We
have used the MATLAB function rgb2lab to generate those coordinates from the
original image in the RGB color space. The image is therefore represented with 26,000
“objects”, the pixels, and three coordinates per object. We compared and partitioned
those pixels using two distance measures, the Euclidean distance, and the DCG-derived
ultrametric. The latter was computed with DCG++4, with ¢ = 20, 000 step in each
random walk, P = 10 repeats for each point, and a upper limit of 20 for the number of
clusters. The corresponding distance matrices were then given as input to a hierarchical
clustering procedure (from MATLAB), with complete linkage. The resulting trees were
cut at 2 clusters, 4 clusters, and 8 clusters. At each level, pixels belonging to the same
cluster were assigned the same color, computed as the average of their color coordinates
in the original image. Results of those analyses are given in figure 6.

The fully reconstructed images at the 8 cluster levels based on both distance
measures resemble the original images, as shown in figure 6 (a). However, the image
reconstructed from the DCG-based distance is more faithful with respect to its
identification of the different types of robots included in the image, and therefore its

January 2, 2019

16/21

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665



Fig 6. Comparative image segmentation using two distance measures. (a)
The original image, and the reconstructed images obtained by partitioning the pixels of
the image using hierarchical clustering with complete linkage, based on the Euclidean
distance (ED-HC), and the DCG derived ultrametric distance U, UD-HC. The images
at different levels of the hierarchical trees computed from the Euclidean distance (b),
and ultrametric distance (c). We focus on the segmentation of the different robots. For
clarity, we omit at the 4-cluster and 8-cluster levels the images representing clusters
that only contain pixels related to background.

restitution of the colors of the original image. When we follow the different levels of the
hierarchical trees, differences between the Euclidean distance and DCG distance
becomes visually more striking. At the 2 cluster level, the partitioning derived from the
DCG distance clearly maps with a separation of the characters and background in the
image. In contrast, the Euclidean distance based partitioning shows two clusters that
both contain characters and background (figure 6 (c)). As we move to 4 and 8 clusters,
the DCG-based tree gradually partitions the characters based on their colors. Note that
the nuances within each color are not captured. For example, the yellow and orange
characters remain in the same clusters. The equivalent hierarchical partitioning based
on the Euclidean distance is much less visually intuitive (figure 6 (b)).

Discussion

Clustering is a generic concept ubiquitous to data science, as it is easier to think about
groups of data and representatives of those groups, rather than of the data themselves.
Clustering however is difficult and there are no methods today that can be safely said to
solve this problem. Exiting methods rely on different interpretation of the
representation of the data points to be clustered, of the distance or similarity measures
on those data, on the methods used to detect the manifolds on which those data lie, and
even what defines clusters. In this paper, we focused on the distance measure and how
it can be used to detect the geometry of the data points. We have proposed a method
to derive a distance measure that captures this intrinsic geometry by scanning over its
possible scales. The results of those scans are combined into a distance matrix between
the data points; this distance matrix is shown to correspond to an ultrametric. We have
compared this ultrametric measure to traditional distance measures on a series of toy
problems, synthetic benchmarks, and real data sets and have demonstrated significant
improvement.

The idea of relying on the geometry of the data points to cluster them is not new.
ISOMAP [4] and spectral clustering methods [13] all define a local scale computed from
the data point themselves, and filter the distances between the data points to emphasize
the short distances that capture the local geometry. Diffusion maps techniques [6]
further explore beyond that local geometry by defining time-dependent Markov chains
on the data, with increasing values of the time (i.e. number of steps in the chain), to
explore geometry. The approach we have proposed is dual to that approach. We still
define Markov chains, but we fix their lengths, and scan instead the values of the scale
defining local geometry. We do not claim that our approach is better than the concept
of diffusion map: it is instead complementary and the two methods should in fact be
combined. Indeed, our current implementation relies on the choice of the lengths of the
Markov chains on the data, the parameter t. We have not found a systematic method
for finding an optimal value for this parameter. It is also constrained for pragmatic
reasons: the time complexity of our algorithm is linear in ¢; for large data sets, this can
be a problem. We are currently exploring mechanisms in which both the value for the
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local scale of the data, our variable T', and the number of steps in the Markov chains, ¢,
are varied.

There are other parameters in our method that require attention. The program
requests as input an upper limit to the number of clusters in the data. For synthetic
test cases, as those described in this paper, and for some real data sets, knowledge of
the data makes it easy to define this parameter. There are however data sets for which
this number is only assumed. The resulting matrix will be influenced by the choice
made. In addition, for each temperature, we perform an eigen analysis of the Laplacian
of the ensemble matrix derived from the different Markov chains built on the data. The
first step of this analysis is to define the number of relevant eigenvalues. We rely on the
concept of spectral gap and have implemented a pragmatic approach for detecting this
gap. Much remains to be done however to make this procedure robust. This is in fact a
known problem in spectral clustering method [55].

Our current implementation of the algorithm for computing the ultrametric matrix,
DCG+H+, is slow, but manageable for medium size data sets. If N is the number of data
points, computation at each temperature requires NtP operations (where ¢ is the
number of steps, and P the number of repeats) for the random walks, kN2 operations
for computing the eigenvalues and eigenvectors of the ensemble matrix, where k is the
number of iterations for the Lanczos algorithm, and &' M K N operations for the
K-means algorithm, where &’ is the number of K-means iterations, K is the number of
clusters considered, and M is the number of eigenvectors considered. Those calculations
have been parallelized. This whole process needs to be repeated many times, at least
twice the maximum number of clusters set as input. In practice, we observe an apparent
N3 behavior, which is slow when N is large. A typical run however on a data set of
1000 points, with t = 1000, P = 10, and a request for up to 20 clusters takes 110 s wall
time and 700 s CPU time on an Apple computer with an Intel i7 4GHz processor with 4
cores and 64 Gb of RAM, using the parallel features of DCG++. We are currently
working on developing a better optimized algorithm.
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