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Abstract

Clustering large and complex data sets whose partitions may adopt arbitrary shapes
remains a difficult challenge. Part of this challenge comes from the difficulty in defining
a similarity measure between the data points that captures the underlying geometry of
those data points. In this paper, we propose an algorithm, DCG++ that generates such
a similarity measure that is data-driven and ultrametric. DCG++ uses Markov Chain
Random Walks to capture the intrinsic geometry of data, scans possible scales, and
combines all this information using a simple procedure that is shown to generate an
ultrametric. We validate the effectiveness of this similarity measure within the context
of clustering on synthetic data with complex geometry, on a real-world data set
containing segmented audio records of frog calls described by mel-frequency cepstral
coefficients, as well as on an image segmentation problem. The experimental results
show a significant improvement on performance with the DCG-based ultrametric
compared to using an empirical distance measure.

Introduction 1

Given a set of objects O, usually referred to as data points, each characterized by some 2

measured properties, or features D, it is natural to think of comparing them and 3

possibly grouping them into categories, such that objects that belong to the same 4

category are deemed to be more similar to each other than to objects in other categories. 5

In this context, similarity is defined by comparison of the features. This way of 6

organizing data is the underlying mechanism behind classification, or categorization, a 7

fundamental process currently used in nearly all scientific endeavors. The choice of 8

similarity measure, or equivalently of a distance between objects built from their 9

features is still an unsolved problem, usually referred to as the metric learning 10

problem [1–3]. In this paper, we focus on this concept of distance between data points, 11

and how the choice of such a distance influences the quality of classification of the data 12

points, as measured by clustering applications. We emphasize that the idea of distance 13

and its properties are not universal and depend on the domain of application. In physics 14

for example, there are usually well established theories behind the data points that are 15

studied; those theories define the metric to be used when comparing those data points. 16

However, in biological problems notions of distance are usually defined from some 17

intuitively attractive measures of similarity; it is unclear as to how much significance 18

can be attached to such distances that may not be metric, particularly at large scales. 19
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In addition, the data themselves may be embedded into a complex manifold that cannot 20

be detected by linear procedures. The classical K-means clustering procedure for 21

example assumes compact, convex clusters, such that data points within a cluster are 22

nearer to each other than they are to data points in other clusters; this may not be true 23

if the data are embedded in non convex clusters. Multiple solutions have been 24

developed to solve this problem. Most rely on the idea of defining a local metric that 25

captures the geometry of the data. Examples include the definition of a geodesic 26

distance for dimension reduction, the ISOMAP procedure [4], the introduction of a 27

Gaussian kernel to capture local neighborhoods around data points as implemented in 28

spectral clustering techniques [5], in diffusion maps methods [6, 7], or for defining 29

density peaks [8], or more sophisticated topological and geometric approaches to 30

capture the hierarchical organization of the data [9–12]. 31

Most of the methods that implement a concept of a local metric rely on the 32

construction of an ǫ-graph on the data, where ǫ is a parameter that defines the size of 33

the neighborhood of a data point. This parameter is either set to a bright cutoff, such 34

as in the original implementation of ISOMAP [4], or to the width a of a Gaussian 35

kernel, as it is usually implemented in spectral clustering techniques [13]. The values 36

given to ǫ is clearly data dependent, and usually set by trials and errors. Following 37

previously published preliminary studies [14, 15] we argue in this paper that exploring 38

the range of possible values for the scale parameter ǫ allows us to automatically capture 39

the hierarchical geometry of the data points under study, much akin to the persistent 40

homology used in topological data analysis [10]. Based on this idea, we proposed a 41

method inspired from statistical physics that makes use of a temperature parameter T 42

(equivalent to the ǫ parameter) to monitor phase transitions [14]. Similar to the graph 43

theoretic approaches, we assimilated the set of data points to a weighted graph, with 44

the weight of an edge set to a function of the empirical distance between the 45

corresponding vertices, and the temperature factor T . By equating this weight with a 46

ferromagnetic potential, the weighted graph is seen as equivalent to a potential 47

landscape, typically characterized by many wells with various depths. It is then possible 48

to explore this landscape and therefore define its geometry by using a dynamic Monte 49

Carlo approach. A random walk identifies the many wells of the potential, as well as the 50

probability of jumping from one well to another. This leads to a new weighted graph on 51

the data, whose weights are temperature dependent. Similar to spectral clustering, we 52

then study the Laplacian of that graph. Analysis of the eigenvectors and eigenvalues 53

provides information about the number of clusters and corresponding cluster 54

membership of the data points. By repeating this procedure at different temperatures, 55

we derived the geometric hierarchy of the data points in the form of an ultrametric 56

matrix than can then be used as input to traditional clustering techniques [15]. This 57

method is similar in spirit to the granular model, which achieves clustering by a 58

sequence of phase transitions on a paramagnetic potential landscape [16,17]. 59

This paper develops previous preliminary studies [14, 15]. In those studies, we had 60

introduced the concept of computing an ultrametric matrix over a set of data points 61

using the method described above, and dubbed DCG, for Data Cloud Geometry. 62

Implementations of this method, however, were of limited use because of high 63

computing costs and the need to significant manual tuning. In this paper we describe a 64

complete rewriting of the algorithm that implement this methods, with the two main 65

goals of reducing its computational cost and improving its automation. In particular, we 66

have developed a procedure for automatic detection of the temperatures leading to 67

phase transitions for the ferromagnetic potential. We have implemented a spectral 68

clustering algorithm for analyzing the weighted probability graph generated with the 69

Monte Carlo random walks, with an automatic detection of clusters. Finally, we have 70

fully rewritten its implementation in a new software package, DCG++, written in C++ 71
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with modest parallelization such that it can be used on moderate size data sets, with up 72

to tens of thousand of data points. 73

The rest of this paper is organized as follows. The next section covers related work. 74

In Section 3, we describe our algorithm and its implementation. Section 4 presents and 75

discusses the results obtained by our algorithm on synthetic as well as real test cases. 76

We conclude the paper with a discussion on future developments of the method itself. 77

Related Work 78

Our focus in this paper is metric learning, namely the derivation of a metric (in fact 79

even an ultrametric) from the data directly. The method we have developed for this 80

problem (this work, and two preliminary studies, see [14, 15]) is intricately related to 81

clustering, as it is by monitoring how data points cluster at multiple scales that we 82

design our distance measure. We review here some of the clustering techniques, namely 83

those that are derived from physics, the graph theoretic methods, and the diffusion 84

maps, that are most related to those used in our procedure. 85

Statistical physics and clustering 86

The idea of adapting a technique from statistical physics to perform clustering of data 87

points is not new [18]. Following the observation that clusters appear naturally in 88

Potts-like models, Domany and colleagues [16, 17], based on ideas related to the Ising 89

model [19, 20], the Potts model [21], and their generalization in the random cluster 90

model [22], proposed that the clustering problem can be formulated as the relaxation of 91

a ferromagnetic Potts-like model. The relaxation terminates at some minimum of an 92

energy function, and points with the same spin value are then assigned to the same 93

cluster. The energy function is akin to the Hamiltonian of a Potts model, 94

H =
∑

(i,j)

Jijδ(si, sj) (1)

where si is the (integer) state of data point i, δ is the Dirac delta function (namely 95

δ(a, b) = 1 if a = b, and 0 otherwise), and Jij is a positive decreasing function of the 96

distance between the two points i and j. In their original formulation, Domany and 97

colleagues have set J to be a Gaussian, i.e. J(i, j) = exp

(

−
d(i, j)2

2a2

)

where d(i, j) is 98

the given distance between points i and j, and a width a that relates to the “scale” of 99

the data, set to the average nearest neighbor distance among all pairs of points [16]. 100

The choice of the scale however is problem dependent and somewhat arbitrary [6, 8, 16]. 101

In addition to the applications of statistical physics techniques, it is worth mentioning 102

the use of quantum mechanics for clustering [23], leading to the concept of quantum 103

clustering [24,25]. 104

Graph theoretic algorithms for clustering 105

The idea of expressing clustering as a graph partitioning problem has been explored in 106

many different forms [26–32]. All those methods use a graph representation of the data. 107

Formally, given the set of objects O and the empirical distance function on those 108

objects, a weighted undirected graph G = {V,E,w} is defined such that V = O, the 109

edges in E capture the relationship between the objects, and wij = f(dij) for all pairs of 110

objects (oi, oj) ∈ O2. The function f relates the distances to the weights of the graph; 111

it can be simply the identity, but most often it is set to a kernel, such as a Gaussian 112

kernel. Clustering algorithms then assume a certain structure of this graph. In general 113
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they assume k components with strongly connected objects, the clusters, with weak 114

connections between them [33,34]. The precise assumptions vary from algorithms to 115

algorithms. Zahn for example constructed a minimum spanning tree on the graph and 116

then detected clusters by deleting the edges with the largest weights [26]. [27, 28] 117

identified clusters based on the idea that they correspond to subgraphs whose vertices 118

are highly connected. This idea was later refined by [30]. Graph partitioning remains 119

however a difficult problem as it relies on the geometry and topology of the graph [35]. 120

Spectral clustering [5, 13] is another class of graph-based clustering algorithms. They 121

first appeared in the early 1970s [36,37]. The basic idea is still to embed the data points 122

into a graph and identify clusters of points with communities in this graph. The graph 123

is constructed either using an ǫ cutoff, a k-nearest neighbor graph, or a fully connected 124

graph, with the edges weighted with a Gaussian kernel whose width defines the size of 125

the local neighborhood of the data points [13]. Spectral clustering methods are then 126

based on the spectral analyses of the Laplacian of that graph. The Laplacian matrix is 127

a discrete analog of the Laplacian operator and serves a similar purpose: it measures to 128

what extent a graph differs at one vertex from its values at nearby vertices. The eigen 129

decomposition of this matrix provides a set of eigenvalues and their corresponding 130

orthogonal eigenvectors (corresponding to a basis for the underlying space). If the graph 131

contains N disconnected sub-graphs, the eigenvalue 0 appears N times, and the 132

corresponding eigenvectors are directly cluster indicators. If the graph is fully 133

connected, the eigenvalue 0 appears once, and its corresponding eigenvector is constant. 134

The following eigenvectors then carry the information about the clusters. This 135

information is retrieved by assigning “coordinates” for the data points based on those 136

eigenvectors. The data points are then clustered based on this new representation, using 137

K-means, or variants of K-means [13]. As expected, this algorithm is now used 138

extensively for detecting communities in graphs (for review, see [35]). 139

Limitations of spectral clustering however have been highlighted [38]. First, spectral 140

clustering algorithms start from local information encoded in the weighted graph 141

representing the data but generate clusters according to the global eigenvectors of the 142

corresponding Laplacian matrix. The link between local and global features of the data 143

is unclear. Path-based clustering have been proposed for example to capture that 144

link [39–41]. Further, even with a suitable measure of local geometry, a few eigenvectors 145

of the Laplacian matrix cannot successfully cluster datasets that contain structures at 146

different scales of size and density. This problem led to the development of 147

diffusion-based methods that are briefly discussed below. 148

Exploring the space of data 149

The similarity or distance between experimental data points is usually computed by 150

comparing the features describing those data points. As those features can be seen as a 151

vector of real values, distance measures are then maps that compare such vectors, 152

including the Euclidean distance between those vectors, a cosine operator, a correlation 153

coefficient, ...Such “empirical” distance measures however do not capture well the actual 154

geometry of the data. For example, the Euclidean distance between points in space 155

would not capture well the geometry of these points if they were embedded on the Swiss 156

roll [4]. To circumvent this problem, one approach is to derive a new distance that is 157

more amenable to describe the geometry. In ISOMAP, this “geodesic” distance is 158

derived by building an ǫ graph on the data and generating a new distance matrix based 159

on shortest distance along this graph. The eigen decomposition of this matrix provides 160

a low dimensional embedding of the data that reflects their geometry [4]. 161

The diffusion map algorithm [6,7] is another method for dimension reduction that 162

relies on the idea of defining a distance that better reflects the geometry of the data. It 163

is anchored in the concept of heat diffusion and random walk Markov chains. The basic 164
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idea is that if we take a random walk on the data, walking from one point to a nearby 165

point is more likely to happen than walking to another that is far away. The random 166

walk is not performed explicitly. Instead, a diffusion map algorithm starts by building a 167

kernel K on the data, akin to the function Jij in equation 1. This kernel is usually set 168

to a Gaussian kernel, with a width a that relates to the scale of the data. This kernel is 169

then normalized into a probability matrix, M , such that the value M(i, j) between two 170

data points i and j reflects the probability of walking from i to j in one step of a 171

random walk. By running the chain forward in time, namely by taking larger and larger 172

powers t of M , a set of graphs is generated on the data. Eigen decompositions of the 173

Laplacian of those graphs (computed from the powers of M) provides new coordinates 174

for the data points, from which a new distance is computed, the diffusion distance. This 175

family of graphs and related diffusion distances reveal the geometric structure of the 176

data points. While diffusion maps are mainly used for manifold learning [6], they 177

provide information that can provide partitioning of the data into clusters. Indeed, the 178

notion of a cluster in the data set is then quantified as a region in which the probability 179

of escaping this region is low, within a certain time t. The drawback of this method is 180

that it requires the computation of multiple powers of the matrix, which may become 181

prohibitive in computing time if the number of data points is large. 182

Method 183

Basic Idea 184

The DCG++ algorithm takes its inspiration from the different methods described above. 185

It is a graph-theoretic approach; namely, we represent the data points as an undirected 186

weighted graph such that the weights on the edges are functions of the empirical 187

distance on the data, and a temperature scale, T . We assimilate this graph to a 188

ferromagnetic potential and use a Monte Carlo algorithm to generate random walks 189

designed to capture the geometry of the data. The result of the random walks is a 190

ensemble matrix, akin to a new adjacency matrix of the graph. The eigen decomposition 191

of the Laplacian of that matrix is used to identify clusters. Information on how the data 192

points are split among those clusters is summarized in the form of a membership matrix. 193

The procedure is then repeated at multiple temperatures, in order to identify the phase 194

transitions of the potential defined on the weighted graph representing the data. The 195

resulting membership matrices are then combined to generate a new distance matrix on 196

the data. We note that this procedure bears similarity with the idea of a diffusion 197

distance computed by the diffusion map algorithms [6], with the main difference that we 198

explore the geometry of the data based on scanning over the parameter defining the 199

local scale of the data, namely the temperature parameter in our approach, rather than 200

scanning the extent with which the random walks are generated, namely the time 201

parameter in the diffusion map algorithms. 202

The rest of this section provides details on the essential steps of the DCG++ 203

algorithm. Briefly, the clustering method we propose involves four main steps: (i) 204

Equipping the high dimensional space of the data with a temperature dependent 205

potential energy inspired from statistical mechanics, (ii) Algorithm 1: At any 206

temperature T, explore the corresponding energy landscape using random walks to 207

generate a graph, and analyze this graph using a spectral clustering approach, and (iii) 208

Algorithm 2: Repeat steps (i)-(ii) at different temperatures to detect phase transitions, 209

and combine the corresponding information into a new distance matrix that is shown to 210

correspond to an ultrametric. 211

We note that DCG++ is an extension of previous work in our group. In [14], we had 212

defined a ferromagnetic potential based on the weighted graph representing the data 213
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and had proposed a random walk algorithm to explore this potential. The resulting 214

ensemble matrix was then analyzed using spectral clustering to derive a partitioning of 215

the data. In Ref. [15] we proposed to repeat the process at multiple temperatures to 216

generate a new distance matrix on the data points. The whole procedure was named 217

Data Cloud Geometry, in short, DCG. However, DCG had multiple shortcomings, some 218

of which significantly limiting its ability to perform on a large class of data sets. Its 219

major limitation was that the temperatures were considered as parameters that had to 220

be provided as input. In many cases, the range of temperatures and specific values 221

within that range are difficult to define for a specific dataset. Finding a way to define 222

those temperatures automatically from the data was a major driving force behind 223

designing DCG++ described in this paper. In the process of designing DCG++, we 224

have revisited all steps of the DCG procedure. In the following, we describe the new 225

algorithms and justify the changes that were implemented. 226

Algorithm 1: Partitioning the data at one scale (temperature) T 227

Exploring the data at a temperature T 228

Let S = {s1, s2, ...sN} be the set of N data points considered, and let d be the empirical 229

distance measure on S, assumed given as input . This distance d is usually computed by 230

comparing features of those data points, either using a Euclidean distance between 231

those features, or a correlation coefficient, or any other measure of dissimilarity between 232

vectors. For sake of generality, we do not assume that d is a metric on S. Instead, we 233

only assume that it corresponds to a positive, symmetric kernel, namely that it satisfies 234

the following two properties for all (si, sj) ∈ S2, 235

d(si, sj) ≥ 0

d(si, sj) = d(sj , si)

We then define a kernel on the data points: 236

W (si, sj) =

{

exp
(

−d(si,sj)
T

)

si 6= sj

0 si = sj
(2)

W is also a positive symmetric kernel. It constitutes our definition of the local geometry 237

of S, captured by the “scale” parameter T , which we refer to as a temperature (this will 238

be explained in the next subsection). We then construct a fully connected weighted 239

undirected graph G = {V,E,w} on the data such that V = S, the edges in E include all 240

pairs (si, sj), and the weight w(si, sj) = W (si, sj) for all pairs of objects (si, sj) ∈ S2. 241

Setting W (si, si) to zero therefore refers to removing self-edges in this graph. 242

From the graph G, we can construct a reversible Markov chain on S. Let us set 243

D(si) =

N
∑

j=1

w(si, sj)

to be the weighted degree of vertex si and let us define: 244

KT (si, sj) =
w(si, sj)

D(si)
(3)

We write K with subscript T to indicate that it is a function of T . K keeps the positive 245

property of w but it is no more symmetric. However, KT does satisfy the conservation 246

property 247

N
∑

j=1

KT (si, sj) = 1
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for all vertices si in V . KT can therefore be viewed as the transition kernel of a Markov 248

chain on S. In other words. KT (si, sj) is interpreted as the probability p(si, sj) of 249

transition from si to sj in one step at a given scale T . For t ∈ N, let p(t)(si, sj) 250

represent the probability of transition in t time steps from si to sj ; note that p(t) is the 251

kernel associated to the matrix Kt
T . As shown in [42], running the Markov chain 252

forward, or equivalently taking powers of KT , reveals relevant geometric structures of S. 253

In particular, small powers of KT will segment the data set into several smaller clusters, 254

while at larger time t the clusters evolve and merge together until in the limit as t → ∞ 255

the data set is grouped into one cluster. 256

To compute the transition probabilities after exactly t steps of the Markov chain, we 257

can either directly compute Kt
T , or explicitly perform random walks with t steps 258

starting from each of the vertices in the graph. The former solution involves multiple 259

matrix products; as we do not filter (i.e. we do not apply a cutoff that sets small values 260

in the matrix to zero) the transition matrix KT , it is dense and therefore the complexity 261

of computing one matrix multiplication is O(N3). We note that there are faster 262

algorithms for matrix multiplication, such as the Strassen algorithm originally 263

introduced as early as in 1969 [43]; we did not implement any of those algorithms and 264

relied instead on the BLAS implementation of matrix multiplication as it is readily 265

parallelized [44]. Computing Kt
T has then a complexity of O(tN3), which can be 266

prohibitive for large N and t. We have therefore implemented the latter solution, namely 267

computing the random walks explicitly. Each random walk starts from a seed vertex sk 268

and continues for t steps, with the probability of jumping from a vertex si to a vertex sj 269

along the walk set to KT (si, sj). P independent random walks are performed for each 270

sk. For each t-step random walk starting at sk, we accumulate the number of visits to 271

vertices si as V (k, j). The output of this process is an ensemble matrix ET defined by: 272

ET (i, j) =

P
∑

p=1

(V (i, j) + V (j, i))

2Pt
(4)

The matrix ET is a symmetric approximation of Kt
T . Note that the complexity of 273

computing ET is O(PtN). 274

Differences with DCG The original implementation of the data exploration with 275

DCG [14] follows a similar algorithm, with two significant differences. First, in the 276

original DCG the random walks are performed with removal of vertices, once those 277

vertices have been visited frequently. We found however that this vertex removal led to 278

problems when trying to capture non convex geometries. Second, the ensemble matrix 279

was computed by monitoring the energy along the walk, and identifying significant 280

changes in energy due to the system jumping from one local minimum of the potential 281

to another. Finding the threshold to use to characterize these “significant” changes in 282

energy value proved to be a problem for large, well-connected sets of data points. The 283

procedure described here follows a more traditional random walk approach. 284

Partitioning the graph based on the ensemble matrix 285

The ensemble matrix ET defines a new set of weights for the graph representing the 286

data points, that are expected to better capture the geometry of that graph than the 287

original weight matrix W . Given this new weight matrix, we compute a partitioning of 288

the graph using a modified version of the spectral clustering algorithm proposed by Ng 289

and colleagues [5]. We first compute the normalized symmetric Laplacian of the graph 290

from its weighted adjacency matrix ET : 291

LT = I −B
−

1

2

T ETB
−

1

2

T (5)
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where BT is the diagonal degree matrix of ET , i.e. BT (i, i) =

N
∑

j=1

ET (i, j) and 292

BT (i, j) = 0 when i 6= j. We assume that the number of clusters corresponding to ET is 293

between 1 and M , where M is considered to be sufficiently larger than the actual 294

number of clusters K(T ). We then compute the M smallest eigenvalues of LT , 295

Λ = (λ1, . . . , λM ), and the corresponding eigenvectors V = (v1, . . . ,vM). The 296

eigenvalues are given in non-decreasing order. Note that they are all expected to be 297

between 0 and 1. The actual number of clusters K(T ) is then set to the number of 298

eigenvalues that have a magnitude smaller than a prescribed threshold C. The data 299

point si is then assigned a set of K(T ) coordinates, X(i, k), such that: 300

X(i, k) =
vk(i)





K(T )
∑

j=1

vj(i)
2





1/2
(6)

where vk(i) is the i-th component of the eigenvector vk. The N data points in S, 301

represented at this stage in a M -dimensional space with coordinates defined above are 302

then partitioned into K(T ) clusters using the K-means++ algorithm [45]. The 303

procedure is repeated k times, using different seed centers for the cluster, and the 304

partitioning that gives the smallest sum of variances is selected. This result of this 305

partitioning is then stored as a binary membership matrix, denoted as MT , with 306

MT (i, j) = 1 if si and sj are found to be in the same cluster and MT (i, j) = 0 307

otherwise. 308

Differences with DCG Compared to the original implementation of the data 309

exploration with DCG [14], we only compute the top M eigen pairs of the symmetric, 310

normalized Laplacian to reduce the computing time, and use an automatic selection of 311

the number of clusters, based on the threshold C. 312

Algorithm 2: Exploring the energy landscapes at multiple 313

temperatures 314

Algorithm 1 described above rests on two main parameters: the scale, or temperature T 315

that defines the size of the neighborhood around each point, and the time t for the 316

Markov chains that explore the weighted graph whose adjacency matrix is based on T . 317

In diffusion map algorithms, it is argued that T is a characteristics of the data that 318

should be considered as given, while the time t is a reaction coordinate that enables 319

exploration of the geometry of the data. DCG++ is based on a dual concept. We 320

assimilate the weighted graph to a potential landscape, typically characterized by many 321

wells with various depths. A random walk on this landscape will identify the many wells 322

of the potential, as well as the probability of jumping from one well to another. At a 323

high temperature T , the walk will transition from any points to most of the other points 324

with more or less equal probabilities: the graph will be seen as complete, with a single 325

cluster. At a low temperature however, the Markov chain tends to get trapped in 326

potential wells for various periods of time depending on the sizes of the wells before it 327

can escape. The analysis of the Markov chain will then result in the detection of many 328

clusters. The temperature T becomes then a reaction coordinate that allows us to 329

detect the multiple scales of the geometry of the data. Algorithm 2 in DCG++ 330

implements the exploration of this reaction coordinate T in an automated manner. 331

Starting with the empirical distance matrix d, and a prescribed number of clusters M , 332

where M is considered to be sufficiently larger than the actual number of clusters K(T ), 333

algorithm 2 proceeds in three steps: 334

January 2, 2019 8/21



i) Set the lower limit for T , T0. As described above, at a low temperature, the 335

data are expected to be partitioned into a large number of clusters. We initialize 336

T to the average nearest neighbor distance among all pairs of points [16]. We then 337

apply algorithm 1 with this temperature; if the number of clusters detected is 338

smaller than the prescribed value M , T is decreased by a factor 2. The procedure 339

is then repeated until the number of clusters is at least M , in which case T0 is set 340

to the current T . The corresponding number of clusters may be larger than M , in 341

which case M is updated to that value. 342

ii) Set the upper limit for T , Tmax. At a high temperature, the data are 343

expected to belong to a single cluster. We initialize T to be twice T0 and apply 344

Algorithm 1. If the number of clusters is larger than 1, we double T again, and 345

reapply algorithm 1. This procedure is repeated until the number of clusters 346

detected is 1, in which case Tmax is set to the current T . 347

iii) Find the transition temperatures between T0 and Tmax. As the 348

temperature increases from T0 to Tmax, the geometry of the graph representing 349

the data will change, with clusters progressively evolving and merging until a 350

single cluster remains. As the transitions are revealed at discrete values for the 351

number of clusters, these transitions are more step functions than smooth 352

functions. We reveal those transitions with a simple bracketing procedure based 353

on a binary search. For a given expected number of clusters k, we initialize the 354

bracket [Tlow, Thigh] based on information from the search at k − 1 (for example, 355

for k = 2, [Tlow, Thigh] = [T0, Tmax]). We then set Ttry to the middle of the 356

bracket. If the number of clusters identified by algorithm 1 for Ttry is equal to k, 357

Ttry is stored and we move to the next value of k. Otherwise, Tlow or Thigh are 358

updated to Ttry, and the procedure is iterated until the number of clusters 359

matches with k, or when the size of the bracket goes below a threshold ǫ. In the 360

former case, the temperature is recorded, while in the latter case, no temperature 361

is recorded for that value of k. The procedure is then repeated until k = M − 1. 362

Note that the total number of recorded temperatures may be smaller than M , as 363

the procedure may have “failed” for some specific cluster number, when the 364

bracket interval becomes too small. 365

The output of this algorithm is a set of temperatures, one at each change in the number 366

of clusters (see above). To improve the sampling of the transition curve, we add to this 367

set intermediate temperatures, set at the midpoints of the consecutive temperature 368

intervals. This leads to a new set ST = {T0, T1, . . . , Tmax} such that |ST | ≤ 2M + 1. 369

Differences with DCG The initial version of DCG selected the transition 370

temperatures manually. We observed that this lead to a crude representation of the full 371

transition. We therefore designed algorithm 2 to provide an automatic selection of those 372

temperatures. 373

Generating a new distance matrix on the data 374

Algorithm 1 is then run for each temperature Tk in the set ST generated by algorithm 375

2. Each of these runs leads to a binary membership table MTk
∈ R

N×N . These 376

membership tables are then combined into a matrix U as follows. 377

Recall that the entry (i, j) of ensemble matrix MTk
indicates whether the data point 378

si and sj were found to belong to the same cluster at temperature Tk. For each pair of 379

points (si, sj), we have then a sequence of indicators that the points are co-clustered 380

over the range of temperatures, {MT0
(i, j),MT1

(i, j), ..MTk
(i, j)}. We construct a 381
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matrix U ∈ R
N×N whose entries record from which temperature two points consistently 382

belong to the same cluster. Namely, 383

U(i, j) = min{Tk |
K
∏

l=k

MTl
(i, j) > 0} (7)

Note that the cluster-sharing sequence for a pair of points (si, sj) may contain more 384

than one switch from zero to one. Such repeated switches can be seen as noise, not 385

unexpected due to the heuristic nature of the random walks in algorithm 1 (among 386

other possible sources of noise). Equation 7 handles this noise by selecting the last 387

0-to-1 switch. This scheme also leads to the matrix U corresponding to an ultrametric. 388

Finally, the matrix U is scaled with a monotonic increasing linear transformation so 389

that its elements fall in the interval [1,100], where 100 is chosen arbitrarily to spread the 390

distance values over a wide range. 391

Proposition 1. The DCG++ generated distance matrix U is an ultrametric distance 392

matrix. 393

Proof. Given a set of N points S = {s0, . . . , sN−1}, and a matrix distance D on S, D is 394

said to be an ultrametric distance if it satisfies the three conditions for all 395

(i, j, k) ∈ [1, N ]3: 396

(1) D(i, j) ≥ 0 397

(2) D(i, j) = D(j, i) 398

(3) D(i, j) ≤ max(D(i, k), D(j, k)). 399

We note first that the distance matrix U generated by DCG++ satisfies conditions (1) 400

and (2) by construction, as the temperatures T ’s are positive, and all the membership 401

matrices MT are symmetric, resulting in U being symmetric. 402

We prove condition (3) for U (the strong triangular inequality), namely that 403

D(i, j) ≤ max(D(i, k), D(j, k)) for any three points with indices i, j, and k in S. let us 404

define Tij = U(i, j), Tik = U(i, k), and Tjk = U(j, k). By definition of the matrix U 405

(see Equation 7), we have: 406

∀T ≥ Tik MT (i, k) = 1

and a similar property for Tjk. Therefore, ∀T ≥ max(Tik, Tjk), we have MT (i, k) = 1 407

and MT (j, k) = 1. This means that ∀T ≥ max(Tik, Tjk), the three data points si, sj , 408

and sk are found to belong to the same cluster with algorithm 1. In particular, (si, sj) 409

are in the same cluster for all those T ; using again the definition of the matrix U , we 410

have Tij ≤ max(Tik, Tjk). Replacing the Ts with their definitions with respect to U 411

validates condition (3), which then concludes the proof. 412

Implementation 413

DCG++ was designed as a stand-alone applications written mainly in C++, with some 414

calls to libraries in Fortran (see below). The source code of DCG++ is available at 415

https://github.com/pkoehl/DCG. Here we briefly describe some specifics of the 416

implementation and review all the parameters that need to be set when running the 417

program. 418

For a data set with N points, algorithm 1 starts with performing NP random walks, 419

where P is the number of independent repeats for one point, each of length t, where t is 420
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the time, corresponding to the number of steps. As the NP walks are independent from 421

each other, their computations can be trivially parallelized. We have used the standard 422

pthread library from C to implement this parallelization. 423

Once the random walks have been completed, algorithm 1 proceeds by generating 424

the normalized symmetric Laplacian LT of the corresponding ensemble matrix and 425

computing the eigen decomposition of this matrix. We note that we do not need to 426

compute the full spectrum of this eigen decomposition, which may be prohibitively 427

expensive when the number of points N is large. Instead, we only compute a small 428

number of the eigenpairs, those corresponding to the eigen values with smallest 429

magnitude. Those eigen pairs can be efficiently computed using a Lanczos method [46]; 430

we have used the Fortran package ARPACK [47] for this task. 431

In addition to the data points and the empirical distance measure on those data 432

(provided either directly in the form of a distance matrix, or with the data characterized 433

by features and an option for computing the distance between those features, such as 434

Euclidean distance, correlation distance, or Hamming distance for binary data), 435

DCG++ requires input for the values of its parameters. Random walks are 436

characterized by two parameters, the number P of randoms walks for each data point, 437

and the number of steps t in each random walk. Defaults values for those parameters 438

are set to P = 5, and t = N , where N is the number of data points (although smaller 439

values for t are often used when N is large, see the experimental analyses below). In 440

algorithm 1, the cutoff values for defining the number of clusters C and the number of 441

repeats for the Kmeans++ algorithm are set to 0.2 and 50. Finally in algorithm 2, the 442

tolerance ǫ for the bracketing procedure is set to 0.005. Those values have been found to 443

work well for the test cases presented below. 444

Experimental analysis 445

Experimental setting and assessment measures 446

We validate and verify the effectiveness of the DCG++ algorithm on several synthetic 447

and real data sets that were downloaded from the UCI Machine Learning repository 448

https://archive.ics.uci.edu/ml/index.php. As DCG++ is designed to generate a 449

new (ultrametric) distance on the given data points based on an empirical distance, it is 450

not a clustering algorithm per se. Therefore, the validations focus on the improvements 451

that the new distance may induce, compared to using directly the empirical distance 452

provided with the data. Such validations are performed using two assessment tools, 453

namely a Receiver Operator Characteristics (ROC) analysis, and classification 454

experiments. 455

ROC analysis We quantify the effectiveness of a distance measure in identifying 456

correctly that two data points belong to the same cluster using the ROC analysis. A 457

pair of points is defined as similar, or “positive”, if they belong to the same cluster, and 458

“negative” otherwise. All pairs of points in a dataset are then compared using a 459

similarity measure. For varying thresholds of the measure, pairs whose corresponding 460

distance falls below the threshold are assumed positive, and all above it are negative. 461

The pairs that agree with the standard are called true positives (TP), while those that 462

do not are false positives (FP). ROC analysis compares the rate of TP as a function of 463

the rate of FP; it is scored with the Area Under the corresponding Curve, namely the 464

AUC. An AUC score of 1 indicates that all TP are detected first: this corresponds to an 465

ideal measure. On the other hand, an AUC score of 0.5 corresponds to the first 466

diagonal: TP and FP appear at the same rate, and the measure is not discriminative. 467
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Fig 1. Clustering the 3-spiral data set. The spiral dataset includes 312 points,
partitioned into three spirals, each with 104 points. (a) The Euclidean distance matrix
for the 312 points, ordered by partition ID. We see structures within each partition, but
also significant interactions between the partitions. Hierarchical clustering with Ward
linkage is applied on this matrix; the corresponding tree is cut at 3 clusters, (b), and 6
clusters (c), respectively. The clusters are compact and do not map with the actual
spirals. (d) The ultrametric matrix U derived by DCG++. The three partitions are
clearly identified, with additional structures within each group. Hierarchical clustering
with Ward linkage is applied on this matrix; the corresponding tree is cut at 3 clusters,
(e), and 6 clusters (f), respectively. The clusters map with the spirals.

Classification experiments The ROC analysis described above ranks distances 468

between data points and assesses if this ranking is compatible with an existing 469

classification; it does not perform the classification itself. We extend the ROC analysis 470

to the actual problem of pattern recognition by performing a second set of 471

computational experiments. Each experiment involves a data set of points, D and a 472

distance measure, d. We begin by randomly dividing the sets of points in D into two 473

groups of approximately equal size. The first group serves as a training set, while the 474

second group serves as a test set. A test point is classified by assigning it to the nearest 475

cluster in the training set. Here nearest cluster is defined in two different ways. It is 476

either the cluster of the training point that is closest to the test point (“single linkage”), 477

or it is obtained by computing first the mean distance between the test point and all 478

points in the training set that belongs to a given cluster, for all clusters, and then 479

taking the smallest of those mean distances (“average linkage”). The results are stored 480

in a confusion matrix, C, whose element C(i, j) reports the number of points that 481

belong to cluster i but have been classified as belonging to cluster j. The accuracy of 482

the distance d as a classifier is then defined to be the ratio of the trace of the confusion 483

matrix over the sum of all its elements (i.e. the percentage of correctly classified data 484

points). To remove the influence of the initial division of the data set into test and 485

training sets, the procedure is repeated 10000 times. 486

Results are also presented visually, using hierarchical clustering based on the two 487

distance matrices, the Empirical Distance and Ultrametric distance. We will use the 488

acronym ED-HC and UD-HC when referring to the former and latter, respectively. 489

All experiments were conducted on an Apple computer with an Intel i7 4GHz 490

processor with 4 cores and 64 Gb of RAM. 491

A toy problem: the spiral test case 492

The first test set we consider is the 3-spiral data set (see figure 1) [41]. This data set is 493

not unusually complex, as the concept of clusters is well defined, with 3 clusters 494

corresponding to the 3 spirals. It highlights however the possible shortcomings of the 495

similarity measure used to compare the points. While the Euclidean distance is a 496

natural metric for comparing the positions of points on the plane, it does not capture 497

the geometry of the spirals, as illustrated in figure 1 (a). Indeed, while short distances 498

correspond to the local neighborhood within a spiral, medium and long distance values 499

are not discriminative, i.e. two points whose Euclidean distance is large have the same 500

probability to be on the same spiral than to be on different spirals. Hierarchical 501

clustering based on this Euclidean distance leads to compact clusters that partition the 502

plane into convex regions that do not match with the spirals, as illustrated in figure 1 503

(b) and (c). Applying the DCG procedure described here does correct the shortcomings 504

of the Euclidean distance. DCG++ was run with t, the number of steps in the random 505

walks set to 700, P , the number of random walks per point set to 5, and the upper limit 506
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Fig 2. Two clusters based on two 2D Gaussian distributions with varying widths

Fig 3. Analyzing the two-cluster dataset at varying level of overlap. (a) The
transition curves that relate the number of clusters found in the dataset to the scale
defining the local geometry are shown for varying values of the width of the Gaussian
distributions defining the clusters. (b) We compare the efficiency of the Euclidean
distance (red) and the ultrametric distance U to detect cluster memberships as a
function of the cluster width SD. Results are derived from ROC analyses and reported
as AUC values, with large and small AUC values corresponding to good and poor
discrimination, respectively.

to the number of clusters set to 10. In figure 1 (d), the heatmap for the ultrametric 507

distance U clearly identifies three main clusters, with internal structures within those 508

clusters. In figure 1 (e) and (f), we show that the three clusters observed on the heat 509

map map to the three spirals, while the internal structures within the clusters lead to 510

partitioning of the spirals themselves, each with the same number of sub clusters. We 511

note that DCG++ is not the only solution for analyzing this data set correctly. The 512

ISOMAP procedure for example was designed to circumvent the same deficiencies of the 513

Euclidean distance measure [4], while path-based spectral clustering improved upon 514

using a simple modification of the Euclidean distance with a Gaussian kernel [41]. 515

DCG++ is an equivalently easy procedure to implement, with a broader range of 516

applications, as illustrated below. 517

A second toy problem: two overlapping clusters 518

The second test set we consider is again academic. It includes two clusters whose points 519

have been generated based on 2D Gaussian distributions, with varying widths SD (see 520

figure 2 and [48]). Those clusters are compact, as opposed to the non-linear geometry of 521

the spirals considered above; however the concept of clusters itself becomes more 522

difficult to discern, as those clusters show significant overlaps for large values of SD. 523

For each value of SD, there are 2048 points total, 1024 per cluster. We have run 524

DCG++ with t = 100 steps per random walk, P = 5 repeats for each data point, and 525

a upper limit of 40 for the number of clusters. We have tested whether the Euclidean 526

distance, or the ultrametric distance U can identify cluster membership at varying 527

amounts of overlaps using ROC analysis. Results are shown in figure 3. 528

The DCG++ algorithm works by assessing the partitions of the data when the 529

“temperature” or scale of its kernel increases, i.e. as we change the definition of the local 530

geometry. In figure 3 (a), we plot the number of the partitions N , found as a function 531

f(T ) of the local scale, for different versions of the two cluster datasets. When SD is 532

small (10 or 30), the two clusters are well separated and f(T ) shows a clear transition 533

between 2 and 3 clusters. When SD is large however (70 or 100, i.e. close to the 534

distance between the centers of the clusters), the transition curve f(T ) is noisier and 535

does not allow for a clear definition of a number of clusters. 536

As expected, the curves AUC = f(SD) for both the Euclidean distance and 537

ultrametric distance U are monotonically decreasing (see figure 3 (b)): for small values 538

of SD, the clusters are well separated and a small distance is a good indicator of cluster 539

membership, while at large values of SD the two clusters overlap and distances are no 540

more discriminative. These two curves differ however for “medium” values of SD, in 541

which case the ultrametric distance is seen to provide a better detection of cluster 542

membership. 543
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Synthetic data: clusters with complex geometry 544

Our next benchmark involves multiple datasets representing clusters with complex 545

geometries, as illustrated in figure 4. The two moons dataset [49] is a standard toy 546

problem used to assess clustering techniques on non-convex clusters, the aggreg 547

dataset [50] includes compact clusters of various sizes and various inter cluster distances, 548

the flame dataset [51] is similar in difficulty to the moons data set, with the additional 549

presence of two spurious data points, the compound [26] dataset includes clusters within 550

cluster, while the path [41] dataset was designed to test path-based spectral clustering 551

techniques. We added the 3-spiral dataset already discussed above, as it fits with this 552

set of data with complex geometry. For each dataset, we computed two distance 553

matrices over all the points they contain, namely the Euclidean distance and the 554

ultrametric distance U derived by the DCG procedure. The latter was computed with 555

t = 1000 steps per random walk, P = 5 repeats for each data point, and a upper limit of 556

20 for the number of clusters. We then analyzed how well those distance matrices 557

capture the partitioning of the data, using a ROC analysis, as well as a set of 558

computational classification experiments. 559

Table 1. Euclidean distance vs DCG distance for detection partitions in datasets with
complex geometries

Euclidean Distance Ultrametric DCG Distance
Dataset AUC a Single-CA b Ave-CA c AUC a Single-CA b Ave-CA c

Two moons 80.0 100.0 (0.05) 88 (2) 100.0 100.0 (0.3) 100.0 (0.3)
Aggreg 98.0 100 (0.2) 94 (1.1) 99.5 99.5 (0.4) 93.5 (1.1)
Spiral 50.0 100.0 (0.5) 46.1 (8.4) 100.0 100.0 (0) 100.0 (0)
Flame 73.3 99.0 (0.9) 86.2 (2.4) 98.0 99.2 (1.0) 99.0 (0.9)
Path 72.6 99.1 (0.8) 64.4 (1.0) 84.0 98.0 (1.1) 63.6 (0.4)
Compound 94 97.3 (0.9) 50.6 (2.2) 99.2 94.0 (1.2) 90.6 (1.5)
a) Area Under the Curve, AUC, in percent based on ROC analysis of the power of the distance

as an indicator of cluster membership. The higher the AUC, the better the distance is.
b) Accuracy (in percent) when the distance is used for classification, with a single linkage for

assigning a test point to a training cluster; standard deviation based on 10000 classification

experiments is provided in parenthesis. The higher the accuracy, the better the distance is

for classification purpose.
c) Accuracy (in percent) when the distance is used for classification, with an average linkage for

assigning a test point to a training cluster; standard deviation based on 10000 classification

experiments is provided in parenthesis.

The ROC analysis we have implemented is designed to assess the extent with which 560

a distance between data points reveals if those points belong to the same cluster. The 561

area under this curve, AUC, should be large for distances that map well with cluster 562

membership, and small otherwise. For the Euclidean distance, the AUC is expected to 563

be large when the clusters are compact. Indeed, it is found to be 98% for the aggreg 564

dataset, table 1. The AUC however is lower when the geometry of the cluster is not 565

convex, reaching 50%, i.e. the expected value for a random assignment of data points to 566

clusters, for the spiral data set. In contrast, the ultrametric distance computed with 567

DCG performs consistently well, with large AUC values above 98%, independent of the 568

geometry of the cluster (table 1). We do note however one exception, the path dataset. 569

For this dataset, the ultrametric distance does lead to an improvement compared to the 570

Euclidean distance, but not to the same extent as what is observed with the other test 571

cases (with an improvement in AUC of 10% for the path dataset, compared to 572

improvements of 25% and 50% for the Flame and spiral datasets, for example) . It is 573

unclear at this stage why this is the case. 574
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Fig 4. Test cases with clusters with complex geometries (see text for details). All these
datasets were obtained from https://cs.joensuu.fi/sipu/datasets/.

The ROC analysis described above detects similarity. We extended to the problem of 575

detecting partition in the data by performing a set of computational classification 576

experiments (see subsection above). The results of those experiment are stored in a 577

confusion matrix. The accuracy of the distance as a classifier is then defined as the ratio 578

of the trace of that matrix over the number of test points, i.e. the percentage of 579

correctly classified points. This classification accuracy (CA) is named Single-CA and 580

Ave-CA for the single linkage and average linkage experiments, respectively. Results for 581

both the Euclidean distance and ultrametric distance are given in table 1. The 582

Euclidean distance is found to be an accurate support for classification when the single 583

linkage is used. This is expected, as local distance reflects cluster membership, even for 584

the complicated geometry of the 3-spiral dataset. When the average linkage is used 585

however, the classification accuracy based on the Euclidean distance drops significantly 586

for the data set with complex geometry. In contrast, the ultrametric distance leads to 587

accurate classification for both linkages. We do note that we observe the same exception 588

than for the ROC analysis, namely the path dataset. We are currently exploring why 589

this is the case. 590

For illustration purpose, we show in figure 4 the results of clustering the different 591

data sets using hierarchical clustering based on the Ultrametric distance with the Ward 592

linkage, with the resulting tree cut at the actual number of clusters in the data set 593

(except for the flame dataset, see below). All resulting clusterings match with visual 594

intuition, with the known exception of the path dataset (see above). For the flame 595

dataset, we cut the hierarchical tree at 3 clusters. The two main clusters remain 596

unaltered compared to a cutting at two clusters, and the two spurious point on the left 597

top corner of the figure form a cluster on their own. 598

Real data: clustering frogs based on their vocalization capability 599

Real data differ significantly from the test problems described above. Their data points 600

usually do not have “coordinates” and cannot be displayed directly. Instead, they are 601

characterized by features, in many cases a large number of them. The definition of a 602

distance measure for comparing those features is then not as straightforward as using 603

the Euclidean distance when comparing the positions of two points in a Euclidean space. 604

The choice of the distance is not universal, and depends on the specifics of the data 605

considered. In this section, we compare such a proposed empirical distance measure 606

with its modified ultrametric version derived by DCG++ on a dataset of time series 607

that capture the calls of anurans. 608

Amphibians are directly affected by changes in the environment [52,53]. Many 609

scientists then monitor the decline in amphibian populations and use it as an indicator 610

of environmental problems. The most studied species in that regard are anurans (frogs 611

and toads). Scientists take advantage of their vocalization capability and apply acoustics 612

surveys to identify their numbers. Interestingly, time series of their calls have also been 613

used to identify families, genera, and species among those anurans [54]. In fact, there is 614

a large body of literature on that topic that goes beyond the scope of this paper. We 615

consider one data set of such time series, available at the UCI Machine Learning 616

Repository https://archive.ics.uci.edu/ml/index.php under the name MFCC. 617

The dataset was created by segmenting 60 audio records belonging to 4 different 618

families, 8 genus, and 10 species of anurans. Each record corresponds to one frog. These 619

records were collected in situ, in South America. From the segmentation of those record, 620

7195 syllables were derived, which form the data points for our analysis. Each syllable is 621
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Fig 5. ROC analyses of two measures of sound similarity. We compare the
efficiency of two distances, the Euclidean distance and the Ultrametric DCG-derived
distance, to detect similarities between frogs at the family (a), genus (b), and species (c)
level. Curves close to the first diagonal indicate poor performance, while the curves that
are close to the top right corner indicate good performance.

then characterized by 22 features, Mel-Frequency cepstral coefficients (MFCC, hence 622

the name of the dataset). These MFCCs have been normalized between -1 and 1. The 623

family, genus, and species assignments are known for each of those syllables, and used 624

for assessment. We consider two distances on those syllables, namely the Euclidean 625

distance between their MFCCs, and the ultrametric distance U derived from the 626

Euclidean distance with the DCG algorithm. DCG++ was run with t = 500 steps in 627

the random walks, P = 5 repeats for data point, and a upper limit of 20 for the number 628

of clusters. These distance measures were then assessed in their ability to identify 629

families, genera, and species using the ROC analysis. 630

Figure 5 compares the ROC curves derived from the Euclidean distance and DCG 631

ultrametric U at three levels of classification of the syllables, family (a), genus (b), and 632

species (c). The AUC for the Euclidean distance are 69%, 73%, and 94% at the family, 633

genus, and species levels, respectively, while the corresponding AUC for the ultrametric 634

distance are 77%, 83%, and 96%, revealing a consistent improvement induced by DCG 635

at all three levels. The ROC curves illustrate that short distances (both Euclidean and 636

DCG) map well with the partitioning of the frogs at all three levels. The differences 637

between the Euclidean distance and ultrametric distance become apparent for larger 638

distances, especially at the family and genus levels. Medium to large Euclidean distances 639

are less discriminative, a fairly common problem of empirical distances. In contrast, the 640

ultrametric distance consistently performs better for this range of distances. 641

Image segmentation 642

Our last benchmark is an image segmentation problem. Analysis is performed based on 643

visual inspection only, as the “ground truth” is not available. We consider a small image 644

of ten stylized characters standing next to each other (see figure 6 (a)). Those 645

characters appear in different colors, blue, purple, orange, red, and green with some 646

variations within some of those colors (for example the three blue characters show 647

different intensities of blue). The image is size 205x104, i.e. it contains 26,000 pixels. 648

Each pixel is defined by three coordinates in the L*a*b (i.e. Lightness, L, and two color 649

components a and b capturing green-red and blue-yellow, respectively) color space. We 650

have used the MATLAB function rgb2lab to generate those coordinates from the 651

original image in the RGB color space. The image is therefore represented with 26,000 652

“objects”, the pixels, and three coordinates per object. We compared and partitioned 653

those pixels using two distance measures, the Euclidean distance, and the DCG-derived 654

ultrametric. The latter was computed with DCG++, with t = 20, 000 step in each 655

random walk, P = 10 repeats for each point, and a upper limit of 20 for the number of 656

clusters. The corresponding distance matrices were then given as input to a hierarchical 657

clustering procedure (from MATLAB), with complete linkage. The resulting trees were 658

cut at 2 clusters, 4 clusters, and 8 clusters. At each level, pixels belonging to the same 659

cluster were assigned the same color, computed as the average of their color coordinates 660

in the original image. Results of those analyses are given in figure 6. 661

The fully reconstructed images at the 8 cluster levels based on both distance 662

measures resemble the original images, as shown in figure 6 (a). However, the image 663

reconstructed from the DCG-based distance is more faithful with respect to its 664

identification of the different types of robots included in the image, and therefore its 665
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Fig 6. Comparative image segmentation using two distance measures. (a)
The original image, and the reconstructed images obtained by partitioning the pixels of
the image using hierarchical clustering with complete linkage, based on the Euclidean
distance (ED-HC), and the DCG derived ultrametric distance U , UD-HC. The images
at different levels of the hierarchical trees computed from the Euclidean distance (b),
and ultrametric distance (c). We focus on the segmentation of the different robots. For
clarity, we omit at the 4-cluster and 8-cluster levels the images representing clusters
that only contain pixels related to background.

restitution of the colors of the original image. When we follow the different levels of the 666

hierarchical trees, differences between the Euclidean distance and DCG distance 667

becomes visually more striking. At the 2 cluster level, the partitioning derived from the 668

DCG distance clearly maps with a separation of the characters and background in the 669

image. In contrast, the Euclidean distance based partitioning shows two clusters that 670

both contain characters and background (figure 6 (c)). As we move to 4 and 8 clusters, 671

the DCG-based tree gradually partitions the characters based on their colors. Note that 672

the nuances within each color are not captured. For example, the yellow and orange 673

characters remain in the same clusters. The equivalent hierarchical partitioning based 674

on the Euclidean distance is much less visually intuitive (figure 6 (b)). 675

Discussion 676

Clustering is a generic concept ubiquitous to data science, as it is easier to think about 677

groups of data and representatives of those groups, rather than of the data themselves. 678

Clustering however is difficult and there are no methods today that can be safely said to 679

solve this problem. Exiting methods rely on different interpretation of the 680

representation of the data points to be clustered, of the distance or similarity measures 681

on those data, on the methods used to detect the manifolds on which those data lie, and 682

even what defines clusters. In this paper, we focused on the distance measure and how 683

it can be used to detect the geometry of the data points. We have proposed a method 684

to derive a distance measure that captures this intrinsic geometry by scanning over its 685

possible scales. The results of those scans are combined into a distance matrix between 686

the data points; this distance matrix is shown to correspond to an ultrametric. We have 687

compared this ultrametric measure to traditional distance measures on a series of toy 688

problems, synthetic benchmarks, and real data sets and have demonstrated significant 689

improvement. 690

The idea of relying on the geometry of the data points to cluster them is not new. 691

ISOMAP [4] and spectral clustering methods [13] all define a local scale computed from 692

the data point themselves, and filter the distances between the data points to emphasize 693

the short distances that capture the local geometry. Diffusion maps techniques [6] 694

further explore beyond that local geometry by defining time-dependent Markov chains 695

on the data, with increasing values of the time (i.e. number of steps in the chain), to 696

explore geometry. The approach we have proposed is dual to that approach. We still 697

define Markov chains, but we fix their lengths, and scan instead the values of the scale 698

defining local geometry. We do not claim that our approach is better than the concept 699

of diffusion map: it is instead complementary and the two methods should in fact be 700

combined. Indeed, our current implementation relies on the choice of the lengths of the 701

Markov chains on the data, the parameter t. We have not found a systematic method 702

for finding an optimal value for this parameter. It is also constrained for pragmatic 703

reasons: the time complexity of our algorithm is linear in t; for large data sets, this can 704

be a problem. We are currently exploring mechanisms in which both the value for the 705
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local scale of the data, our variable T , and the number of steps in the Markov chains, t, 706

are varied. 707

There are other parameters in our method that require attention. The program 708

requests as input an upper limit to the number of clusters in the data. For synthetic 709

test cases, as those described in this paper, and for some real data sets, knowledge of 710

the data makes it easy to define this parameter. There are however data sets for which 711

this number is only assumed. The resulting matrix will be influenced by the choice 712

made. In addition, for each temperature, we perform an eigen analysis of the Laplacian 713

of the ensemble matrix derived from the different Markov chains built on the data. The 714

first step of this analysis is to define the number of relevant eigenvalues. We rely on the 715

concept of spectral gap and have implemented a pragmatic approach for detecting this 716

gap. Much remains to be done however to make this procedure robust. This is in fact a 717

known problem in spectral clustering method [55]. 718

Our current implementation of the algorithm for computing the ultrametric matrix, 719

DCG++, is slow, but manageable for medium size data sets. If N is the number of data 720

points, computation at each temperature requires NtP operations (where t is the 721

number of steps, and P the number of repeats) for the random walks, kN2 operations 722

for computing the eigenvalues and eigenvectors of the ensemble matrix, where k is the 723

number of iterations for the Lanczos algorithm, and k′MKN operations for the 724

K-means algorithm, where k′ is the number of K-means iterations, K is the number of 725

clusters considered, and M is the number of eigenvectors considered. Those calculations 726

have been parallelized. This whole process needs to be repeated many times, at least 727

twice the maximum number of clusters set as input. In practice, we observe an apparent 728

N3 behavior, which is slow when N is large. A typical run however on a data set of 729

1000 points, with t = 1000, P = 10, and a request for up to 20 clusters takes 110 s wall 730

time and 700 s CPU time on an Apple computer with an Intel i7 4GHz processor with 4 731

cores and 64 Gb of RAM, using the parallel features of DCG++. We are currently 732

working on developing a better optimized algorithm. 733
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