
 

Improved binary pulsar constraints on the parametrized
post-Einsteinian framework

Remya Nair 1,* and Nicolás Yunes1,2,†
1eXtreme Gravity Institute, Department of Physics, Montana State University,

Bozeman, Montana 59717, USA
2Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

(Received 5 February 2020; accepted 20 April 2020; published 6 May 2020)

The parametrized post-Einsteinian formalism was developed to search for generic deviations from
general relativity with gravitational waves. We here present constraints on this framework using Bayesian
analysis of a set of binary pulsar observations. In particular, we use measurements of the Keplerian and
post-Keplerian parameters of six different binary pulsar systems, and Markov-Chain Monte-Carlo
exploration to calculate posteriors on the parametrized post-Einsteinian parameters and derive robust
constraints. We find improvements of 1–2 orders of magnitude in the strength of constraints when
combining all six observations, relative to what one can achieve when using only the double binary pulsar.
We also find that the constraints are robust to any correlation with the binary’s component masses. The
bounds on the parametrized post-Einsteinian framework derived here could be used as a prior in future
Bayesian tests of general relativity with gravitational wave observations.
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I. INTRODUCTION

Einstein’s theory of gravity, general relativity (GR),
provides us with the essential tools to study the large scale
structure of our Universe. Since the advent of GR, the field
of cosmology has steadily been on the path to becoming a
high precision science. With the spectacular measurements
of the cosmic microwave background anisotropy by
WMAP [1] and later Planck [2], we are indeed living in
an era of precision cosmology. But, our standard theoretical
paradigm for the Universe, the inflationary big bang model,
is still incomplete, as the physics behind the late time
acceleration of the Universe remains elusive and the initial
conditions that led to inflation (accelerated expansion in the
early Universe) are still unknown. The standard flat-ΛCDM
model is also currently under scrutiny from the latest
Planck findings that prefer a positive curvature at more
than 99% confidence level [3]. All of this has suggested to
some that a more robust description of the accelerating
Universe is perhaps conceivable through a modification
of GR.
Einstein’s theory, however, has passed a plethora of tests

with flying colors, from observations in the Solar System
that explore the quasistationary weak field regime [4],
to binary pulsar observations that probe gravity in the
(quasistationary) strong field regime [5–7]. The latter are
particularly constraining since they can be sensitive to

gravity modifications that are suppressed in the Solar
System. In particular, binary pulsar observations are
affected by the backreaction of gravitational waves
(GWs) on the orbital dynamics of binary systems [8],
which is simply not accessible in the Solar System. The
observation of such orbital decay requires extremely
precise timing of the radio “pulses” that originate from
the magnetic poles of the pulsars [9]. Given a set of
measurements of arrival times, radio astronomers can then
fit a timing model that can extract the (Keplerian) orbital
parameters of the binary system. If the observed pulsar is
sufficiently stable (as is the case for millisecond pulsars),
then the timing model can typically fit every pulse over a
time span of many months or even several years, allowing
for the extraction of post-Keplerian parameters, like the
orbital period decay.
The discovery of binary pulsars provided the perfect

ground to test the strong field regime of the gravitational
interaction. In a series of papers, Damour and Deruelle
developed the “parametrized post-Keplerian” (ppK) frame-
work to study the quasistationary regime of binary pulsars,
and they parametrized all the observables obtained from
pulsar timing [10,11]; this was later further developed by
Damour and Taylor in the context of tests of modified
gravity theories [12]. Given a theory of gravity, one can
relate the ppK parameters to the Keplerian orbital param-
eters and the component masses of the binary system. Since
the component masses are the only unknowns in the system
that are not observed directly, it follows that a measurement
of any two ppK parameters uniquely determines the two
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masses, and the values for other ppK parameters can
be predicted. If any other ppK parameter is measured, it
provides a consistency test for the underlying theory
of gravitation. Hence, the ppK framework allows for
theory-independent tests of gravity using binary pulsar
observations.
Let us consider the case of the double-pulsar J0737-

3039A/B to appreciate the power of pulsar timing. This
binary system was discovered in 2003 and soon enough a
total of six ppK parameters were measured for the system.
The relativistic precession of the orbit was known to better
than 0.004%, back in 2006 [13], and consistent measure-
ments would further decrease the uncertainties. All the ppK
parameters are consistent with GR and this double pulsar
provides the best test for the GR quadrupole formalism for
GW generation [7]. Other pulsar systems have been used to
test the validity of various assumptions of GR, one of
which, for example, is the absence of dipolar emission.
Binary pulsar systems with significantly different compact-
ness (the ratio of their mass to their radius) can be used for
testing dipolar radiation. In the double-pulsar system, the
compactness is similar, since both objects are NSs, and
hence dipolar radiation (if it exists) is strongly suppressed.
On the other hand, PSR J1738þ 0333 is composed of a
low mass white dwarf and a pulsar companion, so the
compactness is wildly different and this system can be used
to stringently constrain modified gravity theories that
predict the existence of dipolar emission [14].
Binary pulsar observations, however, are no longer alone

as probes of GR in the strong field. The latest additions to
gravity probes are GWs from coalescing binaries, which
help us inspect the highly dynamical, strongly curved
spacetimes around massive objects. As with binary pulsars,
a generic framework to perform model-independent tests of
GR with GWs was developed in the last decade [15]. The
parametrized post-Einsteinian (ppE) formalism proposes
to augment the GR predictions for the GW models with
additional (non-GR) parameters. GR and other modified
theory predictions, such as scalar tensor theories [16],
dynamical Chern-Simons gravity [17], Einstein-dilaton
Gauss-Bonnet gravity [18], among others [19], can then
be recovered by specific choices of these non-GR para-
meters. The LIGO-VIRGO Collaboration has observed
GWs from multiple compact binary mergers and put some
constraints on the allowed ppE deviations from GR
[20–23]. These ppE constraints can be mapped to con-
straints on specific modified gravity theories, as was done
in [24,25]. As the number of these events increases, we
can expect the constraints to become more and more
stringent [23].
The ppE modifications to the GWs emitted by binary

systems do not just affect the observables of GW detectors,
but they also modify ppK parameters. For example, ppE
modifications to the GW amplitude or to the GW phase
affect the rate of decay of the orbital period of any binary

system, since the latter depends on the energy flux carried
away from the system by GWs. In [26] (from here on
YH10), the authors showed explicitly how ppE modifica-
tions affect the rate of orbital period decay, and then they
derived relational constraints on the ppE parameters as a
function of the post-Newtonian (PN) order1 at which they
appear, given binary pulsar observations. These relational
constraints were then evaluated using measurements of the
orbital decay of the double binary pulsar PSR J0737-3039.
To obtain these constraints, the component masses were
fixed to their best-fit values, obtained by radio astronomers
from the observations of Keplerian and post-Keplerian
parameters of the binary while assuming GR is valid.
In this paper, we extend the study of YH10 by carrying

out a Bayesian analysis on six binary pulsar observations to
derive posteriors on the ppE parameters, marginalized over
the component masses. One of our main results is shown in
Fig. 1, where we plot the 95 percentile upper limit on the
amplitude and phase ppE corrections, as a function of the
PN order at which these corrections appear [see Eq. (1)].
These limits are obtained using Gaussian priors on the
component masses (see p1 in Sec. III C), informed from the
GR estimates which in turn are obtained from fitting pulsar
timing data to a GR timing model. As compared to the
results of YH10, also plotted in this figure, we see that our
bounds are better by 1–2 orders of magnitude at all PN
orders. This is because we use more observations than in
YH10, and the improvement in the constraints are in spite
of carrying out a Bayesian analysis in which the compo-
nents are allowed to vary. These constraints are thus more
stringent and more robust than those obtained previously
and should be used as informative priors for future studies
with binary pulsars or GW observations.
We want to make an important note here. In combining

multiple binary observations and obtaining these con-
straints, we have made an implicit assumption that the
non-GR correction is independent of the system parameters
like masses and spins. If this is not the case, then combining
measurements from different binary systems with different
masses/spins (and hence different values for the non-GR
corrections) will not be justified. In this scenario, one has to
carry out a theory specific analysis, by incorporating the
exact dependence of the non-GR corrections on the system
parameters.
The remainder of this paper explains the details involved

in obtaining these results and it is organized as follows.
In Sec. II, we present a brief overview of parametrized tests
of GR and how they can be used to obtain evidence or
constrain deviations from GR in a model-independent
manner. In Sec. III, we discuss our Bayesian scheme

1The PN approximation is one in which the field equations are
solved as an expansion about small velocities and weak fields. An
expansion of NPN order is one that is proportional to v2N relative
to its leading order, controlling factor [27].
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and how we obtain our upper limits on the ppE parameters.
In Sec. IV, we conclude with a discussion of our results and
implications. Henceforth, we used geometric units in which
G ¼ 1 ¼ c unless otherwise stated.

II. PARAMETRIZED TESTS OF GR

In this section, we introduce the ppE and the ppK
frameworks and show how they lead to modifications
to binary pulsar observables. The interested reader is
referred to [15,19] and [10–12] for more details on these
frameworks.

A. ppE framework

The ppE framework was introduced by Yunes and
Pretorius to study deviations from Einstein equations, in
a systematic and model-independent manner [15]. In this
sense, the ppE framework is similar to the parametri-
zed post-Newtonian formalism, which was built as an
expansion about Minkowski space to describe weak field
interactions in the Solar System, or the ppK framework
mentioned in the previous section. The advantage of the
ppE framework is that one can measure or constrain generic
deviations from GR predictions instead of looking for some
specific kind of deviation that may be predicted by a
particular (alternative) theory.
The authors of [15] focused on GWs emitted by the

quasicircular inspiral, merger, and ringdown of binary black
holes. The deviations were encoded in the GW model of
the detector response to an impinging GW through cor-
rections in both the GW amplitude and the GW phase in
the frequency domain. The standard ppE framework pro-
poses modifications to the frequency-domain waveform

corresponding to the two GR polarizations, but since then,
the framework has been expanded to allow for the presence
of additional polarizations [37]. The frequency-domain
corrections arise due to modifications in the binding energy
of the binary system or its rate of change. The proposed
enhancements correspond to deviations in the waveform
amplitude and phase, which can be written as

h̃ðfÞ ¼ h̃GRð1þ αuaÞexpiβub ; u ¼ ðπMfÞ1=3; ð1Þ

where h̃ðfÞ is the ppEmodified (Fourier-domain) waveform,
h̃GR is the GRwaveform,M ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 is
the chirp mass, with component masses m1;2, and f is
the GW frequency. We see that in addition to the system
parameters, like the masses, the modified waveform also
depends on ppE parameters. The ppE parameters α and a
are amplitude parameters, while β and b are ppE phase
parameters.
The ppE parameters α and β control the magnitude of

the GR deviations, and thus, they can be constrained from
observations, while a and b determine the PN order at
which the modification enters the waveform, and hence
they characterize the type of physical modification. Note
that b ¼ ðk − 5Þ=3 corresponds to correction appearing at
the (k=2)PN order. A correction with b ¼ −5=3 corre-
sponds to a modification at leading PN order (0PN), and
hence, corrections entering with b < −5=3 and b > −5=3
are understood as negative and positive PN corrections
respectively. In general, α and β can depend on the system
parameters, in addition to any fundamental (coupling) con-
stants introduced by the alternative theory. GR predictions

FIG. 1. Joint 95 percentile upper limits on the ppE amplitude parameter α (left) and ppE phase parameter β (right) as a function of the
ppE amplitude exponent a (left) and b (right), after marginalizing over the component masses, from the observation of six binary
pulsars: J2222-0137, J1012-5307, J0348-0432, J0737-3039, J1909-3744, and J1738-0333 [13,28–36]. These limits are obtained using
Gaussian mass priors informed from GR estimates (see p1 in Sec. III C). The region above the (black) solid line is ruled out by these
observations. For comparison, we also include here the relational constraints derived in [26], which are 1–2 orders of magnitude weaker
than those obtained here.

IMPROVED BINARY PULSAR CONSTRAINTS ON THE … PHYS. REV. D 101, 104011 (2020)

104011-3



can be recovered in this framework by simply setting
ðα; βÞ ¼ ð0; 0Þ.
The ppE waveforms can be thought of as a result to

generic modifications to the orbital chirping rate of the
binary, _F (= _EðdEb=dFÞ−1). This rate can be modified if
one modifies the conservative sector, i.e., the orbital
binding energy Eb, or if one modifies the dissipative sector,
i.e., the amount of energy lost from the binary systems due
to emission of GW (or any other propagating degree of
freedom), _E. Since both modifications lead to changes in
the GW frequency and phase, the detection of a deviation
from GR does not allow one to determine whether this
deviation was a result of modifications to the conservative
or the dissipative sector.

B. ppK framework

As discussed briefly in Sec. I, in order to study the strong
field regime of binary pulsar observations, and the back
reaction on the orbital dynamics due to GW, one can use the
ppK parametrization. This provides a way to obtain theory-
independent information by fitting the Keplerian and post-
Keplerian parameters in a timing model. There are five
Keplerian parameters that are usually employed to describe
the orbital dynamics: the orbital period Pb, the orbital
eccentricity e, the projected semimajor axis x, the longitude
of periastron ω, and the time of periastron passage T0. For
any gravity theory, the post-Keplerian parameters can be
written as functions of one or more of these Keplerian
parameters, the component masses, and any extra param-
eters (new fundamental constant) that the theory may
introduce.
Consider the post-Keplerian parameter _Pb which is

related to the orbital period damping due to GW emission.
In GR, one can relate this post-Keplerian parameter to the
Keplerian parameters Pb and e via [38]

_Pb
GR ¼ − 192π

5

mpmc

M2

1þ 73e2=24þ 37e4=96
ð1 − e2Þ7=2

V5
b

c5
; ð2Þ

where mp and mc are the pulsar and companion masses,
respectively, M is the total mass, and Vb ≡ ðGMnbÞ1=3,
with nb ≡ 2π=Pb. Observe that this post-Keplerian param-
eter (and in fact other post-Keplerian parameters in GR) is
independent of the internal structure of the component
objects, which may not be true in modified theories. For
example, in mono-scalar-tensor theory, the rate of change
of the orbital period depends on the difference between the
effective scalar coupling α of the component objects
[39,40] via

_Pb
ST ¼ −2π

mpmc

M2

1þ e2=2
ð1 − e2Þ5=2

V3
b

c3
ðαp − αcÞ2

1þ αpαc
þOðV5

b=c
5Þ;

ð3Þ

where the subscripts p and c stand for the pulsar and its
companion, and Vb ¼ ðG%ð1þ αpαcÞMnbÞ1=3.
Other post-Keplerian parameters include the change in

the longitude of periastron _ω, change in the orbital
eccentricity, and the projected semimajor axes, _e and _x.
Besides these, there are post-Keplerian parameters which
are important due to their relativistic effect that alters the
timing of the arrival of the radio pulses: Einstein delay γ
and the Shapiro time delay r, s. In this work, we focus only
on _Pb, since this is the only parameter that has been related
to the ppE corrections.

C. Mapping between ppK and ppE frameworks

As in the _Pb case, other post-Keplerian parameters can
also be related to Keplerian parameters, and then fitted with
binary pulsar measurements, but for the purpose of this
paper, we will focus on the orbital period decay _Pb. As we
will show next, we can relate the post-Keplerian parameter
_Pb to the post-Einsteinian parameters α and β at any fixed
PN order determined by the post-Einsteinian parameters a
and b. Such a mapping is not so simple (and in fact, has not
yet been derived) for other ppK parameters, because the
ppE formalism has not yet been extended to eccentric
orbits.
In order to put constraints on post-Einsteinian parame-

ters using binary pulsar measurements, we first need to map
the ppK parameters, in the present case _Pb, to the ppE
corrections we introduced in Eq. (1). If the binding energy
of the binary system is the same as in GR, the gravitational
wave luminosity _E can be related to the orbital decay _Pb as

_Pb

Pb
¼ 3

2

_Eb

Eb
¼ −

3

2

_E
Eb

; ð4Þ

where _E is the energy lost due to GW emission (and the
emission of any additional propagating degree of freedom),
Eb is the binding energy of the system, and in the second
equality we have used energy balance, i.e., the amount
of binding energy lost due to GW emission is equal to
(negative of) the amount of energy carried away by GWs
(and any other propagating field).
As discussed in Sec. II, the ppE corrections cannot

distinguish between modifications due to corrections to the
binding energy or to the GW luminosity (or to both). In
YH10, the authors considered modifications in the dis-
sipative sector, i.e., in the energy carried away by the GW,
while keeping the binding energy the same as in GR. Under
this assumption, they found that _E is modified as follows:

_E ¼ _EGR

!
1þ π2M2βbðb − 1Þub−2

"
d2ΨGR

df2

#−1$
; ð5Þ

where ΨGR is the GW phase in GR. The quantity _EGR for a
binary system in an eccentric orbit is [41]
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_EGR ¼ −
32

5
η2

M5

r512
ð1 − e2Þ−7=2

"
1þ 73

24
e2 þ 37

96
e4
#
; ð6Þ

where r12 is the length of the semimajor axis. Using these
expressions, and in the light of the energy balance equation
[Eq. (4)], one can write the phase corrected orbital decay as

_Pb

Pb
¼

"
_Pb

Pb

#

GR

"
1þ 48

5
βbðb − 1Þubþ5=3

#
; ð7Þ

thus relating the post-Keplerian parameter _Pb to the post-
Einsteinian parameter β at fixed b. Note that one can do a
similar exercise of relating the ppE phase correction to _Pb
assuming that the correction comes from the conservative
sector (changes in the binding energy of the orbit) as shown
in [42].
The GW amplitude also depends on the rate of change

of the orbital frequency, _F, and so we can also express
GW luminosity in terms of the amplitude ppE parameters.
YH10 followed this logic and found that _E can be
expressed in terms of amplitude ppE parameters as

_E ¼ _EGRð1þ αuaÞ2: ð8Þ

This in turn can be used to obtain the amplitude corrected
orbital decay as

_Pb

Pb
¼

"
_Pb

Pb

#

GR
ð1þ 2αuaÞ; ð9Þ

where the GR prediction is

"
_Pb

Pb

#

GR
¼ −

96

5

ηm3

r412
ð1 − e2Þ−7=2

"
1þ 73

24
e2 þ 37

96
e4
#
:

ð10Þ

As noted in YH10, observe that there is a one-to-one
mapping between the amplitude and phase correction
parameters, namely, a ¼ bþ 5=3 and β ¼ 5α=ð48bðb −
1ÞÞ if the waveform amplitude and phase are modified due
to the same mechanism.
Equations (7) and (9) show us how to use the measure-

ments of post-Keplerian parameters obtained from binary
pulsar observations to constrain post-Einsteinian parame-
ters. In YH10, the authors obtained relational constraints
on the magnitude of the ppE corrections (α and β) by
relating them to the binary pulsar observational error δ,
which is indicative of the accuracy with which the orbital
decay is measured. To be clear, the authors of YH10
assumed that the observed ppK parameter ð _PbÞo matched
its predicted value in GR ð _PbÞth, up to some uncertainty δ
(in units of Hz), i.e.,

"
_Pb

Pb

#

o
¼

"
_Pb

Pb

#

GR
þ δ: ð11Þ

Then, they set this equation equal to either Eq. (7) or (9),
and solved for α and β to find a constraint in terms of
Keplerian parameters and the uncertainty δ. Upper limits
on the post-Keplerian parameters can then be obtained for
different values of a and b (corresponding to deviations
arising at different PN orders) assuming a value for the
Keplerian parameters, which YH10 took to be the best-fit
values obtained from the fits to a GR timing model.

III. BAYESIAN ANALYSIS AND
PARAMETER ESTIMATION

In this section, we describe the dataset used in this work
and give a brief overview of the Bayesian formalism. In
YH10, relational constraints were obtained on the ppE
amplitude and phase parameters, by fixing the component
masses to the values predicted by assuming the validity of
GR. Although this is a good approximation on the upper
limits of these parameters, a more robust method to obtain
constraints is to do a joint Bayesian parameter estimation
study varying over all free parameters in the model, i.e.,
over the post-Einsteinian parameter and the component
masses simultaneously. Note that we do not allow the
eccentricity to vary because for the binary pulsars consid-
ered here, the orbits are all very nearly circular. We use a
Bayesian framework for parameter estimation and study the
effect of various mass priors on the estimation of the ppE
corrections, considering the observations of multiple binary
pulsars. We expect that the inclusion of more binary pulsar
observations will enhance the constraints on ppE param-
eters, while allowing the masses to vary may have the
opposite effect. In this section, we give a brief overview of
the data used, the Bayesian scheme, and the Markov Chain
Monte Carlo (MCMC) sampling approach we will employ
to estimate the posterior distribution of masses and ppE
corrections.

A. Data

We use six binary pulsar observations of the orbital
decay to put constraints on the amplitude and phase cor-
rections appearing at various PN orders. These are J2222-
0137, J1012-5307, J0348-0432, J0737-3039, J1909-3744,
and J1738-0333 [13,28–36]. All of these binaries have low
eccentricities (e < 0.1) and consist of a pulsar with either
an NS or a white dwarf companion. In order to obtain
constraints on the post-Einsteinian parameter α or β using
Eq. (7) and (9), we work with the measurements of the
Keplerian parameters fPb; eg and the post-Keplerian para-
meter _Pb; the best-fit measurements and the uncertainties
of these quantities for the different binary pulsars we
considered are presented in Table I. The post-Einsteinian
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parameter α or β and the component masses will be free
parameters of the model (more discussion to follow).
Before proceeding, let us make a clarifying point here.

Recall that in GR, the measurement of the two masses in
the binary requires at least two ppK measurements, such as
_Pb and the Einstein time delay parameter γ. What would
happen if we only used one ppK measurement, such as _Pb?
If so, there would not be enough information in the data to
break the fmp;mcg degeneracy, and we would not be able
to independently constrain the two masses. Therefore, one
should expect that any attempt to constrain ppE amplitude
parameters and the masses of the binary using only _Pb
should fail. As we will show later, this is not quite the case:
even when one assumes nothing about the masses, one can
still constrain the ppE amplitude parameters, albeit less
strongly than when one assumes the masses are known to
some degree. The masses themselves, however, are indeed
very poorly estimated when one uses only _Pb and assumes
no mass priors.

B. Bayesian formulation

For an introduction to Bayesian theory and inference, we
refer the interested reader to [43]. Our goal is to construct a
posterior distribution on the set of all the model parameters
θ ¼ fm1

p;m1
c; m2

p;m2
c;…pppEg, where mi

p and mi
c corre-

spond to the mass of the pulsar and its companion (for the
ith observation), respectively, and pppE corresponds to α
(for ppE amplitude corrections) or β (for ppE phase
corrections). According to Bayes theorem, the posterior
distribution for θ in light of measurements can be written as

pðθjDÞ ¼ LðDjθÞpðθÞ
pðDÞ

; ð12Þ

where pðθjDÞ is the probability density for the parameters
θ given the data D, also termed the posterior probability
density. The quantity LðDjθÞ is the likelihood function,
which represents the probability of measuring D given the
set of parameters θ. Finally, the quantity pðθÞ is the prior

probability on θ, which represents our state of knowledge
about these parameters before we analyze the data. The
denominator pðDÞ ¼

R
LðDjθÞpðθÞdθ is an overall nor-

malization constant, which is an important term to consider
in model selection studies. In most parameter estimation
schemes, one works with log-probability densities,

lnpðθjDÞ ∝ lnLðDjθÞ þ lnpðθÞ; ð13Þ

and the aim is to find the set of parameters that maxi-
mize lnpðθjDÞ.
We now outline how we use this framework to construct

the log-posterior as expressed in Eq. (13). We work with
the observable _Pb=Pb; this is our data D. We assume a
Gaussian model for this observable, i.e.,

lnLðDjθÞ ∝ −
1

2

ðð _Pb=PbÞo − ð _Pb=PbÞthÞ2

σ2ð _Pb=PbÞ
: ð14Þ

Here ð _Pb=PbÞo and ð _Pb=PbÞth correspond to the observed
value of the data and the theoretically predicted model, res-
pectively. The latter is given by Eq. (7) for phase correction
and Eq. (9) for amplitude correction. Note that the above
expressions are used for single measurement estimations.
Obtaining joint measurement estimates is straightforward
with our assumption of Gaussianity. For joint measure-
ments, the above expressions are modified to

LðDJjθÞ ∝
YN

i¼1

LiðDjθÞ;

or

lnLðDJjθÞ ∝ −
1

2

XN

i¼1

ðð _Pb=PbÞoi − ð _Pb=PbÞthi Þ2

σ2ð _Pb=PbÞi

; ð15Þ

where the superscript J signifies joint analysis. The ith
individual likelihood LiðDjθÞ can be read from Eq. (14),
where i ranges from 1 to N, N being the total number of
observations used for the parameter estimation.

TABLE I. Keplerian and post-Keplerian parameters for the six binary pulsar systems used in this work. The figures in parentheses
represent the estimated 1σ uncertainties in the last quoted digit. The eccentricities of all of these systems are very well measured, do not
contribute significantly to the error budget, and are therefore ignored in our analysis. For easy reference, we also show the estimated
values and 1σ uncertainty on the variable ( _Pb=Pb). Interested readers can refer to the cited papers to find the values of Keplerian and
post-Keplerian measurements for these binaries.

System Pb [days] e _Pb _Pb=Pb Ref.

J2222-0137 2.44576469(13) 3.8 × 10−4 −0.06ð9Þ × 10−12 −2.839& 4.259 × 10−19 [28,29]
J1012-5307 0.60467271355(3) 1.2 × 10−6 −0.15ð15Þ × 10−15 −2.871& 2.871 × 10−19 [30,31]
J0348-0432 0.102424062722(7) 2.6 × 10−6 −2.74ð45Þ × 10−13 −3.096& 0.508 × 10−17 [32]
J0737-3039 0.10225156248(5) 8.7 × 10−2 −1.25ð17Þ × 10−12 −1.417& 0.019 × 10−16 [13]
J1909-3744 1.533449474406(13) 1.1 × 10−7 −6ð15Þ × 10−15 −4.528& 0.132 × 10−20 [33,34]
J1738-0333 0.3547907398724(13) 3.5 × 10−7 −25.9ð3.2Þ × 10−15 −8.449& 1.043 × 10−19 [35,36]
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In the above expressions, σ represents the error on the
variable _Pb=Pb and it can be obtained by some simple
error propagation. In the absence of any covariances, the
uncertainty on a variable fðx; yÞ which depends on observ-
ables x and y satisfies

σ2f ¼
"∂f
∂x

#
2

σ2x þ
"∂f
∂y

#
2

σ2y;

where σx and σy are the observational uncertainties on x
and y, respectively. Hence, for our observable, we obtain

σ2_Pb=Pb
¼

"
1

Po
b

#
2

σ2_Pb
þ
"

1

Po
b

#
2
" _Po

b

Po
b

#2

σ2Pb
:

C. Priors

Now the only piece in the puzzle left to discuss is the
prior appearing on the right-hand side of Eq. (13). We begin
by discussing the priors on the component masses, and
then proceed with a discussion of our priors on the ppE
parameters.

1. Priors on masses

We will consider three cases that differ from each other
based on our assumptions about the component masses.
This will allow us to study the effect of the mass prior
probability on our marginalized posteriors. For the different
cases we studied in this work, the parameter space has
different dimensions. For easy referencing, we tabulate
them in Table II. Note also that, in addition to the mass
priors mentioned in this subsection, we further restrict the
pulsar mass and the companion mass in the ranges
mp ∈ ð0.5; 3Þ Msolar, mc ∈ ð0.05; 3Þ Msolar.

p1—Priors based on GR estimates.—In YH10, the authors
chose the component masses of the binary to be exactly
equal to the best-fit values obtained by fitting binary pulsar
data to a timing model to extract ppK parameters, and then
using the GR expressions for the ppK parameters as a
function of the Keplerian parameters and the component
masses to infer the masses. We will refer to component
masses obtained in this way as best-fit masses assuming
GR. Such a choice is reasonable because no strong field

observations have so far shown any evidence against GR.
To be completely theory agnostic, however, one should
treat the masses as free parameters to be fixed via a
parameter estimation scheme.
p1a As a starting point (and to compare our results with

those in the literature), one of our prior mass choices
will be to assume that the component masses are given
by their best-fit values assuming GR, i.e., the prior on
the masses are delta functions centered at the best-fit
values assuming GR. This prior is the same as that
chosen in YH10, and we will refer to it as a fixed-mass
prior. With this prior, the parameter set reduces to
θ ¼ fpppEg, and, given a value of the ppE exponent
a (b), we have a very simple parameter estimation
problem with only one parameter α (β) to maximize the
log-posterior over. This calculation can be easily
performed on a single observation, or on N observa-
tions through a joint parameter estimation study.

p1bWe will also find it convenient to relax this fixed-mass
prior to study its effect on our constraints on GR. To do
so, we choose a mass prior that is a Gaussian centered
at the best-fit values assuming GR, with width given
by the 1σ uncertainty in the GR estimate. With this
Gaussian mass prior, for a single observation, the
parameter set reduces to θ ¼ fmp;mc; pppEg, and
given a value of the ppE exponent a or b, we then
maximize the log-posterior [Eq. (13)], over a three-
dimensional parameter space. The same calculation
can then be repeated for N observations through a joint
analysis.

p2—Prior on mass ratio.—Instead of imposing a prior on
each of the component masses around their GR values, we
can make use of other measurements that constrain the
masses. If the companion to the pulsar is bright enough for
optical spectroscopy, the mass ratio R ¼ mp=mc can be
determined through combining the Doppler shifts in the
spectral lines with the timing observations of the pulsar.
This is also true for double-pulsar systems for which the
orbits of both NSs can be measured simultaneously. This is
because for any Lorentz-invariant theory of gravity, the
relative size of the orbits is related to the mass ratio of the
system (up to first PN order): R≡mp=mc ¼ ac=ap, and
hence one can estimate the mass ratio of the binary.
One choice of prior on the masses is then to assume a

Gaussian distribution on the mass ratio R, with width given
by the 1σ uncertainty in the measurement. We refer to this
prior as a Gaussian mass-ratio prior, and we note that out of
the six observations we use as data, only four binary
systems (J1012-5307, J0348-0432, J0737-3039, and
J1738-0333) have separate measurements of the mass ratio,
and so we only use these data for this prior. The parameter
set is still θ ¼ fmp;mc; pppEg for a single observation, but
the log-posterior now depends on the log-Gaussian prior on
R per Eq. (13), so that only a certain region in the fmp;mcg

TABLE II. Dimensionality of the parameter space for the
different cases studied in this work.

Priors
Single

measurement
Joint

measurements

Fixed-mass prior 1 1
Gaussian mass prior 3 13
Gaussian mass-ratio prior 3 9
Uniform mass prior 3 13
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parameter subspace is favored when exploring the
likelihood.

p3—Uniform prior.—The final case we consider is to treat
the masses as completely free with uniform linear priors.
This is the most ambitious case where we try to estimate
(2N þ 1) parameters from N observations, i.e., N mp
parameters, N mc parameters, and 1 ppE parameter, so
that θ ¼ fmc;1; mc;2;…; mc;N; mp;1; mp;2;…; mp;N; pppEg.
In this case, we do not expect to find reasonable constraints
on all parameters, because a single ppK measurement per
binary pulsar observation is not enough to estimate both
component masses. As we will show later, however, even
though the masses cannot be well estimated, the ppE
amplitude parameter can still be constrained, albeit not
as strongly as when one assumes strong priors on the
masses.
Given these three choices of prior, which one is valid for

a test of GR? As we will explain later, the deterioration of
ppE constraints that occurs when we use priors (p2) and
(p3) is an artifact of only using measurements of _Pb as our
data. In reality, each of the pulsars we consider also has
measurements of other ppK parameters. If we were to
include such measurements as data in our analysis, they
would limit the range of allowed component masses to
what one obtains with the Gaussian mass prior in (p1b).
Results obtained with this latter prior are thus the ones we
quote in the introduction of this paper. Of course, we could
bypass this entire discussion of priors by using (p3) and
including all measured ppK parameters. This, however, is
not yet possible because a ppE mapping of these parameters
requires the extension of the ppE framework to eccentric
binaries; such an analysis must therefore be relegated to
future work.

2. Priors on ppE corrections

For the amplitude and phase corrections, we consider a
wide range of values for the ppE exponents a and b:
−2.8 < a < 0.8 and −2.0 < b < −0.6. The priors on the
amplitude and phase ppE parameters, α and β, are assumed
to be uniform in log α and log β, respectively. The boun-
daries of the range are informed from YH10 estimates. We
make the pessimistic assumption that the estimates in
YH10 are optimistic and set our upper boundary on the
ppE parameters to be slightly worse than those obtained by
YH10. As an example, consider the amplitude ppE param-
eter when a ¼ −2 for which YH10 obtains the upper limit
α≲ 10−21. For our analysis, we would then set the prior
boundaries on log α to be −40 < log α < −18. We use
similar considerations to set the boundaries for the phase
correction parameter β. We then perform the optimization
exercise for each discrete value of a (b) and calculate the
marginalized 95 percentile upper limit on the ppE correc-
tions α (β). We further checked that these upper limits do

not change by any appreciable amount if we modify the
prior limits that are set on the ppE parameter log α (log β).
One may wonder how much the choice of the priors

influences the constraints. As mentioned, in this study we
have used uniform priors on log θppE. An alternative choice,
frequently made when determining upper limits on param-
eters, is to use uniform priors on θppE. Using a uniform

FIG. 2. Constraints on the pulsar and companion masses (mp
and mc), and on the (log) ppE amplitude parameter log α (top)
and the (log) ppE phase parameter log β (bottom). These
constraints are obtained by a Bayesian parameter estimation
analysis using the measurements of PSR J0737-3039, assuming
the corrections occur at −1PN order (a ¼ −2=3 or b ¼ −7=3).
We also show the mean values (“best fits”) for the component
masses with a dashed (red) line. For the ppE corrections (corner
right plot in both panels), the dashed (red) line corresponds to the
95 percentile upper limit.
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prior on the logarithm of a parameter amounts to saying that
any order of magnitude for the parameter θppE is equally
likely, whereas using a prior on the parameter itself
amounts to saying that any value of the parameter θppE
is equally likely. But, in practice, a uniform prior on the
logarithm of a parameter will also give more weight to
lower values of the parameter when exploring the posterior
distribution [Eq. (13)], since in this case pðθppEÞ ∝ 1=θppE.
Given that the ppE corrections are to be understood as small
deformations from GR, a uniform prior on the logarithm of
the ppE parameter seems to be the appropriate choice. If
one insisted on using a uniform prior on the ppE parameter
itself, the bound on the ppE parameter would deteriorate by
roughly 1 order of magnitude, leading to the largest
deterioration (by a factor of 80) when b ¼ −0.6.

D. Sampling the posterior

One can reconstruct the posterior distribution from
Eq. (12) in a brute-force way, by creating a simple grid
and evaluating this function at each grid point to find the
parameter values for which the function is maximum. It is
obvious that this exercise would become computationally
very expensive (almost impossible) in cases where we
have a complicated likelihood function or more than a
few parameters to sample. Instead, one can make use of
MCMC sampling algorithms, which generate a list of
samples for θ according to the posterior distribution
pðθjDÞ. We use the PYTHON package emcee to carry
out the exploration of the posterior distribution [44].
emcee is an implementation of Goodman and Weare’s
Affine Invariant MCMC ensemble sampler [45], which
has an advantage over the standard Metropolis Hastings
algorithms when the scales of covariances of the target
distribution are not well known.

IV. RESULTS AND IMPLICATIONS

In this section, we present the results of our Bayesian
analysis. Note that, as mentioned earlier, since we have
only used one ppK measurement, _Pb, we can expect to find
reasonable mass estimates only when we use additional
mass information. This includes either using GR estimates
(p1) or using measurements of the mass ratio (p2). This is
true even if we do a GR only test case without any ppE
corrections, because at least two ppK measurements are
required to uniquely identify the component masses.
We begin by considering constraints from a single

observation, the double binary pulsar J0737-3039, so that
we can compare our results to those in YH10. We then
consider constraints on ppE parameters from six different
binary pulsars. We conclude by computing joint constraints
from the stacking of all six binary pulsar observations.

A. J0737-3039 and comparisons to YH10

We start by first comparing our results with the work of
YH10, where the authors used observations for the pulsar
J0737-3039, fixed the component masses to their GR
values, and obtained relational constraints on the ppE
parameters. Our first step is then to follow their assump-
tions and to choose a fixed-mass prior (p1a), so as to obtain
the upper limit on the post-Einsteinian phase parameter β,
focusing on the correction appearing at −1PN order as a
test case. As discussed earlier, we have only one free
parameter to estimate in this case: the ppE phase correction
β. We find that our 95 percentile upper limits are approx-
imately β ≲ 10−10, (log β < −10.725) which is roughly the
same as the relational constraints obtained in YH10,
namely, βYH10 ≲ 10−10. We find that this agreement with
YH10 extends to other PN orders as well when comparing
YH10 to our 95 percentile upper limits.

FIG. 3. 95 percentile upper limits on ppE corrections obtained from the different binary pulsar observations used in this work. The left
and right panels correspond to amplitude and phase corrections, respectively. This figure shows that the best constraints come from
observations of J1738-0333 and the double-pulsar J0737-3039 (for more discussion, see Sec. IV B).
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Next, we relax our assumptions on the component
masses and analyze the effect of using Gaussian mass
priors (p1b), informed from their GR values. In this case,
we need to estimate three parameters: mp, mc, and α or
β. As an example case, we again focus on the ppE
corrections appearing at −1PN order and show our
constraints in Fig. 2. The 95 percentile upper limits in
this case are α≲ 10−9 (log α < −9.228) and β ≲ 10−10,
(log β < −10.720), which is essentially the same as what

we find with the fixed-mass prior. As discussed earlier,
pulsar timing observations are high precision measure-
ments and they provide very precise estimates of the
component masses when multiple ppK parameters are
measured. Due to the extremely small error estimates,
using a Gaussian prior is almost the same as using the
fixed-mass prior, as is evident from the mass estimates
seen in the corner plots in Fig. 2.

B. Individual measurements

We now study all the binary pulsars individually to see
which measurements provide the best constraints on the
ppE corrections using the fixed-mass prior case (p1a).
This choice of prior is the simplest to consider when
carrying out a comparative analysis, since we only have a
single parameter to estimate, but as we saw above, the
resulting constraints are essentially the same as what
one would obtain with a Gaussian mass prior (p1b). The
95 percentile upper limits on α and β are shown in Fig. 3
as a function of a and b. The two most constraining
measurements are from the millisecond pulsar J1738-0333
and the double-pulsar J0737-3039.
One can understand this by looking at the relation

between the ppE parameters and the measurable quantities
through Eqs. (7) and (9). This is how YH10 originally
obtained their relational constraints. If we assume that the
measurements of _Pb=Pb are very close to their GR values
(which is a very reasonable assumption), then one can
roughly relate α (or β) to the accuracy, δ, with which these
Keplerian and post-Keplerian observables are measured,
namely,

FIG. 4. Constraints on the amplitude correction α, obtained
from the measurements of the binary pulsar J0737-3039. Differ-
ent curves correspond to fixing the component masses to different
values (see Sec. IV B for details). This figure shows that
observations of lower mass systems can better constrain negative
PN order modifications to GR.

FIG. 5. Joint 95 percentile upper limits on the ppE amplitude parameter α (left) and ppE phase parameter β (right) as a function of the
ppE amplitude exponent a (left) and b (right), similar to Fig. 1. In this plot, in addition to the black curve of Fig. 1, we show constraints
obtained using other mass priors. The figure shows that the joint constraints are about 1 or 2 orders of magnitude stronger than those
found in YH10 and independent of whether one fixes the component masses (solid black curve) or uses a Gaussian prior (dashed red
curve), informed from the GR estimates. The constraints deteriorate if we use uniform priors on the component masses (dotted magenta
curve) because we focus on constraints derived using a single ppK measurement ( _Pb).
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where δ is the uncertainty on the observed ð _Pb=PbÞ, while
ð _Pb=PbÞGR is the GR prediction. We find that these
relational constraints are the strongest for J1738-0333
and J0737-3039 because the combination δ × ðPb= _PbÞ ∝
δ × r412=ðηm3Þ is the smallest for these binaries. That is,

FIG. 6. Corner plot showing the joint estimation of mass parameters and the phase ppE corrections appearing at −1PN order. The
priors on the masses are set using their GR values (Gaussian mass prior), and the prior on the ppE correction is uniform (see Sec. III for
details). We also show the mean values (best fits) for the component masses with a dashed (red) line. For the ppE corrections (corner
right plot), the dashed (red) line corresponds to the 95 percentile upper limit. Observe that the estimates on the component masses are
very tight owing to the use of GR estimates as priors and the ppE correction does not appear to be correlated with any of the mass
estimates.
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these two binaries are not just the two most relativistic ones,
but they also have very well-measured ppK parameters.
As a further analysis, let us now study how the con-

straints are affected by our knowledge of the component
masses. For this study, we estimate constraints on the
amplitude ppE parameter while fixing the component
masses to the least possible/largest possible allowed values.
We show the 95 percentile upper limits obtained for one of
the most informative binaries, J0737-3039, in Fig. 4. From
this figure, we observe that the binaries providing the best
constraints on negative (positive) PN corrections have a
lower (higher) total mass for fixed Pb and _Pb. This can be
understood by looking at the nature of the amplitude
correction: αua. For fixed frequency, lower mass values
have lower values of u (¼ ðπMfÞ1=3), which means that if
a < 0 the ppE amplitude corrections are larger than in the
high mass case. Hence, the low mass cases allow a larger
modification and are therefore easier to constrain by these
measurements. The situation reverses when a > 0 which is
also evident in Fig. 4, although the effect is less pronounced
since the positive a range is different than the negative a
range in the figure. Similar conclusions can be drawn
from Fig. 3.

C. Joint measurements

We now use the whole set of six binary pulsar mea-
surements to obtain joint constraints on our ppE modifi-
cations. We discuss below the results from these studies for
each mass prior case considered here.

1. Joint results using priors based on GR estimates

The 95 percentile upper limits obtained from the joint
analysis using fixed-mass priors (p1a) are shown as black
curves in Fig. 5. Similar results hold when we use the

Gaussian mass prior (p1b), shown by a red dashed curve in
Fig. 5. As expected, the joint constraints are better than
constraints with single observations and with the relational
method of YH10 by roughly 1–2 orders of magnitude. At
all PN orders, we see improvements on the upper limits of
both the amplitude and phase corrections.
As an example case of what goes into the analysis we

performed, we show in Fig. 6 the results of our Bayesian
study for a ppE phase correction at −1PN order (b ¼ −7=3)
using a Gaussian mass prior. We do not observe any
significant changes in the corner plot when we look at
ppE amplitude corrections, or ppE corrections at other PN
orders. The corner plot shows that the masses do not
present significant correlations, with each marginalized
posterior considerably Gaussian. Again, this is due to the
very high precision with which the masses are estimated by
the pulsar timing analysis. The construction of Fig. 5
required the calculation of corner plots like that shown in
Fig. 6 at each PN order sampled.

2. Joint results using priors on the mass ratio

As an example of how the marginalized posteriors
changes when we use the Gaussian mass-ratio prior,
Fig. 8 shows the corner plot for a ppE phase correction
at −1PN order (b ¼ −7=3), for the binary J1738-0333. In
this figure, we compare the Gaussian mass prior (black
contours) to the Gaussian mass-ratio prior (gray contours),
and we observe that the marginalized posteriors on the
component masses have a larger uncertainty than when we
use GR informed priors on the masses. This widening in the
joint posterior is responsible, in part, for the slight
deterioration of the ppE constraint. Similar results are
obtained for all four binaries for which mass-ratio mea-
surements are available (see Sec. III C).

FIG. 7. Joint 95 percentile upper limits on the ppE amplitude parameter α (left) and ppE phase parameter β (right) as a function of the
ppE amplitude exponent a (left) and b (right), similar to Fig. 1. In this plot, however, we compare constraints obtained using only the
four binaries for which mass-ratio measurements are available. The figure shows that the joint constraints worsen if we use a prior on
the mass ratio (dotted blue curve) instead of priors on the component masses derived assuming GR (dashed red curve).

REMYA NAIR and NICOLÁS YUNES PHYS. REV. D 101, 104011 (2020)

104011-12



Next, we do the joint analysis using all four binaries. The
95 percentile upper limits using the Gaussian mass-ratio
prior (p2) are shown as dotted blue curves in Fig. 7. We also
show constraints obtained by analyzing these four binary
observations with Gaussian mass prior (p1b) (as opposed to
six observations in Sec. IV C 1). Again, as expected, we see
the constraints slightly worsen, at all PN orders, if we do
not include information from the GR estimates (dashed red
curve). This is because lifting the prior on the masses
allows the chains to explore a wider region in the
component-masses subspace, and since we are only using
1 ppK parameter here, the masses are not well constrained.

This inflates the marginalized posterior on the ppE defor-
mation deteriorating the bound.
We refrain from plotting a curve corresponding to this

case in Fig. 5 since the number of observations analyzed in
this case is different from all other cases we considered
(similar curves are shown in Fig. 7 instead). Nevertheless,
If one were to plot it, the curve will closely trace the dotted
magenta line corresponding to the uniform mass prior case.

3. Joint results using a uniform mass prior

If we use flat priors on the masses, without any addi-
tional information (p3), our overall estimation of the

FIG. 8. Corner plot showing the joint estimation of mass parameters and the phase ppE corrections appearing at −1PN order, for the
binary J1738-0333. Black contours correspond to the case where the priors on the masses are set using their GR values (Gaussian mass
prior), and the prior on the ppE correction is uniform. The gray contours, shown here for comparison, correspond to the case where the
measurement of the mass ratio is used as a prior. We also show the mean values (best fits) for the component masses with a dashed (dash-
dotted) line for the Gaussian mass prior (mass-ratio prior) case. For the ppE corrections (corner right plots), the dashed (dash-dotted) line
corresponds to the 95 percentile upper limit for the two cases. Observe that the estimates on the component masses worsen when we use
the mass-ratio prior, compared to the Gaussian mass prior case, but the effect on the estimate of the ppE correction is mild. We also show
the upper limit obtained when using uniform priors on masses (dotted red line), but corresponding histograms for the masses are not
shown since we only recover the priors on the masses in this case.
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parameters worsens. We find that we cannot estimate the
component masses for any of the six binaries with
significant confidence. Again, this is due to the fact that
we are using a single ppK measurement for the analysis
without any additional information on the masses. Hence,
we have to explore a much larger parameter space with very
limited information. The 95 percentile upper limits on the
amplitude and phase ppE corrections, at various PN orders,
are shown as dotted magenta curves in Fig. 5. We find that
the constraints on the phase corrections are now around 1–2
orders of magnitude weaker than the case in which the mass
priors are chosen based on GR estimates.
To present an example of how our estimates change

when we use this prior, Fig. 8 shows the 95 percentile
upper limit for the ppE phase correction at −1PN order
(b ¼ −7=3), estimated by analyzing the binary J1738-
0333. We do not show the full corner plot for this case
as the marginalized histograms for the component masses
will merely show that we manage to recover the priors. In
spite of this, we find that, although removing prior
information about the component masses has a disastrous
effect on the estimation of the masses, it does not prevent us
from constraining the ppE parameters. Clearly, there is a
deterioration of the ppE constraints by an order of magni-
tude, but a constraint is still possible, even though the
masses cannot be estimated. The reason for this is that a flat
prior still has a boundary, so the chains are not allowed
to explore any value of the component mass subspace.
This limitation is apparently sufficient to allow for ppE
constraints.
Given that the ppE constraints depend on the priors, as

shown for a test case in Table III, which bound should we
take seriously? The answer to this question reveals itself
when we understand why the ppE constraints depend on
the priors. As we have explained throughout this paper, this
is because when one uses a single ppK parameter, the
component masses of the binary pulsar cannot be mea-
sured, due to the strong degeneracy between these param-
eters (most evident in Fig. 8). This induces a widening of
the marginalized posterior on the ppE constraints. In that
sense, this variation in the ppE estimates for different mass
priors is artificial and just a consequence of working with a
single ppK measurement. If we instead had worked with
two ppK measurements (such as _Pb and the Einstein delay)
or more ppK parameters, then there would be enough
information in the data to constrain the component masses

much better, yielding ppE constraints that are similar to
what we find when we use Gaussian mass priors. An
extension of this paper to include multiple ppK parameters
is left to future work, as it first necessitates the extension of
the ppE framework to eccentric binaries.
Let us then close by providing an analytic fit for the

constraints on the amplitude and phase ppE constraints
as a function of the ppE exponents in the case of Gaussian
mass priors. It is easiest to fit log α (log β) to a (b) since
the relationship is very close to linear, as is demonstrated
in Fig. 1, and also in YH10. We obtained the following
fitting functions from our constraints for the fixed-mass
case:

logα ¼ −3.9822aþ 8.5753; ð18Þ

log β ¼ 9.5777bþ 8.5618; ð19Þ

where we have used the 95 percentile upper limits.

D. Comparison with LVC constraints

The LIGO-Virgo Collaboration (LVC) has also per-
formed GR tests and released constraints on model-
independent deviations from GR [23]. In these studies,
relative shifts in the PN coefficients of the Fourier phase,
δϕ were constrained using GWevents, where δϕ is defined
using (i corresponds to non-GR corrections entering at
different PN orders)

ϕi ¼ ϕið1þ δϕiÞ ð20Þ

and then treated as an additional free parameter in the
parameter estimation scheme. Note that in the LVC paper
i ¼ n corresponds to (n=2)PN order and we follow this
scheme here.
To compare binary pulsar constraints to those obtained

by the LVC, we perform a study similar to that of the
previous subsections, but now treating δϕi as our GR
correction parameter instead of using the ppE phase
correction β. We use flat priors in δϕi and obtain posterior
samples for the corrections to compare the upper limits
with LVC constraints. This exercise is straightforward for
the PN corrections appearing at −1PN, −0.5PN, 0PN, and
0.5PN order, since δϕ can be very easily related to β for
these cases [24],

β−1PN ¼ 3

128
δϕ−2η2=5;

β−0.5PN ¼ 3

128
δϕ−1η1=5;

β0PN ¼ 3

128
δϕ0;

β0.5PN ¼ 3

128
δϕ1η−1=5: ð21Þ

TABLE III. Comparison between the 95 percentile upper limits
obtained on the magnitude of the phase ppE correction log β
appearing at −1 PN order i.e., for b ¼ −7=3 [Eq. (1)] for the
different cases studied in this paper.

mGR NðmGR; σGRm Þ NðR; σRÞ Uniform in mass

−10.3 −10.2 −9.7 −9.8
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For other PN corrections, one would have to account for
additional physical parameters like spin, which is beyond
the scope of this paper.
Binary pulsar constraints on the −1PN, 0PN, and 0.5PN

corrections can be directly compared to those obtained by
the LVC. Since the LVC did not release the posterior
samples for combined measurements, we use the posterior
samples obtained from the most constraining GW event,
GW170608, for our comparison [46]. These constraints are
very close to the joint LVC constraints, as is evident from
Fig. 4 in [23].
The comparison between our binary pulsar constraints

and those obtained by LVC is shown in Table IV. We see
that the constraints obtained from binary pulsar measure-
ments are competitive with those obtained from GW
measurements at 0PN order, and much tighter than LVC
constraints at −1PN correction, as expected. But LVC
constraints become tighter than binary pulsar ones at
positive PN order. Hence, our constraints at lower (neg-
ative) PN orders can be used as informed priors for future
LVC studies.

V. IMPLICATIONS

In this work, we have presented constraints on the ppE
framework using Bayesian analysis of six binary pulsar
observations. The constraints, which are 95 percentile
upper limits, are 1–2 orders of magnitude tighter than
those obtained through approximate (non-Bayesian) meth-
ods with the double binary pulsar in YH10. We have further
found that our constraints on the ppE corrections are robust
to our assumptions regarding the component masses, i.e.,
different mass priors.
Our most important results are shown in Fig. 5. The areas

above the black solid curves are excluded by the joint
measurement of six binary pulsar observations. This
implies that the amplitude and phase correction magni-
tudes, α and β, have to be smaller than these upper limits at
the different PN orders shown in the figure. The general
trend in these plots, of increasing upper limits with
increasing values of a or b, is as expected from theoretical
considerations (see, e.g., YH10). This can be understood by

looking at the mathematical structure of the ppE corrections
[see, e.g., Eq. (1)]. The ppE corrections become smaller the
larger the value of a or b, since the systems we are studying
are low velocity sources. We also showed that for constant
Pb and _Pb (and the same measurement accuracy), binary
systems with lower (higher) total mass give tighter upper
limits on negative (positive) PN ppE corrections (see,
e.g., Fig. 4). Our constraint on the generic GR deviation
parameter at −1PN order, δϕ−2, is around 4 orders of
magnitude tighter than the corresponding LVC constraint as
of the submission of this paper.
This is the first study of ppE constraints with binary

pulsar observations that analyzes assumptions regarding
the component masses We analyzed different mass priors
(III C) and found that the major contribution in determining
these upper limits is the number of binary pulsar observa-
tions, how relativistic these binaries are, how well the ppK
parameters are determined, and how many ppK measure-
ments are used for each of these observations. We also
studied how much these constraints could vary if we
assumed uniform priors on the masses. Since we used a
single ppK measurement for these binaries, in the absence
of any additional mass information, we obtained uninform-
ative posteriors on masses, but the effect on the estimates of
the ppE corrections was considerably milder, suggesting
the constraints derived here are robust.
Our ppE constraints can be used as priors when perform-

ing similar studies using other pulsar observations or future
GW observations. An interesting extension to this project,
which is ongoing, is to relate other post-Keplerian param-
eters to ppE corrections so that more data from binary
pulsar observations can be utilized for testing GR. This task
is complicated because it may require a deeper under-
standing of how to extend the ppE framework to more
generic, eccentric, and possibly spinning binaries. An
interesting approach would be to carry out an effec-
tive field theory treatment in which a ppE-corrected
Einstein-Infeld-Hoffman Lagrangian is derived to obtain
ppE-corrected (conservative) equations of motion. The
latter would be important to map ppK parameters to ppE
parameters.
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TABLE IV. Comparison of our 95 percentile upper limits on δϕ
using joint measurements of binary pulsars, with those obtained
by LVC [23,46] using the measurements from GW170608.

PN order LVC This work

−1PN 5.4 × 10−3 10−7

0PN 8.9 × 10−2 2.5 × 10−2

0.5PN 1.9 × 10−1 1.6 × 101
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