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Abstract

Posit is a recently proposed alternative to the floating point
representation (FP). It provides tapered accuracy. Given a
fixed number of bits, the posit representation can provide
better precision for some numbers compared to FP, which has
generated significant interest in numerous domains. Being a
representation with tapered accuracy, it can introduce high
rounding errors for numbers outside the above golden zone.
Programmers currently lack tools to detect and debug errors
while programming with posits.

This paper presents PosITDEBUG, a compile-time instru-
mentation that performs shadow execution with high pre-
cision values to detect various errors in computation using
posits. To assist the programmer in debugging the reported
error, PosITDEBUG also provides directed acyclic graphs of
instructions, which are likely responsible for the error. A
contribution of this paper is the design of the metadata per
memory location for shadow execution that enables produc-
tive debugging of errors with long-running programs. We
have used PosiTDEBUG to detect and debug errors in various
numerical applications written using posits. To demonstrate
that these ideas are applicable even for FP programs, we have
built a shadow execution framework for FP programs that is
an order of magnitude faster than Herbgrind.

CCS Concepts: « Software and its engineering — Soft-
ware maintenance tools.
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1 Introduction

Representing real numbers is important in a variety of do-
mains. The floating point (FP) representation is a widely used
approximation of reals using a finite number of bits [1, 20].
Being an approximation, not every real value can be exactly
represented in the FP representation. It has to be rounded
to the nearest value according to the rounding mode. The
IEEE standard represents a floating point number in the form:
(=1)* x M % 2E where s determines the sign of the number,
significand M is a fractional binary number ranging either
between [1,2) or [0, 1), and exponent E multiplies the value
with a power of 2. Further, there are numerous exceptional
values (i.e., NaNs and infinities).

Bugs in programs using FP have resulted in numerous
mishaps with catastrophic consequences [52, 53, 56]. Hence,
there is a large body of work on reasoning about the cor-
rectness and the accuracy of floating point programs [2-
4,7,8, 12, 15, 17, 19, 22, 23, 28, 36, 37, 42, 43, 55, 58—62, 66].
Further, good FP performance is paramount in many appli-
cation domains like machine learning and scientific comput-
ing. Given the need for varying performance and precision
trade-offs, many accelerators for machine learning use non-
standardized custom representations as replacements for
FP [5, 11, 24, 29, 31, 33, 39, 40, 57, 63, 64]. There is active in-
terest to explore new representations for better performance,
flexible precision, and dynamic range.

Posit is a recently proposed stand-in replacement for FP by
John Gustafson [26, 27]. Posit is a hardware friendly version
of unums (universal numbers) [25]. A number in the posit
representation consists of a sign bit, regime bits, optional
exponent bits, and optional fraction bits. In a (n, es)-posit
representation, there are n-bits in total and at most es-bits for
the exponent. Regime bits encode the super-exponent. When
a minimum number of regime bits are needed to represent
the number (i.e, 2), the remaining bits can be used to in-
crease precision, which provides tapered accuracy (Section 2
provides a detailed background).
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Promise of posits. The posit representation provides two
notable advantages compared to FP. (1) Given the same num-
ber of bits, posits can provide higher precision than FP for a
range of numbers. It provides variable precision with tapered
accuracy [45]. (2) An n-bit posit can represent more distinct
values than the FP representation with the same number of
bits. In contrast to FP, the posit representation has only one
zero, one value to represent exceptions, and a single round-
ing mode. Initial research has demonstrated the promise of
posits in high performance computing [27]. For example,
the sigmoid function, which is commonly used in neural
networks, can be approximated by bitwise operations: right
shift of the posit bit-string by two bits after a negation of the
sign bit [27]. There is excitement and interest in exploring
posit as an alternative to FP in many domains [27, 31]. Fur-
ther, there are ASIC and FPGA-based hardware proposals
for posit arithmetic [30].

Challenges of programming with posits. Although
posit provides better precision for a range of numbers with ta-
pered accuracy, large and small numbers lose precision [13].
When such numbers are involved in subtraction, catastrophic
cancellations are often common. Further, posit avoids over-
flows (underflows) by saturating all computations to the
largest (or the smallest) possible posit value, which can pro-
duce counter-intuitive results when porting code using FP
to use posits.

PosiTDEBUG. This paper proposes PosiTDEBUG, a com-
piler instrumentation that performs shadow execution to de-
tect numerical errors in applications using posits. To detect
numerical errors, it performs shadow execution with high-
precision values. Every variable and memory location that
stores a posit value is shadowed with a high-precision value
in shadow memory. Whenever a program performs a posit
arithmetic operation, a similar operation is performed in the
shadow execution with higher precision on the operands
from shadow memory. PosiTDEBUG detects numerical errors
that are amplified due to posit’s tapered accuracy: exceptions,
cancellation, loss of precision, unexpected branch outcomes,
and wrong outputs.

To enable the programmer to debug the error, PosiTDEBUG
also provides a directed acyclic graph (DAG) of instructions
in the set of active functions (i.e., in the backtrace) that are
responsible for the error. To provide such DAGs on an er-
ror, PosITDEBUG has to maintain additional metadata with
each memory location. A key contribution of this paper is
the design of the metadata for each memory location and
each temporary variable. PosiTDEBUG maintains a constant
amount of metadata per memory location, which enables
execution with long-running applications.

FPSANITIZER. To show the generality of our approach,
we have built FPSANITIZER, a shadow execution framework
for floating point programs. It uses the same metadata or-
ganization and design as PosiTDEBUG but works with FP
programs. In contrast to Herbgrind [59] that crashes with
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Figure 1. The posit bit-string for the (n, es) configuration to
represent finite non-zero values, where n is the number of
bits and es is the maximum number of exponent bits.

large applications, FPSANITIZER is able to successfully run
them. Even with smaller applications that can execute with
Herbgrind, FPSANITIZER is more than 10X faster.

We have used the prototypes of PosiTDEBUG and FP-
SANITIZER to detect and debug errors in both posit and FP
applications. We initially developed PosiTDEBUG to help
us in our effort to develop a math library for posits using
the CORDIC (Coordinate Rotation Digital Computer) algo-
rithm [65]. PosiTDEBUG’s feedback helped us debug and
eventually fix numerical errors in our math library imple-
mentation and also in many other programs. PosITDEBUG’s
shadow execution that uses the Multiple Precision Floating-
Point Reliable (MPFR) library with 256 bits of precision ex-
periences a performance overhead of 12.3X compared to a
software-only posit program without shadow execution. FP-
SANITIZER’s shadow execution detects numerical errors and
provides DAGs to isolate the likely root cause of errors with
111X overhead compared to a program that uses hardware
FP operations without any shadow execution.

2 Background on Posits

Posit is a recently proposed alternative to the IEEE-754 FP
representation [26, 27]. There are two notable advantages
with the posit representation compared to FP. Given the
same number of bits, posit can represent numbers with a
wider dynamic range and also provide higher precision for a
certain range of values. An n-bit posit can represent more
distinct values than FP.

2.1 The Posit Representation

A posit bit-string consists of a sign bit, regime bits, exponent
bits, and fraction bits. The number of bits used for the regime,
the exponent, and the fraction can vary depending on the
number being represented. The regime is a super-exponent
that is used to increase the dynamic range of the represen-
tation. In contrast, the IEEE-754 FP format consists of three
parts: a sign bit, a fixed number of bits for the exponent and
the fraction.

Decoding a posit bit-string. The posit environment is
defined by a tuple of numbers, (n, es) where n is the total
number of bits and es is the maximum number of bits to
represent the exponent. Figure 1 depicts the format of a posit
bit-string. The first bit, s, of a posit number represents the
sign. If s = 0, then it is a positive number. If s = 1, then it is
a negative number, in which case we have to compute the
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two’s complement of the bit-string before decoding the rest
of the bits.

The next set of bits represents the regime. The length
of the regime, m, can be 2 < m < n — 1. The regime bits
consist of consecutive 1’s (or 0’s). It is terminated either by
an opposite bit 0 (or a 1) or when there are no more bits left
(when all n — 1 bits are used to represent the regime).

If there are any remaining bits after the regime bits, the
next x bits represent the exponent, where x = min{n — 1 -
m,es}. If x < es, the exponent bits are extended to length es
by appending (es — x) 0’s at the end. The last remaining bits
after the exponent bits belong to the fraction.

Value of a posit bit-string. The sign of a posit number
is determined using the sign bit: (—1)°. Let r be the number
of consecutive 1 or 0 bits without the terminating opposite
bit in m. Let k be:

P s if regime bits are 0’s (1)
-1 if regime bits are 1’s
Also, let useed be:
useed = 2°° (2)

Abstractly, useed is a super-exponent. The exponent e is
defined as the unsigned integer of the exponent bits. Note
that the maximum value of 2¢ is 22~ = #:2¢4 The value of
the fractional part f is calculated similar to IEEE-754 normal

values:
fraction
f =1+ (2<# of fraction bits> (3)
Finally, the value that a posit bit-string represents is:
(—1)° x useed® x 2¢ x f 4)

Let us consider a (8, 1)-posit configuration, where there
are 8-bits in total and at most 1-bit used for the exponent. The
useed is 2* = 4. Consider the posit bit-string: 01101101. The
sign bit is 0 and hence, it is a positive number. The regime is
110. The exponent is 1. The fractional part is 1 + 5/8. Hence,
the value of the number is (—=1)° * 4! % 21 % (1 + 5/8) = 13.

Special values. There are two bit-patterns that do not
follow the above rules. First, a bit-string of all 0’s represents
the number 0. Second, a bit-string that consists of a 1 followed
by all 0’s represents the Not-a-Real value (NaR).

Unique feature of posits. The posit representation pro-
vides tapered accuracy [45] using the Rice-Golomb encod-
ing [21, 41]. The number of bits for the regime, the exponent,
and the fraction can vary. Hence, posit can represent (1) a
wider range of numbers by using more bits for the regime,
which is a super-exponent and (2) provide higher precision
in the interval [m, useed] by using more bits for the frac-
tion. Large numbers or numbers extremely close to 0 can
be represented by increasing the number of regime bits at
the cost of losing precision. In contrast, numbers close to
1, which use a minimal number of regime bits (i.e., 2-bits),
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int RootCount ()< Posit Value #:;?;; Exact Value E;';Z
a=1.83090..E16; 1.830..E16 | 14 | 1.83090..E16
b =3.24664..E12; |3.246..E12| 17 | 3.24664..E12
c =1.439239..E8; 1.4392..E8 | 21 1.439239..E8
tl=bxb; 1.057..E25 7 1.05406..E25 | LP
t2=4.0%xa*xc; 1.057..E25 7 1.05404..E25 | LP
t3=1t1-12; 0.0 N/A | 2.40507..E20 | CC
if (t3>0.0) False True BF
return 2;
else if (t3==10.0) True False BF
return 1;
else return 0; ! 2 WR
}

Figure 2. A program to compute the number of roots for the
equation ax? + bx + c. For each instruction, we report the
result of the posit operation, the number of available fraction
bits for the resulting posit value, the exact value if computed
in an ideal environment, and the type of posit error: loss of
precision (LP), catastrophic cancellation (CC), branch flips
(BF), and wrong results (WR).

provide higher precision by allocating a large number of bits
to represent the fraction.

A (32, 2)-posit configuration can represent all positive
and negative numbers in the interval [, 2%°] with same
or better precision than a 32-bit float, which is the golden
zone for this posit configuration [13]. To avoid overflows and
underflows, all values saturate at maxpos and minpos, where
maxpos and minpos represent the largest and the smallest
value representable in the posit configuration, respectively.

Fused operations with posits. The posit specification
mandates the use of fused operations with higher precision
using the quire data type, which is a high-precision accumu-
lator [34, 35]. The posit standard defines several multiply-
accumulator instructions using the quire data type (e.g., fused
sum, fused dot-product). The size of the quire is determined
by the posit configuration. It should be large enough to sup-
port the computation of maxpos? + minpos? without any loss
of precision.

2.2 Numerical Errors with Posits

The posit representation suffers from rounding error similar
to FP, when a value is not exactly representable. However,
some rounding errors can be amplified due to the loss of
precision bits for numbers that lie outside the golden zone.
Further, tapered accuracy with posits necessitates novel nu-
merical analysis.

Catastrophic cancellation. Similar to FP, a posit con-
figuration can experience catastrophic cancellation when
two similar but inexact (rounded) values are subtracted from
each other. Such two operands have the same bit-patterns in
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the most significant digits and are canceled out. The result
primarily depends on the inexact bits, amplifying the error
of the operands.

Loss of precision bits. Posit enables variable precision
with the use of regime bits, which increases the dynamic
range. However, it also reduces the available precision bits.
Posit values lose precision bits when the magnitude of the
value increases towards maxpos or decreases towards minpos.

Posit’s tapered accuracy by default ensures that values
closer to maxpos and minpos can only be represented with
a small number of precision bits. Additionally, the result of
all basic operations (+, —, X, and +) can lose precision bits
depending on the magnitude of the result when compared to
the operands, which can create issues similar to catastrophic
cancellation. In FP, operations with denormalized values
show such behavior.

Ilustration of cancellation. Consider the posit program
in Figure 2. Given three inputs a, b, and ¢, the function
RootCount computes the number of roots for the equation
ax? + bx + c. Mathematically, the quadratic equation with
the coefficients

a = 1.8309067625725952 x 10'°
b = 3.24664295424 x 10'?
¢ = 1.43923904 x 10°

has two roots, since b — 4ac = 2.40507138275350151168 X
102° > 0. However, a (32, 2)-posit evaluation of RootCount
produces t3 = 0.0 and returns 1. The same computation with
a 32-bit float evaluates 3 = 2.40960594462831017984 x 10%°
and returns 2. There are two sources of error that contribute
to this behavior. The intermediate result of b? and 4ac pro-
duces large values, 1.05406904723162347339776 x 10%° and
1.0540449965177959383826432 X 10%, respectively. The posit
configuration has only 8 bits of precision in that range. Both
values are rounded to 1.057810092162800527867904 X 1025
Hence, subtraction experiences catastrophic cancellation,
ultimately resulting in 0.

An equivalent expression for b? —4ac reduces the dynamic
range of the intermediate result, which increases the number
of available fraction bits:

(b - 2vave) (b + 2vave)

Square root is an interesting operation with posits. For all
x € RY,x # 1, either 1 < 4/x < x or x < Vx < 1. Hence, yx
is always closer to 1 than x is to 1:

[Vx—1| <lx -1

Hence, v/x has at least the same number of precision bits as x.
Moreover, if the posit bit-string of x uses r bits for the regime,
then +/x uses at most [ 5] regime bits. A (32, 2)-posit evalua-
tion of the above equation results in 2.17902164370694078464x
102°, which provides the best result with posits.
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Saturation with maxpos and minpos. Unlike FP, posit
values do not overflow or underflow. Any positive posit value
greater than maxpos is rounded to maxpos and any positive
value less than minpos (excluding 0) is rounded to minpos.
Posit operations silently hide overflows (or underflows). It
can produce results with large errors. Such computation will
result in oo or 0 with FP, which can produce exceptions later
in the program.

Different observable results. Similar to FP computa-
tion, numerical errors with posits can cause a program to
produce different branch outcomes compared to the ideal ex-
ecution. Figure 2 illustrates this behavior. Similar to branch
conditions, the programs can also produce a wrong integer
on posit-to-integer casts or wrong system call arguments
due to rounding errors.

2.3 Metrics for Measuring Error

Unit in the last place (ULP) is a commonly used metric to
measure error with normal values in FP computation. ULP
is defined as the value of the last precision bit in a given
FP value: 2¢7P*! where e is the exponent of the value and
p is the precision of the given FP representation. The er-
ror in ULPs is also commonly interpreted as the number
of distinct FP values between the computed result and the
ideal result [46]. The relative error is typically expressed as
ULP error with FP’s normal values. The relative error corre-
sponding to 1 ULP error in FP’s normal values is bounded
by [277,27P*1] [20]. For example, in a 32-bit float, relative
error of 1 ULP is bounded by [27%4, 27%] regardless of the
magnitude of the value. Hence, it is commonly used to de-
scribe the precision limitation of a particular representation.
For example, a 64-bit double normal value with a relative
error of 272 has ~ 22° ULP error, indicating that the value is
away from an accurately rounded value.

ULP error with posits. Measuring error with ULPs is
not ideal for posits because of tapered accuracy (similar to
denormal values in FP). An ULP of a posit value is 2¢77*1,
which is similar to FP, except that p depends on the mag-
nitude of the posit value due to tapered precision. Hence,
the relative error corresponding to 1 ULP error in posits can
vary widely depending on the magnitude of the number.

Consider the (32, 2)-posit configuration where the small-
est positive representable value is 27120 and the next smallest
representable value is 2711°, Suppose that a posit computa-
tion produced the value 271¢ where the ideal value is 271%.

In this case, the result has 1 ULP error. However, the relative
|27120_p-116

2-120
for posit values near 1 is bounded by 277, The relative error
represented in ULPs can widely vary for posits. Reporting 1
ULP error when a posit application has a relative error of 15
can be confusing to the users.

To address this issue, one approach is to measure the error
in the posit value using the ULP error of a FP representation

error is = 15. Similarly, the relative error of 1 ULP
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that can represent all posit numbers as normal values. For
example, every value in a (32, 2)-posit configuration can be
represented exactly as a normal value in the double data type.
We can measure the ULP error of the double representation,
which can be used to compare errors in posit computations.

3 PosiTDEBUG

The objective of our approach is to enable programmers to
effectively detect numerical errors in posit applications and
provide support for debugging them. To detect numerical
errors with posit applications, our idea is to perform shadow
execution with high-precision computation (e.g., Multiple
Precision Floating-Point Reliable Library (MPFR) [16]). In
contrast to prior work [4, 59], PosITDEBUG is a compile-
time transformation that maintains a constant amount of
metadata per memory location while performing shadow
execution, which enables users to debug large programs.

Our goals with PosiTDEBUG are to (1) detect instances of
numerical error such as cancellation, branch flips, incorrect
results, and exceptions, (2) produce a directed acyclic graph
(DAG) of instructions from the set of active functions (i.e.,
backtrace) on a numerical error to provide concrete feedback
to the user, and (3) enable debugging with debuggers (i.e.,
gdb) with low-performance overheads.

3.1 High-Level Sketch

PosITDEBUG is a compile-time transformation that instru-
ments posit operations for shadow execution with higher-
precision. Each memory location that stores a posit value is
shadowed with an MPFR value in shadow memory and every
temporary with a posit value is shadowed with an MPFR
value on the stack. On every posit operation, the shadow
execution retrieves the corresponding high precision values
and computes the result in high-precision. When the error
in the result exceeds a threshold or the result is used with
branches/integer casts/system calls, PosiTDEBUG detects the
error and also reports a DAG of instructions, which is likely
responsible for the error, in the set of active stack frames at
that instant to the user.

When the program and its shadow execution differ with
respect to branch outcomes (i.e., branch flip), the shadow
execution follows the original program’s execution. After a
branch flip, the shadow execution uses the program’s posit
values to re-initialize the metadata entries in shadow mem-
ory and on the stack, which enables PosiTDEBUG to provide
useful feedback for subsequent operations after a branch flip.

PosiTDEBUG exports a few functions that the programmer
can use to diagnose the error with debuggers (i.e., gdb). It
allows the user to insert a conditional breakpoint depending
on the amount of the error and obtain a DAG of dependent
instructions. The nodes of the DAG are results of other bi-
nary/unary operations in the set of active functions at that
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(a) Metadata in shadow memory

(b) Metadata for temporaries

. . Pointer to Pointer to
R‘fa' \F/"’IS" Instld | Key |Lock | Time- |gperandt’s | Operand2’s
VEIRD Vel Stamp | metadata | metadata

Figure 3. Metadata for (a) each posit value in shadow mem-
ory and (b) each posit temporary on the stack. Metadata in
shadow memory maintains a pointer to the metadata of the
temporary that previously wrote to the memory location. It
has the lock and key information to check the validity of the
metadata pointer for temporaries. Metadata in shadow mem-
ory also stores the real value, instruction identifier, and the
posit value to detect errors when the pointer to temporary’s
metadata is not valid.

instant. The root of this DAG is the instruction experiencing
an error that exceeds the threshold.

The primary challenge lies in designing the metadata for
memory locations and temporaries for shadow execution.
Although we present the key ideas in the context of posits,
PosiTDEBUG can easily be re-purposed to debug and diagnose
numerical errors with FP programs. We have also built a
similar shadow execution framework for FP programs, which
we call FPSANITIZER [9].

3.2 Metadata Organization

As Pos1TDEBUG is a compiler instrumentation, posit val-
ues are either resident in memory or are temporaries (e.g.,
LLVM has temporaries with posit values or the values are
resident in memory that are accessed through loads/stores).
Every posit value in memory has metadata in shadow mem-
ory. Every temporary posit value has metadata on the stack.
PosiTDEBUG also uses a shadow stack to store metadata for
arguments and return values in a function call.

Minimal amount of metadata to detect errors. To de-
tect numerical errors, we need to track a high-precision value
with each posit in memory and for posit temporaries. Further
maintaining the posit value and the information about the
instruction that produced the posit value is useful to debug
the error. We maintain the posit value in the metadata for
two reasons. First, we can compute the error by comparing
it to the MPFR value. Second, we can check if the value in
memory was changed by a library function that was not
instrumented by PosiTDEBUG. In the latter case, PosiTDE-
BUG uses the posit value from the program to initialize the
metadata entry for subsequent use. Hence, each temporary
and memory location with a posit value has to maintain at
least the MPFR value, instruction identifier, and the posit
value.
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Constant amount of metadata per memory location.
Identifying a set of instructions responsible for a particular
error is useful for debugging. In contrast to prior work [59],
PosiTDEBUG tracks a constant amount of metadata for each
memory location, which enables its use with long-running
applications while providing a trace of instructions respon-
sible for the error. We observe that most errors are local and
the set of instructions responsible for the error are typically
available in the set of active functions (i.e., backtrace) when
the error is encountered.

Based on this observation, the metadata in shadow mem-
ory maintains a pointer to the metadata for the temporary
on the stack that previously wrote to the memory location,
temporal safety metadata for that pointer, the real value,
instruction identifier, and the posit value. If the temporary
that wrote to the memory location of interest is not available
in the set of active stack frames (i.e., when the stack frame
has been deallocated on a function return), then it would be
a memory safety error to access that temporary’s metadata
pointer. Hence, we need to maintain temporal safety meta-
data for that pointer. We use the lock-and-key metadata from
our prior work on checking temporal safety errors [47-51].

Lock-and-key metadata for temporal safety. To en-
sure temporal safety, each pointer to the metadata for a
temporary maintains a lock (address of a location) and a key
(a unique identifier) [47-51]. On memory allocation, a new
lock is allocated and a unique identifier is written to that
lock. Any pointer that points to the newly allocated mem-
ory inherits the lock and the key. As long as the memory
allocation is valid, the unique identifier at the lock and the
key associated with the pointer will match. On deallocation,
the identifier at the lock is invalidated. Any dangling pointer
will find that the identifier at the lock and the key associated
with the pointer does not match.

Figure 3(a) shows the metadata in shadow memory for
each posit value in memory. When the pointer to the tempo-
rary’s metadata is invalid, PosITDEBUG is still able to detect
numerical errors because it maintains the high-precision
value with each metadata entry. However, it will not be able
to provide a detailed trace of instructions that wrote to that
location. In this scenario, the user can set a breakpoint on the
instruction that previously wrote to the location and obtain
a trace of instructions.

Metadata for temporaries. Metadata for temporaries
with posit values are maintained on the stack. The addi-
tional stack usage is proportional to the original program’s
stack usage. Temporary posit variables either contain the
result of posit arithmetic operations or are constants. Hence,
the metadata for temporary posit values contains the high-
precision value produced in the shadow execution, actual
posit value, instruction identifier, pointers to the metadata
for the operands, and lock-and-key metadata to ensure the
temporal safety information for the stack frame. Metadata
for each temporary gets the lock-and-key of the function
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because the stack frame is allocated on function entry and
deallocated on function return.

To keep the stack usage bounded, we maintain a single
metadata entry for each static temporary in the code. When
a temporary is repeatedly updated in a loop, the metadata
corresponding to the temporary in the stack is updated.
We maintain a timestamp in the temporary’s metadata that
records when it was updated. When we report the DAG
of instructions responsible for the error, we do not report
the operands of an instruction if the operand’s metadata
timestamp is greater than the timestamp of the instruction
in consideration. Figure 3(b) illustrates the metadata for tem-
poraries.

3.3 Metadata Propagation

This section describes the creation of the metadata and its
propagation from the stack to shadow memory. Each func-
tion has a lock and a key for temporal safety, which we
refer to as func_lock and func_key. We omit the instruc-
tion identifier, the posit value, and timestamp updates for
space reasons. The added instrumentation code is shaded.

Creation of temporary constants. When the program
creates a temporary posit variable with a constant, we create
metadata on the shadow stack that uses the concrete constant
in high-precision, inherits the function’s lock and key, and
has its operand pointers set to NULL.

posit32_t t5 = 4.0f; //instruction 5 in Figure 4

t5_tmd = get_temporary_metadata(t5);
t5_tmd->real = Real(4.0f);
t5_tmd->lock = func_lock;
t5_tmd->key = func_key;

t5_tmd->op1 NULL ;

t5_tmd->op2 = NULL;

Assignment of temporaries. When a posit value is copied
from another temporary, all fields of the metadata for the new
temporary are also copied. Only the timestamp is updated.

Positbinary and unary operations. On binary or unary
arithmetic operations with posit values, we look up the meta-
data of the operands, compute the high-precision value with
shadow execution, and update the metadata of the result. The
result’s metadata is updated with the high-precision result,
pointers to operand’s metadata, and lock-and-key metadata
for the stack frame.

posit32_t t6 = t5 x t1; //instruction 6 in Fig 4.

t5_tmd = get_temporary_metadata(t5);
t1_tmd = get_temporary_metadata(tl);
t6_tmd = get_temporary_metadata(t6);

t6_tmd->lock = func_lock;
t6_tmd->key = func_key;
t6_tmd->real = t5_tmd->real *R t1_tmd->real;
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Dynamic execution trace

Posit Value / # frac. bits in
regular execution

Shadow ex
Shadow memory metadata

ecution

Metadata for temporaries on the stack

X 1.8309067... x 10'6 | a3’s temporary
a 16
1.8309067... x 100 | 14 | a_md a8 ma [ e ed] . metadata
a’s memory metadata
P . 3.2466429... x 10'2 | b3’s temporary
initial state b 12 b_md
3.2466429... x 10'2 [ 17 m 03_md | Pt o2 md] . metadata
b’s memory metadata
. 1.43923904 x 108 | c3’s temporary
8
c| 1.43923904 x 10 |21| c_md c3_md Lalka[o1_md|c2.md| metadata

c’s memory metadata

-

. posit32_t t1 = *a;

1] 1.8300067... x 108 [ 14|

No

t1_md

1.8309067... x 106

L4[K4[a1_md[a2_md

3.2466429... x 10"

t1’s temporary
metadata

t2’s temporary

2. posits2_t12 ="b; t2| 3.2466429... x 102 | 7 | 2-md La[Ka]b1_md[b2_md| metadata
8 ),
3 posin 15 o[ Tasszssosx 1ot [o1] 2 mo [FSSEB0SCIOT ] 10 temperry

1.0540690... x 10%°

4. posit32_t t4 =12 * t2;

. _ 4.0 t5’s temporary
- t5 40
O Posiazt 5 =40 | 7] t8-md K[ NULL [NULL| metadata
i —t5* 16 7.3236270... x 10'® | t6’s temporary
6. poSit32_t 16 = 15 * t1 6| 7.3236270... x 10'® [ 13 t6ma e et ] metadeta

1.0540449... x 105

7. posit32_t t7 = 16 * t3;

[La]Ks[ t6_md [t3_ md]

8. posit32_t t8 = t4 - t7;

res_md’s memory
metadata

9. *res = 18; *res|

Figure 4. Execution trace, program’s memory, and the content of the metadata. We show the posit value and the number
of available fraction bits after each instruction. The state of shadow memory and the metadata for temporaries on the stack
are on the right. The movement of metadata between shadow memory and the stack is shown with red arrows. Instances of
precision loss and catastrophic cancellation are highlighted in green and purple, respectively. Here, all lock and key metadata
are valid. (L4, K4) represents the lock and key for the function being executed.

t6_tmd->op1 = t5_tmd;
t6_tmd->op2 = t1_tmd;

by checking the lock and the key. If so, the entire temporary
metadata of the previous writer is copied except the lock
and the key. The lock and the key of the new temporary are
initialized to the executing function’s lock and key. If the
pointer to the previous writer is invalid, we initialize the
temporary metadata similar to the assignment of a constant
value.

Memory stores. When a posit value is stored to memory,
we update the shadow memory with the high-precision value,
pointer to the temporary’s metadata that is being stored, and
the lock and key associated with the temporary.

*res = t8 //instruction 9 in Figure 4 . ) ) ) )
posit32_t t1 = *a; //instruction 1 in Figure 4

t8_md = get_temporary_metadata(t8);
shadow_mem(res)->real = t8_md->real;
shadow_mem(res)->tmd = t8_md;

shadow_mem(res)->lock = t8_md->lock;
shadow_mem(res)->key = t8_md-> key;

t1_md = get_temporary_metadata(tl);

t1_md->real = shadow_mem(a)->real;

t1_md->lock = func_lock;

t1_md->key = func_key;

lock = shadow_mem(a)->lock;

if(xlock == shadow_mem(a)->key){
t1_md->op1 = shadow_mem(a)->tmd->op1;
t1_md->op2 = shadow_mem(a)->tmd->op2;

Memory loads. When a posit value is loaded from mem-
ory into a temporary, the metadata from the shadow memory
is accessed and the temporary’s metadata is updated with
information from shadow memory. First, we check if the
temporary that previously wrote to that location is still valid }
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else {
t1_md->op1 = NULL;
t2_md->op2 = NULL;
3

Figure 4 illustrates the metadata before and after three
loads from memory (i.e., instruction 1-3). When a value is
being loaded from address a, the shadow memory of a (i.e.,
a_md) is accessed, which has a pointer to the temporary
metadata of the last writer (a3_md). The lock and key of
a3_md are L; and K;. As it is valid, the entire contents of
a3_md are copied to the temporary metadata space for ¢1 (i.e.,
t1_md). The lock and key of t1_md are set to the lock and
key of the executing function (i.e., Ly and Kj).

3.4 Detection and Debugging of Errors

When PosiTDEBUG detects a significant error in the result
of the computation, it classifies the cause of error into vari-
ous categories: catastrophic cancellation, loss of precision,
changes in branch outcomes, and wrong values with casts.

Catastrophic cancellation. PosiTDEBUG detects whether
any cancellation that occurred during the subtraction opera-
tion is catastrophic. When a subtraction operation cancels a
number of significant digits of the operands such that every
digit of the normalized result is affected by the error in the
operands, it is considered to be a catastrophic cancellation.
The relative error cannot be bounded in the presence of cat-
astrophic cancellation. The computed result v and the real
result r can differ considerably. In this scenario, if v > 2r
or v < 7, then the exponents of v and r are guaranteed to
differ and also all the precision bits are influenced by error.

In PosiTDEBUG, we say that a subtraction operation ex-
periences catastrophic cancellation if (1) it experiences can-
cellation and (2) v > 2r or v < 7 where v and r are the
computed and the real result, respectively. In a 64-bit FP
representation that can represent all (32, 2)-posit values as
normalized FP values exactly, the result has at least > 252
ULP error.

PosiTDEBUG detects whether the subtraction v; = vy — v
has catastrophic cancellation using the following formula:

1
chits > 0 A (vl >2ri Vo < Erl)

where rq is the real result and cbits is defined as:
cbits = max{exp(vy), exp(vs)} — exp(v1)

Here, exp(v) represents the exponent of v. If the exponent
of the result is smaller than that of the operands, then some
bits of the operand are canceled. Along with cancellation, if
the error in the final result is above a threshold, then it is
catastrophic cancellation.

As there is no widely accepted error threshold for cata-
strophic cancellation, the users can choose the error in our
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Figure 5. DAG generated for the catastrophic cancellation
with the operation: t8 = t4 - t7 in Figure 4.

second criteria for catastrophic cancellation using the ex-
pression:

r
v>€ervVou < —
€

In our definition, € = 2. The magnitude of € defines the
amount of error tolerance: larger € widens the error tolerance
and smaller € narrows it.

Loss of precision bits and saturation. PosiTDEBUG al-
lows the detection of significant precision loss, which is
important with posits because of tapered precision. Pos1t-
DEBUG detects if the result of an operation has more regime
bits than the operands and reports if such precision loss is
beyond a user-specified threshold. Similarly, PostTDEBUG
reports whenever operations use maxpos and minpos as they
are cases of likely overflows/underflows with FP operations.

Branch outcomes and casts to integers. PosiTDEBUG
instruments branch conditions with posit values and checks
if the branch condition evaluates with a different outcome
in the shadow execution. As we do not want to track meta-
data with integers, PosITDEBUG also instruments all posit-
to-integer cast operations and reports it to the user if the
shadow execution produces a different result. It is possible
that an error in posit-to-integer conversion is benign. How-
ever, the result of a posit-to-integer conversion can also be
used with operations that can influence the result (e.g., array
indices, pointer offsets). PosiTDEBUG does not triage these
cases into benign or malicious. We let the user decide.

3.5 Debugging Errors with Tracing

Whenever PosiTDEBUG detects the errors mentioned above,
it provides a DAG of instructions in the set of active functions
that are responsible for the error. The temporary metadata
of the instruction experiencing the error becomes the root of
the DAG. It has information about the temporary metadata
of its operands. PosITDEBUG checks the temporal validity of
the operand’s pointers. If they are valid and the timestamp
of the operands are lower than the timestamp of the current
instruction, those operands are recursively traversed.

In Figure 4, there is a catastrophic cancellation with the
instruction t8 t4 t7, which becomes the root of
the DAG. The t8’s metadata (i.e., t8_md) has pointers to
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temporary metadata of the operands: t4_md and t7_md. They
are recursively traversed. The resultant DAG reported to the
programmer is shown in Figure 5.

4 Implementation and Prototypes

We describe the implementation decisions, POsTTDEBUG pro-
totype, and the FPSANITIZER prototype for FP programs.

4.1 Implementation Issues

To realize a prototype of shadow execution for large pro-
grams, we need to design mechanisms to shadow memory,
manage the lock and key metadata space, and interface with
uninstrumented code.

Shadow memory. We use a two-level trie data structure
for shadow memory. It maps every virtual address that holds
a posit value to its corresponding shadow memory address.
The first-level trie entries are allocated during program ini-
tialization. The second-level trie entries are allocated on
demand. Hence, the shadow memory usage is proportional
to the actual memory usage of the program. The shadow
memory entry contains a pointer to the MPFR value. The
MPFR runtime allocates high-precision values on the heap.

Management of lock and key metadata. Our lock and
key metadata ensure the temporal safety of the pointers to
various stack frames. The lock locations are organized as
a stack. On a function entry, a new key is pushed to the
top of this stack. This key is associated with any temporary
metadata that belongs to the current function. On a function
exit, the lock entry is invalidated and popped from the stack.
These lock entries can be subsequently reused. As our keys
are monotonically increasing, PosiTDEBUG accurately iden-
tifies all valid and invalid pointers to the stack frames even
when the lock space is subsequently reused. The size of the
lock space is bounded by the number of active functions.

Interfacing with uninstrumented code. To support
large applications, we have to support interfacing with li-
braries, which is a challenging task for any dynamic mon-
itoring tool [47, 50]. Inspired by Intel MPX, we maintain
the posit value in the metadata in shadow memory. When
the program loads a posit value from program’s memory,
the corresponding metadata is loaded from shadow memory.
The posit value generated by the program and the one in the
metadata space is compared. If they do not match, we can
conclude that some library or uninstrumented function up-
dated program’s memory without updating shadow memory.
In those cases, we use the program’s posit value to initialize
the high-precision value. This approach also enables us to
incrementally use our tools with large applications.

4.2 PosiTDEBUG Prototype

Pos1TDEBUG prototype detects numerical errors in C pro-
grams that use posits. It is publicly available [10]. As there
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is no mainstream hardware support yet, we use the offi-
cial software library for posits (i.e., SoftPosit). PosiTDEBUG
consists of three components. (1) A standalone LLVM-9.0
pass to instrument a posit program with calls to our run-
time to maintain metadata, propagate metadata, and perform
shadow execution. (2) A runtime written in C++ that per-
forms shadow execution and propagates the metadata. The
runtime by default uses the MPFR library to perform high-
precision execution. It can be customized to run with any
data type. (3) A clang-based refactorer that traverses the
abstract syntax tree of a FP program and creates a posit
program that uses the SoftPosit APL Given that posit is a
stand-in replacement for FP, we wanted to experiment with
large applications and existing numerical code without man-
ually rewriting it. Although the refactorer automated most
of this translation, we had manually change indirect function
calls and global initializers in SPEC applications.

Usage. If the program already uses the SoftPosit APL the
user of PosITDEBUG prototype will use the instrumenter
directly, link with the runtime, and generate an executable.
Otherwise, the user will use our refactorer to rewrite the
FP program to use the SoftPosit API and then use PosiTDE-
BUG’s LLVM instrumentation to inject calls to the runtime
and generate the executable. The user sets an error and re-
porting threshold (as an environment variable) and executes
the binary. The prototype generates an overall summary of
instances of error exceeding the threshold. It also generates a
DAG of instructions for each error instance until the report-
ing threshold is met. The user of PosITDEBUG can compile
the runtime with debugging symbols and reason about the
error using the DAG of instructions using the debugger.

Reporting error. Due to tapered accuracy with posits,
reporting relative error as posit ULP error is misleading (see
Section 2.3). We use the ULP error of the double represen-
tation to report the error because double can represent all
(32, 2)-posit values exactly as normal values. Hence, Pos1T-
DEBUG converts the posit value to a double, converts the
MPEFR value to a double, and then computes the ULP error of
the two double values. PosiTDEBUG also reports the number
of bits with error, which is [log, (ulperror)]. It is important to
note that a (32, 2)-posit has at most 27 fraction bits whereas
double has 52 fraction bits. Therefore, even if a (32, 2)-posit
is rounded correctly, it can have up to 25 bits of error.

4.3 FPSANITIZER Prototype

To show the generality of the proposed ideas, we also built
FPSANITIZER, a shadow execution framework to detect nu-
merical errors in FP programs. It consists of an LLVM pass
that adds calls to our runtime and a runtime that performs
high-precision shadow execution. The metadata organiza-
tion, implementation details, and the usage mode of FPSANI-
TIZER are exactly identical to PosiTDEBUG. It does not sup-
port vectorization yet. The FPSANITIZER prototype is also
publicly available [9].
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5 Experimental Evaluation

This section describes our experiments to evaluate PosiT-
DEBUG and FPSANITIZER’s ability to detect errors and the
performance overhead. We illustrate the usefulness of the
debugging support with case studies.

Methodology and applications. To evaluate PosiTDE-
BUG for its ability to detect numerical errors, we use a set
of thirty two micro-benchmarks with known numerical er-
rors. This set consists of twelve C programs that use FP from
the Herbgrind suite [59] and 20 C programs written with
posits that feature commonly used numerical algorithms. We
converted FP C programs from the Herbgrind to use posits
using PosiTDEBUG’s refactorer. All these programs use the
SoftPosit library for posits.

To evaluate performance, we use all C applications from
PolyBench’s linear algebra suite, SPEC-FP-2000, and SPEC-
FP-2006. These applications are written with FP. We used
PosiTDEBUG’s refactorer to create posit versions of the ap-
plication using the SoftPosit library. We use the (32, 2)-posit
configuration for all our experiments as it is the recom-
mended type in the SoftPosit library. We ran all experiments
on an Intel Core i7-7700K machine that has four cores and
32GB of main memory. We measure the wall clock execution
time of the application with PosiTDEBUG and without any
shadow execution. As there is no publicly available hardware
implementation of posits, our baseline uses the SoftPosit li-
brary. On average, these baseline applications with posits
are 11X slower compared to the hardware FP versions.

5.1 Effectiveness in Detecting Numerical Errors

To test the effectiveness in detecting errors, we ran Pos1T-
DEBUG’s shadow execution with all thirty two programs in
our test suite with numerical errors. PosiTDEBUG was able
to detect errors in all of them. Among them, the output of
28 programs have more than 35 bits of error (at most 17
exact fraction bits with posit), the output of 24 programs
are reported to have more than 45 bits of error (at most 7
exact fraction bits with posit), and the output of 18 programs
are reported to have more than 52 bits of error (all fraction
bits are wrong). PosITDEBUG identified that 18 programs
have catastrophic cancellation, 10 programs experience sig-
nificant loss of precision, 5 programs have branch flips, 1
program has an incorrect integer cast, 2 programs produce
NaR values, and two programs have saturation errors. We
also observed numerical errors in six PolyBench and all the
SPEC-FP applications.

Next, we inspected the DAG reported by PosiTDEBUG.
The largest reported DAG had 12 instructions. It reported
DAGs with a single instruction for 8 programs. When we
further examined the program with the debugger, we ob-
served that the operands of the single instruction DAG were
not in the set of active functions. It was a function that had
recently completed execution. We put a breakpoint at the
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return instruction of that function and we could obtain DAGs
with 4 to 8 instructions for those 8 programs. Overall, the
instructions in the DAG enabled us to understand the cause
of error.

5.2 Case Studies of Debugging with PosiTDEBUG

This section describes our experience using PosITDEBUG to
debug and understand the cause of numerical error.

5.2.1 Posit Math Library with the CORDIC Method.
Posit still does not have an implementation of the math
library for the (32, 2)-posit configuration. Hence, program-
mers have to use the math library for FP (i.e,, libm) by casting
the posit value to double, use the libm function with double,
and convert the double result back to a posit value. To build
a math library for posits, we were exploring the feasibility of
using the CORDIC (Coordinate Rotation Digital Computer)
algorithm [65], which is attractive given that it can be imple-
mented with just addition and subtraction operations. Our
initial motivation for developing PosiTDEBUG was to debug
our implementation of sin and cos function.

CORDIC is a class of iterative add-shift algorithms that

can compute sin and cos of § € [-7, 7]
k-1 1
Xo = izoﬁ, y():O, 2029
Xn+1 = Xn — dnynz_n

Ynt1 = Yn + dpx,27"

Zn+l = Zn — dntan_l(z_n)

d, = {1
-1

As the total number of iterations k approaches oo, xi
cos(0) and yx = sin(6). The value of x( for a given k and
the values of tan™!(27") for n € [0, k — 1] are compile-time
constants. All other operands can be computed with addi-
tion, subtraction, and shift operations, which can be easily
implemented on small FPGAs and ASICs. Further, they can
be extended to compute other transcendental functions.

We implemented sin and cos functions with posits using
CORDIC. Our implementation performs 50 iterations. To
have high precision for compile-time constants, we precom-
puted values for the initial xo and tan™! values using the
MPEFR library with 2000 bits of precision. Our posit imple-
mentation outperformed a similar implementation with float
on 97% of the inputs in the range [0, 7 ]. We observed that
there was significant error for sin(0) when 0 was close to 0
and for cos(0) for  near 7. We wanted to debug the program
and identify the cause of error, which motivated us to build
PosiTDEBUG.

To debug our implementation, we chose a specific input
6 = 1.0 x 1078, Our implementation produced sin(f) =

if z, 20
otherwise
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posit: 1.61526... x 10°°

@ real: -8.39786... x 10710
/Error: 62 \

, @ posit: 9.06584... x 100 @ posit: 7.45058... x 107
real: 6.61079... x 107 real: 7.45058... x 10°°
Error: 0

Error: 50 \ tan(2?")
| 7.45088... x 1079

Catastrophic

z
28 Cancellation

2

dy| 10 |

(a) Dag of z,4 reported with branch flip

Error: 4‘V

posit: -4.28037... x 107
real: -4.28744... x 107

~

Y20

Y'19
@ posit: 1.47931... x 10 @posit: -1.90734... x 10°
real: 1.47860... x 10-6 real: -1.90734... x 10®
Error: 41 / Error: 14\ 2-19
posit: -1.0 @ posit: 1.90734... x 10°°
real: -0.999999... real: 1.90734... x 108
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posit: 1.0
real: 9.99999... x 10"

Error: 14

posit: 3.81469... x 106
real: 3.81469... x 10°°

Error: 0

(b) Dag of y,, reported with significant error

Figure 6. (a) The DAG of z;3 reported by PosiTDEBUG when the
branch flip occurred. There is a catastrophic cancellation for the
variable used in the branch condition. (b) The DAG of y30 on the
20th iteration of CORDIC. The nodes in gray are not reported by
PosiTDEBUG. We include it to understand the source of error.

1.3162 - - - X 107% as the result. We used libm’s implementa-
tion and MPFR’s implementation of sin as the oracle. These
libraries do not use CORDIC but use polynomial approxima-
tion using the mini-max method. The libm implementation
with double reported 1.0000 - - - X 10~® and the MPFR math
library with 2000 precision bits reported 1.0000 - - - X 1078,
Hence, the relative error of our implementation of sin with
CORDIC is 0.3162.....

We wanted to debug this error and find the source of
error for the same input. When we ran our implementation
with PosiTDEBUG, it reported that the result of the shadow
execution is sin(f) = 1.2455 - - - x 1078 and the result had 48
bits of error (i.e, it has at most 4 exact fraction bits in the
(32, 2)-posit). It also reported that there were 4 instructions
with less than 17 exact bits and 14 branch flips. On a branch
flip, the shadow execution follows the execution path of the
posit program. It is probably the reason that PosITDEBUG’s
shadow execution produces a different result when compared
to the result from MPFR’s math library.

When we ran the shadow execution within the debugger
(i.e., gdb), we identified that our posit implementation en-
countered a branch flip in the 29th iteration while checking
the condition z,5 > 0 due to catastrophic cancellation. Hence,
dag was assigned 1 instead of -1.
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Figure 6(a) shows the DAG produced by PosiTDEBUG
for z,5, the cause of branch flip. It experiences catastrophic
cancellation with 62 bits of error (all bits are inexact). The
operands were zy7 and dyy X tan™!(2727). The result of dyy X
tan™1(27%7) was exact with d,; being 1. By using gdb and
tracing z; for the previous iterations, we were able to find
that the operand z,; had 50 bits of error (at most 2 fraction
bits are exact). Additionally, we were able to infer that z;’s
were slowly and constantly accumulating error. Hence, we
identified that branch flip is one reason for our posit im-
plementation to produce a different result compared to the
oracle result.

Upon investigating other instructions before the branch
flip with PosiTDEBUG and gdb, we identified that the value
of yz0 was incurring 43 bits of error (at most 9 exact fraction
bits) and the value of y,3 had 48 bits of error (at most 4 exact
fraction bits). Figure 6(b) shows the DAG for y5y. Our initial
0 is close to 0 and the value of d,, changes each iteration.
The value of y, which is initially 0, is added and subtracted
with values (i.e., x,27") that are gradually decreasing. Hence,
the relative error of y increases gradually each iteration. The
value of x, also changes in a similar fashion. However, it
starts with a relatively large value compared to the terms
that are being added/subtracted. Hence, the final x does not
exhibit much error. We are still identifying ways to rewrite
our computation to avoid the branch flip and error accumu-
lation with y. PosiTDEBUG was helpful in understanding the
root cause of error while debugging our CORDIC implemen-
tations.

5.2.2 Computation of Integrals with Simpson’s Rule.
Simpson’s rule is an approximation algorithm to compute
the integral of a function. Given an even number of intervals,
n, an integral can be approximated by:

b Ax
f flx)dx ~ ?(f(xo) +4f(x1) +2f(x2) + 4 (x3)
+2f(x4) + - +4f (xn=1) + f(xn))

where Ax = % and x; = a + iAx. As n approaches oo, the
result from this approximation converges to the value of the
integral.

We implemented a program to compute the integral with
the Simpson’s rule using (32, 2)-posits. With n = 20, 000, 000,
we computed the integral for the following input

14223113
£3223113
The output of our program was 1.5372 - - - X 107,
PosiTDEBUG reported that there were 4 instructions with
more than 55 bits of error (no exact fraction bit in the answer)
and 7 instructions with more than 35 bits of error (at most
17 exact fraction bits).

PosiTDEBUG’s DAG also indicated that three of the four
instructions with more than 55 bits of error were addition

x%dx = 1.8840 - - - x 10%°
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Figure 7. Performance overhead of PosiTDEBUG compared to a baseline that uses the SoftPosit library for various applications.
It reports PosiTDEBUG’s overhead with 512, 256, and 128 bits of precision for the shadow execution’s MPFR value.

instructions, which was accumulating the terms. When we PosiTDEBUG reported that the first root had 48 bits of
inspected the shadow execution with gdb, the program pro- error (i.e, at most 4 exact bits). The DAGs generated by
duced a value of 2%%, which has only 12 fraction bits avail- PosiTDEBUG indicated that —b had 0 bits of error, Vb? — 4ac
able. All subsequent terms added to the above result were had 28 bits of error (at most 24 exact fraction bits), and
smaller than 2°° and the result was rounded down to 2°3. —b + VbZ — 4ac had 48 bits of error (at most 4 exact fraction
Even though the accumulation was slowly increasing the bits). Although the subtraction did not cause catastrophic
error, PosITDEBUG still was able to identify the existence of cancellation in this instance, the cancellation of bits in the
error and accurately locate the source of error. subtraction caused a significant increase in error.

The cause of error is the lack of available precision bits Further, PosITDEBUG reported loss of precision with the
for the accumulation operation. We replaced this accumula- second root, which had 36 bits of error (at most 16 exact
tion operation with a fused dot product that uses the quire fraction bits). The result of —b — VbZ — 4ac incurred 26 bit
datatype. After this change, the benchmark produced the of error (at most 26 exact fraction bits) and the result of
value 1.8850 - - - x 10%, which is similar to the shadow exe- 2a had 0 bits of error. However, the result of the division
cution value. lost precision bits due to an increase in regime bits, which
5.2.3 Root-Finding of a Quadratic Formula. The for- resulted in 36 bits of error (at most 16 exact fraction bits).
mula to compute the roots of a quadratic equation is given Although multiplication and division in FP does not amplify
by: the relative error with normal values, posit multiplication

b+ Vb? — 2ac and division can amplify the %‘elatwe €ITOL. We found Pos1T-
root = B Ve DEBUG’s output to be helpful in both identifying the amount

When computing with FP, there are two subtractions that of error and the cause of precision loss.

can result in significant error: computation of b? — 4ac and
the computation of —b + Vb? — 4ac.

In the case of posits, there is additional instruction that
can cause error apart from two subtractions: division by 2a.
We identified this when we ran PosiTDEBUG with our imple-
mentation of the root-finding program with the following

5.3 Performance Overhead with PosiTDEBUG

Figure 7 reports the performance overhead experienced by
various applications with PosiTDEBUG’s shadow execution
compared to an uninstrumented posit application. For each
benchmark, we report the slowdown of PosiTDEBUG with
inputs: three different configurations based on the number of pre-

_14 cision bits used for the MPFR value in the metadata: 512,
a = 1.4396470127131522076524561271071 X 10 ©) 256, and 128 precision bits. The rightmost cluster of bars
b = 3.24884063720703125 X 102 (6) (geomean) reports the geometric mean of all benchmarks for
each precision. On average, PosiTDEBUG’s shadow execution

- 12
¢ = 1.822878072832 % 10 ) has a slowdown of 13.6x with 512 bits of precision, 12.3x
The roots returned by our (32, 2)-posit implementation with 256 bits of precision, and 11.4x with 128 bits of precision
are: compared to a baseline without any instrumentation.
—5.29948672 X 10° (8) As the overheads increase with an increase in precision
1% for the MPFR value used in the metadata, MPFR computa-
—2.2566376648474624 X 10 9)

tion is one major source of overhead. The baseline software
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Figure 9. FPSANITIZER’s performance overhead with varying precision bits (512, 256, and 128) for the shadow execution
compared to an uninstrumented baseline application that uses hardware FP operations.

posit version of SPEC applications is significantly slower
compared to the hardware FP version. Hence, the additional
overhead of PosITDEBUG over the baseline software posit
version is small. On average, POsITDEBUG’s overhead when
compared to a baseline with hardware FP operations is 225X,
174X, and 157X for 512, 256, and 128 precision bits for the
MPEFR value, respectively.

To understand the overhead of the additional mechanisms
for tracing, we evaluate a version of PosiTDEBUG that detects
numerical errors but does not provide tracing information.
Figure 8 reports the overhead of PosiTDEBUG with and with-
out tracing support when the shadow execution is performed
with 256 bits of precision. The removal of tracing reduces the
overhead on average from 12.3X to 10.2X for PosiTDEBUG
in this configuration. Some benchmarks with compact loops
such as durbin and gramschmidt see a significant reduction
in overhead (i.e., from 58X to 41X for durbin and from 44x
to 29X for gramschmidt). Overall, we found these overheads
to be acceptable while debugging applications. An effective
strategy is to run PosiTDEBUG without tracing, detect the
error, and subsequently run PosiTDEBUG with tracing se-
lectively for the functions of interest rather than the entire
program, which we found useful in our experience.
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5.4 Performance Overhead with FPSANITIZER

Figure 9 reports the performance overhead of FPSANITIZER’s
shadow execution, which uses the same metadata organiza-
tion as PosiTDEBUG, compared to an uninstrumented hard-
ware FP baseline. Similar to PosiTDEBUG, we evaluate FPSAN-
ITIZER’s overheads with increasing precision for the shadow
execution’s MPFR value. On average, FPSANITIZERs shadow
execution has a performance overhead of 126X, 111X, and
101X with 512, 256, and 128 bits of precision, respectively.

Herbgrind [59], which is the state-of-the-art shadow exe-
cution framework for FP applications, crashed with all these
applications in our evaluation. We were able to run Herb-
grind with PolyBench applications with smaller inputs. In
these cases, we observed that FPSANITIZER was more than
10x faster than Herbgrind on average.

All SPEC applications have a higher memory footprint
than PolyBench applications and have higher overhead. Ap-
plications spec_milc, spec_sphinx, and spec_lbm have a
large number of cache misses even in the baseline without
FPSANITIZER. Accesses to metadata increase the memory
footprint causing more cache misses at all levels. Further, the
software high-precision computation prevents memory-level
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Figure 10. Performance slowdown of FPSaNITIZER With and without tracing for shadow execution with 256 bits of precision.

parallelism that overlaps misses and reduces the effective-
ness of the prefetcher.

Figure 10 reports the overhead with and without tracing
for FPSaANITIZER. On average, the performance overhead
decreases from 111X to 71x. Additional overhead with meta-
data for tracing is significant for applications with a higher
memory footprint. Overall, we found FPSANITIZER to be
usable with long-running SPEC applications.

6 Related Work

Posit is gaining significant attention both from software
developers and hardware vendors. There is an active com-
munity that has developed various software implementa-
tions [38, 54] and FPGA implementations [30]. Posits and its
variants have been used in a wide variety of contexts: deep
neural network [6, 14, 31, 44] and weather simulation [32].
For these applications, it has been shown that posit pro-
duces more accurate results than the floating point or the
fixed point representations while also being computationally
efficient.

Although posits are shown to be accurate under certain
circumstances, it is prone to new types of errors. Dinechin et.
al. [13] provide an analysis of advantages, disadvantages,
and some sources of error with posits, making a case for
debugging tools for posits. Posit community is still in its
infancy and lacks debugging tools as of now. PosiTDEBUG
is the first tool that helps programmers debug sources of
numerical error, which includes programmers who are either
writing new applications with posits or are porting FP code
to use posits.

PosiTDEBUG is also related to prior tools for detecting
and debugging FP errors. There is a large body of tools to
analyze error in FP programs [2-4, 7, 8, 12, 15, 17-19, 22, 23,
28, 36, 37, 42, 43, 55, 58-62, 62, 66, 67]. Among them, Herb-
grind [59] and FPDebug [4] are the most closely related to
PositDEBUG. Both Herbgrind and FPDebug perform binary
instrumentation with Valgrind to perform shadow execution
with higher precision. FPDebug does not provide much sup-
port for debugging numerical errors. Herbgrind also stores

744

the error and the dynamic traces for each memory location in
the metadata space, analyzes the offending instruction that
causes a program instability, and provides expression DAGs
that could possibly be rewritten with Herbie [55]. However,
the size of the metadata space per memory location is pro-
portional to the number of dynamic FP instructions, which
restricts its use with long-running applications. PosiTDEBUG
is inspired by Herbgrind. However, it addresses the limita-
tions of Herbgrind by maintaining a constant amount of
metadata per-memory location and with compiler instru-
mentation that enables effective debugging with gdb in the
context of posits.

7 Conclusion

Posit is a usable approximation of real numbers with tapered
accuracy. Posit can provide higher precision than floating
point for a certain range of values (i.e., golden zone), which
can be pivotal in some applications. Posit, like any represen-
tation with tapered accuracy, also introduces new concerns
while programming with them. PosiTDEBUG is the first tool
that performs shadow execution with high-precision val-
ues, detects errors, and provides DAGs of instructions that
are responsible for the error in applications using posits.
We built a shadow execution framework for floating point
programs, FPSANITIZER, using the same design, which is an
order of magnitude faster than the state-of-the-art. We found
the debugging support to be useful while implementing and
debugging a wide range of posit applications.
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