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Abstract. The global well-posedness of the smooth solution to the three-dimensional
(3D) incompressible micropolar equations is a difficult open problem. This paper focuses
on the 3D incompressible micropolar equations with fractional dissipations (−∆)αu and
(−∆)βw. Our objective is to establish the global regularity of the fractional micropolar
equations with the minimal amount of dissipations. We prove that, if α ≥ 5

4
, β ≥ 0 and

α+β ≥ 7
4
, the fractional 3D micropolar equations always possess a unique global classical

solution for any sufficiently smooth data. In addition, we also obtain the global regularity
of the 3D micropolar equations with the dissipations given by Fourier multipliers that
are logarithmically weaker than the fractional Laplacian.

1. Introduction

The classical micropolar equations, first derived by Eringen [20] in 1966, govern the
motion of micropolar fluids that are fluids with microstructures and nonsymmetric stress
tensors. Micropolar fluids usually contain rigid and randomly oriented or spherical parti-
cles that have their own spins and microrotations in a viscous medium. Special examples
of micropolar fluids are ferrofluids, blood flows, bubbly liquids, liquid crystals, and so on.
More background information can be found in [13, 19, 20, 21, 33]. Mathematically the
micropolar equations consist of the forced Navier-Stokes equations for the fluid velocity u
and the evolution equation for the microrotation w representing the angular velocity of ro-
tation of particles of the fluid. More precisely, the three-dimensional (3D) incompressible
micropolar equations are

∂tu+ (u · ∇)u− (ν + κ)∆u+∇p = 2κ∇× w, x ∈ R3, t > 0,

∂tw + (u · ∇)w + 4κw − γ∆w = 2κ∇× u+ µ∇∇ · w,
∇ · u = 0,

u(x, 0) = u0(x), w(x, 0) = w0(x),

(1.1)

where u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) represents the fluid velocity, w = w(x, t) =
(w1(x, t), w2(x, t), w3(x, t)) the microrotation, p(x, t) the pressure, and the parameter ν
denotes the kinematic viscosity, κ the microrotation viscosity, γ and µ the angular viscosi-
ties, and u0 and w0 are the prescribed initial data for the velocity and microrotation with
the property ∇ · u0 = 0.

Whether or not the smooth solutions of the classical 3D micropolar equations (1.1)
with general initial data develop finite time singularities is a difficult problem and remains
open. The key difficulty is that the Laplacian dissipation is not sufficient to control the
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nonlinearity when applying the standard techniques to derive global a priori bounds. It
is very natural to ask the question of how much dissipation one really needs in order
to ensure the global regularity. Replacing the Laplacian operators by general fractional
Laplacian operators exactly serves this purpose. We are naturally led to the following 3D
fractional micropolar equations

∂tu+ (u · ∇)u+ (ν + κ)(−∆)αu+∇p = 2κ∇× w, x ∈ R3, t > 0,

∂tw + (u · ∇)w + 4κw + γ(−∆)βw = 2κ∇× u+ µ∇∇ · w,
∇ · u = 0,

u(x, 0) = u0(x), w(x, 0) = w0(x),

(1.2)

where the fractional powers α and β are nonnegative and the fractional Laplacian operator
(−∆)ρ is defined via the Fourier transform

̂(−∆)ρf(ξ) = |ξ|2ρ f̂(ξ).

We will adopt the convention that α = 0 really means that there is no dissipation in (1.2)1,
and β = 0 indicates that there is no dissipation in (1.2)2. For simplicity, we will frequently

use the notation Λ := (−∆)
1
2 .

The system (1.2) with the fractional Laplacian operator is physically relevant. The frac-
tional Laplacian operator can model various anomalous diffusion. Especially, (1.2) allows
us to study long-range diffusive interactions. In addition, (1.2) with hyperviscosity can
be used in turbulence modeling to control the effective range of the non-local dissipation
and to make numerical resolutions more efficient ([22]). Studies on models with fractional
Laplacian have recently gained a lot of momentum. Two recent monographs, entitled
“Nonlocal Diffusion and Applications” [7] and “The Fractional Laplacian” [39], have doc-
umented a list of applications. Closely related to (1.2) are several fractionally dissipated
equations including the surface quasi-geostrophic equation, the porous medium equation
and the Boussinesq equations. The surface quasi-geostrophic equation with fractional dis-
sipation arises in geophysical studies of strongly rotating fluid flows (see, e.g., [12]). The
porous medium equation with fractional dissipation models various anomalous diffusion
process (see, e.g., [38]). The fractional Boussinesq equations are used to model the anoma-
lous attenuation to take account of the effect of kinematic and thermal diffusion in the
study of viscous flows in the thinning of atmosphere (see [24]). The fractional Laplacian
has now found applications far beyond fluid mechanics. It is used in fractional quantum
mechanics [29], probability [1, 5], overdriven detonations in gases [9], anomalous diffusion
in semiconductor growth [43], physics and chemistry [36], optimization and finance [11].

In addition to their applications in engineering and physics, the micropolar equations
are also mathematically significant and have attracted considerable attention in the com-
munity of mathematical fluids. Fundamental mathematical issues such as the global reg-
ularity of solutions have been investigated extensively with many interesting results (see,
e.g., [6, 23, 8, 32, 33, 34, 40, 37, 48]). We mention some of the results on the 3D mi-
cropolar equations (1.1) that are relevant to our study in this paper. The weak solutions
of the initial boundary-value problem for (1.1) was first studied by Galdi and Rionero
[23]. Lukaszewicz in [32] used linearization and an almost fixed point thereom to es-
tablish the global existence of weak solutions for sufficiently regular initial data. By
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the same approach, Lukaszewicz [33] established the local and global well-posedness re-
sults under asymmetric conditions. Boldrini, Durán and Rojas-Medar [6] proved, by the
Galerkin method, the local existence and uniqueness of strong solutions to the initial and
boundary-value problem for bounded or unbounded domains. Yamaguchi [48] proved, via
the Lp-semigroup approach, the global existence of small classical solutions in bounded
domains.

There is also an array of exciting results on the 2D micropolar equations. We mention
some of them. The 2D micropolar equations are obtained by setting

u = (u1(x1, x2, t), u2(x1, x2, t), 0), w = (0, 0, w3(x1, x2, t)), p = p(x1, x2, t)

in (1.1). The corresponding 2D fractional micropolar equations can be written as
∂tu+ (u · ∇)u+ (ν + κ)(−∆)αu+∇p = 2κ∇⊥w, x ∈ R2, t > 0,

∂tw + (u · ∇)w + 4κw + γ(−∆)βw = 2κ∇⊥ · u,
∇ · u = 0,

u(x, 0) = u0(x), w(x, 0) = w0(x),

(1.3)

where ∇⊥ := (−∂x2 , ∂x1)T. When α = β = 1, any sufficiently smooth initial data leads
to a unique global solution (see, e.g., [34, 10, 35]). In the case of inviscid micropolar
equations, namely α = β = 0, the global regularity problem turns out to be extremely
difficult and remains outstandingly open. In the last few years the 2D micropolar equations
with partial dissipation have attracted considerable interests. In [18] Dong and Zhang
obtained the global regularity for (1.3) with α = 1 and β = 0. Xue [47] reexamined
the case α = 1, β = 0, and established the global well-posedness in the frame work of
Besov spaces. The case with α = 0 and β = 1 was settled by Dong, Li and Wu [15],
who proved the global well-posedness of (1.3) in R2, and was also able to determine
the precise larg-time behavior of the solutions to this only partially dissipated system
via the process of diagonalizing the linearized system. The corresponding initial and
boundary-value problem for (1.3) with α = 0 and β = 1 was examined by Jiu, Liu, Wu
and Yu [25], who established the global well-posedness in the functional setting u0 ∈ H1

and w0 ∈ H2. We also mention a recent preprint of Liu and Wang on the initial and
boundary-value problem for the case α = 1, β = 0 [31]. Very recently, Dong, Wu, Xu
and Ye [16] investigated the 2D fractional micropolar equations (1.3) and obtained the
global well-posedness for the fractional powers α and β in suitable ranges. These global
regularity results are not trivial and were achieved by fully exploiting the fine structures
of the corresponding vorticity equation and by working with carefully selected combined
quantities.

To put the results of this paper in a proper broad perspective, we give a brief description
of closely related global regularity results for several set of associated systems. The first
one is the incompressible Navier-Stokes equations with hyperviscosity{

∂tu+ (u · ∇)u+ (−∆)αu+∇p = 0, x ∈ R3, t > 0,

∇ · u = 0.
(1.4)

Lions’ book [30] establishes the global well-posedness of (1.4) for α > 5
4 . Katz and Pavlović

[28] has a nice proof for the case when α > 5
4 . An elementary and simple proof for the
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global regularity of (1.4) with α ≥ 5
4 is given in [44]. T. Tao [41] was able to reduce the

hyperdissipation by a logarithm and still establish the global regularity. Tao’s work was
further improved by [4]. The case α = 5

4 is a critical index from the scaling point of view

and it is not possible at this stage to obtain the global regularity for any α < 5
4 . Very

recently Yang, Jiu and Wu [52] sharpened this classical result from a different perspective
and established the global regularity even with one-directional hyperviscosity removed
from each velocity component equation. Another closely related system is the system
of Boussinesq equations. The Boussinesq equations are among the most frequently used
models for geophysical fluids. The fractional dissipated version is given by

∂tu+ (u · ∇)u+ (−∆)αu+∇p = θe3, x ∈ R3, t > 0,

∂tθ + (u · ∇)θ + (−∆)βθ = 0,

∇ · u = 0,

(1.5)

where u(x, t) is the velocity, p the pressure and θ the temperature, and e3 is the unit
vector (0, 0, 1). It is shown in [26, 46, 50, 53] that any smooth initial data of (1.5) leads
to a unique global solution if

α ≥ 5

4
, β ≥ 0. (1.6)

A logarithmic improvement was obtained in [56]. Very recently (1.5) with (1.6) is shown to
possess a unique global weak solution when the initial data (u0, θ0) is only in L2(R3) (see
[3, 14]). These results do not require any thermal diffusion. Another closely related system
is the 3D incompressible fractional magnetohydrodynamic (MHD) equations, which are
given by 

∂tu+ (u · ∇)u+ (−∆)αu+∇p = (b · ∇)b, x ∈ R3, t > 0,

∂tb+ (u · ∇)b+ (−∆)βb = (b · ∇)u,

∇ · u = ∇ · b = 0,

(1.7)

where u represents the velocity, p the pressure and b the magnetic field. The MHD equa-
tions govern the dynamics of electrically conducting fluids. When the fractional powers α
and β satisfy

α ≥ 5

4
, β ≥ 0, α+ β ≥ 5

2
,

any sufficiently smooth initial data leads to a unique global solution [44]. Highly nontrivial
logarithmic improvements were obtained in [45, 42, 49, 51].

The micropolar equations (1.2) share some similarities with the Boussinesq equations
(1.5) and the MHD equations (1.7). They all contain the Navier-Stokes equations as the
centerpiece and all current results need α ≥ 5

4 as a condition for global regularity, but
there are significant differences. There are difficulties that are unique for the micropolar
equations. The MHD equations involve nice canceling properties due to the presence
of the four nonlinear terms, but the micropolar equations do not have similar canceling
properties. Due to the presence of the term∇∇·w, we cannot directly estimate ‖w‖Lq with
q > 2. In addition, for small β > 0, it is really hard to derive any Sobolev estimates for w.
Finally, some of the approaches for the 2D micropolar equations fail for the 3D micropolar
equations due to the presence of the vortex stretching term. This paper overcomes these
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difficulties and establish three main global regularity results for the micropolar equations
(1.2). Our first result can be stated as follows.

Theorem 1.1. Assume (u0, w0) ∈ Hs(R3) with s > 5
2 and ∇ · u0 = 0. If α and β satisfy

α ≥ 5

4
, β ≥ 0, α+ β ≥ 7

4
,

then (1.2) admits a unique global regular solution (u,w) satisfying for any given T > 0,

u ∈ L∞([0, T ];Hs(R3)) ∩ L2([0, T ];Hs+α(R3)),

and
w ∈ L∞([0, T ];Hs(R3)) ∩ L2([0, T ];Hs+β(R3)).

Remark 1.1. As a special consequence, Theorem 1.1 states that one-derivative dissipation
in the equation of the microrotation is sufficient for global regularity if the velocity equation

has (−∆)
5
4u. As a comparison with the MHD equations, the micropolar equations require

less dissipation (by the order of 3
4 derivatives) to achieve the global regularity.

Remark 1.2. It appears that the condition on β with α ≥ 5
4 and α + β ≥ 7

4 is sharp.

This means that when α = 5
4 , we need β ≥ 1

2 , or at least one derivative dissipation in
the equation of w. The sharpness is implied by the technical estimates. As we know, in
order to obtain the global regularity, one needs to control the time integral of the velocity
Lipschitz norm, namely ∫ T

0
‖∇u‖L∞(R3) dt.

In the three-dimensional space, more or less, one needs to bound∫ T

0
‖Λ

5
2u‖L2(R3)dt.

Due to the presence of ∇ × w in the velocity equation, this requires the estimate on the
time integral of ‖∇w‖L2 . We need at least one-derivative dissipation in the w-equation in
order to bound ‖∇w‖L2 suitably. More details can be found in the proof of Theorem 1.1.

Our next goal is to consider the 3D micropolar equations with the logarithmical dissi-
pations of the form

∂tu+ (u · ∇)u+ L2u+∇p = ∇× w, x ∈ R3, t > 0,

∂tw + (u · ∇)w + 2w + (−∆)βw = ∇× u+∇∇ · w,
∇ · u = 0,

u(x, 0) = u0(x), w(x, 0) = w0(x),

(1.8)

where the operator L is defined by

L̂u(ξ) =
|ξ|α

g(ξ)
û(ξ)

for some non-decreasing radial function g(τ) ≥ 1 defined on τ ≥ 0.

Theorem 1.1 for the borderline case β = 0 can be improved logarithmically. More
precisely, the following improved global regularity result for β = 0 holds. For the sake of
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simplicity, we may assume ν = κ = 1
2 and µ = γ = 1. The sizes of these coefficients do

not play a role in our results.

Theorem 1.2. Consider (1.8) with zero angular viscosity, namely,
∂tu+ (u · ∇)u+ L2u+∇p = ∇× w, x ∈ R3, t > 0,

∂tw + (u · ∇)w + 2w = ∇× u+∇∇ · w,
∇ · u = 0,

u(x, 0) = u0(x), w(x, 0) = w0(x).

(1.9)

Let (u0, w0) ∈ Hs(R3) with s > 5
2 and ∇ · u0 = 0. If α ≥ 7

4 and g further satisfies∫ ∞
e

dτ

τ
√

ln τg2(τ)
=∞, (1.10)

then (1.9) admits a unique global solution (u, w) such that, for any given T > 0,

(u, w) ∈ L∞([0, T ];Hs(R3)), Lu ∈ L2([0, T ];Hs(R3)).

Remark 1.3. We remark that the typical examples satisfying the condition (1.10) are

g(ξ) =
[

ln(e+ |ξ|)
] 1
4 ;

g(ξ) =
[

ln(e+ |ξ|)
] 1
4
[

ln(e+ ln(e+ |ξ|))
] 1
2 ;

g(ξ) =
[

ln(e+ |ξ|)
] 1
4
[

ln(e+ ln(e+ |ξ|)) ln(e+ ln(e+ ln(e+ |ξ|)))
] 1
2 .

For the case α ≥ 5
4 and β > 0, Theorem 1.1 can also be improved logarithmically.

Theorem 1.3. Consider (1.8) with angular viscosity, namely,
∂tu+ (u · ∇)u+ L2u+∇p = ∇× w, x ∈ R3, t > 0,

∂tw + (u · ∇)w + 2w + (−∆)βw = ∇× u+∇∇ · w,
∇ · u = 0,

u(x, 0) = u0(x), w(x, 0) = w0(x).

(1.11)

Let (u0, w0) ∈ Hs(R3) with s > 5
2 and ∇ · u0 = 0. If α and β satisfy

α ≥ 5

4
, β > 0, α+ β ≥ 7

4
,

and g further satisfies ∫ ∞
e

dτ

τg4(τ)
=∞, (1.12)

then (1.11) admits a unique global solution (u, w) such that, for any given T > 0,

(u, w) ∈ L∞([0, T ];Hs(R3)), (Lu, Λβw) ∈ L2([0, T ];Hs(R3)).
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Remark 1.4. The typical examples of g satisfying (1.12) are as follows

g(ξ) =
[

ln(e+ |ξ|)
] 1
4 ;

g(ξ) =
[

ln(e+ |ξ|) ln(e+ ln(e+ |ξ|))
] 1
4 ;

g(ξ) =
[

ln(e+ |ξ|) ln(e+ ln(e+ |ξ|)) ln(e+ ln(e+ ln(e+ |ξ|)))
] 1
4 .

Remark 1.5. Theorem 1.1, Theorem 1.2 and Theorem 1.3 are also true for other fluid
equations with similar structure in the general n-dimension case when the powers α and
β satisfy

α ≥ 1

2
+
n

4
, β ≥ 0, α+ β ≥ 1 +

n

4
.

We now briefly summarize the main challenges and outline the main idea in the proof of
our results. Since the existence and uniqueness of local smooth solutions in the functional
setting Hs(R3) with s > 5

2 can be derived via a standard approach, our efforts are devoted

to obtaining global a priori bounds for u and w in the Sobolev space Hs with s > 5
2 . For

the sake of completeness, the local well-posedness part is presented in Appendix C. The
proof of Theorem 1.1 starts with the basic L2-estimate

‖u(t)‖2L2 + ‖w(t)‖2L2 +

∫ t

0
(‖Λαu(τ)‖2L2 + ‖Λβw(τ)‖2L2)dτ ≤ C(t, u0, w0) (1.13)

and a regularity bound for u based on α ≥ 5
4 and (1.13)

‖Λα+β−1u(t)‖2L2 +

∫ t

0
‖Λ2α+β−1u(τ)‖2L2 dτ <∞. (1.14)

Unfortunately, (1.14) is insufficient to complete the proof of Theorem 1.1. When β < 1,
it is not possible to directly improve (1.14) to the critical level∫ t

0
‖Λ

5
2u(τ)‖2L2 dτ <∞ (1.15)

due to the presence of the term ∇ × w. In order to overcome this difficulty, we combine
the estimates of u and w to derive the regularity estimate of w,

‖Λ%w(t)‖2L2 +

∫ t

0
‖Λ%+βw(τ)‖2L2 dτ <∞ (1.16)

for any % < 1 + β with β > 0. The regularity bound for w in (1.16) is sufficient for (1.15).
In order to obtain (1.16), we need a suitable bound on the following commutator∫

R3

[Λρ, u · ∇]wΛρw dx.

This is exactly where the condition α+β ≥ 7
4 is needed (see (2.17) for details). To prepare

for the proof of the global Hs-bound for (u,w), we need a global bound on ‖w(t)‖Lq with
2 ≤ q ≤ ∞, which is not a consequence of (1.16) in the 3D case. Due to the presence of
∇∇ · w, it is not possible to obtain this bound from the equation of w directly. Instead
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we circumvent this difficulty by estimating the norm ‖Λσw(t)‖L2 . After working out the
estimates on several commutators, we find that, for any σ ≤ 3

2 ,

‖Λσw(t)‖2L2 +

∫ t

0
‖Λσ+βw(τ)‖2L2 dτ <∞. (1.17)

Once (1.15) and (1.17) are at our disposal, the global regularity of u and w can then be
obtained.

We now explain the main idea in the proof of Theorem 1.2. The proof is different
from that for Theorem 1.1. One reason is that there is no dissipation in the w-equation.
Another reason is that the dissipation is given by a general Fourier multiplier operator
here. The key idea here is still to successively establish more and more regular bounds.
The starting step is the basic energy estimate

‖u(t)‖2L2 + ‖w(t)‖2L2 +

∫ t

0
(‖Λru(τ)‖2L2 + ‖Lu(τ)‖2L2) dτ ≤ C(t, u0, w0)

for any r ∈ [0, 7
4). This bound allows us to establish an estimate of the form∥∥∥ Λ

3
4

g(Λ)
u(t)

∥∥∥2

L2
+

∫ t

0

∥∥∥ Λ
5
2

g2(Λ)
u(τ)

∥∥∥2

L2
dτ ≤ C(t, u0, w0),

where Λγ

gk(Λ)
denotes the Fourier multiplier operator given by the symbol |ξ|γ

gk(ξ)
for γ >

0, k > 0. The next step aims at the estimate, for any σ̃ ∈ (0, 5
2) and k1 < σ̃ + 3

4 ,

‖Λk1u(t)‖2L2 + ‖Λσ̃w(t)‖2L2 +

∫ t

0
‖Λk1+ 7

4
−ε2u(τ)‖2L2 dτ ≤ C(t, u0, w0).

The proof of this estimate is highly technical. We use the high-low frequency splitting
techniques and several logarithmic interpolation inequalities. Once this is obtained, we
are then able to bound the global Hs-norm of (u,w). The proof of Theorem 1.3 combines
the techniques from the proofs of Theorem 1.1 and of Theorem 1.2.

The rest of this paper is organized as follows. Section 2 is devoted to the proof of Theo-
rem 1.1. Section 3 proves Theorem 1.2 while Section 4 proves Theorem 1.3. The Appendix
A provides the definitions of the Littlewood-Paley decomposition and Besov spaces, and
related tools. The Appendix B provides a global regularity result for a micropolar system
without ∇∇·w in the equation of w, namely (1.2) with µ = 0. The purpose of this appen-
dix is to show that, without this bad term, the requirement for α and β can be reduced
to α ≥ 5

4 and β = 0. The Appendix C provides the local well-posedness result.

2. The proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. Generic constant will be denoted
by C. Sometimes we write C(γ1, γ2, · · ·, γk) to emphasize the dependence of C on the
quantities γ1, γ2, · · ·, γk. We write A ≈ B if there exist two positive constants C1 ≤ C2

such that C1B ≤ A ≤ C2B.

The proof focuses on the case α + β = 7
4 as the case α + β > 7

4 is simpler and can be
done with a slight modification. The global a priori bounds start with the following basic
energy estimate.
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Lemma 2.1. Assume (u0, w0) satisfies the assumptions stated in Theorem 1.1. If α+β >
1, then the corresponding solution (u,w) of (1.2) admits the following bound for any t > 0

‖u(t)‖2L2 + ‖w(t)‖2L2 +

∫ t

0
(‖Λαu(τ)‖2L2 + ‖Λβw(τ)‖2L2)dτ ≤ C(t, u0, w0). (2.1)

Proof. Multiplying the first two equations in (1.2) by (u,w) and integrating by parts, we
have

1

2

d

dt
(‖u(t)‖2L2 + ‖w(t)‖2L2) + ‖Λαu‖2L2 + ‖Λβw‖2L2 + 2‖w‖2L2 + ‖∇ · w‖2L2

=

∫
R3

(
(∇× w) · u+ (∇× u) · w

)
dx

≤ 2‖Λκu‖L2‖Λ1−κw‖L2

≤ 2(‖u‖1−
κ
α

L2 ‖Λαu‖
κ
α

L2)(‖w‖
1− 1−κ

β

L2 ‖Λβw‖
1−κ
β

L2 )

≤ 1

2
‖Λαu‖2L2 +

1

2
‖Λβw‖2L2 + C(‖u‖2L2 + ‖w‖2L2),

where 1 − β < κ < α (such κ is possible due to the condition α + β > 1). Here we have
also used the equality, due to ∇ · u = 0,∫

R3

(u · ∇)u · u dx = 0 and

∫
R3

(u · ∇)w · w dx = 0,

and the following interpolation inequality

‖f‖Ḣs0 ≤ C‖f‖1−θḢs1
‖f‖θ

Ḣs2
,

where s0 = (1− θ)s1 + θs2 with 0 ≤ θ ≤ 1. By the Gronwall inequality, one has

‖u(t)‖2L2 + ‖w(t)‖2L2 +

∫ t

0
(‖Λαu(τ)‖2L2 + ‖Λβw(τ)‖2L2)dτ ≤ C(t, u0, w0).

This proves the lemma. �

Next we proceed with the following estimate in the Sobolev spaces.

Lemma 2.2. Assume (u0, w0) satisfies the assumptions stated in Theorem 1.1. If α ≥ 5
4

and β ≥ 0, then the corresponding solution (u,w) of (1.2) admits the following bound for
any t > 0

‖Λα+β−1u(t)‖2L2 +

∫ t

0
‖Λ2α+β−1u(τ)‖2L2 dτ ≤ C(t, u0, w0). (2.2)

Proof. Applying Λα+β−1 to (1.2)1 and taking the L2 inner product with Λα+β−1u, we
obtain

1

2

d

dt
‖Λα+β−1u(t)‖2L2 + ‖Λ2α+β−1u‖2L2

= −
∫
R3

[Λα+β−1, u · ∇]u · Λα+β−1u dx+

∫
R3

Λα+β−1(∇× w)Λα+β−1u dx

:= M1 +M2,
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where [Λs, f ]g := Λs(fg)− f(Λsg) denotes the standard commutator. We recall the Kato-
Ponce inequality (see, e.g., [27])

‖[Λs, f ]g‖Lr ≤ C
(
‖∇f‖Lp1‖Λs−1g‖Lq1 + ‖Λsf‖Lp2‖g‖Lq2

)
,

where s > 0, 1 < r <∞ and 1
r = 1

p1
+ 1

q1
= 1

p2
+ 1

q2
with q1, p2 ∈ (1,∞) and p1, q2 ∈ [1,∞].

We will make use of the following variant of the Kato-Ponce inequality,

‖[Λs−1∂xi , f ]g‖Lr ≤ C
(
‖∇f‖Lp1‖Λs−1g‖Lq1 + ‖Λsf‖Lp2‖g‖Lq2

)
, i = 1, 2, 3.

As a consequence, we have

M1 ≤ C‖[Λα+β−1, u · ∇]u‖L2‖Λα+β−1u‖L2

≤ C
(
‖∇u‖Lp0‖Λα+β−2∇u‖

L
2p0
p0−2

+ ‖∇u‖Lp0‖Λα+β−1u‖
L

2p0
p0−2

)
‖Λα+β−1u‖L2

≤ C‖∇u‖Lp0‖Λα+β−1u‖
L

2p0
p0−2
‖Λα+β−1u‖L2

≤ C‖u‖Hα‖Λα+β−1u‖
1− 3

αp0

L2 ‖Λ2α+β−1u‖
3
αp0

L2 ‖Λα+β−1u‖L2

≤ 1

4
‖Λ2α+β−1u‖2L2 + C(1 + ‖u‖2Hα)‖Λα+β−1u‖2L2 ,

where, due to α ≥ 5
4 , we have selected p0 > 2 satisfying

5− 2α

6
≤ 1

p0
≤ α

3
.

The term M2 can be bounded by

M2 ≤ C‖Λβw‖L2‖Λ2α+β−1u‖L2 ≤
1

4
‖Λ2α+β−1u‖2L2 + C‖Λβw‖2L2 .

Collecting the estimates above yields

d

dt
‖Λα+β−1u(t)‖2L2 + ‖Λ2α+β−1u‖2L2 ≤ C(1 + ‖u‖2Hα)‖Λα+β−1u‖2L2 + C‖w‖2Hβ .

Thanks to the estimate (2.1), we have∫ t

0
(‖u(τ)‖2Hα + ‖w(τ)‖2Hβ )dτ ≤ C(t, u0, w0). (2.3)

By the Gronwall inequality,

‖Λα+β−1u(t)‖2L2 +

∫ t

0
‖Λ2α+β−1u(τ)‖2L2 dτ ≤ C(t, u0, w0).

Therefore, we complete the proof of Lemma 2.2. �

We are now in the position to derive the following key estimates.

Lemma 2.3. Assume (u0, w0) satisfies the assumptions stated in Theorem 1.1. If α ≥ 5
4 ,

β > 0 and α+ β ≥ 7
4 , then the corresponding solution (u,w) of (1.2) admits the following

bounds for any t > 0,

‖Λ
5
4u(t)‖2L2 +

∫ t

0
‖Λα+ 5

4u(τ)‖2L2 dτ ≤ C(t, u0, w0), (2.4)



GLOBAL REGULARITY OF MICROPOLAR EQUATIONS 11

‖Λρw(t)‖2L2 +

∫ t

0
‖Λρ+βw(τ)‖2L2 dτ ≤ C(t, u0, w0), (2.5)

where ρ > 0 satisfies

9

4
− (α+ β) < ρ < 1 + β. (2.6)

In particular, due to α ≥ 5
4 , it follows from (2.4) that

‖Λ
5
4u(t)‖2L2 +

∫ t

0
‖Λ

5
2u(τ)‖2L2 dτ ≤ C(t, u0, w0). (2.7)

Remark 2.1. Combining with (2.1), we see that (2.5) is true for any 0 ≤ ρ < 1 + β. This
fact will be used repeatedly later.

Proof. Applying Λ
5
4 to (1.2)1 and taking the L2 inner product with Λ

5
4u yield

1

2

d

dt
‖Λ

5
4u(t)‖2L2 + ‖Λα+ 5

4u‖2L2 = −
∫
R3

[Λ
5
4 , u · ∇]u · Λ

5
4u dx+

∫
R3

Λ
5
4 (∇× w)Λ

5
4u dx

:= N1 +N2. (2.8)

Applying Λρ to (1.2)2 and taking the inner product with Λρw, we obtain

1

2

d

dt
‖Λρw(t)‖2L2 + ‖Λρ+βw‖2L2 + 2‖Λρw‖2L2 + ‖Λρ∇ · w‖2L2

=

∫
R3

Λρ
(
∇× u

)
Λρw dx−

∫
R3

[Λρ, u · ∇]wΛρw dx

:= N3 +N4. (2.9)

Combing (2.8) and (2.9) leads to

1

2

d

dt
(‖Λ

5
4u(t)‖2L2 + ‖Λρw(t)‖2L2) + ‖Λα+ 5

4u‖2L2 + ‖Λρ+βw‖2L2 ≤
4∑

k=1

Nk. (2.10)

Thanks to the Sobolev embedding inequality and the Kato-Ponce inequality, we obtain

N1 ≤ ‖[Λ
5
4 , u · ∇]u‖L2‖Λ

5
4u‖L2

≤ C
(
‖∇u‖

L
12
5
‖Λ

1
4∇u‖L12 + ‖∇u‖

L
12
5
‖Λ

5
4u‖L12

)
‖Λ

5
4u‖L2

≤ C‖∇u‖
L

12
5
‖Λ

5
4u‖L12‖Λ

5
4u‖L2

≤ C‖Λ
5
4u‖L2‖Λ

5
2u‖L2‖Λ

5
4u‖L2

≤ C‖u‖Hα‖u‖
Hα+5

4
‖Λ

5
4u‖L2

≤ 1

16
‖Λα+ 5

4u‖2L2 + C(1 + ‖u‖2Hα)(1 + ‖Λ
5
4u‖2L2). (2.11)

The equivalence of the norms in the following three spaces has been used here and will be
used frequently,

‖f‖Bs2,2 ≈ ‖f‖Hs ≈ ‖f‖L2 + ‖Λsf‖L2 , ∀ s ≥ 0,
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where Bs
p,q denotes the nonhomogeneous Besov space (see Appendix for its definition).

The next term N2 can be bounded by

N2 ≤ ‖w‖
H

9
4−α
‖Λα+ 5

4u‖L2

≤ C‖w‖Hρ+β‖Λα+ 5
4u‖L2

≤ 1

16
‖Λα+ 5

4u‖2L2 +
1

16
‖Λρ+βw‖2L2 + C‖w‖2L2 , (2.12)

where ρ satisfies

ρ >
9

4
− (α+ β). (2.13)

Similarly,

N3 ≤ ‖Λρ−β
(
∇× u

)
‖L2‖Λρ+βw‖L2

≤ C‖u‖
Hα+5

4
‖Λρ+βw‖L2

≤ 1

16
‖Λα+ 5

4u‖2L2 +
1

16
‖Λρ+βw‖2L2 + C‖u‖2L2 , (2.14)

where ρ satisfies

ρ <
1

4
+ α+ β. (2.15)

To deal with N4, we need the commutator estimate (see, e.g., [55, Lemma 2.6])

‖[Λδ, f · ∇]g‖Bsp,r ≤ C
(
‖∇f‖Lp1‖g‖Bs+δp2,r

+ ‖f‖L2‖g‖L2

)
, (2.16)

where ∇ · f = 0 and 1
p = 1

p1
+ 1

p2
with p ∈ [2,∞), p1, p2 ∈ [2,∞], r ∈ [1,∞] and

s ∈ (−1, 1− δ) for δ ∈ (0, 2). By the Sobolev embedding inequality, the Hölder inequality
and (2.16), one has

N4 ≤C‖[Λρ, u · ∇]w‖
B−β2,2
‖Λρw‖

Bβ2,2

≤C(‖∇u‖Lm0‖w‖Bρ−β2m0
m0−2 ,2

+ ‖u‖L2‖w‖L2)(‖Λρw‖L2 + ‖Λρ+βw‖L2)

≤C(‖u‖H2α+β−1‖w‖
B
ρ−β+ 3

m0
2,2

+ ‖u‖L2‖w‖L2)(‖Λρw‖L2 + ‖Λρ+βw‖L2)

≤C(‖u‖H2α+β−1‖w‖Hρ + ‖u‖L2‖w‖L2)(‖Λρw‖L2 + ‖Λρ+βw‖L2)

≤ 1

16
‖Λρ+βw‖2L2 + C(1 + ‖u‖2H2α+β−1)‖Λρw‖2L2

+ C(1 + ‖u‖2L2)(1 + ‖w‖2L2), (2.17)

where ρ and m0 > 2 satisfy

ρ < 1 + β,
7− 4α− 2β

6
≤ 1

m0
≤ β

3
. (2.18)

Such m0 exists due to α+ β ≥ 7
4 . It is worth noting that this is the only place where we

use the assumption α+β ≥ 7
4 . We also remark that in order to obtain (2.17), we need the

restriction β < 1. This is due to the use of (2.16). When β ≥ 1, it is easy to show (2.7)
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without exploiting the dedicate estimate (2.9). Therefore, (2.7) holds for both β < 1 and
β ≥ 1. Inserting the estimates (2.11), (2.12), (2.14) and (2.17) in (2.10), we conclude

d

dt
(‖Λ

5
4u(t)‖2L2 + ‖Λρw(t)‖2L2) + ‖Λα+ 5

4u‖2L2 + ‖Λρ+βw‖2L2

≤ C(1 + ‖u‖2Hα + ‖u‖2H2α+β−1)(‖Λ
5
4u‖2L2 + ‖Λρw‖2L2)

+ C(1 + ‖u‖2L2)(1 + ‖w‖2L2),

where ρ > 0 satisfies (2.6) by combining (2.13), (2.15) and (2.18). By (2.2), (2.3) and the
Gronwall inequality, we obtain

‖Λ
5
4u(t)‖2L2 + ‖Λρw(t)‖2L2 +

∫ t

0
(‖Λα+ 5

4u(τ)‖2L2 + ‖Λρ+βw(τ)‖2L2) dτ ≤ C(t, u0, w0).

This completes the proof of Lemma 2.3. �

With the help of (2.7), we can now establish the higher regularity estimate for w, which
can be stated as the following lemma.

Lemma 2.4. Assume (u0, w0) satisfies the assumptions stated in Theorem 1.1. If α ≥ 5
4 ,

β > 0 and α+ β ≥ 7
4 , then the corresponding solution (u,w) of (1.2) admits the following

bound for any t > 0 and for any σ ≤ 3
2 ,

‖Λσw(t)‖2L2 +

∫ t

0
‖Λσ+βw(τ)‖2L2 dτ ≤ C(t, u0, w0).

In particular, due to β > 0, it holds∫ t

0
‖w(τ)‖2L∞ dτ ≤ C(t, u0, w0). (2.19)

Proof. Applying Λσ to (1.2)2 and taking the inner product with Λσw, one gets

1

2

d

dt
‖Λσw(t)‖2L2 + ‖Λσ+βw‖2L2 + 2‖Λσw‖2L2 + ‖Λσ∇ · w‖2L2

=

∫
R3

Λσ
(
∇× u

)
Λσw dx−

∫
R3

[Λσ, u · ∇]wΛσw dx

:= L1 + L2. (2.20)

We deduce from the Gagliardo-Nirenberg inequality that

L1 ≤ C‖Λσ+1−βu‖L2‖Λσ+βw‖L2

≤ 1

16
‖Λσ+βw‖2L2 + C‖Λσ+1−βu‖2L2

≤ 1

16
‖Λσ+βw‖2L2 + C‖u‖2L2 + C‖Λ

5
2u‖2L2 , (2.21)

where σ ≤ β + 3
2 . Making use of ∇ · u = 0 and the Kato-Ponce inequality, we achieve

L2 = −
∫
R3

[Λσ∂xi , ui]wΛσw dx

≤ ‖[Λσ∂xi , ui]w‖L2‖Λσw‖L2
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≤ C(‖∇u‖Lm1‖Λσw‖
L

2m1
m1−2

+ ‖Λσ+1u‖L2‖w‖L∞)‖Λσw‖L2

≤ C(‖u‖
H

5
2
‖Λσw‖

1− 3
βm1

L2 ‖Λσ+βw‖
3

βm1

L2 + ‖u‖
H

5
2
‖w‖Hσ+β )‖Λσw‖L2

≤ 1

16
‖Λσ+βw‖2L2 + C(1 + ‖u‖2L2 + ‖Λ

5
2u‖2L2)‖Λσw‖2L2 , (2.22)

where max{ 3
β , 2} < m1 <∞ and 3

2 − β < σ ≤ 3
2 . Putting (2.21)-(2.22) into (2.20) yields

d

dt
‖Λσw(t)‖2L2 + ‖Λσ+βw‖2L2 ≤ C(1 + ‖u‖2L2 + ‖Λ

5
2u‖2L2)(1 + ‖Λσw‖2L2).

It follows from (2.7) and the Gronwall inequality that

‖Λσw(t)‖2L2 +

∫ t

0
‖Λσ+βw(τ)‖2L2 dτ ≤ C(t, u0, w0).

We thus complete the proof of Lemma 2.4. �

Finally, with (2.7) and (2.19) at our disposal, we are ready to show the global Hs-bound.

Proof of Theorem 1.1. Applying Λs with s > 5
2 to (1.2) and taking the L2 inner product

with (Λsu,Λsw), we have

1

2

d

dt
(‖Λsu‖2L2 + ‖Λsw‖2L2) + ‖Λs+αu‖2L2 + ‖Λs+βw‖2L2 + 2‖Λsw‖2L2 + ‖Λs∇ · w‖2L2

=

∫
R3

(
Λs(∇× u) · Λsw + Λs(∇× w) · Λsu

)
dx−

∫
R3

[Λs, u · ∇]uΛsu dx

−
∫
R3

[Λs, u · ∇]wΛsw dx

:= J1 + J2 + J3. (2.23)

Due to α ≥ 1, it is easy to check that

J1 ≤ 2‖Λs+1u‖L2‖Λsw‖L2

≤ 2‖Λsu‖
α−1
α

L2 ‖Λs+αu‖
1
α

L2‖Λsw‖L2

≤ 1

16
‖Λs+αu‖2L2 + C‖Λsw‖2L2 + C‖Λsu‖2L2 .

By the Kato-Ponce inequality, we directly get

J2 ≤ C‖[Λs, u · ∇]u‖L2‖Λsu‖L2

≤ C‖∇u‖Lm2‖Λsu‖
L

2m2
m2−2

‖Λsu‖L2

≤ C‖u‖
H

5
2
‖Λsu‖

1− 3
αm2

L2 ‖Λs+αu‖
3

αm2

L2 ‖Λsu‖L2

≤ 1

16
‖Λs+αu‖2L2 + C(‖u‖2L2 + ‖Λ

5
2u‖2L2)‖Λsu‖2L2 ,

where max{ 3
α , 2} < m2 <∞. Similarly to (2.22), one may conclude

J3 =−
∫
R3

[Λs∂xi , ui]wΛsw dx
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≤‖[Λs∂xi , ui]w‖L2‖Λsw‖L2

≤C(‖∇u‖Lm1‖Λsw‖
L

2m1
m1−2

+ ‖Λs+1u‖L2‖w‖L∞)‖Λsw‖L2

≤C(‖u‖
H

5
2
‖Λsw‖

1− 3
βm1

L2 ‖Λs+βw‖
3

βm1

L2 + ‖u‖Hs+α‖w‖L∞)‖Λsw‖L2

≤ 1

16
‖Λs+αu‖2L2 +

1

16
‖Λs+βw‖2L2 + C(1 + ‖u‖2L2 + ‖Λ

5
2u‖2L2 + ‖w‖2L∞)

× (‖Λsu‖2L2 + ‖Λsw‖2L2).

Combining the above estimates yields

d

dt
(‖Λsu‖2L2 + ‖Λsw‖2L2) + ‖Λs+αu‖2L2 + ‖Λs+βw‖2L2

≤ C(1 + ‖u‖2L2 + ‖Λ
5
2u‖2L2 + ‖w‖2L∞)(‖Λsu‖2L2 + ‖Λsw‖2L2). (2.24)

By (2.7) and (2.19),∫ t

0
(1 + ‖u(τ)‖2L2 + ‖Λ

5
2u(τ)‖2L2 + ‖w(τ)‖2L∞) dτ ≤ C(t, u0, w0).

Applying the standard Gronwall inequality to (2.24) implies

‖Λsu(t)‖2L2 + ‖Λsw(t)‖2L2 +

∫ t

0
(‖Λs+αu(τ)‖2L2 + ‖Λs+βw(τ)‖2L2) dτ ≤ C(t, u0, w0),

which along with (2.1) gives

‖u(t)‖2Hs + ‖w(t)‖2Hs +

∫ t

0
(‖Λαu(τ)‖2Hs + ‖Λβw(τ)‖2Hs) dτ ≤ C(t, u0, w0). (2.25)

With (2.25) in hand, the uniqueness follows directly due to s > 5
2 . In fact, let (u,w, p)

and (u,w, p) be two solutions to (1.2) with the same initial data. Letting

δu = u− u, δw = w − w, δp = p− p,
we thus have

∂tδu+ (u · ∇)δu+ (−∆)αδu+∇δp = ∇× δw − (δu · ∇)u,
∂tδw + (u · ∇)δw + δw + (−∆)βδw = ∇× δu+∇∇ · δw − (δu · ∇)w,

δu(x, 0) = 0, δw(x, 0) = 0,

(2.26)

Multiplying ((2.26)1, (2.26)2) by (δu, δw) and integrating over the whole space, one obtains

1

2

d

dt
(‖δu(t)‖2L2 + ‖δw(t)‖2L2) + ‖Λαδu‖2L2 + ‖Λβδw‖2L2 + ‖∇ · δw‖2L2

≤
∫
R3

∇× δw · δu dx+

∫
R3

∇× δu · δw dx−
∫
R3

(δu · ∇)u · δu dx

−
∫
R3

(δu · ∇)w · δw dx

≤ 2‖Λκδu‖L2‖Λ1−κδw‖L2 + C‖∇u‖L∞‖δu‖2L2 + C‖∇w‖L∞‖δu‖L2‖δw‖L2

≤ 2(‖δu‖1−
κ
α

L2 ‖Λαδu‖
κ
α

L2)(‖δw‖
1− 1−κ

β

L2 ‖Λβδw‖
1−κ
β

L2 )

+ C(‖∇u‖L∞ + ‖∇w‖L∞)(‖δu‖2L2 + ‖δw‖2L2)
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≤ 1

2
‖Λαδu‖2L2 +

1

2
‖Λβδw‖2L2 + C(‖δu‖2L2 + ‖δw‖2L2)

+ C(‖u‖Hs + ‖w‖
Hs

)(‖δu‖2L2 + ‖δw‖2L2),

where we have used s > 5
2 and have selected 1− β < κ < α. This yields

d

dt
(‖δu(t)‖2L2 + ‖δw(t)‖2L2) ≤ C(1 + ‖u‖Hs + ‖w‖

Hs
)(‖δu‖2L2 + ‖δw‖2L2),

which together with (2.26)3 and the Gronwall inequality implies

δu(t) = δw(t) = 0.

We thus obtain the uniqueness. Therefore, this completes the proof of Theorem 1.1. �

3. The proof of Theorem 1.2

In this section, we are going to prove Theorem 1.2. Our attention is focused on the case
when α = 7

4 since α > 7
4 is even simpler to handle. We begin with the basic L2-estimate.

Lemma 3.1. Assume (u0, w0) satisfies the assumptions stated in Theorem 1.2. Then the
corresponding solution (u,w) of (1.9) admits the following bound for any t > 0

‖u(t)‖2L2 + ‖w(t)‖2L2 +

∫ t

0
(‖Λru(τ)‖2L2 + ‖Lu(τ)‖2L2) dτ ≤ C(t, u0, w0) (3.1)

for any r ∈ [0, 7
4).

Proof. It follows from the first equation of (1.9) that

1

2

d

dt
(‖u(t)‖2L2 + ‖w(t)‖2L2) +

∫
R3

L2u · u dx+ 2‖w‖2L2 + ‖∇ · w‖2L2

=

∫
R3

(
(∇× w) · u+ (∇× u) · w

)
dx.

By Plancherel’s theorem,∫
R3

L2u · u dx =

∫
R3

|ξ|
7
2

g2(|ξ|)
|û(ξ)|2 dξ = ‖Lu‖2L2 .

Based on the assumptions on g, g grows logarithmically and we conclude that for any fixed
σ > 0, there exists N = N(σ) satisfying

g(r) ≤ C̃rσ, ∀ r ≥ N,

with some constant C̃ = C̃(σ). Therefore, we have

‖Lu‖2L2 =

∫
|ξ|<N(σ)

|ξ|
7
2

g2(|ξ|)
|û(ξ)|2 dξ +

∫
|ξ|≥N(σ)

|ξ|
7
2

g2(|ξ|)
|û(ξ)|2 dξ

≥
∫
|ξ|≥N(σ)

|ξ|
7
2[

C̃|ξ|σ
]2 |û(ξ)|2 dξ

=

∫
R3

|ξ|
7
2[

C̃|ξ|σ
]2 |û(ξ)|2 dξ −

∫
|ξ|<N(σ)

|ξ|
7
2[

C̃|ξ|σ
]2 |û(ξ)|2 dξ
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≥ C0‖Λ
7−4σ

4 u‖2L2 − C̃0‖u‖2L2 , (3.2)

where C0 and C̃0 depend only on σ. Now if we further fix σ satisfying σ ∈ (0, 3
4), then we

get by combining all the estimates above,

1

2

d

dt
(‖u(t)‖2L2 + ‖w(t)‖2L2) +

1

2
‖Lu‖2L2 +

C0

2
‖Λ

7−4σ
4 u‖2L2 + 2‖w‖2L2 + ‖∇ · w‖2L2

≤ C̃0‖u‖2L2 +

∫
R3

(
(∇× w) · u+ (∇× u) · w

)
dx

≤ C̃0‖u‖2L2 + 2‖∇u‖L2‖w‖L2

≤ C̃0‖u‖2L2 + 2(‖u‖
3−4σ
7−4σ

L2 ‖Λ
7−4σ

4 u‖
4

7−4σ

L2 )‖w‖L2

≤ C0

4
‖Λ

7−4σ
4 u‖2L2 + C(‖u‖2L2 + ‖w‖2L2).

Therefore, for any σ ∈ (0, 3
4),

d

dt
(‖u(t)‖2L2 + ‖w(t)‖2L2) + ‖Λ

7−4σ
4 u‖2L2 + ‖Lu‖2L2 ≤ C(‖u‖2L2 + ‖w‖2L2).

Using the Gronwall inequality yields

‖u(t)‖2L2 + ‖w(t)‖2L2 +

∫ t

0
(‖Λ

7−4σ
4 u(τ)‖2L2 + ‖Lu(τ)‖2L2) dτ ≤ C(t, u0, w0).

The estimate (3.1) then follows. �

The following estimate plays an important role in proving the main result.

Lemma 3.2. Assume (u0, w0) satisfies the assumptions stated in Theorem 1.2. Then the
corresponding solution (u,w) of (1.9) admits the following bound for any t > 0∥∥∥ Λ

3
4

g(Λ)
u(t)

∥∥∥2

L2
+

∫ t

0

∥∥∥ Λ
5
2

g2(Λ)
u(τ)

∥∥∥2

L2
dτ ≤ C(t, u0, w0).

In particular, there holds for any ε1 ∈ (0, 5
2)∫ t

0
‖u(τ)‖2

H
5
2−ε1

dτ ≤ C(t, u0, w0). (3.3)

Proof. Taking the inner product of (1.9)1 with Λ
3
2

g2(Λ)
u, we have

1

2

d

dt

∥∥∥ Λ
3
4

g(Λ)
u(t)

∥∥∥2

L2
+
∥∥∥ Λ

5
2

g2(Λ)
u
∥∥∥2

L2
=−

∫
R3

(u · ∇u) · Λ
3
2

g2(Λ)
u dx

+

∫
R3

∇× w · Λ
3
2

g2(Λ)
u dx.

The Young inequality ensures∣∣∣ ∫
R3

∇× w · Λ
3
2

g2(Λ)
u dx

∣∣∣ ≤ ‖w‖L2

∥∥∥∇ Λ
3
2

g2(Λ)
u
∥∥∥
L2
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≤ 1

16

∥∥∥ Λ
5
2

g2(Λ)
u
∥∥∥2

L2
+ C‖w‖2L2 .

Following the proof of (3.2), it is not difficult to check that for any ε ∈ (0, 3
4),∥∥∥ Λ

3
4

g(Λ)
u
∥∥∥2

L2
≥ C1‖Λ

3
4
−εu‖2L2 − C2‖u‖2L2 . (3.4)

In view of the fact ∇ · u = 0 and the Gagliardo-Nirenberg inequality, we infer that∣∣∣ ∫
R3

(u · ∇u) · Λ
3
2

g2(Λ)
u dx

∣∣∣ ≤C‖uu‖L2

∥∥∥∇ Λ
3
2

g2(Λ)
u
∥∥∥
L2

≤C‖u‖2L4

∥∥∥ Λ
5
2

g2(Λ)
u
∥∥∥
L2

≤C‖Λ
1
2u‖L2‖Λu‖L2

∥∥∥ Λ
5
2

g2(Λ)
u
∥∥∥
L2

≤ 1

16

∥∥∥ Λ
5
2

g2(Λ)
u
∥∥∥2

L2
+ C‖Λ

1
2u‖2L2‖Λu‖2L2

≤ 1

16

∥∥∥ Λ
5
2

g2(Λ)
u
∥∥∥2

L2
+ C‖u‖2L2‖Λu‖2L2

+ C
∥∥∥ Λ

3
4

g(Λ)
u
∥∥∥2

L2
‖Λu‖2L2 ,

where in the last line we have applied (3.4) with ε = 1
4 . We thus conclude

d

dt

∥∥∥ Λ
3
4

g(Λ)
u(t)

∥∥∥2

L2
+
∥∥∥ Λ

5
2

g2(Λ)
u
∥∥∥2

L2
≤C‖w‖2L2 + C‖u‖2L2‖Λu‖2L2

+ C‖Λu‖2L2

∥∥∥ Λ
3
4

g(Λ)
u
∥∥∥2

L2
.

The estimate (3.1) with r = 1 gives

‖u(t)‖2L2 + ‖w(t)‖2L2 +

∫ t

0
‖Λu(τ)‖2L2 dτ ≤ C(t, u0, w0).

By the Gronwall inequality,∥∥∥ Λ
3
4

g(Λ)
u(t)

∥∥∥2

L2
+

∫ t

0

∥∥∥ Λ
5
2

g2(Λ)
u(τ)

∥∥∥2

L2
dτ ≤ C(t, u0, w0).

The desired bound (3.3) can be deduced following the proof of (3.2). This completes the
proof of Lemma 3.2. �

The following is our main lemma in the proof of Theorem 1.2.

Lemma 3.3. Assume (u0, w0) satisfies the assumptions stated in Theorem 1.1. Then the
corresponding solution (u,w) of (1.9) admits the following bound for any t > 0

‖Λk1u(t)‖2L2 + ‖Λσ̃w(t)‖2L2 +

∫ t

0
‖LΛk1u(τ)‖2L2 dτ ≤ C(t, u0, w0), (3.5)



GLOBAL REGULARITY OF MICROPOLAR EQUATIONS 19

where k1 < σ̃ + 3
4 for any σ̃ ∈ (0, 5

2). In particular, we have, by taking k1 >
3
4 ,∫ t

0
‖∇u(τ)‖2L∞ dτ ≤ C(t, u0, w0). (3.6)

Moreover, if one takes σ̃ ∈ (3
2 ,

5
2), then

‖w(t)‖L∞ ≤ C(t, u0, w0). (3.7)

Proof. Applying Λσ̃ to (1.9)2 and taking the inner product with Λσ̃w yield

1

2

d

dt
‖Λσ̃w(t)‖2L2 + 2‖Λσ̃w‖2L2 + ‖Λσ̃∇ · w‖2L2

=

∫
R3

Λσ̃
(
∇× u

)
Λσ̃w dx−

∫
R3

[Λσ̃, u · ∇]wΛσ̃w dx

:= K1 +K2.

Applying Λk1 to the system (1.9)1 and taking the L2 inner product with Λk1u, we have

1

2

d

dt
‖Λk1u(t)‖2L2 + ‖LΛk1u‖2L2

= −
∫
R3

[Λk1 , u · ∇]u · Λk1u dx+

∫
R3

Λk1(∇× w)Λk1u dx

:= K3 +K4.

First, we deduce from the proof of (3.2) that for any ε2 ∈ (0, k1 + 7
4),

‖LΛk1u‖2L2 ≥ C3‖Λk1+ 7
4
−ε2u‖2L2 − C4‖u‖2L2 .

It thus follows from the Gagliardo-Nirenberg inequality that

K1 ≤ C‖Λσ̃+1u‖L2‖Λσ̃w‖L2

≤ C(‖u‖L2 + ‖LΛk1u‖L2)‖Λσ̃w‖L2

≤ 1

16
‖LΛk1u‖2L2 + C‖Λσ̃w‖2L2 + C‖u‖2L2 ,

where σ̃ − 3
4 + ε2 ≤ k1. According to ∇ · u = 0 and the Kato-Ponce inequality, we obtain,

for any σ̃ < 3
2 ,

K2 =−
∫
R3

[Λσ̃∂xi , ui]wΛσ̃w dx

≤‖[Λσ̃∂xi , ui]w‖L2‖Λσ̃w‖L2

≤C(‖∇u‖L∞‖Λσ̃w‖L2 + ‖Λσ̃+1u‖
L

3
σ̃
‖w‖

L
6

3−2σ̃
)‖Λσ̃w‖L2

≤C(‖∇u‖L∞‖Λσ̃w‖L2 + ‖Λ
5
2u‖L2‖Λσ̃w‖L2)‖Λσ̃w‖L2

≤C(‖∇u‖L∞ + ‖Λ
5
2u‖L2)‖Λσ̃w‖2L2 .

For any σ̃ ∈ (1, 5
2), K2 can be bounded by

K2 ≤‖[Λσ̃, u · ∇]w‖L2‖Λσ̃w‖L2

≤C(‖∇u‖L∞‖Λσ̃w‖L2 + ‖Λσ̃u‖
L

3
σ̃−1
‖∇w‖

L
6

5−2σ̃
)‖Λσ̃w‖L2
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≤C(‖∇u‖L∞‖Λσ̃w‖L2 + ‖Λ
5
2u‖L2‖Λσ̃w‖L2)‖Λσ̃w‖L2

≤C(‖∇u‖L∞ + ‖Λ
5
2u‖L2)‖Λσ̃w‖2L2 .

There, for any σ̃ ∈ (0, 5
2),

K2 ≤ C(‖∇u‖L∞ + ‖Λ
5
2u‖L2)‖Λσ̃w‖2L2 .

By the Kato-Ponce inequality, we obtain

K3 ≤C‖[Λk1 , u · ∇]u‖L2‖Λk1u‖L2

≤C‖∇u‖L∞‖Λk1u‖2L2 . (3.8)

By the Gagliardo-Nirenberg inequality, one has

K4 ≤C‖Λ1+2k1−σ̃u‖L2‖Λσ̃w‖L2

≤C‖u‖
Hk1+

7
4−ε2
‖Λσ̃w‖L2

≤C(‖LΛk1u‖L2 + ‖u‖L2)‖Λσ̃w‖L2

≤ 1

16
‖LΛk1u‖2L2 + C‖Λσ̃w‖2L2 + C‖u‖2L2 ,

where k1 < σ̃ + 3
4 − ε2. Collecting all the estimates above yields

d

dt
(‖Λσ̃w(t)‖2L2 + ‖Λk1u(t)‖2L2) + ‖Λk1+ 7

4
−ε2u‖2L2

≤ C(1 + ‖∇u‖L∞ + ‖Λ
5
2u‖L2)(‖Λσ̃w‖2L2 + ‖Λk1u‖2L2) + C‖u‖2L2 .

If we set

A(t) := ‖Λσ̃w(t)‖2L2 + ‖Λk1u(t)‖2L2 , B(t) := ‖Λk1+ 7
4
−ε2u(t)‖2L2 + ‖LΛk1u(t)‖2L2 ,

f(t) := C + C‖u‖2L2 ,

then

d

dt
A(t) +B(t) ≤ C(1 + ‖∇u‖L∞ + ‖Λ

5
2u‖L2)A(t) + f(t). (3.9)

We now bound ‖∇u‖L∞ via the high-low frequency technique (see, e.g., [45]). By the
Littlewood-Paley decomposition (see Appendix for details),

‖∇u‖L∞ ≤ ‖∆−1∇u‖L∞ +

N−1∑
l=0

‖∆l∇u‖L∞ +

∞∑
l=N

‖∆l∇u‖L∞ .

By the Bernstein inequality (see Lemma A.1), one has

‖∆−1∇u‖L∞ ≤ C‖u‖L2

and
∞∑
l=N

‖∆l∇u‖L∞ ≤C
∞∑
l=N

2
5
2
l‖∆lu‖L2

=C

∞∑
l=N

2l(ε2+ 3
4
−k1)‖∆lΛ

k1+ 7
4
−ε2u‖L2
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≤C2N(ε2+ 3
4
−k1)‖Λk1+ 7

4
−ε2u‖L2 , (3.10)

where we have used k1 > ε2 + 3
4 . According to the Bernstein inequality again and the

Plancherel theorem, the middle term can be handled as follows,

N−1∑
l=0

‖∆l∇u‖L∞ ≤ C
N−1∑
l=0

2
5
2
l‖∆lu‖L2 ≤ C

N−1∑
l=0

‖∆lΛ
5
2u‖L2

≤C
N−1∑
l=0

‖ϕ(2−lξ)|ξ|
5
2 û(ξ)‖L2

=C
N−1∑
l=0

∥∥∥ϕ(2−lξ)g2(|ξ|) |ξ|
5
2

g2(|ξ|)
û(ξ)

∥∥∥
L2

≤C
N−1∑
l=0

g2(2l)
∥∥∥ |ξ| 52
g2(|ξ|)

∆̂lu(ξ)
∥∥∥
L2

≤C
(N−1∑
l=0

g4(2l)
) 1

2

(
N−1∑
l=0

∥∥∥ |ξ| 52
g2(|ξ|)

∆̂lu(ξ)
∥∥∥2

L2

) 1
2

≤Cg2(2N )
(N−1∑
l=1

1
) 1

2
∥∥∥ Λ

5
2

g2(Λ)
u
∥∥∥
L2

≤Cg2(2N )
√
N
∥∥∥ Λ

5
2

g2(Λ)
u
∥∥∥
L2
,

where we used the fact that g is a non-decreasing function and φ(2−lξ) denotes the symbol
of the operator ∆l (see Appendix). Summarizing the above estimates implies

‖∇u‖L∞ ≤ C‖u‖L2 + Cg2(2N )
√
N
∥∥∥ Λ

5
2

g2(Λ)
u
∥∥∥
L2

+ C2N(ε2+ 3
4
−k1)‖Λk1+ 7

4
−ε2u‖L2 .

By the same argument, we have

‖Λ
5
2u‖L2 ≤ C‖u‖L2 + Cg2(2N )

√
N
∥∥∥ Λ

5
2

g2(Λ)
u
∥∥∥
L2

+ C2N(ε2+ 3
4
−k1)‖Λk1+ 7

4
−ε2u‖L2 .

The estimate for ‖Λ
5
2u‖L2 can be refined to

‖Λ
5
2u‖L2 ≤ Cg2(2N )

∥∥∥ Λ
5
2

g2(Λ)
u
∥∥∥
L2

+ C2N(ε2+ 3
4
−k1)‖Λk1+ 7

4
−ε2u‖L2 . (3.11)

The above estimate (3.11) can be established by invoking (3.10),

‖Λ
5
2u‖L2 ≤‖SNΛ

5
2u‖L2 +

N−1∑
l=0

‖∆lΛ
5
2u‖L2

≤C
∥∥∥χ(2−Nξ)|ξ|

5
2 û(ξ)

∥∥∥
L2

+ C

N−1∑
l=0

2
5
2
l‖∆lu‖L2
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≤C

∥∥∥∥∥χ(2−Nξ)g2(|ξ|) |ξ|
5
2 û(ξ)

g2(|ξ|)

∥∥∥∥∥
L2

+ C2N(ε2+ 3
4
−k1)‖Λk1+ 7

4
−ε2u‖L2

≤Cg2(2N )

∥∥∥∥∥ |ξ|
5
2 û(ξ)

g2(|ξ|)

∥∥∥∥∥
L2

+ C2N(ε2+ 3
4
−k1)‖Λk1+ 7

4
−ε2u‖L2

≤Cg2(2N )
∥∥∥ Λ

5
2

g2(Λ)
u
∥∥∥
L2

+ C2N(ε2+ 3
4
−k1)‖Λk1+ 7

4
−ε2u‖L2 ,

where the low frequency cutoff operator SN is given in the first appendix. By (3.9),

d

dt
A(t) +B(t) ≤CA(t) + Cg2(2N )

√
N
∥∥∥ Λ

5
2

g2(Λ)
u
∥∥∥
L2
A(t)

+ C2N(ε2+ 3
4
−k1)B

1
2 (t)A(t) + f(t).

For simplicity, we denote

a := k1 − ε2 −
3

4
> 0.

Choosing N satisfying

2N ≈ (e+A(t))
1
2a ,

we obtain

d

dt
A(t) +B(t) ≤C

(
1 +

∥∥∥ Λ
5
2

g2(Λ)
u
∥∥∥
L2

)
g2
[

(e+A(t))
1
2a
]√

ln
(
e+A(t)

)(
e+A(t)

)
+ CB

1
2 (t)

(
e+A(t)

) 1
2 + f(t)

≤C

(
1 +

∥∥∥ Λ
5
2

g2(Λ)
u
∥∥∥
L2

)
g2
[

(e+A(t))
1
2a
]√

ln
(
e+A(t)

)(
e+A(t)

)
+

1

2
B(t) + C

(
e+A(t)

)
+ f(t).

In particular,

d

dt
A(t) ≤C

(
1 +

∥∥∥ Λ
5
2

g2(Λ)
u
∥∥∥
L2

)
g2
[

(e+A(t))
1
2a
]√

ln
(
e+A(t)

)(
e+A(t)

)
+ Cf(t). (3.12)

Thanks to

g2
[

(e+A(t))
1
2a
]√

ln
(
e+A(t)

)(
e+A(t)

)
≥ 1,

we divide (3.12) by g2
[

(e+A(t))
1
2a
]√

ln
(
e+A(t)

)(
e+ A(t)

)
and integrating in time to

obtain ∫ e+A(t)

e+A(0)

dτ

τ
√

ln τg2(τ
1
2a )
≤ C

∫ t

0

(
1 + f(τ) +

∥∥∥ Λ
5
2

g2(Λ)
u(τ)

∥∥∥
L2

)
dτ.

Recalling the condition (1.10) on g,∫ ∞
e

dτ

τ
√

ln τg2(τ
1
2a )

=
√

2a

∫ ∞
e

1
2a

dτ

τ
√

ln τg2(τ)
=∞
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and the bound in Lemma 3.2,∫ t

0

(
1 + f(τ) +

∥∥∥ Λ
5
2

g2(Λ)
u(τ)

∥∥∥
L2

)
dτ ≤ C(t, u0, w0),

we deduce that
A(t) ≤ C(t, u0, w0).

Returning to (3.12), we also get∫ t

0
B(τ) dτ ≤ C(t, u0, w0).

Thus, we have

‖Λk1u(t)‖2L2 + ‖Λσ̃w(t)‖2L2 +

∫ t

0
(‖Λk1+ 7

4
−ε2u(τ)‖2L2 + ‖LΛk1u(τ)‖2L2) dτ ≤ C(t, u0, w0),

which is (3.5). This finishes the proof of Lemma 3.3. �

We are now ready to prove the global Hs-bound and thus Theorem 1.2.

Proof of Theorem 1.2. To this end, we recall (2.23),

1

2

d

dt
(‖Λsu‖2L2 + ‖Λsw‖2L2) + ‖LΛsu‖2L2 + 2‖Λsw‖2L2 + ‖Λs∇ · w‖2L2

=

∫
R3

(
Λs(∇× u) · Λsw + Λs(∇× w) · Λsu

)
dx−

∫
R3

[Λs, u · ∇]uΛsu dx

−
∫
R3

[Λs, u · ∇]wΛsw dx

:= J1 + J2 + J3.

According to the proof of (3.2), we have, for any ε3 ∈ (0, 7
4)

‖LΛsu‖2L2 ≥ C5‖Λs+
7
4
−ε3u‖2L2 − C6‖Λsu‖2L2 . (3.13)

By (3.13) with ε3 = 3
4 , it leads to

J1 ≤C‖Λs+1u‖L2‖Λsw‖L2

≤C(‖LΛsu‖L2 + ‖Λsu‖L2)‖Λsw‖L2

≤ 1

16
‖LΛsu‖2L2 + C(‖Λsu‖2L2 + ‖Λsw‖2L2).

According to (3.8), one has

J2 ≤ C‖∇u‖L∞‖Λsu‖2L2 . (3.14)

The last term J3 can be bounded by

J3 =−
∫
R3

[Λs∂xi , ui]wΛsw dx

≤‖[Λs∂xi , ui]w‖L2‖Λsw‖L2

≤C(‖∇u‖L∞‖Λsw‖L2 + ‖Λs+1u‖L2‖w‖L∞)‖Λsw‖L2

≤C (‖∇u‖L∞‖Λsw‖L2 + (‖LΛsu‖L2 + ‖Λsu‖L2)‖w‖L∞) ‖Λsw‖L2
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≤ 1

16
‖LΛsu‖2L2 + C(‖∇u‖L∞ + ‖w‖2L∞)(‖Λsu‖2L2 + ‖Λsw‖2L2). (3.15)

Combining all the above estimates, we obtain

d

dt
(‖Λsu‖2L2 + ‖Λsw‖2L2) + ‖LΛsu‖2L2

≤ C(1 + ‖w‖2L∞ + ‖∇u‖L∞)(‖Λsu‖2L2 + ‖Λsw‖2L2). (3.16)

Recalling (3.6) and (3.7), we conclude via the Gronwall type inequality

‖Λsu(t)‖2L2 + ‖Λsw(t)‖2L2 +

∫ t

0
‖LΛsu(τ)‖2L2 dτ ≤ C(t, u0, w0).

This completes the proof of Theorem 1.2. �

4. The proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. Similarly it suffices to consider the
case α+ β = 7

4 . The basic L2-estimate follows from Lemma 3.1.

Lemma 4.1. Assume (u0, w0) satisfies the assumptions stated in Theorem 1.3. Then the
corresponding solution (u,w) of the system (1.11) admits the following bound for any t > 0

‖u(t)‖2L2 + ‖w(t)‖2L2 +

∫ t

0
(‖Lu(τ)‖2L2 + ‖Λβw(τ)‖2L2) dτ ≤ C(t, u0, w0). (4.1)

Our next goal is to improve the regularity of u, which can be stated as follows.

Lemma 4.2. Assume (u0, w0) satisfies the assumptions stated in Theorem 1.3. Then the
corresponding solution (u,w) of the system (1.11) admits the following bound for any t > 0∥∥∥∥Λα+β−1

g(Λ)
u(t)

∥∥∥∥2

L2

+

∫ t

0

∥∥∥∥Λ2α+β−1

g2(Λ)
u(τ)

∥∥∥∥2

L2

dτ ≤ C(t, u0, w0). (4.2)

When α+ β = 7
4 ,∥∥∥∥∥ Λ

3
4

g(Λ)
u(t)

∥∥∥∥∥
2

L2

+

∫ t

0

∥∥∥∥∥Λα+ 3
4

g2(Λ)
u(τ)

∥∥∥∥∥
2

L2

dτ ≤ C(t, u0, w0). (4.3)

In particular, we have for any ε1 ∈ (0, α+ 3
4),∫ t

0

∥∥∥Λα+ 3
4
−ε1u(τ)

∥∥∥2

L2
dτ ≤ C(t, u0, w0). (4.4)

Proof. Taking the scalar product of the first equation of (1.11) with Λ2α+2β−2

g2(Λ)
u, we have

1

2

d

dt

∥∥∥∥Λα+β−1

g(Λ)
u(t)

∥∥∥∥2

L2

+

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥2

L2

=

∫
R3

∇× w · Λ2α+2β−2

g2(Λ)
u dx

−
∫
R3

(u · ∇u) · Λ2α+2β−2

g2(Λ)
u dx.
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By the Young inequality,∣∣∣∣∫
R3

∇× w · Λ2α+2β−2

g2(Λ)
u dx

∣∣∣∣ ≤C‖Λβw‖L2

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥
L2

≤ 1

16

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥2

L2

+ C‖Λβw‖2L2 .

Following the arguments used in proving (3.2), we deduce for any r1 ∈ (0, α+ β − 1) and
r2 ∈ (0, 2α+ β − 1) that∥∥∥∥Λα+β−1

g(Λ)
u

∥∥∥∥2

L2

≥ C1‖Λr1u‖2L2 − C2‖u‖2L2 , (4.5)

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥2

L2

≥ C3‖Λr2u‖2L2 − C4‖u‖2L2 . (4.6)

By a simple embedding inequality,∣∣∣∣−∫
R3

(u · ∇u) · Λ2α+2β−2

g2(Λ)
u dx

∣∣∣∣ ≤C‖Λβ(uu)‖L2

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥
L2

≤C‖u‖
L

12
3−2β
‖Λβu‖

L
12

3+2β

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥
L2

≤C‖Λβu‖2
L

12
3+2β

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥
L2

≤C‖Λ
3+2β

4 u‖2L2

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥
L2

.

The high-low frequency technique implies

‖Λ
3+2β

4 u‖L2 ≤ ‖SNΛ
3+2β

4 u‖L2 +

∞∑
j=N

‖∆jΛ
3+2β

4 u‖L2 .

Thanks to α ≥ 5
4 and the Plancherel theorem, we have

‖SNΛ
3+2β

4 u‖L2 ≤C‖SNΛ
3+4α

8 u‖L2 + C‖SNu‖L2

≤C‖SNΛ
3
4u‖

1
2

L2‖SNΛαu‖
1
2

L2 + C‖u‖L2

≤C‖χ(2−Nξ)|ξ|
3
4 û(ξ)‖

1
2

L2‖χ(2−Nξ)|ξ|αû(ξ)‖
1
2

L2 + C‖u‖L2

=C

∥∥∥∥∥χ(2−Nξ)g(ξ)
|ξ|

3
4 û(ξ)

g(ξ)

∥∥∥∥∥
1
2

L2

∥∥∥∥χ(2−Nξ)g(ξ)
|ξ|αû(ξ)

g(ξ)

∥∥∥∥ 1
2

L2

+ C‖u‖L2

≤Cg(2N )

∥∥∥∥∥ |ξ|
3
4 û(ξ)

g(ξ)

∥∥∥∥∥
1
2

L2

∥∥∥∥ |ξ|αû(ξ)

g(ξ)

∥∥∥∥ 1
2

L2

+ C‖u‖L2

≤Cg(2N )

∥∥∥∥Λα+β−1

g(Λ)
u

∥∥∥∥
1
2

L2

‖Lu‖
1
2

L2 + C‖u‖L2 .
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The high frequency can be bounded by the Bernstein inequality and (4.5) along with (4.6),

∞∑
j=N

‖∆jΛ
3+2β

4 u‖L2 ≤C
∞∑
j=N

2−
1
4
j‖∆jΛ

2+β
2 u‖L2

≤C
∞∑
j=N

2−
1
4
j‖Λ

2+β
2 u‖L2

≤C2−
N
4 ‖Λr1u‖1−θ

L2 ‖Λr2u‖θL2

≤C2−
N
4

(∥∥∥∥Λα+β−1

g(Λ)
u

∥∥∥∥
L2

+ ‖u‖L2

)1−θ (∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥
L2

+ ‖u‖L2

)θ
,

where θ is given by

θ =
2 + β − 2r1

2r2 − 2r1
<

1

2
.

Therefore,

‖Λ
3+2β

4 u‖L2 ≤Cg(2N )

∥∥∥∥Λα+β−1

g(Λ)
u

∥∥∥∥
1
2

L2

‖Lu‖
1
2

L2 + C‖u‖L2

+ C2−
N
4

(∥∥∥∥Λα+β−1

g(Λ)
u

∥∥∥∥
L2

+ ‖u‖L2

)1−θ (∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥
L2

+ ‖u‖L2

)θ
.

Combining all the estimates altogether yields

d

dt

∥∥∥∥Λα+β−1

g(Λ)
u(t)

∥∥∥∥2

L2

+

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥2

L2

≤C‖Λβw‖2L2 + Cg2(2N )

∥∥∥∥Λα+β−1

g(Λ)
u

∥∥∥∥
L2

‖Lu‖L2

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥
L2

+ C‖u‖2L2

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥
L2

+ C2−
N
2

(∥∥∥∥Λα+β−1

g(Λ)
u

∥∥∥∥
L2

+ ‖u‖L2

)2(1−θ)

×
(∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥
L2

+ ‖u‖L2

)2θ ∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥
L2

.

Therefore, if we set

A(t) :=

∥∥∥∥Λα+β−1

g(Λ)
u(t)

∥∥∥∥2

L2

, B(t) :=

∥∥∥∥Λ2α+β−1

g2(Λ)
u(t)

∥∥∥∥2

L2

,

then

d

dt
A(t) +B(t) ≤C‖Λβw‖2L2 + Cg2(2N )A

1
2 (t)‖Lu‖L2B

1
2 (t)

+ C‖u‖2L2B
1
2 (t) + C2−

N
2
(
A(t) + ‖u‖2L2

)1−θ (
B(t) + ‖u‖2L2

)θ
B

1
2 (t)

≤1

2
B(t) + Cg4(2N )A(t)‖Lu‖2L2 + CA(t) + C2−

N
1−2θ (A(t))

2(1−θ)
1−2θ

+ C2−N‖u‖4θL2A
2−2θ(t) + φ(‖u‖L2),
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where φ(t) is given by

φ(‖u(t)‖L2) = C(‖u(t)‖4L2 + ‖u(t)‖
4(1−θ)
1−2θ

L2 ) ≤ C(t, u0, w0).

This yields

d

dt
A(t) +B(t) ≤ Cg4(2N )A(t)‖Lu‖2L2 + CA(t) + C2−

N
1−2θ (A(t))

2(1−θ)
1−2θ + φ(‖u(t)‖L2).

By taking
2N ≈ e+A(t),

we obtain
d

dt
A(t) +B(t) ≤ Cg4 (e+A(t)) (e+A(t)) (1 + ‖Lu‖2L2) + φ(‖u(t)‖L2). (4.7)

Noticing that
g4
(
e+A(t)

)(
e+A(t)

)
≥ 1,

we obtain from (4.7) that∫ e+A(t)

e+A(0)

dτ

τg4(τ)
≤ C

∫ t

0

(
1 + φ(‖u(τ)‖L2) + ‖Lu(τ)‖2L2

)
dτ.

Thanks to ∫ ∞
e

dτ

τg4(τ)
=∞

and the following fact due to (4.1)∫ t

0

(
1 + φ(‖u(τ)‖L2) + ‖Lu(τ)‖2L2

)
dτ ≤ C(t, u0, w0),

we deduce that
A(t) ≤ C(t, u0, w0).

In addition, (4.7) implies ∫ t

0
B(τ) dτ ≤ C(t, u0, w0).

The desired estimates (4.2) and (4.3) follow directly, and (4.6) immediately implies (4.4).
We thus complete the proof of this lemma. �

Motivated by Lemma 2.3, we will show the following key lemma.

Lemma 4.3. Assume (u0, w0) satisfies the assumptions stated in Theorem 1.3. If α ≥ 5
4 ,

β > 0 and α + β ≥ 7
4 , then the corresponding solution (u,w) of the system (1.11) admits

the following bounds for any t > 0,

‖Λ
7
4u(t)‖2L2 +

∫ t

0
‖Λ

7
4Lu(τ)‖2L2 dτ ≤ C(t, u0, w0), (4.8)

‖Λ%w(t)‖2L2 +

∫ t

0
‖Λ%+βw(τ)‖2L2 dτ ≤ C(t, u0, w0), (4.9)

for any % < 1 + β. In particular, due to α ≥ 5
4 , we have∫ t

0
(‖∇u(τ)‖L∞ + ‖Λ

5
2u(τ)‖L2) dτ ≤ C(t, u0, w0). (4.10)
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Proof. Applying Λ
7
4 to the first equation of (1.11) and dotting by Λ

7
4u, we obtain

1

2

d

dt
‖Λ

7
4u(t)‖2L2 + ‖Λ

7
4Lu‖2L2

= −
∫
R3

[Λ
7
4 , u · ∇]u · Λ

7
4u dx+

∫
R3

Λ
7
4 (∇× w)Λ

7
4u dx

:= Ñ1 + Ñ2.

Applying Λ% to the second equation of (1.11) and taking the inner product with Λ%w yield

1

2

d

dt
‖Λ%w(t)‖2L2 + ‖Λ%+βw‖2L2 + 2‖Λ%w‖2L2 + ‖Λ%∇ · w‖2L2

=

∫
R3

Λ%
(
∇× u

)
Λ%w dx−

∫
R3

[Λ%, u · ∇]wΛ%w dx

:= Ñ3 + Ñ4.

Similar to the proof of (3.2), we obtain for any ε2 ∈ (0, α) that

‖Λ
7
4Lu‖2L2 ≥ C3‖Λα+ 7

4
−ε2u‖2L2 − C4‖Λ

7
4u‖2L2 . (4.11)

By the Sobolev embedding inequality and the Kato-Ponce inequality,

Ñ1 ≤‖[Λ
7
4 , u · ∇]u‖L2‖Λ

7
4u‖L2

≤C‖∇u‖Lk‖Λ
7
4u‖

L
2k
k−2
‖Λ

7
4u‖L2

≤C
(∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥
L2

+ ‖∇u‖L2

)
(‖Λ

7
4Lu‖L2 + ‖Λ

7
4u‖L2)‖Λ

7
4u‖L2

≤ 1

16
‖Λ

7
4Lu‖2L2 + C

(
1 +

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥2

L2

+ ‖∇u‖2L2

)
(1 + ‖Λ

7
4u‖2L2),

where k > 2 satisfies
7− 4α− 2β

6
≤ 1

k
≤ α

3
.

By (4.11) and the interpolation inequality, we can bound Ñ2 by

Ñ2 ≤C‖Λ%+βw‖L2‖Λ
7
4u‖

H
11
4 −%−β

≤C‖Λ%+βw‖L2‖Λ
7
4u‖1−ϑ1

L2 ‖Λ
7
4Lu‖ϑ1

L2

≤ 1

16
‖Λ

7
4Lu‖2L2 +

1

16
‖Λ%+βw‖2L2 + C‖Λ

7
4u‖2L2 ,

where % > 1. Similarly, one has

Ñ3 ≤‖Λ%−β
(
∇× u

)
‖L2‖Λ%+βw‖L2

≤C‖u‖H%+1−β‖Λ%+βw‖L2

≤C‖u‖1−ϑ2
L2 ‖Λ

7
4Lu‖ϑ2

L2‖Λ%+βw‖L2

≤ 1

16
‖Λ

7
4Lu‖2L2 +

1

16
‖Λ%+βw‖2L2 + C‖u‖2L2 ,
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where % < 5
2 . As in (2.17), we choose m0 > 2 satisfying

7− 4α− 2β

6
≤ 1

m0
≤ β

3

to obtain, for α+ β ≥ 7
4 and % < 1 + β,

Ñ4 ≤C‖[Λ%, u · ∇]w‖
B−β2,2
‖Λ%w‖

Bβ2,2

≤C(‖∇u‖Lm0‖w‖B%−β2m0
m0−2 ,2

+ ‖u‖L2‖w‖L2)(‖Λ%w‖L2 + ‖Λ%+βw‖L2)

≤C(‖u‖H2α+β−1‖w‖
B
%−β+ 3

m0
2,2

+ ‖u‖L2‖w‖L2)(‖Λ%w‖L2 + ‖Λ%+βw‖L2)

≤C(‖u‖H2α+β−1‖w‖H% + ‖u‖L2‖w‖L2)(‖Λ%w‖L2 + ‖Λ%+βw‖L2).

By the Plancherel theorem and the Bernstein inequality,

‖u‖H2α+β−1 ≈‖u‖L2 + ‖Λ2α+β−1u‖L2

≤‖u‖L2 + ‖SNΛ2α+β−1u‖L2 +

∞∑
j=N

‖∆jΛ
2α+β−1u‖L2

≤‖u‖L2 + C

∥∥∥∥χ(2−Nξ)g2(ξ)
|ξ|2α+β−1û(ξ)

g2(ξ)

∥∥∥∥
L2

+ C

∞∑
j=N

2−σj‖∆jΛ
α+ 3

4
+σu‖L2

≤‖u‖L2 + Cg2(2N )

∥∥∥∥ |ξ|2α+β−1û(ξ)

g2(ξ)

∥∥∥∥
L2

+ C2−σN‖Λα+ 3
4

+σu‖L2

≤‖u‖L2 + Cg2(2N )

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥
L2

+ C2−σN‖Λα+ 3
4
−ε1u‖1−2σ

L2 ‖Λ
7
4

+α−ε2u‖2σL2

≤‖u‖L2 + Cg2(2N )

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥
L2

+ C2−σN‖Λα+ 3
4
−ε1u‖1−2σ

L2 (‖Λ
7
4Lu(τ)‖L2 + ‖Λ

7
4u‖L2)2σ,

where σ is given by

σ =
ε1

1 + 2ε1 − 2ε2
<

1

2
.

Combining all the estimates above, one has

d

dt
(‖Λ

7
4u(t)‖2L2 + ‖Λ%w(t)‖2L2) + ‖Λ

7
4Lu‖2L2 + ‖Λ%+βw‖2L2

≤ C

(
1 +

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥2

L2

+ ‖∇u‖2L2

)
(1 + ‖Λ

7
4u‖2L2)

+ C

(
g2(2N )

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥
L2

‖w‖H% + ‖u‖L2‖w‖L2

)
(‖Λ%w‖L2 + ‖Λ%+βw‖L2)
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+ C
(

2−σN‖Λα+ 3
4
−ε1u‖1−2σ

L2 (‖Λ
7
4Lu(τ)‖L2 + ‖Λ

7
4u‖L2)2σ‖w‖H% + ‖u‖L2‖w‖L2

)
× (‖Λ%w‖L2 + ‖Λ%+βw‖L2).

Writing

X(t) := ‖Λ
7
4u(t)‖2L2 + ‖Λ%w(t)‖2L2 , Y (t) := ‖Λ

7
4Lu(t)‖2L2 + ‖Λ%+βw(t)‖2L2 ,

and choosing

2N ≈ e+X(t),

we obtain

d

dt
X(t) + Y (t) ≤C

(
1 +

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥2

L2

+ ‖∇u‖2L2

)(
e+X(t)

)
+ C

(
g2
(
e+X(t)

) ∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥
L2

(
‖w‖L2 +X

1
2 (t)

)
+ ‖u‖L2‖w‖L2

)
×
(
X

1
2 (t) + Y

1
2 (t)

)
+ C

(
e+X(t)

)−σ‖Λα+ 3
4
−ε1u‖1−2σ

L2 (X
1
2 (t) + Y

1
2 (t))2σ

(
‖w‖L2 +X

1
2 (t)

)
×
(
X

1
2 (t) + Y

1
2 (t)

)
+ C‖u‖L2‖w‖L2

(
X

1
2 (t) + Y

1
2 (t)

)
.

Thanks to the Hölder inequality,

d

dt
X(t) + Y (t) ≤C

(
H(‖u‖L2 , ‖w‖L2) +

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥2

L2

+ ‖Λα+ 3
4
−ε1u‖2L2

)(
e+X(t)

)
+ C

(
H(‖u‖L2 , ‖w‖L2) +

∥∥∥∥Λ2α+β−1

g2(Λ)
u

∥∥∥∥2

L2

)(
e+X(t)

)
g4
(
e+X(t)

)
+ CH(‖u‖L2 , ‖w‖L2) +

1

2
Y (t),

where H(b1, b2) is an increasing smooth function with respective to both b1 and b2, and
thus satisfies ∫ t

0
H(‖u(τ)‖L2 , ‖w(τ)‖L2) dτ ≤ C(t, u0, w0).

Noticing the following fact (
e+X(t)

)
g4
(
e+X(t)

)
≥ 1,

we finally get

d

dt
X(t) + Y (t) ≤ CR(t)

(
e+X(t)

)
g4
(
e+X(t)

)
, (4.12)

where R(t) is given by

R(t) := H(‖u(t)‖L2 , ‖w(t)‖L2) +

∥∥∥∥Λ2α+β−1

g2(Λ)
u(t)

∥∥∥∥2

L2

+ ‖Λα+ 3
4
−ε1u(t)‖2L2 .

Recalling the assumption on g, ∫ ∞
e

dτ

τg4(τ)
=∞
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and the bound due to (4.2) and (4.4)∫ t

0
R(τ) dτ ≤ C(t, u0, w0),

we obtain ∫ e+X(t)

e+X(0)

dτ

τg4(τ)
≤
∫ t

0
R(τ) dτ ≤ C(t, u0, w0).

That is, X(t) must be finite for any given t > 0,

X(t) ≤ C(t, u0, w0). (4.13)

By (4.12), ∫ t

0
Y (τ) dτ ≤ C(t, u0, w0). (4.14)

The estimates (4.13) and (4.14) along with (4.11) imply (4.8) and (4.9). Clearly (4.10)
is an easy consequence of (4.8). In fact, due to α ≥ 5

4 , we invoke the inequality with

0 < ε2 <
5
4 + α,

‖Λ
5
2u‖L2 , ‖∇u‖L∞ ≤ C‖u‖L2 + C‖Λα+ 7

4
−ε2u‖L2 ,

which is (4.10). This completes the proof of Lemma 4.3. �

The estimate (4.10) and Lemma 2.4 allow us to obtain the following bound.

Lemma 4.4. Assume (u0, w0) satisfies the assumptions stated in Theorem 1.3. If α ≥ 5
4 ,

β > 0 and α + β ≥ 7
4 , then the corresponding solution (u,w) of the system (1.11) admits

the following bound for any t > 0,∫ t

0
‖w(τ)‖2L∞ dτ ≤ C(t, u0, w0). (4.15)

Finally we provide the global Hs-estimate for u and w, and thus finish the proof of
Theorem 1.3.

Proof of Theorem 1.3. As in (2.23), we have

1

2

d

dt
(‖Λsu‖2L2 + ‖Λsw‖2L2) + ‖ΛsLu‖2L2 + ‖Λs+βw‖2L2 + 2‖Λsw‖2L2 + ‖Λs∇ · w‖2L2

:= J1 + J2 + J3.

By means of the proof of (3.2), we have, for any 0 < ε3 < α,

‖ΛsLu‖2L2 ≥ C5‖Λα+s−ε2u‖2L2 − C6‖Λsu‖2L2 . (4.16)

By (4.16),

J1 ≤2‖Λs+1u‖L2‖Λsw‖L2

≤2(‖Λsu‖L2 + ‖ΛsLu‖L2)‖Λsw‖L2

≤ 1

16
‖ΛsLu‖2L2 + C(‖Λsu‖2L2 + ‖Λsw‖2L2).

We deduce from (3.14) that

J2 ≤ C‖∇u‖L∞‖Λsu‖2L2 .
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According to (3.15), we have

J3 ≤
1

16
‖ΛsLu‖2L2 + C(‖∇u‖L∞ + ‖w‖2L∞)(‖Λsu‖2L2 + ‖Λsw‖2L2).

Combining all the estimates yields

d

dt
(‖Λsu‖2L2 + ‖Λsw‖2L2) + ‖ΛsLu‖2L2 + ‖Λs+βw‖2L2

≤ C(1 + ‖∇u‖L∞ + ‖w‖2L∞)(‖Λsu‖2L2 + ‖Λsw‖2L2).

Thanks to (4.10) and (4.15), one has∫ t

0
(1 + ‖∇u(τ)‖L∞ + ‖w(τ)‖2L∞) dτ ≤ C(t, u0, w0).

The Gronwall inequality implies

‖Λsu(t)‖2L2 + ‖Λsw(t)‖2L2 +

∫ t

0
(‖ΛsLu(τ)‖2L2 + ‖Λs+βw(τ)‖2L2) dτ ≤ C(t, u0, w0).

This completes the proof of Theorem 1.3. �

Appendix A. Besov spaces

This appendix provides the definition of the Besov spaces and related facts that have
been used in the previous sections. Some of the materials are taken from [2].

We start with the partition of unity. Let B(0, r) and C(0, r1, r2) denote the standard
ball and the annulus, respectively,

B(0, r) = {ξ ∈ Rn : |ξ| ≤ r} , C(0, r1, r2) = {ξ ∈ Rn : r1 ≤ |ξ| ≤ r2} .

There are two compactly supported smooth radial functions φ and ψ satisfying

suppφ ⊂ B(0, 4/3), suppψ ⊂ C(0, 3/4, 8/3),

φ(ξ) +
∑
j≥0

ψ(2−jξ) = 1 for all ξ ∈ Rn. (A.1)

We use h̃ and h to denote the inverse Fourier transforms of φ and ψ respectively,

h̃ = F−1φ, h = F−1ψ.

In addition, for notational convenience, we write ψj(ξ) = ψ(2−jξ). By a simple property
of the Fourier transform,

hj(x) := F−1(ψj)(x) = 2nj h(2jx).

The inhomogeneous dyadic block operator ∆j are defined as follows

∆jf = 0 for j ≤ −2,

∆−1f = h̃ ∗ f =

∫
Rn
f(x− y) h̃(y) dy,

∆jf = hj ∗ f = 2nj
∫
Rn
f(x− y)h(2jy) dy for j ≥ 0.
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The corresponding inhomogeneous low frequency cut-off operator Sj is defined by

Sjf =
∑
k≤j−1

∆kf.

For any function f in the usual Schwarz class S, (A.1) implies

f̂(ξ) = φ(ξ) f̂(ξ) +
∑
j≥0

ψ(2−jξ) f̂(ξ), (A.2)

or, in terms of the inhomogeneous dyadic block operators,

f =
∑
j≥−1

∆jf or Id =
∑
j≥−1

∆j ,

where Id denotes the identity operator. More generally, for any F in the space of tempered
distributions, denoted S ′, (A.2) still holds but in the distributional sense. That is, for
F ∈ S ′,

F =
∑
j≥−1

∆jF or Id =
∑
j≥−1

∆j in S ′. (A.3)

In fact, one can verify that

SjF :=
∑
k≤j−1

∆kF → F in S ′.

Note that (A.3) is referred to as the Littlewood-Paley decomposition for tempered distri-
butions.

The inhomogeneous Besov space can be defined in terms of ∆j specified above.

Definition A.1. For 1 ≤ p, q ≤ ∞ and s ∈ R, the inhomogeneous Besov space Bs
p,q

consists of the functions f ∈ S ′ satisfying ‖f‖Bsp,q ≡ ‖2
js‖∆jf‖Lp‖lq <∞.

Bernstein’s inequality is a useful tool on Fourier localized functions and these inequali-
ties trade derivatives for integrability. The following proposition provides Bernstein type
inequalities for fractional derivatives.

Lemma A.1. For α ≥ 0, 1 ≤ p ≤ q ≤ ∞, and f ∈ Lp(Rn),

(1) if there exist some integer j and a constant K > 0, such that, supp f̂ ⊂ {ξ ∈ Rn :
|ξ| ≤ K2j}, then

‖(−∆)αf‖Lq(Rn) ≤ C1 2
2αj+jn( 1

p
− 1
q

)‖f‖Lp(Rn);

(2) if there exist some integer j and constants 0 < K1 ≤ K2, such that, supp f̂ ⊂ {ξ ∈
Rn : K12j ≤ |ξ| ≤ K22j}, then

C1 22αj‖f‖Lq(Rn) ≤ ‖(−∆)αf‖Lq(Rn) ≤ C2 2
2αj+jn( 1

p
− 1
q

)‖f‖Lp(Rn),

where C1 and C2 are constants depending only on α, p and q.
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Appendix B. A global regularity result when ∇∇ · w is eliminated

As we mentioned in the introduction, the term ∇∇ · w in the equation of w in the
micropolar system is a “bad” term in the sense that it prevents us from deriving the
estimate ‖w‖Lq with q > 2 directly by the standard Lq-estimate. This appendix provides
a global regularity result for the micropolar system without this term, namely (1.2) with
µ = 0. As we shall see in Theorem B.1, the requirement on the fractional powers can be
reduced to α ≥ 5

4 and β = 0, which is the best one at this moment.

Theorem B.1. Consider the following 3D incompressible micropolar equations, namely,
∂tu+ (u · ∇)u+ (−∆)αu+∇p = ∇× w, x ∈ R3, t > 0,

∂tw + (u · ∇)w + 2w = ∇× u,
∇ · u = 0,

u(x, 0) = u0(x), w(x, 0) = w0(x).

(B.1)

Let (u0, w0) ∈ Hs(R3) with s > 5
2 and ∇ · u0 = 0. If α ≥ 5

4 , then the system (B.1) admits
a unique global solution (u, w) such that for any given T > 0,

(u, w) ∈ L∞([0, T ];Hs(R3)), Λαu ∈ L2([0, T ];Hs(R3)).

It suffices to consider the endpoint case α = 5
4 since α > 5

4 is even simpler. Combining
Lemma 2.1 and Lemma 2.2, we still have

‖u(t)‖2
H

1
4

+

∫ t

0
‖u(τ)‖2

H
3
2
dτ ≤ C(t, u0, w0). (B.2)

With (B.2) at our disposal, we are in the position to establish the following key esti-
mates.

Lemma B.1. Assume (u0, w0) satisfies the assumptions stated in Theorem B.1, then the
smooth solution (u,w) of (B.1) admits the following bounds∫ t

0
‖∇u(τ)‖L∞ dτ ≤ C(t, u0, w0), (B.3)

‖w(t)‖L∞ ≤ C(t, u0, w0). (B.4)

Proof. By ∇ · u = 0, we rewrite (B.1)1 as follows

∂tu+ Λ
5
2u = −

(
I3 + (−∆)−1∇∇·

) [
∇ · (u⊗ u)−∇× w

]
,

where we have eliminated the pressure term by ∇ · u = 0. Applying Λ−1 yields

∂tΛ
−1u+ Λ

5
2 Λ−1u = −Λ−1

(
I3 + (−∆)−1∇∇·

) [
∇ · (u⊗ u)−∇× w

]
. (B.5)

Applying Lemma 3.1 of [54] to (B.5) leads to

‖Λ
3
2
−εu‖L1

tL
8 =‖Λ

5
2
−εΛ−1u‖L1

tL
8

≤C(t, u0) + C(t)
∥∥∥Λ−1

(
I + (−∆)−1∇∇·

) [
∇ · (u⊗ u)−∇× w

]∥∥∥
L1
tL

8
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≤C(t, u0) + C(t)
∥∥∥Λ−1

[
∇ · (u⊗ u)−∇× w

]∥∥∥
L1
tL

8

≤C(t, u0) + C(t)‖uu‖L1
tL

8 + C(t)‖w‖L1
tL

8

≤C(t, u0) + C(t)‖u‖2L2
tL

16 + C(t)‖w‖L1
tL

8

≤C(t, u0) + C(t)‖u‖2
L2
tH

3
2

+ C(t)‖w‖L1
tL

8

≤C(t, u0, w0) + C(t)‖w‖L1
tL

8 , (B.6)

where in the last line we have used (B.2). By the equation of w in (B.1),

d

dt
‖w(t)‖L8 ≤ ‖∇u‖L8 .

By an interpolation inequality, one derives

‖w(t)‖L8 ≤ ‖w0‖L8 +

∫ t

0
‖∇u(τ)‖L8 dτ

≤ ‖w0‖L8 + C

∫ t

0
‖u(τ)‖

1− 17
21−8ε

L2 ‖Λ
3
2
−εu(τ)‖

17
21−8ε

L8 dτ

≤ ‖w0‖L8 + C

(∫ t

0
‖u(τ)‖L2 dτ

)1− 17
21−8ε

(∫ t

0
‖Λ

3
2
−εu(τ)‖L8 dτ

) 17
21−8ε

,

where 0 < ε < 1
2 . Therefore, we conclude

‖w‖L1
tL

8 ≤ t‖w0‖L8 + Ct

(∫ t

0
‖u(τ)‖L2 dτ

)1− 17
21−8ε

(∫ t

0
‖Λ

3
2
−εu(τ)‖L8 dτ

) 17
21−8ε

≤ t‖w0‖L8 + C(t, u0, w0)‖Λ
3
2
−εu‖

17
21−8ε

L1
tL

8 . (B.7)

Combining (B.6) and (B.7), we have

‖Λ
3
2
−εu‖L1

tL
8 ≤ C(t, u0, w0) + C(t, u0, w0)‖Λ

3
2
−εu‖

17
21−8ε

L1
tL

8

≤ C(t, u0, w0) +
1

2
‖Λ

3
2
−εu‖L1

tL
8 ,

which yields

‖Λ
3
2
−εu‖L1

tL
8 ≤ C(t, u0, w0). (B.8)

By further taking 0 < ε < 1
8 , we obtain from (B.8) that∫ t

0
‖∇u(τ)‖L∞ dτ ≤C

∫ t

0
‖u(τ)‖L2 dτ + C

∫ t

0
‖Λ

3
2
−εu(τ)‖L8 dτ

≤C(t, u0, w0). (B.9)

By the equation of w in (B.1), we again have, for any 2 ≤ q <∞,

d

dt
‖w(t)‖Lq ≤ ‖∇u‖Lq or ‖w(t)‖Lq ≤ ‖w0‖Lq +

∫ t

0
‖∇u‖Lq dτ.

Letting q →∞ and invoking (B.9), we find

‖w(t)‖L∞ ≤ C(t, u0, w0).
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Thus, we complete the proof of Lemma B.1. �

By (B.3) and (B.4), we can obtain our ultimate global Hs-estimate for u and w.

Proof of Theorem B.1. Similar to (3.16), we have

d

dt
(‖Λsu‖2L2 + ‖Λsw‖2L2) + ‖Λs+

5
4u‖2L2

≤ C(1 + ‖w‖2L∞ + ‖∇u‖L∞)(‖Λsu‖2L2 + ‖Λsw‖2L2),

which along with the Gronwall inequality, (B.3) and (B.4) yield

‖Λsu(t)‖2L2 + ‖Λsw(t)‖2L2 +

∫ t

0
‖Λs+

5
4u(τ)‖2L2 dτ ≤ C(t, u0, w0).

This finish the proof of Theorem B.1. �

Appendix C. Local well-posedness result on (1.2)

For the sake of completeness, we present in this appendix the local well-posedness result
of (1.2) with initial data (u0, w0) ∈ Hs(R3) with s > 5

2 .

Proposition C.1. Let (u0, w0) ∈ Hs(R3) with s > 5
2 and ∇ · u0 = 0. If α + β > 1, then

there exists a positive time T depending on ‖u0‖Hs and ‖w0‖Hs such that (1.2) admits a
unique solution (u,w) ∈ C([0, T ];Hs(R3)).

We remark that the same local well-posedness result also holds true for (1.8). Similarly
to [35, 10] (also see [17]), the main ingredient of the proof of the Proposition C.1 is to
approximate (1.2) by the Friedrichs method to obtain a family of global smooth solutions.

For N > 0, set B(0, N) = {ξ ∈ R3| |ξ| ≤ N} and denote by χB(0,N) the characteristic
function on B(0, N). Define the functional space

L2
N := {f ∈ L2(R3)| supp f̂ ⊂ B(0, N)},

and the spectral cut-off

ĴNf(ξ) = χB(0,N)(ξ)f̂(ξ).

Proof of Proposition C.1. We first consider the following approximate system of (1.2),
∂tu

N + PJN ((JNuN · ∇)JNuN ) + Λ2αJNuN = P∇× JNwN ,

∂tw
N + JN ((JNuN · ∇)JNwN ) + 2JNwN + Λ2βJNwN = ∇× JNuN +∇∇ · JNwN ,

∇ · uN = 0,

uN (x, 0) = JNu0(x), wN (x, 0) = JNw0(x),
(C.1)

where P denotes the standard projection onto divergence-free vector fields. Thanks to
the Cauchy-Lipschitz theorem (Picard’s Theorem, see [35]), we can find that for any fixed
N , there exists a unique local solution (uN , wN ) on [0, TN ) in the functional setting L2

N

with TN = T (N, u0, w0). By J 2
N = JN , P2 = P and PJN = JNP, we can check that
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(JNuN , JNwN ) is also a solution to (C.1) with the same initial datum. Based on the
uniqueness, it yields

JNuN = uN , JNwN = wN .

Consequently, the approximate system (C.1) reduces to
∂tu

N + PJN ((uN · ∇)uN ) + Λ2αuN = P∇× wN ,

∂tw
N + JN ((uN · ∇)wN ) + 2wN + Λ2βwN = ∇× uN +∇∇ · wN ,

∇ · uN = 0,

uN (x, 0) = JNu0(x), wN (x, 0) = JNw0(x).

(C.2)

A basic energy estimate implies (uN , wN ) of (C.2) satisfies

‖uN (t)‖2L2 + ‖wN (t)‖2L2 +

∫ t

0
(‖ΛαuN‖2L2 + ‖wN‖2Hβ )(τ) dτ ≤ C(‖u0‖2L2 + ‖w0‖2L2 , t).

As a result, the local solution can be extended into a global one, via the classical Picard
Extension Theorem (see, e.g., [35]). By the direct Hs-estimates (see for example (3.16)),
we deduce from (C.2) that

d

dt
(‖uN (t)‖2Hs + ‖wN (t)‖2Hs) + ‖ΛαuN‖2Hs + ‖ΛβwN‖2Hs

≤ C(1 + ‖∇uN‖L∞ + ‖∇wN‖L∞)(‖uN‖2Hs + ‖wN‖2Hs)

≤ C(1 + ‖uN‖Hs + ‖wN‖Hs)(‖uN‖2Hs + ‖wN‖2Hs), (C.3)

where we use the fact that

‖∇f‖L∞(R3) ≤ C‖f‖Hs(R3), s >
5

2
.

We assume in (C.3) that ‖uN‖Hs + ‖wN‖Hs ≥ 1 since, otherwise, we replace ‖uN‖Hs +
‖wN‖Hs by 1 + ‖uN‖Hs + ‖wN‖Hs . Denoting

X(t) := ‖uN (t)‖2Hs + ‖wN (t)‖2Hs ,

we get from (C.3) that
d

dt
X(t) ≤ κX(t)

3
2 ,

where κ > 0 is an absolute constant. By direct calculations, we show that for all N

sup
0≤t≤T

(‖uN (t)‖2Hs + ‖wN (t)‖2Hs) ≤
4‖u0‖2Hs + 4‖w0‖2Hs(

2− κT
√
‖u0‖2Hs + ‖w0‖2Hs

)2 ,
where T > 0 satisfies

T <
2

κ
√
‖u0‖2Hs + ‖w0‖2Hs

.

As a result, the family (uN , wN ) is uniformly bounded in C([0, T ];Hs) with s > 5
2 . We

can also show that

∂tu
N , ∂tw

N ∈ L∞t ([0, T ]); H−ϑx (R3) for some ϑ ≥ 2.
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As the embedding L2 ↪→ H−ϑ is locally compact, by the Aubin-Lions argument we con-
clude that a subsequence (uN , wN )N∈N satisfies, on any compact subset of R3,

‖uN − uN ′‖L2 → 0, ‖wN − wN ′‖L2 → 0, as N, N ′ →∞.

Noticing that ‖f‖Hs′ ≤ C‖f‖
1− s

′
s

L2 ‖f‖
s′
s
Hs for s > s′, we have

‖uN − uN ′‖Hs′ → 0, ‖wN − wN ′‖Hs′ → 0, as N, N ′ →∞.

Then we have strong convergence limit (u,w) ∈ C([0, T ];Hs′(R3)) for any s′ < s; hence,
up to extraction, the sequence (uN , wN )N∈N has a limit (u, w) satisfying

∂tu+ P(u · ∇)u+ Λ2αu = P∇× w,

∂tw + (u · ∇)w + 2w + Λ2βw = ∇× u+∇∇ · w,
∇ · u = 0,

u(x, 0) = u0(x), w(x, 0) = w0(x).

(C.4)

Furthermore, it is not hard to check that (u,w) ∈ L∞([0, T ];Hs(R3)). Finally, we claim
that (u,w) ∈ C([0, T ];Hs(R3)). It suffices to consider u ∈ C([0, T ];Hs(R3) since the same
procedure can be applied to w to obtain the desired result. First, one has

sup
0≤t≤T

(‖u‖Hs + ‖w‖Hs) ≤ C(T ) <∞.

By the equivalent norm, we get

‖u(t1)− u(t2)‖Hs =
{

(
∑
k<N

+
∑
k≥N

)(2ks‖∆ku(t1)−∆ku(t2)‖L2)2
} 1

2
. (C.5)

Let ε > 0 be arbitrarily small. Thanks to u ∈ L∞([0, T ];Hs(R3)), there exists an integer
N = N(ε) > 0 such that{∑

k≥N
(2ks‖∆ku(t1)−∆ku(t2)‖L2)2

} 1
2
<
ε

2
. (C.6)

Appealing to (C.4)1 implies

∆ku(t1)−∆ku(t2) =

∫ t2

t1

d

dτ
∆ku(τ) dτ

=−
∫ t2

t1

∆kP[∇× w + (u · ∇)u+ Λ2αu](τ) dτ.

This allows us to derive∑
k<N

22ks‖∆ku(t1)−∆ku(t2)‖2L2

=
∑
k<N

22ks
(∥∥∥∫ t2

t1

∆kP[∇× w + (u · ∇)u+ Λ2αu](τ) dτ
∥∥∥
L2

)2

≤
∑
k<N

22ks
(∫ t2

t1

‖∆k[∇× w + (u · ∇)u+ Λ2αu]‖L2(τ) dτ
)2
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≤
∑
k<N

22ks
(∫ t2

t1

[‖∆k∇× w‖L2 + ‖‖∆k(u · ∇u)‖L2 + ‖‖∆kΛ
2αu‖L2 ](τ) dτ

)2

=
∑
k<N

22k
(∫ t2

t1

2k(s−1)‖∆k∇× w(τ)‖L2 dτ
)2

+
∑
k<N

22k
(∫ t2

t1

2k(s−1)‖∆k∇ · (u⊗ u)(τ)‖L2 dτ
)2

+
∑
k<N

24αk
(∫ t2

t1

2ks‖∆ku(τ)‖L2 dτ
)2

≤ C
∑
k<N

22k
(
‖w‖2L∞t Hs |t1 − t2|2 + ‖uu‖2L∞t Hs |t1 − t2|2

)
+ C

∑
k<N

24αk|t1 − t2|2‖u‖2L∞t Hs

≤ C
∑
k<N

22k|t1 − t2|2
(
‖w‖2L∞t Hs + ‖u‖2L∞t L∞‖u‖

2
L∞t H

s

)
+ C

∑
k<N

24αk|t1 − t2|2‖u‖2L∞t Hs

≤ C22N |t1 − t2|2
(
‖w‖2L∞t Hs + ‖u‖4L∞t Hs

)
+ C24αN |t1 − t2|2‖u‖2L∞t Hs ,

which implies

{∑
k<N

(2ks‖∆ku(t1)−∆ku(t2)‖L2)2
} 1

2
<
ε

2
(C.7)

provided that |t1 − t2| is small enough. The desired u ∈ C([0, T ];Hs(R3) follows from
(C.5), (C.6) and (C.7). Since (u,w) are all in Lipschitz space, the uniqueness follows
directly (see the end of Section 2). This completes the proof of Proposition C.1. �
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MA, 2001, pp. 241–266.
[44] J. Wu, Generalized MHD equations, J. Differential Equations 195 (2003), 284–312.
[45] J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid

Mech. 13 (2011), 295–305.
[46] Z. Xiang, W. Yan, Global regularity of solutions to the Boussinesq equations with fractional diffusion,

Adv. Differential Equations 18 (2013), 1105–1128.
[47] L. Xue, Well posedness and zero microrotation viscosity limit of the 2D micropolar fluid equations,

Math. Methods Appl. Sci. 34 (2011), 1760–1777.
[48] N. Yamaguchi, Existence of global strong solution to the micropolar fluid systemin a bounded domain,

Math. Methods Appl. Sci. 28 (2005), 1507–1526.
[49] K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity, Appl.

Math. Lett., 29 (2014), 46–51.
[50] K. Yamazaki, On the global regularity of N-dimensional generalized Boussinesq system, Appl. Math.

60 (2015), 109–133.
[51] K. Yamazaki, Global regularity of logarithmically supercritical MHD system with improved logarithmic

powers, Dyn. Partial Differ. Equ., 15 (2018), 147–173.
[52] W. Yang, Q. Jiu and J. Wu, The 3D incompressible Navier-Stokes equations with partial hyperdissi-

pation, Math. Nachr. 292 (2019), No.8, 1823–1836.
[53] Z. Ye, A note on global well-posedness of solutions to Boussinesq equations with fractional dissipation,

Acta Math. Sci. Ser. B Engl. Ed. 35(1) (2015), 112–120.
[54] Z. Ye, On regularity criteria of the 2D generalized MHD equations, J. Math. Anal. Appl. 463 (2018),

989–1005.
[55] Z. Ye, Some new regularity criteria for the 2D Euler-Boussinesq equations via the temperature, Acta

Appl. Math. 157 (2018), 141–169.
[56] Z. Ye, Global regularity of the regularized Boussinesq equations with zero diffusion, submitted for

publication (2017).



42 DEHUA WANG, JIAHONG WU AND ZHUAN YE

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA
E-mail address: dwang@math.pitt.edu

Department of Mathematics, Oklahoma State University, 401 Mathematical Sciences,
Stillwater, OK 74078, USA

E-mail address: jiahong.wu@okstate.edu

Department of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu
221116, P. R. China

E-mail address: yezhuan815@126.com


