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ABSTRACT. The global well-posedness of the smooth solution to the three-dimensional
(3D) incompressible micropolar equations is a difficult open problem. This paper focuses
on the 3D incompressible micropolar equations with fractional dissipations (—A)“u and
(—A)B w. Our objective is to establish the global regularity of the fractional micropolar
equations with the minimal amount of dissipations. We prove that, if a > %, B >0 and
a+p > E, the fractional 3D micropolar equations always possess a unique global classical
solution for any sufficiently smooth data. In addition, we also obtain the global regularity
of the 3D micropolar equations with the dissipations given by Fourier multipliers that
are logarithmically weaker than the fractional Laplacian.

1. INTRODUCTION

The classical micropolar equations, first derived by Eringen [20] in 1966, govern the
motion of micropolar fluids that are fluids with microstructures and nonsymmetric stress
tensors. Micropolar fluids usually contain rigid and randomly oriented or spherical parti-
cles that have their own spins and microrotations in a viscous medium. Special examples
of micropolar fluids are ferrofluids, blood flows, bubbly liquids, liquid crystals, and so on.
More background information can be found in [13, 19, 20, 21, 33]. Mathematically the
micropolar equations consist of the forced Navier-Stokes equations for the fluid velocity u
and the evolution equation for the microrotation w representing the angular velocity of ro-
tation of particles of the fluid. More precisely, the three-dimensional (3D) incompressible
micropolar equations are

Ou+ (u-V)u— (v+k)Au+ Vp = 26V X w, r€R3 t>0,
w4 (u- V)w + dkw — yAw = 26V X u+ uVV - w,
V.-u=0,

u(z,0) = up(z), w(x,0)=wo(z),

(1.1)

where u = u(x,t) = (u1(z,t), u2(x,t),us(x,t)) represents the fluid velocity, w = w(zx,t) =
(wi(x,t), wo(x,t), ws(z,t)) the microrotation, p(z,t) the pressure, and the parameter v
denotes the kinematic viscosity, £ the microrotation viscosity, v and p the angular viscosi-
ties, and ug and wq are the prescribed initial data for the velocity and microrotation with
the property V - ug = 0.

Whether or not the smooth solutions of the classical 3D micropolar equations (1.1)
with general initial data develop finite time singularities is a difficult problem and remains
open. The key difficulty is that the Laplacian dissipation is not sufficient to control the
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nonlinearity when applying the standard techniques to derive global a priori bounds. It
is very natural to ask the question of how much dissipation one really needs in order
to ensure the global regularity. Replacing the Laplacian operators by general fractional
Laplacian operators exactly serves this purpose. We are naturally led to the following 3D
fractional micropolar equations

Ou+ (u-Vu+ (v + k) (—A)*u+ Vp = 2kV x w, T €R3 t>0,
Ow + (u- V)w + drw + y(—=A)Pw = 26V x u + puVV - w,

1.2
V-u=0, (1-2)

u(z,0) = up(z), w(x,0)=wy(x),

where the fractional powers a and 5 are nonnegative and the fractional Laplacian operator
(—A)? is defined via the Fourier transform

(CA)Pf() = ¢ Flo).

We will adopt the convention that o = 0 really means that there is no dissipation in (1.2),
and S = 0 indicates that there is no dissipation in (1.2),. For simplicity, we will frequently

use the notation A := (—A)%.

The system (1.2) with the fractional Laplacian operator is physically relevant. The frac-
tional Laplacian operator can model various anomalous diffusion. Especially, (1.2) allows
us to study long-range diffusive interactions. In addition, (1.2) with hyperviscosity can
be used in turbulence modeling to control the effective range of the non-local dissipation
and to make numerical resolutions more efficient ([22]). Studies on models with fractional
Laplacian have recently gained a lot of momentum. Two recent monographs, entitled
“Nonlocal Diffusion and Applications” [7] and “The Fractional Laplacian” [39], have doc-
umented a list of applications. Closely related to (1.2) are several fractionally dissipated
equations including the surface quasi-geostrophic equation, the porous medium equation
and the Boussinesq equations. The surface quasi-geostrophic equation with fractional dis-
sipation arises in geophysical studies of strongly rotating fluid flows (see, e.g., [12]). The
porous medium equation with fractional dissipation models various anomalous diffusion
process (see, e.g., [38]). The fractional Boussinesq equations are used to model the anoma-
lous attenuation to take account of the effect of kinematic and thermal diffusion in the
study of viscous flows in the thinning of atmosphere (see [24]). The fractional Laplacian
has now found applications far beyond fluid mechanics. It is used in fractional quantum
mechanics [29], probability [1, 5], overdriven detonations in gases [9], anomalous diffusion
in semiconductor growth [43], physics and chemistry [36], optimization and finance [11].

In addition to their applications in engineering and physics, the micropolar equations
are also mathematically significant and have attracted considerable attention in the com-
munity of mathematical fluids. Fundamental mathematical issues such as the global reg-
ularity of solutions have been investigated extensively with many interesting results (see,
e.g., [6, 23, 8, 32, 33, 34, 40, 37, 48]). We mention some of the results on the 3D mi-
cropolar equations (1.1) that are relevant to our study in this paper. The weak solutions
of the initial boundary-value problem for (1.1) was first studied by Galdi and Rionero
[23]. Lukaszewicz in [32] used linearization and an almost fixed point thereom to es-
tablish the global existence of weak solutions for sufficiently regular initial data. By
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the same approach, Lukaszewicz [33] established the local and global well-posedness re-
sults under asymmetric conditions. Boldrini, Durdn and Rojas-Medar [6] proved, by the
Galerkin method, the local existence and uniqueness of strong solutions to the initial and
boundary-value problem for bounded or unbounded domains. Yamaguchi [48] proved, via
the LP-semigroup approach, the global existence of small classical solutions in bounded
domains.

There is also an array of exciting results on the 2D micropolar equations. We mention
some of them. The 2D micropolar equations are obtained by setting

u = (u1(21,22,t), u2(21,22,1),0), w=(0,0,ws(z1,22,1)), p=p(z1,22,)
in (1.1). The corresponding 2D fractional micropolar equations can be written as
Ou+ (u-V)u+ (v + r)(—A)*u + Vp = 26V+w, reR?2 t>0,
o + (u- V)w + 4kw + y(—A)w = 2kV+ -,
V-u=0,

u(z,0) = up(z), w(x,0)=wp(x),

(1.3)

where V* := (=0,,, 0z,)T. When a = 3 = 1, any sufficiently smooth initial data leads
to a unique global solution (see, e.g., [34, 10, 35]). In the case of inviscid micropolar
equations, namely a = g = 0, the global regularity problem turns out to be extremely
difficult and remains outstandingly open. In the last few years the 2D micropolar equations
with partial dissipation have attracted considerable interests. In [18] Dong and Zhang
obtained the global regularity for (1.3) with & = 1 and § = 0. Xue [47] reexamined
the case @« = 1, B = 0, and established the global well-posedness in the frame work of
Besov spaces. The case with & = 0 and 8 = 1 was settled by Dong, Li and Wu [15],
who proved the global well-posedness of (1.3) in R?, and was also able to determine
the precise larg-time behavior of the solutions to this only partially dissipated system
via the process of diagonalizing the linearized system. The corresponding initial and
boundary-value problem for (1.3) with & = 0 and 5 = 1 was examined by Jiu, Liu, Wu
and Yu [25], who established the global well-posedness in the functional setting ug € H*
and wy € H?. We also mention a recent preprint of Liu and Wang on the initial and
boundary-value problem for the case « = 1, § = 0 [31]. Very recently, Dong, Wu, Xu
and Ye [16] investigated the 2D fractional micropolar equations (1.3) and obtained the
global well-posedness for the fractional powers a and § in suitable ranges. These global
regularity results are not trivial and were achieved by fully exploiting the fine structures
of the corresponding vorticity equation and by working with carefully selected combined
quantities.

To put the results of this paper in a proper broad perspective, we give a brief description
of closely related global regularity results for several set of associated systems. The first
one is the incompressible Navier-Stokes equations with hyperviscosity

{8tu+(u-V)u+(—A)au+Vp:O, r€R3 t>0,

V-u=0. (1.4)

Lions’ book [30] establishes the global well-posedness of (1.4) for @ > 2. Katz and Pavlovi¢
[28] has a nice proof for the case when a > %. An elementary and simple proof for the
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global regularity of (1.4) with « > g is given in [44]. T. Tao [41] was able to reduce the
hyperdissipation by a logarithm and still establish the global regularity. Tao’s work was
further improved by [4]. The case o = % is a critical index from the scaling point of view
and it is not possible at this stage to obtain the global regularity for any a < %. Very
recently Yang, Jiu and Wu [52] sharpened this classical result from a different perspective
and established the global regularity even with one-directional hyperviscosity removed
from each velocity component equation. Another closely related system is the system
of Boussinesq equations. The Boussinesq equations are among the most frequently used

models for geophysical fluids. The fractional dissipated version is given by
Oru+ (u-V)u+ (—A)%u + Vp = fes, r€R3 t>0,
0 + (u- V)0 + (—A)°0 =0, (1.5)
V-u=0,

where u(z, t) is the velocity, p the pressure and 6 the temperature, and ez is the unit
vector (0, 0, 1). It is shown in [26, 46, 50, 53] that any smooth initial data of (1.5) leads
to a unique global solution if

5)
T B0 (1.6)
A logarithmic improvement was obtained in [56]. Very recently (1.5) with (1.6) is shown to
possess a unique global weak solution when the initial data (ug,6p) is only in L?(R3) (see
[3, 14]). These results do not require any thermal diffusion. Another closely related system
is the 3D incompressible fractional magnetohydrodynamic (MHD) equations, which are
given by

o>

du+ (u-Vu+ (—A)*u+ Vp=(b- V)b, T €R3 t>0,

ob+ (u-V)b+ (=AYb = (b-V)u, (1.7)

V-u=V-b=0,
where u represents the velocity, p the pressure and b the magnetic field. The MHD equa-
tions govern the dynamics of electrically conducting fluids. When the fractional powers «
and [ satisfy

) )
> = > > =
a—4’ 6—07 a+/8—2’

any sufficiently smooth initial data leads to a unique global solution [44]. Highly nontrivial
logarithmic improvements were obtained in [45, 42, 49, 51].

The micropolar equations (1.2) share some similarities with the Boussinesq equations
(1.5) and the MHD equations (1.7). They all contain the Navier-Stokes equations as the
centerpiece and all current results need o > % as a condition for global regularity, but
there are significant differences. There are difficulties that are unique for the micropolar
equations. The MHD equations involve nice canceling properties due to the presence
of the four nonlinear terms, but the micropolar equations do not have similar canceling
properties. Due to the presence of the term VV-w, we cannot directly estimate ||w|| s with
g > 2. In addition, for small 5 > 0, it is really hard to derive any Sobolev estimates for w.
Finally, some of the approaches for the 2D micropolar equations fail for the 3D micropolar
equations due to the presence of the vortex stretching term. This paper overcomes these
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difficulties and establish three main global regularity results for the micropolar equations
(1.2). Our first result can be stated as follows.

Theorem 1.1. Assume (ug,wo) € H*(R3) with s > g and V -ug = 0. If a and 3 satisfy
7

) /8207 a"—BZZa

then (1.2) admits a unique global regular solution (u,w) satisfying for any given T > 0,

u € L([0, T]; H*(R®)) N L*([0, T]; H***(R?)),

>5
a> =
— 4

and
w € L=([0,T); H*(R?)) N L*([0, T); H*/(R?)).
Remark 1.1. As a special consequence, Theorem 1.1 states that one-derivative dissipation
in the equation of the microrotation is sufficient for global regularity if the velocity equation
5
has (—A)4u. As a comparison with the MHD equations, the micropolar equations require

less dissipation (by the order of % derivatives) to achieve the global regularity.

Remark 1.2. It appears that the condition on § with a > % and a + 5 > g is sharp.

This means that when o = %, we need 3 > %, or at least one derivative dissipation in
the equation of w. The sharpness is implied by the technical estimates. As we know, in
order to obtain the global regularity, one needs to control the time integral of the velocity

Lipschitz norm, namely

T

In the three-dimensional space, more or less, one needs to bound

T 5
A ‘|A§U||L2(R3)dt.

Due to the presence of V x w in the velocity equation, this requires the estimate on the
time integral of || Vw|| 2. We need at least one-derivative dissipation in the w-equation in
order to bound [|[Vw]|| 2 suitably. More details can be found in the proof of Theorem 1.1.

Our next goal is to consider the 3D micropolar equations with the logarithmical dissi-
pations of the form

Ou+ (u-V)u+ L2u+Vp=V x w, reR3 t >0,
ow + (u- Vw4 2w + (=A)Pw =V x u+ VV - w,
V-u=0,
u(@,0) = up(w),  w(x,0) = wo(a),
where the operator L is defined by

TP e
= —=—u

Lu(§) (& €)

for some non-decreasing radial function g(7) > 1 defined on 7 > 0.

Theorem 1.1 for the borderline case 8 = 0 can be improved logarithmically. More
precisely, the following improved global regularity result for 3 = 0 holds. For the sake of
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simplicity, we may assume v = k = % and g = v = 1. The sizes of these coefficients do
not play a role in our results.

Theorem 1.2. Consider (1.8) with zero angular viscosity, namely,
Ou+ (u-V)u+ L2u+Vp=V x w, zeR3 t>0,
w+ (u-Vw+2w=V xu+VV-w,

V. -u=0,
u(z,0) =up(z), w(z,0)=w(x).

(1.9)

Let (ug, wo) € H*(R®) with s > 3 and V -ug = 0. If « > I and g further satisfies

o dr
— =, 1.10
/e TVInTg?(T) (1.10)
then (1.9) admits a unique global solution (u, w) such that, for any given T > 0,
(u, w) € L=([0,T]; H*(R%)),  Lu € L*([0,T]; H*(R?)).

Remark 1.3. We remark that the typical examples satisfying the condition (1.10) are

9(6) = [In(e + ¢))] %3
9(&) = [In(e + [¢)]* [In(e + In(e + ¢]))] 2;
9(&) = [In(e + [€)] [In(e + In(e + [€])) In(e + In(e + In(e + ¢])))] 2.

For the case a > % and # > 0, Theorem 1.1 can also be improved logarithmically.
Theorem 1.3. Consider (1.8) with angular viscosity, namely,
Ou+ (u-V)u+ L2u+Vp =V x w, reR3 t>0,
ow + (u- Vw4 2w+ (~A)Pw =V x u+ VV - w,

1.11
V-u=0, ( )
u(z,0) = up(z), w(z,0)=wo(z).
Let (ug, wo) € H*(R?) with s > 5 and V -ug = 0. If o and B satisfy
) 7
> — > —
« — 4’ B > 07 a —"_ B — 4’
and g further satisfies
< dr
— = 1.12
[ i (112

then (1.11) admits a unique global solution (u, w) such that, for any given T > 0,

(u, w) € L=([0,T]; H*(R?)), (Lu, APw) e L2([0,T]; H*(R?)).
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Remark 1.4. The typical examples of g satisfying (1.12) are as follows

9(&) = [In(e + [¢)]3;
9(€) = [In(e + [¢]) Ine + In(e + [€]))] %3
9(&) = [In(e + €]) In(e + In(e + [€])) In(e + In(e + In(e + |£])))] 7.

Remark 1.5. Theorem 1.1, Theorem 1.2 and Theorem 1.3 are also true for other fluid
equations with similar structure in the general n-dimension case when the powers o and
B satisfy

PN

B>0, a+pf>1+_.

- n
a _—
- 4’ 4

_l’_

N

We now briefly summarize the main challenges and outline the main idea in the proof of
our results. Since the existence and uniqueness of local smooth solutions in the functional
setting H*(R3) with s > % can be derived via a standard approach, our efforts are devoted
to obtaining global a priori bounds for v and w in the Sobolev space H® with s > g For
the sake of completeness, the local well-posedness part is presented in Appendix C. The
proof of Theorem 1.1 starts with the basic L?-estimate

t
()72 + w72 +/0 (IA%u(r) |72 + [A%w(7)|[72)dr < C(t, uo, wo) — (1.13)
and a regularity bound for u based on o > 2 and (1.13)
t
A o) e+ [ A2 ) s dr < oo (1.14)
0

Unfortunately, (1.14) is insufficient to complete the proof of Theorem 1.1. When g < 1,
it is not possible to directly improve (1.14) to the critical level

t
/ ||Agu(7)||%2 dr < o0 (1.15)
0

due to the presence of the term V x w. In order to overcome this difficulty, we combine
the estimates of u and w to derive the regularity estimate of w,

t
A%w(e)+ [ 1A% u(r) s dr < oc (110
0

for any o < 1+ f with g > 0. The regularity bound for w in (1.16) is sufficient for (1.15).
In order to obtain (1.16), we need a suitable bound on the following commutator

/ [A?,u - V]wAPw dx.
R3

This is exactly where the condition o+ 8 > 7 is needed (see (2.17) for details). To prepare
for the proof of the global H5-bound for (u,w), we need a global bound on ||w(t)||z« with
2 < g < o0, which is not a consequence of (1.16) in the 3D case. Due to the presence of
VV - w, it is not possible to obtain this bound from the equation of w directly. Instead
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we circumvent this difficulty by estimating the norm ||A%w(t
estimates on several commutators, we find that, for any o <

||z2. After working out the

N~

)

t
HA”umwnig+—]€ IAT (7|22 dr < oo. (1.17)

Once (1.15) and (1.17) are at our disposal, the global regularity of v and w can then be
obtained.

We now explain the main idea in the proof of Theorem 1.2. The proof is different
from that for Theorem 1.1. One reason is that there is no dissipation in the w-equation.
Another reason is that the dissipation is given by a general Fourier multiplier operator
here. The key idea here is still to successively establish more and more regular bounds.
The starting step is the basic energy estimate

t
()72 + llw(®)]1Z- +/0 (IA"u(T) |72 + [ Lu(r)]172) dT < C(t, uo, wo)

for any 7 € [0, £). This bound allows us to establish an estimate of the form

Al 2 tioAS 2 o
O+ ) Iy ar < 0t wo )
|, + [ oo, i < ot o
where % denotes the Fourier multiplier operator given by the symbol gl,fg) for v >
0,k > 0. The next step aims at the estimate, for any o € (0, %) and k1 < 0 + %,

_ t
AR )2 + 4703 + [ AP u(r) B dr < Ol o, o)
0

The proof of this estimate is highly technical. We use the high-low frequency splitting
techniques and several logarithmic interpolation inequalities. Once this is obtained, we
are then able to bound the global H*-norm of (u,w). The proof of Theorem 1.3 combines
the techniques from the proofs of Theorem 1.1 and of Theorem 1.2.

The rest of this paper is organized as follows. Section 2 is devoted to the proof of Theo-
rem 1.1. Section 3 proves Theorem 1.2 while Section 4 proves Theorem 1.3. The Appendix
A provides the definitions of the Littlewood-Paley decomposition and Besov spaces, and
related tools. The Appendix B provides a global regularity result for a micropolar system
without VV -w in the equation of w, namely (1.2) with g = 0. The purpose of this appen-
dix is to show that, without this bad term, the requirement for o and 8 can be reduced
to a > % and 8 = 0. The Appendix C provides the local well-posedness result.

2. THE PROOF OF THEOREM 1.1

This section is devoted to the proof of Theorem 1.1. Generic constant will be denoted
by C. Sometimes we write C'(y1,72, - -,7%) to emphasize the dependence of C' on the
quantities 1,72, - -, k. We write A = B if there exist two positive constants C7 < Co
such that C1B < A < CyB.

The proof focuses on the case a + 5 = % as the case a 4+ 8 > % is simpler and can be

done with a slight modification. The global a priori bounds start with the following basic
energy estimate.
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Lemma 2.1. Assume (ug,wq) satisfies the assumptions stated in Theorem 1.1. If a+f >
1, then the corresponding solution (u,w) of (1.2) admits the following bound for anyt > 0

lu(®)1Z2 + lw(®)]Z2 +/0 (IA%u(r)|[72 + [A%w(7)[[72)dr < C(t, ug, wo). (2.1)

Proof. Multiplying the first two equations in (1.2) by (u,w) and integrating by parts, we
have

5 7 (lu®IZe + lw®)Z2) + A%l e + (A w]|F2 + 2lw]Ze + IV - w72

:/ ((wa)-u—l—(qu)-w)dm
R3
< 2| A%ul| 2 | AT w2
1_~ 5 1—1=x P 1k
< 2(flull e~ NA%ullF2) (lwll 2 7 1A wll2 )
1 1
< LAz + LAl + COulZs + i),

where 1 — 8 < kK < a (such k is possible due to the condition o+ 3 > 1). Here we have
also used the equality, due to V- u =0,

/(u~V)u-udx:0 and /(u-V)w-wdﬂc:O,
R3 R3

and the following interpolation inequality

£ 0 oo < CULNGIN Ay
where sp = (1 — 6)s1 + fs9 with 0 < 6 < 1. By the Gronwall inequality, one has

t
()17 + llw(®)72 +/0 (IAu(r)I[72 + [A%w(7)|[72)dr < C(t, ug, w).

This proves the lemma. O

Next we proceed with the following estimate in the Sobolev spaces.

Lemma 2.2. Assume (ug,wyp) satisfies the assumptions stated in Theorem 1.1. If o > g
and 8 > 0, then the corresponding solution (u,w) of (1.2) admits the following bound for
any t >0

t
A o) e+ [ A2 ) s dr < Ot o, wo). (22)
0

Proof. Applying A®*#~1 to (1.2), and taking the L? inner product with AT~y we
obtain
1d
2 dt
= —/ [ACTA=1 0y V- AT 1y d —I—/ APV x w) APy da
R3 R3
= My + Mo,

1A ut)[72 + A% a7,
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where [A®] flg := A%(fg) — f(A®g) denotes the standard commutator. We recall the Kato-
Ponce inequality (see, e.g., [27])

1A%, flgller < O (IVf oo 1A gl + 1A F Il Lr2llglzen)

where s > 0, 1<7“<ooand%:p%+qi1=p%+qi2 with ¢1,p2 € (1,00) and p1,q2 € [1, 0]

We will make use of the following variant of the Kato-Ponce inequality,
IA* ™ 8s;, flaller < C (IVfllzon [IA* gl + [A°fllzrellgllze), = 1,2, 3.
As a consequence, we have
My < C|[A - Vul| 2 A | 2

< C(IVulln A2Vl oy + [ Fullzro [AF )] 2 ) IA“ ] 12
LPo—2 LP0—2

< OVl zro ||A°‘+B_1UIIL% 1A+ | 2

1—-3_ _3
< Cllullzo AP ] 5“0 [|A2 P ]| 750 A0 | 2
1
< SN Ty + O+ [JullFra) AT ul 2,

where, due to a > %, we have selected pg > 2 satisfying

5 — 2« 1 «
< — < —.
6 “po - 3

The term M, can be bounded by
1
My < C|A w2 | A% ] 2 < (A% T, + ClA w7
Collecting the estimates above yields

d _ _ _
%HAQW tu(t)| 72 + 1A% T < OO+ [fullFa) AP T2 + Cllw] s
Thanks to the estimate (2.1), we have
t

/0 (lla() [z + [l (n)|[ s )dr < C (2, uo, wo). (2.3)

By the Gronwall inequality,
¢
AT u(e) e+ [ A% ) s dr < Ot o, o)
0

Therefore, we complete the proof of Lemma 2.2. O

We are now in the position to derive the following key estimates.

Lemma 2.3. Assume (ug,wo) satisfies the assumptions stated in Theorem 1.1. If o > 2,
B>0and a+ B > I, then the corresponding solution (u,w) of (1.2) admits the following
bounds for any t > 0,

t
IATu()]2: + / 1A%+ u(r) 2, dr < C(t, uo, wp), (2.4)
0
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AP w(t)]|72 + /Ot A7 Pw(r) 72 dr < C(t, uo, wo), (2.5)
where p > 0 satisfies
Z—(a+5)<p<1+5. (2.6)
In particular, due to o > %, it follows from (2.4) that
AR+ [ 1Al d < O, wo) 7

Remark 2.1. Combining with (2.1), we see that (2.5) is true for any 0 < p < 1+ 3. This
fact will be used repeatedly later.

Proof. Applying Af to (1.2); and taking the L? inner product with Alu yield

1d

S AT u®)]2s + A2, = —/ Af,u-V]u-Alude+ [ AT(V x w)Aiuda
2dt R3 R3

= N1 + Ns. (2.8)

Applying A? to (1.2), and taking the inner product with A?w, we obtain

1d
5 g7 [N w72 + A7 w7z + 2] APw]72 + APV - w]7,
:/ AP(V x u)APw da —/ AP, u - V]wAPw dx
R3 R3
:= N3 + Ny. (29)
Combing (2.8) and (2.9) leads to
1d 5 2 2 at+2, 112 +8,,,12 .
5 AT u®) L2 + [APw @) + A5 ulFe + 1A Fw]fs <D Ny (2.10)
k=1

Thanks to the Sobolev embedding inequality and the Kato-Ponce inequality, we obtain
N1 < [[[A% w- Vull g [[ATul 2
< C(IVull g IATull 2 + [Vul sz A Tul 2z ) [ ATl
< C|[Vull 1z [ASul| || A% u] 2
< OJ|ATul g2 | A ul 2| AT ull 2

< Olfull g lull oy ATl 12

HYT
1 5 5
< EHA‘”“UHQB + O+ [|ullFa) (1 + [[ATu72). (2.11)

The equivalence of the norms in the following three spaces has been used here and will be
used frequently,

1flBs,, =~ [ fllzs = [ fll2 + [[A°fll g2, Vs =0,
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where Bj , denotes the nonhomogeneous Besov space (see Appendix for its definition).
The next term No can be bounded by

5
Na < [lwll, g o [[A*T5ul| 2

5
< Cllwl govs AT 5l 2

1 1
< (AT T Ul + — A Pw |2, + Clwl|2, (2.12)
16 16
where p satisfies
9
p>7 —(a+p). (2.13)

Similarly,
N3 < [|A77F(V x w) || 2 | AP 2

< Cllull a5 147w 2
1 5 1
< =AY Tul|7e + AP W] + Clul 7, (2.14)
16 16
where p satisfies
1
p<1+a+ﬁ. (2.15)
To deal with Ny, we need the commutator estimate (see, e.g., [55, Lemma 2.6])
1A% f - Vgliss, < C(IV Sl gl gs+s + 1 fll2llgllz2), (2.16)

where V - f = 0 and % = p% + p% with p € [2,00), p1, p2 € [2,00], r € [1,00] and

s€(=1,1—9) for 6 € (0,2). By the Sobolev embedding inequality, the Holder inequality
and (2.16), one has

Ni <CI|IA? - V]l s [ A0]] s
<C(IVullzmollwl g+ ullze ] 2) (1A 2 + A2 2)

SC(IIUIIHZMAHwIIBp_M,%O + llull 2 llwl 2) (1APw]| 2 + AP Pw]|2)
2,2

<C(llull oo 1wl o + lull 2 [[wl] 12) (|APw]| 2 + A2 Fw]| 2)
1
<INl + OO+ ullfpzass-n) |4 w][72
+ O+ [Jul72) (1 + [lw]Z2), (2.17)

where p and mg > 2 satisfy

T—4a-28 _ 1 < B .
6 “mop ~ 3

Such myg exists due to a + 8 > %. It is worth noting that this is the only place where we

use the assumption a+ 3 > Z. We also remark that in order to obtain (2.17), we need the
restriction S < 1. This is due to the use of (2.16). When 5 > 1, it is easy to show (2.7)

p<1+8, (2.18)
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without exploiting the dedicate estimate (2.9). Therefore, (2.7) holds for both § < 1 and
B > 1. Inserting the estimates (2.11), (2.12), (2.14) and (2.17) in (2.10), we conclude

d
S IATu®) 32 + A70(®)32) + Al + 472,

5
< C(1+ [[ullzre + ull3zass—1 ) ([[ATu][ 32 + [|[APw]32)
+ C(L+ [lullF2) (A + [[w]|7»),

where p > 0 satisfies (2.6) by combining (2.13), (2.15) and (2.18). By (2.2), (2.3) and the
Gronwall inequality, we obtain

t
A5 u(o) s + 1A% + [ A a4 () ) dr < O, o, wo)
0

This completes the proof of Lemma 2.3. (|

With the help of (2.7), we can now establish the higher regularity estimate for w, which
can be stated as the following lemma.

Lemma 2.4. Assume (ug,wp) satisfies the assumptions stated in Theorem 1.1. If a > %,
B8>0and a+ > %, then the corresponding solution (u,w) of (1.2) admits the following
bound for any t > 0 and for any o < %,

t
AWl + [ 1A ()3 dr < Ot wo, w).
0
In particular, due to B > 0, it holds
t
| ol dr < € o, ). 219
0

Proof. Applying A7 to (1.2), and taking the inner product with A%w, one gets

1 d g g o g
5 g7 AT WO + 187 w7z + 2[A7wl|Zz + A7V - w]7
= / A7 (V x u)Awdz — / [A7 u - V]wAwdz

R3 R3

We deduce from the Gagliardo-Nirenberg inequality that
Ly < O A Pul| 2 | A7 wl| 2
< SCIAT w3, + CIATH P,
< S IATPulE, + Clulls + Clladula, (221)
where o < 8 + % Making use of V - u = 0 and the Kato-Ponce inequality, we achieve
Ly =— /]R3 [A Oy, , wiJwA’w dx

< AT Oy wiw|| 2| A7w]| 2
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< ClNVullem AT w] o, + IA7 ] 2 [l 2o ) | A%20] .2

3 3
< C(llull, 1AWl ™ AP0l 557+ ], el o) |A”w] 2
< AT + O+ s + ATl A7), (222)
where max{3, 2} <my < oo and § - § < o < 3. Putting (2.21)-(2.22) into (2.20) yields
%HA"w(t)H%2 + A7 PwlFe < O+ [lullfz + A3l F2)(1 + [A%w] ).
It follows from (2.7) and the Gronwall inequality that
IA7w(®)]72 + /Ot 1A P ()12 dr < C(t, o, wo).
We thus complete the proof of Lemma 2.4. O
Finally, with (2.7) and (2.19) at our disposal, we are ready to show the global H*-bound.

Proof of Theorem 1.1. Applying A® with s > % to (1.2) and taking the L? inner product
with (A®u, A*w), we have

1 d S S ST S S S
5 g7 A"l + [1A%w][52) + 1A ull T2 + [APwlfz + 2 Awl|Zz + AV - w7,
= / (AS(V xu) - Aw+ A5V xw) - Asu> dx / A%, u- V]u AN udx
R3 R3
—/ [A%,u- V]w A wdz
R3
=J1 + Jo + Js. (2.23)

Due to a > 1, it is easy to check that
Ji < 2 A% | g2 [ A%w]| e
< 2 A%l 5 ATl A% 2
< S IA U, + CIATIE, + A%,
By the Kato-Ponce inequality, we directly get
Jo < O[[A% w- Vul| 2] Aul| 2
< ClIVullpms [|A%ul] - 2mg [[A%ul] 2
[ a=2

1—_3_ 3
< Cllull 3 A ull 2 " 1A ul| 157 [ A% 2

1 5
< EHASWUH% + (e + Az ][ Z2) [ A%ull72,
where max{%, 2} < mg < co. Similarly to (2.22), one may conclude

J3 = —/ [A®0y,, wilwA’w dx
R3
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<NA® Oz, wilwl| L2 | A*w][ 2
<CUVullpm AWl o, + 1A | 2 [[w] o) [ A*w]| 2

3

1—-3_
<O(full 5 IA%w] 2 ™ A Pw] 57 + [Jull rosa w2 | A%wl] 2

1 1 5
STGHA”%H% + TGHA”%H%z + O+ [|ull2 + [AZu]F2 + |w]Fe)
 ([|A%ul|72 + A wl|72).

Combining the above estimates yields

%(HA%H@ + | A%w]|72) + |4 ul|Fo + A w]|7

< C(U+ ull s + A3 ulFz + lwlfo) (IA*ullZ2 + [A%w][3). (2:24)
By (2.7) and (2.19),

/Ot (14 [l + IAZu(r)[32 + [[w(r)[Fe) dr < C(2, o, wo).
Applying the standard Gronwall inequality to (2.24) implies
IA*u(t)][72 + [A*w(t)]|F2 + /Ot (A u(r) |72 + 1A w(7)|72) dr < Ot u, wo),
which along with (2.1) gives
()7 + llw®) s + /Ot (A% ()77 + 10 w(r) | }s) dr < CO(t, ug, wo).  (2:25)

With (2.25) in hand, the uniqueness follows directly due to s > g In fact, let (u,w,p)
and (u,w,p) be two solutions to (1.2) with the same initial data. Letting
ou=u—u, Sw=w-—w, Oop=p-—D7,
we thus have
Oou + (u-V)ou+ (=A)*u+ Vip =V x dw — (0u - V)T,
Opow + (u - V)ow + 6w + (—A)Pow = V x du + VV - 6w — (du - V)w, (2.26)

du(z,0) =0, dw(x,0)=0,
Multiplying ((2.26), (2.26),) by (du, dw) and integrating over the whole space, one obtains

1d o

5 7 10U 72 + [dw®)[72) + [1A%0u][F2 + [A76w][ Tz + |V - 6wl

< V X dw - dudx + V><5u-6wdx/ (ou-V)u-dudx
R3 R3 R3

—/ (6u-V)w - dwdx
R3

< 2||A%ul| 2 | AR Sw] 2 + C|| V| Lo |0ul 72 + ClIV@| oo | dull 2 || dw]| 2

11—k

-5y " 1— .
< 2()|6ul| 2 * [|A%ul| f2) (|6w] 2 7 [[APSw]|, 5 )
+ C(IVal| oo + |V oo ) ([|6ull72 + [|6w]172)
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1. .. 1
< I8l + S IA%wEs + C(loul3 + 6w]32)
+ Ol s + [ (100l + 15wl22),

where we have used s > % and have selected 1 — 8 < k < «. This yields

%(IIM@)H%2 +[dw(®)]72) < O+ [[allas + [l o) (10wl 72 + [[6w]72),
which together with (2.26); and the Gronwall inequality implies
du(t) = dw(t) = 0.
We thus obtain the uniqueness. Therefore, this completes the proof of Theorem 1.1. [

3. THE PROOF OF THEOREM 1.2

In this section, we are going to prove Theorem 1.2. Our attention is focused on the case

when o = g since o > g is even simpler to handle. We begin with the basic L?-estimate.

Lemma 3.1. Assume (ug,wo) satisfies the assumptions stated in Theorem 1.2. Then the
corresponding solution (u,w) of (1.9) admits the following bound for any t > 0

()72 + [lw(®)]17- +/0 (IA"u(7) |72 + [ Lu(T)]172) dT < C(t, uo, wo) (3.1)

for any r € [0, %)

Proof. Tt follows from the first equation of (1.9) that
1d
2dt

:/R3 <(wa)~u+(qu)-w)dx.

By Plancherel’s theorem,

L@l + w(@)]2.) ./ L2 wde + 2w]2s + |V - wl

o [ JEE e
R3£ u udac—/]R3 92(|§D’u<£)’ dg = || Lul|7-.

Based on the assumptions on g, g grows logarithmically and we conclude that for any fixed
o > 0, there exists N = N (o) satisfying

g(r)<Cr’, Vr=N,
with some constant C' = C(o). Therefore, we have

Cull?s — €2 ey LR
ul? 04<N ﬂﬂ)u@n €+lé>Nw)fﬂﬂﬂu@N ¢

i .
>1[PN e

[k - q .
A;[CK|]1 ae) 2 de /Q«wg{cm|]’()’ ¢
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7-do ~
> Coll A ull72 — CollullZ, (3.2)

where Cy and Cq depend only on o. Now if we further fix o satisfying o € (0, %), then we
get by combining all the estimates above,
1d
2dt
< Collull2. +/ ((v x w) - u+ (V X u) -w)dm
R3

7—40

1 Co
(lu®)1Zz + lw(OIZ2) + SlILullZz + 1A ulfz + 2w]Ze + [V - wliZ:

< Collullfz +2[Vul| g2 |w]| 2
3—4o 7—do

— _4
< Collullzs + 2(llull 7" Al 72*) [[wl| 2

7—40

Co
< ZHA 7. + C(ull7s + wlF2)-

Therefore, for any o € (0, 3),

d 7—40
dt(HU(f)H%2 + lw®)I72) + 1A ull7 + [1Lul72 < Cllull7z + [Jw]|7s).

Using the Gronwall inequality yields

7—40

t
lu()l72 + llw(®)]17- +/0 (AT w(m) 122 + [1€u(7)|[72) dr < C(t, uo, wo).

The estimate (3.1) then follows. O

The following estimate plays an important role in proving the main result.

Lemma 3.2. Assume (ug,wo) satisfies the assumptions stated in Theorem 1.2. Then the
corresponding solution (u,w) of (1.9) admits the following bound for any t > 0
3
Az
u(t)|
(A)

sl + [, e

In particular, there holds for any €1 € (0, %)

2

L dr < C(t, ug, wo).

t
IR, i < o, o) (33)

3
Proof. Taking the inner product of (1.9); with %u, we have

3 5 3
1d| A 2 Az 2 Az
-2 ¢ el - _ . T ud
2dtHg(A)u(>’L2 HgQ(A)u’B /Rg (- Vu) - Sy dr
As
+ VXw:-———=udzr.
RS g*(A)
The Young inequality ensures
3 3
A2 A2
Vxw: —posuds) < V]
| foo ¥ gy e] < ol |V e
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1 Az 2
<= 2.
=16 HgQ(A)u‘ g H Oz
Following the proof of (3.2), it is not difficult to check that for any € € (0, %),
3
Ai 2 5 .
|yl = cullas=<ulis - Callula. (3.4)
In view of the fact V - u = 0 and the Gagliardo-Nirenberg inequality, we infer that
\Y% AZ dz| <C \% A2
‘/RS (u-Vu) - mu x‘ <C||uul| 2 gz(A)u’ L
5
A2
2
<C|lull7a m“‘ L
5
1 A2
<ClIARul e fAulze | 5o,

2 1
"+ CIA Y Al

u

L

<l
vl
1611g(A)

, T CllullZ Az,

2 2
A,

3
Az
+C H 7u‘
g9(A)
where in the last line we have applied (3.4) with e = 3. We thus conclude

il

2 A2 2 ) ) )
. HMUHL <CllwllZ> + Cllullzs | Aulz.

AL

Aul|? .
+CH UHLQ g(A)u 12

The estimate (3.1) with » = 1 gives
t
lu()lI72 + w(®)]7: +/0 [Au(r)||72 d7 < O(t, uo, wo).

By the Gronwall inequality,

ng(\;)u(t)‘ ; + /Ot Hgé\(j\)u(f)H; dr < C(t, ug, wp).

The desired bound (3.3) can be deduced following the proof of (3.2). This completes the
proof of Lemma 3.2. 0

The following is our main lemma in the proof of Theorem 1.2.

Lemma 3.3. Assume (ug,wp) satisfies the assumptions stated in Theorem 1.1. Then the
corresponding solution (u,w) of (1.9) admits the following bound for any t > 0

_ t
AR w2 + 4703 + [ 1£8u(r)]z dr < Ot o, wn), (3.5)
0
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where k1 < o + % for any o € (0, %) In particular, we have, by taking ki > %,
[ 19ue et < 00 0, w0) (5.5)
Moreover, if one takes o € (%, %), then
lw(t)||ze < C(E, uo, wo). (3.7)

Proof. Applying A% to (1.9), and taking the inner product with A%w yield

Ld, 5 5 5
5 g 1A 7w @72 + 2A%w |72 + [A7V - w7
= / A&(V X u)Aaw dx — / (A% u - V]wA®w dx
R3 R3
= K71 + K.
Applying A* to the system (1.9); and taking the L? inner product with A*¥u, we have
1d
5 S INRU2, + LA,
= —/ A% u - Vu- AP de +/ ARV % w) ARy da
R3 R3
= Kg + K4.

First, we deduce from the proof of (3.2) that for any €3 € (0, k1 + %),
7
ILAR u]|F, > Cal| AMH5 20|72 — Culful7.-
It thus follows from the Gagliardo-Nirenberg inequality that
Ky < O AT )| 2] |A%w]| 2
< C(llull g2 + 1LAM | L2) | A%w]| 2
1 ~
< TGIICAI“UH%Q + Cl[A%w| 7 + Cllul 7,
where o — % + €3 < k1. According to V - u = 0 and the Kato-Ponce inequality, we obtain,
for any o < %,

Ky = —/ [A°D,,, u]wA%w dx
R3

<N[A? B, wilwl| 2 [ A7w]l 2

<C(IVull < [A7wl|z2 + [A7ull s flwll o IIATw]| L2

3—2c0

<C(|Vull o [A%w]l 2 + | AZul| 2| A7w]|2) | Aw]| 2
<CO(|Vullz + |AZull2) | A%w]2.
For any ¢ € (1, %), K5 can be bounded by
Ky <[|[A7, u - Vw2 [ A%w]| 2
<C(IVullz=1A7wll g2 + [A7l| s [Vwll s )IATwllz:

20
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<C(|[Vull o [A7w] g2 + | AZul g2 ATw]| 2) [ ATl 2
<C(IVull = + A3l ) |A7w]7.
There, for any o € (0, %),
Ky < C(|Vull o + [AZul|2) [A7w] 7.
By the Kato-Ponce inequality, we obtain
K3 <O[[[A™, u- Vul| 2| A% ull 12
<C||Vul o | A" ul 7. (3.8)
By the Gagliardo-Nirenberg inequality, one has
Ky <C|IA™*97%u) 2| A7w]| 2
<Cllull i+ 5, [A%w0]] 2
<C(|LAul g2 + [full 2) [A%w]| 2
< IEAP U, + CIAT W, + Clull
where k1 < 0 + % — €5. Collecting all the estimates above yields
LAl + IS (0 F2) + 4452,

5 o
< C(L+ ||Vaullzee + [A2ul 2) ([A%w]F2 + A ul|7) + Cllull7 .
If we set
A(t) = [ Aw()]|72 + A u(t) |72, B(t) = AT 2u(t)||7, + LA™ u(t)]]7.,

then

d 5
A0 + B(t) < O+ [[Vullze + [|Az 0] £2) A(t) + £(2). (3.9)
We now bound ||Vu|re via the high-low frequency technique (see, e.g., [45]). By the
Littlewood-Paley decomposition (see Appendix for details),

N-1 00
IVullzee < [JAVullze + D 1AVl + Y | AVul| o
=0 =N

By the Bernstein inequality (see Lemma A.1), one has
[A-1Vul[ree < Clluf 2
and

o0 [o¢] s
D AV e <CY 22 Apul| 2
=N I=N

o
=0y 2 ANt
I=N
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<oNlt iR | ARt —ey| (3.10)
where we have used k1 > e + %. According to the Bernstein inequality again and the
Plancherel theorem, the middle term can be handled as follows,

N-1 N-1

Z 1A Vul|pe < C Z 254 A2 < C Z | AAZ |2
= 1=0 =

<CZ le2e)lE I3 ()] .2

—CZHw (€D )

L2
2 oI

SCZ Og 21",

N-1 1 5 2
(S (% gai'm ol.)

" NoLo1oad
<Cq(2 <l_1 )’ g(A)u’B
<o

where we used the fact that g is a non-decreasing function and ¢(27'¢) denotes the symbol
of the operator A; (see Appendix). Summarizing the above estimates implies

Aé
IVl < Clullz> + 092(2N)\/NHQQ(Z)UHL2 + Nt k| AR+ ey |,

By the same argument, we have

5
N
IA%ull < Clfelzz + o)W gyul, + C2Y i opAR o

The estimate for HA%uHLz can be refined to

5
AL
IA%ulle < 092<2N>ng<2A>“‘ oy, (3.11)
The above estimate (3.11) can be established by invoking (3.10),
5 5 Nl 5
1AZull 2 <|SnAZulle + Y | AAZul| 2
1=0

N-1
<c|xeokiaE)| ,+c Y 2 Al
=0
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< |x@e)e) EEEO | coverrionansizay),
20D |,
SCQZ(QN) |§’2§ﬁ(€) + C2N(52+%—k1)HAkl—i—%—ezuan
g*(1eh | L.

5
AL
SCgZ(QN)HQQ(j\ + CQN(EQ“F%_ICI)HA]‘JI‘F%_GZ

)u u|| g2,

where the low frequency cutoff operator Sy is given in the first appendix. By (3.9),

d A3
A+ B(t) SCA() + 092(2N)\/NH92(A)U‘

A(t)

+ C2Ne Ik B3 (1) A(t) + f(t).
For simplicity, we denote

3
a::k1—62—1>0.

Choosing N satisfying
2N & (e + A(t)) 7,
we obtain
d

y o[(e+ A% ]y/In (e + AM) (e + A1)

L A(t) + B(t) <C (1+ HQQA(Z)u

L2

+ OB (1) (e + A1) + f(2)
A3
<o 1+

- %B(t) + Cle+ A(t)) + f(1).

g*[(e+ A@)2 ]\ /In (e + A(1)) (e + A(t))

L2

In particular,
%A(t) <C (1 + Hgf(A)u L2> B[ (e +A®)2 |y/ln (e + A®L)) (e + A(t))

+Cf(t). (3.12)

Thanks to )
*[(e+ A(t))2 |\/In (e + A(t)) (e + A()) > 1,

we divide (3.12) by g*[ (e + A(t))i] In (e + A(t)) (e + A(t)) and integrating in time to

obtain "
e+A d
/ T c/ 1+ f(r +H ‘2 dr
) V/Inrg(ra) L

Recalling the cond1t10n (1.10) on g,

/:OT\/th;(ma _\/%/TT\/EQ() >~
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and the bound in Lemma 3.2,
[ (14 10+ ot
T u(T
0 g*(A) L

A(t) < C(t, ug, wo).

2) dr S C(t, Uuop, ’wo),

we deduce that

Returning to (3.12), we also get

t
/ B(r) dr < C(t, ug, wo).
0
Thus, we have
B t
A5 @) + 470l + [ (A5 un) s + A u(r)]3) dr < Ot uo, wo),
0

which is (3.5). This finishes the proof of Lemma 3.3. O

We are now ready to prove the global H*-bound and thus Theorem 1.2.
Proof of Theorem 1.2. To this end, we recall (2.23),

1d .,

5 g7 I ulZe + [A%w7) + 1247 + 2[A%w]7. + AV - w72

= / (AS(V xu) - Aw+ A*(V x w) - Asu> dx —/ [A% u-V]uANude
R3 R3

—/ A%, u- V]wAwdx
R3
=J1+ Jo+ Js.
According to the proof of (3.2), we have, for any €3 € (0, %)
|LA%ul3z > Cs|| A5~ ul|3, — Col|A%ul 3. (3.13)
By (3.13) with e3 = 2, it leads to
Ji SCIA* | g2 [ A%w]| 2
<C(I£A%u] 2 + [[A%ul| p2)[[A%w]| 2
<INl + AU + A%wl).
According to (3.8), one has
J2 < OVl g | A%ul 72 (3.14)
The last term J3 can be bounded by
J3 = —/ [A®0y,, uilwA®w dx
R3
<A Oz, wilwl| L2 | A% w][ 2
<C(IVullp [A*w] g2 + 1A ull g2 [w] poo) [ A*w]| 2
<C([Vullze[[A%w]| L2 + (LA 2 + [[A%u]|2) [[w][ o) [[A%w]] 2
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1 S S S
<A ullze + C(IVull e + lwlZe) (1A%l + [A%w]]Z2)- (3.15)

Combining all the above estimates, we obtain
d S S S
(IA%ullZe + [IA*w][Z2) + | £A%u] 72
< O(L+ [lwlZee + [ Vullze) (A% 72 + [[A%w][72). (3.16)
Recalling (3.6) and (3.7), we conclude via the Gronwall type inequality
t
[A*u(®)]172 + | A%w(t)]172 +/0 |LAu(T) 72 dT < C(t, uo, wo).

This completes the proof of Theorem 1.2. O

4. THE PROOF OF THEOREM 1.3

This section is devoted to the proof of Theorem 1.3. Similarly it suffices to consider the
case o+ 3 = %. The basic L?-estimate follows from Lemma 3.1.

Lemma 4.1. Assume (ug,wp) satisfies the assumptions stated in Theorem 1.3. Then the
corresponding solution (u,w) of the system (1.11) admits the following bound for anyt > 0

lu(®)11Z2 + lw(®)]Z2 +/0 (I€u(m) 12 + [A%w(r)|[Z2) dr < O(t, uo, wo). (4.1)

Our next goal is to improve the regularity of u, which can be stated as follows.

Lemma 4.2. Assume (ug, wo) satisfies the assumptions stated in Theorem 1.3. Then the
corresponding solution (u,w) of the system (1.11) admits the following bound for any t > 0

Aat+B-1 2 t | A20+B8-1 2
Hg(A)u(t) L —1—/0 WU(T) . dr < C(t, ug, wp). (4.2)
When oo+ 8 =1,
Ad ’ bl Aotd ?
g(A)u(t) , —i—/o gz(A)U(T) , dr < C(t, ug, wo). (4.3)
In particular, we have for any e; € (0, o + %),
/0 t [ i-un) i dr < C(t, uo, wo). (4.4)

+28-2

Proof. Taking the scalar product of the first equation of (1.11) with %u, we have

2 2 A20+26-2

= VXw: —s——udz
L2 R3 QQ(A)

R 9*(A) '

1d

Aet+B-1 A2a+8-1
—— || ————u(t
s | a0, |

g*(A)

l

L2
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By the Young inequality,

A2a+28-2 p CHA || A2a+8-1
VXxw: ———udx| < w2 || =5 u
R3 g2 (A) L g%(A) L2
1 || A20+B8—1 2
< || Awl?,.
<76 H (A u 2+CH w72

Following the arguments used in proving (3.2), we deduce for any r € (0, o+ 5 — 1) and
ro € (0, 2a 4+ B — 1) that
2

AOH-,B—l r 2 2
H g(A) u , > Cif|A 1UHL2 - CQHUHL27 (4.5)
L
A20+B-1 2 ) )
‘gZ(A)“ | = CsllAullze — Cullullz.. (4.6)
L

By a simple embedding inequality,

A2a+25—2 5 A2a+ﬂ—1
— u-Vu) ———udz| <C|A°(uu)| 2 || ———u
R IR 1% ||
A20+B-1
<Clull 2, IAPu]| 12 || ————u
[.3+28 g*(A) 12
A20+5-1
<C||Aul? —
<C| UHLg}rgB g2(A) u L2
A2a+8-1
Toulie || ——u|| -
Lz g*(A) L2
The high-low frequency technique implies
| e
j=N

Thanks to o > % and the Plancherel theorem, we have

a2 <CISVATE w2 + CSxul] 12
SCHSNAZUHEQHSNAO‘UIIEQ + Cllul 2

SCHX(TNé)Iflgﬁ(é)H%Q HX(2_N€)I€|"‘@(€)II%Q + Cllul|z2

N 33 RN 15 (S 1 Ay
=C{x(277¢)g() q© |, X(277¢)g(8) 0@ . [ullz
Co | 152 RG] -
<Cy(2") ‘ B ra Rt

AotB-1 %
<Cg(2™) H u H£u|]L2+C||u||L2
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The high frequency can be bounded by the Bernstein inequality and (4.5) along with (4.6),

T2 <C Z 9~ 19| A AT |

j=N
<C Y 2 AT
j=N
<C2™ | A" 50 AT,
N Ao+B-1 1-0 A20+8-1 0
<0277 | ||———u|| +|u 2> <Hu + [Ju 2) ,
([P + e L
where 6 is given by
2 -2
_2+fon L
27"2—27’1 2
Therefore,
N Oz—‘rﬂ 1 1
iz <Co2) | S| 12t} + Clul
Aa+ﬂ 1 1-6 A20+B8-1 0
+02’* U + ||u —_—u + ||u )
(el o) (P, ¢ )
Combining all the estimates altogether yields
d Aa—i—ﬂ—l 2 A2a+ﬁ—1 2
— ||—Fult T U
i | | .
04+B 1 A2a+ﬁ 1
<C||APw + Cg? 2N H u Lu 5o U
” HL2 g || HL2 g (A) 2
A2a+6—1 Aa—f—ﬁ 1 2(1-9)
+ Cllul|?s || ————u —i—CZ( U + ||u 2)
” HL2 gQ(A) 2 Q(A) 1o H HL
AQa—‘rﬁ—l A2o¢+5—1
X | || —————1u + [Jul| r2 —u )
(FrxRy ”L> 7® .z
Therefore, if we set
AotB—1 2 HAQQ+5—1 2
A(t) = || ———— , B(t) = || ———u(t ,
0= o], o= o),
then
d A%
SA() + B(t) <CIA w[3 + Cg* 2N A% (1) Cull 2 B3 (1)

+ CH“H%zB%(t) + 02_7 (A(t) + ||u”%2) - ( ( )_|_ HUH%;)@B%@)
<3 B(0) + g (2 AW Lullla + CAQ) +C27 77 (A1) T

+C2 N lull 2 A7 (1) + p(lull2),
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where ¢(t) is given by
4(1-0)

¢(lu(®)llr2) = Cllu@®)lzz + lu(®)ll 5™ ) < C(t, uo, wo).

This yields

LA + B) < Og* MA@ Lullls + CAW) + 03T (AW)FF 4+ 6(Jut)]2).
By taking
2N e+ A1),
we obtain
SA) + BU) < Og* (o + AW) (e + AW) (1 + [alda) + o(u(®)z). (A7)

Noticing that
g e+ A1) (e + A(t)) > 1,
we obtain from (4.7) that

e+A(t) T t
/ d <CA(H¢WMﬂMﬂ+MMﬂﬁJ*‘

+a) T9HT) T

Thanks to

and the following fact due to (4.1)

| 0+ ) + [1£uIEe) dr < e, wo)

we deduce that
A(t) < C(tv Uuo, wO)'
In addition, (4.7) implies
t
/ B(T) dr < C(t, Uuo, ’LU()).
0

The desired estimates (4.2) and (4.3) follow directly, and (4.6) immediately implies (4.4).
We thus complete the proof of this lemma. O

Motivated by Lemma 2.3, we will show the following key lemma.

Lemma 4.3. Assume (ug,wp) satisfies the assumptions stated in Theorem 1.3. If a > %,
B>0and a+p > %, then the corresponding solution (u,w) of the system (1.11) admits
the following bounds for any t > 0,

t
AFuo) e + [ AT Lu( dr < O uo, o), (18)
0
t
|ACw(t)||7: +/ A w(r)|72 dr < C(t, o, wo), (4.9)
0
for any o < 14 B. In particular, due to o > %, we have

/0 (V)| + [ASu(r) ]| g2) dr < C(2, o, wo). (4.10)
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Proof. Applying A7 to the first equation of (1.11) and dotting by Agu, we obtain

1d, = 7
S IAT U3 + 1A% Ll
—/ [Az,u-V]u-AZudx—i-/ A£(wa)A£udx
R3 R3
= Nl +N2.

Applying A? to the second equation of (1.11) and taking the inner product with A%w yield
1d

5 3 AT + AT w3 + 2| A% + AT - w],

/ A@(V xu)Agwd:L'—/
]RB

R3
= Ng + N4.

[A% u - V]wAwdx

Similar to the proof of (3.2), we obtain for any es € (0, «) that

|ATLull72 > CHIATE2u] 72 — CallATul]7.. (4.11)
By the Sobolev embedding inequality and the Kato-Ponce inequality,
~ 7 7
Ny <[|[[A%, w- V]ul[p2[[ATul| 2

<CIVull | Aul s, ATl

-
A20+B-1 , . .
<C (HQU + HVUHL2) (IATLul[ 2 + [[ATu|| p2)||ATul]| 12
(N e

1 7 5 A20¢+,3—1
< -
_16HA4EUHL2+C<1+' 2(A)

2
o+ ||Vu|ri2> (14 A ullz2),
L

u

where k > 2 satisfies

T—4a-28 1  «
/TP 2
6 ~ k3
By (4.11) and the interpolation inequality, we can bound Ny by

Ny <C[|Awl g2 ATull -,
T _ T
<C[AZ P 2 || ATl " | AT Ll 24

1 7 1 7
<A Lul|7: + AT w7, + Ol Ad w7,
16 16

where o > 1. Similarly, one has

Ny < AP (V x u) || 2 [ AZTPw]|
<Cl|u]l gro1-5]| AP w]| 2

1—1¢ 7 )
<Cllull;z 2 AT Lul| 3 AT w] 2

Loz 2 1 +6,,,(12 2
SE‘|A4’CUHL2 + EHAQ 'BU’HLZ + Cllul[z2,
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where o < g As in (2.17), we choose mgy > 2 satisfying
7T—da—25 _ 1 < B
6 “mg 3
to obtain, for a + 3 > % and o < 1+ 83,
N, < 0, . B 1
Ry <CYIA% u- Vol A%

<C(IVullzmollwll go-p Il p2llwll 2) (|A%w]| 12 + A2 Fow]| 2)
2mq 2

mg—2’°

SC(HUHHQM'ﬁ—lHwHBgfﬁerio + lJull 2wl 2) (| A%w] 12 + AP w| 2)
2,2

<C(llull goese-rlfwl e + l|ull 2 [|w] 2) (1 A%w]| 12 + A Fw]| 2).
By the Plancherel theorem and the Bernstein inequality,

lull g2y [l g2 + [|A2* 9 | 2

o0
<Jlullzz + ISvA2 P o+ ) | AGA%H |
j=N
€2t tace)

S||u||Lz+cHx<2—N§>g2<f> e

L2

o
+ OS2 AN T

j=N
2a+p—-173
<l + €Ny | BT oo aesieny
9°(&) L?
A20+6-1
<Jlullzz + Cg*(2Y) | —gr—u
. @2y
+ CQ—UN”Aa—‘r%—qUH}EZTHA%J"O‘_Q’LLH%%
A20¢+5—1
<|lull g2 + CP(2N) | —575—u
‘ ’ ) g2(A) L2
+ C27 N A 52 (| AT Lu(r) 2 + [ATull12),
where o is given by
€1 1

= <.
T 12— 26 02

Combining all the estimates above, one has

d
A Tu(@)F2 + [A2w(@)][72) + AT Lullfs + A2 w],

. A2a+8-1 2 Sull A7 )
<C(1+4||55—u| + 14 ||Ad
<o (e gl il @ it
2/0N AZeth—l +3
e (g (2V) \ APl eole + Huanuwup) (1Aw]z2 + APl 2)
g (A> 2

29
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+C (27N A w2 (AT L)l + 1A Tul )2 o + ] o] 12
< ([[A%wllz + A Fw]|2).
Writing
X(t) = [Adu@®lF2 + 1A%l V() = AT Lu(®)[72 + (AT w ()3,

and choosing
2N ~e+ X(t),

we obtain
d A2a+5-1 2 )
—X)+Y() < 1 —_— X(t
o (t)+Y(t) <C —I—H N uL2+||VuHL2 (e+ X(t))
) A2a+5-1 1
+C <g (e+X(1)) ‘ ——ul| ([l +X2(1) + IUHLQHme)
g%(A) L?

X (X2(t) +Y2 (1)
+C e+ X (1) AT 1527 (X3 (8) + Y2 (8)% (Jlw]| g2 + X2 (1))
X (X3(t) + Y3 (1)) + Clull gz llw] 12 (X3 (£) + Y3 (2)).

Thanks to the Holder inequality,
2

d AQOH_B_I a+§761 2
94X+ ¥ ) §C<H(HUHL27 ol + |y |+ haesd uHLz> (c+ X(1)
A2a+8-1 2 A
e (H(HuHm, ) + |22 Lg) (e + X(0)g* (e + X(1)

1
+CH([Juf g2, [lwlz2) + 5Y (@),

where H (b1, b2) is an increasing smooth function with respective to both b; and be, and
thus satisfies

t
/0 H([[u()|| 12, [[w(7)]|12) dT < C(, uo, wo).
Noticing the following fact
(e+X()g" (e +X(t)) >1,

we finally get
%X(t) +Y(t) <CR(t)(e+ X(1)g" (e + X(2)), (4.12)

where R(t) is given by

A2a+8-1 2

RO = H (O [a0)z2) + | -t

Recalling the assumption on g,
/ «dr
=00
e T9HT)

AT ()2,
2

L
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and the bound due to (4.2) and (4.4)

t
/ R(T) dT S C(t, Uuop, ’wo),
0

X)) gr t
/ AN < / R(T) dr < C(ta uo, ’UJ())-
e+X(0) 79 (1) 0

That is, X (¢) must be finite for any given t > 0,
X(t) < C(t, uo, wo)- (4.13)

we obtain

By (4.12),

/Ot Y (7)dr < C(t, up, wp). (4.14)

The estimates (4.13) and (4.14) along with (4.11) imply (4.8) and (4.9). Clearly (4.10)
is an easy consequence of (4.8). In fact, due to a > 9, we invoke the inequality with
0<e < % + «,

5
4
|A3ull 2, [Vullze < Cllullz2 + C A5l 12,
which is (4.10). This completes the proof of Lemma 4.3. O

The estimate (4.10) and Lemma 2.4 allow us to obtain the following bound.

Lemma 4.4. Assume (ug,wo) satisfies the assumptions stated in Theorem 1.3. If a > %,

B8>0anda+ 5> %, then the corresponding solution (u,w) of the system (1.11) admits
the following bound for any t > 0,

t
| ol dr < € wo, wo). (.15
0

Finally we provide the global H?*-estimate for u and w, and thus finish the proof of
Theorem 1.3.

Proof of Theorem 1.3. As in (2.23), we have

L (Ul + IA"w]Za) + A" Culs + A"+l + 2] A%wlFa + A% - ul
=J1+ Jo + Js.
By means of the proof of (3.2), we have, for any 0 < e3 < «,
IA°Lul|72 > Cs|| A 2u| 7, — Col|A%ul|7-. (4.16)
By (4.16),

Ji <2/ | 2| A%w]| 2
<2([|A%ull g2 + |A°Lul| p2) [ A*w]] 2

1 s s s
<A Lullze + CCIA 7 + [[A%w]Z2).

We deduce from (3.14) that
J2 < C||Vul [ A%l 22



32 DEHUA WANG, JIAHONG WU AND ZHUAN YE
According to (3.15), we have
1
J3 < EIIASﬁUII%Q + C(|Vu] oo + [[wl[7e ) (1A% ull72 + [|A%w][72).
Combining all the estimates yields
d 2 2 2 2
ST + [A%w][Z2) + A LulF + 1A w7,

< O+ || Vulze + [lwllZee) ([A%ullF2 + [[A%w]|72).
Thanks to (4.10) and (4.15), one has

¢
|+ 19U + ) ) dr < €t o, w).
0
The Gronwall inequality implies
t
IA*u(®)]|72 + |A%w(t)]|7 +/O (1A Lu(r) (172 + 1A w(T)[72) dr < O(t, ug, wo).

This completes the proof of Theorem 1.3. O

APPENDIX A. BESOV SPACES

This appendix provides the definition of the Besov spaces and related facts that have
been used in the previous sections. Some of the materials are taken from [2].

We start with the partition of unity. Let B(0,r) and C(0,r1,r2) denote the standard
ball and the annulus, respectively,

B(0,r) ={( eR": [¢| <r}, C(0,71,m9) ={£ €R™: r; < [¢| <ra}.
There are two compactly supported smooth radial functions ¢ and ¥ satisfying
supp ¢ C B(0,4/3), suppv C C(0,3/4,8/3),
BE)+Y ¥(279¢) =1 forall £ €R". (A.1)

J=0
We use h and h to denote the inverse Fourier transforms of ¢ and v respectively,
h=F"'¢, h=F1y.

In addition, for notational convenience, we write 1;(£) = ¥(277¢). By a simple property
of the Fourier transform,

hy(@) = F= () () = 29 h(2a).
The inhomogeneous dyadic block operator A; are defined as follows
Aif=0 for j < =2,
Af=hxf= A f(x =) hly) dy,

Ajf=hjxf=2" [ flx—y) h(2y)dy forj>0.
Rn
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The corresponding inhomogeneous low frequency cut-off operator S; is defined by
Sif= > Aif.
k<j—1

For any function f in the usual Schwarz class S, (A.1) implies

~

F(&) = 0(&) J(©) + D w(277¢) f(9), (A.2)

Jj=0
or, in terms of the inhomogeneous dyadic block operators,
F=D Aif or Id= ) A
Jj=—-1 Jj=-1

where Id denotes the identity operator. More generally, for any F' in the space of tempered
distributions, denoted &', (A.2) still holds but in the distributional sense. That is, for
Feds,

F= Z A;F or Id= Z Aj in S (A.3)

j>—1 j>—1
In fact, one can verify that
SjFi= Y AF — F in §.
k<j—1

Note that (A.3) is referred to as the Littlewood-Paley decomposition for tempered distri-
butions.

The inhomogeneous Besov space can be defined in terms of A; specified above.

Definition A.1. For 1 < p,q < oo and s € R, the inhomogeneous Besov space By,
consists of the functions f € &' satisfying || fl|ps, = 1275 2 fll e l1e < o0

Bernstein’s inequality is a useful tool on Fourier localized functions and these inequali-
ties trade derivatives for integrability. The following proposition provides Bernstein type
inequalities for fractional derivatives.

Lemma A.1. Fora>0,1<p<qg<o0, and f € LP(R"),
(1) if there exist some integer j and a constant K > 0, such that, supp f C {£ € R™ :
€] < K29}, then

I(=2)*Fllzageny < C1 2277 £l o gny;
(2) if there exist some integer j and constants 0 < Ky < Ks, such that, suppr {¢ e
R": K2 < €] < K221}, then

A oitin(l_1
12| ey < N2) fllzagany < Co 2070 o,

where Cy and Csy are constants depending only on «,p and q.
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APPENDIX B. A GLOBAL REGULARITY RESULT WHEN VV - w IS ELIMINATED

As we mentioned in the introduction, the term VV - w in the equation of w in the
micropolar system is a “bad” term in the sense that it prevents us from deriving the
estimate ||w| zs with ¢ > 2 directly by the standard L%-estimate. This appendix provides
a global regularity result for the micropolar system without this term, namely (1.2) with
1= 0. As we shall see in Theorem B.1, the requirement on the fractional powers can be
reduced to a > % and 8 = 0, which is the best one at this moment.

Theorem B.1. Consider the following 3D incompressible micropolar equations, namely,
Ou+ (u-Viu+ (—A)*u+Vp =V xw, reR3 t>0,
dw+ (u-V)w~+2w =V xu,
V.-u=0,
u(,0) = uo(z),  w(z,0) = wo(z).
Let (ug, wo) € H5(R3) with s > 3 and V-ug = 0. If a > 2, then the system (B.1) admits
a unique global solution (u, w) such that for any given T > 0,

(u, w) € L=([0,T); H*(R3)), A% € L*([0,T]; H*(R?)).

(B.1)

It suffices to consider the endpoint case a = % since a > % is even simpler. Combining

Lemma 2.1 and Lemma 2.2, we still have
t
)y + [ )12y dr < Ot o, ). (B.2)

With (B.2) at our disposal, we are in the position to establish the following key esti-
mates.

Lemma B.1. Assume (ug,wyp) satisfies the assumptions stated in Theorem B.1, then the
smooth solution (u,w) of (B.1) admits the following bounds

t
/ IVu(r)|| L dr < C(t, ug, wp), (B.3)
0

[w(t)]|Le < C(¢, uo, wo). (B.4)
Proof. By V -u =0, we rewrite (B.1); as follows
Opu+ A3u = — (T + (—A)'VV.) [v (u®u) -V x w},
where we have eliminated the pressure term by V - u = 0. Applying A~! yields
OA " u+ ASA = —A7! (Is + (—A) "'V V) [v (u®u) — V x w] (B.5)
Applying Lemma 3.1 of [54] to (B.5) leads to
1A% Cull g = (A3 A ull 0

<C(t,uo) + C(t) \

At (I+ (—A)—lvv-) [V (u®u)—V x w] )

Lirs
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<ctea+ |3 7 o -],

<C(t,uo) + C@)lluvpips + C@)|lwl L1 s

<C(t,uo) + C®)|[ul 7206 + CO)|wll L1 s

<C(t,uo) + (t)HU\\2 2 TOWwlLys

<C(t, up, wo) + C(t )HwHLtlL87 (B.6)

where in the last line we have used (B.2). By the equation of w in (B.1),

d
S lw@®llzs < IVl s

By an interpolation inequality, one derives

t
lw(®)llzs < llwollzs + / V() s dr

< C ! 1_2117—786 A% 178ed
< flwollzs + ; ()l g2 > A2 u(r) || 7™ dr

t =3t /oot per
§|wouLs+c< /0 uumnym) ( /0 ||A2_EU(T)||L8dT> |

where 0 < € < % Therefore, we conclude

17

t 21—8e
Jooll 1 g < tlwollzs + Ct ( / uumupdf) ( / JA3— \Lsdf)

< tllwoll s + C(t; wo, wo)llAQ_EUHEﬁLS;- (B.7)
Combining (B.6) and (B.7), we have

17

1A2 = ul| 1 s < Ot uo, wo) + C(t, uo, wo) A2~ u|| %

Lirs
I, s_

< C(t, uo, wo) + §HA2 “ullpis,
which yields

IAZ=ull 3 s < C(E, uo, wo). (B.8)
By further taking 0 < € < 8, we obtain from (B.8) that

/ |Vu(r)|| Lo dr <C’/ |lu(T HdeT—{—C/ HA2 )| 18 d7
SC(t, uQ, wo). (Bg)

By the equation of w in (B.1), we again have, for any 2 < ¢ < oo,

d t
g Ie@lle < |[Vulza orJw(®)llze < [lwolrs +/ IVul| Lo dr.
0

Letting ¢ — oo and invoking (B.9), we find
[w(t)][Le < C(¢, uo, wo).



36 DEHUA WANG, JIAHONG WU AND ZHUAN YE

Thus, we complete the proof of Lemma B.1. O

By (B.3) and (B.4), we can obtain our ultimate global H*-estimate for u and w.
Proof of Theorem B.1. Similar to (3.16), we have

d S S S 5

Z(IA%ullZz + [A*w][72) + A" 5 ul 7

< C(+ [Jwlffee + [IVullze) (1A%l 72 + |A%w]|72),
which along with the Gronwall inequality, (B.3) and (B.4) yield

t 5
IAu(®)]72 + [A*w ()12 +/ 1A Su(7) |22 d7 < O(t, uo, wo).
0

This finish the proof of Theorem B.1. O

APPENDIX C. LOCAL WELL-POSEDNESS RESULT ON (1.2)

For the sake of completeness, we present in this appendix the local well-posedness result
of (1.2) with initial data (uo,wo) € H*(R?) with s > 3.

Proposition C.1. Let (ug,wo) € H*(R?) with s > 3 and V- ug =0. If a + 3 > 1, then
there exists a positive time T depending on ||ug||gs and ||wol|gs such that (1.2) admits a
unique solution (u,w) € C([0,T]; H*(R?)).

We remark that the same local well-posedness result also holds true for (1.8). Similarly
to [35, 10] (also see [17]), the main ingredient of the proof of the Proposition C.1 is to
approximate (1.2) by the Friedrichs method to obtain a family of global smooth solutions.

For N > 0, set B(0,N) = {¢ € R*|[¢| < N} and denote by xp(o n) the characteristic
function on B(0, N). Define the functional space

L3 == {f € L*(R%)| supp f C B(0,N)},
and the spectral cut-off
INT() = X0 (©F(©).
Proof of Proposition C.1. We first consider the following approximate system of (1.2),
oty + PJN((jNuN . V)jNuN) + A2 InulY = PV x Jyw',
o™ + In(Inu® - V) Inw™) + 2Tvw™ + AP Tyw™ =V x Jyu¥ + VV - Iyw?,
V-ulV = 0,

UN($70) :jNUO('x)) wN(ac,O) :ijO(x)7
(C.1)
where P denotes the standard projection onto divergence-free vector fields. Thanks to
the Cauchy-Lipschitz theorem (Picard’s Theorem, see [35]), we can find that for any fixed
N, there exists a unique local solution (u",w") on [0, Tyy) in the functional setting L%,
with Ty = T(N,ug, wp). By J& = Jn, P? = P and PJy = JnP, we can check that
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(Inu?, Ivw™) is also a solution to (C.1) with the same initial datum. Based on the
uniqueness, it yields
jNuN = uN, ijN —wl.

Consequently, the approximate system (C.1) reduces to

o + PIn((W™ - V)ul) + A2l = PV x wl,

owN + In (W - V)w™) + 20V + AP =V x u¥ + YV - w?,

V-ulV =0,

N _ N _
u (z,0) = Inuo(z), w” (x,0) = Inwo(z).

A basic energy estimate implies (u”,w™) of (C.2) satisfies

(C.2)

4
™ ()1 + lw™ ()17 +/0 (1AW Z2 + ™ [[75)(7) dr < C(lluol|Z + [lwollZ2, ).

As a result, the local solution can be extended into a global one, via the classical Picard
Extension Theorem (see, e.g., [35]). By the direct H*-estimates (see for example (3.16)),
we deduce from (C.2) that

d
— (e @1z + 1™ (@)1 F) + 1A% s + [ A% Frs

dt
< O+ IVuM|zee + [V [[zeo) (a7 + 0™ [172)
< O+ uM s + o™ ) (™ 7 + w™1Fs), (C.3)

where we use the fact that

5
IV flleomsy < Cllflasmsy, s> 5

We assume in (C.3) that [|u”||gs + |w™ | gs > 1 since, otherwise, we replace ||uN|gs +
|w™ || grs by 1+ [[u] s + ||wN]| rs. Denoting

X(t) = [ (O Fs + ™ @)
we get from (C.3) that
d p
ZX(1) < RX(1)2,
where k > 0 is an absolute constant. By direct calculations, we show that for all IV
A[uollFs + 4llwollZ;s

27
(2 = Ty llwol. + ool 13.)

N N
sup. (™ (1) 3 + ™ (1)]3) <
0<t<T

where T > 0 satisfies
2

/ol + ool

As a result, the family (v, w”) is uniformly bounded in C([0,T]; H®) with s > 3. We
can also show that

oY, o™ € L°([0,T)); Hy?(R?)  for some 9 > 2.

T<
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As the embedding L? < H~? is locally compact, by the Aubin-Lions argument we con-
clude that a subsequence (u”,w")yeny satisfies, on any compact subset of R?,

[u —uN |2 =0, fw¥ —wN |2 =0, as N, N = oco.
Noticing that || ]| < CHleLg%,HfH;?;S for s > §', we have
HuN—uN/HHS/ -0, [w" —wN/HHS/ —0, as N, N — .
Then we have strong convergence limit (u,w) € C([0,T]; H* (R?)) for any s’ < s; hence,
up to extraction, the sequence (u’V,w™)yen has a limit (u, w) satisfying
Ou+ P(u- V)u+ A%y =PV x w,
orw + (u- Vw4 2w + A%Pw =V x u+ VV - w,
V.-u=0,
u(z,0) = up(z), w(x,0)=wo(z).

Furthermore, it is not hard to check that (u,w) € L>([0,T]; H*(R3)). Finally, we claim
that (u,w) € C([0,T]; H*(R3)). It suffices to consider u € C([0,T]; H*(R3) since the same
procedure can be applied to w to obtain the desired result. First, one has

(C.4)

sup ([lullms + [[w][a=) < C(T) < co.
0<t<T

By the equivalent norm, we get

Jutt) = utt2) e = {3 + 3@ IAwu(t) - Apulta)l=)?} . (CH)

k<N k>N

=

Let € > 0 be arbitrarily small. Thanks to u € L*®([0,T]; H*(R?)), there exists an integer
N = N(eg) > 0 such that

{ @ |au(t) - Agulta) 2} <

E>N

VI

(C.6)

| ™

Appealing to (C.4); implies

Aku(tl) — Aku(tg) :/ iAku( )d

¢y, dT
to
=— APV x w+ (u- V)u + A**u)(1) dr.

t1
This allows us to derive

> 2% Agu(ty) — Agulta)]|72
k<N

_ Z 2%5(

k<N

< Zz?ks(/ ALV x w+ (u- V)u+ A**u]||2(7) d )

k<N

’ AkP[wa—i—(u V)u + A%u)( )d7‘HL2>2
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to 2
< 3 ([ 08T % wlzs + NAKG alse + 11860l 21(7) )

k<N t1
to 2
= 2%(/ kDALY x w(7T)|| 2 dT)
k<N t1
2k f2 k 1 2
+ Y ([T o))z dr)
k<N t1
to 2
+> 24a’f(/ 2k || Apu(7)|| 12 dT)
k<N t1
k
< C Y 2% (ol el — t2l? + e o1 — t2I?)
k<N
+O 3 29ty — tofJull3 e e
k<N
k
<C > 2l — o (Il + lulfpe ol o )
k<N
+O 3 29ty — tol|ull3 e e
k<N

< 02Nty — o2 (e g + lulf o) + €22 |11 = tof |l e,

which implies

[NIE

{ S Ianut) - At 12)?}* <

k<N

(C.7)

| ™

provided that |t; — t3| is small enough. The desired u € C([0,T]; H*(R3) follows from
(C.5), (C.6) and (C.7). Since (u,w) are all in Lipschitz space, the uniqueness follows
directly (see the end of Section 2). This completes the proof of Proposition C.1. O
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