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Abstract. The vanishing viscosity limit of the two-dimensional (2D) compressible isentropic
Navier-Stokes equations is studied in the case that the corresponding 2D inviscid Euler equa-
tions admit a planar rarefaction wave solution. It is proved that there exists a family of
smooth solutions for the 2D compressible Navier-Stokes equations converging to the planar
rarefaction wave solution with arbitrary strength for the 2D Euler equations. A uniform
convergence rate is obtained in terms of the viscosity coefficients away from the initial time.
In the proof, the hyperbolic wave is crucially introduced to recover the physical viscosities
of the inviscid rarefaction wave profile, in order to rigorously justify the vanishing viscosity
limit.

1. Introduction

In this paper, we investigate the vanishing viscosity limit of the two-dimensional compress-
ible and isentropic Navier-Stokes equations:{

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) +∇p(ρ) = µ14u + (µ1 + λ1)∇divu,
(1.1)

where ρ = ρ(t, x1, x2) ≥ 0,u = u(t, x1, x2) = (u1, u2)(t, x1, x2) and p = p(t, x1, x2) represent
the fluid density, velocity and pressure, respectively; (x1, x2) ∈ R2 is the spatial variable and
t > 0 is the time variable. The pressure p = p(ρ) is given by the γ-law:

p(ρ) =
ργ

γ

with γ ≥ 1 the adiabatic constant. Both the shear viscosity µ1 and the bulk viscosity λ1 are
constant satisfying

µ1 > 0, µ1 + λ1 ≥ 0, (1.2)

and we take
µ1 = µε, λ1 = λε,

where ε > 0 is the vanishing parameter, and µ and λ are the prescribed uniform-in-ε constants.
For the spatial domain, we consider the case x1 ∈ R and x2 ∈ T := R/Z, the one-dimensional
unit flat torus.

Since we are concerned with the vanishing viscosity limit to the planar rarefaction wave for
the system (1.1), we consider the following initial data:

(ρ,u)(0, x1, x2) = (ρ, u1, u2)(0, x1, x2) = (ρ0(x1, x2), u10(x1, x2), u20(x1, x2)), (1.3)
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and the far field condition of solutions in the x1-direction:

(ρ, u1, u2)(t, x1, x2)→ (ρ±, u1±, 0), as x1 → ±∞, (1.4)

where ρ± > 0, u1± are the prescribed constants. The periodic boundary condition is imposed
on x2 ∈ T for the solution (ρ, u1, u2)(t, x1, x2) to (1.1), where the end states (ρ±, u1±) are
connected by the rarefaction wave solution to the Riemann problem of the corresponding
one-dimensional (1D) hyperbolic system of conservation laws:{

ρt + (ρu1)x1 = 0, x1 ∈ R, t > 0,

(ρu1)t + (ρu2
1 + p(ρ))x1 = 0,

(1.5)

with the Riemann initial data

(ρr0, u
r
10)(x1) =

{
(ρ−, u1−), x1 < 0,

(ρ+, u1+), x1 > 0.
(1.6)

Formally speaking, as ε tends to zero, the two-dimensional (2D) compressible Navier-Stokes
equations (1.1)-(1.3) converge to the corresponding 2D inviscid compressible Euler equations:

ρt + (ρu1)x1 + (ρu2)x2 = 0, (x1, x2) ∈ R× T, t > 0,

(ρu1)t + (ρu2
1 + p(ρ))x1 + (ρu1u2)x2 = 0,

(ρu2)t + (ρu1u2)x1 + (ρu2
2 + p(ρ))x2 = 0.

(1.7)

In the regime of the planar rarefaction wave, we consider the Euler system (1.7) with the
following Riemann initial data

(ρr0, u
r
10, u

r
20)(x1) =

{
(ρ−, u1−, 0), x1 < 0,

(ρ+, u1+, 0), x1 > 0.
(1.8)

We note that, although the u2-component is continuous on the both sides of x1 = 0 in
(1.8), the one-dimensional Riemann problem (1.5)-(1.6) and the two-dimensional Riemann
problem (1.7)-(1.8) have some substantial difference. For example, the results in [8,9] indicate
that there are infinitely many bounded admissible weak solutions to (1.7)-(1.8) satisfying
the entropy condition for the shock Riemann initial data, and their construction of weak
solutions based on the convex integration method in DeLellis and Szekelyhidi [11] for the
two-dimensional system may not be applied to the one-dimensional problem (1.5)-(1.6). The
results in [8,9] were extended to the Riemann initial data with shock or contact discontinuity
in [3, 30]. Nevertheless, the uniqueness of the uniformly bounded admissible weak solution
was proved in Chen-Chen [4], Feireisl-Kreml [13], and Feireisl-Kreml-Vasseur [14] for the
Riemann solution containing only rarefaction waves to (1.7)-(1.8) even with vacuum states,
which is similar to the one-dimensional case. Our current paper is devoted to establish the
mathematical justification of the vanishing viscosity limit of the 2D compressible Navier-Stokes
equations (1.1)-(1.3) to the planar rarefaction wave solution of the 2D Riemann problem of
the corresponding compressible Euler equations (1.7)-(1.8).

There have been many results in literature on the vanishing viscosity limit to the basic
wave patterns for the system of viscous conservation laws in the one-dimensional case. For
the 1D system of the hyperbolic conservation laws with artificial viscosity, Goodman and
Xin [15] applied a matched asymptotic expansion method to first prove the viscous limit
for the piecewise smooth solutions separated by noninteracting shock waves. Later Yu [37]
extended the result in [15] for the corresponding hyperbolic conservation laws with both shocks
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and initial layers. Bianchini and Bressan [2] proved the vanishing artificial viscosity limit in the
general small BV spaces although the problem is still unsolved for the physical systems such
as the compressible Navier-Stokes equations. For the one-dimensional compressible isentropic
Navier-Stokes equations, the vanishing viscosity limit was obtained in Hoff and Liu [16] for
the piecewise constant shocks even with initial layers, in Xin [35] for the zero dissipation limit
to the rarefaction wave for both the Riemann data and the well-prepared smooth data, and
in Huang, Li and Wang [17] and Li and Wang [27] for the zero dissipation limit in the case
of the rarefaction wave connected with the vacuum states. The result in [15] was extended in
Wang [33] to the one-dimensional isentropic Navier-Stokes equations. For the nonisentropic
Navier-Stokes equations, the results on the zero dissipation limit to the corresponding full
Euler system with basic wave patterns can be found in [22,36] for the rarefaction wave, in [34]
for the shock wave, in [29] for the contact discontinuity, and in [19, 20] for the superposition
of two rarefaction waves and a contact discontinuity and the superposition of one shock
and one rarefaction wave cases. More recently, Huang, Wang, Wang and Yang [21] justified
the vanishing viscosity limit of the compressible Navier-Stokes equations for the generic 1D
Riemann solution which may contain shock and rarefaction waves and contact discontinuity.
On the other hand, Chen and Perepelitsa [7] proved the vanishing viscosity limit to the
compressible Euler equations for the one-dimensional compressible Navier-Stokes equations
in Lp-framework by using the compensated compactness method. For other related results on
the inviscid limit in literature, see [1, 5, 6, 10,12,23,31] and the references therein.

Although there have been satisfactory results mentioned above on the vanishing viscosity
limit to the basic wave patterns for the viscous conservation laws in the one-dimensional
case, there are very few results on the vanishing viscosity limit to the planar wave patterns
for the compressible Navier-Stokes equations (1.1) in the multi-dimensional case. Motivated
by the recent progress on the time-asymptotic stability of the planar rarefaction wave to
the multi-dimensional compressible Navier-Stokes equations by Li, Wang and Wang [25] and
Li and Wang [26], in the present paper we aim to justify the vanishing viscosity limit to
the planar rarefaction wave for the two-dimensional compressible Navier-Stokes equations
(1.1) with physical constraints (1.2) and obtain the decay rate with respect to the viscosity
coefficients. Compared with the one-dimensional vanishing viscosity limit results in [17,18,35],
the additional difficulties here lie in the propagation of the planar rarefaction wave in x2-
direction and its interactions with the wave in x1-direction due to the higher dimensionality.
Therefore, we need to introduce a new wave, called hyperbolic wave, to recover the physical
viscosity of the compressible Navier-Stokes equations for the inviscid rarefaction wave profile
satisfying the compressible Euler equations exactly, which is partially motivated by the work
[20] for the viscous limit of the one-dimensional full compressible Navier-Stokes equations
in the case of superposition of both shock and rarefaction waves. Note that this hyperbolic
wave plays a crucial role for the uniform estimates with respect to the viscosity coefficients
for the perturbation of the solution to (1.1) around both the rarefaction wave profile and the
new hyperbolic wave and it seems that we can not justify the vanishing viscosity limit for
2D Navier-Stokes equations (1.1) without this hyperbolic wave by using only the rarefaction
wave profile itself. By using the rarefaction wave profile and the new hyperbolic wave as
the ansatz, the vanishing viscosity limit problem can be reformulated as a time-asymptotic
stability problem around the background solution profile which consists of rarefaction wave
and hyperbolic wave so that the energy method can be applied after some suitable scalings.
Furthermore, we need some key observations on the cancellations in the physical structures of
the system (1.1) for the flux terms and viscosity terms in order to close the a priori estimates,
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which is partially motivated by our recent time-asymptotic stability results in Li and Wang [26]
and Li, Wang and Wang [25] for 2D/3D compressible viscous fluids, where it is proved that if
the initial data is around the planar rarefaction wave data, then the 2D initial value problem
(1.1)-(1.3) has a unique global smooth solution that goes to the planar rarefaction wave fan
as t → ∞ with the viscosity coefficients µ1 and λ1 being fixed. In the present paper, our
goal is to justify the vanishing viscosity limit of 2D compressible Navier-Stokes equations
(1.1)-(1.3) to the planar rarefaction wave as the viscosity parameter ε → 0+ and then both
the viscosity coefficients µ1, λ1 → 0. Compared with the time-asymptotic stability results
of planar rarefaction wave in [25, 26], some new difficulties occur and the hyperbolic wave is
crucially introduced to justify the vanishing viscosity limit. More precisely, the detailed 2D
vanishing viscosity limit result can be found in Theorem 1.1 below.

Next we describe the one-dimensional rarefaction wave to (1.5) and the planar rarefaction
wave to (1.7). The Euler system (1.5) is strictly hyperbolic for ρ > 0 with two distinct
eigenvalues

λ1(ρ, u1) = u1 −
√
p′(ρ), λ2(ρ, u1) = u1 +

√
p′(ρ).

The two right eigenvectors are denoted by r1(ρ, u1) and r2(ρ, u1), and the both characteristic
fields are genuinely nonlinear, i.e.,

∇(ρ,u1)λi(ρ, u1) · ri(ρ, u1) 6= 0

for any ρ > 0, u1 and i = 1, 2. The i-Riemann invariant zi(ρ, u1) (i = 1, 2) to the Euler system
(1.5) is given by

zi(ρ, u1) = u1 + (−1)i+1

∫ ρ
√
p′(s)

s
ds, (1.9)

satisfying∇(ρ,u1)zi(ρ, u1)·ri(ρ, u1) ≡ 0 (i = 1, 2) for all ρ > 0 and u1. In this paper we consider
only the 2-rarefaction wave without loss of generality, since the 1-rarefaction wave and the
superposition of two rarefaction waves can be treated similarly. If the 2-Riemann invariant
z2(ρ, u1) is constant and the second eigenvalue λ2(ρ, u1) is expanding along the 2-rarefaction
wave curve, i.e.,

u1+ −
∫ ρ+

ρ−

√
p′(s)

s
ds = u1−, λ2(ρ+, u1+) > λ2(ρ−, u1−), (1.10)

the Riemann problem (1.5)-(1.6) has a self-similar wave fan (ρr, ur1)(x1t ) consisting of only the
constant states and the centered 2-rarefaction waves (cf. [24]). The planar rarefaction wave
solution to the two-dimensional compressible Euler equations (1.7)-(1.8) is then defined as
(ρr, ur1, 0)(x1t ).

Now we state our main result as follows.

Theorem 1.1. Let (ρr, ur1, 0)(x1t ) be the planar 2-rarefaction wave to the 2D Euler system
(1.7) which connects the constant states (ρ±, u1±, 0) satisfying (1.10) with ρ± > 0 and T > 0
be any arbitrarily large but fixed time. Then there exists a positive constant ε0 such that for
any ε ∈ (0, ε0), we can construct a family of smooth solutions (ρε,uε) = (ρε, uε1, u

ε
2) up to time

T with the initial value (3.2) to the compressible Navier-Stokes equations (1.1) satisfying
(ρε − ρr, uε1 − ur1, uε2) ∈ C0(0, T ;L2(R× T)),

(∇ρε,∇uε) ∈ C0(0, T ;H1(R× T)),

∇3uε ∈ L2(0, T ;L2(R× T)),
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Moreover, for any small positive constant h, there exists a constant Ch,T independent of ε,
such that

sup
h≤t≤T

∥∥(ρε, uε1, u
ε
2)(t, x1, x2)− (ρr, ur1, 0)(

x1

t
)
∥∥
L∞(R×T)

≤ Ch,T ε
1
6 | ln ε|. (1.11)

As the viscosities vanish, i.e. ε→ 0, the solution (ρε,uε) = (ρε, uε1, u
ε
2)(t, x1, x2) converges to

the planar rarefaction wave fan (ρr, ur1, 0)(x1t ) pointwisely except at the original point (0, 0),
and furthermore,

(ρε,uε)(t, x1, x2)→ (ρr, ur1, 0)(
x1

t
), a.e. in R+ × R× T.

We remark that Theorem 1.1 gives the first vanishing viscosity result to the planar rarefac-
tion wave with arbitrary strength for the multi-dimensional viscous system (1.1) with physical
viscosities, while the corresponding vanishing viscosity limit problems for the planar shock
or contact discontinuity case are still completely open as far as we know. To prove Theorem
1.1, we first construct a smooth approximate rarefaction wave to the Euler system (1.5) or
(1.7) since the self-similar rarefaction wave fan is only Lipschitz continuous. The next crucial
step is to introduce a new wave, called the hyperbolic wave, to recover the physical viscosities
for the inviscid approximate rarefaction wave profile. Note that this hyperbolic wave plays
an essential role for the vanishing viscosity limit of 2D compressible Navier-Stokes equations
towards the planar rarefaction wave and if we only use the inviscid 1D hyperbolic rarefac-
tion wave profile as the ansatz without the hyperbolic wave constructed, then H2-norm of
the perturbation of the solution to the 2D compressible Navier-Stokes equations around the
planar rarefaction wave is not uniform-in-ε and consequently we can not justify the vanishing
viscosity limit of planar rarefaction wave as in Theorem 1.1. Then the solution to the 2D
compressible Navier-Stokes equations (1.1) is sought around the superposition of both the
rarefaction wave profile and the hyperbolic wave, and finally the vanishing viscosity limit
to the planar rarefaction wave in (1.11) is rigorously justified. Note also that our vanishing
viscosity analysis could also be applied to the vanishing viscosity limit to the superposition of
1-rarefaction wave and 2-rarefaction wave for the two-dimensional compressible Navier-Stokes
equations (1.1) provided we consider the wave interaction estimates additionally. We finally
remark that the corresponding vanishing viscosity limit of the compressible Navier-Stokes
equations (1.1) to the planar rarefaction wave in the spatial three-dimensional case is still
open and will be studied in our future investigation.

The rest of the paper is organized as follows. In Section 2, we first construct the approx-
imate rarefaction wave to the Euler system (1.5) or (1.7) and then introduce the hyperbolic
wave to recover the physical viscosities to the inviscid smooth approximate rarefaction wave.
In Section 3, we reformulate the system as the perturbation of the solution to 2D compressible
Navier-Stokes equations (1.1) around the solution profile consisting of both the approximate
rarefaction wave and the hyperbolic wave and then based on the a priori estimates, we prove
our main Theorem 1.1. Finally, in Section 4, we prove the a priori estimates for the pertur-
bation system by using an elementary L2 energy method.

Before concluding this introduction, we present some notations that will be used in this
paper. We use Hk(R × T) and Hk(R × Tε)(k ≥ 0, k ∈ Z) to denote the usual Sobolev
space with the norm ‖ · ‖k, where Tε := R/1

εZ is the scaled torus. We denote L2(R × T) =

H0(R×T), L2(R×Tε) = H0(R×Tε) and set ‖ · ‖ = ‖ · ‖0. For simplicity, we also write C as
generic positive constants which are independent of ε, δ and T , and CT as positive constants
which are independent of ε and δ, but may depend on T .
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2. Construction of the Solution Profile

In this section we construct the approximate rarefaction wave to the Euler system (1.5)
or (1.7) and introduce the hyperbolic wave to recover the physical viscosities to the inviscid
smooth approximate rarefaction wave.

2.1. Smooth Approximate Rarefaction Wave. Since the rarefaction wave is only Lip-
schitz continuous, we will construct a smooth approximation rarefaction wave through the
Burgers’ equation as in [17, 18, 35]. Consider the Riemann problem for the inviscid Burgers’
equation: 

wt + wwx1 = 0,

w(0, x1) = wr0(x1) =

{
w−, x1 < 0,

w+, x1 > 0.

(2.1)

If w− < w+, then (2.1) has the self-similar rarefaction wave fan wr(t, x1) = wr(x1/t) given by

wr(t, x1) = wr(
x1

t
) =


w−, x1 < w−t,
x1
t , w−t ≤ x1 ≤ w+t,

w+, x1 > w+t.

(2.2)

As in [17], the approximate rarefaction wave to the Navier-Stokes equations (1.1) can be
constructed using the smooth solution of the Burgers’ equation:wt + wwx1 = 0,

w(0, x1) = w0(x1) =
w+ + w−

2
+
w+ − w−

2
tanh

x1

δ
,

(2.3)

where δ > 0 is a small constant depending on the viscosity parameter ε. In fact, we take

δ = ε
1
6 in the present paper. The following properties can be proved by the characteristic

method, see [17,35].

Lemma 2.1. Suppose w+ > w− and set w̃ = w+−w−. Then the problem (2.3) has a unique
smooth global solution w(t, x1) such that

(1) w− < w(t, x1) < w+, wx1 > 0 for x1 ∈ R and t ≥ 0, δ > 0.
(2) The following estimates hold for all t > 0, δ > 0 and p ∈ [1,+∞]:

‖wx1(t, ·)‖Lp(R) ≤ Cw̃1/p(δ + t)−1+1/p,

‖wx1x1(t, ·)‖Lp(R) ≤ C(δ + t)−1δ−1+1/p,

‖wx1x1x1(t, ·)‖Lp(R) ≤ C(δ + t)−1δ−2+1/p,

|wx1x1(t, x1)| ≤ 4

δ
wx1(t, x1).

(3) There exists a constant δ0 ∈ (0, 1) such that for δ ∈ (0, δ0] and t > 0,

‖w(t, ·)− wr( ·
t
)‖L∞(R) ≤ Cδt−1[ln(1 + t) + | ln δ|].

We now consider the approximate rarefaction wave for the Euler system (1.5)-(1.6). From
now on, the constant states (ρ±, u1±) are fixed and connected by the 2-rarefaction wave.
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Set w± = λ2(ρ±, u1±). In fact, the 2-rarefaction wave (ρr, ur1)(t, x1) = (ρr, ur1)(x1/t) to the
Riemann problem (1.5) - (1.10) is given explicitly by

λ2(ρr, ur1)(t, x1) = wr(t, x1),

z2(ρr, ur1)(t, x1) = z2(ρ±, u1±),

where z2(ρ, u1) is the 2-Riemann invariant defined in (1.9). The corresponding smooth ap-
proximate rarefaction wave (ρ̄, ū1)(t, x1) of the 2-rarefaction wave fan (ρr, ur1)(x1t ) can be
constructed by

λ2(ρ̄, ū1)(t, x1) = w(1 + t, x1),

z2(ρ̄, ū1)(t, x1) = z2(ρ±, u1±),
(2.4)

where w(t, x1) is the smooth solution to the Burgers’ equation in (2.3). It is easy to see that
the above approximate rarefaction wave (ρ̄, ū1) satisfies the following system:

ρ̄t + (ρ̄ū1)x1 = 0,

(ρ̄ū1)t + (ρ̄ū2
1 + p(ρ̄))x1 = 0,

(ρ̄, ū1)(0, x1) := (ρ̄0, ū10)(x1).

(2.5)

The following lemma follows from Lemma 2.1 (cf. [17]).

Lemma 2.2. The smooth approximate 2-rarefaction wave (ρ̄, ū1) defined in (2.4) satisfies the
following properties:

(1) ū1x1 = 2
γ+1wx1 > 0 for all x1 ∈ R and t ≥ 0, ρ̄x1 = ρ̄

3−γ
2 ū1x1 > 0, and

ρ̄x1x1 = ρ̄
3−γ
2 ū1x1x1 +

3− γ
2

ρ̄2−γ(ū1x1)2.

(2) The following estimates hold for all t ≥ 0, δ > 0 and p ∈ [1,+∞]:

‖(ρ̄x1 , ū1x1)‖Lp(R) ≤ Cw̃1/p(δ + t)−1+1/p,

‖(ρ̄x1x1 , ū1x1x1)‖Lp(R) ≤ C(δ + t)−1δ−1+1/p,

‖(ρ̄x1x1x1 , ū1x1x1x1)‖Lp(R) ≤ C(δ + t)−1δ−2+1/p.

(3) There exists a constant δ0 ∈ (0, 1) such that for δ ∈ (0, δ0] and t > 0,

‖(ρ̄, ū1)(t, ·)− (ρr, ur1)(
·
t
)‖L∞(R) ≤ Cδt−1[ln(1 + t) + | ln δ|].

2.2. Hyperbolic Wave. If we only choose the approximate rarefaction wave (ρ̄, ū1)(t, x1)
as the approximate wave profile, the error terms arising from the viscous terms in the ap-
proximate rarefaction wave are not good enough for obtaining the desired uniform estimates
with respect to the viscosities. Thus we introduce the hyperbolic wave to recover the physical
viscosities for the inviscid approximate rarefaction wave profile, which a crucial in our anal-
ysis of vanishing viscosity limit and partially motivated by [20]. We now provide a detailed
description of this hyperbolic wave. Let the hyperbolic wave (d1, d2)(t, x1) satisfy the linear
hyperbolic system

d1t + d2x1 = 0,

d2t +

(
−m̄

2
1

ρ̄2
d1 + p′(ρ̄)d1 +

2m̄1

ρ̄
d2

)
x1

= (2µ1 + λ1)ū1x1x1 = (2µ+ λ)εū1x1x1 ,

(d1, d2)(0, x1) = (0, 0),

(2.6)
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where m̄1 := ρ̄ū1 represents the momentum of the approximate rarefaction wave. We shall
solve this linear hyperbolic system (2.6) on the fixed time interval [0, T ]. We first diagonalize
the above system. Rewrite the system (2.6) as[

d1

d2

]
t

+

(
Ā

[
d1

d2

])
x1

=

[
0

(2µ+ λ)εū1x1x1

]
,

where

Ā =

[
0 1

− m̄2
1

ρ̄2
+ p′(ρ̄) 2m̄1

ρ̄

]
with two distinct eigenvalues λ̄1(ρ̄, m̄1) = m̄1

ρ̄ −
√
p′(ρ̄), λ̄2(ρ̄, m̄1) = m̄1

ρ̄ +
√
p′(ρ̄) and the cor-

responding left and right eigenvectors l̄i, r̄i(i = 1, 2). For example, we can choose l̄i(ρ̄, m̄1) =(√
2

2 (−m̄1
ρ̄ + (−1)i

√
p′(ρ̄)),

√
2

2

)
, r̄i(ρ̄, m̄1) =

(
(−1)i

√
2

2
√
p′(ρ̄)

, (−1)i
√

2

2
√
p′(ρ̄)

( m̄1
ρ̄ + (−1)i

√
p′(ρ̄))

)>
satisfy-

ing

L̄ĀR̄ = diag(λ̄1, λ̄2) := Λ̄, L̄R̄ = I,

where L̄ = (l̄1, l̄2)>, R̄ = (r̄1, r̄2) and I is the 2× 2 identity matrix. Now we set

(D1, D2)> = L̄(d1, d2)>,

then

(d1, d2)> = R̄(D1, D2)>,

and (D1, D2) satisfies the diagolized system[
D1

D2

]
t

+

(
Λ̄

[
D1

D2

])
x1

= L̄tR̄

[
D1

D2

]
+ L̄x1ĀR̄

[
D1

D2

]
+ L̄

[
0

(2µ+ λ)εū1x1x1

]
. (2.7)

Since the 2-Riemann invariant is constant along the approximate 2-rarefaction wave curve,
we have

L̄t = −λ̄2L̄x1 , (2.8)

which is a crucial structure to solve the linear hyperbolic system (2.7) in the interval [0, T ],
otherwise, it does not seem obvious to solve easily the strongly coupled hyperbolic system
(2.7) on the bounded domain [0, T ]. Substituting the structure relation (2.8) into (2.7), we
obtain the diagonalized system

D1t + (λ̄1D1)x1 =

√
2

2
(2µ+ λ)εū1x1x1 + (a11(ρ̄)ρ̄x1 + a12(ρ̄)ū1x1)D1,

D2t + (λ̄2D2)x1 =

√
2

2
(2µ+ λ)εū1x1x1 + (a21(ρ̄)ρ̄x1 + a22(ρ̄)ū1x1)D1,

(D1, D2)(0, x1) = (0, 0).

(2.9)

In the diagonalized system (2.9), the equation of D1 is decoupled with D2 due to the rarefac-
tion wave structure of the system as in (2.8). Therefore, we can solve D1 first and then D2 in
(2.9) by the standard characteristic method. Furthermore, we have the following important
estimates for the hyperbolic wave (d1, d2):

Lemma 2.3. There exists a positive constant CT independent of δ and ε, such that

‖ ∂
k

∂xk1
(d1, d2)(t, ·)‖2L2(R) ≤ CT (

ε

δk+1
)2, k = 0, 1, 2, 3.
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In particular, it holds that

sup
t∈[0,T ]

‖(d1, d2)(t, ·)‖L∞(R) = O(
ε

δ
3
2

).

Proof. Multiplying the second equation of (2.9) by D2 and integrating the resulting equation
over [0, t] with t ∈ (0, T ) imply∫

R

D2
2

2
(t, x1)dx1 +

∫ t

0

∫
R
λ̄2x1

D2
2

2
dx1dt

=

∫ t

0

∫
R

[√
2

2
(2µ+ λ)εū1x1x1D2 + (a21(ρ̄)ρ̄x1 + a22(ρ̄)ū1x1)D1D2

]
dx1dt

≤ C
∫ t

0

∫
R
D2

2dx1dt+ Cε2

∫ t

0

∫
R
ū2

1x1x1dx1dt+ β

∫ t

0

∫
R
ū1x1D

2
2dx1dt

+ Cβ

∫ t

0

∫
R
ū1x1D

2
1dx1dt

≤ C
∫ t

0

∫
R
D2

2dx1dt+ Cε2

∫ t

0
δ−1(δ + t)−2dt+ β

∫ t

0

∫
R
ū1x1D

2
2dx1dt

+ Cβ

∫ t

0

∫
R
ū1x1D

2
1dx1dt

≤ C
∫ t

0

∫
R
D2

2dx1dt+ C(
ε

δ
)2 + β

∫ t

0

∫
R
ū1x1D

2
2dx1dt+ Cβ

∫ t

0

∫
R
ū1x1D

2
1dx1dt.

Choosing β suitably small and using Gronwall’s inequality give∫
R
D2

2(t, x1)dx1 +

∫ t

0

∫
R
ū1x1D

2
2dx1dt ≤ CT (

ε

δ
)2 + CT

∫ t

0

∫
R
ū1x1D

2
1dx1dt. (2.10)

Now we multiply the first equation of (2.9) by ρ̄ND1 with N a sufficiently large positive
constant to be determined, and integrate the resulting equation over [0, t] with t ∈ (0, T ) to
get∫

R
ρ̄N

D2
1

2
(t, x1)dx1 +

∫ t

0

∫
R
Nρ̄N ū1x1D

2
1dx1dt

=

∫ t

0

∫
R

[√
2

2
(2µ+ λ)ερ̄N ū1x1x1D1 + ρ̄N (a11(ρ̄)ρ̄x1 + a12(ρ̄)ū1x1)D2

1 − ρ̄Nλ1x1

D2
1

2

]
dx1dt

≤ C
∫ t

0

∫
R
ρ̄ND2

1dx1dt+ Cε2

∫ t

0

∫
R
ū2

1x1x1dx1dt+ C

∫ t

0

∫
R
ρ̄N ū1x1D

2
1dx1dt

≤ C
∫ t

0

∫
R
ρ̄ND2

1dx1dt+ C(
ε

δ
)2 + C

∫ t

0

∫
R
ρ̄N ū1x1D

2
1dx1dt.

Choosing N large enough and using Gronwall’s inequality give∫
R
D2

1(t, x1)dx1 +

∫ t

0

∫
R
ū1x1D

2
1dx1dt ≤ CT (

ε

δ
)2. (2.11)

Combining (2.10) and (2.11), we can get∫
R

(D2
1 +D2

2)(t, x1)dx1 +

∫ t

0

∫
R
ū1x1(D2

1 +D2
2)dx1dt ≤ CT (

ε

δ
)2.
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Thus the case k = 0 in Lemma 2.3 is proved. The other cases k = 1, 2, 3 can be proved similarly
by differentiating the system k times with respect to x1, and we omit the details. �

2.3. Approximate Solution Profile. The approximate solution profile (ρ̃, ũ1) consisting of
the rarefaction wave (ρ̄, ū1) and the hyperbolic wave (d1, d2) to the compressible Navier-Stokes
equations can be defined by

ρ̃(t, x1) = (ρ̄+ d1)(t, x1), m̃1(t, x1) = (m̄1 + d2)(t, x1) := ρ̃ũ1(t, x1). (2.12)

Then the approximate wave profile (ρ̃, ũ1) satisfies the system
ρ̃t + (ρ̃ũ1)x1 = 0,

(ρ̃ũ1)t + (ρ̃ũ2
1 + p(ρ̃))x1 = (2µ+ λ)εū1x1x1 + (ρ̃ũ2

1 − ρ̄ū2
1 + ū2

1d1 − 2ū1d2)x1
+(p(ρ̃)− p(ρ̄)− p′(ρ̄)d1)x1 ,

(2.13)

with the initial data
(ρ̃, ũ1)(0, x1) = (ρ̄0, ū10)(x1). (2.14)

3. Reformulation of the Problem

To prove Theorem 1.1, the solution (ρε, uε1, u
ε
2) to the system (1.1) is constructed as the

perturbation around the approximate wave profile (ρ̃, ũ1, 0) defined in (2.12) and (2.13). Set
the perturbation around the approximate wave profile (ρ̃, ũ1, 0)(t, x1) by

φ(t, x1, x2) := ρε(t, x1, x2)− ρ̃(t, x1),

Ψ(t, x1, x2) = (ψ1, ψ2)>(t, x1, x2) := (uε1, u
ε
2)>(t, x1, x2)− (ũ1, 0)>(t, x1),

(3.1)

with (ρε, uε1, u
ε
2) being the solution to the problem (1.1) with the following initial data:

(ρε, uε1, u
ε
2)(0, x1, x2) := (ρ̄0, ū10, 0)(x1) + (φ0, ψ10, ψ20)(x1, x2). (3.2)

For convenience, we reformulate the system by introducing a scaling for the independent
variables. Set

τ =
t

ε
, y1 =

x1

ε
, y2 =

x2

ε
.

For simplicity of notation, the superscription of (ρε, uε1, u
ε
2) will be omitted as (ρ, u1, u2)

from now on if there is no confusion of notation. And here we still use the notations
(ρ, u1, u2)(τ, y1, y2), (ρ̃, ũ1)(τ, y1), (ρ̄, ū1)(τ, y1) and (φ,Ψ)(τ, y1, y2) in the scaled independent
variables, if without any confusion. From (1.1) and (2.13), we obtain the following system for
the perturbation (φ,Ψ) :

φτ + ρdivΨ + ρy2ψ2 + u1φy1 + ρ̃y1ψ1 + ũ1y1φ = 0,

ρΨτ + ρu1Ψy1 + ρu2Ψy2 + (ρũ1y1ψ1, 0)> + p′(ρ)∇φ+ ((p′(ρ)− ρ

ρ̃
p′(ρ̃))ρ̃y1 , 0)>

+((2µ+ λ)
ū1y1y1
ρ̃ φ, 0)> + (

(ρ̃ũ21−ρ̄ū21+ū21d1−2ū1d2)y1
ρ̃ φ, 0)> + (

(p(ρ̃)−p(ρ̄)−p′(ρ̄)d1)y1
ρ̃ φ, 0)>

= µ4Ψ + (µ+ λ)∇divΨ + ((2µ+ λ)(−d1ū1+d2
ρ̃ )y1y1 , 0)>

−((ρ̃ũ2
1 − ρ̄ū2

1 + ū2
1d1 − 2ū1d2)y1 , 0)> − ((p(ρ̃)− p(ρ̄)− p′(ρ̄)d1)y1 , 0),

(3.3)
(φ,Ψ)(0, y1, y2) = (φ, ψ1, ψ2)(0, y1, y2) = (φ0, ψ10, ψ20)(y1, y2), (3.4)

where the initial perturbation is chosen to satisfy

‖(φ0, ψ10, ψ20)(y1, y2)‖H2(R×Tε) = O(ε
1
6 ). (3.5)
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The solution of (3.3), (3.4) is sought in the set of functional space X(0, Tε ), where for 0 ≤
τ1 ≤ T

ε , we define

X(0, τ1) =
{

(φ,Ψ)| (φ,Ψ) ∈ C0(0, τ1;H2),∇φ ∈ L2(0, τ1;H1),∇Ψ ∈ L2(0, τ1;H2)
}
.

We take δ = εa in what follows. By the estimate of the hyperbolic wave in Lemma 2.3, we
have

|di| ≤ CT
ε

δ3/2
= CT ε

1− 3
2
a ≤ 1

4
ρ−, i = 1, 2,

provided that a < 2
3 and ε� 1. Then we have

0 <
3

4
ρ− = ρ− −

1

4
ρ− ≤ ρ̃ = ρ̄+ d1 ≤ ρ+ +

1

4
ρ−, |ũ1| ≤ C,

since 0 < ρ− ≤ ρ̄ ≤ ρ+, |ū1| ≤ C. In what follows, the analysis is always carried out under
the a priori assumption

E = E(0, τ1(ε)) = sup
τ∈[0,τ1(ε)]

‖(φ,Ψ)(τ)‖2 � 1, (3.6)

where [0, τ1(ε)] is the time interval in which the solution exists and it may depend on ε. Under
the a priori assumption (3.6), we can get

0 <
1

2
ρ− =

3

4
ρ− −

1

4
ρ− ≤ ρ = φ+ ρ̃ ≤ ρ+ +

1

4
ρ− +

1

4
ρ− = ρ+ +

1

2
ρ−, |u| ≤ C, (3.7)

because we can take E suitably small such that |(φ,Ψ)| ≤ C‖(φ,Ψ)(τ)‖2 ≤ 1
4ρ−. The uniform

bounds of the density ρ ensure that the momentum equation (1.1)2 is strictly parabolic, and
thus crucial for the local and global existence of classical solution of the system (1.1).

Proposition 3.1. There exists a positive constant ε0 < 1 such that if 0 < ε ≤ ε0, then the
reformulated problem (3.3)-(3.4) admits a unique solution (φ,Ψ) ∈ X(0, Tε ) satisfying

sup
0≤τ≤T

ε

‖(φ,Ψ)(τ)‖22 +

∫ T
ε

0

[
‖ū1/2

1y1
(φ, ψ1)‖2 + ‖(∇φ,∇Ψ)‖21 + ‖∇3Ψ‖2

]
dτ

≤ CT
ε

δ4
+ C‖(φ0,Ψ0)‖22,

(3.8)

where the constant CT is independent of ε, δ, but may depend on T .

Once the Proposition 3.1 is proved, we have

sup
0≤t≤T

‖(φ,Ψ)(t, x1, x2)‖L∞(R×T) = sup
0≤τ≤T

ε

‖(φ,Ψ)(τ, y1, y2)‖L∞(R×Tε)

≤ C sup
0≤τ≤T

ε

‖(φ,Ψ)(τ)‖2 ≤ CT
ε1/2

δ2
+ C‖(φ0,Ψ0)‖2,
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where we have used Sobolev imbedding ‖f‖L∞(R×Tε) ≤ C‖f‖H2(R×Tε) with the imbedding
constant C independent of ε even though the domain R× Tε depends on ε. Thus we get

‖(ρ, u1, u2)(t, x1, x2)− (ρr, ur1, 0)(
x1

t
)‖L∞(R×T)

≤ ‖(φ,Ψ)(t, x1, x2)‖L∞(R×T) + C‖(d1, d2)(t, x1)‖L∞(R) + ‖(ρ̄, ū1)(t, x1)− (ρr, ur1)(
x1

t
)‖L∞(R)

≤ CT
ε1/2

δ2
+ Cε1/6 + CT

ε

δ3/2
+ Cδt−1[ln(1 + t) + | ln δ|]

= CT ε
1
2
−2a + Cε1/6 + CT ε

1− 3
2
a + Cεat−1[ln(1 + t) + | ln ε|].

Taking a = 1
6 , i.e. δ = ε1/6 and then the proof of Theorem 1.1 is completed.

The proof for the local existence and uniqueness of the classical solution to (3.3)-(3.4) is
standard (c.f. [32]), especially for the suitably small perturbation of the solution around the
ansatz including both the planar rarefaction wave and the hyperbolic wave satisfying (3.7),
and thus will be omitted. To prove Proposition 3.1, it suffices to establish the following a
priori estimates.

Proposition 3.2 (a priori estimates). Suppose that the reformulated problem (3.3)-(3.4) has
a solution (φ,Ψ) ∈ X(0, τ1(ε)) for some τ1(ε)(> 0). Then there exists a positive constant ε1

which is independent of ε, δ and τ1(ε), such that if 0 < ε ≤ ε1 and E(0, τ1(ε)) � 1, then it
holds

sup
0≤τ≤τ1(ε)

‖(φ,Ψ)(τ)‖22 +

∫ τ1(ε)

0

[
‖ū1/2

1y1
(φ, ψ1)‖2 + ‖(∇φ,∇Ψ)‖21 + ‖∇3Ψ‖2

]
dτ

≤ CT
ε

δ4
+ C‖(φ0,Ψ0)‖22,

(3.9)

where the constant CT is independent of ε and δ, but may depend on T .

We note that Theorem 1.1 follows once the Proposition 3.2 is proved. The remaining part
of this paper, i.e., Section 4, is devoted to the proof of Proposition 3.2.

4. A Priori Estimates

In this section, we shall prove Proposition 3.2. Throughout this section we assume that
(1.10) holds with fixed ρ± > 0, u1± ∈ R, and (3.3)-(3.4) has a solution (φ,Ψ) ∈ X(0, τ1(ε))
for some τ1(ε) > 0. We use C to denote a generic positive constant that may depend on
(ρ±, u1±) but not ε, δ and T , and denote by CT as a generic positive constant that may
depend on (ρ±, u1±) and T but not ε and δ. Set E = sup

0≤τ≤τ1(ε)
‖(φ,Ψ)(τ)‖2.

Lemma 4.1. There exists a positive constant CT such that for 0 ≤ τ ≤ τ1(ε),

sup
0≤τ≤τ1(ε)

‖(φ,Ψ)(τ)‖2 +

∫ τ1(ε)

0

[
‖ū1/2

1y1
(φ, ψ1)‖2 + ‖∇Ψ‖2

]
dτ ≤ CT

ε

δ4
+ C‖(φ0,Ψ0)‖2. (4.1)
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Proof. First, multiplying the second equation of (3.3) by Ψ gives

(
1

2
ρ|Ψ|2)τ +

1

2
div(ρu|Ψ|2)− µdiv(ψi∇ψi)− (µ+ λ)div(ΨdivΨ) + ρũ1y1ψ

2
1

+ µ|∇Ψ|2 + (µ+ λ)(divΨ)2 + p′(ρ)∇φ ·Ψ + (p′(ρ)− ρ

ρ̃
p′(ρ̃))ρ̃y1ψ1

= (2µ+ λ)(
−d1ū1 + d2

ρ̃
)y1y1ψ1 − (ρ̃ũ2

1 − ρ̄ū2
1 + ū2

1d1 − 2ū1d2)y1ψ1

− (p(ρ̃)− p(ρ̄)− p′(ρ̄)d1)y1ψ1 − (2µ+ λ)
ū1y1y1

ρ̃
φψ1

− (ρ̃ũ2
1 − ρ̄ū2

1 + ū2
1d1 − 2ū1d2)y1
ρ̃

φψ1 −
(p(ρ̃)− p(ρ̄)− p′(ρ̄)d1)y1

ρ̃
φψ1.

(4.2)

Define the potential energy by

Φ(ρ, ρ̃) :=

∫ ρ

ρ̃

p(s)− p(ρ̃)

s2
ds =

1

(γ − 1)ρ
(p(ρ)− p(ρ̃)− p′(ρ̃)φ).

Direct computations yield

(ρΦ)τ + div(ρuΦ + (p(ρ)− p(ρ̃))Ψ) + ũ1y1(p(ρ)− p(ρ̃)− p′(ρ̃)φ)− p′(ρ)∇φ ·Ψ

− (p′(ρ)− ρ

ρ̃
p′(ρ̃))ρ̃y1ψ1 = 0.

(4.3)

Combining (4.2) and (4.3) together and then integrating the resulting equation over [0, τ ]×
R× Tε imply

‖(φ,Ψ)‖2(τ) +

∫ τ

0

[
‖ū1/2

1y1
(φ, ψ1)‖2 + ‖∇Ψ‖2

]
dτ

≤ C‖(φ0,Ψ0)‖2 + C
∣∣∣ ∫ τ

0

∫
Tε

∫
R

(2µ+ λ)(
−d1ū1 + d2

ρ̃
)y1ψ1y1

− (ρ̃ũ2
1 − ρ̄ū2

1 + ū2
1d1 − 2ū1d2)y1ψ1 − (p(ρ̃)− p(ρ̄)− p′(ρ̄)d1)y1ψ1 − (2µ+ λ)

ū1y1y1

ρ̃
φψ1

− (ρ̃ũ2
1 − ρ̄ū2

1 + ū2
1d1 − 2ū1d2)y1
ρ̃

φψ1 −
(p(ρ̃)− p(ρ̄)− p′(ρ̄)d1)y1

ρ̃
φψ1

− (
−d1ū1 + d2

ρ̃
)y1(p(ρ)− p(ρ̃)− p′(ρ̃)φ)− ρ(

−d1ū1 + d2

ρ̃
)y1ψ

2
1dy1dy2dτ

∣∣∣,
(4.4)

where we have used the integration by parts∫ τ

0

∫
Tε

∫
R

(2µ+ λ)(
−d1ū1 + d2

ρ̃
)y1y1ψ1dy1dy2dτ

= −
∫ τ

0

∫
Tε

∫
R

(2µ+ λ)(
−d1ū1 + d2

ρ̃
)y1ψ1y1dy1dy2dτ.
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By Young’s inequality, Lemma 2.2 and Lemma 2.3, one has

C
∣∣∣ ∫ τ

0

∫
Tε

∫
R

(2µ+ λ)(
−d1ū1 + d2

ρ̃
)y1ψ1y1dy1dy2dτ

∣∣∣
≤ 1

16

∫ τ

0
‖ψ1y1‖2dτ + C

∫ τ

0

∫
Tε

∫
R
|(−d1ū1 + d2

ρ̃
)y1 |2dy1dy2dτ

≤ 1

16

∫ τ

0
‖ψ1y1‖2dτ + Cε−1

∫ t

0

∫
R
|(−d1ū1 + d2

ρ̃
)x1 |2dx1dt

≤ 1

16

∫ τ

0
‖ψ1y1‖2dτ + CT

ε

δ4
+ CT

ε3

δ7
,

where we have used the following facts∫ t

0

∫
R
|(d1x1 ū1

ρ̃
)|2dx1dt ≤ C

∫ t

0

∫
R
|d1x1 |2dx1dt ≤ CT

ε2

δ4
,

∫ t

0

∫
R
|(d1ū1x1

ρ̃
)|2dx1dt ≤ C

∫ t

0
‖d1‖2L2

x1
‖ū1x1‖2L∞x1dt ≤ CT

ε2

δ4
,

and ∫ t

0

∫
R
|(d1ū1d1x1

ρ̃2
)|2dx1dt ≤ C

∫ t

0
‖d1‖2L∞x1‖d1x1‖2L2

x1
dt ≤ CT

ε4

δ7
.

By the one-dimensional Sobolev’s inequality, Young’s inequality, Lemma 2.2 and Lemma 2.3,
it holds that

C
∣∣∣ ∫ τ

0

∫
Tε

∫
R

(ρ̃ũ2
1 − ρ̄ū2

1 + ū2
1d1 − 2ū1d2)y1ψ1dy1dy2dτ

∣∣∣
= C

∣∣∣ ∫ τ

0

∫
Tε

∫
R

(
(d1ū1 − d2)2

ρ̃
)y1ψ1dy1dy2dτ

∣∣∣
≤ C

∫ τ

0

∫
Tε
‖((d1ū1 − d2)2

ρ̃
)y1‖L1

y1
‖ψ1‖L∞y1dy2dτ

≤ C
∫ τ

0

∫
Tε
‖((d1ū1 − d2)2

ρ̃
)y1‖L1

y1
‖ψ1‖1/2L2

y1

‖ψ1y1‖
1/2
L2
y1

dy2dτ

≤ 1

16

∫ τ

0
‖ψ1y1‖2dτ + C

∫ τ

0
‖((d1ū1 − d2)2

ρ̃
)y1‖

4/3
L1
y1

∫
Tε
‖ψ1‖2/3L2

y1

dy2dτ

≤ 1

16

∫ τ

0
‖ψ1y1‖2dτ + Cε−2/3

∫ τ

0
‖((d1ū1 − d2)2

ρ̃
)y1‖

4/3
L1
y1

‖ψ1‖2/3dτ

≤ 1

16

∫ τ

0
‖ψ1y1‖2dτ + CT ε

−5/3 sup
0≤t≤T

‖((d1ū1 − d2)2

ρ̃
)x1‖

4/3
L1
x1

sup
0≤τ≤τ1(ε)

‖ψ1‖2/3

≤ 1

16

∫ τ

0
‖ψ1y1‖2dτ +

1

16
sup

0≤τ≤τ1(ε)
‖ψ1‖2 + CT ε

−5/2 sup
0≤t≤T

‖((d1ū1 − d2)2

ρ̃
)x1‖2L1

x1

≤ 1

16

∫ τ

0
‖ψ1y1‖2dτ +

1

16
sup

0≤τ≤τ1(ε)
‖ψ1‖2 + CT

ε3/2

δ6
,



VANISHING VISCOSITY LIMIT TO PLANAR RAREFACTION WAVE FOR 2D NAVIER-STOKES 15

where we have used the following facts

‖ ū
2
1

ρ̃2
d2

1ρ̄x1‖L1
x1
≤ C‖ρ̄x1‖L∞x1‖d1‖2L2

x1
≤ CT

ε2

δ3
,

‖ ū
2
1

ρ̃2
d2

1d1x1‖L1
x1
≤ C‖d1‖L∞x1‖d1‖L2

x1
‖d1x1‖L2

x1
≤ CT

ε3

δ9/2
,

and

‖2ū2
1

ρ̃
d1d1x1‖L1

x1
≤ C‖d1‖L2

x1
‖d1x1‖L2

x1
≤ CT

ε2

δ3
.

Using the Sobolev inequality, Hölder inequality, Young inequality, and Lemma 2.2, one has

C
∣∣∣ ∫ τ

0

∫
Tε

∫
R

(2µ+ λ)
ū1y1y1

ρ̃
φψ1dy1dy2dτ

∣∣∣
≤ C

∫ τ

0

∫
Tε
‖ū1y1y1φ‖L1

y1
‖ψ1‖L∞y1dy2dτ

≤ C
∫ τ

0

∫
Tε
‖ū1y1y1‖L2

y1
‖φ‖L2

y1
‖ψ1‖1/2L2

y1

‖ψ1y1‖
1/2
L2
y1

dy2dτ

≤ 1

16

∫ τ

0
‖ψ1y1‖2dτ + C

∫ τ

0
‖ū1y1y1‖

4/3
L2
y1

∫
Tε
‖φ‖4/3

L2
y1

‖ψ1‖2/3L2
y1

dy2dτ

≤ 1

16

∫ τ

0
‖ψ1y1‖2dτ + C

∫ τ

0
‖ū1y1y1‖

4/3
L2
y1

(‖φ‖2 + ‖ψ1‖2)dτ

≤ 1

16

∫ τ

0
‖ψ1y1‖2dτ + C sup

0≤τ≤τ1(ε)
(‖φ‖2 + ‖ψ1‖2)

∫ τ

0
‖ū1y1y1‖

4/3
L2
y1

dτ

≤ 1

16

∫ τ

0
‖ψ1y1‖2dτ + Cε sup

0≤τ≤τ1(ε)
(‖φ‖2 + ‖ψ1‖2)

∫ t

0
‖ū1x1x1‖

4/3
L2
x1

dt

≤ 1

16

∫ τ

0
‖ψ1y1‖2dτ + C

ε

δ
sup

0≤τ≤τ1(ε)
(‖φ‖2 + ‖ψ1‖2).

It follows from Lemma 2.2 and Lemma 2.3 that

C
∣∣∣ ∫ τ

0

∫
Tε

∫
R

(
−d1ū1 + d2

ρ̃
)y1(p(ρ)− p(ρ̃)− p′(ρ̃)φ)dy1dy2dτ

∣∣∣
≤ C sup

0≤τ≤τ1(ε)
‖(−d1ū1 + d2

ρ̃
)y1‖L∞y1

∫ τ

0

∫
Tε

∫
R
φ2dy1dy2dτ

≤ CT sup
0≤t≤T

‖(−d1ū1 + d2

ρ̃
)x1‖L∞x1 sup

0≤τ≤τ1(ε)
‖φ‖2

≤ CT (
ε

δ5/2
+
ε2

δ4
) sup

0≤τ≤τ1(ε)
‖φ‖2.

The other terms in (4.4) can be estimated similarly and the details will be omitted for brevity.
Substituting these estimates into (4.4) and taking ε

δ4
and ε suitably small, we can prove (4.1)

in Lemma 4.1.

Remark 4.1. It should be remarked that the hyperbolic wave (d1, d2) are crucially used in
Lemma 4.1, otherwise, the estimate (4.1) in Lemma 4.1 would not be uniform in ε if we just
use the approximate rarefaction wave (ρ̄, ū) as the ansatz, which is quite different from the
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vanishing viscosity limit to the rarefaction wave for compressible Navier-Stokes equations in
the one-dimensional case where the hyperbolic wave is not needed to justify the limit process.

�

Lemma 4.2. There exists a positive constant CT such that for 0 ≤ τ ≤ τ1(ε),

sup
0≤τ≤τ1(ε)

(‖(φ,Ψ)(τ)‖2 + ‖∇φ(τ)‖2) +

∫ τ1(ε)

0

[
‖ū1/2

1y1
(φ, ψ1)‖2 + ‖(∇φ,∇Ψ)‖2

]
dτ

≤ CT
ε

δ4
+ C(‖(φ0,Ψ0)‖2 + ‖∇φ0‖2) + CE2

∫ τ1(ε)

0
‖∇2Ψ‖2dτ.

(4.5)

Proof. Applying the operator ∇ to the first equation of (3.3) and then multiplying the result-

ing equation by ∇φ
ρ2

yield

(
|∇φ|2

2ρ2
)τ + div(

u|∇φ|2

2ρ2
) +
∇divΨ · ∇φ

ρ

= −φyi∇φ · ∇ψi
ρ2

+
|∇φ|2divΨ

2ρ2
− ρ̃y1φy1divΨ

ρ2
− ρ̃y1∇φ · ∇ψ1

ρ2
−
ũ1y1φ

2
y1

ρ2

+
ũ1y1 |∇φ|2

2ρ2
− ρ̃y1y1ψ1φy1

ρ2
− ũ1y1y1φφy1

ρ2

:= G(τ, y1, y2).

(4.6)

Multiplying the second equation of (3.3) by ∇φρ gives

(Ψ · ∇φ)τ − div(Ψφτ ) + div(uiφΨyi)− div(uφdivΨ)− div(
µ

ρ
∇ψiφyi)

+ (
µ

ρ
∇ψi · ∇φ)yi +

p′(ρ)

ρ
|∇φ|2 − (2µ+ λ)∇divΨ · ∇φ

ρ

= ρ̃(divΨ)2 + φ∇ψi ·Ψyi + ρ̃y1ψ1divΨ + ũ1y1φψ1y1 − ũ1y1ψ1φy1

− (
p′(ρ)

ρ
− p′(ρ̃)

ρ̃
)ρ̃y1φy1 +

µ

ρ2
ρ̃y1Ψy1 · ∇φ−

µ

ρ2
ρ̃y1∇ψ1 · ∇φ

+
2µ+ λ

ρ
(
−d1ū1 + d2

ρ̃
)y1y1φy1 −

(ρ̃ũ2
1 − ρ̄ū2

1 + ū2
1d1 − 2ū1d2)y1
ρ

φy1

− (p(ρ̃)− p(ρ̄)− p′(ρ̄)d1)y1
ρ

φy1 −
2µ+ λ

ρ̃ρ
ū1y1y1φφy1

− (ρ̃ũ2
1 − ρ̄ū2

1 + ū2
1d1 − 2ū1d2)y1
ρ̃ρ

φφy1 −
(p(ρ̃)− p(ρ̄)− p′(ρ̄)d1)y1

ρ̃ρ
φφy1

:= ρ̃(divΨ)2 +H(τ, y1, y2),

(4.7)

here we have used the fact

µ4Ψ · ∇φ
ρ

= div(
µ

ρ
∇ψiφyi)− (

µ

ρ
∇ψi · ∇φ)yi

+
µ∇divΨ · ∇φ

ρ
+
µ

ρ2
ρ̃y1Ψy1 · ∇φ−

µ

ρ2
ρ̃y1∇ψ1 · ∇φ.
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We note that some cancellations will occur to the last terms on the left hand side of both
(4.6) and (4.7) when we multiply (4.6) by 2µ+ λ and then add them together as in [26]. We
shall use the cancellations to close the a priori estimates.

Thus we multiply (4.6) by 2µ + λ, add the resulting equation and (4.7) together, then
integrate the final equation over [0, τ ]× R× Tε to obtain

∫
Tε

∫
R

(2µ+ λ

2ρ2
|∇φ|2 + Ψ · ∇φ

)
dy1dy2

∣∣τ
0

+

∫ τ

0

∫
Tε

∫
R

p′(ρ)

ρ
|∇φ|2dy1dy2dτ

=

∫ τ

0

∫
Tε

∫
R

[
(2µ+ λ)G(τ, y1, y2) + ρ̃(divΨ)2 +H(τ, y1, y2)

]
dy1dy2dτ.

(4.8)

Combining (4.1) and (4.8) leads to

‖(φ,Ψ)(τ)‖2 + ‖∇φ(τ)‖2 +

∫ τ

0

[
‖ū1/2

1y1
(φ, ψ1)‖2 + ‖(∇φ,∇Ψ)‖2

]
dτ

≤ CT
ε

δ4
+ C(‖(φ0,Ψ0)‖2 + ‖∇φ0‖2)

+ C
∣∣ ∫ τ

0

∫
Tε

∫
R

[
(2µ+ λ)G(τ, y1, y2) +H(τ, y1, y2)

]
dy1dy2dτ

∣∣,
(4.9)

where G and H are defined in (4.6) and (4.7), respectively. Here we just estimate some typical
terms on the right-hand side of (4.9) in G and H for simplicity. First, by Hölder’s inequality,
Sobolev’s inequality and Young’s inequality, it holds that

C
∣∣∣ ∫ τ

0

∫
Tε

∫
R

2µ+ λ

ρ2
φyi∇φ · ∇ψidy1dy2dτ

∣∣∣
≤ C

∫ τ

0
‖∇φ‖‖∇φ‖L4‖∇Ψ‖L4dτ ≤ C

∫ τ

0
‖∇φ‖‖∇φ‖1‖∇Ψ‖1dτ

≤ CE
∫ τ

0
‖∇φ‖‖∇Ψ‖1dτ ≤

1

160

∫ τ

0
‖∇φ‖2dτ + CE2

∫ τ

0
‖∇Ψ‖21dτ,

where in the second inequality we have used Sobolev imbedding ‖f‖L4(R×Tε) ≤ C‖f‖H1(R×Tε)
with the imbedding constant C independent of ε. Then it follows from Young’s inequality,
Lemma 2.2 and Lemma 2.3 that

C
∣∣∣ ∫ τ

0

∫
Tε

∫
R

2µ+ λ

ρ2
ρ̃y1φy1divΨdy1dy2dτ

∣∣∣ ≤ 1

160

∫ τ

0
‖∇Ψ‖2dτ + C

∫ τ

0
‖ρ̃y1φy1‖2dτ

≤ 1

160

∫ τ

0
‖∇Ψ‖2dτ + C(‖ρ̄y1‖2L∞y1 + ‖d1y1‖2L∞y1 )

∫ τ

0
‖φy1‖2dτ

≤ 1

160

∫ τ

0
‖∇Ψ‖2dτ + CT (

ε2

δ2
+
ε4

δ5
)

∫ τ

0
‖φy1‖2dτ.
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Similarly, it holds that

C
∣∣∣ ∫ τ

0

∫
Tε

∫
R

2µ+ λ

ρ2
ρ̃y1y1ψ1φy1dy1dy2dτ

∣∣∣
≤ 1

160

∫ τ

0
‖φy1‖2dτ + C

∫ τ

0

∫
Tε

∫
R
|ρ̃y1y1ψ1|2dy1dy2dτ

≤ 1

160

∫ τ

0
‖φy1‖2dτ + C

∫ τ

0
‖ρ̃y1y1‖2L∞y1‖ψ1‖2dτ

≤ 1

160

∫ τ

0
‖φy1‖2dτ + CT ε

3 sup
0≤t≤T

‖ρ̃x1x1‖2L∞x1 sup
0≤τ≤τ1(ε)

‖ψ1‖2

≤ 1

160

∫ τ

0
‖φy1‖2dτ + CT ε

3 sup
0≤t≤T

(‖ρ̄x1x1‖2L∞x1 + ‖d1x1x1‖2L∞x1 ) sup
0≤τ≤τ1(ε)

‖ψ1‖2

≤ 1

160

∫ τ

0
‖φy1‖2dτ + CT (

ε3

δ4
+
ε5

δ7
) sup

0≤τ≤τ1(ε)
‖ψ1‖2.

By Hölder’s inequality, Sobolev’s inequality and Young’s inequality, it holds that

C
∣∣∣ ∫ τ

0

∫
Tε

∫
R
φ∇ψi ·Ψyidy1dy2dτ

∣∣∣
≤ C

∫ τ

0
‖∇Ψ‖‖φ‖L4‖∇Ψ‖L4dτ ≤ C

∫ τ

0
‖∇Ψ‖‖φ‖1‖∇Ψ‖1dτ

≤ CE
∫ τ

0
‖∇Ψ‖‖∇Ψ‖1dτ ≤

1

160

∫ τ

0
‖∇Ψ‖2dτ + CE2

∫ τ

0
‖∇Ψ‖21dτ.

By Young’s inequality, Lemma 2.2 and Lemma 2.3, one has

C
∣∣∣ ∫ τ

0

∫
Tε

∫
R
ρ̃y1ψ1divΨdy1dy2dτ

∣∣∣
≤ 1

160

∫ τ

0
‖∇Ψ‖2dτ + C

∫ τ

0

∫
Tε

∫
R
|ρ̃y1ψ1|2dy1dy2dτ

≤ 1

160

∫ τ

0
‖∇Ψ‖2dτ + C

∫ τ

0
‖ρ̃y1‖2L∞y1‖ψ1‖2dτ

≤ 1

160

∫ τ

0
‖∇Ψ‖2dτ + CT ε sup

0≤t≤T
‖ρ̃x1‖2L∞x1 sup

0≤τ≤τ1(ε)
‖ψ1‖2

≤ 1

160

∫ τ

0
‖∇Ψ‖2dτ + CT ε sup

0≤t≤T
(‖ρ̄x1‖2L∞x1 + ‖d1x1‖2L∞x1 ) sup

0≤τ≤τ1(ε)
‖ψ1‖2

≤ 1

160

∫ τ

0
‖∇Ψ‖2dτ + CT (

ε

δ2
+
ε3

δ5
) sup

0≤τ≤τ1(ε)
‖ψ1‖2.



VANISHING VISCOSITY LIMIT TO PLANAR RAREFACTION WAVE FOR 2D NAVIER-STOKES 19

It follows from Young’s inequality, Lemma 2.2 and Lemma 2.3 that

C
∣∣∣ ∫ τ

0

∫
Tε

∫
R

2µ+ λ

ρ
(
−d1ū1 + d2

ρ̃
)y1y1φy1dy1dy2dτ

∣∣∣
≤ 1

160

∫ τ

0
‖φy1‖2dτ + C

∫ τ

0

∫
Tε

∫
R
|(−d1ū1 + d2

ρ̃
)y1y1 |2dy1dy2dτ

≤ 1

160

∫ τ

0
‖φy1‖2dτ + Cε

∫ t

0

∫
R
|(−d1ū1 + d2

ρ̃
)x1x1 |2dx1dt

≤ 1

160

∫ τ

0
‖φy1‖2dτ + CT

ε3

δ6
,

where we have used the following facts∫ t

0

∫
R
|( ū1

ρ̃
d1x1x1)|2dx1dt ≤ C

∫ t

0

∫
R
|d1x1x1 |2dx1dt ≤ CT

ε2

δ6
,∫ t

0

∫
R
|(2d1x1 ū1x1

ρ̃
)|2dx1dt ≤ C

∫ t

0
‖d1x1‖2L2

x1
‖ū1x1‖2L∞x1dt ≤ CT

ε2

δ6
,∫ t

0

∫
R
|(d1ū1x1x1

ρ̃
)|2dx1dt ≤ C

∫ t

0
‖d1‖2L2

x1
‖ū1x1x1‖2L∞x1dt ≤ CT

ε2

δ5
,∫ t

0

∫
R
|(2d1x1d2x1

ρ̃2
)|2dx1dt ≤ C

∫ t

0
‖d1x1‖2L∞x1‖d2x1‖2L2

x1
dt ≤ CT

ε4

δ9
,

and ∫ t

0

∫
R
|(

2ū1d1ρ̄
2
x1

ρ̃3
)|2dx1dt ≤ C

∫ t

0
‖d1‖2L2

x1
‖ρ̄x1‖4L∞x1dt ≤ CT

ε2

δ5
.

Similarly, we have

C
∣∣∣ ∫ τ

0

∫
Tε

∫
R

(ρ̃ũ2
1 − ρ̄ū2

1 + ū2
1d1 − 2ū1d2)y1
ρ

φy1dy1dy2dτ
∣∣∣

≤ 1

160

∫ τ

0
‖φy1‖2dτ + C

∫ τ

0

∫
Tε

∫
R
|(ρ̃ũ2

1 − ρ̄ū2
1 + ū2

1d1 − 2ū1d2)y1 |2dy1dy2dτ

≤ 1

160

∫ τ

0
‖φy1‖2dτ + Cε−1

∫ t

0

∫
R
|((d1ū1 − d2)2

ρ̃
)x1 |2dx1dt

≤ 1

160

∫ τ

0
‖φy1‖2dτ + CT

ε3

δ7
,

where we have used the following facts∫ t

0

∫
R
|( ū

2
1d

2
1ρ̄x1
ρ̃2

)|2dx1dt ≤ C
∫ t

0
‖d1‖2L∞x1‖ρ̄x1‖

2
L∞x1
‖d1‖2L2

x1
dt ≤ CT

ε4

δ6
,∫ t

0

∫
R
|( ū

2
1d

2
1d1x1

ρ̃2
)|2dx1dt ≤ C

∫ t

0
‖d1‖4L∞x1‖d1x1‖2L2

x1
dt ≤ CT

ε6

δ10
,

and ∫ t

0

∫
R
|(2ū2

1d1d1x1

ρ̃
)|2dx1dt ≤ C

∫ t

0
‖d1‖2L∞x1‖d1x1‖2L2

x1
dt ≤ CT

ε4

δ7
.

The other terms in (4.9) can be analyzed similarly and the details will be omitted for brevity.
Substituting these estimates into (4.9) and taking ε

δ4
, ε and E suitably small, we can prove

(4.5) in Lemma 4.2. �
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Lemma 4.3. There exists a positive constant CT such that for 0 ≤ τ ≤ τ1(ε),

sup
0≤τ≤τ1(ε)

‖(φ,Ψ)(τ)‖21 +

∫ τ1(ε)

0

[
‖ū1/2

1y1
(φ, ψ1)‖2 + ‖(∇φ,∇Ψ)‖2 + ‖∇2Ψ‖2

]
dτ

≤ CT
ε

δ4
+ C‖(φ0,Ψ0)‖21.

(4.10)

Proof. Multiplying the second equation of (3.3) by −4Ψ/ρ gives

(
|∇Ψ|2

2
)τ − div(ψiτ∇ψi +

µ+ λ

ρ
divΨ∇divΨ− µ+ λ

ρ
divΨ4Ψ)

+
µ

ρ
|4Ψ|2 +

µ+ λ

ρ
|∇divΨ|2 = uiΨyi · 4Ψ +

p′(ρ)

ρ
∇φ · 4Ψ + ũ1y1ψ14ψ1

+ (
p′(ρ)

ρ
− p′(ρ̃)

ρ̃
)ρ̃y14ψ1 −

µ+ λ

ρ2
divΨ∇φ · 4Ψ +

µ+ λ

ρ2
divΨ∇φ · ∇divΨ

− µ+ λ

ρ2
ρ̃y1divΨ4ψ1 +

µ+ λ

ρ2
ρ̃y1divΨdivΨy1 −

2µ+ λ

ρ
(
−d1ū1 + d2

ρ̃
)y1y14ψ1

+
(ρ̃ũ2

1 − ρ̄ū2
1 + ū2

1d1 − 2ū1d2)y1
ρ

4ψ1 +
(p(ρ̃)− p(ρ̄)− p′(ρ̄)d1)y1

ρ
4ψ1

+
2µ+ λ

ρ̃ρ
ū1y1y1φ4ψ1 +

(ρ̃ũ2
1 − ρ̄ū2

1 + ū2
1d1 − 2ū1d2)y1
ρ̃ρ

φ4ψ1

+
(p(ρ̃)− p(ρ̄)− p′(ρ̄)d1)y1

ρ̃ρ
φ4ψ1 := K(τ, y1, y2).

(4.11)

Integrating the above equation over [0, τ ]× R× Tε yields

‖∇Ψ(τ)‖2 +

∫ τ

0
‖4Ψ‖2dτ ≤ C‖∇Ψ0‖2 + C|

∫ τ

0

∫
Tε

∫
R
K(τ, y1, y2)dy1dy2dτ |. (4.12)

We just estimate some terms on the right-hand side of (4.12) in K as follows. It follows from
Young’s inequality that

C
∣∣∣ ∫ τ

0

∫
Tε

∫
R
uiΨyi · 4Ψ +

p′(ρ)

ρ
∇φ · 4Ψdy1dy2dτ

∣∣∣
≤ 1

160

∫ τ

0
‖4Ψ‖2dτ + C

∫ τ

0
(‖∇φ‖2 + ‖∇Ψ‖2)dτ.

By Young’s inequality, Lemma 2.2 and Lemma 2.3, one has

C
∣∣∣ ∫ τ

0

∫
Tε

∫
R
ũ1y1ψ14ψ1dy1dy2dτ

∣∣∣ ≤ 1

160

∫ τ

0
‖4ψ1‖2dτ + C

∫ τ

0

∫
Tε

∫
R
|ũ1y1ψ1|2dy1dy2dτ

≤ 1

160

∫ τ

0
‖4ψ1‖2dτ + CT (

ε

δ2
+
ε3

δ5
) sup

0≤τ≤τ1(ε)
‖ψ1‖2.

By Hölder’s inequality, Sobolev’s inequality and Young’s inequality, it holds that

C
∣∣∣ ∫ τ

0

∫
Tε

∫
R

µ+ λ

ρ2
divΨ∇φ · 4Ψdy1dy2dτ

∣∣∣ ≤ C ∫ τ

0
‖4Ψ‖‖∇φ‖L4‖∇Ψ‖L4dτ

≤ C
∫ τ

0
‖4Ψ‖‖∇φ‖1‖∇Ψ‖1dτ ≤

1

160

∫ τ

0
‖4Ψ‖2dτ + CE2

∫ τ

0
‖∇Ψ‖21dτ.
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It follows from Young’s inequality, Lemma 2.2 and Lemma 2.3 that

C
∣∣∣ ∫ τ

0

∫
Tε

∫
R

µ+ λ

ρ2
ρ̃y1divΨ4ψ1dy1dy2dτ

∣∣∣ ≤ 1

160

∫ τ

0
‖4ψ1‖2dτ + C

∫ τ

0
‖ρ̃y1divΨ‖2dτ

≤ 1

160

∫ τ

0
‖4ψ1‖2dτ + CT (

ε2

δ2
+
ε4

δ5
)

∫ τ

0
‖∇Ψ‖2dτ.

All the other terms in K(τ, y1, y2) can be analyzed similarly. Then substituting the resulting
estimates into (4.12) and the elliptic estimate ‖4Ψ‖ ∼ ‖∇2Ψ‖ give

‖∇Ψ(τ)‖2 +

∫ τ

0
‖∇2Ψ‖2dτ

≤ CT
ε3

δ7
+ C‖∇Ψ0‖2 + CT (

ε

δ2
+
ε3

δ5
) sup

0≤τ≤τ1(ε)
‖(φ, ψ1)‖2

+ CT (
ε2

δ2
+
ε4

δ5
)

∫ τ

0
‖∇Ψ‖2dτ + CE2

∫ τ

0
‖∇Ψ‖21dτ + C

∫ τ

0
‖(∇φ,∇Ψ)‖2dτ.

(4.13)

Combining (4.5) and (4.13) and taking ε
δ4
, ε and E suitably small, we complete the proof of

Lemma 4.3. �

Lemma 4.4. There exists a positive constant CT such that for 0 ≤ τ ≤ τ1(ε),

sup
0≤τ≤τ1(ε)

(‖(φ,Ψ)(τ)‖21 + ‖∇2φ(τ)‖2) +

∫ τ1(ε)

0

[
‖ū1/2

1y1
(φ, ψ1)‖2 + ‖(∇φ,∇Ψ)‖21

]
dτ

≤ CT
ε

δ4
+ C(‖(φ0,Ψ0)‖21 + ‖∇2φ0‖2) + CE2

∫ τ1(ε)

0
‖∇3Ψ‖2dτ.

(4.14)

Proof. Applying the operator ∇2 on the first equation of (3.3) and then multiplying the
resulted equation by ∇2φ/ρ2, we have

(
|∇2φ|2

2ρ2
)τ + div(

u|∇2φ|2

2ρ2
) +
∇2φ · ∇2divΨ

ρ

=
divΨ|∇2φ|2

2ρ2
− ρ̃y1y1divΨφy1y1

ρ2
− φyi∇φyi · ∇divΨ

ρ2
− 2ρ̃y1∇φy1 · ∇divΨ

ρ2

− ∇φ · ∇φyidivΨyi

ρ2
−
∇ψj · ∇φyiφyiyj

ρ2
−
ψjyi∇φyj · ∇φyi

ρ2
− φyi∇2φ · ∇2ψi

ρ2

− ũ1y1y1φy1φy1y1
ρ2

− 2ũ1y1 |∇φy1 |2

ρ2
− ρ̃y1y1y1ψ1φy1y1

ρ2
− 2ρ̃y1y1∇ψ1 · ∇φy1

ρ2

− ρ̃y1∇2ψ1 · ∇2φ

ρ2
− ũ1y1y1y1φφy1y1

ρ2
− 2ũ1y1y1∇φ · ∇φy1

ρ2
+
ũ1y1 |∇2φ|2

2ρ2

:= L(τ, y1, y2).

(4.15)
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Then dividing the second equation of (3.3) by ρ, applying the operator ∇ on the resulting
equation and then multiplying the final equation by ∇2φ, we have

(∇Ψ · ∇2φ)τ − div(φyiτ∇ψi − uiφyj∇ψjyi + u∇φ · 4Ψ +
µ

ρ
φyiyj∇ψiyj )

+ (
µ

ρ
∇φyj · ∇ψiyj )yi +

p′(ρ)

ρ
|∇2φ|2 − 2µ+ λ

ρ
∇2φ · ∇2divΨ

= ρ∇divΨ · 4Ψ + ρ̃y1divΨ4ψ1 + φyj∇ψi · ∇ψjyi + ũ1y1∇φ ·Ψy1y1

+ φyi∇ψi · 4Ψ + ũ1y1φy14ψ1 + ρ̃y1y1ψ14ψ1 + ρ̃y1∇ψ1 · 4Ψ

+ ũ1y1y1φ4ψ1 − ψjyi∇ψi · ∇φyj − ũ1y1ψjy1φy1yj − ũ1y1y1ψ1φy1y1

− ũ1y1∇ψ1 · ∇φy1 − (
p′(ρ)

ρ
)′φyi∇φ · ∇φyi − 2(

p′(ρ)

ρ
)′ρ̃y1∇φ · ∇φy1

−
[
(
p′(ρ)

ρ
)′ − (

p′(ρ̃)

ρ̃
)′
]
ρ̃2
y1φy1y1 − (

p′(ρ)

ρ
− p′(ρ̃)

ρ̃
)ρ̃y1y1φy1y1

+
µ

ρ2
∇φ · ∇ψiyjφyiyj −

µ

ρ2
φyi∇φyj · ∇ψiyj +

µ

ρ2
ρ̃y1ψiy1yjφyiyj

− µ

ρ2
ρ̃y1∇φyj · ∇ψ1yj −

µ

ρ2
∇φ · ∇φyi4ψi −

µ

ρ2
ρ̃y1φy1yi4ψi

− µ+ λ

ρ2
∇φ · ∇φyidivΨyi −

µ+ λ

ρ2
ρ̃y1φy1yidivΨyi

+
2µ+ λ

ρ
(
−d1ū1 + d2

ρ̃
)y1y1y1φy1y1 −

2µ+ λ

ρ2
(
−d1ū1 + d2

ρ̃
)y1y1∇φ · ∇φy1

− 2µ+ λ

ρ2
(
−d1ū1 + d2

ρ̃
)y1y1 ρ̃y1φy1y1 −

2µ+ λ

ρ̃ρ
ū1y1y1y1φφy1y1

− 2µ+ λ

ρ2
ū1y1y1∇φ · ∇φy1 +

(2µ+ λ)(ρ̃+ ρ)

ρ̃2ρ2
ρ̃y1 ū1y1y1φφy1y1

−
[(ρ̃ũ2

1 − ρ̄ū2
1 + ū2

1d1 − 2ū1d2)y1
ρ̃

]
y1
φy1y1 −

[(p(ρ̃)− p(ρ̄)− p′(ρ̄)d1)y1
ρ̃

]
y1
φy1y1

:= ρ∇divΨ · 4Ψ +M(τ, y1, y2).

(4.16)

We multiply (4.15) by 2µ + λ, add the resulting equation and (4.16) together, use the same
cancellations as in Lemma 4.2, and integrate the final equation over [0, τ ]× R× Tε to get∫

Tε

∫
R

(2µ+ λ

2ρ2
|∇2φ|2 +∇Ψ · ∇2φ

)
dy1dy2

∣∣τ
0

+

∫ τ

0

∫
Tε

∫
R

p′(ρ)

ρ
|∇2φ|2dy1dy2dτ

=

∫ τ

0

∫
Tε

∫
R

[
ρ∇divΨ · 4Ψ + (2µ+ λ)L(τ, y1, y2) +M(τ, y1, y2)

]
dy1dy2dτ.

(4.17)

The combination of (4.10) and (4.17) leads to

‖(φ,Ψ)(τ)‖21 + ‖∇2φ(τ)‖2 +

∫ τ

0

[
‖ū1/2

1y1
(φ, ψ1)‖2 + ‖(∇φ,∇Ψ)‖21

]
dτ

≤ CT
ε

δ4
+ C(‖(φ0,Ψ0)‖21 + ‖∇2φ0‖2)

+C|
∫ τ

0

∫
Tε

∫
R

[
(2µ+ λ)L(τ, y1, y2) +M(τ, y1, y2)

]
dy1dy2dτ |.

(4.18)
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Now we estimate some terms on the right-hand side of (4.18) selectively. By Hölder’s inequal-
ity, Sobolev’s inequality and Young’s inequality, it holds that

C|
∫ τ

0

∫
Tε

∫
R

2µ+ λ

2ρ2
divΨ|∇2φ|2dy1dy2dτ | ≤ C

∫ τ

0
‖∇Ψ‖L∞‖∇2φ‖2dτ

≤ CE
∫ τ

0
‖∇Ψ‖2‖∇2φ‖dτ ≤ 1

160

∫ τ

0
‖∇2φ‖dτ + CE2

∫ τ

0
‖∇Ψ‖22dτ.

By Hölder’s inequality, Sobolev’s inequality and Young’s inequality, one has

C|
∫ τ

0

∫
Tε

∫
R

2µ+ λ

ρ2
φyi∇φyi · ∇divΨdy1dy2dτ | ≤ C

∫ τ

0
‖∇2φ‖‖∇φ‖L4‖∇divΨ‖L4dτ

≤ C
∫ τ

0
‖∇2φ‖‖∇φ‖1‖∇2Ψ‖1dτ ≤

1

160

∫ τ

0
‖∇2φ‖2dτ + CE2

∫ τ

0
‖∇2Ψ‖21dτ.

Similarly, one has

C|
∫ τ

0

∫
Tε

∫
R

(
p′(ρ)

ρ
)′φyi∇φ · ∇φyidy1dy2dτ | ≤ C

∫ τ

0
‖∇2φ‖‖∇φ‖2L4dτ

≤ C
∫ τ

0
‖∇2φ‖‖∇φ‖21dτ ≤

1

160

∫ τ

0
‖∇2φ‖2dτ + CE2

∫ τ

0
‖∇φ‖21dτ.

By Young’s inequality, Lemma 2.2 and Lemma 2.3, it holds that

C|
∫ τ

0

∫
Tε

∫
R

((
p′(ρ)

ρ
)′ − (

p′(ρ̃)

ρ̃
)′)ρ̃2

y1φy1y1dy1dy2dτ |

≤ 1

160

∫ τ

0
‖φy1y1‖2dτ + C

∫ τ

0

∫
Tε

∫
R
|ρ̃2
y1φ|

2dy1dy2dτ

≤ 1

160

∫ τ

0
‖φy1y1‖2dτ + C

∫ τ

0
‖ρ̃y1‖4L∞y1‖φ‖

2dτ

≤ 1

160

∫ τ

0
‖φy1y1‖2dτ + CT ε

3 sup
0≤t≤T

‖ρ̃x1‖4L∞x1 sup
0≤τ≤τ1(ε)

‖φ‖2

≤ 1

160

∫ τ

0
‖φy1y1‖2dτ + CT (

ε3

δ4
+

ε7

δ10
) sup

0≤τ≤τ1(ε)
‖φ‖2.

It follows from Young’s inequality, Lemma 2.2 and Lemma 2.3 that

C|
∫ τ

0

∫
Tε

∫
R

2µ+ λ

ρ
(
−d1ū1 + d2

ρ̃
)y1y1y1φy1y1dy1dy2dτ |

≤ 1

160

∫ τ

0
‖φy1y1‖2dτ + C

∫ τ

0

∫
Tε

∫
R
|(−d1ū1 + d2

ρ̃
)y1y1y1 |2dy1dy2dτ

≤ 1

160

∫ τ

0
‖φy1y1‖2dτ + Cε3

∫ t

0

∫
R
|(−d1ū1 + d2

ρ̃
)x1x1x1 |2dx1dt

≤ 1

160

∫ τ

0
‖φy1y1‖2dτ + CT

ε5

δ8
,

where we have used the following facts∫ t

0

∫
R
|( ū1

ρ̃
d1x1x1x1)|2dx1dt ≤ C

∫ t

0

∫
R
|d1x1x1x1 |2dx1dt ≤ CT

ε2

δ8
,
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0

∫
R
|(3d1x1x1 ū1x1

ρ̃
)|2dx1dt ≤ C

∫ t

0
‖d1x1x1‖2L2

x1
‖ū1x1‖2L∞x1dt ≤ CT

ε2

δ7
,

∫ t

0

∫
R
|(3d1x1 ū1x1x1

ρ̃
)|2dx1dt ≤ C

∫ t

0
‖d1x1‖2L2

x1
‖ū1x1x1‖2L∞x1dt ≤ CT

ε2

δ7
,

∫ t

0

∫
R
|(d1ū1x1x1x1

ρ̃
)|2dx1dt ≤ C

∫ t

0
‖d1‖2L2

x1
‖ū1x1x1x1‖2L∞x1dt ≤ CT

ε2

δ7
,

∫ t

0

∫
R
|(3ū1d1x1x1d1x1

ρ̃2
)|2dx1dt ≤ C

∫ t

0
‖d1x1‖2L∞x1‖d1x1x1‖2L2

x1
dt ≤ CT

ε4

δ11
,

∫ t

0

∫
R
|(6d1x1 ū1x1 ρ̄x1

ρ̃2
)|2dx1dt ≤ C

∫ t

0
‖d1x1‖2L2

x1
‖ū1x1‖4L∞x1dt ≤ CT

ε2

δ7
,

∫ t

0

∫
R
|(

6d2
1x1
ū1x1

ρ̃2
)|2dx1dt ≤ C

∫ t

0
‖ū1x1‖2L∞x1‖d1x1‖2L∞x1‖d1x1‖2L2

x1
dt ≤ CT

ε4

δ10
,

∫ t

0

∫
R
|(3d1ū1x1x1 ρ̄x1

ρ̃2
)|2dx1dt ≤ C

∫ t

0
‖d1‖2L2

x1
‖ū1x1x1‖2L∞x1‖ρ̄x1‖

2
L∞x1

dt ≤ CT
ε2

δ7
,

∫ t

0

∫
R
|(

6ū1d
3
1x1

ρ̃3
)|2dx1dt ≤ C

∫ t

0
‖d1x1‖4L∞x1‖d1x1‖2L2

x1
dt ≤ CT

ε6

δ14
,

and ∫ t

0

∫
R
|(

6d1ū1x1 ρ̄
2
x1

ρ̃3
)|2dx1dt ≤ C

∫ t

0
‖d1‖2L2

x1
‖ū1x1‖6L∞x1dt ≤ CT

ε2

δ7
.

By Young’s inequality, Lemma 2.2 and Lemma 2.3, one has

C|
∫ τ

0

∫
Tε

∫
R

2µ+ λ

ρ2
(
−d1ū1 + d2

ρ̃
)y1y1∇φ · ∇φy1dy1dy2dτ |

≤ C sup
0≤τ≤τ1(ε)

‖(−d1ū1 + d2

ρ̃
)y1y1‖L∞y1

∫ τ

0
‖∇φ‖‖∇φy1‖dτ

≤ 1

160

∫ τ

0
‖∇φy1‖2dτ + CT (

ε6

δ7
+
ε8

δ8
)

∫ τ

0
‖∇φ‖2dτ.

It follows from Young’s inequality, Lemma 2.2 and Lemma 2.3 that

C|
∫ τ

0

∫
Tε

∫
R

2µ+ λ

ρ2
(
−d1ū1 + d2

ρ̃
)y1y1 ρ̃y1φy1y1dy1dy2dτ |

≤ 1

160

∫ τ

0
‖φy1y1‖2dτ + C

∫ τ

0

∫
Tε

∫
R
|(−d1ū1 + d2

ρ̃
)y1y1 ρ̃y1 |2dy1dy2dτ

≤ 1

160

∫ τ

0
‖φy1y1‖2dτ + C(

ε2

δ2
+
ε4

δ5
)

∫ τ

0

∫
Tε

∫
R
|(−d1ū1 + d2

ρ̃
)y1y1 |2dy1dy2dτ

≤ 1

160

∫ τ

0
‖φy1y1‖2dτ + CT

ε5

δ8
.
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By Young’s inequality, Lemma 2.2 and Lemma 2.3, one has

C|
∫ τ

0

∫
Tε

∫
R

[(ρ̃ũ2
1 − ρ̄ū2

1 + ū2
1d1 − 2ū1d2)y1
ρ̃

]
y1
φy1y1dy1dy2dτ |

≤ 1

160

∫ τ

0
‖φy1y1‖2dτ + C

∫ τ

0

∫
Tε

∫
R
|
[(1

ρ̃(ū1d1 − d2)2)y1

ρ̃

]
y1
|2dy1dy2dτ

≤ 1

160

∫ τ

0
‖φy1y1‖2dτ + Cε

∫ t

0

∫
R
|
[(1

ρ̃(ū1d1 − d2)2)x1

ρ̃

]
x1
|2dx1dt

≤ 1

160

∫ τ

0
‖φy1y1‖2dτ + CT

ε5

δ9
,

where we have used the facts∫ t

0

∫
R
|(3ū2

1

ρ̃4
d2

1ρ̄
2
x1)|2dx1dt ≤ C

∫ t

0
‖d1‖2L2

x1
‖d1‖2L∞x1‖ρ̄x1‖

4
L∞x1

dt ≤ CT
ε4

δ8
,

∫ t

0

∫
R
|(3ū2

1

ρ̃4
d2

1d
2
1x1)|2dx1dt ≤ C

∫ t

0
‖d1‖4L∞x1‖d1x1‖2L∞x1‖d1x1‖2L2

x1
dt ≤ CT

ε8

δ15
,

∫ t

0

∫
R
|(6ū2

1

ρ̃3
d1d1x1 ρ̄x1)|2dx1dt ≤ C

∫ t

0
‖d1x1‖2L2

x1
‖d1‖2L∞x1‖ρ̄x1‖

2
L∞x1

dt ≤ CT
ε4

δ8
,

∫ t

0

∫
R
|(6ū2

1

ρ̃3
d1d

2
1x1)|2dx1dt ≤ C

∫ t

0
‖d1x1‖2L2

x1
‖d1‖2L∞x1‖d1x1‖2L∞x1dt ≤ CT

ε6

δ12
,

∫ t

0

∫
R
|( ū

2
1

ρ̃3
d2

1ρ̄x1x1)|2dx1dt ≤ C
∫ t

0
‖d1‖2L2

x1
‖d1‖2L∞x1‖ρ̄x1x1‖

2
L∞x1

dt ≤ CT
ε4

δ8
,

∫ t

0

∫
R
|( ū

2
1

ρ̃3
d2

1d1x1x1)|2dx1dt ≤ C
∫ t

0
‖d1‖4L∞x1‖d1x1x1‖2L2

x1
dt ≤ CT

ε6

δ12
,

∫ t

0

∫
R
|(2ū2

1

ρ̃2
d2

1x1)|2dx1dt ≤ C
∫ t

0
‖d1x1‖2L2

x1
‖d1x1‖2L∞x1dt ≤ CT

ε4

δ9
,

and ∫ t

0

∫
R
|(2ū2

1

ρ̃2
d1d1x1x1)|2dx1dt ≤ C

∫ t

0
‖d1‖2L∞x1‖d1x1x1‖2L2

x1
dt ≤ CT

ε4

δ9
.

The other terms in (4.18) can be analyzed similarly and the details will be omitted for brevity.
Substituting these estimates into (4.18), using the elliptic estimates ‖4Ψ‖ ∼ ‖∇2Ψ‖ and
‖∇4Ψ‖ ∼ ‖∇3Ψ‖ and taking ε

δ4
, ε and E suitably small, we can complete the proof of

Lemma 4.4. �

Lemma 4.5. There exists a positive constant CT such that for 0 ≤ τ ≤ τ1(ε),

sup
0≤τ≤τ1(ε)

‖(φ,Ψ)(τ)‖22 +

∫ τ1(ε)

0

[
‖ū1/2

1y1
(φ, ψ1)‖2 + ‖(∇φ,∇Ψ)‖21 + ‖∇3Ψ‖2

]
dτ

≤ CT
ε

δ4
+ C‖(φ0,Ψ0)‖22.

(4.19)
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Proof. We divide the second equation of (3.3) by ρ, apply the operator ∇ to the resulting
equation and then multiply the final equation by −∇4Ψ to obtain

(
|∇2Ψ|2

2
)τ − div(ψiτyj∇ψiyj +

µ+ λ

ρ
divΨyi∇divΨyi −

µ+ λ

ρ
divΨyi4Ψyi)

+
µ

ρ
|∇4Ψ|2 +

µ+ λ

ρ
|∇2divΨ|2

= ui∇Ψyi · ∇4Ψ +
p′(ρ)

ρ
∇2φ · ∇4Ψ + ψjyi∇ψi · ∇4ψj + ũ1y1Ψy1 · 4Ψy1

+ ũ1y1y1ψ14ψ1y1 + ũ1y1∇ψ1 · ∇4ψ1 + (
p′(ρ)

ρ
)′φyi∇φ · ∇4ψi

+ (
p′(ρ)

ρ
)′ρ̃y1∇φ · 4Ψy1 + (

p′(ρ)

ρ
)′ρ̃y1∇φ · ∇4ψ1 +

[
(
p′(ρ)

ρ
)′ − (

p′(ρ̃)

ρ̃
)′
]
ρ̃2
y14ψ1y1

+ (
p′(ρ)

ρ
− p′(ρ̃)

ρ̃
)ρ̃y1y14ψ1y1 +

µ

ρ2
4ψi∇φ · ∇4ψi +

µ

ρ2
ρ̃y14Ψ · 4Ψy1

− µ+ λ

ρ2
φyi∇divΨ · ∇4ψi −

µ+ λ

ρ2
ρ̃y1∇divΨ · ∇4ψ1 +

µ+ λ

ρ2
divΨyi∇φ · ∇divΨyi

+
µ+ λ

ρ2
ρ̃y1∇divΨ · ∇divΨy1 +

µ+ λ

ρ2
divΨyi∇φ · ∇4ψi +

µ+ λ

ρ2
ρ̃y14Ψy1 · ∇divΨ

− 2µ+ λ

ρ
(
−d1ū1 + d2

ρ̃
)y1y1y14ψ1y1 +

2µ+ λ

ρ2
(
−d1ū1 + d2

ρ̃
)y1y1∇φ · ∇4ψ1

+
2µ+ λ

ρ2
(
−d1ū1 + d2

ρ̃
)y1y1 ρ̃y14ψ1y1 +

2µ+ λ

ρ̃ρ
ū1y1y1y1φ4ψ1y1

+
2µ+ λ

ρ2
ū1y1y1∇φ · ∇4ψ1 −

(2µ+ λ)(ρ̃+ ρ)

ρ̃2ρ2
ρ̃y1 ū1y1y1φ4ψ1y1

+
[(ρ̃ũ2

1 − ρ̄ū2
1 + ū2

1d1 − 2ū1d2)y1
ρ̃

]
y1
4ψ1y1 +

[(p(ρ̃)− p(ρ̄)− p′(ρ̄)d1)y1
ρ̃

]
y1
4ψ1y1

:= N(τ, y1, y2).
(4.20)

Integrating the equation (4.20) over [0, τ ]× R× Tε yields that

‖∇2Ψ(τ)‖2 +

∫ τ

0
‖∇4Ψ‖2dτ ≤ C‖∇2Ψ0‖2 + C|

∫ τ

0

∫
Tε

∫
R
N(τ, y1, y2)dy1dy2dτ |. (4.21)

Now we just estimate some terms on the right-hand side of (4.21) as follows. It follows from
Young’s inequality that

C|
∫ τ

0

∫
Tε

∫
R
ui∇Ψyi · ∇4Ψ +

p′(ρ)

ρ
∇2φ · ∇4Ψdy1dy2dτ |

≤ 1

160

∫ τ

0
‖∇4Ψ‖2dτ + C

∫ τ

0
(‖∇2φ‖2 + ‖∇2Ψ‖2)dτ.
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By Young’s inequality, Lemma 2.2 and Lemma 2.3, one has

C|
∫ τ

0

∫
Tε

∫
R

(
p′(ρ)

ρ
− p′(ρ̃)

ρ̃
)ρ̃y1y14ψ1y1dy1dy2dτ |

≤ 1

160

∫ τ

0
‖4ψ1y1‖2dτ + C

∫ τ

0

∫
Tε

∫
R
|ρ̃y1y1φ|2dy1dy2dτ

≤ 1

160

∫ τ

0
‖4ψ1y1‖2dτ + CT (

ε3

δ4
+
ε5

δ7
) sup

0≤τ≤τ1(ε)
‖φ‖2.

By Hölder’s inequality, Sobolev’s inequality and Young’s inequality, it holds that

C|
∫ τ

0

∫
Tε

∫
R

µ

ρ2
4ψi∇φ · ∇4ψidy1dy2dτ | ≤ C

∫ τ

0
‖∇4Ψ‖‖4Ψ‖L4‖∇φ‖L4dτ

≤ C
∫ τ

0
‖∇4Ψ‖‖4Ψ‖1‖∇φ‖1dτ ≤

1

160

∫ τ

0
‖∇4Ψ‖2dτ + CE2

∫ τ

0
‖4Ψ‖21dτ.

By Young’s inequality, Lemma 2.2 and Lemma 2.3, one has

C|
∫ τ

0

∫
Tε

∫
R

µ

ρ2
ρ̃y14Ψ · 4Ψy1dy1dy2dτ |

≤ 1

160

∫ τ

0
‖4Ψy1‖2dτ + C

∫ τ

0
‖ρ̃y14Ψ‖2dτ

≤ 1

160

∫ τ

0
‖4Ψy1‖2dτ + C

∫ τ

0
‖ρ̃y1‖2L∞y1‖4Ψ‖2dτ

≤ 1

160

∫ τ

0
‖4Ψy1‖2dτ + CT (

ε2

δ2
+
ε4

δ5
)

∫ τ

0
‖4Ψ‖2dτ.

By Young’s inequality, Lemma 2.2 and Lemma 2.3, it holds that

C|
∫ τ

0

∫
Tε

∫
R

2µ+ λ

ρ2
(
−d1ū1 + d2

ρ̃
)y1y1∇φ · ∇4ψ1dy1dy2dτ |

≤ C
∫ τ

0
‖(−d1ū1 + d2

ρ̃
)y1y1‖L∞y1‖∇φ‖‖∇4ψ1‖dτ

≤ 1

160

∫ τ

0
‖∇4ψ1‖2dτ + CT (

ε6

δ7
+
ε8

δ8
)

∫ τ

0
‖∇φ‖2dτ.

Similarly, one has

C|
∫ τ

0

∫
Tε

∫
R

[(ρ̃ũ2
1 − ρ̄ū2

1 + ū2
1d1 − 2ū1d2)y1
ρ̃

]
y1
4ψ1y1dy1dy2dτ |

≤ 1

160

∫ τ

0
‖4ψ1y1‖2dτ + C

∫ τ

0

∫
Tε

∫
R
|
[(1

ρ̃(ū1d1 − d2)2)y1

ρ̃

]
y1
|2dy1dy2dτ

≤ 1

160

∫ τ

0
‖4ψ1y1‖2dτ + CT

ε5

δ9
+ CT

ε9

δ15
+ CT

ε7

δ12
.

The other terms in N(τ, y1, y2) can be estimated similarly as before. Then substituting all
the estimates into (4.21) and using the standard elliptic estimates ‖4Ψ‖ ∼ ‖∇2Ψ‖ and
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‖∇4Ψ‖ ∼ ‖∇3Ψ‖, it holds that

‖∇2Ψ(τ)‖2 +

∫ τ

0
‖∇3Ψ‖2dτ

≤ CT
ε5

δ9
+ C‖∇2Ψ0‖2 + C

∫ τ

0
‖(∇2φ,∇2Ψ)‖2dτ + CE2

∫ τ

0
‖(∇φ,∇Ψ,∇2Ψ)‖21dτ

+CT (
ε3

δ4
+
ε5

δ7
) sup

0≤τ≤τ1(ε)
‖(φ, ψ1)‖2 + CT (

ε2

δ2
+
ε4

δ5
)

∫ τ

0
‖(∇φ,∇Ψ,∇2Ψ)‖2dτ.

(4.22)

Combining (4.14) and (4.22) and taking ε
δ4
, ε and E suitably small, we complete the proof

of Lemma 4.5. �

Finally, taking ε
δ4
, ε and E sufficiently small, saying ε ≤ ε1(ε), δ = ε1/6, E � 1, we ob-

tain the desired a priori estimate (3.9), which finishes the proof of the a priori estimates in
Proposition 3.2. Therefore the Theorem 1.1 is proved.
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