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ABSTRACT. The vanishing viscosity limit of the two-dimensional (2D) compressible isentropic
Navier-Stokes equations is studied in the case that the corresponding 2D inviscid Euler equa-
tions admit a planar rarefaction wave solution. It is proved that there exists a family of
smooth solutions for the 2D compressible Navier-Stokes equations converging to the planar
rarefaction wave solution with arbitrary strength for the 2D Euler equations. A uniform
convergence rate is obtained in terms of the viscosity coefficients away from the initial time.
In the proof, the hyperbolic wave is crucially introduced to recover the physical viscosities
of the inviscid rarefaction wave profile, in order to rigorously justify the vanishing viscosity
limit.

1. INTRODUCTION

In this paper, we investigate the vanishing viscosity limit of the two-dimensional compress-
ible and isentropic Navier-Stokes equations:

pi + div(pu) = 0,

1.1
(pu); + div(pu ® u) + Vp(p) = g A+ (1 + Ay) Vdivu, (1.1)

where p = p(t,z1,22) > 0,u = u(t, z1,x2) = (u1,u2)(t,z1,22) and p = p(t, z1, z2) represent
the fluid density, velocity and pressure, respectively; (z1,z2) € R? is the spatial variable and
t > 0 is the time variable. The pressure p = p(p) is given by the ~-law:

with v > 1 the adiabatic constant. Both the shear viscosity p; and the bulk viscosity A\; are
constant satisfying
w1 >0, w1+ A >0, (1.2)
and we take
H1 = e, )\1 = )\87

where € > 0 is the vanishing parameter, and p and A are the prescribed uniform-in-¢ constants.
For the spatial domain, we consider the case 1 € R and 23 € T := R/Z, the one-dimensional
unit flat torus.

Since we are concerned with the vanishing viscosity limit to the planar rarefaction wave for
the system (1.1), we consider the following initial data:

(p,u)(0, 21, x2) = (p, u1,u2)(0, 21, 2) = (po(x1, T2), ur0(21, T2), u20 (1, T2)), (1.3)
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and the far field condition of solutions in the x1-direction:
(pyur,u2)(t, z1,x2) = (ps, ur4,0), as w1 — oo, (1.4)

where p+ > 0,u;+ are the prescribed constants. The periodic boundary condition is imposed
on x9 € T for the solution (p,uy,u2)(t,z1,z2) to (1.1), where the end states (pi,u1+) are
connected by the rarefaction wave solution to the Riemann problem of the corresponding
one-dimensional (1D) hyperbolic system of conservation laws:

pt+ (pui)e, =0, 1 €R, t >0, (1.5)
(pur)t + (puf +p(p))ay =0,
with the Riemann initial data
(p—vul—)v T < 07
(pg, ulp)(z1) = (1.6
0> U10) (21) (o uns). 71> 0. )
Formally speaking, as ¢ tends to zero, the two-dimensional (2D) compressible Navier-Stokes
equations (1.1)-(1.3) converge to the corresponding 2D inviscid compressible Euler equations:
pi + (pur)e, + (puz)z, =0, (z1,2) € Rx T, t>0,
(pur)t + (puf + p(p))zy + (puruz)a, =0, (1.7)
(pu2)i + (purug)e, + (pu3 + p(p))z; = 0.

In the regime of the planar rarefaction wave, we consider the Euler system (1.7) with the
following Riemann initial data

(p*aulfvo)a x1 <0,
0, Ulgs Uy ) (1) = 1.8
(6, uip, uno) (1) {(p+,U1+,O), 21> 0. (1.8)
We note that, although the wo-component is continuous on the both sides of x1 = 0 in

(1.8), the one-dimensional Riemann problem (1.5)-(1.6) and the two-dimensional Riemann
problem (1.7)-(1.8) have some substantial difference. For example, the results in [8,9] indicate
that there are infinitely many bounded admissible weak solutions to (1.7)-(1.8) satisfying
the entropy condition for the shock Riemann initial data, and their construction of weak
solutions based on the convex integration method in DeLellis and Szekelyhidi [11] for the
two-dimensional system may not be applied to the one-dimensional problem (1.5)-(1.6). The
results in [8,9] were extended to the Riemann initial data with shock or contact discontinuity
in [3,30]. Nevertheless, the uniqueness of the uniformly bounded admissible weak solution
was proved in Chen-Chen [4], Feireisl-Kreml [13], and Feireisl-Kreml-Vasseur [14] for the
Riemann solution containing only rarefaction waves to (1.7)-(1.8) even with vacuum states,
which is similar to the one-dimensional case. Our current paper is devoted to establish the
mathematical justification of the vanishing viscosity limit of the 2D compressible Navier-Stokes
equations (1.1)-(1.3) to the planar rarefaction wave solution of the 2D Riemann problem of
the corresponding compressible Euler equations (1.7)-(1.8).

There have been many results in literature on the vanishing viscosity limit to the basic
wave patterns for the system of viscous conservation laws in the one-dimensional case. For
the 1D system of the hyperbolic conservation laws with artificial viscosity, Goodman and
Xin [15] applied a matched asymptotic expansion method to first prove the viscous limit
for the piecewise smooth solutions separated by noninteracting shock waves. Later Yu [37]
extended the result in [15] for the corresponding hyperbolic conservation laws with both shocks
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and initial layers. Bianchini and Bressan [2] proved the vanishing artificial viscosity limit in the
general small BV spaces although the problem is still unsolved for the physical systems such
as the compressible Navier-Stokes equations. For the one-dimensional compressible isentropic
Navier-Stokes equations, the vanishing viscosity limit was obtained in Hoff and Liu [16] for
the piecewise constant shocks even with initial layers, in Xin [35] for the zero dissipation limit
to the rarefaction wave for both the Riemann data and the well-prepared smooth data, and
in Huang, Li and Wang [17] and Li and Wang [27] for the zero dissipation limit in the case
of the rarefaction wave connected with the vacuum states. The result in [15] was extended in
Wang [33] to the one-dimensional isentropic Navier-Stokes equations. For the nonisentropic
Navier-Stokes equations, the results on the zero dissipation limit to the corresponding full
Euler system with basic wave patterns can be found in [22,36] for the rarefaction wave, in [34]
for the shock wave, in [29] for the contact discontinuity, and in [19,20] for the superposition
of two rarefaction waves and a contact discontinuity and the superposition of one shock
and one rarefaction wave cases. More recently, Huang, Wang, Wang and Yang [21] justified
the vanishing viscosity limit of the compressible Navier-Stokes equations for the generic 1D
Riemann solution which may contain shock and rarefaction waves and contact discontinuity.
On the other hand, Chen and Perepelitsa [7] proved the vanishing viscosity limit to the
compressible Euler equations for the one-dimensional compressible Navier-Stokes equations
in LP-framework by using the compensated compactness method. For other related results on
the inviscid limit in literature, see [1,5,6,10,12,23,31] and the references therein.

Although there have been satisfactory results mentioned above on the vanishing viscosity
limit to the basic wave patterns for the viscous conservation laws in the one-dimensional
case, there are very few results on the vanishing viscosity limit to the planar wave patterns
for the compressible Navier-Stokes equations (1.1) in the multi-dimensional case. Motivated
by the recent progress on the time-asymptotic stability of the planar rarefaction wave to
the multi-dimensional compressible Navier-Stokes equations by Li, Wang and Wang [25] and
Li and Wang [26], in the present paper we aim to justify the vanishing viscosity limit to
the planar rarefaction wave for the two-dimensional compressible Navier-Stokes equations
(1.1) with physical constraints (1.2) and obtain the decay rate with respect to the viscosity
coefficients. Compared with the one-dimensional vanishing viscosity limit results in [17,18,35],
the additional difficulties here lie in the propagation of the planar rarefaction wave in xo-
direction and its interactions with the wave in z;-direction due to the higher dimensionality.
Therefore, we need to introduce a new wave, called hyperbolic wave, to recover the physical
viscosity of the compressible Navier-Stokes equations for the inviscid rarefaction wave profile
satisfying the compressible Euler equations exactly, which is partially motivated by the work
[20] for the viscous limit of the one-dimensional full compressible Navier-Stokes equations
in the case of superposition of both shock and rarefaction waves. Note that this hyperbolic
wave plays a crucial role for the uniform estimates with respect to the viscosity coefficients
for the perturbation of the solution to (1.1) around both the rarefaction wave profile and the
new hyperbolic wave and it seems that we can not justify the vanishing viscosity limit for
2D Navier-Stokes equations (1.1) without this hyperbolic wave by using only the rarefaction
wave profile itself. By using the rarefaction wave profile and the new hyperbolic wave as
the ansatz, the vanishing viscosity limit problem can be reformulated as a time-asymptotic
stability problem around the background solution profile which consists of rarefaction wave
and hyperbolic wave so that the energy method can be applied after some suitable scalings.
Furthermore, we need some key observations on the cancellations in the physical structures of
the system (1.1) for the flux terms and viscosity terms in order to close the a priori estimates,
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which is partially motivated by our recent time-asymptotic stability results in Li and Wang [26]
and Li, Wang and Wang [25] for 2D /3D compressible viscous fluids, where it is proved that if
the initial data is around the planar rarefaction wave data, then the 2D initial value problem
(1.1)-(1.3) has a unique global smooth solution that goes to the planar rarefaction wave fan
as t — oo with the viscosity coefficients u; and Ay being fixed. In the present paper, our
goal is to justify the vanishing viscosity limit of 2D compressible Navier-Stokes equations
(1.1)-(1.3) to the planar rarefaction wave as the viscosity parameter ¢ — 0+ and then both
the viscosity coefficients pu1, Ay — 0. Compared with the time-asymptotic stability results
of planar rarefaction wave in [25,26], some new difficulties occur and the hyperbolic wave is
crucially introduced to justify the vanishing viscosity limit. More precisely, the detailed 2D
vanishing viscosity limit result can be found in Theorem 1.1 below.

Next we describe the one-dimensional rarefaction wave to (1.5) and the planar rarefaction
wave to (1.7). The Euler system (1.5) is strictly hyperbolic for p > 0 with two distinct
eigenvalues

A(p,u1) = u1 — /9 (p), A2(p,u1) = u1 +/p'(p).

The two right eigenvectors are denoted by r1(p, u1) and r2(p, u1), and the both characteristic
fields are genuinely nonlinear, i.e.,

v(p,ul))‘i(ﬂyul) “ri(pyur) #0

for any p > 0,u; and ¢ = 1, 2. The i-Riemann invariant z;(p,u1) (¢ = 1,2) to the Euler system
(1.5) is given by

zi(pyur) = wp + (=

1)+t /p Vpsl(s)ds, (1.9)

satisfying V(,, ,,)2i(p, u1)-ri(p,u1) =0 (i = 1,2) for all p > 0 and u;. In this paper we consider
only the 2-rarefaction wave without loss of generality, since the 1-rarefaction wave and the
superposition of two rarefaction waves can be treated similarly. If the 2-Riemann invariant
z9(p,u1) is constant and the second eigenvalue A2(p,uq1) is expanding along the 2-rarefaction
wave curve, i.e.,

[ P(s)
U1y ds=u1—,  Aa(pt,u1y) > Ae(p—, u1-), (1.10)
p7

the Riemann problem (1.5)-(1.6) has a self-similar wave fan (p", uy)(%") consisting of only the
constant states and the centered 2-rarefaction waves (cf. [24]). The planar rarefaction wave
solution to the two-dimensional compressible Euler equations (1.7)-(1.8) is then defined as
(pTauLO)(:Ltl)'

Now we state our main result as follows.

Theorem 1.1. Let (p",uf,0)(%) be the planar 2-rarefaction wave to the 2D Euler system
(1.7) which connects the constant states (p+,u1+,0) satisfying (1.10) with px >0 and T > 0
be any arbitrarily large but fized time. Then there exists a positive constant €y such that for
any € € (0,ep), we can construct a family of smooth solutions (p°, u°) = (p, uj, us) up to time
T with the initial value (3.2) to the compressible Navier-Stokes equations (1.1) satisfying

(pg - pr7u§ - U{,Ug) € CO(OvT; L2(R X T))a
(Vps, V) € C%0,T; HY(R x T)),
V3w € L2(0,T; L*(R x T)),
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Moreover, for any small positive constant h, there exists a constant Cy 1 independent of e,
such that
1 1

sup ||(p%, ui,us)(t, x1,z2) — (p", ul,0)(—)|| o < Chret|lnel|. 1.11

6% )00, 2) 05,00 e g el (111)
As the viscosities vanish, i.e. € — 0, the solution (p°, u®) = (p, uj, u5)(t,x1,x2) converges to
the planar rarefaction wave fan (p",uf,0)(%t) pointwisely except at the original point (0,0),
and furthermore,

(6%, ) (¢, 21, 22) — (pT,uq,O)(%), ae. in RY x R x T.

We remark that Theorem 1.1 gives the first vanishing viscosity result to the planar rarefac-
tion wave with arbitrary strength for the multi-dimensional viscous system (1.1) with physical
viscosities, while the corresponding vanishing viscosity limit problems for the planar shock
or contact discontinuity case are still completely open as far as we know. To prove Theorem
1.1, we first construct a smooth approximate rarefaction wave to the Euler system (1.5) or
(1.7) since the self-similar rarefaction wave fan is only Lipschitz continuous. The next crucial
step is to introduce a new wave, called the hyperbolic wave, to recover the physical viscosities
for the inviscid approximate rarefaction wave profile. Note that this hyperbolic wave plays
an essential role for the vanishing viscosity limit of 2D compressible Navier-Stokes equations
towards the planar rarefaction wave and if we only use the inviscid 1D hyperbolic rarefac-
tion wave profile as the ansatz without the hyperbolic wave constructed, then H?-norm of
the perturbation of the solution to the 2D compressible Navier-Stokes equations around the
planar rarefaction wave is not uniform-in-¢ and consequently we can not justify the vanishing
viscosity limit of planar rarefaction wave as in Theorem 1.1. Then the solution to the 2D
compressible Navier-Stokes equations (1.1) is sought around the superposition of both the
rarefaction wave profile and the hyperbolic wave, and finally the vanishing viscosity limit
to the planar rarefaction wave in (1.11) is rigorously justified. Note also that our vanishing
viscosity analysis could also be applied to the vanishing viscosity limit to the superposition of
1-rarefaction wave and 2-rarefaction wave for the two-dimensional compressible Navier-Stokes
equations (1.1) provided we consider the wave interaction estimates additionally. We finally
remark that the corresponding vanishing viscosity limit of the compressible Navier-Stokes
equations (1.1) to the planar rarefaction wave in the spatial three-dimensional case is still
open and will be studied in our future investigation.

The rest of the paper is organized as follows. In Section 2, we first construct the approx-
imate rarefaction wave to the Euler system (1.5) or (1.7) and then introduce the hyperbolic
wave to recover the physical viscosities to the inviscid smooth approximate rarefaction wave.
In Section 3, we reformulate the system as the perturbation of the solution to 2D compressible
Navier-Stokes equations (1.1) around the solution profile consisting of both the approximate
rarefaction wave and the hyperbolic wave and then based on the a priori estimates, we prove
our main Theorem 1.1. Finally, in Section 4, we prove the a priori estimates for the pertur-
bation system by using an elementary L? energy method.

Before concluding this introduction, we present some notations that will be used in this
paper. We use H¥(R x T) and H*(R x T.)(k > 0,k € Z) to denote the usual Sobolev
space with the norm || - |[x, where T, := R/1Z is the scaled torus. We denote L?(R x T) =
H(RxT),L?>(RxT.) = HR x T.) and set || - || = || - ||o. For simplicity, we also write C as
generic positive constants which are independent of €, and 7', and Cp as positive constants
which are independent of £ and d, but may depend on 7.
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2. CONSTRUCTION OF THE SOLUTION PROFILE

In this section we construct the approximate rarefaction wave to the Euler system (1.5)
or (1.7) and introduce the hyperbolic wave to recover the physical viscosities to the inviscid
smooth approximate rarefaction wave.

2.1. Smooth Approximate Rarefaction Wave. Since the rarefaction wave is only Lip-
schitz continuous, we will construct a smooth approximation rarefaction wave through the
Burgers’ equation as in [17,18,35]. Consider the Riemann problem for the inviscid Burgers’
equation:

wy + wwy, =0,

w(0,z1) = wy(zr1) = {w, 7 <0, (2.1)

W4, xr1 > 0.

If w_ < wy, then (2.1) has the self-similar rarefaction wave fan w”(t,z1) = w"(x1/t) given by

w—, T < w-t,
z
w'(t,xy) = w’"(%) =08 wot <z <wit, (2.2)
W, T1 > w4t

As in [17], the approximate rarefaction wave to the Navier-Stokes equations (1.1) can be
constructed using the smooth solution of the Burgers’ equation:

wy + wwy, =0,

Wy +w_  wy —w_ T 2.3
w(0,21) = wo(x1) = +2 + +2 tanhgl, (23)

where ¢ > 0 is a small constant depending on the viscosity parameter €. In fact, we take

§ = &6 in the present paper. The following properties can be proved by the characteristic
method, see [17,35].

Lemma 2.1. Suppose wy > w_ and set w = wy —w_. Then the problem (2.3) has a unique
smooth global solution w(t,z1) such that

(1) w- < w(t,z1) < wy, wy, >0 forx; €R andt > 0,6 > 0.

(2) The following estimates hold for allt > 0,5 > 0 and p € [1,+o0]:

[way (8 )| Lo () < Cw'/P(§ 4 1)~ 1P,
|waya, (¢ ) ze®) < C(6+ )"t /e,
Hwilﬂﬁwl (t7 )HLP(R) < 0(5 + t)*15*2+1/p,

4
’wxll’l (ta $1)| < —wy, (t, .7}1).

)
(3) There exists a constant oy € (0,1) such that for 6 € (0,0d0] and t > 0,

ot ) = " (o) < OO (1 +1) + [ d])

We now consider the approximate rarefaction wave for the Euler system (1.5)-(1.6). From
now on, the constant states (pi,u;+) are fixed and connected by the 2-rarefaction wave.
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Set wy = A2(p+,u1+). In fact, the 2-rarefaction wave (p",ul)(t,z1) = (p", u})(x1/t) to the
Riemann problem (1.5) - (1.10) is given explicitly by

)\2(PT7 ’U;{)(t, 1’1) - wr(ta 1’1),

zo(p" ul)(t, 21) = 22(px, 1),

where z2(p,u1) is the 2-Riemann invariant defined in (1.9). The corresponding smooth ap-
proximate rarefaction wave (p,u1)(t,z1) of the 2-rarefaction wave fan (p",u])(%+) can be

t
constructed by
)‘2(:5’ al)(taJH) = ’LU(l + t’ :El)?
2o(p, 1 )(t, 1) = 22(p+, Ur),

where w(t, x1) is the smooth solution to the Burgers’ equation in (2.3). It is easy to see that
the above approximate rarefaction wave (p, u1) satisfies the following system:

(2.4)

pt + (ptir)z; =0,
(puir)¢ + (ptis + p(p))ay =0, (2.5)
(P, u1)(0, 1) := (po, u10)(1).

The following lemma follows from Lemma 2.1 (cf. [17]).

Lemma 2.2. The smooth approximate 2-rarefaction wave (p,u1) defined in (2.4) satisfies the

following properties:

(1) 1z, = %wzl >0 for allzy € R and t > 0, py, = ,53%7121,,:1 > 0, and

Prrvar = P°F hiaya; + B_T’Yﬁzﬂ(ﬂlzl)%
(2) The following estimates hold for allt > 0,5 > 0 and p € [1,+0o0]:
1Py Ty | oy < COMP(8+ )1+,
| (Pzya1s Utayay) || Loy < C(6 + t)—15—1+1/P’
H(ﬁwlxlml’almlxlxl)HLP(R) <C(0+ t)*15*2+1/p_
(3) There exists a constant dp € (0,1) such that for § € (0,60] and t > 0,
(7.}t ) = (0" D) (Dl () < O3t (1 + 1) + [ no]]

2.2. Hyperbolic Wave. If we only choose the approximate rarefaction wave (p, u1)(t,z1)
as the approximate wave profile, the error terms arising from the viscous terms in the ap-
proximate rarefaction wave are not good enough for obtaining the desired uniform estimates
with respect to the viscosities. Thus we introduce the hyperbolic wave to recover the physical
viscosities for the inviscid approximate rarefaction wave profile, which a crucial in our anal-
ysis of vanishing viscosity limit and partially motivated by [20]. We now provide a detailed
description of this hyperbolic wave. Let the hyperbolic wave (dy,d2)(t,z1) satisfy the linear
hyperbolic system

dlt + dQ:El = 07
m? 2m
dot + <—p21d1 +p/(ﬁ)d1 + pldQ) = (2M1 + )\l)al$1$1 - (2:“ + )‘)Eﬁlwlzla (2'6)
1

(d1,d2)(0,21) = (0,0),
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where my := puy represents the momentum of the approximate rarefaction wave. We shall
solve this linear hyperbolic system (2.6) on the fixed time interval [0,7T]. We first diagonalize
the above system. Rewrite the system (2.6) as

] GLa ), = Lo oo |

where

i 0 1

= =2 _
—F 0 3

with two distinct eigenvalues A1 (p, m1) = % ﬁ Aa(p,m1) 1 + /P’ (p) and the cor-
responding left and right eigenvectors I;, 7 (i = . For example We can choose li(p,m1) =
(22 + ()T ) rlp) = ( DI (1 p’(ﬁ))) satisfy-
ing

LAR = diag(u, %) = A, LR=1,
where L = (I1,l5) ", R = (71,72) and I is the 2 x 2 identity matrix. Now we set
(D1,D2)" = L(dy,ds) ",
then
(d,d2)" = R(Dy, Do),
and (D1, Ds) satisfies the diagolized system

Dy + | D1 = = Dp = == D 0
[ o L+ <A [ . D LtR[ o } +Lm1AR[ o } +L[ ot A | @D
Since the 2-Riemann invariant is constant along the approximate 2-rarefaction wave curve,
we have
Ly =—XoLy,, (2.8)
which is a crucial structure to solve the linear hyperbolic system (2.7) in the interval [0, 7],
otherwise, it does not seem obvious to solve easily the strongly coupled hyperbolic system
(2.7) on the bounded domain [0,7]. Substituting the structure relation (2.8) into (2.7), we
obtain the diagonalized system

. V2 ~ o o
D1y + (M D1)zy = 7(2/~L + N)etig 2, + (a11(P)pzy + a12(p)Uie; ) D1,

- V2 - N N (2.9)
D2t + <)\2D2)LI}1 - 7(2//1/ + A)gulxysl + (a/Ql(p)p:'Cl + a22(p)u1I1>D17
(Dl7 D2>(O, .Tl) == (0, 0)
In the diagonalized system (2.9), the equation of D; is decoupled with Dy due to the rarefac-
tion wave structure of the system as in (2.8). Therefore, we can solve Dy first and then Dj in

(2.9) by the standard characteristic method. Furthermore, we have the following important
estimates for the hyperbolic wave (d1,d2):

Lemma 2.3. There exists a positive constant Cr independent of § and €, such that

ok €
H@ k(dhd?)( H%?(R) < CT(W)zv k=0,1,2,3.
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In particular, it holds that
€
3

sup ||(d1, d2)(t, )|l ®) = O(—)-
te[0,7) 62

Proof. Multiplying the second equation of (2.9) by D2 and integrating the resulting equation
over [0,t] with t € (0,T) imply

D2 t _ D2
/2(t,x1)dx1+/ /Am;dmldt

/ / { (21 + N)etinz, oy Do + (a21(p)pz, + a22(ﬁ)ﬂlx1)D1D2] daydt

t t
< C/ /D%d:rldt+052/ /a%xlxldxldt+6/ /amD%dwldt
0 R 0 JR 0 JR
t
+Cj / / Uiy, D3dxdt
0 JR
t t t
< 0/ /D%d:}:ldt+6’52/ 5_1(5+t)_2dt—|—ﬁ/ /ampgdazldt
0 R 0 0 JR
t
+Cj / / Ty, D3dzdt
0 JR
t t t
2 €\2 - 2 - 2
SC/ /Dzdl‘ldt+0( ) —i—ﬂ/ /ulxlDzdxldt—l—C,g/ /’ulxlDld.CL‘ldt.
0 R 6 0 JR 0 JR

Choosing S suitably small and using Gronwall’s inequality give

/DQ t $1 d$1 —I—/ /ulxlDdeldt < CT +CT/ /ulxlDldxldt (2.10)
Now we multiply the first equation of (2.9) by pN Dy with N a sufficiently large positive

constant to be determined, and integrate the resulting equation over [0,¢] with ¢ € (0,7T) to
get

D
/p 5 (t xl)dxl—i-/ /Np UulD dxidt

D2
/ / [ (2 + Nep™ gz, D1 + p (a11(9) pay + a12(p)tine, ) DY — ﬁN/\lgq?l dz1di

t t
< C/ /pND%dmldHCa?/ /a%xmdmldwo/ /ﬁNamD%dxldt
0 JR 0 JR 0 JR
t t
< C/ /pND%dmldHC(E)?JrC/ /pNulxlD%dmldt.
0 JR d 0 JR

Choosing N large enough and using Gronwall’s inequality give

t
/D%(t,xl)dxl—i—/ /alle%dxldtSCT(E)z. (2.11)
R 0 JR 0

Combining (2.10) and (2.11), we can get

t
/(D%+D3>(t’$1)d$1+/ /ﬁm(D%+D%>dx1dt< Or(5)”.
R 0 JR
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Thus the case £ = 0 in Lemma 2.3 is proved. The other cases k = 1,2, 3 can be proved similarly
by differentiating the system k times with respect to x1, and we omit the details. ([l

2.3. Approximate Solution Profile. The approximate solution profile (p, @1) consisting of
the rarefaction wave (p, 41) and the hyperbolic wave (d1, d2) to the compressible Navier-Stokes
equations can be defined by

ﬁ(t,$1) = (,5—|— dl)(t,ﬁﬂl), ’I’hl(t,$1) == (ﬁu + dg)(t,:ﬂl) = ﬁal(t,l‘l). (212)

Then the approximate wave profile (p, u1) satisfies the system

ﬁt + (ﬁﬂl)xl =0,
(laﬁl)t + (1571% + p(ﬁ))m = (2/1* + )‘)Eﬂlwlﬂh + (ﬁﬁ% - ﬁﬂ% + ﬁ%dl - 2a1d2)x1 (2'13)
+((p) —p(p) — P (p)d1)a:,
with the initial data
(P, u1)(0, 1) = (po, ti10)(w1)- (2.14)

3. REFORMULATION OF THE PROBLEM

To prove Theorem 1.1, the solution (p°, uj,u3) to the system (1.1) is constructed as the
perturbation around the approximate wave profile (p, @1,0) defined in (2.12) and (2.13). Set
the perturbation around the approximate wave profile (p,41,0)(¢, 1) by

@(t, 1, 22) = p°(t, 21, 22) — p(t, 21), (3.1)
U(t,w1,22) = (Y1,) " (t, 21, 29) 1= (uf, ud) " (t,21,22) — (U1,0)" (¢, 21),

with (p°, uj,u5) being the solution to the problem (1.1) with the following initial data:
1, U
(p°, ug, u3)(0,z1,x2) := (po, u10,0)(z1) + (¢0, V10, V20) (1, T2). (3.2)

For convenience, we reformulate the system by introducing a scaling for the independent

variables. Set

t 1 T2

T=-, y1=—, Y2 = —-

5 € €
For simplicity of notation, the superscription of (p,uj,u5) will be omitted as (p,u1,u2)
from now on if there is no confusion of notation. And here we still use the notations
(p7 uy, U2)<T? Y1, y2)7 (ﬁa ’L~L1)(T, yl)a (ﬁv ’L_Ll)(T, yl) and (¢a \I/)(T, Y1, y2) in the scaled independent
variables, if without any confusion. From (1.1) and (2.13), we obtain the following system for

the perturbation (¢, V) :

¢r + pdivV + py2¢2 + U1¢y1 + layﬂ/]l + 7j"1y1¢ =0,
- P N~
pUr + pur Ty, + pug Wy, + (piiny,1,0)" + ' (p) Vo + (0 (p) — ;p/(p))pyl ,0)"

+((2M + )\) ﬂlzgyl ¢,O)T + ((ﬁﬂi_ﬁﬂ%‘f‘ﬁ%dl—ZﬁldQ)m (;S,O)T + ((p(ﬁ)_p(ﬁ)l;pl(ﬁ)dl)Tﬂ d)v O)T

= pAV + (1 + A)VdivV + (2 + )‘)(W)ywuoy
—((ﬁ’ﬁ% - ﬁﬂ% + a%dl - 2ﬂ1d2)y1,0)T - ((p(ﬁ) - p(ﬁ) - p'(ﬁ)d1)y1,0),

(&, 9)(0,y1,y2) = (¢, %1,¢2)(0,y1,y2) = (Y0, V10, V20) (Y1, Y2), (3.4)

where the initial perturbation is chosen to satisfy

1(d0, 10, ¥20) (41, ¥2) | 2 (e, ) = O(E). (3.5)
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The solution of (3.3), (3.4) is sought in the set of functional space X (0, L), where for 0 <
< %, we define

X(0,71) = {(¢, V)| (¢, ¥) € C°(0, 715 H?),V¢p € L*(0,71; H), VT € L*(0,71; H?)} .

We take § = £ in what follows. By the estimate of the hyperbolic wave in Lemma 2.3, we
have

, € _ 1-3a 1 -
‘dz’ SCTW_CT&— 2 S Z'O_’ Z—1,2,
provided that a < % and € < 1. Then we have
3 1 L 1 -
0<yp-=p-—gp-sp=ptdisps+p-, |u|=C,

since 0 < p_ < p < py,|ui| < C. In what follows, the analysis is always carried out under
the a priori assumption

E=EQ0,7())= sup |[(o,¥)(7)]2 <1, (3.6)
T7€[0,71(¢)]

where [0, 71(g)] is the time interval in which the solution exists and it may depend on . Under
the a priori assumption (3.6), we can get

1 3 1 i 1 1 1
0<gp- = p-—gp-Sp=0+psprtp-tp-=pstgp-, |ul<C (37)

2
because we can take E suitably small such that |(¢, ¥)| < C||(¢, ¥)(7)||2 < p—. The uniform
bounds of the density p ensure that the momentum equation (1.1), is strictly parabolic, and
thus crucial for the local and global existence of classical solution of the system (1.1).

Proposition 3.1. There exists a positive constant g < 1 such that if 0 < € < g, then the
reformulated problem (3.3)-(3.4) admits a unique solution (¢, ¥) € X (0, L) satisfying

ve

sup_[|(¢, W)(7)][3 + /O * (12 v 2 + 176, VO3 + 9302 dr

0<r<ZL

- — €

g
54

(3.8)

< Cr— + C|l(¢0, ©o) |13,

where the constant Cr is independent of €,4d, but may depend on T.

Once the Proposition 3.1 is proved, we have

sup [|[(¢, ©)(t, 21, 22) | Loc(rxr) = sup_ [[(, U)(7, 91, y2) || oo (RxT.)
0<t<T 0<r<Z

o172
+ C||(¢0, Yo)|l2,

<C sup_ (¢, )(7)l2 < Or—5

o<r<ZT
- — €
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constant C' independent of € even though the domain R x T, depends on . Thus we get

where we have used Sobolev imbedding || f|[ze®xT.) < CllfllH2(mxT.) With the imbedding

ro.r !
|’(p,U1,U2)(t,ﬂ§1,$2) - (p 7u1’0)(7)||L°°(R><T)

_ r o T
< |[(b, O)(t, 1, 22) || Loo mx) + Cll(d1, d2)(t; 21) || ooy + (25 @) (¢, 21) — (p ,U1)(71)||L00(R)

61/2 e B
< COr—y + Cel/6 1 Cr =75 + Cot n(1 4 ¢) + |n 4]

= Cre2 =20 4 CeV/6 4 Cpel=30 + CeIn(1 +t) + |Inel].

Taking a = %, i.e. & =&/6 and then the proof of Theorem 1.1 is completed.

The proof for the local existence and uniqueness of the classical solution to (3.3)-(3.4) is
standard (c.f. [32]), especially for the suitably small perturbation of the solution around the
ansatz including both the planar rarefaction wave and the hyperbolic wave satisfying (3.7),
and thus will be omitted. To prove Proposition 3.1, it suffices to establish the following a
priori estimates.

Proposition 3.2 (a priori estimates). Suppose that the reformulated problem (3.3)-(3.4) has
a solution (¢, ¥) € X(0,7i(¢)) for some 11(e)(> 0). Then there exists a positive constant €
which is independent of €,8 and Ti(¢), such that if 0 < ¢ < e1 and E(0,71(¢)) < 1, then it
holds

T1(€)
sup (6, ¥)(r)|3 + /0 [l (@) |2 + (Ve T0) [ + | V2w | dr

0<7<m1(e)

13
< CTﬁ

(3.9)
+ C||(0, ¥o) |3,

where the constant Cr is independent of € and &, but may depend on T.

We note that Theorem 1.1 follows once the Proposition 3.2 is proved. The remaining part
of this paper, i.e., Section 4, is devoted to the proof of Proposition 3.2.

4. A PRIORI ESTIMATES

In this section, we shall prove Proposition 3.2. Throughout this section we assume that
(1.10) holds with fixed p+ > 0,u;+ € R, and (3.3)-(3.4) has a solution (¢, ¥) € X(0,7i(¢))
for some 71(e) > 0. We use C to denote a generic positive constant that may depend on
(p+,u1x) but not £, and T, and denote by Cp as a generic positive constant that may

depend on (p+,u1+) and T but not € and §. Set E = sup ||(¢, ¥)(7)]|2.
0<7<71(¢)

Lemma 4.1. There ezists a positive constant C such that for 0 < 1 < 7i(e),
’7'1(6)
_1/2 €
swp G+ [ a6 601 + IVEP)ar < Crag + CllGo. o). (1)

0<7<71(¢)
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Proof. First, multiplying the second equation of (3.3) by ¥ gives

1 1 . ) ) ) -
(5P182) + Sdiv(pu W) — pudiv(6:V) = -+ N div(Udiv®) + piing,

+ u| VO + (1 + ) (div®)? + p () Ve - U + (5 (p) — gp%ﬁ))ﬁylwl

—d1ty + do

= 2+ A)( Jyrn 1 — (P — pui + Gidy — 2arda)y, 1 (4.2)

= (007) ~ p(2) ~ P (P))y o — (2 )2 g

S — (p(p) —p(p)ﬁ— P (p)d1)y, S,

 (puf — pui + ajdy — 2u1dy)y,

Define the potential energy by

2(0,0) = [P s = o 0(0) ~200) - 9)9).

Direct computations yield

(p®)7 + div(pu® + (p(p) — p(p))¥) + 1y, (p(p) — p(p) —P'(P)¢) — V' (p)V - ¥

— (@ (p) - gp’m))ﬁm — 0. (4.3)

Combining (4.2) and (4.3) together and then integrating the resulting equation over [0, 7] x
R x T. imply

(6. )]%() + /0 [l (6, 602 + [V9)?] dr
2 T —d1uq + do
<Cligo o)l | [ [ ] nr n=HEER), 7
— (paf — put + uidy — 2urda)y, 1 — (p(5) — p(p) — P (P)d)yy b1 — (21 + A)%Wl

(put — pui + uidy — 2u1da)y, (p(p) —p(p) — P'(P)d1)y,

- oY1 — 5 Pin
—diu d —dqu d
= (1“;)“11,1 (p(p) — p() — P (7)) — p(lf;“w%dyldmdf ,

(4.4)

where we have used the integration by parts

T —diug + d
/0 / /R(2M+)\)(1;)2)y1y1¢1dy1dy2d7

i —dyay +d
N _/0 / /R(QMJF)\)(1,132)yl¢1y1dy1dy2d7.
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By Young’s inequality, Lemma 2.2 and Lemma 2.3, one has

diuy +d
0| / R e e

—diu1 +d
/ |1 I2dr + C / / / (D), Pdpdyadr

_ —dqu —I—d
< 55 [ hlar et [ [(ERER), i
3
<15 [ TowlPdr + g + Crs

where we have used the following facts

dxu
//| Bz U ) [2dz dt<C//|d1x1|d3:1dt<C'T54,

dlulx
[ [ panat < ¢ [l ol i< o

and
4

t = t
dluldlx 2 2 2 g
/O /R|(ﬁ2 =)Fdrdt < C/O ld1]|Zgg ldran l7z dt < Cr 7.

By the one-dimensional Sobolev’s inequality, Young’s inequality, Lemma 2.2 and Lemma 2.3,
it holds that

o [ [ - put + wtd — 2m1d2), rdn i
e JR

[ [] (ledyldyzm\

T diuy — do 2
<c /0 r<(ﬁ)>yluy 1461125 dyodir

(diu; — d
<0 [T NIy o o i

d1u1 da)? 4/3 2/3
<L / lhay, [2dr + C / I ol / 191125 dyscr

_ d1U1 d2)?. 43
< 15 [ Mo lPar -+ ces [ RE, 0y Proar
_ (diay — d2)*,  |as3
36/ 91y, [1?dr + Cre™? sup "(7)I1||/ sup [ [*®
0<t<T P 1 0<7<T(e)
_ dity — d)?
< [ Mo+ g sl Ore 2 sup (R0
0<7<71 (€) 0<t<T p 1
1 ) 1 ) 3/2
< — d — C
<35 ), Wl g5 s Il + o
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where we have used the following facts
a2 &2
=5 P2 dipe Iy, < Clipe g ldalZ; < CT53’

g3

'LL
[ 1d2d1$1”L}31 < Clldillzgg 1dallzz, lldiay Iz, CT(59/27

and
2

2u €
| — 5, = COlldilize, i llzz, < O

Using the Sobolev inequality, Holder inequality, Young inequality, and Lemma 2.2, one has

C’/ / /(2N+)\)W¢¢1dy1dy2d7
0 . JR P

<c| / l1y0n @Iy, 191155 dyadr
1/2 1/2
L A A L P P O ] O
4/3 4/3 2/3
<% / 410 |Pr +C / Ly P
dr +C 2z (l]? %)d
W P+ [ 125 1F + 9Py
T 4/3
. /0 [drlPdr +Csup 1o+ o [ V15 e

0<7<7(¢)

| /\

IN

1 [7 4/3
<55 ), Wanllar+Ce s (16l + ) ) [ Wire 85

0<T<T1 s

<L / Iy Pdr + S sup (1% + ],

50 <r<71(¢)

It follows from Lemma 2.2 and Lemma 2.3 that

C) /OT/ /R(w)yl(p(p) —p(p) —p/(f’)ﬁb)dyldysz’

du +d
<C sup )H( = Zyl\Lw///qﬁdyldysz

0<7r<ri(e

—d1U1+d2
<Cr sw [(——=)allz sup o]
0<t<T P 0<7<71(e)
2
e €
SCT(W‘Fﬁ) sup [|g]|.

0<7<m1(¢)

The other terms in (4.4) can be estimated similarly and the details will be omitted for brevity.
Substituting these estimates into (4.4) and taking £ and ¢ suitably small, we can prove (4.1)
in Lemma 4.1.

Remark 4.1. Tt should be remarked that the hyperbolic wave (d;,d2) are crucially used in
Lemma 4.1, otherwise, the estimate (4.1) in Lemma 4.1 would not be uniform in ¢ if we just
use the approximate rarefaction wave (p, @) as the ansatz, which is quite different from the
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vanishing viscosity limit to the rarefaction wave for compressible Navier-Stokes equations in
the one-dimensional case where the hyperbolic wave is not needed to justify the limit process.

O
Lemma 4.2. There exists a positive constant Cp such that for 0 < 17 < 71(e),
7‘1(6)
sup  ([[(6, ©)(D)II” + [Vo(r)I?) +/ (a2 (6, 002 + [[(Ve, V) |?)dr
0<7<T1(e) 0 (4.5)
7'1(8)
< Crg+ CllG0. W) + Vo) + OB [ 72w Par.

Proof. Applying the operator V to the first equation of (3.3) and then multiplying the result-
ing equation by yleld

yw\? L u|Vel|2,  Vdivl - Ve
——5—)r +div +
_ _0uVO- VUi [VOPdivY  py 6y div  py V- Vi T dy,
P 2p? p? p? P (4.6)
+ 7111/1‘V¢5|2 . Py1y1 V1Py, _ Uy, y, PPy,
202 02 02

= G(Ta Y1, y2)

Multiplying the second equation of (3.3) by %¢ gives

(T - V), — div(Vo,) + div(udP,,) — div(updivd) — dw(%vmw)

21+ A\)VdivV - Ve
P
= p(div®)? + Vi - Uy, + iy 01divV + Tiyy, b1y, — iy, Y1dy,

+ (59090, + P wap -

*(M*p(ﬁ)) v Pyr + 2Py1\1jy1 Vo — p2pylv¢1'V¢

P (4.7)
2+ A —diug + da (ﬁﬁl — ﬁﬂl + ﬂldl — beldg)yl ’
+ ( ~ )y1y1¢y1 - ¢y1
p p p
p(p) —p(p) —P'(p)d 2+ A
~ (p(p) — p( )p (P)d1)y, o1 — i B
(pu? — put + uddy — 2u1da)y, (p(p) —p(p) — P'(p)d1)y,
— 7 Dby, — op o

= p(div®)* + H(7,y1,92),
here we have used the fact
AU -V )
u = dw(ﬁvwmyi) - (HV%’ -Vo)y,

P
quw\I/ V(/ﬁ

P P2 Py1 \Ilyl qu P2 Py1 VQ/)l qu
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We note that some cancellations will occur to the last terms on the left hand side of both
(4.6) and (4.7) when we multiply (4.6) by 2 + X and then add them together as in [26]. We
shall use the cancellations to close the a priori estimates.

Thus we multiply (4.6) by 2u + A, add the resulting equation and (4.7) together, then
integrate the final equation over [0, 7] x R x T, to obtain

2 —i—)\
// L2 2IVe)? + - Vo )dyrdys|; + /// \Wﬁ! dy1dyzdr

(4.8)
:/ / / (2p + NG(T,y1,y2) + p(div®)? + H(r, ylva)}dyldQQdT-
Combining (4.1) and (4.8) leads to
(¢, 0)()I? + [V (r)||* + /0 [y (6,00 1% + 11(Vo, Vo) |2 dr
< COr= 51+ Clll(d0, W) [I* + [V o]*) (4.9)

+C‘/ / /[(2u+/\)G(T,y1,y2)+H(T,y1,yz)}dy1dy2d7\,

where G and H are defined in (4.6) and (4.7), respectively. Here we just estimate some typical
terms on the right-hand side of (4.9) in G and H for simplicity. First, by Holder’s inequality,
Sobolev’s inequality and Young’s inequality, it holds that

g 201+ A
C’ / / / M72¢yiv¢-vwidy1dy2d7‘
0 cJR P

<c / IVOIIVe] 14|V adr < C / VoIVl | V| dr

<cE [ Ivelllvulhr < g [ Ivelar+ce? [ v,
0

where in the second inequality we have used Sobolev imbedding || f||z1rxt.) < C|lfll 51 ®xT.)

with the imbedding constant C' independent of €. Then it follows from Young’s inequality,
Lemma 2.2 and Lemma 2.3 that

20+ A
0| / | [ 2R bndivvindpir] < 1o [ 1991Pdr+C [T anonlPar

3160 | ||W||2dr+c<||pyl||m+Hd1ylum ) [ NulFar

< 2
< 15 [ Ivear+ oG+ 5 [Mlnliar
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Similarly, it holds that

T 20+ M\
C‘ / / / ,uigpyl?h ¢1¢y1 dyldy2d7’
0o JT.JR P

1 T T )
< 160/ H‘blﬂHQdT—l-C/ / / ‘py1y1w1‘2dy1dy2d7’
0 0 JT. JR

1 T T
160/0 Hd)ylHQdT-l-C/O prlyl||%§?||wl||2d7'

IN

IN

1 T -
165 |, Ioulldr +Crt s lpainlis  sup )P

<r<m €

< — / |y, ||2dr + Cre® S (HPmmHLw + HdlmlleLw) sup || ]?
160 <r<71(¢)

< 5 [ NowlPar +.0 <53+55> sup [

< T T\ T 7 up -
160 J, "V 5 0T o<r<(e)

By Holder’s inequality, Sobolev’s inequality and Young’s inequality, it holds that

C‘/T/ /¢V¢i~\11yidy1dy2d7"
0 c JR

< C/ VO @l L4V padr < C/ IVl IV 1dr

< CE/ V|||V dr < / |V dT+C’E2/ VY |3d

= 160

By Young’s inequality, Lemma 2.2 and Lemma 2.3, one has

C"/ / /pyld}ldwllfdyldyng‘
<5 [, 19iar e [0 Papdar

2
3160 [ 19w +0 [l o Par
<L / IV + Cre swp s swp il
160 <7< (e)
<+ / Vs + Cre swp (17 s, + i) s i
160 <r<7i(e
< — VU|2dr + Cr sup [y %
o [ v <52 65)0991@” [
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It follows from Young’s inequality, Lemma 2.2 and Lemma 2.3 that

2 +/\ —du +d
C‘/ / / : : E 2)y1y1¢y1dy1dy2d7

—diu1 + do
sum/rwmﬁh+c/'/t/r —ER) Py dyadr

—d1U1+d2 2
< — %dr +C " )aya Pdmdt
< 1g5 [ Nowiparce [ [(EHEE) par,

< a5 [ owlPar + 0r;
=160 J, Ol AT T T 56

where we have used the following facts

¢ i ) ¢ ) &2
/ /|(~d1m1m1)‘ dzdt < C/ /!d1x1x1| dzdt < C'Tﬁ7
o Jr P 0 JR

t 2d 14, Uty ¢ _ g2
| IR paayde < € [ i, i 3 dt < O,
t di - t - 82
| [ mem panar < ¢ [yl i< o,

2d$dx
//' “21|dﬁ<C/H%ﬂmehwﬁ“%$,

¢ 2’&1(11[)2 t g2
(S5 Pdydt < C [ N|du|2s (17 e dt < Or .
o
0 JR P 0 z1 1

Similarly, we have

T s~ 522 —2d — 2%1d
C‘/ / / (pul pu1+u1 1 2! 2)2;1 ¢y1dy1dy2d7—

and

p
1 T T o L _ _
<L / I I2dr + C / / / (52 — T + Wy — 20i1ds),, Pelysdyadr
160 J, 0 . JR

1 T 2 1 /t/ (dlﬂl - d2)2 2
< — d C )z, |"dz1dl
<5 ) WowlPar+oet [ ] (B0, P,

<% /TH¢> 2dr + Cr
1 - £
=160 J, "V s

where we have used the following facts

t ﬂ2d2ﬁz t ~ E4
/ / (A0 Paar < ||d1u%;oHpmu%goudluig at < Crsy,

uid? dul g8
I )|*da1dt < C ||d1||L°°”d1$1||L2 dt < CT510’

t 272d d . t 4
//k“lPIWmmsc/um%me§ﬁsoﬁr
0 JR P 0 1 1 0

The other terms in (4.9) can be analyzed similarly and the details will be omitted for brevity.
Substituting these estimates into (4.9) and taking 51, € and E suitably small, we can prove
(4.5) in Lemma 4.2. O

and
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Lemma 4.3. There exists a positive constant Cp such that for 0 < 7 < 11(¢g),

Tl(E)
sup  [|(¢, W)(7)|3 + /0 @y (6,401 + (Yo, V)12 + [|V2 T2 dr

OSTSTl( )

SC'T

(4.10)

=+ Cll(o, o) 3

Proof. Multiplying the second equation of (3.3) by —AW¥/p gives

|2 A
(’V2’)T — div (i, Vi + E : div¥UVdiv¥ — ;

/
\A\m? ; \dem?_uz\pyl AT + E))wﬁ A + iy, Y1 Aty

Ad’L'U\IJA\IJ)

/ /(5 A A
n (p () _ p;p))[;ylmm - “:2 divUVe - AW + “:2 divWV e - VdivW
2u + A —diug + dy
( - )y1y1Aw1 (4.11)
p p
N (ﬁﬂl — puj + ildl —2mda)y, , W00) —P(P) - P'(p)d1)y, At

A A
—5 Py divV Ay + M; Py divVWdivW,, —

— pu? + uddy — 2u1da)y,
pp
POy = K(T,y1,2)-

20+ A U
s BNy ot + P

(p(p) — p(p) — P'(P)d1)y,
pp
Integrating the above equation over [0, 7] x R x T, yields

V()2 + / AT |2dr < C|VT|? + €| / /T /R K(ryn,yo)dyndpdr|.  (4.12)

OYAN U

_l’_

We just estimate some terms on the right-hand side of (4.12) in K as follows. It follows from
Young’s inequality that

AL L o
AT|? 2 v
<15 | 1aw d¢+c/ (19617 + [V 2]2)dr

By Young’s inequality, Lemma 2.2 and Lemma 2.3, one has

C‘/ / /ulylwlAwldyldyng < 160/ 1A | d¢+c/ / /\ulylwly dy1 dysdr

i [ 1wl on S+ 5) sw

0<7<71(¢)

/
i <p) V- A\Ifdyldygdf‘

- 160

By Holder’s inequality, Sobolev’s inequality and Young’s inequality, it holds that
A

| <0 [ NAVITolL Vi

€

<c / | AT V][V udr < / | AT |2dr + OF? / IV 2dr.

= 160
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It follows from Young’s inequality, Lemma 2.2 and Lemma 2.3 that

+ A T T
C”/ / /“ Py VW Aprdyrdy2dT| < 160/ ’AleQdTJFC/ 7y, div ¥ || 2dr
; 0

< 135 | NawlPar v on + 5 [Tivwipan

All the other terms in K (7,y1,y2) can be analyzed similarly. Then substituting the resulting
estimates into (4.12) and the elliptic estimate [|AV| ~ ||[V2T| give

IVE()|? + / V20 %dr

3
< WNE 2
CT57+CHV oll* + O ( 5 55)0§§1§12(5)\\(¢,¢1)H (4.13)
2 54 T T T
+CT(62 55)/ ]V\IIH2dT+CE2/ ||v\11||§dr+c/ 1(Vo, VI)|*dr.
0 0 0

Combining (4.5) and (4.13) and taking +;,e and E suitably small, we complete the proof of
Lemma 4.3. n

Lemma 4.4. There ezists a positive constant Cp such that for 0 < 1 < 71(e),

71(€)
sup  ([[(6, @)D + [V2(r)|2) + / @y (6, w0)? + [(Vo, VO)|2] dr
0<7<71(¢) 0 (414)

c 71(€)
< Crgy + OG0 W + V%60 + OB [ 92w Par

Proof. Applying the operator V2 on the first equation of (3.3) and then multiplying the
resulted equation by V2¢/p?, we have

V20| Cu|V2g2. V26 - V2diol
( 2p2 )T‘i‘dl’l)( 2/)2 )+ P

_ divTV2GP?  pyy divTyy, ¢y, Vy, - Vdivl 25, Vo, - Vdivy

202 2 02 2
_ Vo - Vo divd,, _ Vip; - v¢yi¢yiyj _ wjyz‘VQbyj -Voy, _ ¢yiv2¢ : vzwi
P P> P P (4.15)
_ Uty yy Pys Pyrys _ 2alyl|v¢y1 ’2 . Py1yryn V1Py1y: _ 20y15, V1 - Vo,
p? p? p? p?
. ﬁy1v2¢1 ’ V2¢ _ a1y1y1y1¢¢y1y1 B 2ﬁ1y1y1v¢ ) v?bzn + 7~~’le1’v2¢|2
p? p? p? 2p?

= L(Taylva)'
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Then dividing the second equation of (3.3) by p, applying the operator V on the resulting
equation and then multiplying the final equation by V2¢, we have

(VU - V26), — div(dyr Vibi — withy, Vibyy, +uVe - AU + %%yj Vb, )

/
n (%v% iy, )y + L E)”) 1V2¢)2 — L2924 . V2w

= pVdivV - AV + py, divW Aipy + ¢y, Vi - Vipjy, + Uy, Vo - Wy,
+ qbyszl AV + Z~L1yl ¢y1 A% + ﬁy1y1'¢1A¢1 + ﬁyl v¢1 AW
+ alylyl PAYP1 — wjyivwi ) v¢yj - alyl wjyl (Z)ylyj - ﬂlylyl ¢1¢y1y1

20+ A
p

1y V- Yy, — <p'(p”) V60 V6 - Vs — 2<M>’ﬁyl Vo Vo,
AN AD P AN (ﬁ)mmylyl

p p p b
p p b
+ ?Wﬁ “Viy, Gyiy; — 7¢yiv¢yj - Vipiy, + p2 5Py Viyry; Puiy,
- %ﬁyl Vﬁbyj : leyj V¢ V%ZAW - pg pyl ¢y1yzA¢i

M+A A
i div Wy, — 02 5 Py Py div Yy,

(4.16)

2u 4+ A —diug + do 2u+ A —diug + da
+ ( —) Gyryn — ( —— )y VO -V
P F; y1y1y1 Py1y1 pg F; Y1y1 Y1
2u 4+ A —diug + do 2u+ A _
- ( - Jyryr Py Py — —= U1 olo)
p2 p Y1y1Fy1vyiy1 pp Y1yi1y1 Yiy1
C2u+ A Cp+Np+p) .
2 Uy, VO - Vo, + 7202 Py Uty @Dy

B [(ﬁa% — pus + utdy — 2a1d2)y1]
p
= pVdivV - AV + M (7, y1, y2).

[(p(ﬁ) —p(p) — p'(p)d1)y, ]
F;

Y1 ¢y1y1 - Y1 ¢y1y1

We multiply (4.15) by 2u + A, add the resulting equation and (4.16) together, use the same
cancellations as in Lemma 4.2, and integrate the final equation over [0, 7] x R x T. to get

2 +A
// PT2A\0202 + v - v2 dyldyg\o /// \v2¢| dy1 dyadr

2/ / / PVdiU\I"A\I’""(2N+/\)L(T>yl7y2)+M(Tayl,?/2)}dyldy2d7'-
0  JR

(4.17)

The combination of (4.10) and (4.17) leads to
(6, 0)(T)|3 + [V 26(7)||* + /0 @y (6, w0)l? + (Vo, VO)|2] dr
< Cr 57 + O(ll(do, W0) I} + [V%60]* (4.18)
+C|/0 //R [(2M+>\)L(T, y1,y2) + M (T, yhyz)]dwdyszl-
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Now we estimate some terms on the right-hand side of (4.18) selectively. By Hélder’s inequal-
ity, Sobolev’s inequality and Young’s inequality, it holds that

T 2 _,_)\ ) T
Cy/ // a 7 dw\pyv%y?dyldmdﬂgc/ V| oo | V20| 2dT

<CE / V05|Vl dr <

< g5 | I9%ldr +-cB® [ [vwigen

By Holder’s inequality, Sobolev’s inequality and Young’s inequality, one has
T 2/.L -+ A . T 2 .
C\ LT YuVou - VdivWdydyzdr| < C HV OVl Lal|Vdiv¥| padr

<c / V26|V )11 [ V2 1 < / V262 dr+0E2 / V20| 2dr.

= 160

Similarly, one has

Vo - Voy,dyidysdr] < C / V26| Vo2 adr

<c [FIvoliveliar < w5 [TIVPolPar + oB® [ 9ol
0

By Young’s inequality, Lemma 2.2 and Lemma 2.3, it holds that

¢ / [ [y — Ry 6
3160 | 10unliar+c / | [ orandyn

i 3 | 10l +C [ 1,15 NolPar

| /\

< 155 | 10mnliar+Cret s il sw ol
<r<71(e
3 7 5
< = ¢ dr + Cr sup ||@]°.
55 | WowmlPar+cr(Gy 510)%@(5)” H

It follows from Young’s inequality, Lemma 2.2 and Lemma 2.3 that

2u+ X\, —diuy +d
C|/ / / ( : 1 2)y1y1y1¢y1y1dyldy2d7'|

—diu1 +d
é 160/ ||¢y1y1|| dT+C/ / /| ! 1 2)y1y1y1| dylddeT

—dyu1 + do
< 160/ |’¢y1y1||2d7—+05 / /‘ f)£1$1$1| dxldt

< 155 | 16unlPar+Crs,

where we have used the following facts

t ﬂl 9 t ) 52
/ / (o) Pdardt < C / / gy Pradt < Cr g,
o JrR P 0 JR




24 L-A. LI, D. WANG, AND Y. WANG

t = t 2
3d; U _ €
() Pdadt < O ldiaga 72 s, |7 dt < O,
0o Jr p 0 o1 o 0

! 3d1z, Uiz,2: |2 ! 2 s 2 e
(— =) deidt < C | |dia, |72 W20, I70 dt < Cr—,
o JR P 0 71 1 4

t dlﬂlxlzlxl 2 t 2 _ 2 52
IR Pdndt < O [Ty e g dt < COr

3U1d1x x dlz 4
//! ) Pda dt<0/ o, o105, 0 < Oy,

6d
/ / ululmlpxl)] dxydt < C/ |!d1x1||L2 Hulz1||L°° dt < CT(;?’

t Gd%xlﬂlxl 2 t _ 2 2 2 64
()P dzdt < C | |Gz, (|25 | dia, |25 I d1an 7z dt < Crgg,
0o JR P 0 ! ! 1

2

t = = t
3d1u1 _ — €
|1l s < € [y v s Im s dt < O

t 6I_L1d£13 t €6
/ / [(——=1) Py dt < C/ Hdlle%gol Hdlml\ligldt < Crsig
0o JR P 0

and
2

t 6d1U1z, P2, | o t €
—— Y24, dt < C dil|?2 ||G1g, ||S e dt < Cr—.
| L1t < ¢ [k laalts o < oo

By Young’s inequality, Lemma 2.2 and Lemma 2.3, one has

T 2+ N —dyiig +d
C’/ / / ; P’ (— /1) %)y VO - Vaby, dyndysdr|

dlul—l-dg T
<C swp (FHER) ylyluL;g / IVl Yy lldr

0<T<T1( )

< 15 | Ivowlar+ o+ 5 [ 190l

It follows from Young’s inequality, Lemma 2.2 and Lemma 2.3 that

20+ A d1U1 + do
C| / / / ( = )ylylpzn ¢y1y1dyldy2d7'|

—d1u1+d2
< 155 | 10uliar+c / / / S P dyedr

d1u1+d2
< 160/ by |I2dr + C(E 52 55 / //\ f)ym dyrdyadT
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By Young’s inequality, Lemma 2.2 and Lemma 2.3, one has

~~2 =2 —92 _
C’/ / / (e | )yl] ¢y1y1dy1dy2d7\

(1
= Uldl d2)?)y
< 160/ H‘by1y1”2d7+c/ / / p 1] 1|2dy1dy2d7'

1
(5(u1dy — d2) )
= / [Gyuunll%dr + Ce / [0

where we have used the facts

3u1

g2 Pt < © [l el Vo < '

3u? 8
A / (Lt st < C [ il o s i s, < O

t 671% N2 ! 2 2 =~ 12 et
[ 1 it Pt < € [ o s < €,

6u? 6
[ [t Parsat < € [ vl Nl o gt < O

t 4
U _ e
/ / | ldlpmxl | dzidt < C/O Hle%gl Hdl”%g<1> HmelHQngdt < CTﬁv

6
’LL
[ [k Pariat < € [l Vv s dt < O 2

22 et
/ 1, ot < / e, 25 dren 3 e < Oy,

and
4

' 2u 2 ' 2 2 €
| [ 1 )Pz < € [l Mol at < Crs.

The other terms in (4.18) can be analyzed similarly and the details will be omitted for brevity.
Substituting these estimates into (4.18), using the elliptic estimates |AW| ~ [|[V2¥| and
[VAY|| ~ [[V3¥| and taking &, ¢ and E suitably small, we can complete the proof of
Lemma 4.4. U

Lemma 4.5. There ezists a positive constant Cp such that for 0 < 1 < 7i(e),

Tl(E)
sup  [|(¢, W)(7)|3 + /0 @y, (6,902 + [(Vo, V)2 + V202 dr

0<7<71(¢)

£
< C’Tﬁ + C||(¢0, To)|I3-

(4.19)
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Proof. We divide the second equation of (3.3) by p, apply the operator V to the resulting
equation and then multiply the final equation by —VAW to obtain

V2]

A
5 ) div(%ijwyj + M;div\Pyiniv\Ilyi _ kA

A
( B v, A,

\vmf\? p |V2d 002

= u;VUy, - VAT + 2 )v2¢ VAW + 1y, Vb - VAP, + 11y, Uy, - AT,

/
+ Uty g Y101y, + Uy, VY1 - VAY + (p ;p) ) by, Vb - VA1,

+ Py, 96 0w, + (2 ff Y5, V6V 1 + [( f)p by (& (ﬁﬁ))']ﬁf/l&wlyl
+ (2 ip) D éﬁ))ﬁylylwlyﬁ@Amw.vmpi pzpylmz AW,

A A +A

- %(byiniv\Il - VAY; — K +2 Py Vdiv¥ - VAY) + ——div¥,, Vo - VdivV,,
p p*

A A A
+ £ :2 Py VdivW - Vdivl,, + 'u;;div\lfyngﬁ VA + :2 P O, - VdivW
_ 2u+ A(—dﬂh + do

p p
2+ X, —diug + do . 2+ A

+ p2 ( F; )ylylpyl Awlm + Tulylzﬂm ¢A¢1y1

2+ A —dity + do
)y1y1y1A¢1y1 + pg ( : é )y1y1v¢‘VA¢1

24+ A 2u+MN)(p+p _
p2 Ulylyl VCZS VA7/’ ( pg?o(g )Py1 Ulyrys ¢A¢1y1
(pi — puf + ujdy — 2u1dy) (p(p) — p(p) — P (p)d1)
+ [ ﬁ - :|y1 A’ll)lyl + [ ﬁ - :|y1 A’Z/}Lyl
= N<7_7 Y1, Z/Z)
(4.20)

Integrating the equation (4.20) over [0, 7] x R x T, yields that

Hv211/(7)u2+/ ”vmf\\?dTgcyyv2m0\|2+o\/ / /N(T,yl,yg)dyldygdr. (4.21)
0 0 e JR

Now we just estimate some terms on the right-hand side of (4.21) as follows. It follows from
Young’s inequality that

Cy/ / /ulv\pyl VAT + <)v2¢> V AUy, dysdr|

<155 | IV [Tavol + (vt R)ar
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By Young’s inequality, Lemma 2.2 and Lemma 2.3, one has

T / /[~
e / | [ nny e
w5 | 1w parsc [0 / / Pl dadysdr

i [ 180l + O+ 5 s ol

0<r<71(¢)

| /\

< —
— 160

By Holder’s inequality, Sobolev’s inequality and Young’s inequality, it holds that
o[ [ [ Gsuve- vavdndpir < [T 1Av AT 1T
<c [LIvau|aviveldr < o5 [T Ivaviar +oE® [ javkar

By Young’s inequality, Lemma 2.2 and Lemma 2.3, one has

C’|/ / /]R 5Py AV - AV, dyrdyadr|
< w i | 18%lPar+c [, aviper
<155 | 18w P+ C / I3z 12 2] 27

< 155 | 18w Par+ cr+ ) [Tlawipar

By Young’s inequality, Lemma 2.2 and Lemma 2.3, it holds that

" 20+ A, —dyiig +d
C|/ / / upz ( : ; 2)y1y1v¢'VA1/)1dy1dy2d7—|

T —dyu +d
<c / ||<#>ym||m||v¢||umwl||df

<1 IV 2+ Cr( + S5 / Ivol2dr.

Similarly, one has

dy — 2u1d
C’/ / / pul pul+u1 1 — U1 2)?/1] AdjlyldylddeT‘

1
7 Uldl d2)?)y
w65 | 16l / /| [ "), Pdidyeds

7
/ | Ay |Pdr + Cr S

9 £
+ CT515 + CT612

< —
— 160 59

27

The other terms in N(7,y1,y2) can be estimated similarly as before. Then substituting all
the estimates into (4.21) and using the standard elliptic estimates |AV| ~ [|V2¥| and
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VA ~ [[V3¥]], it holds that

V20 ()% + / V3| 2dr
0

5 T T
< Crl + CIV WP +C [ 1726, VW) |Par + CE® [ (V6. VU0 (422
0 0
e D) s ol + 5 [ 176 9w v
T 54 57 OSTSE(E) , Y1 T 52 55 0 ) s T.

Combining (4.14) and (4.22) and taking &, and E suitably small, we complete the proof
of Lemma 4.5. O

Finally, taking 53, and E sufficiently small, saying e < e1(e),0 = el/6 B < 1, we ob-
tain the desired a priori estimate (3.9), which finishes the proof of the a priori estimates in
Proposition 3.2. Therefore the Theorem 1.1 is proved.
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