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1. INTRODUCTION

Continuous Time Markov chains (CTMCs) are widely used
to model and analyze networked systems. A common analy-
sis approach is to solve the system of balance equations gov-
erning the state transitions of a CTMC to obtain its steady-
state probability distribution, and use the state probabilities
to derive or compute various performance measures.

In many systems, the state space of the underlying CTMC
is infinite and multi-dimensional with state-dependent tran-
sitions; exact analysis of such models is challenging. For
example, the exact probability distribution of the number
of jobs in the Discriminatory Processor Sharing (DPS) sys-
tem, first proposed by Kleinrock in 1967 [4], is still an open
challenge. Likewise, obtaining the exact state probabili-
ties of quasi-birth-and-death (QBD) processes with level-
dependent transitions is known to be challenging [1]; QBDs
are infinite state space multi-dimensional Markov chains in
which states are organized into levels and transitions are
skip-free between the levels.

A common approximation approach for such CTMCs is
to truncate the state space, in one or many dimensions, and
solve the resulting truncated CTMC with finite state-space,
using analytical or numerical methods (such as matrix an-
alytic methods). If truncation bounds are chosen carefully,
the steady-state distribution of the truncated chain should
approximate those of the original infinite chain accurately.
However, an arbitrary truncation may result in inaccuracy;
that is, the computed steady-state distribution and perfor-
mance measures from the truncated CTMC may not closely
approximate those of the original CTMC.

Truncation algorithms have been designed for this exact
reason. For example, algorithms based on Lyapunov func-
tions guarantee to provide truncation bounds to satisfy a
desired accuracy [3]; if the maximum acceptable error is
0 < e < 1, the probability mass of the states residing within
the truncated CTMC is guaranteed to be at least 1 —e. The
central idea in the state-of-the-art Lyapunov function based
truncation, proposed by Dayar et al. [3], is to identify an
attractor set, a subset of states towards which the CTMC
drifts, and then truncate the infinite state space to ensure
that the attractor set is part of the truncated CTMC. The
drift of the Lyapunov function (the expected rate of change
in its value) is finite for states in the attractor set, and is
negative for states outside the attractor set, facilitating the
determination of the attractor set.

An issue with such truncation methods is that they lead
to loose bounds, which results in unnecessarily large trun-
cated CTMCs and consequently, expensive time and com-
putational effort to analyze them. Such methods are con-
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servative due to the fact that the truncation algorithms do
not leverage any properties of the original CTMC.

In this short paper, we improve the Lyapunov function
based truncation to provide tighter bounds to satisfy a de-
sired accuracy on the probability mass of multi-dimensional
CTMC:s for which the moments are known but the steady-
state distribution is unknown. By leveraging the known mo-
ments, we scale the drift function more efficiently to obtain
tighter truncation. Our truncation approach results in the
same computational complexity as Dayar et al. [3] to obtain
the bounds, but provides significantly tighter truncation.

We note the reliance of our approach on the moments
of the state variables of the original CTMC. However, we
note that our approach also applies to CTMCs for which a
lower bound on the moments is known. In general, know-
ing the moments is not enough to obtain the steady-state
distribution; the DPS system is an example of a CTMC
for which the moments of the number of jobs are known [5],
but its steady-state distribution is unknown and needs to be
computed. In today’s customer-facing online services, e.g.,
Amazon, performance metrics typically take the form of tail
probabilities, thus requiring the steady-state distribution.

We demonstrate the effectiveness of our proposed trunca-
tion procedure in computing the steady-state distribution of
the DPS system, which has been studied for decades [4], but
continues to be a “class of models notoriously hard to ana-
lyze in an exact manner” [6]. Since the exact moments of its
queue-length distribution are known [5], our procedure can
be applied. Through our extensive numerical experiments,
we show that our proposed procedure achieves on average
32%, and up to 68%, tighter truncation bounds over those
obtained from the state-of-the-art Dayar et al. technique [3].

2. PROVIDING A TIGHTER TRUNCATION

Let {N(t),t > 0} be an ergodic k-dimensional CTMC
with state space S and generic state n = (n1,n2,...,ng).
Let N; denote the random variable corresponding to n;, with
N(t) = (Ni(t), Na(t), ..., Ni(t)). Let m(n) = w(n1, na, ..., nk)
denote the steady-state probability of being in state n, and
let @ denote the infinitesimal generator matrix. Without
loss of generality, assume that the CTMC is infinite in m-
dimensions and finite in the remaining (k — m) dimensions.

The stability of a Markov chain can be established if a
Lyapunov function that maps the state space to positive
real numbers is found such that its drift (the expected rate
of change in its value) is negative outside a finite subset of
the state space, known as the attractor set (C), and is
bounded in this finite subset. Formally, if N(¢) is ergodic,
there exists a Lyapunov function g : S — R>¢ and set C' C
S, with C = S\ C, such that for some v > 0 [3],

L. (d/dt) Blg(N({)IN() = n] < —, Vn € C,

2. (d/dt) Elg(N(t))|N(t) =n] < oo, Vn € C, and
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Figure 1: Comparison of our state-dependent drift bounds
(f1(n;) and fa2(n;)) with the supremum bound (c).

3. {n € Slg(n) < r} is finite, Vr < oo,
where d(n) = (d/dt) E[g(N(t))|N(¢) = n] is the value of the
drift function in state n.

Dayar et al. use the above conditions to derive an upper
bound on the probability mass in C. The authors define
a function g*(n) = g(n)/(c+~), where ¢ = sup,gd(n)
(note that c is finite from condition 2) and <y is as defined in
condition 1. Consequently, using condition 1, we have:

sy dm) ¢
d(n)_cﬂgc+7 I, (1)

where Iz = 1 if n € C and 0 otherwise. If d is the vector

of the drift function values, g is the vector of the Lyapunov

function values, and 7 is the vector of steady-state proba-

bilities for all the states, then, by the definition of drift [3]:
d¥ =Q¢" = wd¥ =7Q¢" =0

= 7d”" =7Qg™" =0. (2)

Using Egs. (1) and (2), a bound on the probability mass in
C is obtained as follows:

0= d"(n) n(n) < Zﬂ'(n)-cjfyfzw(n)

nes nes neC
C
— E n) < E n) - = . 3
e?ﬁ( )_nesﬁ( ) ety ety ()

This guarantees that the probability mass in C' is at least
1 —c¢/(c+ ). Hence, the value of v obtained by solving
¢/(c+ ) =€, where 0 < € < 1, guarantees that a truncated
CTMC containing C' satisfies the accuracy 1 — € on the loss
of probability mass outside the truncated CTMC. Once ~ is
found, the set C can be found as follows:

C={neS|dn)> -~} (4)

Eq. (3) provides an upper bound on the probability mass in
C; the actual mass could be much smaller than ¢/(c + 7).
The authors in [3] acknowledge this issue. Indeed, our ex-
periments in Section 3.1 show that the truncation bounds
obtained using the above technique are quite loose.

2.1 Our approach: bounding the drift

Our goal is to find tighter Lyapunov truncation bounds
than those obtained via Dayar et al. [3] without sacrificing
accuracy. A tighter truncation reduces the state space size,
and results in more efficient and less time-expensive compu-
tation to obtain the steady-state probabilities of the states
that encompass most of the distribution mass.

Dayar et al. bound the drift function in Eq. (1) by the
trivial upper bound of ¢ = sup, .5 d(n). The advantage of
using the supremum is that the bound on ) _=7(n) in
Eq. (3) can be easily obtained as > . 7(n)-c/(c+7) =
c¢/(c+ ). To illustrate this, the solid black plot in Fig. 1
is the drift as a function of the state variable n;, d(n;), for
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Figure 2: M/M/1-DPS with two customer classes; for state
(4,7), i and j are the number of class-1 and 2 jobs.

the DPS chain that we analyze in Section 3.1; the dashed
black line is the supremum, c¢. The drift is a state-dependent
function, however, the supremum (the bounding function of
the drift in [3]) is a fixed function that does not adapt to
changes in the state variate. Hence, the supremum is a loose
upper bound on the drift function; as Fig. 1 shows, ¢ deviates
substantially from the drift for higher values of n;.

The key idea in our approach is to employ a state-dependent
function that mimics, to some extent, the changes in the
drift function in response to the state variate to provide
tighter upper bounds for the drift function; examples of such
functions include a decaying function (e.g., fi(n;) in Fig. 1)
or a step function (e.g., f2(n;) in Fig. 1). However, when
using a state-dependent generic bounding function, f(n), in
place of ¢ in Eq. (3), the weighted sum ) w(n) - f(n) may
not be easily obtained in closed-form, making it difficult to
solve for the set C. We formalize this challenge below.

Consider a generic bounding function, f(n), that bounds
the drift, d(n), i.e., f(n) > max(d(n),0), Vn € S. Defining
h(n) =d(n)/(f(n) + ), we have, similar to Eq. (1):

T i+ T S+ T
Using Eqgs. (2) and (5), we have (similar to Eq. (3)):
(n a(n). A _ gl 1)
2w < 2 ) s el ©

The set C' can be obtained by setting the right-hand-side of
Eq. (6) to ¢, solving for v, and then using Eq. (4). However,
this requires knowing the expectation of f(n)/(f(n) + 7).

hny = 20 o T (5)

2.2 Bounding the drift using a step function

We demonstrate the applicability of our approach using
a step function, illustrated in Fig. 1 as f2(n), that initially
is equal to the supremum, and drops to a lower value, c1,
along one dimension of the state space (for simplicity), to
provide a tighter upper bound on the drift for larger n.

We improve the upper bound of the drift along an ar-
bitrary infinite dimension, say dimension i € {1,2,---,m}
corresponding to the i*® state variable, N;. We formally de-
fine the step function, which drops to ¢; < ¢ for n; > a, as
Eq. (7), and substitute it in Eq. (6) to get Eq. (8).
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Figure 3: Reduction in state space over Dayar et al. for different total (p) and per-queue (p1 and p2) offered loads.

The Paley-Zygmund inequality says that for a positive ran-
dom variable X and 0 < 6 < 1, Pr(X > 0E[X]) > (1 —

0)’E[X]? /EHXQ}. Applying this inequality for N; and set-

ting a = 0E[N;], we can write Eq. (8) as follows:
c c 1 5 E[N;)?
< — - 1-6 . 9
%W(n)_wv (C+7 01+7)( "B ©

The above would result in tighter truncation bounds than
Dayar et al. when ¢; # ¢. However, such bounds depend
on the availability of the first and second moments of the
marginal distribution of N;.

3. APPLICATION TO THE DPS SYSTEM

We demonstrate the applicability of our technique for
the DPS system, which is an M/M/1 queue with multi-
ple customer classes that operates under a disproportion-
ate processor sharing policy [4]. In DPS, the server ca-
pacity is processor shared based on a given weight vector
a = (a1, az, ..., ax), where a; is the weight associated with
class-i. If there are N; jobs of class-i, each class-j job gets
a fraction a;/ 3% a;N; of the server’s capacity.

For evaluation, we consider k = 2 customer classes. Fig. 2
shows the corresponding CTMC with two infinite dimen-
sions where A; and p; are the arrival and service rates of
customer class ¢ € {1,2}. The transition rates from state
(4,7) to (i —1,7) and (¢,7 — 1) are r; ; = do1 1/ (taq + joz)
and s;,; = jaopa /(i1 + jaz), respectively.

While the DPS model was introduced in the late 1960s,
the exact probability distribution of the underlying CTMC
continues to remain elusive due to the complex and non-
repeating structure of its multi-dimensional infinite CTMC.
However, the exact moments of the DPS system are known [5],

enabling the application of our truncation bounds from Eq. (9).

3.1 Evaluation

As reported in the stability literature [2], function g(ni,n2) =

(a1m1)/2A1 4 (a2n2) /22 is a feasible Lyapunov function for
the DPS model, and its drift in state (n1,n2) is:

d(n1,m2) =X (g(n1+l,n2) —g(n1,n2)) +A2(g(n1,n2+1) — g(n1,n2))

+s1(g9(n1—1,n2) —g(n1,n2))+s2 (g(n1,n2—1)—g(n1,n2)). (10)

The first step in finding the truncation bounds is to define
the function in Eq. (7) by setting an appropriate value for
a, which in turn is determined via 6 since a = 6E[N;]; ¢
is the dimension along which the bound is being improved.
Noting that a smaller § provides a tighter bound in Eq. (9),
we set § = 0.01. We then derive a by obtaining E[N;] via
the known moments of DPS [5]. We then compute ¢ and ¢;
via Eq. (7). Finally, using the known second moment [5], we
compute the right-hand-side of Eq. (9); by setting this to €,
the tolerance for probability mass loss, we solve for -y, which
in turn gives us the attractor set C' via Eq. (4). The chain is
then truncated such that it includes all the states in C. In

our experiments, we truncate the DPS CTMC along the two

dimensions at m;1 = max ni; and me = max no.
(n1,m2)€C (n1,m2)€C

To evaluate the improvement in truncation over Dayar et
al., we numerically experiment with 72 different parameter
sets for A1, A2, p1, and po, spanning the offered load in
the range [0.1,0.95]; offered load is expressed as p = p1 +
p2, where p; = A\;/u;. For each parameter set, we vary
ay € {0.2,0.5,0.8} (a2 = 1 — a) and the truncation error
e € {1071,107%,107%,107*,107°}. We obtain truncation
bounds by employing the step function over either dimension
(¢ ={1,2} in Eq. (7)), and use the tighter of the two.

We find that the p, p1, and p2 values impact the trunca-
tion improvements over Dayar et al. significantly; we thus
present the results along these parameters in Fig. 3, which
plots the improvements for € = 107! and e = 1072; results
are similar for other e values. We see that our approach
provides as much as 68% reduction in the state space over
Dayar et al.; in other words, the truncated chain can be up
to 68% smaller while maintaining the same accuracy level.
In general, the improvement is highest for moderate offered
loads (p ~ 0.5). Across all experiments, the average im-
provement is around 32%. For 0.5 < p < 0.95, the average
improvement is 38%; since the truncated CTMC contains
more states for higher loads, the absolute reduction in state
space (number of states) is much higher for this range.

We also compare the obtained moments from the trun-
cated chains with the exact ones provided in [5]. For e = 0.1,
the average errors for the first three moments are around
107%%, 1073%, and 2 x 1073%, respectively. We further
validate our approach by comparing the steady-state dis-
tribution of the truncated CTMC for oy = a2 = 0.5 with
that of the classical processor sharing system, which is a
DPS with o1 = a2. The maximum observed difference in
per-state probability, for e = 0.1, is only 107%%.
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