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A discrete non-linear o-model is obtained by triangulate both the space-time M ! and the target
space K. If the path integral is given by the sum of all the simplicial homomorphisms ¢ : M4 — K
(i.e. maps without any topological defects), with an partition function that is independent of space-
time triangulation, then the corresponding non-linear o-model will be called topological non-linear
o-model which is exactly soluble. Those exactly soluble models suggest that phase transitions
induced by fluctuations with no topological defects usually produce a topologically ordered state
and are topological phase transitions. In contrast, phase transitions induced by fluctuations with all
topological defects give rise to trivial product states and are not topological phase transitions. Under
the classification conjecture of Lan-Kong-Wen [Phys. Rev. X 8, 021074 (2018)], it is shown that, if
K is a space with only non-trivial first homotopy group G which is finite, then those topological non-
linear o-models can already realize all 34+1D bosonic topological orders without emergent fermions,
which are described by Dijkgraaf-Witten theory with gauge group 71 (K) = G. Under the similar
conjecture, we show that the 341D bosonic topological orders with emergent fermions can be realized
by topological non-linear o-models with 71 (K) = finite groups, m2(K) = Za, and mp»2(K) = 0. A
subset of those topological non-linear o-models corresponds to 2-gauge theories, which realize and
may classify bosonic topological orders with emergent fermions that have no emergent Majorana
zero modes at triple string intersections.

CONTENTS B. 2-gauge theories 14
C. 2-group cocycles 15
Introduction 2 D. Cohomology of 2-group 16
A. Background 2
B. Realize topological orders via disordered V. Pure 2-gauge theory of 2-gauge-group B(Il2, 2) 16
symmetry breaking states without topological A. Pure 2-group and pure 2-gauge theory 16
defects 3 B. Pure 2-gauge theory in 3+1D 17
C. Realizations of all 341D bosonic topological 1. n = odd case 17
orders 4 2. n = even case 18
D. Notations and conventions 5 3. Properties and duality relations 18
Topological non-linear o-models and topological VI. 341D 2-gauge theory of 2-gauge-group B(Gy, Zg) 18
tensor network models 6 A. The Lagrangian and space-time path integral 18
A. Discrete defectless non-linear o-models 6 B. The equivalence between
1. A detailed description of simplicial complex 6 [ko, e2(a), ns(a), va(a)]’s 19
2. A simple definition of discrete non-linear C. 2-gauge transformations in the cocycle o-model 20
o-model 6 D. The pointlike excitations in the 2-gauge theory 20
B. Exactly soluble tensor network models 7
C. Topological non-linear o-models 8 VII. Classify and realize 3+1D EF1 topological orders by
D. Labeling simplices in a complex 9 2-gauge theories of 2-gauge-group B(Gy, Z‘Qf ) 21
Dijkgraaf-Witten gauge theories from topological VIII. Realize 3+1D EF2 topological orders by topological
non-linear o-models 9 non-linear o-models 22
A. Lattice gauge theories from topological A. Construction of topological non-linear
non-linear g-models 9 o-models 22
B. Classification of exactly soluble 1-gauge B. The canonical boundary of topological
theories 11 non-linear o-models 26
2-gauge theories from topological non-linear IX. Turaev-Viro construction and higher category 27
o-models 11
A. 2-groups 11 X. Summary 28
1. Classification of 2-groups 11
2. A description of one-vertex triangulation A. Space-time complex, cochains, and cocycles 29
B(G, Hz) 12

3. A trivialization 13 B. Lyndon-Hochschild-Serre spectral sequence 32



FIG. 1. “Topology” in topological insulator/superconductor
(2005) corresponds to the twist in the band structure of or-
bitals, which is similar to the topological structure that dis-
tinguishes a sphere from a torus. This kind of topology is
classical topology.

C. Partition functions for 3+1D pure 2-gauge theory 32
D. Simplicial sets, Kan conditions 33

References 34

I. INTRODUCTION
A. Background

The study of topological phase of matter has become a
very active field of research in condensed matter physics,
quantum computation, as well as in part of quantum field
theory and mathematics. However, “topological” may
have very different meanings, even in the same context
of topological phase of matter.

In topological insulator/superconductor [1-6], “topo-
logical” means the twist in the band structure of orbitals
(see Fig. 1), which is described by curvature, Chern
number, finite dimensional fiber bundle, etc [7-10]. Such
“topological” properties can be defined even without any
particles.

However, in topological order [11-13], “topological”
means the pattern of quantum entanglement [14-16] in
many-body wave functions of N ~ 10%° variables:

U(mi, ma,- - ,mn). (1)

It is hard to visualize the patterns of many-body entan-
glement in such complicated many-body systems. We
may use Celtic knots to help us to get some spirit of
topological order or pattern of many-body entanglement
(see Fig. 2).

So the “topology” in topological order is very different
from the classical topology that distinguishes a sphere
from a torus. We will refer this new kind of “topology”
as quantum topology. It turns out that the mathematical
foundation for quantum topology is related to topological
quantum field theory, braided fusion category, cohomol-
ogy, etc [17-25].

To develop a quantitative theory for topological order
and the related pattern of many-body entanglement, we

FIG. 2.
to pattern of many-body entanglement in many-body wave

“Topology” in topological order (1989) corresponds

function W¥(mq,ma,--- ,mn), that is robust against any local
perturbations that can break any symmetry. Such robustness
is the meaning of “topological” in topological order. This
kind of topology is quantum topology.

need to identify physical probes that can measure topo-
logical order [11-13], i.e. identify topological invariants
that can characterize topological order. We know that,
for crystal order, X-ray scattering is a universal probe
that can measure all crystal orders (see Fig. 3). So we
like to ask: do we have a single universal probe that can
measure all topological orders?

One potential universal probe (topological invariant)
for topological orders is the partition function Z. Let us
consider bosonic systems described by the path integral
of non-linear o-models:

ZMHL K L) = 3 o fuass 470 £0(0)06(0)),
¢(z)

(2)

Here Mt is a d + 1D space-time manifold and K a tar-
get manifold. Z¢(m) sum over all the maps ¢ : M1 —
K,z € M™! and ¢(z) € K. d¥'z L(p(2),09(x),---)
is a (d + 1)-form at x that depends on ¢(x), 0p(z) etc .
L(¢p(x), dp(x),--+) is also called the Lagrangian density
in physics.

The pair (K, L) labels the bosonic systems, and the
partition function Z is a map from space-time manifolds
to complex numbers

Z(— K, L): {M1} » C. (3)

So the partition function Z is a physical probe that mea-
sure the bosonic system. However, Z(—; K, L) does not
measure topological order, since two systems (K, £) and
(K', L) that are in the same topologically ordered phase
can have different partition functions: Z(—; K,L) #
Z(—; K',L'). In other words, the partition function
Z(—; K, L) is not a topological invariant.

We know that the leading term in the partition func-
tion comes from the energy density (x):

Z(M™Y K, L)) = e Juan d*tla “@zior(MH K, L),
(4)

where the sub-leading term Z%*P(M?*!: K, L) is of order
1 in large space-time volume limit. The leading term
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FIG. 3. X-ray scattering is a universal probe for all crystal

orders.

e~ Juar de e(@) jg ot topological, since even when two
systems (K, £) and (K’, L) are in the same topologically
ordered phase, their energy densities ¢(z) and &'(z) can
be different.

However, the idea of using partition function to
characterize topological order is not totally wrong.
In particular, the sub-leading term is believed to be
topological.[26] So Z'°P(M4+1; K, L) are topological in-
variants that can be used to measure/define topological
order. Ref. 27 describes ways to extract topological in-
variant Z*°P (ML K. L) from non-topological partition
function Z(M9+1; K, L) via surgery operations.

After identifying the topological invariants that char-
acterize and define topological orders, the next issue is
to systematically construct bosonic systems (K, £) that
realize all kinds of topological orders, which is the topic
of this paper. Only 10 years ago, systemic and classifying
understanding of strongly correlated systems appeared to
an impossible task. At that time, the only systemic un-
derstanding is Landau symmetry breaking theory. Since
then, we have obtained systemic and classifying under-
standing of strongly correlated 141D gapped phases at
zero temperature [28, 29]. This paper presents a sys-
temic and a classifying understanding of strongly corre-
lated 3+1D gapped liquid phases [30, 31] at zero tem-
perature (under the conjectures proposed in Ref. 32 and
33):

1. It is known that some topological orders are de-
scribed by gauge theory with finite gauge group.
Knowing the theoretical existence of higher gauge
theory, one may wonder, do we have condensed
matter systems on lattice that can produce topo-
logical orders described by higher gauge theory. In
this paper, we will describe in details a general
way to construct exactly soluble bosonic models on
lattice: topological non-linear o-models, and their
special cases — higher gauge theories. We believe
that, under the conjectures proposed in Ref. 32
and 33, topological non-linear o-models can realize
all 341D bosonic topological orders with gappable
boundary. In particular, higher gauge theories real-
ize and classify all bosonic topological orders with
the following property: the topological orders have
a gapped boundary that all pointlike, stringlike and
other higher dimensional excitations on the bound-
ary have a unit quantum dimension.

2. We find that many higher gauge theories and topo-
logical non-linear o-models are equivalent and de-
scribe the same topological order. We identified
a small subset of 2-gauge theories and topological
non-linear o-models, and argue that the subset can
realize all topological order in 341D bosonic sys-
tems. In particular, 3+1D higher gauge theory with
higher gauge group B(IIy,Ils,---) (where II; are
finite) is equivaent (i.e. produces the same topo-
logical invariants Z%°P(M?*+1)) to a 3+1D higher
gauge theory with higher gauge group B(II}, Zs).
(For notation, see Section ID.) This result allows
us to classify, under the conjectures in Ref. 32 and
33, all topological order in 341D via concrete mod-
els. Using those models, we can study universal
experimental properties of all 3+1D topological or-
ders. More specifically, We use exactly soluble 2-
gauge theories to systematically realize and classify
EF1 topological orders — 3+1D bosonic topological
orders with emergent bosons and fermions where
triple string intersections carry no Majorana zero
modes. The rest of 3+1D bosonic topological or-
ders with emergent bosons and fermions are EF2
topological orders where some triple string inter-
sections must carry Majorana zero modes.[33] We
find that EF2 topological orders can be realized by
topological non-linear o-models which are beyond
2-gauge theories.

There are many works [34-44] on higher gauge theories
and their connection to topological phases of matter. In
this paper, we present a detailed description of “lattice
higher gauge theories”, in a way to make their connec-
tion to non-linear o-model explicit. In our presentation,
we do not require higher gauge symmetry and higher
gauge holonomy. We even do not mod out higher gauge
transformations. Our “lattice higher gauge theories” are
just lattice non-linear o-models with only lattice scalar
fields (i.e. lattice qubits). However, lattice non-linear
o-models (without higher gauge symmetry) can realize
topological orders whose low energy effective theories are
higher gauge theories with emergent higher gauge sym-
metry. In other words, we describe how higher gauge
theories can emerge from lattice qubit models (i.e. quan-
tum spin models in condensed matter). In this paper, we
also apply 2-gauge theories to classify a subclass of 3+1D
bosonic topological orders with emergent fermions. We
point out that the rest of 341D bosonic topological orders
with emergent fermions are beyond 2-gauge theories and
can be realized by more general topological non-linear
o-models.

B. Realize topological orders via disordered
symmetry breaking states without topological
defects

In this paper, we show that all the higher gauge the-
ories can be viewed as non-linear o-models with some



complicated target space and carefully designed action.
Such a duality relation between non-linear o-models and
higher gauge theories suggests that we may be able to
use disordered symmetry breaking states (which are de-
scribed by non-linear o-models) to realize a large class
of topological orders. In other words, starting with a
symmetry breaking state and letting the order param-
eter have a strong quantum fluctuation, we may get a
symmetric disordered ground state with topological or-
der.

However, this picture seems to contradict with many
previous results that a symmetric disordered ground
state is usually just a trivial product state rather than
a topological state. The study in this paper suggests
that the reason that we get a trivial disordered state is
because the strongly fluctuating order parameter in the
disordered state contains a lot of topological defects, such
as vortex lines, monopoles, etc.

The importance of the topological defects [45] in pro-
ducing short-range correlated disordered states have been
emphasized by Kosterlitz and Thouless in Ref. 46, which
shared 2016 Nobel prize “for theoretical discoveries of
topological phase transitions and topological phases of
matter”.

In this paper, we show that the phase transitions
driven by fluctuations with all possible topological de-
fects produce disordered states that have no topological
order, and correspond to non-topological phase transi-
tions. While transitions driven by fluctuations without
any topological defects usually produce disordered states
that have non-trivial topological orders, and correspond
to topological phase transitions. This phenomenon has
been demonstrated in a 24+1D RP3 = SO3 non-linear o-
model [47, 48]. Thus, it may be confusing to refer the
transition driven by topological defects as a topological
phase transitions, since the appearance of topological de-
fects decrease the chance to produce topological phases
of matter.

More precisely, if the fluctuating order parameter in
a disordered state has no topological defects, then the
corresponding disordered state will usually have a non-
trivial topological order. The type of the topological
order depends on the topology of the degenerate man-
ifold K of the order parameter (i.e. the target space of
the non-linear o-model). For example, if m (K) is a fi-
nite group and m,~1(K) = 0, then the disordered phase
may have a topological order described by a gauge the-
ory of gauge group G = 71 (K). If 71 (K), ma(K) are finite
groups and 7,2 (K) = 0, then the disordered phase may
have a topological order described by a 2-gauge theory
of 2-gauge-group B(m1(K), ma(K)).

It is the absence of topological defects that enable the
symmetric disordered state to have a non-trivial topolog-
ical order. When there are a lot of topological defects,
they will destroy the topology of the degenerate mani-
fold of the order parameter (i.e. the degenerate manifold
effectively becomes a discrete set with trivial topology).
In this case the symmetric disordered state becomes a

product state with no topological order. Certainly, if
the fluctuating order parameter contains only a subclass
of topological defects, then only part of the topological
structure of the degenerate manifold is destroyed by the
defects. The corresponding symmetric disordered state
may still have a topological order, as discussed in Ref. 49.

C. Realizations of all 341D bosonic topological
orders

It was shown [32, 33] that all 341D bosonic topological
orders belong to two classes: AB topological orders where
all pointlike excitations are bosonic and EF topological
orders where some pointlike excitations are fermionic.
Ref. 33 shows that all EF topological orders have a unique
gapped boundary with the following properties:

1. All stringlike boundary excitations have a unit
quantum dimension. Those boundary strings form
a finite group Gy under string fusion. The group
Gy is an extension of a finite group G, by Z3":
Gy = Z" X Gy. (See Section 1D for the definition
of Zén b Gb)

2. There is one non-trivial type of pointlike bound-
ary excitations which is fermionic and has a unit
quantum dimension.

3. There are on-string pointlike excitations — Majo-
rana zero modes of quantum dimension /2. The
Majorana zero mode always lives at the pointlike
domain wall where a string labeled by g joins a
string labeled by gm. Here g € G, and m is the
non-trivial element in Z3".

We note that the boundary fermions can form a topo-
logical p-wave superconducting (pSC) chain.[50] The
boundary strings labeled by Gy can be viewed as the
boundary strings labeled by Gy plus the pSC chain. In
particular, a string labeled by ¢ and a string labeled by
gm differ by a pSC chain. .

If Gy, is the trivial extension of G} by Z35*: Gy, = Z3* %
Gb, the corresponding bulk topological order is called a
EF1 topological order. If Gy, is a non-trivial extension of
Gy by Z3": Gy = Z5" N,, Gy, where py € H*(BGy; 2%"),
the corresponding bulk topological order is called a EF2
topological order. Here, we have used a conjecture —
a holographic principle[25, 26, 51] — that the boundary
topological order completely determines the bulk topo-
logical order. A

When Gy is the trivial extension: Gy = Z3" x Gy, we
can drop boundary strings that come from the pSC chain
(by regarding the pSC chain as a kind of trivial strings).
Thus, the EF1 topological order has a simpler gapped
boundary: In addition to the boundary strings of unit
quantum dimension labeled by a finite group Gy, there is
one and only one non-trivial type of pointlike boundary
excitations which is fermionic and has a unit quantum
dimension.[33]
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FIG. 4. A string configuration in the bulk described by a
triple (xg,f,Xg.f,ng), where x, s is a conjugacy class in Gy
1 2 3 N

containing g7 € Gy and the triple satisfy g{cg2 = g:f.

In the above, we have defined EF1 and EF2 topological
orders via their boundary properties. To distinguish EF1
and EF2 topological order through their bulk properties,
we consider a stringlike excitation in the bulk that has
triple string intersections (see Fig. 4). Note that a triple
string intersection is described by the conjugacy classes
Xgfs Xgfs Xgf C Gy that satisfy g{gg = gg. By mea-
suring the appearance of Majorana zero mode at triple
string intersections for different triples x s, x s, X, {5, we
can determine the cohomology class of ps.[33] If the mea-
sured ps is a coboundary, the bulk topological order is
an EF1 or an AB topological order. Otherwise, the bulk
topological order is an EF2 topological order.

It has been shown that all 3+1D AB topological
orders are classified and realized by 1-gauge theories
(i.e. Dijkgraaf-Witten gauge theories).[32] In this paper,
we show that all 341D EF1 topological orders are classi-
fied and realized by 2-gauge theories with 2-gauge-group
B(Gy, Z1). The pointlike topological excitations (includ-
ing emergent fermions) are described by symmetric fusion
category szep(Zg X Gyp), where Zg X Gp is an extension
of Gy by Z1.

We will also discuss how to systematically realize 3+1D
EF2 topological orders through topological non-linear o-
models whose target space K satisfies m1(K) = G}, and
mo(K) = Zy. Those topological non-linear o-models are
beyond 2-gauge theories. The resulting EF2 topological
orders have pointlike topological excitations described by
szep(Z{ X Gp).

Our results suggest the following more general picture:

Statement 1.1. Ezactly soluble n-gauge theories can re-
alize all bosonic topological orders in n+1 spatial dimen-
sions that have a gaped boundary where all boundary ex-
citations (including on d-brane excitations) have a unit
quantum dimension.

This is because higher groups can be viewed as higher
monoidal categories where all objects and higher mor-
phisms are invertible. For more general bosonic topo-
logical orders whose gapped boundary excitations have
non-unit quantum dimensions, we need to use more gen-
eral exactly soluble models, such as topological non-linear
o-model or even more general tensor network models, to
realize them.[26]

Combining the above realization results and the
boundary results in Ref. 33, we obtain the following clas-
sification of EF topological orders:

Statement 1.2. 3+1D EF topological orders are classi-
fied by unitary fusion 2-categories/52] that have the fol-
lowing properties: .

(1) The simple objects are labeled by Gy = Z5* X,, G,
and their fusion is described by the group Gy.

(2) For each simple object g there is one nontrivial in-
vertible 1-morphism corresponding to a fermion fg.

(3) In addition, there are quantum-dimension-/2 1-
morphisms o4 gm that connect two objects g and gm,
where g € Gy and m is the generator of Z3".

(4) The fusion of 1-morphisms is given by fqfy =1 and
Og.gmTgm,g =1 & fg.

D. Notations and conventions

Let us first explain some notations used in this pa-
per. We will use extensively the mathematical formal-
ism of cochains, coboundaries, and cocycles, as well as
their higher cup product — Steenrod square Sq¥, and

the Bockstein homomorphism B,,. A brief introduction
can be found in Appendix A. We will abbreviate the cup
product a ~— b as ab by dropping —. We will use a sym-
bol with bar, such as a to denote a cochain on the target
complex K. We will use a to denote the corresponding
pullback cochain on space-time M%+1: a = ¢*a, where
¢ is a homomorphism of complexes ¢ : M3t - K.

We will use = to mean equal up to a multiple of n, and
use = to mean equal up to df (i.e. up to a coboundary).
We will use |z] to denote the greatest integer less than
or equal to x, and (I, m) for the greatest common divisor
of  and m ({0, m) = m).

Also, we will use Z, = {1, e' ", ei257 ... ei(n=D3FY}
to denote an Abelian group, where the group multipli-
cation is “¥”. We use Z, = {|-% +1],|-% + 1] +
1,---, 5]} to denote an integer lifting of Z,, where
“+” is done without mod-n. In this sense, Z, is not
a group under “+”. But under a modified equality =,
Z,, is the Z, group under “+”. Similarly, we will use
R/Z = (=3, %] to denote an R-lifting of U; group. Un-
der a modified equality =, R/Z is the Uy group under
“+”. In this paper, there are many expressions contain-
ing the addition “4” of Z,-valued or R/Z-valued, such
as af" + a%" where a?" and aZ" are Z,-valued. Those
additions “4” are done without mod n or mod 1. In this
paper, we also have expressions like %a%". Such an ex-

pression convert a Z,-valued a%" to a R/Z-valued %a%",
by viewing the Z,-value as a Z-value. (In fact, Z,, is a Z
lifting of Z,,.)

We introduced a symbol X to construct fiber bundle
X from the fiber F' and the base space B:

pt - F > X=FXB— B —pt. (5)

We will also use X to construct group extension of H by
N [53]:

1-N—->NXxeoH—H— 1L (6)



Here es € H?[H;Z(N)] and Z(N) is the center of N.
Also H may have a non-trivial action on Z(N) via « :

H — Aut(N). ey and « characterize different group
extensions.

We will use K(II;,Is,---,II,) to denote a con-
nected topological space with homotopy group
Wi(K(HhHQ,-'-,Hn)) = Hz for 1 < ) < n, and
mi(K(My, g, -+ ,I1,)) = 0 for ¢ > n. In this paper,

we assume that all I1,,’s are finite. We note that m; is
abelian for ¢ > 1. If only one of the homotopy groups,
say Il;, is non-trivial, then K (II;,IIs,---,II,) is the
Eilenberg-MacLane space, which is denoted as K (Ilg, d).
If only two of the homotopy groups, say Iy, Ilg, is
non-trivial, then we denote the space as K (Ilg, d; 114, d’),
etc . We will use K(IIy;1Ig;---;101,), K(I4,d), and
K(Ig,d; Mg, d") to denote the simplicial complexes
that describe a triangulation of K(II;,Is,--- ,IL,),
K(Ilg,d), and K(I4,d;g,d") respectively. We will
use B(IIy;y; - - - ;11,,), BTy, d), and B(Ily,d; 4, d") to
denote the simplicial sets with only one vertex satisfying
Kan conditions that describe a special triangulation
of K(Hl, H27 ety Hn), K(Hch d), and K(Hd, d; Hd/7 d/)
respectively. Since simplicial sets satisfying Kan condi-
tions are viewed as higher groupoids in higher category
theory, the simplicial sets B(IIy;Ilo;--- ;11,,), B(Ilg,d),
and B(Ily, d; 1y, d’), with only one vertex (unit), can be
viewed as higher groups. In this paper, higher groups
are treated therefore as this sort of special simplicial
sets.

II. TOPOLOGICAL NON-LINEAR o-MODELS
AND TOPOLOGICAL TENSOR NETWORK
MODELS

A. Discrete defectless non-linear o-models

The non-linear o-model (2) is widely used in field the-
ory to describe a bosonic system. If we require the map
¢(x) to be continuous, then the non-linear o-model will
be defectless, i.e. the fluctuations contain no defects. But
the corresponding path integral (2) is not well defined
since the summation ) ) over 00> number of the con-
tinuous maps is not well defined. To obtain a well defined
theory, we discretize both the space-time M1 and the
target space K. We replace them by simplicial complexes
M and K.

1. A detailed description of simplicial complex

Let us first describe the simplicial complexes system-
atically. We introduce My, M7, M, - - - as the sets of ver-
tices, links, triangles, etc that form the space-time com-
plex M9+l The complex M?*! is formally described

by

do,d1 do,d1,d2 do,...,d3 do,...,da
M0<;M1<;M2 i M3 : M4

where d; are the face maps, describing how the (n — 1)-
simplices are attached to a n-simplex. Similarly, the com-
plex K is formally described by

do,d1 do,di,d2 do,--,d3
Kh=—Ki=——Ky_ - K3

do,...,ds
Ky -, (8)

where Ky, K1, Ks, --- are the sets of vertices, links,
triangles, etc that form the target complex K.

In this paper, we will use vi,vo,--- € Ky to la-
bel different vertices in the complex K. We will use
l1,1l5,--- € K; to label different links in the complex /C,
and t1,ts,- - € Ko different triangles, etc . We choose a
fine triangulation on Mt such that the links, triangles,
etc can be be labeled by their vertices. In other words,
we will use ¢ to label vertices in My. We will use (ij) to
label links in M7, and (ijk) to label triangles in My, etc .

The continuous maps between manifolds ¢(x)
M1 — K is replaced by homomorphisms between com-
plexes ¢ : M1 — K. The homomorphism ¢ is a set of
maps ¢(©) : My — Ko, o) : My — Ky, @ : My — Ko,
etc that preserve the attachment structure of simplices
described by the face maps d;. For example, if (ij) is
attached to (ijk) by the face map ds in space-time com-
plex M¥*1 then ¢()((i5)) is attached to ¢®)((ijk)) by
the face map d3 in target space complex K. The ho-
momorphism is the discrete version of continuous map.
Physically, the continuous map or the homomorphism de-
scribes fluctuations without any topological defects and
any kind of “tears”.

2. A simple definition of discrete non-linear o-model

Now, a discrete non-linear o-model is defined via the
following path integral

ZMTE K Bag) = Y o2 bt @780 (9)
¢

where } , sums over all the homomorphisms ¢

ML 5 K. Tt is clear that the map ¢ assign a label v;
to each vertex ¢ € My, a label l;; to each link (ij) € M,
a label ¢;;; to each triangle (ijk) € Ma, etc . Thus we
can view the map ¢ as a collection of fields on the space-
time complex M: a field v; on the vertices My, a field
e;; on the links M, a field ¢;;; on the triangles M, etc .
We can rewrite the path integral as a integration of those
fields:

ZMPL K @an) = Y

Viyligotijh,

e27ri f/\/td+1 wat1(v,Lt, )

(10)



FIG. 5. The tensor C,0}/02103%12113/23012 i as0ciated with a
tetrahedron, which has a branching structure. If the vertex-0
is above the triangle-123, the tetrahedron has an orientation
so123 = *. If the vertex-0 is below the triangle-123, the tetra-
hedron has an orientation sp123 = 1. The branching structure
gives the vertices a local order: the i*" vertex has i incoming

links.

Although those fields v;, l;;, tij, - - - satisfy certain local
constraints described by the face maps d;, we can im-
pose those local constraints by energy penalty: The field
configurations that do not satisfy attachment conditions
will cost a large energy. Thus we can view those fields as
independent fields.

The term €271 Jud+1 @"®at1 in the path integral is the
action amplitude. Here ¢*w441 = wg41 is a real-valued
(d + 1)-cochain on M?*+1 which is a pull back of a real-
valued (d 4 1)-cochain @441 on K. The resulting path
integral defines a discrete non-linear o-model whose fluc-
tuations have no defects.

However, the above definition of discrete non-linear o-
model has an inconvenience: different choices of space-
time triangulation may lead to different phases of the
bosonic systems. To avoid this problem, we like to
choose some special triangulation IC of the target space
K, and some special wyy1’s on K such that, for a given
pair (K, 0g4+1), the corresponding discrete defectless non-
linear o-model will realize the same phase for any space-
time triangulations, as long as they are very fine trian-
gulations (4.e. in the thermodynamic limit). Such kind
of choice of (K,@44+1) turns out to give rise exactly sol-
uble models. To describe how we choose (K, @4+1), we
will first discuss a more general class of discrete bosonic
discrete non-linear o-models — tensor network models.

In the above definition of discrete non-linear o-models,
we assign each d+ 1-simplex A%t! a field-dependent com-
plex number €27 Jad+1 @at1 and multiply all those num-
bers together to get an action amplitude. In the more
general tensor network models, we also assign each n-
simplex A", n < d + 1, a field-dependent real positive
number, and multiply all those numbers together to get
additional contributions to the action amplitude. In the
following, we will describe tensor network models in de-
tails.

B. Exactly soluble tensor network models

Let us describe a tensor network model in 2+1D
space-time complex M? as an example. The

3 3
0 0
2 2
1 4 1 4
FIG. 6. A retriangulation of a 3D complex, obtained by

dividing the five 3-simplices on the boundary of the 4-simplex
(01234) into [(0123), (1234)] and [(0124), (0134), (0234)].

4 4
0 0
3= 3
2 2
FIG. 7. A retriangulation of another 3D complex, obtained

dividing the five 3-simplices on the boundary of the 4-simplex
(01234) into [(0234)] and [(0123), (0124), (0134), (1234)].

tensor network model is constructed from a ten-
sor set T of two real and one complex tensors:

_ vov1 vloiloz2loslizlizl2sstorz :
T = (wvo’wlol 7C’Uovl112113;t0237501375123)' We will call

Cotozlostizhislasdorz) the top tensor and wy,,w]*"" the
weight tensors. The complex tensor Cf)‘gﬁfﬁiﬁ’lgiﬁ{)"‘ldjfgg
can be associated with a tetrahedron (0123), which has a
branching structure (see Fig. 5). A branching structure
is a choice of orientation of each link in the complex so
that there is no oriented loop on any triangle (see Fig. 5).
Here the vy index is associated with the vertex-0, the lo;
index is associated with the link-01, and the tp12 index
is associated with the triangle-012. They represents the
degrees of freedom on the vertices, links, and the trian-
gles. Similarly, the real tensor w;°"" is associated with a
link (01), and w,, with a vertex 0.

Using the tensors, we can define a path integral on any

3-complex that has no boundary:[26]

Z(M3;T) :Z vai lev;_vj X (11)
Vi sligy itigr, e @ (3)

[ LijliklimUjkljmlem;tije }Sijkm
ViVjVEVm;tikmtijmtikm

(ijkm)
where Zvi;lij t,,, sums over all the vertex indices, the
link indices, and the triangle indices, Sijkm = 1 oI *
depending on the orientation of tetrahedron (ijkm) (see
Fig. 5).

On the complex M?3 with boundary: B? = M3, the
partition function is defined differently:

7 = E H Wy, H wfiijv" X (12)
{vislijstije} i¢B2 (ij)¢B?
H [0101l02l03112113123;t012]sijkm

vov1V2V35t023t013t123
(ijkm)



where Zvi;l“;tw_k only sums over the vertex indices, the
link indices, and the triangle indices that are not on
the boundary. The resulting Z is actually a complex
function of v;’s, l;;’s, and %;;;’s on the boundary B?:
Z = Z({vi;lijitijr}). Such a function is a vector in
a Hilbert space Hg2. We will denote such a vector by
[T (M?)).

Consider two complexes M3 and M3 with the same
boundary B = M3 = —OM3, the inner product be-
tween |U(M3)) and |¥(M3)) can be obtained by gluing
M3 and M3 together M3 = M3 U M3 and perform the
path integral on M3

(UM T(M])) = Z(MP;T). (13)

This is because the inner product of two wave functions
|W(M3)) and |¥(M3)) performs the summation of the
boundary indices {v;;1;;; ;% }. We note that, in the def-
inition of |¥(M3)) and |¥(M3)), the tensors w,, and
wf”” are absent for the vertices and the links on the

ij
boundary. When we glue two boundaries together, those
tensors w,, and wlviijvj need to be added back. So the

tensors w,, and wlevJ defines the inner product in the
boundary Hilbert space Hpg=. Therefore, we require w,,
and w;);jvj to satisfy the following unitary condition (or

J

the reflection positivity condition)
wy; >0, w7 > 0. (14)

The tensor network model (11) are also inconvenient
since for a fixed tensor set T, different choices of the tri-
angulations of the space-time M3 may lead to different
phases. To solve this problem, we want to choose the ten-
SorS (Wy,, W, i%ﬁjlfﬁi‘glltigil(ffstt?g) such that the path
integral is re-triangulation invariant. The corresponding
models will be called a topological tensor network model,
which can realize the same phase for any triangulations
of the space-time M?. In general such a phase has a non-
trivial topological order that has gappable boundary.

The invariance of Z under the re-triangulation in Fig.
6 requires that

E 0101102l03112513523;t0120112113114123524534;15123

Vov1v2V3;t023t0138123 T V1V2V3V4;t 13481248234
123
_ VoV lo1lo2loali2l14l245t012
- Z Wiy Z OUO”1U2U4;t024t014t124 X
loa to1atozatosa
C*lol103104113114134;t013 Cl02l03104l23124134;t023 (15)

VoV1V3V43t034t014t134 ~ VoV2V3V4;t03480248234

The invariance of Z under the re-triangulation in Fig. 7
requires that

lo2losloalaslaalsa;t 2 : g z :
C 02t03t04t23t24t3450023 __ W,y ,wvom w'UlU’szl'wa'Ulv4 (16)
1 %lo1 l12 l13

Vov2v3V4;t034t0248234
lo1li2l13l14,v1

ll4
to12to13to14t123t124%134

Clmlozloslmlmlzz;tom C*lmlo2lo4l12l14124;t012 0101lo3l04113114134;t013 Cl12l13l14123l24l34§t123

voV1V2V35t023t013t123

There are other similar conditions for different choices
of the branching structures. To obtain those conditions,
we start with a 4-simplex (01234), and divide the five
3-simplices on the boundary of the 4-simplex (01234)
into two groups. Then the partition function (12) on
one group of the 3-simplices must equal to the partition
function on the other group of the 3-simplices, after a
complex conjugation.

The above two types of the conditions are sufficient to
determine the tensor set T that produces a topologically
invariant partition function Z for any triangulated space-
time M?3. For such a tensor set, its partition function
Z = Z%P (i.e. the energy density in eqn. (4) e(x) = 0).
Such topological partition function Z%*P(M?3) is nothing
but the topological invariant for three manifolds intro-
duced by Turaev and Viro.[54]

C. Topological non-linear o-models

A subclass of topological tensor network models hap-
pen to have a form of discrete defectless non-linear o-

VU1 V2V43t024014t124

VoV1V3V45t034t014t134 T V1V203V4;t 13481248234

(

models. Such topological tensor network models (i.e. ex-
actly soluble discrete non-linear o-models) are called
topological non-linear o-models.

In the following, we will explain why a subclass of topo-
logical tensor network models can be viewed as discrete
defectless non-linear o-models. Again we will use a 2+1D
non-linear o-model as example. The target complex I
has a set of vertices labeled by v, a set of links labeled
by I, a set of triangles labeled by t, etc . We assume
that each tetrahedron in K is uniquely determined by its
vertices Vo, V1, V2, U3, its links 101, 102, 103, 112, 113, 123, and
its triangles t012, lf()237 t013.

We first assign a complex number to each tetrahe-
dron in K, which can be written as C}o102/0s"121alzs3012
When the indices Vo, V1, V2, V3, 101, 102, 103, 112, 113, 123,
to12,to23, to1s are not vertices, links, and triangles
of a tetrahedron in K, then the corresponding
Ci%ﬂfﬁi%illti?;’t?f’sttf;; = 0. Similarly, we also choose a real
tensor wi}“lvl whose value is positive when vg, v1, g1, are
the vertices and the link of a triangle in L. Otherwise
w°” = 0. We also assign a real positive value w, to
each vertex v in K. For such a choice of tensor set T,



the partition function (11) actually describes a discrete
defectless non-linear o-model.

To see this we note that a homomorphism ¢ : M3 — K
assigns a value v; (a vertex in K) to each vertex i in
M3, ¢ also assigns a value [;; to each link (ij) and
assigns a value t;;; to each triangle (ijk) in M3. The
terms in the summation in eqn. (11) are non-zero only
when the fields v;, l;;, t;j. correspond to a homomor-
phism ¢ : M3 — K. Thus, the summation E{'Ui'-,lithijk}
in eqn. (11) corresponds to a summation Y » over all

the homomorphisms ¢ : M? — K. In this case, eqn. (11)

can be viewed as a discrete <lieflecltleissln(l)n-linear o-model.
. 3lagst .

If the tensors wy, w2, Oy o ie 52t also satisty

the conditions eqn. (15) and eqn. (16), then the corre-

sponding discrete defectless non-linear o-model will be a

topological non-linear o-model.

D. Labeling simplices in a complex

In the above example, most components of the
tensor C’i‘;ﬁfﬁig@lﬁiﬁfgffg are zero. This is because
most combinations of Vo, V1, V2, U3, l01, lOQ, log, l12, l13, l23,
to12, to23, to1s are not vertices, links, and triangles of a
tetrahedron in K. In the following, we will describe a
more economical way to label simplices in a complex,
such that each label will have a smaller range and a larger
fraction of the tensor elements will be non-zero.

We still use v to label different vertices in the complex
K. Thus K¢ = {v}. Tolabel links in &, we will first try to
use two vertices vg, vy on the two ends of the link to label
it. If there are many links with the same end points vg, v1,
we will introduce additional label ag; to label those links
with the same set of end points. Thus, different links in
KC are labeled by (vg, v1,a01), and K1 = {(vo, v1,a01)}-
We see that the new link label ag; has a smaller range
than the original link label lo; ~ (vg,v1,a01).

In general, the set of the extra labels, {ag1}, depends
on the end points vy, v1. In this paper, we will only con-
sider a special type of complex K such that the set of the
extra labels, {ap1}, does not depend on the end points
Vo, v1. In this case ag; can be treated as a new label that
is independent of vertex label v;.

Similarly, different triangles tp12 in K are labeled
by toi2 ~ (vo,v1,v2,0a01,0a12,a02,b012), and Ky =
{(vo, v1,v2,a01,a12,a02,b012)}. Again the complex K
has a property that bgi2 is a new label independent
of vertex and link labels v;,a;,. We like to stress
that not all combinations {(vg,v1, v2, ap1, a12, ao2, bo12)}
correspond to valid triangles in K. Only when
Vg, U1, V2, Go1, A12, G2, Do12’s satisfy certain conditions,
can they label the triangles in K. Using the new
set of labels, the tensors that define topological non-
linear o-model can be rewritten as wy,, wg°’*, and

Z;ifﬁ;gfb‘f]g‘;;fsgfzsou, where the indices have a smaller
range. The new notation is more economical in the sense
that the space of each new additional label is smaller

than that of old label. For example, the set {a;;} is usu-
ally smaller than the set {/;;} because {l;;} can be very
roughly understood as the product {v;} x {v;} x {a;;}.
See also (36) for an explicit example in the case when the
target is a 2-group.

III. DIJKGRAAF-WITTEN GAUGE THEORIES
FROM TOPOLOGICAL NON-LINEAR
oc-MODELS

In this section, we will introduce 1-gauge theories
(i.e. Dijkgraaf-Witten gauge theories), as topological
non-linear o-models. We will show that 1-gauge theo-
ries are nothing but a special kind of topological non-
linear o-models whose target space K is modeled by a
special one-vertex complex K and satisfy m(K) = G,
mE>1(K) = 0. Such a one-vertex complex K is a simpli-
cial set and is denoted by BG. Similarly n-gauge theories
are nothing but a special kind of topological non-linear o-
models whose target spaces K is modeled by a simplicial
set B(my (K),m2(K),---) and satisfy mp~n,(K) = 0.

A. Lattice gauge theories from topological
non-linear o-models

The simplest class of topological non-linear o-models
has a simple target space K(G), the Eilenberg-MacLane
spaces with only non-trivial m;(K(G)) = G. For a fi-
nite G, K(G) is the classifying space BG. To con-
struct a discrete non-linear o-model from the classifying
space BG = K(G), we need to choose a triangulation of
BG = K(G) which is a simplicial complex. Here we will
choose a triangulation that contains only one vertex. The
corresponding triangulation is a simplicial set denoted by
BG or B(G). We will show that for such a one-vertex tri-
angulation, the topological non-linear o-model becomes
a (Dijkfraaf-Witten) lattice gauge theory, which is also
called 1-gauge theory.

The triangulation BG = B(G) is obtained in the fol-
lowing way:

1. There is only one vertex (BG)y = {pt} (called the
base point) in BG.

2. The links are the loops starting and ending at the
base point. We pick one loop in each homotopic
class of loops: (BG); = m1(BG). Thus the links are
labeled by the group elements a;; € G: (BG)1 = G.

3. For arbitrary three links ag1, @12, ag2 they may not
form the links around a triangle. Only when they
satisfy agiais = ap2, the composition of the three
links is a contractible loop. In this case, there is
a triangle tp12 bounded by the links a1, a2, age-
Note that, for a finite G, m,(BG) = 0 for n > 2.
Thus all different choices of triangles are homotopy
equivalent. Here we just pick a particular one. This



gives rise to the set of 2-simplices labeled by the
three links agi,a12,a92 that satisfy agiai12 = aps-
Thus the set of 2-simplices is (BG)y = G*2, labeled
by a1, az.

4. The set of 3-simplices (BG)3 is obtained by fill-
ing all four triangles in a tetrahedron that share
their sides in the expected way. Using a similar

consideration, we find the set of 3-simplices to be
(BG)3 = G><37 labeled by apl, 12, a23.

The sets of higher simplices (BG),, = G*™ are obtained
in the same way. To summarize, the complex BG has the
following nerve

do,dl do,d1,d2 dg,...,dg do ..... d4
G*t... (17)

pt=—— G =——G*?

Next, let us determine the set of tensors that satisfy
the retriangulation invariance conditions like (15) and
(16). We assume the space-time dimension to be d + 1.
For each d + 1-simplex labeled by (ag1,a12, - ,ad,d+1)
in BG, we assign a complex number

Tpi1(aij) = wapq e 2m@ar1(aonarzad ) (18)
where @4y1(ao1,a12, -, ad,a+1) is a R/Z-valued cocycle
on BG: wq11 € HY(BG;R/Z). T is the top tensor in
the tensor set T, like the tensor Cyo 02 nes 12018 42 sborz iy
0V1V2V350023 0139123
Section I1T A. For each n-simplex, n < d, we assign a pos-
itive number w,,. w,’s correspond to the weight tensors
Wy, and wg°Pt in Section [T A. The partition function of
the corresponding topological non-linear o-model is then

given by

d+1

Z= Z[H

n=0

]2 Lt 67001 (19)

where N,, is the number of n-simplices in M?! and > &

sums over all the homomorphisms ¢ : M1 — BG. Be-
cause Wy 1 is a cocycle on BG, the term e!?™ Jrma+r " Gara
is independent on how we triangulate the space-time
ML But the term 26 Hi+%)(wn) » does dependent

on the triangulation of M+, The idea is to choose the
weight tensors w, to cancel such triangulation depen-
dence.

Let us define two homomorphisms ¢ and ¢’ to be homo-
topic if there exist a homomorphism ® : I x M1 — BG
such that, when restricted to the two boundaries of
I x M1 ® becomes ¢ and ¢’. For such two homo-
morphisms, we have

e2ﬂ'i Sppd+1 " @ap1 62771 a1 ¢ Daq1 (20)

if the space-time M?*! has no boundary. Such a prop-
erty is called gauge invariance. Since the phase factor
@21 [aa+1 ¢ Bar1 only depends on the homotopic classes
[¢], we can rewrite it as ™! Jmar1[9]"@at1 For two ho-

motopic homomorphisms ¢ and ¢’, their corresponding
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field configurations a and a’ are said to be gauge equiv-
alent.

Let us describe the homotopic classes [¢] in more de-
tail. First, there is a surjective map

¢ — Hom(m; (M), @) (21)

where Hom(7; (M?+1), Q) is the set of group homomor-
phisms. There is another surjective map

G) — {[9l}- (22)

where {[¢]} is the set of homotopic classes of the sim-

Hom(m; (M3+1),

plicial homomorphisms MZt! % BG. Two group ho-
momorphisms 7,y € Hom(m (M3+1), G) are said to be
equivalent if their are related by

y=g9v9"", g€G. (23)

Let [y] be an equivalent class of the group homomor-
phisms Hom(7; (M9F1), G). Tt turns out that

{0} = {leh} (24)

where {[v]} is the set of equivalent classes of the group
homomorphisms.

Now, ¢ 1s reduced to a summation over the homo-
topic classes of the homomorphisms ¢, Z[ 4]’ which is a
sum with only a few terms:

d+1
7= [z]:“_[o wn) } [¢], M¥, BG) 2™t Janas1[9]"@aa
¢ n

(25)

where N([¢], M9T! BG) is the number of the homomor-
phisms ¢ : M9t — BG in the homotopic class [¢]. Due
to the one-to-one correspondence between [¢] and [v], we
can also write N([¢], M9t BG) as N([y], M+, BG).

The total number of the homomorphisms ¢ is given by
=> N(¢
(4]

To count N ([¢], M¥+1, BG), we note that, in the above
discrete non-linear o-models, the map ¢ sends all vertices
in M?*! (labeled by i = 0, - —1) to the base point
pt in BG. The map ¢ sends an hnk (i) € M1 to
an link a,; € BG. Thus on each link (ij) of space-time
complex M1 we have a degree of freedom a;j. Note
that if three links in space-time complex, (01), (12), and
(02), form the boundary of a triangle (012), then the map
¢ will sends such a triangle to the triangle t912 € BG
bounded by ag1,a12,a92. This implies that there is no
extra degrees of freedom on the triangles except those
come from the links ag1, @12, ap2. It also implies that a;;
on the three links (ij) satisfy a flat condition:

N(M*L B@G) ], M1 BG).  (26)

Qi Ak = Ak (27)



This is an example of the conditions discussed above.
Using similar considerations, we see that there are no
extra degrees of freedom on the 3-simplices and higher
simplices. Thus the summation » can be rewritten as
>a,; where 3~ sum over all a;; € G on link (ij) €
ML 50 that a;; satisfy the flat condition (27).

Since the set of a;; describes a flat G-gauge connec-
tion, we see that N([¢], M?T!, BG) is the number gauge
equivalent flat G-gauge connections on M. We find
that

N([¢], M*, BG) = N([7], M**1, BG) (28)
= |G Wiop([7], M+, BG)
Wtop([’}’]de+lvBG) = WtOp([Qﬂ’MdJrlﬂBG) = |[7]|/‘G‘

where |G| is the number of the elements in the group G
and |[7]| is the number of the elements in the equivalent
class [y]. Here the factor |G|Yo comes from the numbers
of gauge transformations

a; = g'aijg; (29)

generated by ¢g; € G on each vertex i in M. Also
1/Wiop([#], M4+ BG) is the number of gauge transfor-
mations that leave a gauge field a (or ¢) invariant. So
1/ Wiop([7], M4TY, BG) is given by the number of the ele-
ments in the subgroup of G thats leave « invariant, which
is |G|/|[7]]- Thus Wiep([¢], M4+, BG) is independent of
the triangulation on M?*1.

No in |GINWiop ([¢], M3+, BG) depends on the trian-
gulation of M9+, We want to choose w, to cancel the
Ny dependence, which turns out to be

wo = |G|,  other w, = 1. (30)

In this case, the partition function (19) becomes

7 — § (H |G|*1) o127 [aar1 wari(aor,a12, ad,a41)
7

Qjj

= 3" Wiep([9], MTH, BG) 2 futs 61 Gus (31
(4]

which is invariant under the retriangulation of space-time
M1, Such choice of tensors give us a topological non-
linear o-model.

We see that the topological non-linear o-models with
BG as the target complex are classified by the (d + 1)-
cohomology classes H41(BG;R/Z). When wgy = 0,
the partition function is given by the equal weight sum-
mation of all flat connections a;; on the links of space-
time complex, which give rise to a G-gauge theory in
the deconfined phase. If we choose a non-trivial cocycle
wgr1 € HY(BG;R/Z), then the path integral (31) will
gives rise to a Dijkgraaf-Witten lattice gauge theory.

B. Classification of exactly soluble 1-gauge theories

We have seen that by choosing a classifying space
BG = K(G) as the target space and choosing a par-
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ticular triangulation of K(G), B(G), as the target com-
plex, we obtain the Dijkgraaf-Witten gauge theories for
a finite gauge group G. For each finite gauge group G,
we only have one corresponding K(G). The different
(d+1)-cohomology classes wgy1 € H(K(G),R/Z) give
rise to different Dijkgraaf-Witten gauge theories. Thus
Dijkgraaf-Witten gauge theories (or 1-gauge theories) are
classified by pairs (G, wg41)-

We have seen that Dijkgraaf-Witten gauge theories are
topological non-linear o-models. It is natural to ask if
topological non-linear o-models with target complex BG
are Dijkgraaf-Witten gauge theories. In other words, we
have shown that the tensor set

Tap1(ai;) = e 2m@an(@ontnaaar) = gy, = |G

(32)

satisfy the retriangulation invariance conditions, such as
eqn. (15) and (16). The question is that if all the solu-
tions of the retriangulation invariance conditions (such
as eqn. (15) and (16)) have the form eqn. (32) as de-
scribed by a cocycle wyy1. There is another related ques-
tion: given a triangulation IC of the classifying space BG
(K may not be a simplicial set), are all the topological
non-linear o-models with target complex IC equivalent to
Dijkgraaf-Witten gauge theories (i.e. produce the same
topological invariant Z*°P or produce the same topolog-
ical order)? We left the questions for future work (see
Ref. 55 and references therein for some discussions).

IV. 2-GAUGE THEORIES FROM
TOPOLOGICAL NON-LINEAR ¢-MODELS

In this section, we are going to discuss exactly soluble
2-gauge theories and their classification, from a point of
view of topological non-linear o-model. We have seen
that if the target space K has only non-trivial m (K'), we
can get a 1-gauge theory from the topological non-linear
o-model. If the target space K has only non-trivial 71 (K)
and 7o (K), then we can get a 2-gauge theory.

A. 2-groups
1. Classification of 2-groups

To obtain a 2-gauge theory via a topological non-linear
o-model, we choose a special triangulation of K(G,1Ils),
the simplicial set B(G,II3), as the target complex. The
simplicial set B(G,II3) is called a 2-group. The cor-
responding topological non-linear o-model can be a 2-
gauge theory. In this section, we concentrate on 2-groups
B(G,I13), where G is a finite group and Il a finite abelian
group.

The simplicial set B(G;IIz) (the 2-group) can be
viewed as a fiber bundle with B(0;1I;) = B(Ily,2) as



the fiber and B(G) as the base space:
B(Ilp,2) — B(G;112) — B(G). (33)

Thus a classification of B(G;II3) can be obtain using the
following general result:

Lemma IV.1. The simplicial set B(my;--- ;) has the

following fibration
B(Trnvn) — B(Trl; e ;ﬂ—n) — B(ﬂ-l; e ;71—7171)7

Thus B(my;--- ;m,) for fixed m’s are classified by

H" Y B(my; - 5 7p_1); 7] with local coefficient 7.

The n = 2 case was discussed in Ref. 56, Theorem 43.
Using the above result, we find that, for a fixed
pair (G,IIy), the 2-groups B(G;IIy) are classified by

J
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H3(B(G),1lz) = H*(BG,115?). The local coefficient I,
in topological cohomology classes H?(BG,II5?) means
that G may have a non-trivial action on Ils, which is
described by as : G — Aut(Ilz). Such an action is indi-
cated by the superscript o in II52.

To summarize, 2-groups B(G;Ily) are classified by the
following data

G; HQ,OL2,7_7,3 (34)

where G is a finite group, I, a finite abelian group, as a
group action as : G — Aut(Ily), and 7ng(ap1, aiz, ass) is
a group-cocycle in H3(G,115?). The group-cocycle con-
dition that determines 7i3(ag1, @12, az3) is given by

0 = as(ao1) - n3(a12, azs, aza) — ng(aoz, a3, ass) + nz(aot, a13, asa) — n3(ao1, ar2, asa) + n3(ao1, a12, a3) (35)

= az(ao1) - N3(a12, azs, ags) — N3(ao1a12, @23, aza) + Nz(ao1, a12a23, aza) — N3(aot, @12, a23asa) + 73(ao1, @12, @23)

for all aopl, a2, a3, and asz4.

2. A description of one-vertex triangulation B(G;112)

After knowing how to label all the 2-groups B(G;1l;) using the data (34), the next important question is to obtain
a detailed description of the simplicial set B(G;1II2) from the classifying data (34). The simplicial set B(G;II2) has

the following sets of simplices:

do,d1 do,...,ds do,....ds

pt=——G=——G*?xIl, -~ G xII

Let us describe the sets of simplices and the face map
d,,, in more details. First there is only one vertex pt in
B(G;1ly). The links in B(G;II3) are labeled by elements
a;; in G. All the links connect pt to pt, and correspond
to non-contractable loops in 7(B(G;1lz)) = G. Thus the
face maps are give by

di(ao1) = pt. (37)

The boundary map is given by 0 = dg — d;. We see that
9(ap1) = 0 and the link (ap;) is a 1-cycle, for all ag; € G.

The composition of two links ag; and ai2 can be de-
formed into the link ags if and only if

do(ao1) = pt,

ap1a12 = agp2. (38)

Thus ag1, a12, and age are boundary of a triangle if and
only if ag1a12 = ags.

The G-valued a;; on each link of B(G,II,) define a G-
valued 1-cochain a, which is called a canonical 1-cochain.
Using a, the above condition can be written as

da = a01a12a521 =1. (39)

doy..,da doy...,ds
X3 <=—— x4 X6 <—— x5 x10
G** x 1135 G*° xII3™7 ... (36)

(

This implies that the canonical 1-cochain a is a G-valued
1-cocycle.

When agia12 = ag2, there may be many triangles with
the same boundaries ag1, a12, and age. Those triangles
are labeled by elements in IIs. Thus all the triangles are
labeled by (ao1, a12, ao2; bo12) where a;; satisfy eqn. (38).
If we use independent a;;, we find all the triangles are la-
beled by [ag1, a12; bo12], which leads to the set of triangles
G*? x II,. The face maps are given by

do(am»au, ap2; b012) = (CL12),
di(ao1, @12, ao2; bo12) = (ao2),
da(ao1, @12, @o2; bo12) = (ao1), (40)

which map the triangle to one of its links. From the face
maps d,,, we obtain the boundary map 0:

0=dg— dy + do. (41)

Thus the boundary of triangle (ag1, @12, ag2; bo12) is given
by

0(ao1,a12, ap2; boi2) = (ai2) — (ao2) + (ao1)- (42)



Using the above boundary map, we find that
four triangles —(ao1,a12, aoz2; bo12), (a017a13, aop3; 5013),
—(ao2, a23, ao3; bo23), (a12,a23,a13;b123), form a 2-cycle
since their boundaries cancel each other. Note that a;;
in each triangle must satisfy eqn. (38). Otherwise, they
will not form triangles. But the 2-cycle formed by the
four triangles may not be the boundary of a tetrahedron
in B(G;1Iy). In order to have a tetrahedron in B(G;1Il2)
that fill the 2-cycle, b;;,’s must satisfy a condition. In
other words a;;’s and b;;;’s that label the links and tri-
angles in a tetrahedron in B(G; ;) must satisfy a condi-
tion. Such a condition can be described using the cochain
language (see Appendix A) if we introduce a Ily-valued
canonical 2-cochain b, as defined by the values bi;r. on all
the triangles of B(G;1lz). Using b, the condition on b;jy,
can be written as

db = nz(a), (43)

So, the canonical 2-cochain b may not be a cocycle. Its
derivative is given by a function of canonical 1-cocycle
a. When a5 is trivial, the above have the following ex-
plicit expression: a;;’s and b;;;’s that label the links and
triangles in a tetrahedron satisfy

bi2s — bo2s + bo1z — borz = n3(ao1, a1z, a23).  (44)
When ay is non-trivial, db = f3(a) becomes

as(ap1) - bi2g — boas + bo1s — bo12 = nz(ao1, @12, azs).
(45)

We see that the tetrahedrons in B(G;IIs) are labeled

by (ao1, ai2, as3, ao2, @13, aos; boiz, bo23, boi3, bi23)
that satisfy eqn. (38) and eqn. (45). In other words,
the tetrahedrons in B(G;1l,) are labeled by independent
indices [a01, a1z, a3, b012, bogg, b013]. Those tetrahedrons
form the set G*3 x TLS? in eqn. (36).

The face maps d,,’s on tetrahedrons are given by

do(ao1, a1z, azs, a2, a13, ao3; bo12, bo23, bo13, b123)
= (@12, 23, a13; b123)
di(ao1, a12, 23, agz, a13, ao3; bo12, bo23, bo13, b123)
= (1102, 23, 4o3; 5023)
da(ao1, a1z, azs, ap2, a13, ao3; bo2, bo23, bo13, b123)
= (ao1, 13, ao3; bo13)
ds(ao1, aiz, a2, ap2, 13, ao3; boiz, bo2s, bo13, b123)
= (aOh @12, A02; b012) (46)
Let us introduce s[01] to describe the link (ag1), s[012]

the triangle (aOl,alg,aoz;bom), 8[0123] the tetrahe-

dron (ao1, a12, ass, aoz, a3, aos; bo12, bozs, bo13s, b123), etc .
Then, the above expression can be put in a more compact
form

dys[0123] = s[123],
dys[0123] = s[013],

dy[0123] = s[023],
d3s[0123] = s[012]. (47)
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Using independent labels, eqn. (46) can be rewritten as

dolaot, a12, a23; bo12, bo23, bo13] = [a12, azs; bias] = [a12, ass;
ay ' (ao1) - (boas — bo1s + borz + Rz (aot, a1z, azs))],

diao1, @12, a23; bo12, boas, bo13] = [aoz, azs; boas),

daao1, a2, a23; bo12, bo2s, bo1s] = [ao1, ais; bois),

dslagi, a12, a23; bo12, bo2s, bo1s] = [ao1, ai2; boi2). (48)
The boundary map 0 for tetrahedron is given by

0=dp—di+ds— ds. (49)
Thus

Olap1, a1z, as3; bo12, bozs, bo1s] = [a12, ass; (50)
s H(ao1) - (boas — bois + bora + na(ao, a2, azs))]

— [@o2, a23; bo2s] + [ao01, @135 bo1s] — [ao1, a12; bo12)-

In general, the n-simplices in G*™ x H(Qg) are labeled
by (aij, bkim), @ < j, k <l<mi,jkl,m=0,1---n,
that satisfy the conditions (38) (after replacing 012 by
1 < j < k) and eqn. (45) (after replacing 0123 by i <
j < k <1). We see that all the a;;’s are determined by
the independent ag1, a2, - ,an—1,,. Similarly, all the
bi;jr’s are given by an independent subset of b;;;’s. Such
independent subset is obtained by picking ¢ = 0, and
7 <k

Using the labeling scheme (asj,bijk), 4,7,k =
0,1,---,n, where a;j, b;;, satisfy eqn. (38) and eqn. (45),
we can obtain a simple description of the face map d,,
in eqn. (36) that sends a n-simplex to a (n — 1)-simplex.
To describe the action of d,,, we start with a n-simplex
(@ij,bij%). The resulting n — 1-simplex is obtained by
dropping all in a;j, b;; in the set (a;j;, b;jx) that contain
the vertex m. This changes (a;j, bi k) to its subset which
is written as

dm(aijvbijk|0 S i7j7 k S n) = (a/l]7b7,jk|l7.]ak 7& m)
(51)

a;j, bi;k in the subset also satisfy eqn. (38) and eqn. (45).
The subset d,,(ai;,bijx) describes the resulting n — 1-
simplex after the d,, map. We see that the explicit
expression for d,(a;j,bix0 < 4,5,k < n) is simple to
construct using non-independent a;;, b;;1’s.

3. A trivialization

We have mentioned that nz in db = f3(a) is a group-
cocycle in H3(G; IIz). Such a group cocycle correspond to
a topological cocycle 7i3 on space BG: i3 € H?(BG;1ly).
We may also view 713(a) as a function of @ and as a topo-
logical cocycle on B(G,1I5).

We note that there is unique complex homomor-
phism ¢ B(G,1I3) — BG, which sends the tri-
angle (ag1,a12,a02;b012) in B(G,II3) to the triangle



(ap1,a12,a02) in BG. Then, we may view fz(a) on
B(G,I1I5) as a pullback of n3 on BG by the homomor-
phism ¢:

= i3 (52)

We note that although ng is a non-trivial cocycle on
BG, its pullback ng = ¢*ng is always a coboundary on
B(G,1l,): db= ng(a). In other words, given a Il-valued
3-cocycle ng on BG, let B(G,1I5) 25 BG be the fibra-
tion corresponding to n3, which always exists as stated
in Lemma IV.1. Then ¢*n3 is a coboundary on B(G, II5).

The above result can be generalized: given a Il,, -
valued (m + 2)-cocycle fiy2 on B(G,--- ,I,), let
B(G,--- I, ) = B(G,---,I,,) be the fibra-
tion corresponding to 7,42 as stated in Lemma IV.1.
Then ¢©*Nymq42 is a coboundary on B(G, - -+ 1L, Il 41):
dbm+1 = L)0*7717n+2-

B. 2-gauge theories

To define a d + 1D topological non-linear o-model (we
will assume d > 2 since there is no 2-gauge theory in
1+ 1D), we need to specify the tensor set T. To do so,
for each d + 1-simplex labeled by (aij, bijx) in B(G,II3)
we assign a complex number

Td+1(aij7 bijk) _ wd+1ei2‘ﬂ'a’d+l(aw»bijk) (53)

where @g441(aij,bij5) is a R/Z-valued cocycle on
B(G,Hg)l Wa+1 € HdJrl(B(G,HQ),R/Z) T is the top
tensor in the tensor set T. For each n-simplex in
B(G,1I15), n < d, we assign a positive number w,,, which
correspond to the weight tensors in the tensor set. The
partition function of the corresponding topological non-
linear o-model is then given by

d+1

Z = Z[H

n=0

where N,, is the number of n-simplices in M and 3~
sums over all the homomorphisms ¢ : M+ — B(G, II,).
The pullbacks of the canonical cochains @ and b on

B(G,1I5) by the homomorphisms ¢ give rise to cochains
a and b on M+

a=¢*a,

a and b are referred as gauge field and rank-2 gauge field
in physics, which satisfy

b= ¢*b. (55)

da =1, db=mn3(a). (56)

In fact there is a one-to-one correspondence between the
allowed field configurations ¢ and b and the homomor-
phisms. Thus we can replace >, and 3_, ;:

7 = Z [ﬁ(w )N'ni| ei27rfMd+1 wa+1(a,b) (57)
a,b n=0
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As shown in eqn. (20), homotopic homomorphisms ¢’s
give rise to the same action amplitude e>"! Jpns 67 @ars,
Thus the partition function can be written as

d+1

7= [ I ™

el2m Spar1 [0 @ava (58)

[@], MT, B(G, I12)) x

where N([¢], M¥+L B(G,1,)) is the number of homo-
morphisms ¢ : /\/ldJr1 — B(G,1I3) in the homotopic class

[¢].
Let two field configurations a;j,b;jk,--- and
jj, Uijps - on MI*L come from two homotopic

homomorphisms ¢ and ¢’. Thus the two field configura-
tions have the same the action amplitude ™! Jaaa 07 Cars,
We say that the two configurations differ by a gauge
transformation.

The gauge equivalent field configurations are generated
by two kinds of gauge transformations: The first one is
generated by g; on each vertex

aij — aj; = giaijg;
bijk = b = bijr + Colaij, ajk, 9i, 9j» g) (59)

where (a2(aij, ik, 9is G5, gr) is a IIp-valued function that
satisfy

(d¢2)(aij, ajr, art, gi» 95> 9r» 91)
= —C2(aij, ajk, 9i» 9j» 9k) + C2(aik, akt, Gi, Gk Gi) (60)
— Ga(aiz, aji, gi, 95, g1) + a2(gi;) - C2(ajn, ari, 95, gr, Gi)
=ns(giaijg; ' 950589, s gramg; ") — na(aij, ajn, aik)
Since ng is a cocycle, the above equation always has a

solution. The second one is generated by Ilo-valued A;;
on each link

Qjj — a;j = Qjj,
bijk — b;]k = bijk + )\ij — /\zk + Oéz(gij) . )\jk' (61)
eqn. (59) and eqn. (61) generate the 2-gauge transforma-
tions. The action amplitude >} Jama war1(a:d) ig invariant
under the 2-gauge transformations.

Since N([¢], M9*+1 B(G,11,)) counts 2-gauge equiva-
lent field configurations, from the above form of 2-gauge
transformations, we see that

N([¢], M**1, B(G, 11))
= |G| Mo | Wigp ([0], MU, B(G, T12)).  (62)

To cancel the triangulation dependence Ny and Ny, we
choose the weight tensors to be

wo = |G|7Y, wy = |ly|~!,  other w, =1.  (63)
Such choice of top and weight tensors, (53) and (63),
give rise to a topological non-linear o-model which is a
2-gauge theory.



We like to remark that eqn. (53) and eqn. (63) rep-
resent one class of the solutions to the retriangulation
invariance conditions (like eqn. (15) and eqn. (16)). It
is not clear if eqn. (53) and eqn. (63) represent all the
solutions to the retriangulation invariance conditions. In
other words, it is not clear if topological non-linear o-
models with target complex B(G,II;) are always 2-gauge
theories described by (see eqn. (57))

Z= Z(H‘Gl 1H|H2|_) i27 [\ av1 watra(a,d)

(35)
- Zmeqaﬂ,Md“, B(G, L)) e 2 e [¢] @asn
(9]

(64)

Since the data (G; I, ag,nig) classify the 2-groups,

the d + 1D 2-gauge theories are then classified by the
following data

G; Ip, o, M35 Wagr (65)

where @gy1 € HYY(B(G,1),R/Z). Using the above
data, we can construct a 2-gauge theory eqn. (64).

C. 2-group cocycles

@Wd+1 in eqn. (64) is called a 2-group cocycle. In the
following, we give an explicit description of 2-group co-
cycles, based on the discussion in Section IV A. First, a

J
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d + 1D 2-group cochain wy41 with value M is a function

d
Dgq1 2 G*¥ x H(QQ) — M. Then we can define the differ-
ential operator d acting on the 2-group cochains as the
following (see eqn. (47) or eqn. (48)):

d+1
(dwgs1)(s[0---d+1]) = D (=) @as1(s[1 d+1])
" (66)
In each dimension, we obtain:
(d@o)(ao1) =0, (67)

(d@1)(ao1, @12, bo12) = @1(ao1) — @i(aop2) + @1(a12),

(68)
(dw2)(ao1, ai2, az3, boi2, bois, bo23)
= —wa(ao1, a1z, bo12) + w2(ao1, a13, bo13)
— wa(ao2, a3, bo23) + W2 (ai2, a3, b123), (69)

(dws)(ao1, a1z, ass, asa, boiz, bo1s, boia,bo2s, bo24, bosa)

= +ws(ao1, a12, a23, bo12, bo13, bo2s)

€|

ap1, @12, d24, bo12, bo14, bo2a

El

ap1,a13, 434, bo13, bo14, boza

8 |

8 |

— w3 )
+ w3 )
— w3 (ao2, a3, ass, bos, bo24, bos4)
+ w3 (@12, a23, ass, b1z, bi24, b134), (70)

(d@4)(a017 a12, 423, 34, A45, bo12, bo13, bo14, bo1s, bo23, bo24, bo2s, bo3a, boas, b045)

= —wa(ao1, a12, a3, a4, bo12, bo13, bo14, bo23, bo2a, boza) + walao1, a12, ass, ass, bo12, bo1s, bois, bo23, bozs, boss)

— w4(ao1, a1z, 24, ass, boi2, bo14, bos, boza, bo2s, boas) + wWa(aot, @13, asa, ass, bo13, bo1a, bo1s, bosa, boss, boas)

— w4(aoz, ags, @34, 45, bo2s, boz4, Do2s, bosa, boss, boas) + wa(a12, ass, a4, a5, b123, bi24, 125, b134, b1ss, b1as),  (71)

(dws)(ao1, a12,azs, az4, ass, ase, bo12, bo13, bo14, bo1s, boie, bo23, bo24, bozs, bo2e, o34, boss, bose, boas, boas, bose)
= 4@

Wws
5
5

I E\

El

+
+ ws

5
+ Wws

In the above, the variables a;; with j—i > 1 and b;;;, with
i # 0 do not appear on the left-hand-side of the equation
but appear on the right-hand-side of the equation. In

— ws(ao1, @12, A24, Aa5, As6, bo12, bo14, bois, boie, Do24, bo2s, bo2e, Doas, boas, bose

ao1, 413, A34, 45, 456, D13, Do14, bo1s, bo16, D034, boss, bose, Doas, boas s bose)

a12, 023, A34, G445, G456, D123, b124, b125, b126, D134, D135, D136, D145, 146, 156

ao1, @12, a23, G434, A45, D012, bo13, bo14, bo1s, bo23, bo2a, bo2s, bo3a, boss, boas)
ap1, 012, G23, G434, G446, bo12, bo13, bo14, bo16, D023, bo24, bo26, bosa, bose, boss

ao1, a12, 23, 435, 56, bo12, bo13, bo1s, bo16, bo23, bo2s, bo2e, boss, boss, bose

ap2, 023, 034, G445, 456, bo23, bo24, bo2s, bo26, bo34, boss, bose, boas, boas, bose

(72)

fact, those a;; and b;; are given by a;;41’s and bomn’s



that do appear on the left-hand-side of the equation:

aij:ai7i+1--~ lf]—ZZQ,

bijk = g H(ao1) - [bojk — boik + boij + Palaoi, aij, ajr)-
(73)

Aj—1,55

So the above are conditions on the functions of a;;y1’s
and bopn's.

With the above definition of d operator, we can define
the 2-group cocycles as the 2-group cochains that satisfy
diwgy1 = 0. This generalizes the notion of group cocy-
cle to 2-group cocycle. Two different 2-group cocycles
Wa41 and @), ; are equivalent if they differ by a 2-group
coboundary d,. The set of equivalent classes of d + 1D
2-group cocycles is denoted as H1(B(Gy; I13), M).

D. Cohomology of 2-group

One way to wunderstand the structure of
HFYB(Gy;11),M)  is  to use the fibration
B(Ily,2) — B(Gp;Is) — BGy (see eqn. (33)), and use
spectral sequence to reduce the cohomology of B(Gy; I12)
to cohomology groups of G, and B(Il,2). In partic-
ular, from Appendix B, we see that every element in
H¥*Y(B(Gy;115),R/Z) can be labeled by (ko, ki, -, kq)
where k; € H'BG,, H*7Y(B([y,2);R/Z)g], al-
though some (ko, k1, - ,kq)’s may mnot correspond
to any elements in H9T(B(Gy;1l,),R/Z), and some
different (ko, k1,--- ,kq)’s may correspond to the
same element in HIY(B(Gy; 1), R/Z). (When
B(Gy;1ly) = B(Ilp,2) x BGy, (ko ki, - ,kq) wil
be the one-to-one label of all the elements in
HMHL(B(Gy;T12),R/Z).)

Next, let us concentrate on a special case of Iy = 75,
and try to compute HY'(B(Gy;Z3),R/Z). Since Z,
group has no non-trivial automorphism, « is always triv-
ial. But i3 € H3(BGy;Z3) is in general non-trivial.
Thus, a 2-group B(Gy;Z2) is characterized by a pair
G, fi3. The cohomology H*(B(Z2,2),Z) is given by [57]

d:

345 6 7
HY(B(Z5,2),7) - 0

012
70027502 Zy 2, 4

Using the universal coefficient theorem

H"(X,M) ~ H(X;7) @2 M @ Tor(H" T (X;7),M).

(75)

and Z,, ®z R/Z = 0, Tor(Z,,R/Z) = Z,, we find that
HH(B(Z% 2)3 IR/Z) = Hn+1(B(ZQ7 2)v Z)

d:
HY(B(Z5,2);R/Z) :

23 4 5 6

0 1 2 3
R/Z 0 7, 0 74 7 7, 7O

Using the above result, we find that H*(B(Gy; Z2),R/Z)
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can be labeled by

HY(B(Z5,2);R/Z) = Z4 = {ko},
H'[BGy; H*(B(Z,,2); R/Z)] = {0},
H2[BGy; H*(B(Z4,2); R/Z)] = H*(BGy; Z5) = {k»},
HP[BGy; H' (B(Z5,2);R/Z)] = {0},
H'([BGy; R/Z)] = {ka}. (77)

Since 2-gauge theories in 3+1D are classified pairs
(N3, @4), wa € HYB(Gp;Z2),R/Z)}, we find that each
3+1D 2-gauge theory corresponds to one or more ele-
ments in a subset of

H3[BGy; Z5)] x H*(B(Z4,2); R/Z) x
H?[BGy; Z5)] x H*[BGy; R/Z)] (78)

The first H comes from 73 and the rest H’s from (y.

If the index kg € H*(B(Z2,2);R/Z) = Z4 is ko = 2, the
2-gauge theory has emergent fermions. The index ko in
H?(BGYy; Z3) describes the extension of G}, by Zs to ob-
tain Gy. sRep(Gy) describes the particle-like excitations
in the 2-gauge theory. For details, see Section VI.

V. PURE 2-GAUGE THEORY OF
2-GAUGE-GROUP B(Il,, 2)

In the last section, we discuss some general properties
of 2-gauge theory. In this section, we are going to discuss
a special 2-gauge theory, pure 2-gauge theory.

A. Pure 2-group and pure 2-gauge theory

If we choose the target complex of the topological non-
linear o-model to be B(0;1Iy) = B(Ily,2), we will get a
pure 2-gauge theory of 2-gauge-group B(Ils, 2), where Il
is a finite abelian group. There is only one complex of
B(I13, 2)-type. The complex B(Il3,2) has a structure

do,dy do,d1,d2 do,..., ds do,...,ds

pt=—pt=—1I, I = 15° 0.
(79)

In this case fiz = 0, ay is trivial, and b;j;, satisfy
b123 — bo2s + bo13 — bo12 = 0. (80)

We see that canonical 2-cochain b is a ITo-valued 2-cocycle
on target complex B(Il,2). The action of d on the
cochains in B(Il,2) are given by

(dwo)() = 0, (81)

(dw1)(bo12) = w1(), (82)



(dwa2)(bo12, bo13, bozs)
= —wa(bo12) + w2(bo13) — wa(bozs) + wa(bi2z), (83)

(dwa)(boi2, bo13, bo14, bois, bo2s, bo24, bo2s, bosa, bo3s, boas)

17

(dws)(bo12, bo13, bo14, bo23, bo2a, boss)
= w3(bo12, bo13, bo23) — w3(bo12, bo14, bo24)
+ w3(bo13, bo14, boza) — w3 (bo23, boza, boza)
+ w3 (b123, bi24, b13a), (84)

= —w4(bo13, bo14, bo2s, bo24, boza) + wa(boi2, bo13, bo1s, bo2s, bo2s, bozs) — wa(boiz, bo14, bo1s, bo2a, bo2s, boas)
+ wa(bo13, bo14, bois, bo3a, boss, boas) — wa(bo23, bo2a, bozs, bosa, boss, boas) + wa(b123, bi2a, bi2s, bi34, bi3s, bias), (85)

In the above, the variables b;j;, for i # 0 do not appear
on the left-hand-side of the equation, but appear on the
right-hand-side of the equation. In fact, those b;;, are
given by bomny,’s that do appear on the left-hand-side of
the equation:

bijk = bojr — boir + boij- (86)

So the above are the conditions on functions of by, ’s.
Clearly,
H(B(I1,2);R/Z) = R/Z, H'(B(Il,,2);R/Z) = 0.

(87)

From eqn. (83), we see that, for Il = Z,, a 2-group
2-cocycle has a form
bijr + c,

m
(W2)ijk:g m=0,---,n—1, (88)

The constant term ¢ is a coboundary. Thus
H?(B(Z,,2);R/Z) = Z,. This allows us to show that
for a finite Il

H?*(B(11y,2); R/Z) = TI,. (89)

which agrees with H2(B(Zz,2); R/Z) = Z5 (see eqn. (76))

To compute H*(B(Ilz,2);R/Z), let us first as-
sume Iy = Z,. From eqn. (76), we see that
H*(B(Z2,2);R/Z) = Z4. One of the 4-dimensional 2-
group cocycle is given by

wy (D) = %b? (90)

We note that 2ws = 0. Thus wy only generate Z5 sub-
group of Z, = H*(B(Z4,2);R/Z).

To obtain the generator of H*(B(Z3,2);R/Z), we note
that, if we view b as Z-valued 2-cochain, we have db = 2¢
where ¢ is a Z-valued 3-cochain. Then, from eqn. (A19)
and eqn. (A20), we see that

dSq?b = Sq?db + 2Sq°b = 4(c — ¢ + be). (91)

(

Thus

w(b) = S (92)

is a R/Z-valued 4-cocycle: dwy(b) = 0. Such a w, gener-
ates the full group Z4 = H*(B(Z2,2);R/Z).

In general, if b is a Z,-valued 2-cocycle, we have db =
nc where ¢ is a Z-valued 3-cochain. From eqn. (A17), we
see that

dSq®b = Sq®db + 2S¢°b = n?c — ¢ + 2nbe. (93)
1

This result tells us that when n = odd,

wa(b) = 5% (94)

is a R/Z-valued 4-cocycle, while when n = even

L oo

—Sq°b

554 (95)
is a R/Z-valued 4-cocycle. wq4(b) generates a Z,, group
when n = odd, and a Z,, group when n = even. This
suggests that H*(B(Z,,2);R/Z) = Z, when n = odd,
and H*(B(Z,,2);R/Z) = Z3, when n = even.

wa(b) =

B. Pure 2-gauge theory in 3+1D
1. n = odd case

We see that, when n = odd, we have n different 3+1D
B(Z,,2) 2-gauge theories, described by partition function

Z(M478(Zn72)7k) = Z e27‘rifM4 %(bln)z (96)
dbZn Z0

where k = 0,1,--- ,n—1 and b%" is a Z,-value 2-cocycle.
Clearly, the action amplitude e27i Jxt % ®“™) is invariant
under the 2-gauge transformation b~ — b%~ 4+ d\. The
above 2-gauge theory was studied in Ref. 58. It was found
that the theory realizes a 3+1D Z o4, »y-gauge theory. It
is an untwist Z (o ny-gauge theory since 2kn/(2k,n)? is
always even.
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TABLE I. Volume independent partition function Z*P(M?*;B,w4) for the constructed local bosonic models, on closed 4-
dimensional space-time manifolds. The space-time M®* considered have vanishing Euler number and Pontryagin number
x(M*) = Pi(M*) = 0, which makes Z*P(M*) to be a topological invariant.[26] Here L3(p) is the 3-dimensional lens space

and F* = (S' x S%)#(S! x S3)#CP?>#CP . F* is not spin.

Models \ M*: T |T? x S2|S* x L3(p) F* Low energy effective theory
2P (M B(Z,,2), 32Sa°b") (97) 5 {m, ) if 7005 = even Zim,ny gauge theory
n = even, m = 0’27. Son—1 (m,n)” | (m,n) | (m,n,p) 0 if mm;‘>2 = odd (with fermions iff ﬁ = odd)
Z'P (MY B(Zn, 2), £Sq?b%) (96) 3 Untwisted Z(2x,n) gauge theory
n=odd, k=0,--- ,n—1 (2K, )" (2k,m) | (2k;n,p) (2k, n) (no emergent fermions)
Z%P(M*; BZ,,,0) n3 n (n, p) n Untwisted Z, gauge theory
T P (no emergent fermions)

2. n = even case

When n = even, we have 2n different 3+1D B(Z,, 2)
2-gauge theories, described by partition function

m

Z(MEBZa,2)m) = 37 e e SO

dbZn =0

(97)

where m = 0,1,--- ,2n — 1. Noticing that the Z,,-valued
2-cocycle b%n satisfies db’ = nc. Under the 2-gauge
transformation b2 — b%» + d\ generated by Z,,-valued

1-cochain A, we see that, from eqn. (A24) and using
db?r = ne

S (b%m + dX) — SgPb?r =7 (. (98)
This implies the 2-gauge invariance of the action ampli-
tude 2™ Jas 2259°0 for the n = even case.

3. Properties and duality relations

The pure 2-gauge theories (96) and (97) were studied
for n = odd cases and for n = even and m = 2k cases in
Ref. 58. In those cases, it was found that the theory real-
izes a 3+1D Z o, ny-gauge theory. The Z oy ) -gauge the-
ory has emergent fermions if 2kn/(2k,n)? = odd, and it
is a untwist Z (a5, »y-gauge theory if 2kn/(2k, n)? = even.
To understand the properties of the model (97) for n =
even and m = odd cases, we compute the partition func-
tion (97) in Appendix C. The result is summarized in
Table I. We see that, for n = even, the 3+1D pure 2-
gauge theory is equivalent to Z,, ,y-gauge theory. The
theory has emergent fermion iff mn/(m,n)? = odd.

The higher gauge theories are labeled by a pair
(K,wq+1): a target space K and a cocycle wgi1 on it.
Some times two different higher gauge theories may re-
alize the same topologically ordered phase. In this case,
we say that the two theories are equivalent or dual to
each other. The results in Table I suggest the following
duality relations, where we use [B(II;.IIg,---),@441] to
label different higher gauge theories:

(1) for n = even and Tz = even

B(Z01.2), 5-Sa*V"] ~ [BZgm). 0 (9)
(2) for n = odd
[B(Za2), S8¢27] ~ [BZ )0 (100

We note that [B(Z,), 0] is an untwisted Z,-gauge theory.

VI. 341D 2-GAUGE THEORY OF
2-GAUGE-GROUP B(Gy, Z1)

In this section, we are going to consider more gen-
eral 3+1D 2-gauge theories which have 2-gauge-group
B(Gy, Z3).

A. The Lagrangian and space-time path integral

Since Zg has no non-trivial automorphism, so as is
trivial. As a result, such 2-gauge theories are classified
by

Gp; ng; Wy (101)
where ng € H3(BGy; Z3) and @, € H*(B(Gy; 24): R/ 7).

To write down the Lagrangian and space-time path
integral for the 2-gauge theories, the key is to find @,.
To do so, we note that the links in B(Gy; Z]) are la-
beled by (a), a € G. The triangles in B(Gb;Zg) are
labeled by (asj, ajk, @ik, bijx) that satisfy eqn. (38) and
eqn. (45). We see that on each link of B(Gy;Z2), we
have a label a;;, and on each triangle we have a label ;.
We may view a;; as the canonical Gy-valued 1-cocycle a
(due to eqn. (38)), and b;;; as the canonical 7} -valued
2-cochain b on B(Gy; Zg ). The canonical 1-cocycle and
the 2-cochain are related

db = nz(a). (102)




We may use the 1-cocycle @ and the 2-cochain b to write
down @y. '

We note that each @y, € H*(B(Gy;Z}):R/Z) corre-
sponds (see eqn. (77)) to one or more elements in a subset
of

HY(B(Z3,2);R/Z) x H*(BGy; Z3) x H*(BGy; R/Z).
(103)

To construct a wy, we may guess wy = %’qul_). Using
eqn. (A20), we find that

dSq?b = Sq*n3(a) + 28¢°b
= Sq’n3(a) + 2bas(a). (104)
So wy = %Oqul_) is not a cocycle. But the error is only
a function of 1-cocycle @ if kg = 2. In this case, we can
fix the error by adding a function of a, v4(a). Similarly,
we can try ws = 3bes(a), where &(a) € Z2(BGy; Z3).
But d[bés(a)] = ns(a)éz(a). Again @y = $bé>(a) is not a
cocycle. Again we can fix it by adding a function 74(a).
Thus, we come up with the following general expression
of wy:
o kog oy 1o o
wy(a,b) = ?Sq b+ gbeg(a) + vy(a), (105)
where 74(a) is a R/Z-valued cochain in C*(BGy;R/Z)
that satisfy
oy kogo oo 1
—dmy(a) = ?Sq n3(a) + 5713(&)62(0,). (106)
In this case, @4(a,b) will be a cocycle dwy, = 0. The
three terms in eqn. (105) correspond to the three coho-
mology classes in eqn. (103). Thus our construction of
@, is complete (for fig # 0).
Using the expression (105) for @y, we can construct a
topological non-linear o-model (i.e. a 2-gauge theory):

Z(MY B(Gy; 73), @4)

=S (LG T2t )bt S o
¢ (i)

i

=[Gy 27N

da=1,db=ng

(107)

.o k
e27i Spqa 1/4(a)+70qulH»%beg(a)7

where Zaa:n, db=n SUI Over the Gp-valued 1-cochains

a;; and the Zg—valued 2-cochains b;;, on the space-time
complex M*, that satisfy

(6a)ijk = aijajray’ =1,  db=nz(a). (108)

In the above kg = 0,1 labels the elements of the Z5
subgroup of H*(B(Z},2);R/Z) = Z4, &(a) labels the
elements in Hz(BGb;Zg), and different 74(a) differ by
the elements in H*(BGy; R/Z). Plus nig € H3(BGy; Z3),
the four pieces of data, (ko,é2,73,74), classify 2-gauge
theories of 2-gauge-group B(Gy; Zg ).
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B. The equivalence between [ko, &2(a), nz(a), va(a)]’s

The Lagrangian of the 2-gauge theory (107) is labeled
by the data [klo, 52((_1), ns C_L), 94((_1)]2

€ Z%(BGy; Z5),
€ Z3(BGy; Z,),

é2(ao1, @12

n3(ao1, a12, azs

—_ — —

s(ao1, a12, azs, azs) € CY(BGy; R/ Z), (109)
that satisfy
1 NN
doy(a) = 5[8(1277,3((1) + ns(a)ez(a)] (110)

As local bosonic systems, the different 2-gauge theories
labeled by different data may realize the same bosonic
topological phase. We say that those 2-gauge theories or
those data are equivalent.

Note that the Lagrangian is a 2-group cocycle, and two
Lagrangians differing by a 2-group coboundary should be
equivalent. This kind of equivalent relation is generated
by the following three kinds of transformations:

(1) a transformation generated by a l-cochain I; €
C'(BGy; Z5)

€y — €9 + dl_l, (111)

’FLg *)ﬁg,
_ N
Uy — Uy + ingll.

(2) a transformation generated by a 2-cochain @y €
C*(BGy; Z5)

€2 — €2, (112)

ng — ng + dusg,
k
Uy = Uy + ?0 (d% = iz + Sq’ts + @252) ;

(3) a transformation generated by a 3-cochain 75 €
C3(BGy;R/Z):

€2 — €2, (113)
ns — N3,
Uy — Uy + dis.

Under those transformations, the Lagrangian vy(a) +
%Squ + L1bes(a) only changes by a coboundary. Those
transformations do not change the topological partition
function and do not change the topological order in the
ground state.

We like to point out that the different transformations
of the second type do not commute. Those transfor-
mation may generate changes (&s,73,74) — (€2, i3, Vs +
Ady) where Ady is a cocycle in Z4(BGy; R/Z).

We also want to mention that the above transfor-
mations can not generate all possible equivalent rela-
tions. In particular, an isomorphism of the target space
B(Gy, Z]) — B(Gy, Z{) (2-group isomorphism) may re-
late two Lagrangians whose difference is not a 2-group



coboundary. We are not sure if there are more general
“duality” equivalent relations between 2-gauge theories.
This will be left for future work.

C. 2-gauge transformations in the cocycle c-model

As a local bosonic model, the discrete non-linear o-
model (107) do not have to have any symmetry. How-
ever, in eqn. (107) we choose a very special Lagrangian,
the pullback of a cocycle on the target space. For such
a special Lagrangian, the model is exactly soluble. Such
a special Lagrangian has a large set of accidental sym-
metries: invariant under 2-gauge transformations. Those
accidental symmetries are called 2-gauge symmetries.

The first type of 2-gauge transformation is given by
l-cochain \; € C1(M9*1;7,):

b— b+ dAg,

a— a; (114)

We find that, using eqn. (A23) and eqn. (A21)

koSa?(b + dA1) + (b4 dA)ez(a) — koSq®b — bea(a)
= koSq?dA = 0. (115)

Therefore, the Lagrangian changes by only a total deriva-
tive term under the first type of 2-gauge transformation.

The second type of 2-gauge transformation is given by
0-cochain g; € CO(MI+L; Gy):

b— b+ Cg(a,g), (e 2F —ad = giaijgjl. (116)
Under the above transformation
nz(a) = ns(a’) = ns(a) + déz(a, g).
ea(a) — e2(a?) = ez(a) + d&i(a, g). (117)

which defines (3(a,g). Thus the condition db = ns(a) is
maintained under the 2-gauge transformation. We find
that, using eqn. (A22) and eqn. (A21)
koSa®(b+ Gz) + (b+ C2)(ea + dé1) — koSa®b — bey
2 hgdb — dG +bdér + Goea + Gy,

= kons = d¢a 4+ n3& + (aex + (2dé. (118)

We note that the above only depends on a and g. Thus,
if v(a) satisfies

v(a?) —v(a) = kons b d¢s + n3&y + Ceea + (2 déy,
(119)

the Lagrangian changes by only a total derivative term
under the second type of 2-gauge transformation.
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D. The pointlike excitations in the 2-gauge theory

There are two types of pointlike excitations in the 2-
gauge theory. Let S' be the world line of a pointlike
excitation of the first type. The presence of the pointlike
excitation modifies the path integral via a Wilson loop:

Z(M* B(Gy: Z28)) = |G|~ No2~ ™ (120)
> [] Re,(aig)]e*™ Jua va(@) 55 Sa°b+ gbea(a)
da=1,db=nz S

where Rg,(a), a € Gy, is a representation of G; and
[Is: Re,(aij) is a product Re, (a;;) along the loop S*.

To describe the second type of pointlike excitations,
let f3 be the Poincaré dual of the worldline C* of the
pointlike excitations. Then the second type of pointlike
excitations are created by modifying the condition db =
ns(a) to

db = ’/7,3((1) + fg.

Now the path integral with the second type of pointlike
excitations becomes

Z(M* B(Gy; 73))

= |G|~ No2mM Y

da=1,db=nsz+f3

(121)

(122)

. k
627” Jpqa 1/4(a)+70$q2b+%b62 (a)’

To understand the property of the second type of excita-
tions, let us assume the worldline S* to be the boundary
of a disk D?. Let a Zs-valued 2-cochain s, to be the
Poincaré dual of D2. Then we have f3 = ds,. The above
path integral can be rewritten as

Z(M*; B(Gy; Z3))|Gy | Vo2V

P>

da=1,db=nz+ds2
_ § e27i Saqa u4(a)+k708q2(b+52)+%(b+52)e2(a)

(123)

e27i Saa u4(a)+kTUSq2b+%beg(a)

da=1,db=ngz
— gkomi Soqa Sa®s2

Z o27i Jaqa V4(a)+k70Sq2b+%beg eﬂ'i Spa k0f3‘2’n3+5262

)

da=1,db=ngs

where we have used eqn. (A22). We note that the term
e Jaa s2¢2(0) jg the only one on the disk D? that depends
on the 1-cocycle field a. This term can be rewritten as

el Jpqa s2€2(a) _ e7ri Ip2 82(0.). (124)

However, on the surface, e™! Ip2 e2(a) may not be a
function of the world line C' = 9D2%. It may depend
on how we extend the C* to D? (i.e. changing s» by a
cocycle). In other words, e”! Jaa s2e2(a) may change if
change so by a cocycle. On the other hand, the path
integral (123) depends on s via f3 = dsa. So it should
not change is we change sy by a cocycle. In other words

eﬂ'i f./\/l4 kOSq252+5262(a) (125)



should not change if we change so by a cocycle.
. 2
If we s5 by a cocycle Ba, the term e™! Jas koSa”s2+saea(a)
changes by a factor

eﬂi fM4 koSq2ﬂ2+5262(a) — eﬂ'i f./\/t4 kO(W2+Wf)52+ﬁ2€2(a)
(126)

where we have used eqn. (A22), and the fact Sq?By ="
(wo + w?)B2. We also assume that M* is closed. Next

we will show that ko(we + W?) + eo 240, and the above
factor is always 1.

To show ko(wa + w3) + ea = 0, let us fix a and
do the path integral of b. We have seen that if
we change b by a coboundary, the action amplitude
27 [y va(a@)+ 7 8a%b+3be2(a) qoeg not change. However,
if we change b by a cocycle by, the action amplitude will
change. Using eqn. (A23) and eqn. (A21), we find that

kOsQQ(b +bo)+ (b+bo)ex — koSq?b — bes

B kOSq2b0 + b062 B [ko(WQ + W%) + 62][)0. (127)

Thus the action amplitude depends on by via
™1 Jaqalko(watwi)+ealbo - Gince M* is orientable and com-
pact, its intersection form for Zs-valued 2-cocycle classes
is non-degenerate. Therefore, when we integral over b
(i.e. bp) in the path integral, such a term will cause the
partition function to vanish if

ko(wo + w?) + ea # Zy-valued coboundary.  (128)
As aresult, ko(wo+w?)+es = 0 in order for the partition
function to be non-zero. This completes our proof.

For simplicity let us assume kg = 0 for the time being.
We consider a particle described by a world line C! that
is a combination of the first type and the second type.
In this case, C' dependent factor in the path integral is
given by

[Tr [ R, ()] e Joz e2(@)
Sl

ct'=0D?%.  (129)

Since es(a) 290, the term e™' /b2 ¢2(@) only depend on
C', and does not depend on how we extend C' to D?.
The term e™' /2 ¢2(4) introduces +1 phase to R, (aij)
and promotes it into a representations of Gy = Z >, Gy.
e2(a) is the two cocycle that describes the Z; extension
of Gy, since on the spacetime M?, es(a) is trvialized.
We see that the pointlike excitations are described by
Gy representations.

We know that when ng = es = kg = 0, the a and b
fields in the 2-gauge theory (107) decouple. In this case,
a describes a G} gauge theory (with a cocycle twist),
and b describes a Z3 gauge theory (in the dual form).[58]
Thus, eqn. (107) describes a Zs x G}, gauge theory, whose
charges are described by Z; x G} representations. The
above result suggests that when ey # 0, eqn. (107) de-
scribes a Gy = Z3 X, Gy gauge theory, whose charges
are described by Gy representations.
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When n3 = e; = 0 but kg = 1, the a and b fields in
the 2-gauge theory (107) still decouple. In this case, b
describes a twisted Zs gauge theory (in the dual form)
where the Zs-charge is a fermion (see Section V B).[58]
Thus, eqn. (107) describes a Zs x G}, gauge theory, whose
charges are described by representations sRep(Zs X Gp),
where the non-trivial Z, representations are fermions.
When e; # 0, we expect eqn. (107) to describe a Gy =
Zy Ne, Gp gauge theory, whose charges are described
by representations sRep(Gy). In fact, eqn. (107), with
ko = 1, is an example of high dimensional bosonization
for fermions that carry a Gy quantum number.[58-60]

To summarize, the pointlike excitations in the 2-gauge
theory (107) are described by Rep(Gy) when ko = 0 and
by sRep(Gy) when kg = 1. Here Rep(Gy) is the sym-
metric fusion category formed by the representations of
Gy where all the representations are bosons. sRep(Gy)
is the symmetric fusion category formed by the represen-
tations of Gy where all the representations that repre-
sent the extended Zs trivially are bosons and the others
are fermions. The representations that represent the ex-
tended Zs trivially correspond to the first type of point-
like excitations, which are always bosons regardless the
value of ky. The representations that represent the ex-
tended Z5 non-trivially correspond to the second type of
pointlike excitations. The second type of pointlike ex-
citations are fermions when ky = 1, and bosons when
ko = 0.

We see that when kg = 0, there is no fermionic particle-
like excitations, and the 2-gauge theory eqn. (107) is dual
to Dijkgraaf-Witten model with gauge group G . This is
consistent with the result in Ref. 32.

VII. CLASSIFY AND REALIZE 3+1D EF1
TOPOLOGICAL ORDERS BY 2-GAUGE
THEORIES OF 2-GAUGE-GROUP B(G), Z1)

It was argued that 3+1D AB and EF topological or-
ders with emergent bosons and/or fermions have a unique
canonical boundary.[32, 33] On the canonical boundary,
the boundary stringlike excitations are labeled by the
elements in a finite group. All those boundary string
excitations have a unit quantum dimension. For EF1
topological orders with emergent fermions, the canoni-
cal boundary also has an emergent fermionic pointlike
excitation with quantum dimension 1.[33] Those bound-
ary excitations are described by a pointed unitary fusion
2-category. Such a pointed unitary fusion 2-category is
classified by a 2-group B(GMZ{) and a R/Z-valued 4-
cocycle wy on the 2-group. Here Gy, is the group that la-
bels the types of boundary string excitations. Therefore,
all EF1 3+1D topological orders are classified by a pair
B(Ghy, Zg),@; - a 2-group and a R/Z-valued 4-cocycle on
the 2-group.

To see why pointed fusion 2-categories are classified
by the pairs (B(Gy, ZZf),(D4), we note that the pointed
fusion 2-category has objects labeled by elements in Gy,



1-morphisms labeled by elements in Z5 and 2-morphisms
corresponding to physical operators. The 2-morphisms
are not all invertible, but for the structural morphisms
we only need to consider the invertible 2-morphisms, thus
no generality is lost by restricting 2-morphisms to U(1) ~
R/Z. This way we obtain a 3-group B(Gs, Z2,R/Z),
which has the same classification data as the pointed fu-
sion 2-category. We explain now in more detail.

On one hand, by Lemma V.1, we have

B(R/Z,3) — B(Gy, Z2,R/Z) — B(Gy, Z3), (130)

and B(Gy, Z3,R/Z) is classified by the base 2-group
B(Gy, Z3) and an element @y in H*(B(Gy, Z2),R/Z).
Then the 2-group B(Gy, Z2) is in turn characterised by
Gy, Zo,n3 € H3(BGy; Z3). Thus 3-group B(Gy, Z2,R/7)
is characterised by (Gy, Zo,n3 € H3(Gy, Zo), 04 €
H*(B(Gy, Z5),R/7)).

On the other hand, recall the classification data of the
pointed fusion 2-category that is listed in [33]:

e Objects g € Gy, 1-morphisms py € Z; C Hom(g, g).

e Interchange law: 2-isomorphisms [U(1) phase fac-

tors| b(py, q),,Pg,qn) that determines the particle
statistics.

e Associator: 1-morphism nz(g, h,7) : (gh)j — g(hj)
in H3(BGy; Z3) and 2-isomorphisms 7i3(pg, gn, 5)-

e Pentagonator:
C*(BGy,R/Z).

2-isomorphisms  v4(g, h,j, k) €

We thus find an exact correspondence between the above
and the classification data on the higher group side
(Gb, Zy,ng € Hs(BGb, Zg),u_)4 € H4(B(Gb, Zg), [R/Z)) as
below: Gy, Z2,n3 are exactly the same. The 2-group 4-
cocycle wy has 3 components kg, €z, U4:

e kg corresponds to B(p;, 4, Pg» qn) on the 2-category
side. It has 4 different choices, corresponding to
boson, fermion, semion and anti-semion statistics
respectively. For EF1 topological orders we stick to
the choice of fermion statistics, which is indicated
in our notation by using Zg instead of Zs.

e ¢, determines the Z{ extension from G, to Gy.
Together with kg it determines the associator 2-
morphisms 73(py, gn, ;) on the 2-category side.

e The last component 74 is just the pentagonator
v4(g, h, j, k) on the 2-category side.

e Moreover, on both sides they satisfy the same con-
sistent condition (110).

Since all 3+-1D EF1 topological orders are classified by
B(Gy, Zg),@;, and since for each pair B(Gy, Z{),(Z@ we
can construct a 2-gauge theory to realize a EF1 topo-
logical order, we conclude that exactly soluble 2-gauge
theories of 2-gauge-group B(G), Zg ) realize and classify
all 341D EF1 topological orders.
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VIII. REALIZE 3+1D EF2 TOPOLOGICAL
ORDERS BY TOPOLOGICAL NON-LINEAR
oc-MODELS

A. Construction of topological non-linear s-models

In Ref. 26, it was conjectured that all topological or-
ders with gappable boundary can be realized by ex-
actly soluble tensor network model defined on space-time
complex.[27, 54, 61, 62] In Ref. 33, it was shown that all
EF topological orders have a unique canonical boundary
described by a unitary fusion 2-category in Statement 1.2.
Motivated by the results in Ref. 32 and 61, here we like
to show that all the EF 341D bosonic topological orders
can be realized by topological non-linear o-models, a par-
ticular type of tensor network models defined on space-
time complex.[26, 27, 62] The topological non-linear o-
models are constructed using the data of unitary fusion
2-categories described in Statement 1.2.

Let us remind the readers that the canonical boundary
of a EF topological order is described by a unitary fu-
sion 2-category A3. The boundary stringlike excitations
(the simple objects in A}) are labeled by the elements in
Gy = Gy ™ Z3.[33] All the strings have a unit quantum
dimension and their fusion is described by the group Gy:
(131)

9192 = g3, G1,92,93 € Gy,

Also two strings (two objects) labeled by g and gm
(where g € G and m is the generator of Z3*) are con-
nected by an 1-morphism oy g, of quantum dimension
V/2. This 1-morphism correspond to an on-string point-
like excitation. There is another 1-morphism f; of quan-
tum dimension 1 that connect every string g to itself.
The second 1-morphism correspond to a fermionic point-
like excitation. The fusion of 1-morphisms is given by

fg@fg =1, fg@a'g,gm = Og,gm>
Og,gm ® Ogm,g =1 & fg. (132)

We note that the fusion 2-category A3 has three layers.
The first layer is formed by objects in a fusion category.
For our case, the simple objects in fusion ring form a
finite group G (see eqn. (131)). The second layer is
formed by 1-morphisms generated by 1, fy, 04 gm- The
objects and the 1-morphisms are described by a fusion
category (see eqn. (132)). The third layer is formed by 2-
morphisms, which are complex vector spaces for our case.
The objects plus the 1-morphisms and 2-morphisms are
described by the fusion 2-category. In the first part of this
section, we are going to show that the simple objects and
simple morphisms in the fusion category eqn. (131) and
eqn. (132) (i.e. the object and 1-morphism layers) are
described by a simplicial set K(Gy, Z{ ). And from this
simplicial set, we can recover the entire fusion category
(including semi-simple objects). In the second part of
this section, we will show that the 2-morphism layer is
described by a set of tensors. So the fusion 2-category



is described by a topologlcal non-linear o-model with a
target complex K (G, Z )

To obtain the bulk topological non-linear o-model that
realize the fusion 2-category AZ’, let us first ignore the
quantum-dimension-v/2 1-morphisms oy g,,,. In this case,
the canonical boundary will be described by a pointed
unitary fusion 2-category, i.e. by a 2-group B(Gb,Zg)
and a R/Z-valued 4-cocycle @,(a,b) on the 2-group,
where a and b are canonical 1-cochain and 2-cochain of
B(Gy, Z1). The tensor network model that realize this
reduced boundary will be a 2-gauge theory of 2-gauge-
group B(G’b, ng) In other words, the links in the tensor
network model have an index @;; € G}, which defines &,
and the triangles in the tensor network model have an
index b € Z3* which defines b. a and b satisfy

da=1, db=ns(a), (133)
where fi € 7—[3(@1,; Zg) The corresponding path integral
is given by

Z(M*) =

|ébl_N02_N1 Z e2mi Jaqa wa(a,b) (134)

sa=1,db=ns(a)

Now, let us include the 1-morphisms oy g, that con-
nect two strings g and gm. But at the moment, we will
assume such 1-morphisms to have a unit quantum di-
mension and a fusion o4 gm ® Tgm,y = 1. Since the ex-
tra 1-morphism can connect two strings differ by m, the
flat condition on a is modified and becomes a quasi-flat
condition da € Zi*. In B(Gb7 ) three links am, Qji,
api = (a) ™t bound a triangle only when a;;ja;,ax; = 1.
Now we add some triangles to the complex B(Gy, Z1) so
that three links a;;, @, ar; bound a triangle even when
Gija5p0r; = m € Z3*. Including those extra triangles
change the first homotopy group of the target complex to
m = Gp/Z5" = Gp. The new target complex is denoted
as B(Gy, Zg), which is a triangulation of K(Gp, Zg)

Let us compare two triangulations, B(Gb, VA J ) and
B(Gs, ZQ) of the same space K(Gjp, ZQ) In B(Gb,ZQ)
the links are labeled by a;; € Gy, while in IC(Gb, )
we double the number of links, which now are labeled
by a;; € Gy, = Z3 N Gp. The triangles in B(Gb,Zg)
are labeled by [am, a12,0a02; b012] where api, a12, ap2 sat-
isfy agraiz(apz)™* = 1. On the other hand, the tri-
angles in B(Gb, Zg) are labeled by [Go1, G12, Goz2; bo12]
where é01, aio, Qg2 satisfy &01&12(&02)71 S Zgn The full
structure of K(Gy, Z{ ) is determined by its canonical 1-
cochain a and 2-cochain b that satisfy

da € Zy, db=ns(a). (135)
where 73(a@) is a 3-cocycle in K(Gy, Zg) satisfying
ns(@) = ng(x™(@)), ™ : Gy — Gy,
n3(a) € H*(BGy, Z1). (136)
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To have a more rigorous construction of B(Gb, Zg ), we

note that given a morphism of groups A 22, &G, ker pa N
G := G/Imps together with G action « on ker ps and
ng € H3(G, ker p§) decide a 2-group B(G, ker p2), which
as a simplicial set has the following form: K, = G*™ x
(ker po)* =) where

Kl = {(a01)|a01 S é}, (137)

Ky = {(ao1, a12, ag2; bor2)|ao1a12ag; = 1,bo12 € ker po},
K3 = {(ao1, a12, a23; bo12, bo13, bo23, b123)|a(ao1)bi2s — bo2s
+ bo13 — bo12 = n3(ao1, a12, az3) € kerpa},

and K, in general is made up of those n-simplices whose
2-faces are elements of K5 and such that each set of four
2-faces gluing together as a 3-simplex is an element of
K3. This is the so-called coskeleton construction.

Then we pullback this 2-group structure via the pro-

jection map G G, we obtain another 2-group. The
pullback simplicial set Ko of K, through K, - K
(both Ky = Ky = pt) is inductively defined as K, =
Ky XHom(oan],kx) Hom(0A[n], K). Here 0A[n] is the
boundary simplicial set of the standard simplicial sim-
plex A[n]. Pullback of a 2-group still satisfies the same
Kan conditions, thus still a 2-group. Then after calcula-
tion, we see that the pullback 2-group as a simplicial set

has the following form: K, = G*" x AQX(2 ), where

Ky = {(ao1)laon € G}, (138)

S A s a1
Ky = {(ao1, G12, Go2; bo12)|@o141260, € Impsa, bp12 € ker pa},
K

= {(Go1, 12, G23; bo12, bo13, D23, b123)|a (7™ (Go1))b123
— bo2s + bo1s — bor2 = N3(Go1, G2, d23) € kerpa},

and K, is similarly defined by coskeleton construction.
Here i3 = (7™)*ng is the pullback 3-cocycle. We de-
note this 2-group by B‘(G,ker p2). Since the pullback
construction introduces equivalent 2-groups, B(G, ker p;)
and B(G, ker py) are equivalent 2-groups. To apply in the
above situation, we take G = Gy, Ay = Z'2f x Z§ and
p2 = 0 x ¢ where ¢ : ZJ* — Gy is the embedding, thus
ker po = Z2 and Impy = Z3°.

Through the above examples, we see that pointed uni-
tary fusion 2-categories have a “geometric” picture in
terms of 2-groups. The fusion rules in the 2-categories are
described by the complex of the 2-groups. The compli-
cated coherent relations in the 2-categories are described
by the cocycle conditions on the 2-groups side. In the
following, we will develop a “geometric” picture, i.e. a
complex K(Gy; Z. ) for the unitary fusion 2-category A3
that contains non- 1nvert1ble 1-morphisms.

The complex K(Gy: Z1) has one vertex. The links in
IC(Gb,ZQ) are labeled by elements d,; in group Gy =
Z2 Np Gb, with po € H?(BGy;Z3). The complex
K(Gy; Z1) has the same set of links as B(Gy, ZJ), but
has a d1fferent set of triangles to describe a dlﬁerent
set of 1-morphisms. In l@(Gb,Zg)7 three links a5, aj,



ari = (aix)~! bound a triangle when a;ja;rar; € 25"
When @;;a;,a,; = 1, the three links bound two triangles
labeled by bz]k = O, 1. When dijdjkdki =1m, where m
generates Z3*, the three links bound only one triangle
which has a fixed b, = 1.

The tetrahedrons in I@(Gb;Zéc ) describe the fusion
channels of 1-morphisms eqn. (132). Consider a 2-sphere
in K(Gy; Z1) formed by four triangles who share their
edges. If all four triangles carry no m-flux, i.e. satisfy
Gij0k0K; = 1, then the 2-sphere is filled by a tetra-
hedron if the label b;;; on the four triangles satisfy
> bijk < g (ai;). Here fiz(a;;) is a function that depends
on labels a;; of the six links on the 2-sphere. Note that
73(G;;) is defined only when @;;a;1a0x; = 1 for all four tri-
angles. If two of four triangles carry m-flux, i.e. satisfy
Gi;Giak; = m, then the 2-sphere is filled by a tetrahe-
dron regardless the values of the labels b;;; on the four
triangles.

If all four triangles carry m-flux, then the 2-sphere is
filled by two different tetrahedrons, labeled by cgi23 =
0,1. This is because each triangle with m-flux corre-
sponds to the 1-morphism o. The fusion of three o is
given by c ® o ® 0 = (1@ f) ® 0 = 20. The factor 2
means there are two fusion channels, and thus two differ-
ent tetrahedrons to fill the 2-sphere.

At higher dimensions, every 3-sphere formed by five
tetrahedrons glued along their 2-faces is filled by a 4-
simplex, every 4-spheres formed by six 4-simplexes glued
along their 3-faces is filled by a 5-simplex, etc . In this
way, we obtain the simplicial set K (Gp; ZJ ) (which is thus
3-coskeleton):

do,d1 do,dy,d2 do,...,d3
Koy<=—K|=— K>

do,...,ds
Ky,

K (139)

where the simplexes at each dimensions are given by
kO = {pt}’
Ky = {(ao1)|ao1 € G},

Ky = {(ao1, @12, Go2; boi2)|Go1G12 = Go2, boiz = 0,1;
or ag1d12 = Mag2, bo12 = 0.},

(140)

K3 = {(ao1, G412, G23, Goz, G13, @o3; bo12, bo13, bo2s, b123; Co123)
|if all & =1 : b2z — bo2s + bois — bo12 = 73(Go1, G12, G23),
co123 = 0.},

co123 = 0; if two da =m :

where 713 € H*(BGy;Z5). The complex I@(Gb;Zg) de-
scribes a fusion category formed by the objects and 1-
morphisms in the unitary fusion 2-category Aj. (The
2-morphisms in A} will be discussed in the later part of
this section.)

Since it is a coskeleton construction of a 3-step tower,
I@(Gb; Zg ) is certainly a simplicial set. In general, the
geometric realization |Y| of the simplicial set Y is a
topological space. By construction, |Y| is given by
Y| := UY; x AY/ ~, where ~ is provided by gluing
along lower dimensional faces provided by the informa-
tion given by s the degeneracy maps. However, |Y| may
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FIG. 8. Links are simple objects and triangles with degenerate
(0,1)-sides are simple 1-morphisms.

g v \d

"

FIG. 9. The composition -, of 1-morphisms.

not be a manifold. Also, I@(Gb;Zg) is not a 2-group
any more. First of all, strict Kan(3,j)! are not satisfied,
and even non-strict Kan(4,j) are not satisfied. Never-
theless, m>3(K(Gy; sz)) = 0. Moreover, we still have
m2(K(Gy; Z4)) = 2§ and 1 (K(Gy; Z])) = Gy,

Although I@(Gb; Zg) does not correspond to a 2-group,
in the following, we will show that from the data of
K(Gy; Z1), one can recover the fusion category, which is
the original fusion 2-category Ag’ without the 2-morphism
layer. We first let the set of simple objects to be the links
in K(Gy; Z1), Co := K(Gy; Z5)1 = Gy. And let the set of
simple 1-morphisms to be the triangles with one side de-

generate in K(Gyp; Z4). One can picture them as bigons
(see Fig. 8),

Oy :={(1, 412, Go2; bo12) € Ko}
={(9,9;b)lg =9 ,b=0,1;¢" = gm,b =0}

Then the composition -, of 1-morphisms can be read
from the information of K3, which tells which tetrahe-
drons are allowed, indicated by Fig. 9. For example,
we have a unique tetrahedron (1,1, ¢g,1,¢g,g;0,b,b+b',b)
in K3 to fill its (3,1)-horn. Then this implies that
(9,9;0) » (9,9;8") = (9,9;b+ 1), here + is the addition
in Z3. Then the only non-unique case is for (g, gm;0) -,
(gm,g;0): there are both (1,1,¢,1,gm,g;0,0,0,0) or
(1,1,9,1,9m,9;0,0,1,0) to fill the (3,1)-horn. This
makes (g, gm;0) -, (gm,9;0) = (g,9;0 @ 1) a non-simple
element. We thus can extend -, to an associative product
to all semi-simple objects and 1-morphisms. We call the
result category A3.

Now we will read from K3 the fusion product for A3,
which makes A3 further into a fusion category. We only
need to take care of fusion of simple objects and simple
1-morphisms, then we can extend the fusion by distribu-
tion law to semi-simple objects and 1-morphisms. The
fusion of simple objects is simply the group multiplica-
tion of Giy; the fusion of simple 1-morphisms is again read
from tetrahedrons in K3. If we want to fuse (g1, g7;b1)
and (ga, gh;b2), the first step is to transfer the (0,1)-
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FIG. 10. Fusion of 1-morphisms.

side degenerate triangle (g1,91;01) = (1,97,91;b1) to an
(2,3)-side degenerate triangle, by filling the (3,0)-horn
of the tetrahedron (0,1, 2,3) with a unique element

(Lgivgivgl)gla1;b1707b170) € f(3-

The second step is to fill the (2,1)-horn of the trian-
gle (0,1,4) without flux with (g1, g5, g1¢5;0). The third
step is to finally fill the (3,1)-horn of the tetrahedron
(0,2,3,4) and obtain a triangle (0, 3,4) with three sides
(91,92, 9195). The fourth step is to transfer this triangle
to a triangle with sides (1, g192, ¢195) by filling the (3, 2)-
horn of a tetrahedron. The filling can be non-unique only
in the third step. This procedure is illustrated with Fig.
10.

Following this strategy, the calculation shows that the
only non-unique case happens when we fuse (g1, g1m;0)
and (g2,g2m,0), and (g1,91m;0) @ (g2,92m,0) =
(9192, 9192;0 ® 1). The associator for the fusion prod-
uct is still given by ns. Thus we have recovered a fusion
2-category from the simplicial set K(Gy, Z3).

To obtain the coherence relations (i.e. the 2-morphism
layer) in the unitary fusion 2-category A:g, we try to con-
struct topological non-linear o-models with target com-
plex K(Gb, Z{) To do so, we assign a complex number
to each 4-simplex in I@(Gb, Zg) A 4-simplex is labeled
by ((?Llj, bijka Cijkl|i7ja k, = O, 17 2, 3, 4), that satisfy

ai; € Gy, biji € Za,
bi2s — bo2s + bo13 — bo12 = N3(Go1, G12, Go3)
when all four da = 1,

Cijkl € Z3;

bijk = 0 when (5&)1'3'1@ =m.

¢ijki = 0 when one of éa = 1. (141)

We see that c¢;j; can take two values 0,1 only when all
four da = m. So we can write such a complex number as
A G01002003G04012013014G23024034;C1234C0234C0134 (142)
4b012b013b014b023b024b034b123b124b134b2345¢0124C0123
which corresponds to the top tensor of the tensor set.
The above number is non-zero only when a;;, bijk, Cijr
satisfy eqn. (141). We also assign a positive number wg

to the vertex in K(Gy, Z4). To the links labeled by [do1]
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we assign the same positive number w;. To the triangle
labeled by [ao1, @12, do2; bo12] We assign a positive num-
ber ws(1) or ws(m) depending on dg1a12(Gg2) ' = 1 or
m. The path integral that describes the topological non-
linear o-model on space-time with boundary is given by

/ ’ /
Z(M4) = Z H wOH w1 H wWa [5d)ijk]x
saczy, db=ns(a),c i (i) (ijk)
A QijAikai1aipajka5105paK1akpalp;CikipCiklpCijlp Sijklp
H ( 4bijkbz‘jzbz’jpbikzbikpbilpbjklbjkpbﬂpbmp;CijkpCijkz) ’
(ijkip)
(143)

where H(i ki) is a product over all the 4-simplices and
Sijklp 1S the orientation of the 4-simplices (see Fig. 12).
Also, sz k) is a product over all the interior triangles,

Hzij) is a product over all the interior links, and [], is a
product over all the interior vertices.

The rank-25 tensor Q4, as well as the weight tensors
wp, wy, and ws, must satisfy certain conditions in order
for the above path integral to be re-triangulation invari-
ant. The conditions can be obtained in the following
way: We start with a 5-simplex (012345). Then, di-
vide the six 4-simplices on the boundary of the 5-simplex
(012345) into two groups. Then the partition function on
one group of the 4-simplices must equal to the partition
function on the other group of the 4-simplices, after a
complex conjugation.

For example, the two groups of the 4-
simplices can be [(12345),(02345),(01345)] and

[(01245), (01235), (01234)].
a condition

This partition leads to

>, X

b3as C0345C1345C2345

w2[(6a)345)

A @12813014015023024G25034435045;C2345C1345C1245
4h193b124b125b134b135b145b234ba3sbaasbsas ;12351234
( A G02003004005023024025034035045;C2345C0345C0245 *
Lb023b024b025b034b035b0as b2aabazsbaasbsas;cozas co2sa
A G01003004G05013014015G34035045;C1345C0345C0145

4 .
b013b014b015b034b035b045b134b135b145b345;¢C0135C0134

=YY wl(da)os

bo12 €0123C0124C0125

A G01802004005012014015024025045;C1245C0245C0145
4b012b014b015b024b025b0asb124b125b145b2455c0125C0124

<A G01002003005012@13015G23025035;C1235C0235C0135 >*
4b012b013b015b023b025b035b123b125b135b235;C0125 Co23

A 401802003004G12013014G23024034;C1234C0234C0134

(144)

4b012b013b014b023b024b034b123b124b134b2345C0124C0123

For the partition [(12345),(02345)] and [(01345),



(01245), (01235), (01234)], we obtain a condition

Z A G12013014015023024025034035045;C2345C1345C1245

4 .
b123b124b125b134b135b0145b234b235b245b3455¢1235C1234
C2345

( A G02003004G05023024025034035045;C2345C0345C0245 | %

4 .
b023b024b025b034b035b045b234b235b245b345;C0235C0234

=w Z wa[(6a)o12)w2[(0a)013]w2[(6G)014]

@013;b012,b013,b014,b015;€0123€0124€0125C0134€0135C0145
[((SA) ](Q G01003004G05013014015034035045;C1345C0345C0145 )*
W2({0a)o15 4b013b014b015b034b035b045b134b135b145b3453¢0135C0134
A G01G02004005012014015024G25045;C1245C0245C0145
Lb012b014b015b024b025b0asb124b125b145b2455¢0125C0124
(A @01G02G03G05012813015023025035;C1235C0235C0135 %
4b012b013b015b023b025b035 b123b125b135b235 30125 CO0123
A G01G02003804G12013014023024334;C1234C0234C0134

(145)

4b012b013b014b023b024b034b123b124b134b2345C0124C0123

For the partition [(12345)] and [(02345), (01345),
(01245), (01235), (01234)], we obtain a condition

A G12013014015023024025034035045;C2345C1345C1245

4 .
b123b124b125b134b135b145b234b235b245b345;¢1235€C1234

=wow} Z Z wa[(0a)o12]wa[(6G)013]

@01,002,003,004,405 bo12,bo13

Y. wal(6a)oraJws[(6a)ors]ws((6a)0as]wa[(5a)oz)

bo14,b015,b045,0023;C0123C0124C0125C0134C0135C0145C0234C0235C0245C0345

> wy[(8a)o2a]wa[(5a) 05| wa[(5a)osalwa[(6@)oss]

bo24,b025,b034,b035;
A G02803004005023G24025034035045;C2345C0345C0245
4b023b024b025b034b035b045b234b235b245b3453¢0235 Co234
A @01G03G04005013014015034035045;C1345C0345C0145 %
( 4b013b014b015b034b035b045b134b13551455345;0013560134)
A 401@02004005012014015024025045;C1245C0245C0145
4b012b014b015b0246025b045b124b125b145b245;C0125C0124
A G01G02803G05012013015023025035;C1235C0235C0135 *
( 4b012b013b015b023b025b035b123b125b135b235 3 C0125C0123
A 4&01 G02003G04012G13014G23024G34;C1234C0234C0134 (146)

b012b013b014b023b024b034b123b124b134b2345¢0124C0123

There are many other similar conditions from different

partitions.

Each solution of those conditions give us a topological
non-linear o-model. Some of those models have emergent
fermions and describe EF topological orders. We believe
that all EF topological orders can be realized this way.

In general, it is very hard to find solutions of those
conditions, since that corresponds to solve billions of non-
linear equations with millions of unknown variables, even
for the simplest cases. One way to make progress is to
note that when restricted to the indices a that satisfy
da = 1, the tensor Q4 becomes a U(1)-valued 4-cocycle on
the 2-group B(Gy, Z1). This is because some conditions
for (, such as eqn. (144), act within those components
of Q4 whose indices satisfy 6 = 1. When da = 1, wa(m)
will not appear in those conditions. In this case, if we
choose €4 to be a U(1)-valued 4-cocycle on the 2-group,
the terms in the summation in eqn. (144) will all have
the same value. Thus we can replace the summation in
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eqn. (144) by factors that count the number of the terms
in the summation. From eqn. (144), we see that those
factors cancel out. In this case, the condition eqn. (144)
reduces to the condition for the 4-cocycles on the 2-group.
Thus, the restricted 24 must be U(1)-valued 4-cocycle on

the 2-group B(Gy, Z1), which has a form:

A @01002003004G12G13G14G23024834;C1234C0234C0134

4b012b013b014b023bo24bosab123b124b13ab2sasc0124C0123 Sa=1,c's=0
)

— o271 Jo12ay ¥4(@)+ £ S b+ Fbes (a) (147)
When ky = 1, the tensor Q4 and the associated topo-
logical non-linear o-model will describe a EF topological
order. Starting from the parcial solution (147) we can use
the equations eqn. (144), eqn. (145), and eqn. (146) to
find other components of Q4 whose indices do not satisfy
oa = 1.

As we have seen that the topological non-linear o-
model on the complex I@(Gb7 Z2f) is closely related to the
unitary fusion 2-category A3 that describes the canon-
ical boundary of a EF topological order.[33] The links
in K(Gs, Z{) correspond to the objects in the fusion 2-
category. The 1-morphisms f, that connect an object
to itself corresponds to triangles with no flux, which are
labelled by mo[K(Gy, Z)] = Z,. The non-invertible 1-
morphisms o4 ¢y, correspond to triangles with m-flux. If
we treat the objects connected by 1-morphisms as equiva-
lent, then the equivalent classes of the objects correspond
to 1 [K (G, Z{)] = Gyp. The fusion of the objects in dif-
ferent orders may differ by an 1-morphism which lives in
T [K (G, Z1)], Tt is called an associator. In both Ref. 33
and this paper, we use the same symbol 73 to describe
the associator. The part of the €4 tensor, 74, also cor-
respond to 74 in Ref. 33 that is another piece of data
to describe the unitary fusion 2-category Aj. It is this
correspondence between topological non-linear o-models
on K(Gy, Z]) and the fusion 2-categories described in
Ref. 33 that allows us to conclude that all EF topologi-
cal orders are realized by topological non-linear o-models
on K(Gy, Z{ ).

From a consideration of 2-gauge transformations (see
eqn. (59) and eqn. (61)), we expect wg and wy to contain
factors |G|~ and 3 to cancel the volum of the 2-gauge
transformations. If wy(1) = wo(m) with m being the
generator of Z3*, the solutions should describe AB or
EF1 topological orders. If wy(1) # wa(m), some of those
solutions should describe EF2 topological orders. In par-
ticular, we expect wa(m) to be related to the quantum
dimension of the non-invertible 1-morphism — the Majo-
rana zero mode.

B. The canonical boundary of topological
non-linear o-models

In the last section, we constructed topological non-
linear o-models using the data of unitary fusion 2-



FIG. 11. A boundary configuration. The thin dash-lines
corresponds to a;; = 1. The thin colored-lines corresponds to
Gij # 1. The white triangles corresponds to b;jx = 0. The
yellow triangles corresponds to b;;i = 1, which are boundary
fermions. The non-zero a;;’s describe boundary strings on the
dual lattice, represented by the thick lines. The strings with
different colors are described by g and gm. The domain wall
between two strings has a Majorana zero mode marked by a
green dot.

categories in Statement 1.2. In this section, we like to
show that the topological non-linear o-models have a
canonical boundary described by corresponding unitary
fusion 2-category Aj3.

The canonical boundaries of the topological non-linear
o-models are very simple which are given by choosing
a;; = 1 and b;j; = 0 on the boundary. The states with
ai;; # 1 and b;j, # 0 corresponds excited states with
boundary stringlike and pointlike excitations (see Fig.
11).

We see that the boundary string are labeled by a;
which is an element in G. They correspond to objects in
a unitary fusion 2-category. b;;i on triangles correspond
to 1-morphisms of unit quantum dimension. b;;; = 1 im-
plies the presence of a fermion on the triangle (ijk). The
condition db = n3(a) describes how a fermion worldline
can starts or ends at certain configurations of @, where
fiz(a) # 0.

The Fermi statistics of the particle described by
biju # 0 is determined by the form of the top

tenso Q @01802G03004012013014G23024034;C1234C0234C0134 .
nsor )y in
bo12b013b014b023b024b034b123b124b134b2345C0124C0123

eqn. (147). ko = 1 will make the particle to be a fermion.

The triangles with éa = m will carry a Majorana zero
mode, provided that the weight tensor wy(da) satisfies
wa (1) # we(m). If wa(l) = wa(m), the triangles with
d6a = m will not correspond to a Majorana zero mode.
Those results suggest that the canonical boundaries of
the topological non-linear o-models are described by uni-
tary fusion 2-categories in Statement 1.2.

To summarize, the topological non-linear o-models are
described by the following data

Gy = Z3" Ny, Gy, 1i3(a), wo, wi, wa(l), we(m),
A G01G02003004G12013014023024034;C1234C0234C0134
4b012b013b014b023b024b0sab123b124b134b2345C0124C0123 (148)

where 7i3(a) is defined only when da = 1. In that case,

it is a Zs-valued group 3-cocycle for G’b: nglsa=1 €

H3(Gb;Zg). Also, wo,w17w2(2§”),ﬂ4 satisfy a set of
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non-linear equations, such as eqn. (144), eqn. (145), and
eqn. (146). If the tensor 4 has a form (147) with
ko = 1, then the data describe a EF topological or-
der. Such data also classify the EF topological orders
after quotient out certain equivalence relation. When
Gy = Z3" ~p, Gy is a non-trivial extension of Gy by
Z and when wy(1) # wa(m), the data classify the EF2
topological orders.

Although we have collected many evidences to support
the above proposal, many details still need to be worked
out to confirm it.

IX. TURAEV-VIRO CONSTRUCTION AND
HIGHER CATEGORY

The above topological non-linear o-models are actually
a special case of Turaev-Viro type state sum construction.
So in this section, we will discuss such a construction in
most general setting.

The most general Turaev-Viro type state sum con-
struction of n + 1D TQFT that one can imagine is to
triangulate the space-time, color all the k-simplices for
k < n+ 1, give each n + 1-simplex a factor which de-
pends the its colorings, then multiply the factors together
to get the action amplitude, and then sum the action am-
plitudes over all possible colorings (i.e. do the path in-
tegral). The final answer is the partition function of the
state sum model. In order for the partition function to
be topological, the colorings and the factors must satisfy
a series of self-consistent conditions, such that the action
amplitudes are retriangulation invariant (see conditions
eqn. (144), eqn. (145), and eqn. (146)).

More precisely

e The coloring of a O-simplex (i.e., vertex) is in a
labeling set L.

e The coloring of a 1-simplex (i.e., link) between ver-
tices a,b € Lg is in a labeling set Lq(a,b).

e The coloring of a 2-simplex (i.e., triangle) is in a
labeling set which is determined by the colorings of
the three vertices and three links.

e The factor €2; of an n + 1-simplex ¢ is a function of
all the above colorings.

e The weighting factor wﬁ-k) of an k-simplex (k <

n+ 1) j is a function of all the colorings of the
k-simplex.

e The partition function is given by

7= > (IHTI")(I1%)

colorings k=0 j

(149)



However, it is not necessary to use so general a con-
struction. Many of the above models turn out to describe
the same topological phase. To produce all the possible
phases it is sufficient to use only some simplified versions
of state sum model. This can be seen by the following
n-category picture.

Although not rigorously proved, we believe the above
data of the most general state sum model exactly corre-
sponds to a m-category which describes the topological
defects and excitations on a gapped nD boundary of the
n+1D TQFT. ( n+1D Turaev-Viro type TQFT = n+1D
TQFT with gapped boundary.) The labeling sets Ly of
k-simplices are just the sets of isomorphisms classes of
simple k-morphisms in the n-category. An n + 1-simplex
can be read as a closed graph in the n-category, whose
evaluation gives rise to a complex number which is the
factor associated to the n + 1 simplex.

The physical picture of such n + 1-category is that k-
morphisms correspond to codimension k topological de-
fects. More precisely

e O-morphism: nD “defect”, in fact not a defect but
just a label of a uniform boundary region, like a
boundary “phase”.

e l-morphism: n — 1D defect between different
boundary phases.

e n— 2-morphism: 2D=1+41D defect, namely line de-
fect. If between trivial membrane defects, they are
actually string-like excitations.

e 1 — l-morphism: 1D=0+1D defect, point defect.
If between trivial line defects, they are point-like
excitations, or particles.

e n-morphism: 0D defect, “instanton”, a change in
time, represented by physical operators.

As a first simplification, nD boundary phases that can
have n — 1D defects between them should be “Morita-
equivalent”; they share the same bulk phase. This indi-
cates that the vertex labels in the state sum model (corre-
sponding to O0-morphisms in the n-category) should not
produce more phases and can always be dropped. For
the n-category this means fixing the O-morphism, which
turns the n-category into a fusion n — l-category.

For n = 2, the above is the best one can do, and it is
why 2 + 1D Turaev-Viro TQFTs are built upon fusion
categories. There are two levels of colorings

e [, labels the links, also the objects in the fusion
category, corresponding to the point-like excita-
tions on the boundary.

e Ls(a,b,c) labels the triangles, also the morphisms
in the fusion category, corresponding to basis op-
erators in the fusion space Hom(a ® b,c¢). When
all such fusion spaces are 1-dimensional, this level
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of coloring can be dropped and these models are
called multiplicity-free.

For n = 3, the above means that 3 + 1D Turaev-Viro
TQFTs can be built upon fusion 2-categories. There are
thus there levels of colorings

e [, labels the links, also the objects in the fusion
2-category, corresponding to the string-like excita-
tions on the boundary.

e Lo(a,b,c)labels the triangles, also the 1-morphisms
in the fusion 2-category, corresponding to the point-
like defects on the junction of a, b, ¢ strings.

e L3(...) labels the tetrahedrons, also the basis phys-
ical operators in the corresponding fusion space.

One possible further simplification is to consider
boundaries without string-like excitations. Note that in
this case particles (the only non-trivial topological de-
fects) on the boundary form a pre-modular category. The
corresponding model is the so-called Crane-Yetter TQFT
[61] or Walker-Wang model [63]. But they are not suf-
ficient to construct all 3+1D phases. In [64, 65] it was
generalised to use G-crossed extension of the pre-modular
category as input data.

Another possibility is to consider boundaries whose
point-like excitations are as simple as possible, by the
results in [32, 33]. This leads to more general and pow-
erful simplification.

First, every 3+1D topological phase have a canonical
gapped boundary (this in particular means that all 3+1D
topological phase are of Turaev-Viro type) whose string-
like excitations fuse under a group multiplication law.
Thus L; is a group. Note that the particles (point de-
fects on the trivial string) form a pre-modular category.
G-crossed pre-modular category is just a special case of
of such fusion 2-category. In other words, construction
based on fusion 2-category whose objects form a group
include the construction in [64, 65].

Second, [32, 33] further shows that particles on the
boundary can be reduced to Vec or sVec; in other words,
either there is no non-trivial particle, or the only non-
trivial particle is the fermion. This means that there
are at most two labels in Ly. (As a result most Ls also
become trivial.) This is exactly the model discussed in
this paper, which should be the most simplified version
of state sum model in 341D, but still general enough to
produce all 3+1D phases.

X. SUMMARY

In this paper, we show that higher gauge theo-
ries are nothing but familiar non-linear o-models in
the topological-defect-free disordered phase. As a re-
sult, non-linear o-models whose target spaces K satisfy
71 (K) = finite group and 71 (K) = 0 can realize gauge
theories, and non-linear o-models whose target spaces K



FIG. 12. (Color online) Two branched simplices with oppo-
site orientations. (a) A branched simplex with positive orien-
tation and (b) a branched simplex with negative orientation.

satisfy 71 (K),m2(K) = finite group and mps2(K) = 0
can realize 2-gauge theories, etc .

We discuss in detail how to characterize and classify
higher gauge theories, such as 2-gauge theories. As an ap-
plication, we use 2-gauge theories to realize and classify
all 3+1D EF'1 topological orders — 3+1D topological or-
ders for bosonic systems with emergent fermions, but no
Majorana zero modes for triple string intersections. We
also design topological non-linear g-models to realize and
classify all 3+1D EF2 topological orders — 3+1D topo-
logical orders for bosonic systems with emergent fermions
that have Majorana zero modes for some triple string in-
tersections. Since EF topological orders can be viewed as
gauged fermionic SPT state in 3+1D, our result also give
rise to a classification of 3+1D fermionic SPT orders.

To obtain the above results, we developed a “geomet-
ric” way to view the unitary fusion 2-category A} for the
canonical boundary of the EF topological orders. We
used a special triangulation of a space K(G’b, Zg) to de-
scribed the fusion category formed by the objects and
l-morphisms in A}. We used a tensor set defined for
the triangulation to described the 2-morphism layer of
2-category A;j’.
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CZ is supported by the German Research Foundation
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Institutional Strategy of the University of Géttingen and
DFG ZH 274/1-1.

Appendix A: Space-time complex, cochains, and
cocycles

In this paper, we consider models defined on a space-
time lattice. A space-time lattice is a triangulation of the
d + 1D space-time, which is denoted as M9+, We will
also call the triangulation M9t as a space-time com-
plex, which is formed by simplices — the vertices, links,
triangles, etc . We will use ¢,7,--- to label vertices of
the space-time complex. The links of the complex (the
1-simplices) will be labeled by (i, 5), (4, k), - - -. Similarly,
the triangles of the complex (the 2-simplices) will be la-
beled by (iaj, k)a (]7 ka l)a T

In order to define a generic lattice theory on the
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FIG. 13. (Color online) A 1-cochain a has a value 1 on the
red links: a;x = ajr = 1 and a value 0 on other links: a;; =
arr = 0. da is non-zero on the shaded triangles: (da);ju =
ajr + ar — aj;. For such 1-cochain, we also have a — a = 0.
So when viewed as a Zs-valued cochain, Bza # a — a mod 2.

space-time complex M?+! using local tensors T;j..., and
wd+1(agf , agcf, ---), it is important to give the vertices of
each simplex a local order. A nice local scheme to order
the vertices is given by a branching structure.[21, 66, 67]
A branching structure is a choice of orientation of each
link in the d + 1D complex so that there is no oriented
loop on any triangle (see Fig. 12).

The branching structure induces a local order of the
vertices on each simplex. The first vertex of a simplex is
the vertex with no incoming links, and the second vertex
is the vertex with only one incoming link, etc . So the
simplex in Fig. 12a has the following vertex ordering:
0,1,2,3.

The branching structure also gives the simplex (and its
sub-simplices) a canonical orientation. Fig. 12 illustrates
two 3-simplices with opposite canonical orientations com-
pared with the 3-dimension space in which they are em-
bedded. The blue arrows indicate the canonical orienta-
tions of the 2-simplices. The black arrows indicate the
canonical orientations of the 1-simplices.

Given an abelian group (M, +), an n-cochain f, is an
assignment of values in M to each m-simplex, for ex-
ample a value fy; ;.. € M is assigned to n-simplex
(4,4, ,k). So a cochain f, can be viewed as a bosonic
field on the space-time lattice.

We like to remark that a simplex (4,7,---,k) can
have two different orientations s;;...,, = =. We can use
(¢,3,-++ ,k) and (4,4,---,k) = —(i,7,--- ,k) to denote
the same simplex with opposite orientations. The value
fnii - & assigned to the simplex with opposite orienta-
tions should differ by a sign: fr. ... k = —fniji - k- S0
to be more precise f;, is a linear map f,, : n-simplex — M.
We can denote the linear map as (f,, n-simplex), or

(Fns (5 K)) = Fuijo ke €N (A1)
More generally, a cochain f, is a linear map of n-chains:
fn : n-chains — M, (A2)

or (see Fig. 13)
(fn,n-chain) € M, (A3)
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FIG. 14.  (Color online) A 1-cochain a has a value 1 on
the red links, Another 1-cochain a’ has a value 1 on the blue
links. On the left, a — a’ is non-zero on the shade triangles:
(a — a')iji = aijal; = 1. On the right, a’ — a is zero on
every triangle. Thus a — a’ + a’ — a is not a coboundary.

where a chain is a composition of simplices. For example,
a 2-chain can be a 2-simplex: (4,7, k), a sum of two 2-
simplices: (3,7, k) + (4, k,1), a more general composition
of 2-simplices: (i,7,k) — 2(j,k,1), etc . The map f, is
linear respect to such a composition. For example, if a
chain is m copies of a simplex, then its assigned value
will be m times that of the simplex. m = —1 correspond
to an opposite orientation.

We will use C"(M94+1; 1) to denote the set of all n-
cochains on M+, C"(M*+1; M) can also be viewed as
a set all M-values fields (or paths) on M+, Note that
C™(M+1L: 1) is an abelian group under the +-operation.

The total space-time lattice M1 correspond to a
(d + 1)-chain. We will use the same M?*! to denote
it. Viewing f441 as a linear map of (d + 1)-chains, we
can define an “integral” over M9+1:

/ far1 = (farr, M), (A4)
Md+1

We can define a derivative operator d acting on an
n-cochain f,, which give us an n + 1-cochain (see Fig.
13):

(dfn, (iot1l2 - - int1))
n+1

=3 ()™ (fn, (i -+ - ing1)) (AD)
m=0

where igi1%g - - - %m -+ ip4+1 is the sequence igiiio - - - ipt1
with 4, removed, and ¢g,%1,%2 - -%,4+1 are the ordered
vertices of the (n + 1)-simplex (igi1ia - int1)-

A cochain f, € C"(MIT1 M) is called a cocycle if
df, = 0. The set of cocycles is denoted as Z™ (M1 M).
A cochain f,, is called a coboundary if there exist a
cochain f,_; such that df,—1 = f,,. The set of cobound-
aries is denoted as B"(M94T1;1M). Both Z"(MF1; 1)
and B (M1 M) are abelian groups as well. Since d? =
0, a coboundary is always a cocycle: B"(M*1:M) C
ZM (ML M), We may view two cocycles differ by a
coboundary as equivalent. The equivalence classes of co-
cycles, [fy], form the so called cohomology group denoted
as

HM(M*0) = 2" (MPT5 M) /B (M 0), - (A6)
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H"(M¥1:1), as a group quotient of Z™(M*1 M) by
B"(M4+1:11), is also an abelian group.
For the 7 n-valued cocycle z,,, dx, £ 0. Thus

1
Byz, = —dx,

N (A7)

is a Z-valued cocycle. Here By is Bockstein homomor-
phism.

From two cochains f,,, and h,,, we can construct a third
cochain py, 4+, via the cup product (see Fig. 14):

Pm+4n = fm — hp,
(Pmsns (0= m+n)) = (fm, (0 = m))x

(hn, (m = m+n)), (A8)
where ¢ — j is a consecutive sequence from i to j:
t—=>j=d41+1,--,5—1,7. (A9)

The cup product has the following property
d(hn — fm) = (dhpn) — fim + (=)"hn — (dfm) (A10)

We see that h,, — f,, is a cocycle if both f,, and h,, are
cocycles. If both f,, and h,, are cocycles, then f,,, — h,, is
a coboundary if one of f,, and h,, is a coboundary. So the

cup product is also an operation on cohomology groups
—: H™(M% M) x HY (M%) — H™ (M%), The cup

product of two cocycles has the following property (see
Fig. 14)
fm = hp = (=)""hy — fm + coboundary  (All)

We can also define higher cup product f,, — h,, which
k

gives rise to a (m + n — k)-cochain [68]:
<fm th,(O,l,---

k
- Z (_)p<fma(0%i(),i1—)@'27...)>X

0<ip< - <ip<n+m—~k

;m+n—k))

(hn, (g = i1,02 = 43,---)),  (Al2)

and f,, — hp, =0for k >mornor k <0. Here i — j
k

is the sequence ¢,7+ 1,--- ,j5 — 1,4, and p is the number
of permutations to bring the sequence

0—)io,i1—>i27"‘;io+1—)il—1,i2+1—)i3—1,"'
(A13)

to the sequence

0—-m+n—Ek. (A14)
For example
m—1
(fm = hn, (0,1, m+n—1)) = Z(_)(m—i)(n+1)x
i=0
(fm, O = d,i+n—=>m+n—1)){h,, (i = i+n)).
(A15)



We can see that ~—=-—. Unlike cup product at k = 0, the

0
higher cup product of two cocycles may not be a cocycle.
For cochains f,,, h,, we have

d(fm — hy) = dfm — o + (=) fm - dh,+ (A16)

e e e e S

—1

Let f,, and h, be cocycles and ¢; be a chain, from
eqn. (A16) we can obtain

d(fm :/ hn) = (*)m+nikfm 1:_/1 hn

+ (_)mn+m+nhn k\_/l fmv
d(fm \k/ fm) = [(_)k + (_)m]fm :1 fmv

d(cl — c+c~ dcl) = d¢ — dg
k-1 k k

[ = ()N = evter = da). (ALT)

From eqn. (A17), we see that, for Zs-valued cocycles
Zn;

(A18)

is always a cocycle. Here Sq is called the Steenrod square.
More generally h,, — h,, is a cocycle if n + k = odd and
k

h, is a cocycle. Usually, the Steenrod square is defined
only for Z5 valued cocycles or cohomology classes. Here,
we like to define Steenrod square for M-valued cochains
Cnt

Sq" e, = ¢ — e + e — dey. (A19)
K k1
From eqn. (A17), we see that
dSqfe, = dlen, — ecn+cen — dep) (A20)
n—k n—k+4+1
0 k = odd
=Sqfde, + (=) :
q”den + (=) {Qquch k = even

In particular, when ¢, is a Zs-valued cochain, we have

dSqfe, = Sq"de,. (A21)

Next, let us consider the action of Sq* on the sum of
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two M-valued cochains ¢, and ¢/,:

Sq"(en + ¢,) = Sq¥e, +Sqfe, +

— dd,+c, — dec,

/ /
Cnvcn+cn\_/cn+cn
n—k n—k+1 n—k+1

n—k

=Sq"cn, +Sq ¢, + [1+ (=)¥]en, — €,

n—k

— () < et (<) = 6]

/ /
+c¢, — d¢,+c, — de,
n—k+1 n—k+41

=Sq*en +8d°¢, + 1+ (-)*len — ¢,

+ (=)"*[dd],

— cpt (—)e,

— dey]
n—k+1

n—k+1

—k / / /
— ()" *d(c, - cn) + Cn - de, + ¢, T dey,
n— n— n—

=Sq¥en + 8", + 1+ (—)¥en — €,

n—k

Y PR _(_\n—k o
FL+ (G < o= (R < )
()" e, — e —en — de]
n—k+1 n—k+1
=Sq%cn, + 84", + [1 4+ (=)¥]en, — €,
n—k
+ 1+ (M, — den — (=)"7Fd(d, — cn)
n—k+1 n—k+1
—d(dd, — c¢p)+dd, — de,
n—k+42 n—k+2

=Sq"c, +Sq"c, + dc), — de,

n—k+2

+ 1+ (=)¥][en - a +c, — dey)

n—k+1

— cp) —d(de, — cp).
n—k+1 n—k+2

(A22)

We see that, if one of the ¢, and ¢, is a cocycle,

Sq¥(cn + ) = Sqc, + Sq"¢,. (A23)
We also see that
Sq*(en + dfn-1) (A24)
=8q"cn +8q" dfp1 + [+ (=) dfa-1 = e
= ()" (e — dfa1) —d(dep — dfni)

= Sq¥e + [1+ (M[dfucs — en+(-)Sq T fu]

+ d[SqF fr1 — (—)”’kcnnjﬂd fro1 — dcnn:Hd fro1].

Using eqn. (A25), we can also obtain the following result
if de,, = even

Sq¥ (e, +2¢))
=89, +2d(e, — ) +2de, —

n
n—k+1 n—k+1

= 8q%c, +2d(c, — )

n—k+1

(A25)

As another application, we note that, for a Z5 cochain



mg and using eqn. (A16),

Sql (md) =My d\: mq + mg \; dmyg

1 1
- §(_)d[d(md - mg) — dmyg — ma] + 3md dmy

(=)Ba(mg — ma) — (=) Bamy ~ Ma + Mg~ Bamg
= (—)dBde — 2(—)d82md d\:l Bzmd
( (A26)

where we have used myq — myg = mg. This way, we

d
obtain a relation between Steenrod square and Bockstein
homomorphism, when my is a Z5 valued cocycle

Sq" (ma) = Bamg. (A27)

Appendix B: Lyndon-Hochschild-Serre spectral
sequence

The Lyndon-Hochschild-Serre spectral sequence (see
Ref. 69 page 280,291, and Ref. 70) allows us to under-
stand the structure of of the cohomology of a fiber bun-
dle F - X — B, H*(X;R/Z), from H*(F;R/Z) and
H*(B;R/Z). In general, H%(X;M), when viewed as an
Abelian group, contains a chain of subgroups

{0y =Hyy CHyC---C Hy=HYX;M)  (Bl)

such that H;/H;+1 is a subgroup of a factor group of
H' B, H"=YF;M)p], i.e. H'[B, H*"'(F;M)p] contains a
subgroup I'*, such that

Hl/Hl+1 C Hl[Bdeil(F; M)B]/Flv

1=0,---,d. (B2)

Note that 71 (B) may have a non-trivial action on M and

71(B) may have a non-trivial action on HY!(F;M) as

determined by the structure F' — X — B. We add the

subscript B to HY~!(F;M) to indicate this action. We
also have

Ho/H, C H°[B, HY(F;M)g],

Hy/Hgp = Hy = HY(B; M) /T (B3)

In other words, all the elements in H?(X ;M) can be one-

to-one labeled by (xg,x1, - ,zq) with
x; € Hy/Hy 4, € H[B,H"Y(F;M)p]/T". (B4)
Note that here M can be Z,Z,,,R,R/Z etc . Let x4,
a = 1,2,---, be the generators of H'/H'*'. Then we

say T; o for all [« are the generators of HY(X;M). We
also call H;/H; 41,1 =0,--- ,d, the generating sub-factor
groups of HY(X;M).

The above result implies that we can use
(ko, k1, ,kq) with k € H'B,H¥YF;R/Z)g] to
label all the elements in HY(X;R/Z). However, such
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a labeling scheme may not be one-to-one, and it may
happen that only some of (ko,k1,---,kq) correspond
to the elements in HY(X;R/Z). But, on the other
hand, for every element in H%(X;R/Z), we can find a
(ko, k1, -+, kq) that corresponds to it.

For the special case X = B X F, (ko, k1, -+, kq) will
give us a one-to-one labeling of the elements in H%(B x
F;R/Z). In fact

d
HYB x F;R/Z) = P H'[B, H"(F;R/Z)].
=0

(B5)

Appendix C: Partition functions for 3+1D pure
2-gauge theory

In this section, we compute the partition function for
the pure 2-gauge theory (97) with n = even and m = odd.
Let C4(M; M) be the set of M-valued (d + 1)-cochains on
the complex M, Z¢(M; M) the set of (d+1)-cocycles, and
B4(M; M) the set of (d+ 1)-coboundaries. When m = 0,
the partition function is given by the number of Z,-
valued 2-cocycles |Z2(M*;Z,)|, which is |[H*(M*;Z,)|
times the number of 1-cochains whose derivatives is non-
zero. The number of 1-cochains whose derivatives is non-
zero is the number of 1-cochains (|C'(M*;Z,)| = n™e)
divide by |H'(M*;Z,)| and by the number of number
of 0-cochains whose derivatives is non-zero. The num-
ber of 0O-cochains whose derivatives is non-zero is the
number of O-cochains (|C°(M*;Z,,)| = n™*) divide by
|H°(M*;Z,,)|. Thus the partition function is

Z(MYB(Z,,2),0) = | 2*(M* Z,)]
|Cl(M4§Zn)| ‘H0<M4;Zn)|
[H'(M*; Z,)] |CO(M*; Z,,)]
ANe— N T2 ME 2 || HO (M Z,) |

|HY (M Z,)]|

= ‘HQ(M4§ Z,)|

(C1)

where N, is the number of vertices and N, the number
of links. The volume-independent topological partition
function is given by

_IHHMAZ,)||[HO(MY2,)
T HWMAZ)

Z*°P(M* B(Z,,2),0)
(C2)

When m # 0, The volume-independent topological par-
tition function is given by

Z%P(M* B(Z,,2),0)

_ |HOMYZ,)]
o HY (MY Z,)] 2

(C3)
127 [y4a 3207+ 50— Bb
bEH2(M*Z,,)

i2 my?+ 2 b— Bb
where >z, o' mr LS replaces
|H?(M*: Z,,)).

Now, let us compute topological invariants. On M?* =

T*, the cohomology ring H*(T*;Z,) is generated by



ar, I = 1,2,3,4, where a;y € H'(T*;Z,)) = 47,,. Us-
ing the cohomology ring discussed in Ref. 58, we can

parametrize bZ» as
b=ajjaray;, ary=-—-ajyr €7Z,. (C4)

We also have Bb = 0. Thus

Z(T* B(Z,2),m) (C5)
_ % Z o127 Fr2(2aza—aizazataisass)
arg€Ln

Using Y-, a,ez, €277 %1% = (m,n)n, we find that

Z°P(T* B(Z,,,2),m) = (m,n)>. (C6)

On M* = S? x T2, the cohomology ring H*(T? x
S?:7,) is generated by ay, I = 1,2 and b, where a; €
HY(T?x8%7,) =7%?and by € H*(T?>x S?;Z,) = 7%2.
Using the cohomology ring discussed in Ref. 58, we can
parametrize b as

b=aojaia9 + agb(], aq, 0 € Z,. (07)
Thus
Z%P(S% x T% B(Z,,,2),m) (C8)
_ 1 127Tﬂ2(¥1()£2 _
= Z e'“Man = (m,n).
a1,02€Zy,
On M* = S* x L3(p), we need to use the cohomology
ring H*(S' x L3(p); Z,,) calculated in Ref. 58:
(St x L3(p),Z,) =7, ® Zpny = {a1,a0},

(

2(51 % LB(
H3(S" x L3(
HYS* x L*(p), Z,) =

) =
n) = Zpmy © Lipny = {ara0,bo},

) =2Zn ® 2y = {co,a1bo},

Z, ={aico}. (C9)
where we have also listed the generators. Here a; comes

from S* and ag, bo, co from L3(p). The cohomology ring
H*(S* x L3(p), Z,,) is given by:

2
2 o _n’p(p—1)
ne O 2
n
aobo = —Cp, b2 = apCy = 0. (C].O)
(p,m) 0

For (n,p) = 1, Z%*P(S* x L3(p); B(Z,,2),m) = 1. For
(n,p) # 1, we can parametrize b as

b= ajapar + agby, a1,a9 € Z<n’p>, (Cll)

which satisfies Bb = 0 (see Ref. 58).
aico and (apay)? = b3 = 0, we find that

Using agaiby =

<n p)
Z*P(S" x L*(p); B(Zy,2),m) (C12)
1 <"§:1 —
= e T M2 = (m n p).
Y i
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M = F*, we need to use the cohomology ring
( ;Zy,) as described in Ref. 58:

( ) 2927 HQ(F4;ZTL) = Z;‘zﬁ?
H3( Zg% H4(F4§Zn> =1Zn. (013)
Let ay,as be the generators of H'(F*;Z,), bi,by the

generators of H?(F*;Z,), ci,c2 be the generators of
H3(F*Z,), and v be the generator of H*(F*;Z,):

H*(F4;Zn) = {al,ag,bl,bg,cl,CQ,’U}. (014)
We find that the non-zero cup products are given by

b = —b2 = ajc1 = ascy = 0. (C15)
All other cup products vanish.
We can parametrize b as
b=oa1b; + a2b27 1,00 € Z,, (ClG)
where by,be are generators of H?(F*4;Z,). Using b3 =
—b3 =, biby = 0, and Bb; = Bby = 0 , we find that
1 - 22
2O (FB(Z,,2),m) = = Y eimEileiad (17
al,a2:0
~ | {m,n), if 7z = even;
o, if ﬁ = odd.

The above results, plus some previous results from
Ref. 58, are summarized in Table I.

Appendix D: Simplicial sets, Kan conditions

A simplicial set X is a contravariant functor from the
catogory of finiate ordinals to that of sets, X : A — Sets,
where A, the category of finite ordinals, is made up by

[0] :{0}7 [1] :{071}7 R [n] :{0317"'7n}a
with order-preserving maps, for example,

d'in—1]—n], Vji<ije—iVi>ij—j+l,

that is, to leave 7 skipped, or

s'iln] > n—1), Vi<ijejVi>ijej-1,
that is, to leave i-doubly mapped. In fact, all oder-
preserving maps are generated by d'’s and s'’s. In an-
other word, X consists of a tower of sets Xg, X1,...,X,
with face d; : X;, — X,,—1 and degeneracy s; : X,,_1 —
X, which are dual to d* and s*. If we take the simplicial
decomposition of a topological space |X|, and take X,
to be the set of n-simplices, then the collection of X, for
a simplicial set with d; the natural face maps and s; the
natural degeneracy maps. Thus it is not hard to imag-
ine, in general, for a simplicial set X, d; and s; satisfy
expected coherence conditions,

didj = djfldi ifi < 7
diSj = ijldi ifi < 7, dij
diSj = dei—l if 7 > ] + 1.

SiSj = Sj+1Si if ¢ S j,

=id = dj+18j7 (Dl)



Example D.1 (m-simplex and (m, j)-horn). If we take
a geometric n-simplex and take its natural simplicial de-
composition, we end up with a simplicial set A", which
can be described in the following combinatoric way,

(A™)n ={f:[n] = [m] | f() < f(j) for all i < j},
(D2)

Similarly, we define the simplicial (m, j)-horn as the fol-
lowing;:

(A ={fe(A™)n|{0,....7—1Lj+1,....,m}

Z {£(0),.... f(n)}}.
(D3)

Their geometric realisation is a m-simplex removing the
inner and j-th facet. Clearly, there is an inclusion of

1 1 1
Q
Kg K& A5\
O«—O o} O
0 2 0 2 0 2

FIG. 15. The Horns
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simplicial sets ¢y, ; 1 AT" — A™.

Then the set of simplicial morphisms Hom(A™, X) =
Xm, and Hom(AT", X) is usually some sort of prod-
uct of X,;’s and represents horns in X. For example,
HOI’II(A%,X) = X1 Xdo,Xo,d1 Xl.

Definition D.2. A simplicial set X satisfies the Kan
condition Kan(m, j) iff the canonical map (i.e., the horn
projection)

X,n = Hom(A™, X) =% Hom(A}", X) (D4)
is surjective. It satisfies the unique Kan condition
Kan!(m, 7) iff the canonical map in (D4) is an isomor-
phism. We call X a Kan simplicial set (or a Kan com-
plex or an oco-groupoid) iff it satisfies Kan(m, j) for all
m>1,0<j<m. X is called an n-groupoid iff it sat-
isfies Kan(m, j) for all m > 1, 0 < j < m and Kan!(m, j)
forallm>n+1,0<j<m. X is called an n-group iff
it is a n-groupoid and Xj is a point.

For the content of this Appendix, we refer to the stan-
dard text books [71, 72] for the theory simplicial sets.
oo-groupoid using Kan condition is due to [73], we also
refer to the in [74, Sect.1] for a nice detailed introduction
of this topic.
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