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A discrete non-linear σ-model is obtained by triangulate both the space-time Md+1 and the target
space K. If the path integral is given by the sum of all the simplicial homomorphisms φ : Md+1 → K

(i.e. maps without any topological defects), with an partition function that is independent of space-
time triangulation, then the corresponding non-linear σ-model will be called topological non-linear
σ-model which is exactly soluble. Those exactly soluble models suggest that phase transitions
induced by fluctuations with no topological defects usually produce a topologically ordered state
and are topological phase transitions. In contrast, phase transitions induced by fluctuations with all
topological defects give rise to trivial product states and are not topological phase transitions. Under
the classification conjecture of Lan-Kong-Wen [Phys. Rev. X 8, 021074 (2018)], it is shown that, if
K is a space with only non-trivial first homotopy group G which is finite, then those topological non-
linear σ-models can already realize all 3+1D bosonic topological orders without emergent fermions,
which are described by Dijkgraaf-Witten theory with gauge group π1(K) = G. Under the similar
conjecture, we show that the 3+1D bosonic topological orders with emergent fermions can be realized
by topological non-linear σ-models with π1(K) = finite groups, π2(K) = Z2, and πn>2(K) = 0. A
subset of those topological non-linear σ-models corresponds to 2-gauge theories, which realize and
may classify bosonic topological orders with emergent fermions that have no emergent Majorana
zero modes at triple string intersections.
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FIG. 3. X-ray scattering is a universal probe for all crystal
orders.

e−
∫
Md+1 dd+1x ε(x) is not topological, since even when two

systems (K,L) and (K ′,L′) are in the same topologically
ordered phase, their energy densities ε(x) and ε′(x) can
be different.
However, the idea of using partition function to

characterize topological order is not totally wrong.
In particular, the sub-leading term is believed to be
topological.[26] So Ztop(Md+1;K,L) are topological in-
variants that can be used to measure/define topological
order. Ref. 27 describes ways to extract topological in-
variant Ztop(Md+1;K,L) from non-topological partition
function Z(Md+1;K,L) via surgery operations.
After identifying the topological invariants that char-

acterize and define topological orders, the next issue is
to systematically construct bosonic systems (K,L) that
realize all kinds of topological orders, which is the topic
of this paper. Only 10 years ago, systemic and classifying
understanding of strongly correlated systems appeared to
an impossible task. At that time, the only systemic un-
derstanding is Landau symmetry breaking theory. Since
then, we have obtained systemic and classifying under-
standing of strongly correlated 1+1D gapped phases at
zero temperature [28, 29]. This paper presents a sys-
temic and a classifying understanding of strongly corre-
lated 3+1D gapped liquid phases [30, 31] at zero tem-
perature (under the conjectures proposed in Ref. 32 and
33):

1. It is known that some topological orders are de-
scribed by gauge theory with finite gauge group.
Knowing the theoretical existence of higher gauge
theory, one may wonder, do we have condensed
matter systems on lattice that can produce topo-
logical orders described by higher gauge theory. In
this paper, we will describe in details a general
way to construct exactly soluble bosonic models on
lattice: topological non-linear σ-models, and their
special cases – higher gauge theories. We believe
that, under the conjectures proposed in Ref. 32
and 33, topological non-linear σ-models can realize
all 3+1D bosonic topological orders with gappable
boundary. In particular, higher gauge theories real-
ize and classify all bosonic topological orders with
the following property: the topological orders have
a gapped boundary that all pointlike, stringlike and
other higher dimensional excitations on the bound-
ary have a unit quantum dimension.

2. We find that many higher gauge theories and topo-
logical non-linear σ-models are equivalent and de-
scribe the same topological order. We identified
a small subset of 2-gauge theories and topological
non-linear σ-models, and argue that the subset can
realize all topological order in 3+1D bosonic sys-
tems. In particular, 3+1D higher gauge theory with
higher gauge group B(Π1,Π2, · · · ) (where Πi are
finite) is equivaent (i.e. produces the same topo-
logical invariants Ztop(Md+1)) to a 3+1D higher
gauge theory with higher gauge group B(Π′

1, Z2).
(For notation, see Section ID.) This result allows
us to classify, under the conjectures in Ref. 32 and
33, all topological order in 3+1D via concrete mod-
els. Using those models, we can study universal
experimental properties of all 3+1D topological or-
ders. More specifically, We use exactly soluble 2-
gauge theories to systematically realize and classify
EF1 topological orders – 3+1D bosonic topological
orders with emergent bosons and fermions where
triple string intersections carry no Majorana zero
modes. The rest of 3+1D bosonic topological or-
ders with emergent bosons and fermions are EF2
topological orders where some triple string inter-
sections must carry Majorana zero modes.[33] We
find that EF2 topological orders can be realized by
topological non-linear σ-models which are beyond
2-gauge theories.

There are many works [34–44] on higher gauge theories
and their connection to topological phases of matter. In
this paper, we present a detailed description of “lattice
higher gauge theories”, in a way to make their connec-
tion to non-linear σ-model explicit. In our presentation,
we do not require higher gauge symmetry and higher
gauge holonomy. We even do not mod out higher gauge
transformations. Our “lattice higher gauge theories” are
just lattice non-linear σ-models with only lattice scalar
fields (i.e. lattice qubits). However, lattice non-linear
σ-models (without higher gauge symmetry) can realize
topological orders whose low energy effective theories are
higher gauge theories with emergent higher gauge sym-
metry. In other words, we describe how higher gauge
theories can emerge from lattice qubit models (i.e. quan-
tum spin models in condensed matter). In this paper, we
also apply 2-gauge theories to classify a subclass of 3+1D
bosonic topological orders with emergent fermions. We
point out that the rest of 3+1D bosonic topological orders
with emergent fermions are beyond 2-gauge theories and
can be realized by more general topological non-linear
σ-models.

B. Realize topological orders via disordered

symmetry breaking states without topological

defects

In this paper, we show that all the higher gauge the-
ories can be viewed as non-linear σ-models with some
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complicated target space and carefully designed action.
Such a duality relation between non-linear σ-models and
higher gauge theories suggests that we may be able to
use disordered symmetry breaking states (which are de-
scribed by non-linear σ-models) to realize a large class
of topological orders. In other words, starting with a
symmetry breaking state and letting the order param-
eter have a strong quantum fluctuation, we may get a
symmetric disordered ground state with topological or-
der.

However, this picture seems to contradict with many
previous results that a symmetric disordered ground
state is usually just a trivial product state rather than
a topological state. The study in this paper suggests
that the reason that we get a trivial disordered state is
because the strongly fluctuating order parameter in the
disordered state contains a lot of topological defects, such
as vortex lines, monopoles, etc.

The importance of the topological defects [45] in pro-
ducing short-range correlated disordered states have been
emphasized by Kosterlitz and Thouless in Ref. 46, which
shared 2016 Nobel prize “for theoretical discoveries of
topological phase transitions and topological phases of
matter”.

In this paper, we show that the phase transitions
driven by fluctuations with all possible topological de-
fects produce disordered states that have no topological
order, and correspond to non-topological phase transi-
tions. While transitions driven by fluctuations without
any topological defects usually produce disordered states
that have non-trivial topological orders, and correspond
to topological phase transitions. This phenomenon has
been demonstrated in a 2+1D RP 3 = SO3 non-linear σ-
model [47, 48]. Thus, it may be confusing to refer the
transition driven by topological defects as a topological
phase transitions, since the appearance of topological de-
fects decrease the chance to produce topological phases
of matter.

More precisely, if the fluctuating order parameter in
a disordered state has no topological defects, then the
corresponding disordered state will usually have a non-
trivial topological order. The type of the topological
order depends on the topology of the degenerate man-
ifold K of the order parameter (i.e. the target space of
the non-linear σ-model). For example, if π1(K) is a fi-
nite group and πn>1(K) = 0, then the disordered phase
may have a topological order described by a gauge the-
ory of gauge group G = π1(K). If π1(K), π2(K) are finite
groups and πn>2(K) = 0, then the disordered phase may
have a topological order described by a 2-gauge theory
of 2-gauge-group B(π1(K), π2(K)).

It is the absence of topological defects that enable the
symmetric disordered state to have a non-trivial topolog-
ical order. When there are a lot of topological defects,
they will destroy the topology of the degenerate mani-
fold of the order parameter (i.e. the degenerate manifold
effectively becomes a discrete set with trivial topology).
In this case the symmetric disordered state becomes a

product state with no topological order. Certainly, if
the fluctuating order parameter contains only a subclass
of topological defects, then only part of the topological
structure of the degenerate manifold is destroyed by the
defects. The corresponding symmetric disordered state
may still have a topological order, as discussed in Ref. 49.

C. Realizations of all 3+1D bosonic topological

orders

It was shown [32, 33] that all 3+1D bosonic topological
orders belong to two classes: AB topological orders where
all pointlike excitations are bosonic and EF topological
orders where some pointlike excitations are fermionic.
Ref. 33 shows that all EF topological orders have a unique
gapped boundary with the following properties:

1. All stringlike boundary excitations have a unit
quantum dimension. Those boundary strings form
a finite group Ĝb under string fusion. The group
Ĝb is an extension of a finite group Gb by Zm

2 :

Ĝb = Zm
2 ⋋ Gb. (See Section ID for the definition

of Zm
2 ⋋Gb.)

2. There is one non-trivial type of pointlike bound-
ary excitations which is fermionic and has a unit
quantum dimension.

3. There are on-string pointlike excitations – Majo-
rana zero modes of quantum dimension

√
2. The

Majorana zero mode always lives at the pointlike
domain wall where a string labeled by g joins a
string labeled by gm. Here g ∈ Ĝb and m is the
non-trivial element in Zm

2 .

We note that the boundary fermions can form a topo-
logical p-wave superconducting (pSC) chain.[50] The

boundary strings labeled by Ĝb can be viewed as the
boundary strings labeled by Gb plus the pSC chain. In
particular, a string labeled by g and a string labeled by
gm differ by a pSC chain.
If Ĝb is the trivial extension of Gb by Zm

2 : Ĝb = Zm
2 ×

Gb, the corresponding bulk topological order is called a
EF1 topological order. If Ĝb is a non-trivial extension of
Gb by Zm

2 : Ĝb = Zm
2 ⋋ρ2 Gb where ρ2 ∈ H2(BGb;Z

m
2 ),

the corresponding bulk topological order is called a EF2
topological order. Here, we have used a conjecture –
a holographic principle[25, 26, 51] – that the boundary
topological order completely determines the bulk topo-
logical order.
When Ĝb is the trivial extension: Ĝb = Zm

2 × Gb, we
can drop boundary strings that come from the pSC chain
(by regarding the pSC chain as a kind of trivial strings).
Thus, the EF1 topological order has a simpler gapped
boundary: In addition to the boundary strings of unit
quantum dimension labeled by a finite group Gb, there is
one and only one non-trivial type of pointlike boundary
excitations which is fermionic and has a unit quantum
dimension.[33]
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In the above, we have defined EF1 and EF2 topological
orders via their boundary properties. To distinguish EF1
and EF2 topological order through their bulk properties,
we consider a stringlike excitation in the bulk that has
triple string intersections (see Fig. 4). Note that a triple
string intersection is described by the conjugacy classes

χgf
1
, χgf

2
, χgf

3
⊂ Gf that satisfy gf1 g

f
2 = gf3 . By mea-

suring the appearance of Majorana zero mode at triple
string intersections for different triples χgf

1
, χgf

2
, χgf

3
, we

can determine the cohomology class of ρ2.[33] If the mea-
sured ρ2 is a coboundary, the bulk topological order is
an EF1 or an AB topological order. Otherwise, the bulk
topological order is an EF2 topological order.
It has been shown that all 3+1D AB topological

orders are classified and realized by 1-gauge theories
(i.e. Dijkgraaf-Witten gauge theories).[32] In this paper,
we show that all 3+1D EF1 topological orders are classi-
fied and realized by 2-gauge theories with 2-gauge-group

B(Gb, Z
f
2 ). The pointlike topological excitations (includ-

ing emergent fermions) are described by symmetric fusion

category sRep(Zf
2 ⋋Gb), where Zf

2 ⋋Gb is an extension

of Gb by Zf
2 .

We will also discuss how to systematically realize 3+1D
EF2 topological orders through topological non-linear σ-
models whose target space K satisfies π1(K) = Gb and
π2(K) = Z2. Those topological non-linear σ-models are
beyond 2-gauge theories. The resulting EF2 topological
orders have pointlike topological excitations described by

sRep(Zf
2 ⋋Gb).

Our results suggest the following more general picture:

Statement I.1. Exactly soluble n-gauge theories can re-
alize all bosonic topological orders in n+1 spatial dimen-
sions that have a gaped boundary where all boundary ex-
citations (including on d-brane excitations) have a unit
quantum dimension.

This is because higher groups can be viewed as higher
monoidal categories where all objects and higher mor-
phisms are invertible. For more general bosonic topo-
logical orders whose gapped boundary excitations have
non-unit quantum dimensions, we need to use more gen-
eral exactly soluble models, such as topological non-linear
σ-model or even more general tensor network models, to
realize them.[26]
Combining the above realization results and the

boundary results in Ref. 33, we obtain the following clas-
sification of EF topological orders:

Statement I.2. 3+1D EF topological orders are classi-
fied by unitary fusion 2-categories[52] that have the fol-
lowing properties:
(1) The simple objects are labeled by Ĝb = Zm

2 ⋋ρ2 Gb,

and their fusion is described by the group Ĝb.
(2) For each simple object g there is one nontrivial in-
vertible 1-morphism corresponding to a fermion fg.

(3) In addition, there are quantum-dimension-
√
2 1-

morphisms σg,gm that connect two objects g and gm,

where g ∈ Ĝb and m is the generator of Zm
2 .

(4) The fusion of 1-morphisms is given by fgfg = 1 and
σg,gmσgm,g = 1 ⊕ fg.

D. Notations and conventions

Let us first explain some notations used in this pa-
per. We will use extensively the mathematical formal-
ism of cochains, coboundaries, and cocycles, as well as
their higher cup product ⌣

k

, Steenrod square Sqk, and

the Bockstein homomorphism Bn. A brief introduction
can be found in Appendix A. We will abbreviate the cup
product a ⌣ b as ab by dropping ⌣. We will use a sym-
bol with bar, such as ā to denote a cochain on the target
complex K. We will use a to denote the corresponding
pullback cochain on space-time Md+1: a = φ∗ā, where
φ is a homomorphism of complexes φ : Md+1 → K.

We will use
n
= to mean equal up to a multiple of n, and

use
d
= to mean equal up to df (i.e. up to a coboundary).

We will use ⌊x⌋ to denote the greatest integer less than
or equal to x, and 〈l,m〉 for the greatest common divisor
of l and m (〈0,m〉 ≡ m).

Also, we will use Zn = {1, e i 2π
n , e i 2

2π
n , · · · , e i (n−1) 2π

n }
to denote an Abelian group, where the group multipli-
cation is “∗”. We use Zn = {⌊−n

2 + 1⌋, ⌊−n
2 + 1⌋ +

1, · · · , ⌊n
2 ⌋} to denote an integer lifting of Zn, where

“+” is done without mod-n. In this sense, Zn is not
a group under “+”. But under a modified equality

n
=,

Zn is the Zn group under “+”. Similarly, we will use
R/Z = (− 1

2 ,
1
2 ] to denote an R-lifting of U1 group. Un-

der a modified equality
1
=, R/Z is the U1 group under

“+”. In this paper, there are many expressions contain-
ing the addition “+” of Zn-valued or R/Z-valued, such

as aZn

1 + aZn

2 where aZn

1 and aZn

2 are Zn-valued. Those
additions “+” are done without mod n or mod 1. In this
paper, we also have expressions like 1

na
Zn

1 . Such an ex-

pression convert a Zn-valued aZn

1 to a R/Z-valued 1
na

Zn

1 ,
by viewing the Zn-value as a Z-value. (In fact, Zn is a Z

lifting of Zn.)
We introduced a symbol ⋋ to construct fiber bundle

X from the fiber F and the base space B:

pt → F → X = F ⋋B → B → pt. (5)

We will also use ⋋ to construct group extension of H by
N [53]:

1 → N → N ⋋e2,α H → H → 1. (6)
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Here e2 ∈ H2[H;Z(N)] and Z(N) is the center of N .
Also H may have a non-trivial action on Z(N) via α :
H → Aut(N). e2 and α characterize different group
extensions.

We will use K(Π1,Π2, · · · ,Πn) to denote a con-
nected topological space with homotopy group
πi(K(Π1,Π2, · · · ,Πn)) = Πi for 1 ≤ i ≤ n, and
πi(K(Π1,Π2, · · · ,Πn)) = 0 for i > n. In this paper,
we assume that all Πn’s are finite. We note that πi is
abelian for i > 1. If only one of the homotopy groups,
say Πd, is non-trivial, then K(Π1,Π2, · · · ,Πn) is the
Eilenberg-MacLane space, which is denoted as K(Πd, d).
If only two of the homotopy groups, say Πd, Πd′ , is
non-trivial, then we denote the space as K(Πd, d; Πd′ , d′),
etc . We will use K(Π1; Π2; · · · ; Πn), K(Πd, d), and
K(Πd, d; Πd′ , d′) to denote the simplicial complexes
that describe a triangulation of K(Π1,Π2, · · · ,Πn),
K(Πd, d), and K(Πd, d; Πd′ , d′) respectively. We will
use B(Π1; Π2; · · · ; Πn), B(Πd, d), and B(Πd, d; Πd′ , d′) to
denote the simplicial sets with only one vertex satisfying
Kan conditions that describe a special triangulation
of K(Π1,Π2, · · · ,Πn), K(Πd, d), and K(Πd, d; Πd′ , d′)
respectively. Since simplicial sets satisfying Kan condi-
tions are viewed as higher groupoids in higher category
theory, the simplicial sets B(Π1; Π2; · · · ; Πn), B(Πd, d),
and B(Πd, d; Πd′ , d′), with only one vertex (unit), can be
viewed as higher groups. In this paper, higher groups
are treated therefore as this sort of special simplicial
sets.

II. TOPOLOGICAL NON-LINEAR σ-MODELS

AND TOPOLOGICAL TENSOR NETWORK

MODELS

A. Discrete defectless non-linear σ-models

The non-linear σ-model (2) is widely used in field the-
ory to describe a bosonic system. If we require the map
φ(x) to be continuous, then the non-linear σ-model will
be defectless, i.e. the fluctuations contain no defects. But
the corresponding path integral (2) is not well defined
since the summation

∑

φ(x) over ∞∞ number of the con-

tinuous maps is not well defined. To obtain a well defined
theory, we discretize both the space-time Md+1 and the
target space K. We replace them by simplicial complexes
Md+1 and K.

1. A detailed description of simplicial complex

Let us first describe the simplicial complexes system-
atically. We introduce M0,M1,M2, · · · as the sets of ver-
tices, links, triangles, etc that form the space-time com-
plex Md+1. The complex Md+1 is formally described

by

M0 M1

d0,d1
oo

oo M2

d0,d1,d2
oo

oo

oo M3

d0,...,d3
oo

·
oo

M4 · · · ,
d0,...,d4
oo

·
oo

(7)

where di are the face maps, describing how the (n − 1)-
simplices are attached to a n-simplex. Similarly, the com-
plex K is formally described by

K0 K1

d0,d1
oo

oo K2

d0,d1,d2
oo

oo

oo K3

d0,...,d3
oo

·
oo

K4 · · · ,
d0,...,d4
oo

·
oo

(8)

where K0, K1, K2, · · · are the sets of vertices, links,
triangles, etc that form the target complex K.
In this paper, we will use v1, v2, · · · ∈ K0 to la-

bel different vertices in the complex K. We will use
l1, l2, · · · ∈ K1 to label different links in the complex K,
and t1, t2, · · · ∈ K2 different triangles, etc . We choose a
fine triangulation on Md+1 such that the links, triangles,
etc can be be labeled by their vertices. In other words,
we will use i to label vertices in M0. We will use (ij) to
label links in M1, and (ijk) to label triangles in M2, etc .
The continuous maps between manifolds φ(x) :

Md+1 → K is replaced by homomorphisms between com-
plexes φ : Md+1 → K. The homomorphism φ is a set of
maps φ(0) : M0 → K0, φ

(1) : M1 → K1, φ
(2) : M2 → K2,

etc that preserve the attachment structure of simplices
described by the face maps di. For example, if (ij) is
attached to (ijk) by the face map d3 in space-time com-
plex Md+1, then φ(1)((ij)) is attached to φ(2)((ijk)) by
the face map d3 in target space complex K. The ho-
momorphism is the discrete version of continuous map.
Physically, the continuous map or the homomorphism de-
scribes fluctuations without any topological defects and
any kind of “tears”.

2. A simple definition of discrete non-linear σ-model

Now, a discrete non-linear σ-model is defined via the
following path integral

Z(Md+1;K, ω̄d+1) =
∑

φ

e2π i
∫
Md+1 φ∗ω̄d+1 (9)

where
∑

φ sums over all the homomorphisms φ :

Md+1 → K. It is clear that the map φ assign a label vi
to each vertex i ∈ M0, a label lij to each link (ij) ∈ M1,
a label tijk to each triangle (ijk) ∈ M2, etc . Thus we
can view the map φ as a collection of fields on the space-
time complex M: a field vi on the vertices M0, a field
eij on the links M1, a field tijk on the triangles M2, etc .
We can rewrite the path integral as a integration of those
fields:

Z(Md+1;K, ω̄d+1) =
∑

vi,lij ,tijk,···

e2π i
∫
Md+1 ωd+1(v,l,t,··· ).

(10)
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FIG. 5. The tensor Cl01l02l03l12l13l23;t012
v0v1v2v3;t023t013t123

is associated with a
tetrahedron, which has a branching structure. If the vertex-0
is above the triangle-123, the tetrahedron has an orientation
s0123 = ∗. If the vertex-0 is below the triangle-123, the tetra-
hedron has an orientation s0123 = 1. The branching structure
gives the vertices a local order: the ith vertex has i incoming
links.

Although those fields vi, lij , tijk, · · · satisfy certain local
constraints described by the face maps di, we can im-
pose those local constraints by energy penalty: The field
configurations that do not satisfy attachment conditions
will cost a large energy. Thus we can view those fields as
independent fields.
The term e2π i

∫
Md+1 φ∗ω̄d+1 in the path integral is the

action amplitude. Here φ∗ω̄d+1 ≡ ωd+1 is a real-valued
(d + 1)-cochain on Md+1 which is a pull back of a real-
valued (d + 1)-cochain ω̄d+1 on K. The resulting path
integral defines a discrete non-linear σ-model whose fluc-
tuations have no defects.
However, the above definition of discrete non-linear σ-

model has an inconvenience: different choices of space-
time triangulation may lead to different phases of the
bosonic systems. To avoid this problem, we like to
choose some special triangulation K of the target space
K, and some special ω̄d+1’s on K such that, for a given
pair (K, ω̄d+1), the corresponding discrete defectless non-
linear σ-model will realize the same phase for any space-
time triangulations, as long as they are very fine trian-
gulations (i.e. in the thermodynamic limit). Such kind
of choice of (K, ω̄d+1) turns out to give rise exactly sol-
uble models. To describe how we choose (K, ω̄d+1), we
will first discuss a more general class of discrete bosonic
discrete non-linear σ-models – tensor network models.
In the above definition of discrete non-linear σ-models,

we assign each d+1-simplex ∆d+1 a field-dependent com-
plex number e i 2π

∫
∆d+1 ωd+1 , and multiply all those num-

bers together to get an action amplitude. In the more
general tensor network models, we also assign each n-
simplex ∆n, n < d + 1, a field-dependent real positive
number, and multiply all those numbers together to get
additional contributions to the action amplitude. In the
following, we will describe tensor network models in de-
tails.

B. Exactly soluble tensor network models

Let us describe a tensor network model in 2+1D
space-time complex M3 as an example. The

0

3

2

4 11

0

3

2

4

FIG. 6. A retriangulation of a 3D complex, obtained by
dividing the five 3-simplices on the boundary of the 4-simplex
(01234) into [(0123), (1234)] and [(0124), (0134), (0234)].

0

4 4

0

1

22

3 3

FIG. 7. A retriangulation of another 3D complex, obtained
dividing the five 3-simplices on the boundary of the 4-simplex
(01234) into [(0234)] and [(0123), (0124), (0134), (1234)].

tensor network model is constructed from a ten-
sor set T of two real and one complex tensors:

T = (wv0 , w
v0v1

l01
, Cl01l02l03l12l13l23;t012

v0v1v2v3;t023t013t123 ). We will call

Cl01l02l03l12l13l23;t012
v0v1v2v3;t023t013t123 ) the top tensor and wv0

, wv0v1

l01
the

weight tensors. The complex tensor Cl01l02l03l12l13l23;t012
v0v1v2v3;t023t013t123

can be associated with a tetrahedron (0123), which has a
branching structure (see Fig. 5). A branching structure
is a choice of orientation of each link in the complex so
that there is no oriented loop on any triangle (see Fig. 5).
Here the v0 index is associated with the vertex-0, the l01
index is associated with the link-01, and the t012 index
is associated with the triangle-012. They represents the
degrees of freedom on the vertices, links, and the trian-
gles. Similarly, the real tensor wv0v1

l01
is associated with a

link (01), and wv0
with a vertex 0.

Using the tensors, we can define a path integral on any
3-complex that has no boundary:[26]

Z(M3;T) =
∑

vi,··· ;lij ,··· ;tijk,···

∏

i

wvi

∏

(ij)

w
vivj

lij
× (11)

∏

(ijkm)

[C
lij liklimljkljmlkm;tijk
vivjvkvm;tikmtijmtjkm

]sijkm

where
∑

vi;lij ;tijk
sums over all the vertex indices, the

link indices, and the triangle indices, sijkm = 1 or ∗
depending on the orientation of tetrahedron (ijkm) (see
Fig. 5).

On the complex M3 with boundary: B2 = ∂M3, the
partition function is defined differently:

Z =
∑

{vi;lij ;tijk}

∏

i/∈B2

wvi

∏

(ij)/∈B2

w
vivj

lij
× (12)

∏

(ijkm)

[Cl01l02l03l12l13l23;t012
v0v1v2v3;t023t013t123 ]

sijkm
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where
∑

vi;lij ;tijk
only sums over the vertex indices, the

link indices, and the triangle indices that are not on
the boundary. The resulting Z is actually a complex
function of vi’s, lij ’s, and tijk’s on the boundary B2:
Z = Z({vi; lij ; tijk}). Such a function is a vector in
a Hilbert space HB2 . We will denote such a vector by
|Ψ(M3)〉.
Consider two complexes M3

1 and M3
2 with the same

boundary B = ∂M3
1 = −∂M3

2, the inner product be-
tween |Ψ(M3

1)〉 and |Ψ(M3
2)〉 can be obtained by gluing

M3
1 and M3

2 together M3 = M3
1 ∪M3

2 and perform the
path integral on M3

〈Ψ(M3
2)|Ψ(M3

1)〉 = Z(M3;T). (13)

This is because the inner product of two wave functions
|Ψ(M3

2)〉 and |Ψ(M3
1)〉 performs the summation of the

boundary indices {vi; lij ; tijk}. We note that, in the def-
inition of |Ψ(M3

1)〉 and |Ψ(M3
2)〉, the tensors wvi and

w
vivj

lij
are absent for the vertices and the links on the

boundary. When we glue two boundaries together, those
tensors wvi

and w
vivj

lij
need to be added back. So the

tensors wvi
and w

vivj
lij

defines the inner product in the

boundary Hilbert space HB2 . Therefore, we require wvi

and w
vivj

lij
to satisfy the following unitary condition (or

the reflection positivity condition)

wvi > 0, w
vivj
lij

> 0. (14)

The tensor network model (11) are also inconvenient
since for a fixed tensor set T, different choices of the tri-
angulations of the space-time M3 may lead to different
phases. To solve this problem, we want to choose the ten-

sors (wv0
, wv0v1

l01
, Cl01l02l03l12l13l23;t012

v0v1v2v3;t023t013t123 ) such that the path
integral is re-triangulation invariant. The corresponding
models will be called a topological tensor network model,
which can realize the same phase for any triangulations
of the space-time M3. In general such a phase has a non-
trivial topological order that has gappable boundary.
The invariance of Z under the re-triangulation in Fig.

6 requires that

∑

φ123

Cl01l02l03l12l13l23;t012
v0v1v2v3;t023t013t123C

l12l13l14l23l24l34;t123
v1v2v3v4;t134t124t234

=
∑

l04

wv0v4
l04

∑

t014t024t034

Cl01l02l04l12l14l24;t012
v0v1v2v4;t024t014t124×

C∗l01l03l04l13l14l34;t013
v0v1v3v4;t034t014t134C

l02l03l04l23l24l34;t023
v0v2v3v4;t034t024t234 . (15)

The invariance of Z under the re-triangulation in Fig. 7
requires that

Cl02l03l04l23l24l34;t023
v0v2v3v4;t034t024t234 =

∑

l01l12l13l14,v1

wv1w
v0v1
l01

wv1v2

l12
wv1v3

l13
wv1v4

l14

∑

t012t013t014t123t124t134

(16)

Cl01l02l03l12l13l23;t012
v0v1v2v3;t023t013t123C

∗l01l02l04l12l14l24;t012
v0v1v2v4;t024t014t124C

l01l03l04l13l14l34;t013
v0v1v3v4;t034t014t134C

l12l13l14l23l24l34;t123
v1v2v3v4;t134t124t234

There are other similar conditions for different choices
of the branching structures. To obtain those conditions,
we start with a 4-simplex (01234), and divide the five
3-simplices on the boundary of the 4-simplex (01234)
into two groups. Then the partition function (12) on
one group of the 3-simplices must equal to the partition
function on the other group of the 3-simplices, after a
complex conjugation.

The above two types of the conditions are sufficient to
determine the tensor set T that produces a topologically
invariant partition function Z for any triangulated space-
time M3. For such a tensor set, its partition function
Z = Ztop (i.e. the energy density in eqn. (4) ε(x) = 0).
Such topological partition function Ztop(M3) is nothing
but the topological invariant for three manifolds intro-
duced by Turaev and Viro.[54]

C. Topological non-linear σ-models

A subclass of topological tensor network models hap-
pen to have a form of discrete defectless non-linear σ-

models. Such topological tensor network models (i.e. ex-
actly soluble discrete non-linear σ-models) are called
topological non-linear σ-models.

In the following, we will explain why a subclass of topo-
logical tensor network models can be viewed as discrete
defectless non-linear σ-models. Again we will use a 2+1D
non-linear σ-model as example. The target complex K
has a set of vertices labeled by v, a set of links labeled
by l, a set of triangles labeled by t, etc . We assume
that each tetrahedron in K is uniquely determined by its
vertices v0, v1, v2, v3, its links l01, l02, l03, l12, l13, l23, and
its triangles t012, t023, t013.

We first assign a complex number to each tetrahe-

dron in K, which can be written as Cl01l02l03l12l13l23;t012
v0v1v2v3;t023t013t123 .

When the indices v0, v1, v2, v3, l01, l02, l03, l12, l13, l23,
t012, t023, t013 are not vertices, links, and triangles
of a tetrahedron in K, then the corresponding

Cl01l02l03l12l13l23;t012
v0v1v2v3;t023t013t123 = 0. Similarly, we also choose a real

tensor wv0v1
l01

whose value is positive when v0, v1, l01, are
the vertices and the link of a triangle in K. Otherwise
wv0v1

l01
= 0. We also assign a real positive value wv to

each vertex v in K. For such a choice of tensor set T,
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the partition function (11) actually describes a discrete
defectless non-linear σ-model.
To see this we note that a homomorphism φ : M3 → K

assigns a value vi (a vertex in K) to each vertex i in
M3. φ also assigns a value lij to each link (ij) and
assigns a value tijk to each triangle (ijk) in M3. The
terms in the summation in eqn. (11) are non-zero only
when the fields vi, lij , tijk correspond to a homomor-
phism φ : M3 → K. Thus, the summation

∑

{vi;lij ;tijk}

in eqn. (11) corresponds to a summation
∑

φ over all

the homomorphisms φ : M3 → K. In this case, eqn. (11)
can be viewed as a discrete defectless non-linear σ-model.
If the tensors wv0 wv0v1

l01
, Cl01l02l03l12l13l23;t012

v0v1v2v3;t023t013t123 also satisfy

the conditions eqn. (15) and eqn. (16), then the corre-
sponding discrete defectless non-linear σ-model will be a
topological non-linear σ-model.

D. Labeling simplices in a complex

In the above example, most components of the

tensor Cl01l02l03l12l13l23;t012
v0v1v2v3;t023t013t123 are zero. This is because

most combinations of v0, v1, v2, v3, l01, l02, l03, l12, l13, l23,
t012, t023, t013 are not vertices, links, and triangles of a
tetrahedron in K. In the following, we will describe a
more economical way to label simplices in a complex,
such that each label will have a smaller range and a larger
fraction of the tensor elements will be non-zero.
We still use v to label different vertices in the complex

K. ThusK0 = {v}. To label links in K, we will first try to
use two vertices v0, v1 on the two ends of the link to label
it. If there are many links with the same end points v0, v1,
we will introduce additional label a01 to label those links
with the same set of end points. Thus, different links in
K are labeled by (v0, v1, a01), and K1 = {(v0, v1, a01)}.
We see that the new link label a01 has a smaller range
than the original link label l01 ∼ (v0, v1, a01).
In general, the set of the extra labels, {a01}, depends

on the end points v0, v1. In this paper, we will only con-
sider a special type of complex K such that the set of the
extra labels, {a01}, does not depend on the end points
v0, v1. In this case a01 can be treated as a new label that
is independent of vertex label vi.

Similarly, different triangles t012 in K are labeled
by t012 ∼ (v0, v1, v2, a01, a12, a02, b012), and K2 =
{(v0, v1, v2, a01, a12, a02, b012)}. Again the complex K
has a property that b012 is a new label independent
of vertex and link labels vi, ajk. We like to stress
that not all combinations {(v0, v1, v2, a01, a12, a02, b012)}
correspond to valid triangles in K. Only when
v0, v1, v2, a01, a12, a02, b012’s satisfy certain conditions,
can they label the triangles in K. Using the new
set of labels, the tensors that define topological non-
linear σ-model can be rewritten as wv0

, wv0v1
a01

, and

Ca01a02a03a12a13a23;b012
v0v1v2v3;b023b013b123

, where the indices have a smaller
range. The new notation is more economical in the sense
that the space of each new additional label is smaller

than that of old label. For example, the set {aij} is usu-
ally smaller than the set {lij} because {lij} can be very
roughly understood as the product {vi} × {vi} × {aij}.
See also (36) for an explicit example in the case when the
target is a 2-group.

III. DIJKGRAAF-WITTEN GAUGE THEORIES

FROM TOPOLOGICAL NON-LINEAR

σ-MODELS

In this section, we will introduce 1-gauge theories
(i.e. Dijkgraaf-Witten gauge theories), as topological
non-linear σ-models. We will show that 1-gauge theo-
ries are nothing but a special kind of topological non-
linear σ-models whose target space K is modeled by a
special one-vertex complex K and satisfy π1(K) = G,
πk>1(K) = 0. Such a one-vertex complex K is a simpli-
cial set and is denoted by BG. Similarly n-gauge theories
are nothing but a special kind of topological non-linear σ-
models whose target spaces K is modeled by a simplicial
set B(π1(K), π2(K), · · · ) and satisfy πk>n(K) = 0.

A. Lattice gauge theories from topological

non-linear σ-models

The simplest class of topological non-linear σ-models
has a simple target space K(G), the Eilenberg-MacLane
spaces with only non-trivial π1(K(G)) = G. For a fi-
nite G, K(G) is the classifying space BG. To con-
struct a discrete non-linear σ-model from the classifying
space BG = K(G), we need to choose a triangulation of
BG = K(G) which is a simplicial complex. Here we will
choose a triangulation that contains only one vertex. The
corresponding triangulation is a simplicial set denoted by
BG or B(G). We will show that for such a one-vertex tri-
angulation, the topological non-linear σ-model becomes
a (Dijkfraaf-Witten) lattice gauge theory, which is also
called 1-gauge theory.
The triangulation BG = B(G) is obtained in the fol-

lowing way:

1. There is only one vertex (BG)0 = {pt} (called the
base point) in BG.

2. The links are the loops starting and ending at the
base point. We pick one loop in each homotopic
class of loops: (BG)1 = π1(BG). Thus the links are
labeled by the group elements aij ∈ G: (BG)1 = G.

3. For arbitrary three links a01, a12, a02 they may not
form the links around a triangle. Only when they
satisfy a01a12 = a02, the composition of the three
links is a contractible loop. In this case, there is
a triangle t012 bounded by the links a01, a12, a02.
Note that, for a finite G, πn(BG) = 0 for n ≥ 2.
Thus all different choices of triangles are homotopy
equivalent. Here we just pick a particular one. This
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gives rise to the set of 2-simplices labeled by the
three links a01, a12, a02 that satisfy a01a12 = a02.
Thus the set of 2-simplices is (BG)2 = G×2, labeled
by a01, a12.

4. The set of 3-simplices (BG)3 is obtained by fill-
ing all four triangles in a tetrahedron that share
their sides in the expected way. Using a similar
consideration, we find the set of 3-simplices to be
(BG)3 = G×3, labeled by a01, a12, a23.

The sets of higher simplices (BG)n = G×n are obtained
in the same way. To summarize, the complex BG has the
following nerve

pt G
d0,d1
oo

oo G×2
d0,d1,d2
oo

oo

oo G×3
d0,...,d3
oo

·
oo

G×4 · · ·
d0,...,d4
oo

·
oo

(17)

Next, let us determine the set of tensors that satisfy
the retriangulation invariance conditions like (15) and
(16). We assume the space-time dimension to be d + 1.
For each d + 1-simplex labeled by (a01, a12, · · · , ad,d+1)
in BG, we assign a complex number

Td+1(aij) = wd+1 e
i 2πω̄d+1(a01,a12,··· ,ad,d+1) (18)

where ω̄d+1(a01, a12, · · · , ad,d+1) is a R/Z-valued cocycle
on BG: ω̄d+1 ∈ Hd+1(BG;R/Z). T is the top tensor in

the tensor set T, like the tensor Ca01a02a03a12a13a23;b012
v0v1v2v3;b023b013b123

in
Section IIIA. For each n-simplex, n ≤ d, we assign a pos-
itive number wn. wn’s correspond to the weight tensors
wv0 and wv0v1

a01
in Section IIIA. The partition function of

the corresponding topological non-linear σ-model is then
given by

Z =
∑

φ

[

d+1
∏

n=0

(wn)
Nn

]

e i 2π
∫
Md+1 φ∗ω̄d+1 (19)

where Nn is the number of n-simplices in Md+1 and
∑

φ

sums over all the homomorphisms φ : Md+1 → BG. Be-
cause ω̄d+1 is a cocycle on BG, the term e i 2π

∫
Md+1 φ∗ω̄d+1

is independent on how we triangulate the space-time

Md+1. But the term
∑

φ

∏d+1
n=0(wn)

Nn does dependent

on the triangulation of Md+1. The idea is to choose the
weight tensors wn to cancel such triangulation depen-
dence.
Let us define two homomorphisms φ and φ′ to be homo-

topic if there exist a homomorphism Φ : I×Md+1 → BG
such that, when restricted to the two boundaries of
I × Md+1, Φ becomes φ and φ′. For such two homo-
morphisms, we have

e2π i
∫
Md+1 φ∗ω̄d+1 = e2π i

∫
Md+1 φ′∗ω̄d+1 (20)

if the space-time Md+1 has no boundary. Such a prop-
erty is called gauge invariance. Since the phase factor
e2π i

∫
Md+1 φ∗ω̄d+1 only depends on the homotopic classes

[φ], we can rewrite it as e2π i
∫
Md+1 [φ]

∗ω̄d+1 . For two ho-
motopic homomorphisms φ and φ′, their corresponding

field configurations a and a′ are said to be gauge equiv-
alent.
Let us describe the homotopic classes [φ] in more de-

tail. First, there is a surjective map

φ ։ Hom(π1(Md+1), G) (21)

where Hom(π1(Md+1), G) is the set of group homomor-
phisms. There is another surjective map

Hom(π1(Md+1), G) ։ {[φ]}. (22)

where {[φ]} is the set of homotopic classes of the sim-

plicial homomorphisms Md+1 φ−→ BG. Two group ho-
momorphisms γ, γ′ ∈ Hom(π1(Md+1), G) are said to be
equivalent if their are related by

γ = gγ′g−1, g ∈ G. (23)

Let [γ] be an equivalent class of the group homomor-
phisms Hom(π1(Md+1), G). It turns out that

{[γ]} = {[φ]} (24)

where {[γ]} is the set of equivalent classes of the group
homomorphisms.

Now,
∑

φ is reduced to a summation over the homo-

topic classes of the homomorphisms φ,
∑

[φ], which is a

sum with only a few terms:

Z =
∑

[φ]

[

d+1
∏

n=0

(wn)
Nn

]

N([φ],Md+1,BG)e2π i
∫
Md+1 [φ]

∗ω̄d+1

(25)

where N([φ],Md+1,BG) is the number of the homomor-
phisms φ : Md+1 → BG in the homotopic class [φ]. Due
to the one-to-one correspondence between [φ] and [γ], we
can also write N([φ],Md+1,BG) as N([γ],Md+1,BG).
The total number of the homomorphisms φ is given by

N(Md+1,BG) =
∑

[φ]

N([φ],Md+1,BG). (26)

To count N([φ],Md+1,BG), we note that, in the above
discrete non-linear σ-models, the map φ sends all vertices
in Md+1 (labeled by i = 0, · · · , Nv−1) to the base point
pt in BG. The map φ sends an link (ij) ∈ Md+1 to
an link aij ∈ BG. Thus on each link (ij) of space-time
complex Md+1, we have a degree of freedom aij . Note
that if three links in space-time complex, (01), (12), and
(02), form the boundary of a triangle (012), then the map
φ will sends such a triangle to the triangle t012 ∈ BG
bounded by a01, a12, a02. This implies that there is no
extra degrees of freedom on the triangles except those
come from the links a01, a12, a02. It also implies that aij
on the three links (ij) satisfy a flat condition:

aijajk = aik. (27)
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This is an example of the conditions discussed above.
Using similar considerations, we see that there are no
extra degrees of freedom on the 3-simplices and higher
simplices. Thus the summation

∑

φ can be rewritten as
∑

aij
where

∑

aij
sum over all aij ∈ G on link (ij) ∈

Md+1, so that aij satisfy the flat condition (27).
Since the set of aij describes a flat G-gauge connec-

tion, we see that N([φ],Md+1,BG) is the number gauge
equivalent flat G-gauge connections on Md+1. We find
that

N([φ],Md+1,BG) = N([γ],Md+1,BG) (28)

= |G|N0Wtop([γ],M
d+1,BG)

Wtop([γ],M
d+1,BG) = Wtop([φ],M

d+1,BG) = |[γ]|/|G|.
where |G| is the number of the elements in the group G
and |[γ]| is the number of the elements in the equivalent
class [γ]. Here the factor |G|N0 comes from the numbers
of gauge transformations

aij → giaijg
−1
j (29)

generated by gi ∈ G on each vertex i in Md+1. Also
1/Wtop([φ],M

d+1,BG) is the number of gauge transfor-
mations that leave a gauge field a (or φ) invariant. So
1/Wtop([γ],M

d+1,BG) is given by the number of the ele-
ments in the subgroup of G thats leave γ invariant, which
is |G|/|[γ]|. Thus Wtop([φ],M

d+1,BG) is independent of
the triangulation on Md+1.

N0 in |G|N0Wtop([φ],M
d+1,BG) depends on the trian-

gulation of Md+1. We want to choose wn to cancel the
N0 dependence, which turns out to be

w0 = |G|−1, other wn = 1. (30)

In this case, the partition function (19) becomes

Z =
∑

aij

(

∏

i

|G|−1
)

e i 2π
∫
Md+1 ωd+1(a01,a12,··· ,ad,d+1)

=
∑

[φ]

Wtop([φ],M
d+1,BG)e i 2π

∫
Md+1 [φ]

∗ω̄d+1 (31)

which is invariant under the retriangulation of space-time
Md+1. Such choice of tensors give us a topological non-
linear σ-model.

We see that the topological non-linear σ-models with
BG as the target complex are classified by the (d + 1)-
cohomology classes Hd+1(BG;R/Z). When ωd+1 = 0,
the partition function is given by the equal weight sum-
mation of all flat connections aij on the links of space-
time complex, which give rise to a G-gauge theory in
the deconfined phase. If we choose a non-trivial cocycle
ωd+1 ∈ Hd+1(BG;R/Z), then the path integral (31) will
gives rise to a Dijkgraaf-Witten lattice gauge theory.

B. Classification of exactly soluble 1-gauge theories

We have seen that by choosing a classifying space
BG = K(G) as the target space and choosing a par-

ticular triangulation of K(G), B(G), as the target com-
plex, we obtain the Dijkgraaf-Witten gauge theories for
a finite gauge group G. For each finite gauge group G,
we only have one corresponding K(G). The different
(d+1)-cohomology classes ωd+1 ∈ Hd+1(K(G),R/Z) give
rise to different Dijkgraaf-Witten gauge theories. Thus
Dijkgraaf-Witten gauge theories (or 1-gauge theories) are
classified by pairs (G,ωd+1).

We have seen that Dijkgraaf-Witten gauge theories are
topological non-linear σ-models. It is natural to ask if
topological non-linear σ-models with target complex BG
are Dijkgraaf-Witten gauge theories. In other words, we
have shown that the tensor set

Td+1(aij) = e i 2πω̄d+1(a01,a12,··· ,ad,d+1), w0 = |G|−1

(32)

satisfy the retriangulation invariance conditions, such as
eqn. (15) and (16). The question is that if all the solu-
tions of the retriangulation invariance conditions (such
as eqn. (15) and (16)) have the form eqn. (32) as de-
scribed by a cocycle ω̄d+1. There is another related ques-
tion: given a triangulation K of the classifying space BG
(K may not be a simplicial set), are all the topological
non-linear σ-models with target complex K equivalent to
Dijkgraaf-Witten gauge theories (i.e. produce the same
topological invariant Ztop or produce the same topolog-
ical order)? We left the questions for future work (see
Ref. 55 and references therein for some discussions).

IV. 2-GAUGE THEORIES FROM

TOPOLOGICAL NON-LINEAR σ-MODELS

In this section, we are going to discuss exactly soluble
2-gauge theories and their classification, from a point of
view of topological non-linear σ-model. We have seen
that if the target space K has only non-trivial π1(K), we
can get a 1-gauge theory from the topological non-linear
σ-model. If the target spaceK has only non-trivial π1(K)
and π2(K), then we can get a 2-gauge theory.

A. 2-groups

1. Classification of 2-groups

To obtain a 2-gauge theory via a topological non-linear
σ-model, we choose a special triangulation of K(G,Π2),
the simplicial set B(G,Π2), as the target complex. The
simplicial set B(G,Π2) is called a 2-group. The cor-
responding topological non-linear σ-model can be a 2-
gauge theory. In this section, we concentrate on 2-groups
B(G,Π2), whereG is a finite group and Π2 a finite abelian
group.
The simplicial set B(G; Π2) (the 2-group) can be

viewed as a fiber bundle with B(0; Π2) = B(Π2, 2) as



12

the fiber and B(G) as the base space:

B(Π2, 2) → B(G; Π2) → B(G). (33)

Thus a classification of B(G; Π2) can be obtain using the
following general result:

Lemma IV.1. The simplicial set B(π1; · · · ;πn) has the
following fibration

B(πn, n) → B(π1; · · · ;πn) → B(π1; · · · ;πn−1),

Thus B(π1; · · · ;πn) for fixed πi’s are classified by
Hn+1[B(π1; · · · ;πn−1);πn] with local coefficient πn.

The n = 2 case was discussed in Ref. 56, Theorem 43.
Using the above result, we find that, for a fixed

pair (G,Π2), the 2-groups B(G; Π2) are classified by

H3(B(G),Π2) = H3(BG,Πα2
2 ). The local coefficient Π2

in topological cohomology classes H3(BG,Πα2
2 ) means

that G may have a non-trivial action on Π2, which is
described by α2 : G → Aut(Π2). Such an action is indi-
cated by the superscript α2 in Πα2

2 .

To summarize, 2-groups B(G; Π2) are classified by the
following data

G; Π2, α2, n̄3 (34)

where G is a finite group, Π2 a finite abelian group, α2 a
group action α2 : G → Aut(Π2), and n̄3(a01, a12, a23) is
a group-cocycle in H3(G,Πα2

2 ). The group-cocycle con-
dition that determines n̄3(a01, a12, a23) is given by

0 = α2(a01) · n̄3(a12, a23, a34)− n̄3(a02, a23, a34) + n̄3(a01, a13, a34)− n̄3(a01, a12, a24) + n̄3(a01, a12, a23) (35)

= α2(a01) · n̄3(a12, a23, a34)− n̄3(a01a12, a23, a34) + n̄3(a01, a12a23, a34)− n̄3(a01, a12, a23a34) + n̄3(a01, a12, a23)

for all a01, a12, a23, and a34.

2. A description of one-vertex triangulation B(G; Π2)

After knowing how to label all the 2-groups B(G; Π2) using the data (34), the next important question is to obtain
a detailed description of the simplicial set B(G; Π2) from the classifying data (34). The simplicial set B(G; Π2) has
the following sets of simplices:

pt G
d0,d1
oo

oo G×2 ×Π2

d0,...,d2
oo

oo

oo G×3 ×Π×3
2

d0,...,d3
oo

·
oo

G×4 ×Π×6
2

d0,...,d4
oo

·
oo

G×5 ×Π×10
2 . . .

d0,...,d5
oo

·
oo

(36)

Let us describe the sets of simplices and the face map
dm in more details. First there is only one vertex pt in
B(G; Π2). The links in B(G; Π2) are labeled by elements
aij in G. All the links connect pt to pt, and correspond
to non-contractable loops in π(B(G; Π2)) = G. Thus the
face maps are give by

d0(a01) = pt, d1(a01) = pt. (37)

The boundary map is given by ∂ = d0− d1. We see that
∂(a01) = 0 and the link (a01) is a 1-cycle, for all a01 ∈ G.

The composition of two links a01 and a12 can be de-
formed into the link a02 if and only if

a01a12 = a02. (38)

Thus a01, a12, and a02 are boundary of a triangle if and
only if a01a12 = a02.
The G-valued aij on each link of B(G,Π2) define a G-

valued 1-cochain ā, which is called a canonical 1-cochain.
Using ā, the above condition can be written as

δā ≡ a01a12a
−1
02 = 1. (39)

This implies that the canonical 1-cochain ā is a G-valued
1-cocycle.
When a01a12 = a02, there may be many triangles with

the same boundaries a01, a12, and a02. Those triangles
are labeled by elements in Π2. Thus all the triangles are
labeled by (a01, a12, a02; b012) where aij satisfy eqn. (38).
If we use independent aij , we find all the triangles are la-
beled by [a01, a12; b012], which leads to the set of triangles
G×2 ×Π2. The face maps are given by

d0(a01, a12, a02; b012) = (a12),

d1(a01, a12, a02; b012) = (a02),

d2(a01, a12, a02; b012) = (a01), (40)

which map the triangle to one of its links. From the face
maps dm, we obtain the boundary map ∂:

∂ = d0 − d1 + d2. (41)

Thus the boundary of triangle (a01, a12, a02; b012) is given
by

∂(a01, a12, a02; b012) = (a12)− (a02) + (a01). (42)
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Using the above boundary map, we find that
four triangles −(a01, a12, a02; b012), (a01, a13, a03; b013),
−(a02, a23, a03; b023), (a12, a23, a13; b123), form a 2-cycle
since their boundaries cancel each other. Note that aij
in each triangle must satisfy eqn. (38). Otherwise, they
will not form triangles. But the 2-cycle formed by the
four triangles may not be the boundary of a tetrahedron
in B(G; Π2). In order to have a tetrahedron in B(G; Π2)
that fill the 2-cycle, bijk’s must satisfy a condition. In
other words aij ’s and bijk’s that label the links and tri-
angles in a tetrahedron in B(G; Π2) must satisfy a condi-
tion. Such a condition can be described using the cochain
language (see Appendix A) if we introduce a Π2-valued
canonical 2-cochain b̄, as defined by the values bijk on all
the triangles of B(G; Π2). Using b̄, the condition on bijk
can be written as

db̄ = n̄3(ā), (43)

So, the canonical 2-cochain b̄ may not be a cocycle. Its
derivative is given by a function of canonical 1-cocycle
ā. When α2 is trivial, the above have the following ex-
plicit expression: aij ’s and bijk’s that label the links and
triangles in a tetrahedron satisfy

b123 − b023 + b013 − b012 = n̄3(a01, a12, a23). (44)

When α2 is non-trivial, db̄ = n̄3(ā) becomes

α2(a01) · b123 − b023 + b013 − b012 = n̄3(a01, a12, a23).
(45)

We see that the tetrahedrons in B(G; Π2) are labeled
by (a01, a12, a23, a02, a13, a03; b012, b023, b013, b123)
that satisfy eqn. (38) and eqn. (45). In other words,
the tetrahedrons in B(G; Π2) are labeled by independent
indices [a01, a12, a23; b012, b023, b013]. Those tetrahedrons
form the set G×3 ×Π×3

2 in eqn. (36).
The face maps dm’s on tetrahedrons are given by

d0(a01, a12, a23, a02, a13, a03; b012, b023, b013, b123)

= (a12, a23, a13; b123)

d1(a01, a12, a23, a02, a13, a03; b012, b023, b013, b123)

= (a02, a23, a03; b023)

d2(a01, a12, a23, a02, a13, a03; b012, b023, b013, b123)

= (a01, a13, a03; b013)

d3(a01, a12, a23, a02, a13, a03; b012, b023, b013, b123)

= (a01, a12, a02; b012) (46)

Let us introduce s[01] to describe the link (a01), s[012]
the triangle (a01, a12, a02; b012), s[0123] the tetrahe-
dron (a01, a12, a23, a02, a13, a03; b012, b023, b013, b123), etc .
Then, the above expression can be put in a more compact
form

d0s[0123] = s[123], d1s[0123] = s[023],

d2s[0123] = s[013], d3s[0123] = s[012]. (47)

Using independent labels, eqn. (46) can be rewritten as

d0[a01, a12, a23; b012, b023, b013] = [a12, a23; b123] = [a12, a23;

α−1
2 (a01) · (b023 − b013 + b012 + n̄3(a01, a12, a23))],

d1[a01, a12, a23; b012, b023, b013] = [a02, a23; b023],

d2[a01, a12, a23; b012, b023, b013] = [a01, a13; b013],

d3[a01, a12, a23; b012, b023, b013] = [a01, a12; b012]. (48)

The boundary map ∂ for tetrahedron is given by

∂ = d0 − d1 + d2 − d3. (49)

Thus

∂[a01, a12, a23; b012, b023, b013] = [a12, a23; (50)

α−1
2 (a01) · (b023 − b013 + b012 + n̄3(a01, a12, a23))]

− [a02, a23; b023] + [a01, a13; b013]− [a01, a12; b012].

In general, the n-simplices in G×n × Π
(n2 )
2 are labeled

by (aij , bklm), i < j, k < l < m i, j, k, l,m = 0, 1, · · · , n,
that satisfy the conditions (38) (after replacing 012 by
i < j < k) and eqn. (45) (after replacing 0123 by i <
j < k < l). We see that all the aij ’s are determined by
the independent a01, a12, · · · , an−1,n. Similarly, all the
bijk’s are given by an independent subset of bijk’s. Such
independent subset is obtained by picking i = 0, and
j < k.
Using the labeling scheme (aij , bijk), i, j, k =

0, 1, · · · , n, where aij , bijk satisfy eqn. (38) and eqn. (45),
we can obtain a simple description of the face map dm
in eqn. (36) that sends a n-simplex to a (n− 1)-simplex.
To describe the action of dm, we start with a n-simplex
(aij , bijk). The resulting n − 1-simplex is obtained by
dropping all in aij , bijk in the set (aij , bijk) that contain
the vertex m. This changes (aij , bijk) to its subset which
is written as

dm(aij , bijk|0 ≤ i, j, k ≤ n) = (aij , bijk|i, j, k 6= m).
(51)

aij , bijk in the subset also satisfy eqn. (38) and eqn. (45).
The subset dm(aij , bijk) describes the resulting n − 1-
simplex after the dm map. We see that the explicit
expression for dm(aij , bijk|0 ≤ i, j, k ≤ n) is simple to
construct using non-independent aij , bijk’s.

3. A trivialization

We have mentioned that n̄3 in db̄ = n̄3(ā) is a group-
cocycle inH3(G; Π2). Such a group cocycle correspond to
a topological cocycle ñ3 on space BG: ñ3 ∈ H3(BG; Π2).
We may also view n̄3(ā) as a function of ā and as a topo-
logical cocycle on B(G,Π2).

We note that there is unique complex homomor-
phism ϕ : B(G,Π2) → BG, which sends the tri-
angle (a01, a12, a02; b012) in B(G,Π2) to the triangle
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(a01, a12, a02) in BG. Then, we may view n̄3(ā) on
B(G,Π2) as a pullback of ñ3 on BG by the homomor-
phism ϕ:

n̄3 = ϕ∗ñ3. (52)

We note that although ñ3 is a non-trivial cocycle on
BG, its pullback n̄3 = ϕ∗ñ3 is always a coboundary on
B(G,Π2): db̄ = n̄3(ā). In other words, given a Π2-valued

3-cocycle ñ3 on BG, let B(G,Π2)
ϕ−→ BG be the fibra-

tion corresponding to ñ3, which always exists as stated
in Lemma IV.1. Then ϕ∗ñ3 is a coboundary on B(G,Π2).
The above result can be generalized: given a Πm+1-

valued (m + 2)-cocycle ñm+2 on B(G, · · · ,Πm), let

B(G, · · · ,Πm,Πm+1)
ϕ−→ B(G, · · · ,Πm) be the fibra-

tion corresponding to ñm+2 as stated in Lemma IV.1.
Then ϕ∗ñm+2 is a coboundary on B(G, · · · ,Πm,Πm+1):
db̄m+1 = ϕ∗ñm+2.

B. 2-gauge theories

To define a d+1D topological non-linear σ-model (we
will assume d ≥ 2 since there is no 2-gauge theory in
1 + 1D), we need to specify the tensor set T. To do so,
for each d + 1-simplex labeled by (aij , bijk) in B(G,Π2)
we assign a complex number

Td+1(aij , bijk) = wd+1 e
i 2πω̄d+1(aij ,bijk) (53)

where ω̄d+1(aij , bijk) is a R/Z-valued cocycle on
B(G,Π2): ω̄d+1 ∈ Hd+1(B(G,Π2);R/Z). T is the top
tensor in the tensor set T. For each n-simplex in
B(G,Π2), n ≤ d, we assign a positive number wn, which
correspond to the weight tensors in the tensor set. The
partition function of the corresponding topological non-
linear σ-model is then given by

Z =
∑

φ

[

d+1
∏

n=0

(wn)
Nn

]

e i 2π
∫
Md+1 φ∗ω̄d+1 (54)

where Nn is the number of n-simplices in Md+1 and
∑

φ

sums over all the homomorphisms φ : Md+1 → B(G,Π2).
The pullbacks of the canonical cochains ā and b̄ on

B(G,Π2) by the homomorphisms φ give rise to cochains
a and b on Md+1:

a = φ∗ā, b = φ∗b̄. (55)

a and b are referred as gauge field and rank-2 gauge field
in physics, which satisfy

δa = 1, db = n3(a). (56)

In fact there is a one-to-one correspondence between the
allowed field configurations a and b and the homomor-
phisms. Thus we can replace

∑

φ and
∑

a,b:

Z =
∑

a,b

[

d+1
∏

n=0

(wn)
Nn

]

e i 2π
∫
Md+1 ωd+1(a,b) (57)

As shown in eqn. (20), homotopic homomorphisms φ’s

give rise to the same action amplitude e2π i
∫
M4 φ∗ω̄d+1 .

Thus the partition function can be written as

Z =
∑

[φ]

[

d+1
∏

n=0

(wn)
Nn

]

N([φ],Md+1,B(G,Π2))×

e i 2π
∫
Md+1 [φ]

∗ω̄d+1 (58)

where N([φ],Md+1,B(G,Π2)) is the number of homo-
morphisms φ : Md+1 → B(G,Π2) in the homotopic class
[φ].
Let two field configurations aij , bijk, · · · and

a′ij , b
′
ijk, · · · on Md+1 come from two homotopic

homomorphisms φ and φ′. Thus the two field configura-
tions have the same the action amplitude e2π i

∫
M4 φ∗ω̄d+1 .

We say that the two configurations differ by a gauge
transformation.

The gauge equivalent field configurations are generated
by two kinds of gauge transformations: The first one is
generated by gi on each vertex

aij → a′ij = giaijg
−1
j ,

bijk → b′ijk = bijk + ζ2(aij , ajk, gi, gj , gk) (59)

where ζ2(aij , ajk, gi, gj , gk) is a Π2-valued function that
satisfy

(dζ2)(aij , ajk, akl, gi, gj , gk, gl)

= −ζ2(aij , ajk, gi, gj , gk) + ζ2(aik, akl, gi, gk, gl) (60)

− ζ2(aij , ajl, gi, gj , gl) + α2(gij) · ζ2(ajk, akl, gj , gk, gl)
= n3(giaijg

−1
j , gjajkg

−1
k , gkaklg

−1
l )− n3(aij , ajk, aik)

Since n3 is a cocycle, the above equation always has a
solution. The second one is generated by Π2-valued λij

on each link

aij → a′ij = aij ,

bijk → b′ijk = bijk + λij − λik + α2(gij) · λjk. (61)

eqn. (59) and eqn. (61) generate the 2-gauge transforma-

tions. The action amplitude e2π i
∫
M4 ωd+1(a,b) is invariant

under the 2-gauge transformations.
Since N([φ],Md+1,B(G,Π2)) counts 2-gauge equiva-

lent field configurations, from the above form of 2-gauge
transformations, we see that

N([φ],Md+1,B(G,Π2))

= |G|N0 |Π2|N1Wtop([φ],M
d+1,B(G,Π2)). (62)

To cancel the triangulation dependence N0 and N1, we
choose the weight tensors to be

w0 = |G|−1, w1 = |Π2|−1, other wn = 1. (63)

Such choice of top and weight tensors, (53) and (63),
give rise to a topological non-linear σ-model which is a
2-gauge theory.
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We like to remark that eqn. (53) and eqn. (63) rep-
resent one class of the solutions to the retriangulation
invariance conditions (like eqn. (15) and eqn. (16)). It
is not clear if eqn. (53) and eqn. (63) represent all the
solutions to the retriangulation invariance conditions. In
other words, it is not clear if topological non-linear σ-
models with target complex B(G,Π2) are always 2-gauge
theories described by (see eqn. (57))

Z =
∑

a,b

(

∏

i

|G|−1
∏

(ij)

|Π2|−1
)

e i 2π
∫
Md+1 ωd+1(a,b)

=
∑

[φ]

Wtop([φ],M
d+1,B(G,Π2))e

i 2π
∫
Md+1 [φ]

∗ω̄d+1

(64)

Since the data (G; Π2, α2, n̄3) classify the 2-groups,
the d + 1D 2-gauge theories are then classified by the
following data

G; Π2, α2, n̄3; ω̄d+1 (65)

where ω̄d+1 ∈ Hd+1(B(G,Π2),R/Z). Using the above
data, we can construct a 2-gauge theory eqn. (64).

C. 2-group cocycles

ω̄d+1 in eqn. (64) is called a 2-group cocycle. In the
following, we give an explicit description of 2-group co-
cycles, based on the discussion in Section IVA. First, a

d + 1D 2-group cochain ω̄d+1 with value M is a function

ω̄d+1 : G×d × Π
(d2)
2 → M. Then we can define the differ-

ential operator d acting on the 2-group cochains as the
following (see eqn. (47) or eqn. (48)):

(dω̄d+1)(s[0 · · · d+ 1]) =

d+1
∑

m=0

(−)mω̄d+1(s[1 · · · m̂ · · · d+ 1]).

(66)

In each dimension, we obtain:

(dω̄0)(a01) = 0, (67)

(dω̄1)(a01, a12, b012) = ω̄1(a01)− ω̄1(a02) + ω̄1(a12),
(68)

(dω̄2)(a01, a12, a23, b012, b013, b023)

= −ω̄2(a01, a12, b012) + ω̄2(a01, a13, b013)

− ω̄2(a02, a23, b023) + ω̄2(a12, a23, b123), (69)

(dω̄3)(a01, a12, a23, a34, b012, b013, b014, b023, b024, b034)

= +ω̄3(a01, a12, a23, b012, b013, b023)

− ω̄3(a01, a12, a24, b012, b014, b024)

+ ω̄3(a01, a13, a34, b013, b014, b034)

− ω̄3(a02, a23, a34, b023, b024, b034)

+ ω̄3(a12, a23, a34, b123, b124, b134), (70)

(dω̄4)(a01, a12, a23, a34, a45, b012, b013, b014, b015, b023, b024, b025, b034, b035, b045)

= −ω̄4(a01, a12, a23, a34, b012, b013, b014, b023, b024, b034) + ω̄4(a01, a12, a23, a35, b012, b013, b015, b023, b025, b035)

− ω̄4(a01, a12, a24, a45, b012, b014, b015, b024, b025, b045) + ω̄4(a01, a13, a34, a45, b013, b014, b015, b034, b035, b045)

− ω̄4(a02, a23, a34, a45, b023, b024, b025, b034, b035, b045) + ω̄4(a12, a23, a34, a45, b123, b124, b125, b134, b135, b145), (71)

(dω̄5)(a01, a12, a23, a34, a45, a56, b012, b013, b014, b015, b016, b023, b024, b025, b026, b034, b035, b036, b045, b046, b056)

= +ω̄5(a01, a12, a23, a34, a45, b012, b013, b014, b015, b023, b024, b025, b034, b035, b045)

− ω̄5(a01, a12, a23, a34, a46, b012, b013, b014, b016, b023, b024, b026, b034, b036, b046)

+ ω̄5(a01, a12, a23, a35, a56, b012, b013, b015, b016, b023, b025, b026, b035, b036, b056)

− ω̄5(a01, a12, a24, a45, a56, b012, b014, b015, b016, b024, b025, b026, b045, b046, b056)

+ ω̄5(a01, a13, a34, a45, a56, b013, b014, b015, b016, b034, b035, b036, b045, b046, b056)

− ω̄5(a02, a23, a34, a45, a56, b023, b024, b025, b026, b034, b035, b036, b045, b046, b056)

+ ω̄5(a12, a23, a34, a45, a56, b123, b124, b125, b126, b134, b135, b136, b145, b146, b156) (72)

In the above, the variables aij with j−i > 1 and bijk with
i 6= 0 do not appear on the left-hand-side of the equation
but appear on the right-hand-side of the equation. In

fact, those aij and bijk are given by ai,i+1’s and b0mn’s
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that do appear on the left-hand-side of the equation:

aij = ai,i+1 · · · aj−1,j , if j − i ≥ 2,

bijk = α−1
2 (a01) · [b0jk − b0ik + b0ij + n̄3(a0i, aij , ajk)].

(73)

So the above are conditions on the functions of ai,i+1’s
and b0mn’s.

With the above definition of d operator, we can define
the 2-group cocycles as the 2-group cochains that satisfy
dω̄d+1 = 0. This generalizes the notion of group cocy-
cle to 2-group cocycle. Two different 2-group cocycles
ω̄d+1 and ω̄′

d+1 are equivalent if they differ by a 2-group
coboundary dν̄d. The set of equivalent classes of d+ 1D
2-group cocycles is denoted as Hd+1(B(Gb; Π2),M).

D. Cohomology of 2-group

One way to understand the structure of
Hd+1(B(Gb; Π2),M) is to use the fibration
B(Π2, 2) → B(Gb; Π2) → BGb (see eqn. (33)), and use
spectral sequence to reduce the cohomology of B(Gb; Π2)
to cohomology groups of Gb and B(Π2, 2). In partic-
ular, from Appendix B, we see that every element in
Hd+1(B(Gb; Π2),R/Z) can be labeled by (k0, k1, · · · , kd)
where kl ∈ H l[BGb, H

d+1−l(B(Π2, 2);R/Z)G], al-
though some (k0, k1, · · · , kd)’s may not correspond
to any elements in Hd+1(B(Gb; Π2),R/Z), and some
different (k0, k1, · · · , kd)’s may correspond to the
same element in Hd+1(B(Gb; Π2),R/Z). (When
B(Gb; Π2) = B(Π2, 2) × BGb, (k0, k1, · · · , kd) will
be the one-to-one label of all the elements in
Hd+1(B(Gb; Π2),R/Z).)

Next, let us concentrate on a special case of Π2 = Z2,
and try to compute Hd+1(B(Gb;Z2),R/Z). Since Z2

group has no non-trivial automorphism, α2 is always triv-
ial. But n̄3 ∈ H3(BGb;Z2) is in general non-trivial.
Thus, a 2-group B(Gb;Z2) is characterized by a pair
G, n̄3. The cohomology H∗(B(Z2, 2),Z) is given by [57]

d : 0 1 2 3 4 5 6 7
Hd(B(Z2, 2),Z) : Z 0 0 Z2 0 Z4 Z2 Z2

(74)

Using the universal coefficient theorem

Hn(X,M) ≃ Hn(X;Z)⊗Z M ⊕ Tor(Hn+1(X;Z),M).
(75)

and Zn ⊗Z R/Z = 0, Tor(Zn,R/Z) = Zn, we find that
Hn(B(Z2, 2);R/Z) = Hn+1(B(Z2, 2),Z):

d : 0 1 2 3 4 5 6
Hd(B(Z2, 2);R/Z) : R/Z 0 Z2 0 Z4 Z2 Z2

(76)

Using the above result, we find that H4(B(Gb;Z2),R/Z)

can be labeled by

H4(B(Z2, 2);R/Z) = Z4 = {k̄0},
H1[BGb;H

3(B(Z2, 2);R/Z)] = {0},
H2[BGb;H

2(B(Z2, 2);R/Z)] = H2(BGb;Z2) = {k2},
H3[BGb;H

1(B(Z2, 2);R/Z)] = {0},
H4[BGb;R/Z)] = {k4}. (77)

Since 2-gauge theories in 3+1D are classified pairs
(n̄3, ω̄4), ω4 ∈ H4(B(Gb;Z2),R/Z)}, we find that each
3+1D 2-gauge theory corresponds to one or more ele-
ments in a subset of

H3[BGb;Z2)]×H4(B(Z2, 2);R/Z)×
H2[BGb;Z2)]×H4[BGb;R/Z)] (78)

The first H comes from n̄3 and the rest H’s from ω̄4.
If the index k̄0 ∈ H4(B(Z2, 2);R/Z) = Z4 is k̄0 = 2, the

2-gauge theory has emergent fermions. The index k2 in
H2(BGb;Z2) describes the extension of Gb by Z2 to ob-
tain Gf . sRep(Gf ) describes the particle-like excitations
in the 2-gauge theory. For details, see Section VI.

V. PURE 2-GAUGE THEORY OF

2-GAUGE-GROUP B(Π2, 2)

In the last section, we discuss some general properties
of 2-gauge theory. In this section, we are going to discuss
a special 2-gauge theory, pure 2-gauge theory.

A. Pure 2-group and pure 2-gauge theory

If we choose the target complex of the topological non-
linear σ-model to be B(0; Π2) = B(Π2, 2), we will get a
pure 2-gauge theory of 2-gauge-group B(Π2, 2), where Π2

is a finite abelian group. There is only one complex of
B(Π2, 2)-type. The complex B(Π2, 2) has a structure

pt pt
d0,d1
oo

oo Π2

d0,d1,d2
oo

oo

oo Π×3
2

d0,...,d3
oo

·
oo

Π×6
2

d0,...,d4
oo

·
oo

Π×10
2 . . .

d0,...,d5
oo

·
oo

(79)

In this case n̄3 = 0, α2 is trivial, and bijk satisfy

b123 − b023 + b013 − b012 = 0. (80)

We see that canonical 2-cochain b̄ is a Π2-valued 2-cocycle
on target complex B(Π2, 2). The action of d on the
cochains in B(Π2, 2) are given by

(dω0)() = 0, (81)

(dω1)(b012) = ω1(), (82)
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(dω2)(b012, b013, b023)

= −ω2(b012) + ω2(b013)− ω2(b023) + ω2(b123), (83)

(dω3)(b012, b013, b014, b023, b024, b034)

= ω3(b012, b013, b023)− ω3(b012, b014, b024)

+ ω3(b013, b014, b034)− ω3(b023, b024, b034)

+ ω3(b123, b124, b134), (84)

(dω4)(b012, b013, b014, b015, b023, b024, b025, b034, b035, b045)

= −ω4(b013, b014, b023, b024, b034) + ω4(b012, b013, b015, b023, b025, b035)− ω4(b012, b014, b015, b024, b025, b045)

+ ω4(b013, b014, b015, b034, b035, b045)− ω4(b023, b024, b025, b034, b035, b045) + ω4(b123, b124, b125, b134, b135, b145), (85)

In the above, the variables bijk for i 6= 0 do not appear
on the left-hand-side of the equation, but appear on the
right-hand-side of the equation. In fact, those bijk are
given by b0mn’s that do appear on the left-hand-side of
the equation:

bijk = b0jk − b0ik + b0ij . (86)

So the above are the conditions on functions of b0mn’s.
Clearly,

H0(B(Π2, 2);R/Z) = R/Z, H1(B(Π2, 2);R/Z) = 0.
(87)

From eqn. (83), we see that, for Π2 = Zn, a 2-group
2-cocycle has a form

(ω2)ijk =
m

n
bijk + c, m = 0, · · · , n− 1, (88)

The constant term c is a coboundary. Thus
H2(B(Zn, 2);R/Z) = Zn. This allows us to show that
for a finite Π2

H2(B(Π2, 2);R/Z) = Π2. (89)

which agrees withH2(B(Z2, 2);R/Z) = Z2 (see eqn. (76))
To compute H4(B(Π2, 2);R/Z), let us first as-

sume Π2 = Z2. From eqn. (76), we see that
H4(B(Z2, 2);R/Z) = Z4. One of the 4-dimensional 2-
group cocycle is given by

ω4(b) =
1

2
b2. (90)

We note that 2ω4
1
= 0. Thus ω4 only generate Z2 sub-

group of Z4 = H4(B(Z2, 2);R/Z).
To obtain the generator of H4(B(Z2, 2);R/Z), we note

that, if we view b as Z-valued 2-cochain, we have db = 2c
where c is a Z-valued 3-cochain. Then, from eqn. (A19)
and eqn. (A20), we see that

dSq2b = Sq2db+ 2Sq3b = 4(c ⌣
1
c+ bc). (91)

Thus

ω4(b) =
1

4
Sq2b (92)

is a R/Z-valued 4-cocycle: dω4(b)
1
= 0. Such a ω4 gener-

ates the full group Z4 = H4(B(Z2, 2);R/Z).
In general, if b is a Zn-valued 2-cocycle, we have db =

nc where c is a Z-valued 3-cochain. From eqn. (A17), we
see that

dSq2b = Sq2db+ 2Sq3b = n2c ⌣
1
c+ 2nbc. (93)

This result tells us that when n = odd,

ω4(b) =
1

n
Sq2b (94)

is a R/Z-valued 4-cocycle, while when n = even

ω4(b) =
1

2n
Sq2b (95)

is a R/Z-valued 4-cocycle. ω4(b) generates a Zn group
when n = odd, and a Z2n group when n = even. This
suggests that H4(B(Zn, 2);R/Z) = Zn when n = odd,
and H4(B(Zn, 2);R/Z) = Z2n when n = even.

B. Pure 2-gauge theory in 3+1D

1. n = odd case

We see that, when n = odd, we have n different 3+1D
B(Zn, 2) 2-gauge theories, described by partition function

Z(M4;B(Zn, 2), k) =
∑

dbZn
n
=0

e2π i
∫
M4

k
n
(bZn )2 (96)

where k = 0, 1, · · · , n−1 and bZn is a Zn-value 2-cocycle.

Clearly, the action amplitude e2π i
∫
M4

k
n
(bZn )2 is invariant

under the 2-gauge transformation bZn → bZn + dλ. The
above 2-gauge theory was studied in Ref. 58. It was found
that the theory realizes a 3+1D Z〈2k,n〉-gauge theory. It

is an untwist Z〈2k,n〉-gauge theory since 2kn/〈2k, n〉2 is
always even.
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TABLE I. Volume independent partition function Ztop(M4;B, ω4) for the constructed local bosonic models, on closed 4-
dimensional space-time manifolds. The space-time M4 considered have vanishing Euler number and Pontryagin number
χ(M4) = P1(M

4) = 0, which makes Ztop(M4) to be a topological invariant.[26] Here L3(p) is the 3-dimensional lens space

and F 4 = (S1 × S3)#(S1 × S3)#CP 2#CP
2
. F 4 is not spin.

Models \ M4: T 4 T 2 × S2 S1 × L3(p) F 4 Low energy effective theory

Ztop(M4;B(Zn, 2),
m
2n

Sq2bZn) (97)
n = even, m = 0, · · · , 2n− 1

〈m,n〉3 〈m,n〉 〈m,n, p〉
〈m,n〉 if mn

〈m,n〉2
= even

0 if mn

〈m,n〉2
= odd

Z〈m,n〉 gauge theory
(with fermions iff mn

〈m,n〉2
= odd)

Ztop(M4;B(Zn, 2),
k
n
Sq2bZn) (96)

n = odd, k = 0, · · · , n− 1
〈2k, n〉3 〈2k, n〉 〈2k, n, p〉 〈2k, n〉

Untwisted Z〈2k,n〉 gauge theory
(no emergent fermions)

Ztop(M4;BZn, 0) n3 n 〈n, p〉 n
Untwisted Zn gauge theory
(no emergent fermions)

2. n = even case

When n = even, we have 2n different 3+1D B(Zn, 2)
2-gauge theories, described by partition function

Z(M4;B(Zn, 2),m) =
∑

dbZn
n
=0

e2π i
∫
M4

m
2nSq2bZn

(97)

where m = 0, 1, · · · , 2n− 1. Noticing that the Zn-valued
2-cocycle bZn satisfies dbZn = nc. Under the 2-gauge
transformation bZn → bZn + dλ generated by Zn-valued
1-cochain λ, we see that, from eqn. (A24) and using
dbZn = nc

Sq2(bZn + dλ)− Sq2bZn
2n,d
= 0. (98)

This implies the 2-gauge invariance of the action ampli-

tude e2π i
∫
M4

k
2nSq2b for the n = even case.

3. Properties and duality relations

The pure 2-gauge theories (96) and (97) were studied
for n = odd cases and for n = even and m = 2k cases in
Ref. 58. In those cases, it was found that the theory real-
izes a 3+1D Z〈2k,n〉-gauge theory. The Z〈2k,n〉-gauge the-

ory has emergent fermions if 2kn/〈2k, n〉2 = odd, and it
is a untwist Z〈2k,n〉-gauge theory if 2kn/〈2k, n〉2 = even.
To understand the properties of the model (97) for n =
even and m = odd cases, we compute the partition func-
tion (97) in Appendix C. The result is summarized in
Table I. We see that, for n = even, the 3+1D pure 2-
gauge theory is equivalent to Z〈m,n〉-gauge theory. The

theory has emergent fermion iff mn/〈m,n〉2 = odd.
The higher gauge theories are labeled by a pair

(K,ωd+1): a target space K and a cocycle ωd+1 on it.
Some times two different higher gauge theories may re-
alize the same topologically ordered phase. In this case,
we say that the two theories are equivalent or dual to
each other. The results in Table I suggest the following
duality relations, where we use [B(Π1.Π2, · · · ), ω̄d+1] to
label different higher gauge theories:

(1) for n = even and mn
〈m,n〉2 = even

[B(Zn, 2),
m

2n
Sq2bZn ] ∼ [B(Z〈m,n〉), 0]. (99)

(2) for n = odd

[B(Zn, 2),
k

n
Sq2bZn ] ∼ [B(Z〈2k,n〉), 0]. (100)

We note that [B(Zn), 0] is an untwisted Zn-gauge theory.

VI. 3+1D 2-GAUGE THEORY OF

2-GAUGE-GROUP B(Gb, Z
f
2 )

In this section, we are going to consider more gen-
eral 3+1D 2-gauge theories which have 2-gauge-group

B(Gb, Z
f
2 ).

A. The Lagrangian and space-time path integral

Since Z
f
2 has no non-trivial automorphism, so α2 is

trivial. As a result, such 2-gauge theories are classified
by

Gb; n̄3; ω̄4 (101)

where n̄3 ∈ H3(BGb;Z
f
2 ) and ω̄4 ∈ H4(B(Gb;Z

f
2 );R/Z).

To write down the Lagrangian and space-time path
integral for the 2-gauge theories, the key is to find ω̄4.

To do so, we note that the links in B(Gb;Z
f
2 ) are la-

beled by (a), a ∈ Gb. The triangles in B(Gb;Z
f
2 ) are

labeled by (aij , ajk, aik, bijk) that satisfy eqn. (38) and

eqn. (45). We see that on each link of B(Gb;Z
f
2 ), we

have a label aij , and on each triangle we have a label bijk.
We may view aij as the canonical Gb-valued 1-cocycle ā

(due to eqn. (38)), and bijk as the canonical Z
f
2 -valued

2-cochain b̄ on B(Gb;Z
f
2 ). The canonical 1-cocycle and

the 2-cochain are related

db̄ = n̄3(ā). (102)
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We may use the 1-cocycle ā and the 2-cochain b̄ to write
down ω̄4.
We note that each ω̄4 ∈ H4(B(Gb;Z

f
2 );R/Z) corre-

sponds (see eqn. (77)) to one or more elements in a subset
of

H4(B(Zf
2 , 2);R/Z)×H2(BGb;Z

f
2 )×H4(BGb;R/Z).

(103)

To construct a ω̄4, we may guess ω̄4 = k̄0

4 Sq2b̄. Using
eqn. (A20), we find that

dSq2b̄ = Sq2n̄3(ā) + 2Sq3b̄

= Sq2n̄3(ā) + 2b̄n̄3(ā). (104)

So ω̄4 = k̄0

4 Sq2b̄ is not a cocycle. But the error is only

a function of 1-cocycle ā if k̄0 = 2. In this case, we can
fix the error by adding a function of ā, ν̄4(ā). Similarly,

we can try ω̄4 = 1
2 b̄ē2(ā), where ē2(ā) ∈ Z2(BGb;Z

f
2 ).

But d[b̄ē2(ā)] = n̄3(ā)ē2(ā). Again ω̄4 = 1
2 b̄ē2(ā) is not a

cocycle. Again we can fix it by adding a function ν̄4(ā).
Thus, we come up with the following general expression
of ω̄4:

ω̄4(ā, b̄) =
k0
2
Sq2b̄+

1

2
b̄ē2(ā) + ν̄4(ā), (105)

where ν̄4(ā) is a R/Z-valued cochain in C4(BGb;R/Z)
that satisfy

−dν̄4(ā) =
k0
2
Sq2n̄3(ā) +

1

2
n̄3(ā)ē2(ā). (106)

In this case, ω̄4(ā, b̄) will be a cocycle dω̄4
1
= 0. The

three terms in eqn. (105) correspond to the three coho-
mology classes in eqn. (103). Thus our construction of
ω̄4 is complete (for n̄3 6= 0).
Using the expression (105) for ω̄4, we can construct a

topological non-linear σ-model (i.e. a 2-gauge theory):

Z(M4;B(Gb;Z
f
2 ), ω̄4) (107)

=
∑

φ

(

∏

i

|Gb|−1
∏

(ij)

2−1
)

e2π i
∫
M4 φ∗ω̄4

= |Gb|−N02−N1

∑

δa=1,db=n3

e2π i
∫
M4 ν4(a)+

k0
2 Sq2b+ 1

2 be2(a),

where
∑

δa=1,db=n3
sum over the Gb-valued 1-cochains

aij and the Z
f
2 -valued 2-cochains bijk on the space-time

complex M4, that satisfy

(δa)ijk ≡ aijajka
−1
ik = 1, db = n3(a). (108)

In the above k0 = 0, 1 labels the elements of the Z2

subgroup of H4(B(Zf
2 , 2);R/Z) = Z4, ē2(a) labels the

elements in H2(BGb;Z
f
2 ), and different ν̄4(a) differ by

the elements in H4(BGb;R/Z). Plus n̄3 ∈ H3(BGb;Z
f
2 ),

the four pieces of data, (k0, ē2, n̄3, ν̄4), classify 2-gauge

theories of 2-gauge-group B(Gb;Z
f
2 ).

B. The equivalence between [k0, ē2(ā), n̄3(ā), ν̄4(ā)]’s

The Lagrangian of the 2-gauge theory (107) is labeled
by the data [k0, ē2(ā), n̄3(ā), ν̄4(ā)]:

ē2(a01, a12) ∈ Z2(BGb;Z2),

n̄3(a01, a12, a23) ∈ Z3(BGb;Z2),

ν̄4(a01, a12, a23, a34) ∈ Cd+1(BGb;R/Z), (109)

that satisfy

dν̄4(ā)
1
=

1

2
[Sq2n̄3(ā) + n̄3(ā)ē2(ā)]. (110)

As local bosonic systems, the different 2-gauge theories
labeled by different data may realize the same bosonic
topological phase. We say that those 2-gauge theories or
those data are equivalent.
Note that the Lagrangian is a 2-group cocycle, and two

Lagrangians differing by a 2-group coboundary should be
equivalent. This kind of equivalent relation is generated
by the following three kinds of transformations:
(1) a transformation generated by a 1-cochain l̄1 ∈
C1(BGb;Z2)

ē2 → ē2 + dl̄1, (111)

n̄3 → n̄3,

ν̄4 → ν̄4 +
1

2
n̄3 l̄1.

(2) a transformation generated by a 2-cochain ū2 ∈
C2(BGb;Z2)

ē2 → ē2, (112)

n̄3 → n̄3 + dū2,

ν̄4 → ν̄4 +
k0
2

(

dū2 ⌣
2
n̄3 + Sq2ū2 + ū2ē2

)

,

(3) a transformation generated by a 3-cochain η̄3 ∈
C3(BGb;R/Z):

ē2 → ē2, (113)

n̄3 → n̄3,

ν̄4 → ν̄4 + dη̄3.

Under those transformations, the Lagrangian ν4(a) +
k0

2 Sq2b + 1
2be2(a) only changes by a coboundary. Those

transformations do not change the topological partition
function and do not change the topological order in the
ground state.
We like to point out that the different transformations

of the second type do not commute. Those transfor-
mation may generate changes (ē2, n̄3, ν̄4) → (ē2, n̄3, ν̄4 +
∆ω̄4) where ∆ω̄4 is a cocycle in Z4(BGb;R/Z).
We also want to mention that the above transfor-

mations can not generate all possible equivalent rela-
tions. In particular, an isomorphism of the target space

B(Gb, Z
f
2 ) → B(Gb, Z

f
2 ) (2-group isomorphism) may re-

late two Lagrangians whose difference is not a 2-group
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coboundary. We are not sure if there are more general
“duality” equivalent relations between 2-gauge theories.
This will be left for future work.

C. 2-gauge transformations in the cocycle σ-model

As a local bosonic model, the discrete non-linear σ-
model (107) do not have to have any symmetry. How-
ever, in eqn. (107) we choose a very special Lagrangian,
the pullback of a cocycle on the target space. For such
a special Lagrangian, the model is exactly soluble. Such
a special Lagrangian has a large set of accidental sym-
metries: invariant under 2-gauge transformations. Those
accidental symmetries are called 2-gauge symmetries.

The first type of 2-gauge transformation is given by
1-cochain λ1 ∈ C1(Md+1;Z2):

b → b+ dλ1, a → a; (114)

We find that, using eqn. (A23) and eqn. (A21)

k0Sq
2(b+ dλ1) + (b+ dλ1)e2(a)− k0Sq

2b− be2(a)
2,d
= k0Sq

2dλ1
2,d
= 0. (115)

Therefore, the Lagrangian changes by only a total deriva-
tive term under the first type of 2-gauge transformation.

The second type of 2-gauge transformation is given by
0-cochain gi ∈ C0(Md+1;Gb):

b → b+ ζ2(a, g), aij → ag = giaijg
−1
j . (116)

Under the above transformation

n3(a) → n3(a
g)

2
= n3(a) + dζ2(a, g).

e2(a) → e2(a
g)

2
= e2(a) + dξ1(a, g). (117)

which defines ζ2(a, g). Thus the condition db
2
= n3(a) is

maintained under the 2-gauge transformation. We find
that, using eqn. (A22) and eqn. (A21)

k0Sq
2(b+ ζ2) + (b+ ζ2)(e2 + dξ1)− k0Sq

2b− be2
2,d
= k0db ⌣

2
dζ2 + bdξ1 + ζ2e2 + ζ2dξ1.

2,d
= k0n3 ⌣

2
dζ2 + n3ξ1 + ζ2e2 + ζ2dξ1. (118)

We note that the above only depends on a and g. Thus,
if ν(a) satisfies

ν(ag)− ν(a)
2,d
= k0n3 ⌣

2
dζ2 + n3ξ1 + ζ2e2 + ζ2dξ1,

(119)

the Lagrangian changes by only a total derivative term
under the second type of 2-gauge transformation.

D. The pointlike excitations in the 2-gauge theory

There are two types of pointlike excitations in the 2-
gauge theory. Let S1 be the world line of a pointlike
excitation of the first type. The presence of the pointlike
excitation modifies the path integral via a Wilson loop:

Z(M4;B(Gb;Z
f
2 )) = |Gb|−N02−N1 (120)

∑

δa=1,db=n3

[Tr
∏

S1

RGb
(aij)]e

2π i
∫
M4 ν4(a)+

k0
2 Sq2b+ 1

2 be2(a),

where RGb
(a), a ∈ Gb, is a representation of Gb and

∏

S1 RGb
(aij) is a product RGb

(aij) along the loop S1.
To describe the second type of pointlike excitations,

let f3 be the Poincaré dual of the worldline C1 of the
pointlike excitations. Then the second type of pointlike
excitations are created by modifying the condition db =
n3(a) to

db = n3(a) + f3. (121)

Now the path integral with the second type of pointlike
excitations becomes

Z(M4;B(Gb;Z
f
2 )) (122)

= |Gb|−N02−N1

∑

δa=1,db=n3+f3

e2π i
∫
M4 ν4(a)+

k0
2 Sq2b+ 1

2 be2(a),

To understand the property of the second type of excita-
tions, let us assume the worldline S1 to be the boundary
of a disk D2. Let a Z2-valued 2-cochain s2 to be the
Poincaré dual of D2. Then we have f3 = ds2. The above
path integral can be rewritten as

Z(M4;B(Gb;Z
f
2 ))|Gb|N02N1 (123)

=
∑

δa=1,db=n3+ds2

e2π i
∫
M4 ν4(a)+

k0
2 Sq2b+ 1

2 be2(a)

=
∑

δa=1,db=n3

e2π i
∫
M4 ν4(a)+

k0
2 Sq2(b+s2)+

1
2 (b+s2)e2(a)

= ek0π i
∫
M4 Sq2s2

∑

δa=1,db=n3

e2π i
∫
M4 ν4(a)+

k0
2 Sq2b+ 1

2 be2 e
π i

∫
M4 k0f3⌣

2
n3+s2e2

,

where we have used eqn. (A22). We note that the term

eπ i
∫
M4 s2e2(a) is the only one on the diskD2 that depends

on the 1-cocycle field a. This term can be rewritten as

eπ i
∫
M4 s2e2(a) = eπ i

∫
D2 e2(a). (124)

However, on the surface, eπ i
∫
D2 e2(a) may not be a

function of the world line C1 = ∂D2. It may depend
on how we extend the C1 to D2 (i.e. changing s2 by a

cocycle). In other words, eπ i
∫
M4 s2e2(a) may change if

change s2 by a cocycle. On the other hand, the path
integral (123) depends on s2 via f3 = ds2. So it should
not change is we change s2 by a cocycle. In other words

eπ i
∫
M4 k0Sq

2s2+s2e2(a) (125)
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should not change if we change s2 by a cocycle.

If we s2 by a cocycle β2, the term eπ i
∫
M4 k0Sq

2s2+s2e2(a)

changes by a factor

eπ i
∫
M4 k0Sq

2β2+β2e2(a) = eπ i
∫
M4 k0(w2+w2

1)β2+β2e2(a)

(126)

where we have used eqn. (A22), and the fact Sq2β2
2,dd
=

(w2 + w2
1)β2. We also assume that M4 is closed. Next

we will show that k0(w2 + w2
1) + e2

2,d
= 0, and the above

factor is always 1.

To show k0(w2 + w2
1) + e2

2,d
= 0, let us fix a and

do the path integral of b. We have seen that if
we change b by a coboundary, the action amplitude

e2π i
∫
M4 ν4(a)+

k0
2 Sq2b+ 1

2 be2(a) does not change. However,
if we change b by a cocycle b0, the action amplitude will
change. Using eqn. (A23) and eqn. (A21), we find that

k0Sq
2(b+ b0) + (b+ b0)e2 − k0Sq

2b− be2
2,d
= k0Sq

2b0 + b0e2
2,d
= [k0(w2 +w2

1) + e2]b0. (127)

Thus the action amplitude depends on b0 via

eπ i
∫
M4 [k0(w2+w2

1)+e2]b0 . Since M4 is orientable and com-
pact, its intersection form for Z2-valued 2-cocycle classes
is non-degenerate. Therefore, when we integral over b
(i.e. b0) in the path integral, such a term will cause the
partition function to vanish if

k0(w2 +w2
1) + e2 6= Z2-valued coboundary. (128)

As a result, k0(w2+w2
1)+e2

2,d
= 0 in order for the partition

function to be non-zero. This completes our proof.
For simplicity let us assume k0 = 0 for the time being.

We consider a particle described by a world line C1 that
is a combination of the first type and the second type.
In this case, C1 dependent factor in the path integral is
given by

[Tr
∏

S1

RGb
(aij)]e

π i
∫
D2 e2(a), C1 = ∂D2. (129)

Since e2(a)
2,d
= 0, the term eπ i

∫
D2 e2(a) only depend on

C1, and does not depend on how we extend C1 to D2.
The term eπ i

∫
D2 e2(a) introduces ±1 phase to RGb

(aij)
and promotes it into a representations of Gf = Z2⋋e2Gb.
e2(a) is the two cocycle that describes the Z2 extension
of Gb, since on the spacetime M4, e2(a) is trvialized.
We see that the pointlike excitations are described by
Gf representations.
We know that when n3 = e2 = k0 = 0, the a and b

fields in the 2-gauge theory (107) decouple. In this case,
a describes a Gb gauge theory (with a cocycle twist),
and b describes a Z2 gauge theory (in the dual form).[58]
Thus, eqn. (107) describes a Z2×Gb gauge theory, whose
charges are described by Z2 × Gb representations. The
above result suggests that when e2 6= 0, eqn. (107) de-
scribes a Gf = Z2 ⋋e2 Gb gauge theory, whose charges
are described by Gf representations.

When n3 = e2 = 0 but k0 = 1, the a and b fields in
the 2-gauge theory (107) still decouple. In this case, b
describes a twisted Z2 gauge theory (in the dual form)
where the Z2-charge is a fermion (see Section VB).[58]
Thus, eqn. (107) describes a Z2×Gb gauge theory, whose
charges are described by representations sRep(Z2 ×Gb),
where the non-trivial Z2 representations are fermions.
When e2 6= 0, we expect eqn. (107) to describe a Gf =
Z2 ⋋e2 Gb gauge theory, whose charges are described
by representations sRep(Gf ). In fact, eqn. (107), with
k0 = 1, is an example of high dimensional bosonization
for fermions that carry a Gf quantum number.[58–60]

To summarize, the pointlike excitations in the 2-gauge
theory (107) are described by Rep(Gf ) when k0 = 0 and
by sRep(Gf ) when k0 = 1. Here Rep(Gf ) is the sym-
metric fusion category formed by the representations of
Gf where all the representations are bosons. sRep(Gf )
is the symmetric fusion category formed by the represen-
tations of Gf where all the representations that repre-
sent the extended Z2 trivially are bosons and the others
are fermions. The representations that represent the ex-
tended Z2 trivially correspond to the first type of point-
like excitations, which are always bosons regardless the
value of k0. The representations that represent the ex-
tended Z2 non-trivially correspond to the second type of
pointlike excitations. The second type of pointlike ex-
citations are fermions when k0 = 1, and bosons when
k0 = 0.
We see that when k0 = 0, there is no fermionic particle-

like excitations, and the 2-gauge theory eqn. (107) is dual
to Dijkgraaf-Witten model with gauge group Gf . This is
consistent with the result in Ref. 32.

VII. CLASSIFY AND REALIZE 3+1D EF1

TOPOLOGICAL ORDERS BY 2-GAUGE

THEORIES OF 2-GAUGE-GROUP B(Gb, Z
f
2 )

It was argued that 3+1D AB and EF topological or-
ders with emergent bosons and/or fermions have a unique
canonical boundary.[32, 33] On the canonical boundary,
the boundary stringlike excitations are labeled by the
elements in a finite group. All those boundary string
excitations have a unit quantum dimension. For EF1
topological orders with emergent fermions, the canoni-
cal boundary also has an emergent fermionic pointlike
excitation with quantum dimension 1.[33] Those bound-
ary excitations are described by a pointed unitary fusion
2-category. Such a pointed unitary fusion 2-category is

classified by a 2-group B(Gb, Z
f
2 ) and a R/Z-valued 4-

cocycle ω4 on the 2-group. Here Gb is the group that la-
bels the types of boundary string excitations. Therefore,
all EF1 3+1D topological orders are classified by a pair

B(Gb, Z
f
2 ), ω̄4 – a 2-group and a R/Z-valued 4-cocycle on

the 2-group.
To see why pointed fusion 2-categories are classified

by the pairs (B(Gb, Z
f
2 ), ω̄4), we note that the pointed

fusion 2-category has objects labeled by elements in Gb,
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1-morphisms labeled by elements in Z2 and 2-morphisms
corresponding to physical operators. The 2-morphisms
are not all invertible, but for the structural morphisms
we only need to consider the invertible 2-morphisms, thus
no generality is lost by restricting 2-morphisms to U(1) ≃
R/Z. This way we obtain a 3-group B(Gb, Z2,R/Z),
which has the same classification data as the pointed fu-
sion 2-category. We explain now in more detail.
On one hand, by Lemma IV.1, we have

B(R/Z, 3) → B(Gb, Z2,R/Z) → B(Gb, Z2), (130)

and B(Gb, Z2,R/Z) is classified by the base 2-group
B(Gb, Z2) and an element ω̄4 in H4(B(Gb, Z2),R/Z).
Then the 2-group B(Gb, Z2) is in turn characterised by
Gb, Z2, n̄3 ∈ H3(BGb;Z2). Thus 3-group B(Gb, Z2,R/Z)
is characterised by (Gb, Z2, n̄3 ∈ H3(Gb, Z2), ω̄4 ∈
H4(B(Gb, Z2),R/Z)).
On the other hand, recall the classification data of the

pointed fusion 2-category that is listed in [33]:

• Objects g ∈ Gb, 1-morphisms pg ∈ Z2 ⊂ Hom(g, g).

• Interchange law: 2-isomorphisms [U(1) phase fac-

tors] b̃(p′g, q
′
h, pg, qh) that determines the particle

statistics.

• Associator: 1-morphism n3(g, h, j) : (gh)j → g(hj)
in H3(BGb;Z2) and 2-isomorphisms ñ3(pg, qh, rj).

• Pentagonator: 2-isomorphisms ν4(g, h, j, k) ∈
C4(BGb,R/Z).

We thus find an exact correspondence between the above
and the classification data on the higher group side
(Gb, Z2, n̄3 ∈ H3(BGb;Z2), ω̄4 ∈ H4(B(Gb, Z2),R/Z)) as
below: Gb, Z2, n3 are exactly the same. The 2-group 4-
cocycle ω̄4 has 3 components k0, ē2, ν̄4:

• k0 corresponds to b̃(p′g, q
′
h, pg, qh) on the 2-category

side. It has 4 different choices, corresponding to
boson, fermion, semion and anti-semion statistics
respectively. For EF1 topological orders we stick to
the choice of fermion statistics, which is indicated

in our notation by using Zf
2 instead of Z2.

• ē2 determines the Zf
2 extension from Gb to Gf .

Together with k0 it determines the associator 2-
morphisms ñ3(pg, qh, rj) on the 2-category side.

• The last component ν̄4 is just the pentagonator
ν4(g, h, j, k) on the 2-category side.

• Moreover, on both sides they satisfy the same con-
sistent condition (110).

Since all 3+1D EF1 topological orders are classified by

B(Gb, Z
f
2 ), ω̄4, and since for each pair B(Gb, Z

f
2 ), ω̄4 we

can construct a 2-gauge theory to realize a EF1 topo-
logical order, we conclude that exactly soluble 2-gauge

theories of 2-gauge-group B(Gb, Z
f
2 ) realize and classify

all 3+1D EF1 topological orders.

VIII. REALIZE 3+1D EF2 TOPOLOGICAL

ORDERS BY TOPOLOGICAL NON-LINEAR

σ-MODELS

A. Construction of topological non-linear σ-models

In Ref. 26, it was conjectured that all topological or-
ders with gappable boundary can be realized by ex-
actly soluble tensor network model defined on space-time
complex.[27, 54, 61, 62] In Ref. 33, it was shown that all
EF topological orders have a unique canonical boundary
described by a unitary fusion 2-category in Statement I.2.
Motivated by the results in Ref. 32 and 61, here we like
to show that all the EF 3+1D bosonic topological orders
can be realized by topological non-linear σ-models, a par-
ticular type of tensor network models defined on space-
time complex.[26, 27, 62] The topological non-linear σ-
models are constructed using the data of unitary fusion
2-categories described in Statement I.2.

Let us remind the readers that the canonical boundary
of a EF topological order is described by a unitary fu-
sion 2-category A3

b . The boundary stringlike excitations
(the simple objects in A3

b) are labeled by the elements in

Ĝb = Gb ⋋ Zm
2 .[33] All the strings have a unit quantum

dimension and their fusion is described by the group Ĝb:

g1g2 = g3, g1, g2, g3 ∈ Ĝb. (131)

Also two strings (two objects) labeled by g and gm

(where g ∈ Ĝb and m is the generator of Zm
2 ) are con-

nected by an 1-morphism σg,gm of quantum dimension√
2. This 1-morphism correspond to an on-string point-

like excitation. There is another 1-morphism fg of quan-
tum dimension 1 that connect every string g to itself.
The second 1-morphism correspond to a fermionic point-
like excitation. The fusion of 1-morphisms is given by

fg ⊗ fg = 1, fg ⊗ σg,gm = σg,gm,

σg,gm ⊗ σgm,g = 1 ⊕ fg. (132)

We note that the fusion 2-category A3
b has three layers.

The first layer is formed by objects in a fusion category.
For our case, the simple objects in fusion ring form a
finite group Ĝb (see eqn. (131)). The second layer is
formed by 1-morphisms generated by 1, fg, σg,gm. The
objects and the 1-morphisms are described by a fusion
category (see eqn. (132)). The third layer is formed by 2-
morphisms, which are complex vector spaces for our case.
The objects plus the 1-morphisms and 2-morphisms are
described by the fusion 2-category. In the first part of this
section, we are going to show that the simple objects and
simple morphisms in the fusion category eqn. (131) and
eqn. (132) (i.e. the object and 1-morphism layers) are

described by a simplicial set K̂(Ĝb, Z
f
2 ). And from this

simplicial set, we can recover the entire fusion category
(including semi-simple objects). In the second part of
this section, we will show that the 2-morphism layer is
described by a set of tensors. So the fusion 2-category
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is described by a topological non-linear σ-model with a

target complex K̂(Ĝb, Z
f
2 ).

To obtain the bulk topological non-linear σ-model that
realize the fusion 2-category A3

b , let us first ignore the

quantum-dimension-
√
2 1-morphisms σg,gm. In this case,

the canonical boundary will be described by a pointed

unitary fusion 2-category, i.e. by a 2-group B(Ĝb, Z
f
2 )

and a R/Z-valued 4-cocycle ω̄4(ˆ̄a, b̄) on the 2-group,
where ˆ̄a and b̄ are canonical 1-cochain and 2-cochain of
B(Ĝb, Z

f
2 ). The tensor network model that realize this

reduced boundary will be a 2-gauge theory of 2-gauge-

group B(Ĝb, Z
f
2 ). In other words, the links in the tensor

network model have an index âij ∈ Ĝb which defines ˆ̄a,
and the triangles in the tensor network model have an
index bijk ∈ Zm

2 which defines b̄. ˆ̄a and b̄ satisfy

δˆ̄a = 1, db̄ = n̂3(ˆ̄a), (133)

where n̂3 ∈ H3(Ĝb;Z
f
2 ). The corresponding path integral

is given by

Z(M4) = |Ĝb|−N02−N1

∑

δâ=1,db=n̂3(â)

e2π i
∫
M4 ω4(â,b) (134)

Now, let us include the 1-morphisms σg,gm that con-
nect two strings g and gm. But at the moment, we will
assume such 1-morphisms to have a unit quantum di-
mension and a fusion σg,gm ⊗ σgm,g = 1. Since the ex-
tra 1-morphism can connect two strings differ by m, the
flat condition on â is modified and becomes a quasi-flat

condition δˆ̄a ∈ Zm
2 . In B(Ĝb, Z

f
2 ), three links âij , âjk,

âki = (âik)
−1 bound a triangle only when âij âjkâki = 1.

Now we add some triangles to the complex B(Ĝb, Z
f
2 ) so

that three links âij , âjk, âki bound a triangle even when
âij âjkâki = m ∈ Zm

2 . Including those extra triangles
change the first homotopy group of the target complex to
π1 = Ĝb/Z

m
2 = Gb. The new target complex is denoted

as B̂(Gb, Z
f
2 ), which is a triangulation of K(Gb, Z

f
2 ).

Let us compare two triangulations, B̂(Gb, Z
f
2 ) and

B(Gb, Z
f
2 ), of the same space K(Gb, Z

f
2 ). In B(Gb, Z

f
2 ),

the links are labeled by aij ∈ Gb, while in K̂(Gb, Z
f
2 )

we double the number of links, which now are labeled

by âij ∈ Ĝb = Zm
2 ⋋ Gb. The triangles in B(Gb, Z

f
2 )

are labeled by [a01, a12, a02; b012] where a01, a12, a02 sat-
isfy a01a12(a02)

−1 = 1. On the other hand, the tri-

angles in B̂(Gb, Z
f
2 ) are labeled by [â01, â12, â02; b012]

where â01, â12, â02 satisfy â01â12(â02)
−1 ∈ Zm

2 . The full

structure of K̂(Gb, Z
f
2 ) is determined by its canonical 1-

cochain ˆ̄a and 2-cochain b̄ that satisfy

δˆ̄a ∈ Zm
2 , db̄ = n̂3(ˆ̄a). (135)

where n̂3(ˆ̄a) is a 3-cocycle in K̂(Ĝb, Z
f
2 ) satisfying

n̂3(ˆ̄a) = n3(π
m(ˆ̄a)), πm : Ĝb → Gb,

n3(ā) ∈ H3(BGb, Z
f
2 ). (136)

To have a more rigorous construction of B̂(Gb, Z
f
2 ), we

note that given a morphism of groups A2
p2−→ Ĝ, ker p2

0−→
G := Ĝ/Imp2 together with G action α on ker p2 and
n3 ∈ H3(G, ker pα2 ) decide a 2-group B(G, ker p2), which
as a simplicial set has the following form: Kn = G×n ×
(ker p2)

×(n2 ), where

K1 = {(a01)|a01 ∈ Ĝ}, (137)

K2 = {(a01, a12, a02; b012)|a01a12a−1
02 = 1, b012 ∈ ker p2},

K3 = {(a01, a12, a23; b012, b013, b023, b123)|α(a01)b123 − b023

+ b013 − b012 = n3(a01, a12, a23) ∈ ker p2},

and Kn in general is made up of those n-simplices whose
2-faces are elements of K2 and such that each set of four
2-faces gluing together as a 3-simplex is an element of
K3. This is the so-called coskeleton construction.

Then we pullback this 2-group structure via the pro-

jection map Ĝ
πm

−−→ G, we obtain another 2-group. The
pullback simplicial set K̂• of K• through K̂1 → K1

(both K̂0 = K0 = pt) is inductively defined as K̂n =
Kn ×Hom(∂∆[n],K) Hom(∂∆[n],K). Here ∂∆[n] is the
boundary simplicial set of the standard simplicial sim-
plex ∆[n]. Pullback of a 2-group still satisfies the same
Kan conditions, thus still a 2-group. Then after calcula-
tion, we see that the pullback 2-group as a simplicial set

has the following form: K̂n = Ĝ×n ×A
×(n2 )
2 , where

K̂1 = {(â01)|â01 ∈ Ĝ}, (138)

K̂2 = {(â01, â12, â02; b012)|â01â12â−1
02 ∈ Imp2, b012 ∈ ker p2},

K̂3 = {(â01, â12, â23; b012, b013, b023, b123)|α(πm(â01))b123

− b023 + b013 − b012 = n̂3(â01, â12, â23) ∈ ker p2},

and K̂n is similarly defined by coskeleton construction.
Here n̂3 = (πm)∗n3 is the pullback 3-cocycle. We de-

note this 2-group by B̂(G, ker p2). Since the pullback

construction introduces equivalent 2-groups, B̂(G, ker p2)
and B(G, ker p2) are equivalent 2-groups. To apply in the

above situation, we take G = Gb, A2 = Zf
2 × Zm

2 and

p2 = 0 × i where i : Zm
2 → Ĝb is the embedding, thus

ker p2 = Zf
2 and Imp2 = Zm

2 .
Through the above examples, we see that pointed uni-

tary fusion 2-categories have a “geometric” picture in
terms of 2-groups. The fusion rules in the 2-categories are
described by the complex of the 2-groups. The compli-
cated coherent relations in the 2-categories are described
by the cocycle conditions on the 2-groups side. In the
following, we will develop a “geometric” picture, i.e. a

complex K̂(Gb;Z
f
2 ), for the unitary fusion 2-category A3

b
that contains non-invertible 1-morphisms.

The complex K̂(Gb;Z
f
2 ) has one vertex. The links in

K̂(Gb;Z
f
2 ) are labeled by elements âij in group Ĝb =

Zm
2 ⋋ρ2

Gb, with ρ2 ∈ H2(BGb;Z2). The complex

K̂(Gb;Z
f
2 ) has the same set of links as B(Ĝb, Z

f
2 ), but

has a different set of triangles to describe a different

set of 1-morphisms. In K̂(Gb, Z
f
2 ), three links âij , âjk,
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âki = (âik)
−1 bound a triangle when âij âjkâki ∈ Zm

2 .
When âij âjkâki = 1, the three links bound two triangles
labeled by bijk = 0, 1. When âij âjkâki = m, where m
generates Zm

2 , the three links bound only one triangle
which has a fixed bijk = 1.

The tetrahedrons in K̂(Gb;Z
f
2 ) describe the fusion

channels of 1-morphisms eqn. (132). Consider a 2-sphere

in K̂(Gb;Z
f
2 ) formed by four triangles who share their

edges. If all four triangles carry no m-flux, i.e. satisfy
âij âjkâki = 1, then the 2-sphere is filled by a tetra-
hedron if the label bijk on the four triangles satisfy
∑

bijk
2
= n̄3(aij). Here n̄3(âij) is a function that depends

on labels âij of the six links on the 2-sphere. Note that
n̄3(âij) is defined only when âij âjkâki = 1 for all four tri-
angles. If two of four triangles carry m-flux, i.e. satisfy
âij âjkâki = m, then the 2-sphere is filled by a tetrahe-
dron regardless the values of the labels bijk on the four
triangles.
If all four triangles carry m-flux, then the 2-sphere is

filled by two different tetrahedrons, labeled by c0123 =
0, 1. This is because each triangle with m-flux corre-
sponds to the 1-morphism σ. The fusion of three σ is
given by σ ⊗ σ ⊗ σ = (1 ⊕ f) ⊗ σ = 2σ. The factor 2
means there are two fusion channels, and thus two differ-
ent tetrahedrons to fill the 2-sphere.
At higher dimensions, every 3-sphere formed by five

tetrahedrons glued along their 2-faces is filled by a 4-
simplex, every 4-spheres formed by six 4-simplexes glued
along their 3-faces is filled by a 5-simplex, etc . In this

way, we obtain the simplicial set K̂(Gb;Z
f
2 ) (which is thus

3-coskeleton):

K0 K1

d0,d1
oo

oo K2

d0,d1,d2
oo

oo

oo K3

d0,...,d3
oo

·
oo

K4 · · · ,
d0,...,d4
oo

·
oo

(139)

where the simplexes at each dimensions are given by

K̂0 = {pt.},
K̂1 = {(â01)|â01 ∈ Ĝ}, (140)

K̂2 = {(â01, â12, â02; b012)|â01â12 = â02, b012 = 0, 1;

or â01â12 = mâ02, b012 = 0.},
K̂3 = {(â01, â12, â23, â02, â13, â03; b012, b013, b023, b123; c0123)
|if all δâ = 1 : b123 − b023 + b013 − b012 = n̂3(â01, â12, â23),

c0123 = 0; if two δâ = m : c0123 = 0.},

where n̂3 ∈ H3(BĜb;Z2). The complex K̂(Gb;Z
f
2 ) de-

scribes a fusion category formed by the objects and 1-
morphisms in the unitary fusion 2-category A3

b . (The
2-morphisms in A3

b will be discussed in the later part of
this section.)
Since it is a coskeleton construction of a 3-step tower,

K̂(Gb;Z
f
2 ) is certainly a simplicial set. In general, the

geometric realization |Y | of the simplicial set Y is a
topological space. By construction, |Y | is given by
|Y | := ⊔Yi × ∆i/ ∼, where ∼ is provided by gluing
along lower dimensional faces provided by the informa-
tion given by s the degeneracy maps. However, |Y | may

0
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2

b012 = b

0

1
b ⇑

1

â02 = g′

â01 = g g

g′

FIG. 8. Links are simple objects and triangles with degenerate
(0, 1)-sides are simple 1-morphisms.
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3b013
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0

1

b ⇑

b′ ⇑

1
â02 = g′′

â01 = g′
1
1

â02 = g

g

g′

g′′

FIG. 9. The composition ·v of 1-morphisms.

not be a manifold. Also, K̂(Gb;Z
f
2 ) is not a 2-group

any more. First of all, strict Kan(3, j)! are not satisfied,
and even non-strict Kan(4, j) are not satisfied. Never-

theless, π≥3(K̂(Gb;Z
f
2 )) = 0. Moreover, we still have

π2(K̂(Gb;Z
f
2 )) = Zf

2 and π1(K̂(Gb;Z
f
2 )) = Gb.

Although K̂(Gb;Z
f
2 ) does not correspond to a 2-group,

in the following, we will show that from the data of

K̂(Gb;Z
f
2 ), one can recover the fusion category, which is

the original fusion 2-category A3
b without the 2-morphism

layer. We first let the set of simple objects to be the links

in K̂(Gb;Z
f
2 ), C0 := K̂(Gb;Z

f
2 )1 = Ĝb. And let the set of

simple 1-morphisms to be the triangles with one side de-

generate in K̂(Gb;Z
f
2 ). One can picture them as bigons

(see Fig. 8),

C1 :={(1, â12, â02; b012) ∈ K̂2}
={(g, g′; b)|g = g′, b = 0, 1; g′ = gm, b = 0}

Then the composition ·v of 1-morphisms can be read
from the information of K̂3, which tells which tetrahe-
drons are allowed, indicated by Fig. 9. For example,
we have a unique tetrahedron (1, 1, g, 1, g, g; 0, b, b+b′, b′)

in K̂3 to fill its (3, 1)-horn. Then this implies that
(g, g; b) ·v (g, g; b′) = (g, g; b + b′), here + is the addition
in Z2. Then the only non-unique case is for (g, gm; 0) ·v
(gm, g; 0): there are both (1, 1, g, 1, gm, g; 0, 0, 0, 0) or
(1, 1, g, 1, gm, g; 0, 0, 1, 0) to fill the (3, 1)-horn. This
makes (g, gm; 0) ·v (gm, g; 0) = (g, g; 0⊕ 1) a non-simple
element. We thus can extend ·v to an associative product
to all semi-simple objects and 1-morphisms. We call the
result category A3

b .

Now we will read from K̂3 the fusion product for A3
b ,

which makes A3
b further into a fusion category. We only

need to take care of fusion of simple objects and simple
1-morphisms, then we can extend the fusion by distribu-
tion law to semi-simple objects and 1-morphisms. The
fusion of simple objects is simply the group multiplica-
tion of Ĝb; the fusion of simple 1-morphisms is again read
from tetrahedrons in K̂3. If we want to fuse (g1, g

′
1; b1)

and (g2, g
′
2; b2), the first step is to transfer the (0, 1)-
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FIG. 10. Fusion of 1-morphisms.

side degenerate triangle (g1, g
′
1; b1) = (1, g′1, g1; b1) to an

(2, 3)-side degenerate triangle, by filling the (3, 0)-horn
of the tetrahedron (0, 1, 2, 3) with a unique element

(1, g′1, g
′
1, g1, g1, 1; b1, 0, b1, 0) ∈ K̂3.

The second step is to fill the (2, 1)-horn of the trian-
gle (0, 1, 4) without flux with (g′1, g

′
2, g

′
1g

′
2; 0). The third

step is to finally fill the (3, 1)-horn of the tetrahedron
(0, 2, 3, 4) and obtain a triangle (0, 3, 4) with three sides
(g1, g2, g

′
1g

′
2). The fourth step is to transfer this triangle

to a triangle with sides (1, g1g2, g
′
1g

′
2) by filling the (3, 2)-

horn of a tetrahedron. The filling can be non-unique only
in the third step. This procedure is illustrated with Fig.
10.
Following this strategy, the calculation shows that the

only non-unique case happens when we fuse (g1, g1m; 0)
and (g2, g2m, 0), and (g1, g1m; 0) ⊗ (g2, g2m, 0) =
(g1g2, g1g2; 0 ⊕ 1). The associator for the fusion prod-
uct is still given by n3. Thus we have recovered a fusion

2-category from the simplicial set K̂(Gb, Z
f
2 ).

To obtain the coherence relations (i.e. the 2-morphism
layer) in the unitary fusion 2-category A3

b , we try to con-
struct topological non-linear σ-models with target com-

plex K̂(Gb, Z
f
2 ). To do so, we assign a complex number

to each 4-simplex in K̂(Gb, Z
f
2 ). A 4-simplex is labeled

by (âij ; bijk, cijkl|i, j, k, l = 0, 1, 2, 3, 4), that satisfy

âij ∈ Ĝb, bijk ∈ Z2, cijkl ∈ Z2;

b123 − b023 + b013 − b012 = n̂3(â01, â12, â23)

when all four δâ = 1,

bijk = 0 when (δā)ijk = m.

cijkl = 0 when one of δā = 1. (141)

We see that cijkl can take two values 0, 1 only when all
four δā = m. So we can write such a complex number as

Ω̂4
â01â02â03â04â12â13â14â23â24â34;c1234c0234c0134

b012b013b014b023b024b034b123b124b134b234;c0124c0123
(142)

which corresponds to the top tensor of the tensor set.
The above number is non-zero only when âij , bijk, cijkl
satisfy eqn. (141). We also assign a positive number w0

to the vertex in K̂(Gb, Z
f
2 ). To the links labeled by [â01]

we assign the same positive number w1. To the triangle
labeled by [â01, â12, â02; b012] we assign a positive num-
ber w2(1) or w2(m) depending on â01â12(â02)

−1 = 1 or
m. The path integral that describes the topological non-
linear σ-model on space-time with boundary is given by

Z(M4) =
∑

δâ∈Zm
2 ,db=n̂3(â),c

∏

i

′
w0

∏

(ij)

′
w1

∏

(ijk)

′
w2[δâ)ijk]×

∏

(ijklp)

(

Ω̂4
âij âikâilâipâjkâjlâjpâklâkpâlp;cjklpciklpcijlp

bijkbijlbijpbiklbikpbilpbjklbjkpbjlpbklp;cijkpcijkl

)sijklp

,

(143)

where
∏

(ijklp) is a product over all the 4-simplices and

sijklp is the orientation of the 4-simplices (see Fig. 12).

Also,
∏′

(ijk) is a product over all the interior triangles,
∏′

(ij) is a product over all the interior links, and
∏

i is a

product over all the interior vertices.

The rank-25 tensor Ω̂4, as well as the weight tensors
w0, w1, and w2, must satisfy certain conditions in order
for the above path integral to be re-triangulation invari-
ant. The conditions can be obtained in the following
way: We start with a 5-simplex (012345). Then, di-
vide the six 4-simplices on the boundary of the 5-simplex
(012345) into two groups. Then the partition function on
one group of the 4-simplices must equal to the partition
function on the other group of the 4-simplices, after a
complex conjugation.

For example, the two groups of the 4-
simplices can be

[

(12345), (02345), (01345)
]

and
[

(01245), (01235), (01234)
]

. This partition leads to
a condition

∑

b345

∑

c0345c1345c2345

w2[(δâ)345]

Ω̂4
â12â13â14â15â23â24â25â34â35â45;c2345c1345c1245

b123b124b125b134b135b145b234b235b245b345;c1235c1234

(Ω̂4
â02â03â04â05â23â24â25â34â35â45;c2345c0345c0245

b023b024b025b034b035b045b234b235b245b345;c0235c0234
)∗

Ω̂4
â01â03â04â05â13â14â15â34â35â45;c1345c0345c0145

b013b014b015b034b035b045b134b135b145b345;c0135c0134

=
∑

b012

∑

c0123c0124c0125

w2[(δâ)012]

Ω̂4
â01â02â04â05â12â14â15â24â25â45;c1245c0245c0145

b012b014b015b024b025b045b124b125b145b245;c0125c0124

(Ω̂4
â01â02â03â05â12â13â15â23â25â35;c1235c0235c0135

b012b013b015b023b025b035b123b125b135b235;c0125c0123
)∗

Ω̂4
â01â02â03â04â12â13â14â23â24â34;c1234c0234c0134

b012b013b014b023b024b034b123b124b134b234;c0124c0123
(144)

For the partition
[

(12345), (02345)
]

and
[

(01345),
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(01245), (01235), (01234)
]

, we obtain a condition

∑

c2345

Ω̂4
â12â13â14â15â23â24â25â34â35â45;c2345c1345c1245

b123b124b125b134b135b145b234b235b245b345;c1235c1234

(Ω̂4
â02â03â04â05â23â24â25â34â35â45;c2345c0345c0245

b023b024b025b034b035b045b234b235b245b345;c0235c0234
)∗

= w1

∑

â01;b012,b013,b014,b015;c0123c0124c0125c0134c0135c0145

w2[(δâ)012]w2[(δâ)013]w2[(δâ)014]

w2[(δâ)015](Ω̂4
â01â03â04â05â13â14â15â34â35â45;c1345c0345c0145

b013b014b015b034b035b045b134b135b145b345;c0135c0134
)∗

Ω̂4
â01â02â04â05â12â14â15â24â25â45;c1245c0245c0145

b012b014b015b024b025b045b124b125b145b245;c0125c0124

(Ω̂4
â01â02â03â05â12â13â15â23â25â35;c1235c0235c0135

b012b013b015b023b025b035b123b125b135b235;c0125c0123
)∗

Ω̂4
â01â02â03â04â12â13â14â23â24â34;c1234c0234c0134

b012b013b014b023b024b034b123b124b134b234;c0124c0123
(145)

For the partition
[

(12345)
]

and
[

(02345), (01345),

(01245), (01235), (01234)
]

, we obtain a condition

Ω̂4
â12â13â14â15â23â24â25â34â35â45;c2345c1345c1245

b123b124b125b134b135b145b234b235b245b345;c1235c1234

=w0w
5
1

∑

â01,â02,â03,â04,â05

∑

b012,b013

w2[(δâ)012]w2[(δâ)013]

∑

b014,b015,b045,b023;c0123c0124c0125c0134c0135c0145c0234c0235c0245c0345

w2[(δâ)014]w2[(δâ)015]w2[(δâ)045]w2[(δâ)023]

∑

b024,b025,b034,b035;

w2[(δâ)024]w2[(δâ)025]w2[(δâ)034]w2[(δâ)035]

Ω̂4
â02â03â04â05â23â24â25â34â35â45;c2345c0345c0245

b023b024b025b034b035b045b234b235b245b345;c0235c0234

(Ω̂4
â01â03â04â05â13â14â15â34â35â45;c1345c0345c0145

b013b014b015b034b035b045b134b135b145b345;c0135c0134
)∗

Ω̂4
â01â02â04â05â12â14â15â24â25â45;c1245c0245c0145

b012b014b015b024b025b045b124b125b145b245;c0125c0124

(Ω̂4
â01â02â03â05â12â13â15â23â25â35;c1235c0235c0135

b012b013b015b023b025b035b123b125b135b235;c0125c0123
)∗

Ω̂4
â01â02â03â04â12â13â14â23â24â34;c1234c0234c0134

b012b013b014b023b024b034b123b124b134b234;c0124c0123
(146)

There are many other similar conditions from different
partitions.
Each solution of those conditions give us a topological

non-linear σ-model. Some of those models have emergent
fermions and describe EF topological orders. We believe
that all EF topological orders can be realized this way.
In general, it is very hard to find solutions of those

conditions, since that corresponds to solve billions of non-
linear equations with millions of unknown variables, even
for the simplest cases. One way to make progress is to
note that when restricted to the indices â that satisfy
δâ = 1, the tensor Ω̂4 becomes a U(1)-valued 4-cocycle on

the 2-group B(Ĝb, Z
f
2 ). This is because some conditions

for Ω̂4, such as eqn. (144), act within those components

of Ω̂4 whose indices satisfy δâ = 1. When δâ = 1, w2(m)
will not appear in those conditions. In this case, if we
choose Ω̂4 to be a U(1)-valued 4-cocycle on the 2-group,
the terms in the summation in eqn. (144) will all have
the same value. Thus we can replace the summation in

eqn. (144) by factors that count the number of the terms
in the summation. From eqn. (144), we see that those
factors cancel out. In this case, the condition eqn. (144)
reduces to the condition for the 4-cocycles on the 2-group.
Thus, the restricted Ω̂4 must be U(1)-valued 4-cocycle on

the 2-group B(Ĝb, Z
f
2 ), which has a form:

Ω̂4
â01â02â03â04â12â13â14â23â24â34;c1234c0234c0134

b012b013b014b023b024b034b123b124b134b234;c0124c0123

∣

∣

∣

δâ=1,c’s=0

= e2π i
∫
(01234)

ν4(â)+
k0
2 Sq2b+ 1

2 be2(â) (147)

When k0 = 1, the tensor Ω̂4 and the associated topo-
logical non-linear σ-model will describe a EF topological
order. Starting from the parcial solution (147) we can use
the equations eqn. (144), eqn. (145), and eqn. (146) to

find other components of Ω̂4 whose indices do not satisfy
δâ = 1.
As we have seen that the topological non-linear σ-

model on the complex K̂(Gb, Z
f
2 ) is closely related to the

unitary fusion 2-category A3
b that describes the canon-

ical boundary of a EF topological order.[33] The links

in K̂(Gb, Z
f
2 ) correspond to the objects in the fusion 2-

category. The 1-morphisms fg that connect an object
to itself corresponds to triangles with no flux, which are

labelled by π2[K̂(Gb, Z
f
2 )] = Z2. The non-invertible 1-

morphisms σg,gm correspond to triangles with m-flux. If
we treat the objects connected by 1-morphisms as equiva-
lent, then the equivalent classes of the objects correspond

to π1[K̂(Gb, Z
f
2 )] = Gb. The fusion of the objects in dif-

ferent orders may differ by an 1-morphism which lives in

π2[K̂(Gb, Z
f
2 )], It is called an associator. In both Ref. 33

and this paper, we use the same symbol n̂3 to describe
the associator. The part of the Ω̂4 tensor, ν̂4, also cor-
respond to ν̂4 in Ref. 33 that is another piece of data
to describe the unitary fusion 2-category A3

b . It is this
correspondence between topological non-linear σ-models

on K̂(Gb, Z
f
2 ) and the fusion 2-categories described in

Ref. 33 that allows us to conclude that all EF topologi-
cal orders are realized by topological non-linear σ-models

on K̂(Gb, Z
f
2 ).

From a consideration of 2-gauge transformations (see
eqn. (59) and eqn. (61)), we expect w0 and w1 to contain

factors |Ĝb|−1 and 1
2 to cancel the volum of the 2-gauge

transformations. If w2(1) = w2(m) with m being the
generator of Zm

2 , the solutions should describe AB or
EF1 topological orders. If w2(1) 6= w2(m), some of those
solutions should describe EF2 topological orders. In par-
ticular, we expect w2(m) to be related to the quantum
dimension of the non-invertible 1-morphism – the Majo-
rana zero mode.

B. The canonical boundary of topological

non-linear σ-models

In the last section, we constructed topological non-
linear σ-models using the data of unitary fusion 2-
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FIG. 11. A boundary configuration. The thin dash-lines
corresponds to âij = 1. The thin colored-lines corresponds to
âij 6= 1. The white triangles corresponds to bijk = 0. The
yellow triangles corresponds to bijk = 1, which are boundary
fermions. The non-zero âij ’s describe boundary strings on the
dual lattice, represented by the thick lines. The strings with
different colors are described by g and gm. The domain wall
between two strings has a Majorana zero mode marked by a
green dot.

categories in Statement I.2. In this section, we like to
show that the topological non-linear σ-models have a
canonical boundary described by corresponding unitary
fusion 2-category A3

b .
The canonical boundaries of the topological non-linear

σ-models are very simple which are given by choosing
âij = 1 and bijk = 0 on the boundary. The states with
âij 6= 1 and bijk 6= 0 corresponds excited states with
boundary stringlike and pointlike excitations (see Fig.
11).
We see that the boundary string are labeled by âij

which is an element in Ĝb. They correspond to objects in
a unitary fusion 2-category. bijk on triangles correspond
to 1-morphisms of unit quantum dimension. bijk = 1 im-
plies the presence of a fermion on the triangle (ijk). The
condition db = n̂3(â) describes how a fermion worldline
can starts or ends at certain configurations of â, where
n̂3(â) 6= 0.
The Fermi statistics of the particle described by

bijk 6= 0 is determined by the form of the top

tensor Ω̂4
â01â02â03â04â12â13â14â23â24â34;c1234c0234c0134

b012b013b014b023b024b034b123b124b134b234;c0124c0123
in

eqn. (147). k0 = 1 will make the particle to be a fermion.
The triangles with δâ = m will carry a Majorana zero

mode, provided that the weight tensor w2(δâ) satisfies
w2(1) 6= w2(m). If w2(1) = w2(m), the triangles with
δâ = m will not correspond to a Majorana zero mode.
Those results suggest that the canonical boundaries of
the topological non-linear σ-models are described by uni-
tary fusion 2-categories in Statement I.2.
To summarize, the topological non-linear σ-models are

described by the following data

Ĝb = Zm
2 ⋋ρ2

Gb, n̂3(â), w0, w1, w2(1), w2(m),

Ω̂4
â01â02â03â04â12â13â14â23â24â34;c1234c0234c0134

b012b013b014b023b024b034b123b124b134b234;c0124c0123
. (148)

where n̂3(â) is defined only when δâ = 1. In that case,

it is a Z2-valued group 3-cocycle for Ĝb: n̂3|δâ=1 ∈
H3(Ĝb;Z2). Also, w0, w1, w2(Z

m
2 ), Ω̂4 satisfy a set of

non-linear equations, such as eqn. (144), eqn. (145), and

eqn. (146). If the tensor Ω̂4 has a form (147) with
k0 = 1, then the data describe a EF topological or-
der. Such data also classify the EF topological orders
after quotient out certain equivalence relation. When
Ĝb = Zm

2 ⋋ρ2
Gb is a non-trivial extension of Gb by

Zm
2 and when w2(1) 6= w2(m), the data classify the EF2

topological orders.
Although we have collected many evidences to support

the above proposal, many details still need to be worked
out to confirm it.

IX. TURAEV-VIRO CONSTRUCTION AND

HIGHER CATEGORY

The above topological non-linear σ-models are actually
a special case of Turaev-Viro type state sum construction.
So in this section, we will discuss such a construction in
most general setting.
The most general Turaev-Viro type state sum con-

struction of n + 1D TQFT that one can imagine is to
triangulate the space-time, color all the k-simplices for
k < n + 1, give each n + 1-simplex a factor which de-
pends the its colorings, then multiply the factors together
to get the action amplitude, and then sum the action am-
plitudes over all possible colorings (i.e. do the path in-
tegral). The final answer is the partition function of the
state sum model. In order for the partition function to
be topological, the colorings and the factors must satisfy
a series of self-consistent conditions, such that the action
amplitudes are retriangulation invariant (see conditions
eqn. (144), eqn. (145), and eqn. (146)).
More precisely

• The coloring of a 0-simplex (i.e., vertex) is in a
labeling set L0.

• The coloring of a 1-simplex (i.e., link) between ver-
tices a, b ∈ L0 is in a labeling set L1(a, b).

• The coloring of a 2-simplex (i.e., triangle) is in a
labeling set which is determined by the colorings of
the three vertices and three links.

• . . .

• The factor Ωi of an n+1-simplex i is a function of
all the above colorings.

• The weighting factor w
(k)
j of an k-simplex (k <

n + 1) j is a function of all the colorings of the
k-simplex.

• The partition function is given by

Z =
∑

colorings

(

n
∏

k=0

∏

j

w
(k)
j

)(

∏

i

Ωi

)

. (149)
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However, it is not necessary to use so general a con-
struction. Many of the above models turn out to describe
the same topological phase. To produce all the possible
phases it is sufficient to use only some simplified versions
of state sum model. This can be seen by the following
n-category picture.
Although not rigorously proved, we believe the above

data of the most general state sum model exactly corre-
sponds to a n-category which describes the topological
defects and excitations on a gapped nD boundary of the
n+1D TQFT. ( n+1D Turaev-Viro type TQFT = n+1D
TQFT with gapped boundary.) The labeling sets Lk of
k-simplices are just the sets of isomorphisms classes of
simple k-morphisms in the n-category. An n+1-simplex
can be read as a closed graph in the n-category, whose
evaluation gives rise to a complex number which is the
factor associated to the n+ 1 simplex.

The physical picture of such n + 1-category is that k-
morphisms correspond to codimension k topological de-
fects. More precisely

• 0-morphism: nD “defect”, in fact not a defect but
just a label of a uniform boundary region, like a
boundary “phase”.

• 1-morphism: n − 1D defect between different
boundary phases.

• . . .

• n−2-morphism: 2D=1+1D defect, namely line de-
fect. If between trivial membrane defects, they are
actually string-like excitations.

• n − 1-morphism: 1D=0+1D defect, point defect.
If between trivial line defects, they are point-like
excitations, or particles.

• n-morphism: 0D defect, “instanton”, a change in
time, represented by physical operators.

As a first simplification, nD boundary phases that can
have n − 1D defects between them should be “Morita-
equivalent”; they share the same bulk phase. This indi-
cates that the vertex labels in the state sum model (corre-
sponding to 0-morphisms in the n-category) should not
produce more phases and can always be dropped. For
the n-category this means fixing the 0-morphism, which
turns the n-category into a fusion n− 1-category.

For n = 2, the above is the best one can do, and it is
why 2 + 1D Turaev-Viro TQFTs are built upon fusion
categories. There are two levels of colorings

• L1 labels the links, also the objects in the fusion
category, corresponding to the point-like excita-
tions on the boundary.

• L2(a, b, c) labels the triangles, also the morphisms
in the fusion category, corresponding to basis op-
erators in the fusion space Hom(a ⊗ b, c). When
all such fusion spaces are 1-dimensional, this level

of coloring can be dropped and these models are
called multiplicity-free.

For n = 3, the above means that 3 + 1D Turaev-Viro
TQFTs can be built upon fusion 2-categories. There are
thus there levels of colorings

• L1 labels the links, also the objects in the fusion
2-category, corresponding to the string-like excita-
tions on the boundary.

• L2(a, b, c) labels the triangles, also the 1-morphisms
in the fusion 2-category, corresponding to the point-
like defects on the junction of a, b, c strings.

• L3(. . . ) labels the tetrahedrons, also the basis phys-
ical operators in the corresponding fusion space.

One possible further simplification is to consider
boundaries without string-like excitations. Note that in
this case particles (the only non-trivial topological de-
fects) on the boundary form a pre-modular category. The
corresponding model is the so-called Crane-Yetter TQFT
[61] or Walker-Wang model [63]. But they are not suf-
ficient to construct all 3+1D phases. In [64, 65] it was
generalised to useG-crossed extension of the pre-modular
category as input data.
Another possibility is to consider boundaries whose

point-like excitations are as simple as possible, by the
results in [32, 33]. This leads to more general and pow-
erful simplification.
First, every 3+1D topological phase have a canonical

gapped boundary (this in particular means that all 3+1D
topological phase are of Turaev-Viro type) whose string-
like excitations fuse under a group multiplication law.
Thus L1 is a group. Note that the particles (point de-
fects on the trivial string) form a pre-modular category.
G-crossed pre-modular category is just a special case of
of such fusion 2-category. In other words, construction
based on fusion 2-category whose objects form a group
include the construction in [64, 65].
Second, [32, 33] further shows that particles on the

boundary can be reduced to Vec or sVec; in other words,
either there is no non-trivial particle, or the only non-
trivial particle is the fermion. This means that there
are at most two labels in L2. (As a result most L3 also
become trivial.) This is exactly the model discussed in
this paper, which should be the most simplified version
of state sum model in 3+1D, but still general enough to
produce all 3+1D phases.

X. SUMMARY

In this paper, we show that higher gauge theo-
ries are nothing but familiar non-linear σ-models in
the topological-defect-free disordered phase. As a re-
sult, non-linear σ-models whose target spaces K satisfy
π1(K) = finite group and πk>1(K) = 0 can realize gauge
theories, and non-linear σ-models whose target spaces K
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FIG. 12. (Color online) Two branched simplices with oppo-
site orientations. (a) A branched simplex with positive orien-
tation and (b) a branched simplex with negative orientation.

satisfy π1(K), π2(K) = finite group and πk>2(K) = 0
can realize 2-gauge theories, etc .
We discuss in detail how to characterize and classify

higher gauge theories, such as 2-gauge theories. As an ap-
plication, we use 2-gauge theories to realize and classify
all 3+1D EF1 topological orders – 3+1D topological or-
ders for bosonic systems with emergent fermions, but no
Majorana zero modes for triple string intersections. We
also design topological non-linear σ-models to realize and
classify all 3+1D EF2 topological orders – 3+1D topo-
logical orders for bosonic systems with emergent fermions
that have Majorana zero modes for some triple string in-
tersections. Since EF topological orders can be viewed as
gauged fermionic SPT state in 3+1D, our result also give
rise to a classification of 3+1D fermionic SPT orders.
To obtain the above results, we developed a “geomet-

ric” way to view the unitary fusion 2-category A3
b for the

canonical boundary of the EF topological orders. We

used a special triangulation of a space K(Ĝb,Z
f
2 ) to de-

scribed the fusion category formed by the objects and
1-morphisms in A3

b . We used a tensor set defined for
the triangulation to described the 2-morphism layer of
2-category A3

b .
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Appendix A: Space-time complex, cochains, and

cocycles

In this paper, we consider models defined on a space-
time lattice. A space-time lattice is a triangulation of the
d + 1D space-time, which is denoted as Md+1. We will
also call the triangulation Md+1 as a space-time com-
plex, which is formed by simplices – the vertices, links,
triangles, etc . We will use i, j, · · · to label vertices of
the space-time complex. The links of the complex (the
1-simplices) will be labeled by (i, j), (j, k), · · · . Similarly,
the triangles of the complex (the 2-simplices) will be la-
beled by (i, j, k), (j, k, l), · · · .
In order to define a generic lattice theory on the

i

l

j k

a

FIG. 13. (Color online) A 1-cochain a has a value 1 on the
red links: aik = ajk = 1 and a value 0 on other links: aij =
akl = 0. da is non-zero on the shaded triangles: (da)jkl =
ajk + akl − ajl. For such 1-cochain, we also have a ⌣ a = 0.
So when viewed as a Z2-valued cochain, B2a 6= a ⌣ a mod 2.

space-time complex Md+1 using local tensors Tij···k and

ωd+1(a
Gf

ij , a
Gf

ik , · · · ), it is important to give the vertices of
each simplex a local order. A nice local scheme to order
the vertices is given by a branching structure.[21, 66, 67]
A branching structure is a choice of orientation of each
link in the d + 1D complex so that there is no oriented
loop on any triangle (see Fig. 12).
The branching structure induces a local order of the

vertices on each simplex. The first vertex of a simplex is
the vertex with no incoming links, and the second vertex
is the vertex with only one incoming link, etc . So the
simplex in Fig. 12a has the following vertex ordering:
0, 1, 2, 3.
The branching structure also gives the simplex (and its

sub-simplices) a canonical orientation. Fig. 12 illustrates
two 3-simplices with opposite canonical orientations com-
pared with the 3-dimension space in which they are em-
bedded. The blue arrows indicate the canonical orienta-
tions of the 2-simplices. The black arrows indicate the
canonical orientations of the 1-simplices.
Given an abelian group (M,+), an n-cochain fn is an

assignment of values in M to each n-simplex, for ex-
ample a value fn;i,j,··· ,k ∈ M is assigned to n-simplex
(i, j, · · · , k). So a cochain fn can be viewed as a bosonic
field on the space-time lattice.
We like to remark that a simplex (i, j, · · · , k) can

have two different orientations sij···k = ±. We can use
(i, j, · · · , k) and (j, i, · · · , k) = −(i, j, · · · , k) to denote
the same simplex with opposite orientations. The value
fn;i,j,··· ,k assigned to the simplex with opposite orienta-
tions should differ by a sign: fn;i,j,··· ,k = −fn;j,i,··· ,k. So
to be more precise fn is a linear map fn : n-simplex → M.
We can denote the linear map as 〈fn, n-simplex〉, or

〈fn, (i, j, · · · , k)〉 = fn;i,j,··· ,k ∈ M. (A1)

More generally, a cochain fn is a linear map of n-chains:

fn : n-chains → M, (A2)

or (see Fig. 13)

〈fn, n-chain〉 ∈ M, (A3)
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i
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FIG. 14. (Color online) A 1-cochain a has a value 1 on
the red links, Another 1-cochain a′ has a value 1 on the blue
links. On the left, a ⌣ a′ is non-zero on the shade triangles:
(a ⌣ a′)ijl = aija

′
jl = 1. On the right, a′ ⌣ a is zero on

every triangle. Thus a ⌣ a′ + a′ ⌣ a is not a coboundary.

where a chain is a composition of simplices. For example,
a 2-chain can be a 2-simplex: (i, j, k), a sum of two 2-
simplices: (i, j, k) + (j, k, l), a more general composition
of 2-simplices: (i, j, k) − 2(j, k, l), etc . The map fn is
linear respect to such a composition. For example, if a
chain is m copies of a simplex, then its assigned value
will be m times that of the simplex. m = −1 correspond
to an opposite orientation.
We will use Cn(Md+1;M) to denote the set of all n-

cochains on Md+1. Cn(Md+1;M) can also be viewed as
a set all M-values fields (or paths) on Md+1. Note that
Cn(Md+1;M) is an abelian group under the +-operation.

The total space-time lattice Md+1 correspond to a
(d + 1)-chain. We will use the same Md+1 to denote
it. Viewing fd+1 as a linear map of (d + 1)-chains, we
can define an “integral” over Md+1:

∫

Md+1

fd+1 ≡ 〈fd+1,Md+1〉. (A4)

We can define a derivative operator d acting on an
n-cochain fn, which give us an n + 1-cochain (see Fig.
13):

〈dfn, (i0i1i2 · · · in+1)〉

=

n+1
∑

m=0

(−)m〈fn, (i0i1i2 · · · îm · · · in+1)〉 (A5)

where i0i1i2 · · · îm · · · in+1 is the sequence i0i1i2 · · · in+1

with im removed, and i0, i1, i2 · · · in+1 are the ordered
vertices of the (n+ 1)-simplex (i0i1i2 · · · in+1).

A cochain fn ∈ Cn(Md+1;M) is called a cocycle if
dfn = 0. The set of cocycles is denoted as Zn(Md+1;M).
A cochain fn is called a coboundary if there exist a
cochain fn−1 such that dfn−1 = fn. The set of cobound-
aries is denoted as Bn(Md+1;M). Both Zn(Md+1;M)
and Bn(Md+1;M) are abelian groups as well. Since d2 =
0, a coboundary is always a cocycle: Bn(Md+1;M) ⊂
Zn(Md+1;M). We may view two cocycles differ by a
coboundary as equivalent. The equivalence classes of co-
cycles, [fn], form the so called cohomology group denoted
as

Hn(Md+1;M) = Zn(Md+1;M)/Bn(Md+1;M), (A6)

Hn(Md+1;M), as a group quotient of Zn(Md+1;M) by
Bn(Md+1;M), is also an abelian group.

For the ZN -valued cocycle xn, dxn
N
= 0. Thus

BNxn ≡ 1

N
dxn (A7)

is a Z-valued cocycle. Here BN is Bockstein homomor-
phism.
From two cochains fm and hn, we can construct a third

cochain pm+n via the cup product (see Fig. 14):

pm+n = fm ⌣ hn,

〈pm+n, (0 → m+ n)〉 = 〈fm, (0 → m)〉×
〈hn, (m → m+ n)〉, (A8)

where i → j is a consecutive sequence from i to j:

i → j ≡ i, i+ 1, · · · , j − 1, j. (A9)

The cup product has the following property

d(hn ⌣ fm) = (dhn) ⌣ fm + (−)nhn ⌣ (dfm) (A10)

We see that hn ⌣ fm is a cocycle if both fm and hn are
cocycles. If both fm and hn are cocycles, then fm ⌣ hn is
a coboundary if one of fm and hn is a coboundary. So the
cup product is also an operation on cohomology groups
⌣: Hm(Md;M)×Hn(Md;M) → Hm+n(Md;M). The cup

product of two cocycles has the following property (see
Fig. 14)

fm ⌣ hn = (−)mnhn ⌣ fm + coboundary (A11)

We can also define higher cup product fm ⌣
k

hn which

gives rise to a (m+ n− k)-cochain [68]:

〈fm ⌣
k

hn, (0, 1, · · · ,m+ n− k)〉

=
∑

0≤i0<···<ik≤n+m−k

(−)p〈fm, (0 → i0, i1 → i2, · · · )〉×

〈hn, (i0 → i1, i2 → i3, · · · )〉, (A12)

and fm ⌣
k

hn = 0 for k > m or n or k < 0. Here i → j

is the sequence i, i+ 1, · · · , j − 1, j, and p is the number
of permutations to bring the sequence

0 → i0, i1 → i2, · · · ; i0 + 1 → i1 − 1, i2 + 1 → i3 − 1, · · ·
(A13)

to the sequence

0 → m+ n− k. (A14)

For example

〈fm ⌣
1
hn, (0, 1, · · · ,m+ n− 1)〉 =

m−1
∑

i=0

(−)(m−i)(n+1)×

〈fm, (0 → i, i+ n → m+ n− 1)〉〈hn, (i → i+ n)〉.
(A15)
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We can see that ⌣
0
=⌣. Unlike cup product at k = 0, the

higher cup product of two cocycles may not be a cocycle.
For cochains fm, hn, we have

d(fm ⌣
k

hn) = dfm ⌣
k

hn + (−)mfm ⌣
k

dhn+ (A16)

(−)m+n−kfm ⌣
k−1

hn + (−)mn+m+nhn ⌣
k−1

fm

Let fm and hn be cocycles and cl be a chain, from
eqn. (A16) we can obtain

d(fm ⌣
k

hn) = (−)m+n−kfm ⌣
k−1

hn

+ (−)mn+m+nhn ⌣
k−1

fm,

d(fm ⌣
k

fm) = [(−)k + (−)m]fm ⌣
k−1

fm,

d(cl ⌣
k−1

cl + cl ⌣
k

dcl) = dcl ⌣
k

dcl

− [(−)k − (−)l](cl ⌣
k−2

cl + cl ⌣
k−1

dcl). (A17)

From eqn. (A17), we see that, for Z2-valued cocycles
zn,

Sqn−k(zn) ≡ zn ⌣
k

zn (A18)

is always a cocycle. Here Sq is called the Steenrod square.
More generally hn ⌣

k

hn is a cocycle if n+ k = odd and

hn is a cocycle. Usually, the Steenrod square is defined
only for Z2 valued cocycles or cohomology classes. Here,
we like to define Steenrod square for M-valued cochains
cn:

Sqn−kcn ≡ cn ⌣
k

cn + cn ⌣
k+1

dcn. (A19)

From eqn. (A17), we see that

dSqkcn = d(cn ⌣
n−k

cn + cn ⌣
n−k+1

dcn) (A20)

= Sqk dcn + (−)n

{

0, k = odd

2Sqk+1cn k = even
.

In particular, when cn is a Z2-valued cochain, we have

dSqkcn
2
= Sqk dcn. (A21)

Next, let us consider the action of Sqk on the sum of

two M-valued cochains cn and c′n:

Sqk(cn + c′n) = Sqkcn + Sqkc′n+

cn ⌣
n−k

c′n + c′n ⌣
n−k

cn + cn ⌣
n−k+1

dc′n + c′n ⌣
n−k+1

dcn

= Sqkcn + Sqkc′n + [1 + (−)k]cn ⌣
n−k

c′n

− (−)n−k[−(−)n−kc′n ⌣
n−k

cn + (−)ncn ⌣
n−k

c′n]

+ cn ⌣
n−k+1

dc′n + c′n ⌣
n−k+1

dcn

= Sqkcn + Sqkc′n + [1 + (−)k]cn ⌣
n−k

c′n

+ (−)n−k[dc′n ⌣
n−k+1

cn + (−)nc′n ⌣
n−k+1

dcn]

− (−)n−k d(c′n ⌣
n−k+1

cn) + cn ⌣
n−k+1

dc′n + c′n ⌣
n−k+1

dcn

= Sqkcn + Sqkc′n + [1 + (−)k]cn ⌣
n−k

c′n

+ [1 + (−)k]c′n ⌣
n−k+1

dcn − (−)n−k d(c′n ⌣
n−k+1

cn)

− [(−)n−k+1dc′n ⌣
n−k+1

cn − cn ⌣
n−k+1

dc′n]

= Sqkcn + Sqkc′n + [1 + (−)k]cn ⌣
n−k

c′n

+ [1 + (−)k]c′n ⌣
n−k+1

dcn − (−)n−k d(c′n ⌣
n−k+1

cn)

− d(dc′n ⌣
n−k+2

cn) + dc′n ⌣
n−k+2

dcn

= Sqkcn + Sqkc′n + dc′n ⌣
n−k+2

dcn

+ [1 + (−)k][cn ⌣
n−k

c′n + c′n ⌣
n−k+1

dcn]

− (−)n−k d(c′n ⌣
n−k+1

cn)− d(dc′n ⌣
n−k+2

cn). (A22)

We see that, if one of the cn and c′n is a cocycle,

Sqk(cn + c′n)
2,d
= Sqkcn + Sqkc′n. (A23)

We also see that

Sqk(cn + dfn−1) (A24)

= Sqkcn + Sqk dfn−1 + [1 + (−)k]dfn−1 ⌣
n−k

cn

− (−)n−k d(cn ⌣
n−k+1

dfn−1)− d(dcn ⌣
n−k+2

dfn−1)

= Sqkcn + [1 + (−)k][dfn−1 ⌣
n−k

cn + (−)nSqk+1fn−1]

+ d[Sqkfn−1 − (−)n−kcn ⌣
n−k+1

dfn−1 − dcn ⌣
n−k+2

dfn−1].

Using eqn. (A25), we can also obtain the following result
if dcn = even

Sqk(cn + 2c′n)
4
= Sqkcn + 2d(cn ⌣

n−k+1
c′n) + 2dcn ⌣

n−k+1
c′n

4
= Sqkcn + 2d(cn ⌣

n−k+1
c′n) (A25)

As another application, we note that, for a Z2 cochain
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md and using eqn. (A16),

Sq1(md) = md ⌣
d−1

md +md ⌣
d

dmd

=
1

2
(−)d[d(md ⌣

d

md)− dmd ⌣
d

md] +
1

2
md ⌣

d

dmd

= (−)dB2(md ⌣
d

md)− (−)dB2md ⌣
d

md +md ⌣
d

B2md

= (−)dB2md − 2(−)dB2md ⌣
d+1

B2md

= (−)dB2md − 2(−)dSq1B2md (A26)

where we have used md ⌣
d

md = md. This way, we

obtain a relation between Steenrod square and Bockstein
homomorphism, when md is a Z2 valued cocycle

Sq1(md)
2
= B2md. (A27)

Appendix B: Lyndon-Hochschild-Serre spectral

sequence

The Lyndon-Hochschild-Serre spectral sequence (see
Ref. 69 page 280,291, and Ref. 70) allows us to under-
stand the structure of of the cohomology of a fiber bun-
dle F → X → B, H∗(X;R/Z), from H∗(F ;R/Z) and
H∗(B;R/Z). In general, Hd(X;M), when viewed as an
Abelian group, contains a chain of subgroups

{0} = Hd+1 ⊂ Hd ⊂ · · · ⊂ H0 = Hd(X;M) (B1)

such that Hl/Hl+1 is a subgroup of a factor group of
H l[B,Hd−l(F ;M)B ], i.e. H

l[B,Hd−l(F ;M)B ] contains a
subgroup Γk, such that

Hl/Hl+1 ⊂ H l[B,Hd−l(F ;M)B ]/Γ
l,

l = 0, · · · , d. (B2)

Note that π1(B) may have a non-trivial action on M and
π1(B) may have a non-trivial action on Hd−l(F ;M) as
determined by the structure F → X → B. We add the
subscript B to Hd−l(F ;M) to indicate this action. We
also have

H0/H1 ⊂ H0[B,Hd(F ;M)B ],

Hd/Hd+1 = Hd = Hd(B;M)/Γd. (B3)

In other words, all the elements in Hd(X;M) can be one-
to-one labeled by (x0, x1, · · · , xd) with

xl ∈ Hl/Hl+1 ⊂ H l[B,Hd−l(F ;M)B ]/Γ
l. (B4)

Note that here M can be Z,Zn,R,R/Z etc . Let xl,α,
α = 1, 2, · · · , be the generators of H l/H l+1. Then we
say xi,α for all l, α are the generators of Hd(X;M). We
also call Hl/Hl+1, l = 0, · · · , d, the generating sub-factor
groups of Hd(X;M).
The above result implies that we can use

(k0, k1, · · · , kd) with kl ∈ H l[B,Hd−l(F ;R/Z)B ] to
label all the elements in Hd(X;R/Z). However, such

a labeling scheme may not be one-to-one, and it may
happen that only some of (k0, k1, · · · , kd) correspond
to the elements in Hd(X;R/Z). But, on the other
hand, for every element in Hd(X;R/Z), we can find a
(k0, k1, · · · , kd) that corresponds to it.

For the special case X = B × F , (k0, k1, · · · , kd) will
give us a one-to-one labeling of the elements in Hd(B ×
F ;R/Z). In fact

Hd(B × F ;R/Z) =

d
⊕

l=0

H l[B,Hd−l(F ;R/Z)]. (B5)

Appendix C: Partition functions for 3+1D pure

2-gauge theory

In this section, we compute the partition function for
the pure 2-gauge theory (97) with n = even andm = odd.
Let Cd(M;M) be the set of M-valued (d+1)-cochains on
the complexM, Zd(M;M) the set of (d+1)-cocycles, and
Bd(M;M) the set of (d+1)-coboundaries. When m = 0,
the partition function is given by the number of Zn-
valued 2-cocycles |Z2(M4;Zn)|, which is |H2(M4;Zn)|
times the number of 1-cochains whose derivatives is non-
zero. The number of 1-cochains whose derivatives is non-
zero is the number of 1-cochains (|C1(M4;Zn)| = nNe)
divide by |H1(M4;Zn)| and by the number of number
of 0-cochains whose derivatives is non-zero. The num-
ber of 0-cochains whose derivatives is non-zero is the
number of 0-cochains (|C0(M4;Zn)| = nNv ) divide by
|H0(M4;Zn)|. Thus the partition function is

Z(M4;B(Zn, 2), 0) = |Z2(M4;Zn)|

= |H2(M4;Zn)|
|C1(M4;Zn)|
|H1(M4;Zn)|

|H0(M4;Zn)|
|C0(M4;Zn)|

= nNe−Nv
|H2(M4;Zn)||H0(M4;Zn)|

|H1(M4;Zn)|
. (C1)

where Nv is the number of vertices and Ne the number
of links. The volume-independent topological partition
function is given by

Ztop(M4;B(Zn, 2), 0) =
|H2(M4;Zn)||H0(M4;Zn)|

|H1(M4;Zn)|
(C2)

When m 6= 0, The volume-independent topological par-
tition function is given by

Ztop(M4;B(Zn, 2), 0) (C3)

=
|H0(M4;Zn)|
|H1(M4;Zn)|

∑

b∈H2(M4;Zn)

e
i 2π

∫
M4

m
2n b2+m

2 b⌣
1
Bb

where
∑

b∈H2(M4;Zn)
e
i 2π

∫
M4

m
2n b2+m

2 b⌣
1
Bb

replaces

|H2(M4;Zn)|.
Now, let us compute topological invariants. On M4 =

T 4, the cohomology ring H∗(T 4;Zn) is generated by
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aI , I = 1, 2, 3, 4, where aI ∈ H1(T 4;Zn) = 4Zn. Us-
ing the cohomology ring discussed in Ref. 58, we can
parametrize bZn as

b = αIJaIaJ , αIJ = −αJI ∈ Zn. (C4)

We also have Bb n
= 0. Thus

Z(T 4;B(Zn, 2),m) (C5)

=
1

n3

∑

αIJ∈Zn

e i 2π
m
2n 2(α12α34−α13α24+α14α23)

Using
∑

α1,α2∈Zn
e i 2π

m
n
α1α2 = 〈m,n〉n, we find that

Ztop(T 4;B(Zn, 2),m) = 〈m,n〉3. (C6)

On M4 = S2 × T 2, the cohomology ring H∗(T 2 ×
S2;Zn) is generated by aI , I = 1, 2 and b, where aI ∈
H1(T 2×S2;Zn) = Z⊕2

n and b0 ∈ H2(T 2×S2;Zn) = Z⊕2
n .

Using the cohomology ring discussed in Ref. 58, we can
parametrize b as

b = α1a1a2 + α2b0, α1, α2 ∈ Zn. (C7)

Thus

Ztop(S2 × T 2;B(Zn, 2),m) (C8)

=
1

n

∑

α1,α2∈Zn

e i 2π
m
2n 2α1α2 = 〈m,n〉.

On M4 = S1 × L3(p), we need to use the cohomology
ring H∗(S1 × L3(p);Zn) calculated in Ref. 58:

H1(S1 × L3(p),Zn) = Zn ⊕ Z〈p,n〉 = {a1, a0},
H2(S1 × L3(p),Zn) = Z〈p,n〉 ⊕ Z〈p,n〉 = {a1a0, b0},
H3(S1 × L3(p),Zn) = Zn ⊕ Z〈p,n〉 = {c0, a1b0},
H4(S1 × L3(p),Zn) = Zn = {a1c0}. (C9)

where we have also listed the generators. Here a1 comes
from S1 and a0, b0, c0 from L3(p). The cohomology ring
H∗(S1 × L3(p),Zn) is given by:

a21 = 0, a20 =
n2p(p− 1)

2〈p, n〉2 b0,

a0b0 =
n

〈p, n〉c0, b20 = a0c0 = 0. (C10)

For 〈n, p〉 = 1, Ztop(S1 × L3(p);B(Zn, 2),m) = 1. For
〈n, p〉 6= 1, we can parametrize b as

b = α1a0a1 + α2b0, α1, α2 ∈ Z〈n,p〉, (C11)

which satisfies Bb = 0 (see Ref. 58). Using a0a1b0 =
n

〈n,p〉a1c0 and (a0a1)
2 = b20 = 0, we find that

Ztop(S1 × L3(p);B(Zn, 2),m) (C12)

=
1

〈n, p〉

〈n,p〉−1
∑

α1,α2=0

e i 2π
m

〈n,p〉
α1α2 = 〈m,n, p〉.

On M4 = F 4, we need to use the cohomology ring
H∗(F 4;Zn) as described in Ref. 58:

H1(F 4;Zn) = Z
⊕2
n , H2(F 4;Zn) = Z

⊕2
n ,

H3(F 4;Zn) = Z
⊕2
n , H4(F 4;Zn) = Zn. (C13)

Let a1, a2 be the generators of H1(F 4;Zn), b1, b2 the
generators of H2(F 4;Zn), c1, c2 be the generators of
H3(F 4;Zn), and v be the generator of H4(F 4;Zn):

H∗(F 4;Zn) = {a1, a2, b1, b2, c1, c2, v}. (C14)

We find that the non-zero cup products are given by

b21 = −b22 = a1c1 = a2c2 = v. (C15)

All other cup products vanish.
We can parametrize b as

b = α1b1 + α2b2, α1, α2 ∈ Zn, (C16)

where b1, b2 are generators of H2(F 4;Zn). Using b21 =
−b22 = v, b1b2 = 0, and Bb1 = Bb2 = 0 , we find that

Ztop(F 4;B(Zn, 2),m) =
1

n

n−1
∑

α1,α2=0

e i 2π
m
2n (α2

1−α2
2) (C17)

=

{

〈m,n〉, if mn
〈m,n〉2 = even;

0, if mn
〈m,n〉2 = odd.

The above results, plus some previous results from
Ref. 58, are summarized in Table I.

Appendix D: Simplicial sets, Kan conditions

A simplicial set X is a contravariant functor from the
catogory of finiate ordinals to that of sets, X : ∆ → Sets,
where ∆, the category of finite ordinals, is made up by

[0] = {0}, [1] = {0, 1}, . . . , [n] = {0, 1, . . . , n}, . . . ,

with order-preserving maps, for example,

di : [n− 1] → [n], ∀j < i, j 7→ j, ∀j ≥ i, j 7→ j + 1,

that is, to leave i skipped, or

si : [n] → [n− 1], ∀j < i, j 7→ j, ∀j ≥ i, j 7→ j − 1,

that is, to leave i-doubly mapped. In fact, all oder-
preserving maps are generated by di’s and si’s. In an-
other word, X consists of a tower of sets X0, X1, . . . , Xn

with face di : Xn → Xn−1 and degeneracy si : Xn−1 →
Xn, which are dual to di and si. If we take the simplicial
decomposition of a topological space |X|, and take Xn

to be the set of n-simplices, then the collection of Xn for
a simplicial set with di the natural face maps and si the
natural degeneracy maps. Thus it is not hard to imag-
ine, in general, for a simplicial set X, di and si satisfy
expected coherence conditions,

didj = dj−1di if i < j, sisj = sj+1si if i ≤ j,

disj = sj−1di if i < j, djsj = id = dj+1sj ,

disj = sjdi−1 if i > j + 1.

(D1)
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Example D.1 (m-simplex and (m, j)-horn). If we take
a geometric n-simplex and take its natural simplicial de-
composition, we end up with a simplicial set ∆n, which
can be described in the following combinatoric way,

(∆m)n = {f : [n] → [m] | f(i) ≤ f(j) for all i ≤ j},

(D2)

Similarly, we define the simplicial (m, j)-horn as the fol-
lowing:

(Λm
j )n =

{

f ∈ (∆m)n
∣

∣ {0, . . . , j − 1, j + 1, . . . ,m}
* {f(0), . . . , f(n)}

}

.

(D3)

Their geometric realisation is a m-simplex removing the
inner and j-th facet. Clearly, there is an inclusion of

Λ2
1

0

1

2

Λ2
0

0

1

2

Λ2
0

0

1

2

FIG. 15. The Horns

simplicial sets ιm,j : Λ
m
j → ∆m.

Then the set of simplicial morphisms Hom(∆m, X) =
Xm, and Hom(Λm

j , X) is usually some sort of prod-
uct of Xi’s and represents horns in X. For example,
Hom(Λ2

1, X) = X1 ×d0,X0,d1 X1.

Definition D.2. A simplicial set X satisfies the Kan

condition Kan(m, j) iff the canonical map (i.e., the horn
projection)

Xm = Hom(∆m, X)
ι∗m,j−−−→ Hom(Λm

j , X) (D4)

is surjective. It satisfies the unique Kan condition

Kan!(m, j) iff the canonical map in (D4) is an isomor-
phism. We call X a Kan simplicial set (or a Kan com-
plex or an ∞-groupoid) iff it satisfies Kan(m, j) for all
m ≥ 1, 0 ≤ j ≤ m. X is called an n-groupoid iff it sat-
isfies Kan(m, j) for all m ≥ 1, 0 ≤ j ≤ m and Kan!(m, j)
for all m ≥ n+1, 0 ≤ j ≤ m. X is called an n-group iff
it is a n-groupoid and X0 is a point.

For the content of this Appendix, we refer to the stan-
dard text books [71, 72] for the theory simplicial sets.
∞-groupoid using Kan condition is due to [73], we also
refer to the in [74, Sect.1] for a nice detailed introduction
of this topic.
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