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We use higher dimensional bosonization and fermion decoration to construct exactly soluble inter-
acting fermion models to realize fermionic symmetry protected trivial (SPT) orders (which are also
known as symmetry protected topological orders) in any dimensions and for generic fermion symme-

tries Gf , which can be a non-trivial Zf
2 extension Zf

2 ⋋Gb (where Zf
2 is the fermion-number-parity

symmetry and Gb is the bosonic symmetry). This generalizes the previous results from group super-

cohomology of Gu and Wen (arXiv:1201.2648), where Gf is assumed to be Zf
2 ×Gb. We find that the

(d + 1)D fermionic SPT phases with bosonic symmetry Gb and from fermion decoration construc-

tion can be described in a compact way using higher group homomorphism: BGb
ϕ
→ B(Z2, 2;Z2, d).

In fact, the fermion symmetry is more precisely described by the structure Zf
2 ⋋ Gb ⋋ SO∞ (or

Zf
2 ⋋ Gb ⋋ O∞ with time reversal symmetry). In this case the (d + 1)D fermionic SPT phases are

better described by B(Zf
2 ⋋Gb⋋SO∞)

ϕ
→ B(SO∞, 1;Z2, d) [or B(Z

f
2 ⋋Gb⋋O∞)

ϕ
→ B(O∞, 1;Z2, d)].
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I. INTRODUCTION

We used to think that different phases of matter all
come from spontaneous symmetry breaking1,2. In last
30 years, we started to realize that even without symme-
try and without symmetry breaking, we can still have
different phases of matter, due to a new type of or-
der – topological order3,4 (i.e. patterns of long range
entanglement5–7).
If there is no symmetry breaking nor topological order,

it appears that systems must be in the same trivial phase.
So it was a surprise to find that even without symme-
try breaking and without topological order, systems can
still have distinct phases, which are called Symmetry-
Protected Trivial (SPT), or synonymously, Symmetry-
Protected Topological (SPT) phases8,9. The realization
of the existence of SPT orders and the fact that there
is no topological order in 1+1D10,11 lead to a classifica-
tion of all 1+1D gapped phases of bosonic and fermionic
systems with any symmetries12–15, in terms of projective
representations16. It is the first time, after Landau sym-
metry breaking, that a large class of interacting phases
are completely classified.
In higher dimensions, the SPT orders, or more gen-

erally symmetric invertible topological (SIT) orders,27 in
bosonic systems can be systematically described by group
cohomology theory28–30, cobordism theory19,31, or gen-
eralized cohomology theory19,32. The SPT and SIT or-
ders in fermionic systems can be systematically described
by group super-cohomology theory17,33–36, or spin cobor-
dism theory18–20. In 2+1D, the SPT orders in bosonic
or fermionic systems can also be systematically classified
by the modular extensions of Rep(Gb) or sRep(Gf )

37.
Here Rep(Gb) is the symmetric fusion category formed
by representations of the boson symmetry Gb where all
representations are bosonic, and sRep(Gf ) is the sym-
metric fusion category formed by representations of the

fermion symmetry Gf = Zf
2 ⋋ Gb where the representa-

tions with non-zero Zf
2 charge are fermionic. (Zf

2 ⋋ Gb

denote an extension of Gb by the fermion-number-parity

symmetry Zf
2 .)

For SPT orders in fermionic systems, the modular ex-
tension approach in 2+1D can handle generic fermion

symmetry Gf = Zf
2 ⋋ Gb. However, in higher dimen-

sions, the group super-cohomology theory can only han-

dle a special form of fermion symmetry Gf = Zf
2 ×Gb. In

this paper, we will develop a more general group super-
cohomology theory for SPT orders of fermion systems
based on the decoration construction38 by fermions,17

which covers generic fermion symmetry Gf beyond Zf
2 ×

Gb. The symmetry group Gf can also include time re-
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Gf 1 + 1D 2 + 1D 3 + 1D Realization

Z2 × Zf
2 Z2 [Z2] (Z2) Z4 [Z8] (Z) 1 [ 1 ] ( 1 ) Double-layer superconductors with layer symmetry

Zf
4 1 [ ? ] (1) 1 [ ? ] (1) 1 [ ? ] ( 1 ) Charge-2e superconductors with a 180◦ spin rotation

symmetry or charge-4e superconductors

ZT
2 × Zf

2 Z4 [Z4] (Z) 1 [ 1 ] ( 1 ) 1 [ 1 ] ( 1 ) Charge-2e superconductors with coplanar spin order

ZT,f
4 Z2 [Z2] (Z2) 1 [Z2] (Z2) Z4 [Z16] (Z) Charge-2e superconductors with spin-orbital coupling

(Uf
1 ⋊φ ZT,f

4 )/Z2 1 [ 1 ] (1) 1 [Z2] (Z2) Z3
2 [Z3

2] (Z2) Insulator with spin-orbital coupling

SUf
2 1 [ 1 ] (1) Z [ Z ] (Z) 1 [ 1 ] ( 1 ) Charge-2e spin-singlet superconductor

Z2 × Z4 × Zf
2 Z3

2 [?] (Z7
2) 8 · 16 [?] (Z7) 2 · 4 [Z2 × Z4] (1)

TABLE I. A table for Gf -symmetric fermionic SPT orders obtained via the fermion decoration.17 We either list the group
that describes the SPT phases or the number of SPT phases (both including the trivial one). Those fermionic SPT phases

have no topological order, i.e. they become trivial if we break the symmetry down to Zf
2 . The numbers in [ ] are results from

spin-cobordism approach18–23. The numbers in ( ) are for non-interacting fermionic SPT phases,24–26. Note that the numbers
given in Ref. 18, 24–26 are for SIT orders which include both fermionic SPT orders and invertible fermionic topological orders,
while the above numbers only include fermionic SPT orders. The number, for example, 8 · 16 means that the 128 SPT phases
can be divided into 8 classes with 16 SPT phases in each class. The SPT phases in the same class only differ by stacking
bosonic SPT phases from fermion pairs. The last column indicates how to realize those fermionic SPT phases by electronic
systems.

versal symmetry, and in this case, the fermions can be
time-reversal singlet or Kramers doublet. Our approach
works in any dimensions. But our theory does not covers
the fermionic SPT orders obtained by decorating sym-
metry line-defects33,35,36 with Majorana chains (i.e. the
p-wave topological superconducting chains39).

Our theory is constructive in nature. We have con-
structed exactly soluble local fermionic path integrals (in
the bosonized form) to realize the fermionic SPT orders
systematically. The simple physical results of this paper
is summarized in Table I. A breif mathematical summary
of the results is represented Sections III and XVII (and in
Section VIIIC where more details are given). However,
one needs to use mathematical language of cohomology
or higher group to state the results precisely.

We note that there are seven non-trivial fermionic
(Uf

1 ⋊φ ZT,f
4 )/Z2-SPT phases in 3+1D, while non-

interacting fermions only realize one of them. Other SPT
phases are obtained by stacking the bosonic (U1⋊φ Z

T
2 )-

SPT phases formed by electron-hole pairs.

II. NOTATIONS AND CONVENTIONS

Let us first explain some notations used in this pa-
per. We will use extensively the mathematical formal-
ism of cochains, coboundaries, and cocycles, as well as
their higher cup product ⌣

k

, Steenrod square Sqk, and

the Bockstein homomorphism βn. A brief introduction
can be found in Appendix A. We will abbreviate the cup
product a ⌣ b as ab by dropping ⌣. We will use a
symbol with bar, such as ā to denote a cochain on the
classifying space B of a group or higher group. We will
use a to denote the corresponding pullback cochain on
space-timeMd+1: a = φ∗ā, where φ is a homomorphism
of complexes φ : Md+1 → B. In this paper, when we
say R/Z-valued cocycle or coboundary we really mean

R/Z-valued almost-cocycle and almost-coboundary (see
Appendix B).
We will use

n
= to mean equal up to a multiple of n, and

use
d
= to mean equal up to df (i.e. up to a coboundary).

We will use ⌊x⌋ to denote the largest integer smaller than
or equal to x, and 〈l,m〉 to denote the greatest common
divisor of l and m (〈0,m〉 ≡ m).

Also, we will use Zn = {1, e i
2π
n , e i 2

2π
n , · · · , e i (n−1) 2π

n }
to denote an Abelian group, where the group multipli-
cation is “∗”. We use Zn = {⌊−n

2 + 1⌋, ⌊−n
2 + 1⌋ +

1, · · · , ⌊n2 ⌋} to denote an integer lifting of Zn, where
“+” is done without mod-n. In this sense, Zn is not
a group under “+”. But under a modified equality

n
=,

Zn is the Zn group under “+”. Similarly, we will use
R/Z = (− 1

2 ,
1
2 ] to denote an R-lifting of U1 group. Un-

der a modified equality
1
=, R/Z is the U1 group under

“+”. In this paper, there are many expressions contain-
ing the addition “+” of Zn-valued or R/Z-valued, such

as aZn

1 + aZn

2 where aZn

1 and aZn

2 are Zn-valued. Those
additions “+” are done without mod n or mod 1. In this
paper, we also have expressions like 1

na
Zn

1 . Such an ex-

pression convert a Zn-valued aZn

1 to a R/Z-valued 1
na

Zn

1 ,
by viewing the Zn-value as a Z-value. (In fact, Zn is a Z

lifting of Zn.)
We introduced a symbol ⋋ to construct fiber bundle

X from the fiber F and the base space B:

pt→ F → X = F ⋋B → B → pt. (1)

We will also use ⋋ to construct group extension of H by
N40:

1→ N → N ⋋e2,α H → H → 1. (2)

Here e2 ∈ H2[H;Z(N)] and Z(N) is the center of N .
Also H may have a non-trivial action on Z(N) via α :
H → Aut(N). e2 and α characterize different group
extensions.
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We will also use the notion of higher group in some
part of the paper. Here we will treat a d-group
B(Π1, 1;Π2, 2; · · · ) as a special one-vertex triangulation
of a manifold K that satisfy πn(K) = Πn (with unlisted
Πn treated as 0, see Ref. 41 and Appendix L). We see
that Π1 is a group and Πn, n ≥ 2, are Abelian groups.
The 1-group B(G, 1) is nothing but an one-vertex trian-
gulation of the classifying space of G. We will abbreviate
B(G, 1) as BG. (More precisely, the so-called one-vertex
triangulation is actually a simplicial set.)

III. A BRIEF MATHEMATICAL SUMMARY

In this paper, we use a higher dimensional
bosonization35,42 to describe local fermion systems in
d + 1-dimensional space-time via a path integral on a
random space-time lattice (which is called a space-time
complex that triangulates the space-time manifold). This
allows us to construct exactly soluble path integrals
on space-time complexes based on fermion decoration
construction17 to systematically realize a large class of
fermionic SPT orders with a generic fermion symmetry

Gf = Zf
2 ⋋ Gb. This generalizes the previous result of

Ref. 17 and 33 that only deal with fermion symmetry of

form Gf = Zf
2 ×Gb. The constructed models are exactly

soluble since the partition functions are invariant under
any re-triangulation of the space-time.
The constructed exactly soluble path integrals and the

corresponding fermionic SPT phases are labeled by some
data. Those data can be described in a compact form
using terminology of higher group B(Π1, 1;Π2, 2; · · · ) (see
Appendix L for details). We note that, for a d-group
Bf (Z2, 2;Z2, d) (i.e. a complex with only one vertex), its
triangles are labeled by group elements Z2. This gives
rise to the so called canonical 2-cochain ē2 on the complex
Bf (Z2, 2;Z2, d). On each d-simplex in B(Z2, 2;Z2, d) we
also have a Z2 label. This gives us the canonical Z2-
valued d-cochain f̄d on the complex Bf (Z2, 2;Z2, d). Here
Bf (Z2, 2;Z2, d) is a particular higher group characterized
by

dē2
2
= 0, df̄d

2
= 0. (3)

Such a higher group is uniquely determined by the above
conditions. Now, we are ready to state our results:

1. The data: For unitary symmetry Gf = Zf
2 ⋋e2Gb,

the fermionic SPT phases obtained via fermion
decoration are described by a pair (ϕ, ν̄d+1), where

(a) ϕ : BGb → Bf (Z2, 2;Z2, d) is a homomor-
phism between two higher groups and

(b) ν̄d+1 is a R/Z-valued d + 1-cochain on BGb

that trivializes the pullback of a R/Z-valued
d + 2-cocycle ω̄d+2 = 1

2Sq
2f̄d + 1

2 f̄dē2 on
Bf (Z2, 2;Z2, d), i.e. −dν̄d+1 = ϕ∗ω̄d+2.

i
(ij)

j

FIG. 1. (Color online) The vertices i and j mark the regions
with order parameter gi and gj . The link labeled by (ij)
connects the vertices i and j.

2. Model construction and SPT invariant: Us-
ing the data (ϕ, ν̄d+1), we can write down the ex-
plicit path integral that describes a local fermion
model (in bosonized form) that realizes the corre-
sponding SPT phase (see (45)). The path integral
can be evaluated exactly, which leads to the SPT
invariant18,30,31,43,44 that characterize the resulting
fermionic SPT phase (see (48)). The bosonized
fermion path integral, (45), and the corresponding
SPT invariants, (48), are the main results of this
paper.

3. Equivalence relation: Only the pairs (ϕ, ν̄d+1)
that give rise to distinct SPT invariants correspond
to distinct SPT phases. The pairs (ϕ, νd+1) that
give rise to the same SPT invariant are regarded as
equivalent. In particular, two homotopically con-
nected (ϕ, ν̄d+1)’s are equivalent. So our data is
really the homotopy classes of the trivializations of
1
2Sq

2f̄d + 1
2 f̄dē2 on Bf (Z2, 2;Z2, d) by the homo-

morphism ϕ : BGb → Bf (Z2, 2;Z2, d).

The data (ϕ, ν̄d+1) give rise to the fermion SPT states
obtained via fermion decoration. But they do not include
the fermion SPT states obtained via decoration of chains
of 1+1D topological p-wave superconducting states.

IV. EXACTLY SOLUBLE MODELS FOR

BOSONIC SPT PHASES

Let us first review the construction of exactly soluble
models for bosonic SPT orders with on-site symmetry
group Gb

28. The same line of thinking will also be used
in our discussions of fermionic SPT phases.

A. Constructing path integral

We start with a phase that breaks the Gb symmetry
completely. Then we consider the quantum fluctuations
of the Gb-symmetry-breaking domains which restore the
symmetry. We mark each domain with a vertex (see
Fig. 1), which form a space-time complexMd+1 (see Ap-
pendix A for details). So the quantum fluctuations of the
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domains are described by the degrees of freedom given by
gi ∈ Gb on each vertex i. In other words, the degrees of
freedom is aGb-valued 0-cochain field g ∈ C0(Md+1;Gb).

In order to probe the SPT orders in a universal way, we
can add the symmetry twist to the system (i.e. gauging
the symmetry)31,43–45. This is done by adding a fixed Gb-

valued 1-cochain field A ∈ C1(Md+1;Gb) with AGb

ij ∈ Gb

on each link (ij) that connect two vertices i and j. The
cochain field A satisfy the flat condition

(δAGb)ijk ≡ AGb

ij AGb

jk A
Gb

ki = 1, (4)

where we have assumed AGb

ij = (AGb

ji )
−1. Those flat 1-

cochain field will be called 1-cocycle field. The collection
of those Gb-valued 1-cocycle fields will be denoted by
Z1(Md+1, Gb). We stress that the 1-cocycle field A is a
fixed background field that do not fluctuate.
From the dynamical g and non-dynamical background

field AGb , we can construct an effective dynamic Gb-
valued 1-cocycle field aGb whose values on links are given
by

aGb

ij = giA
Gb

ij g−1
j . (5)

Using such an effective dynamic field, we can construct
our model as

Z(Md+1, AGb) =
∑

g∈C0(Md+1;Gb)

e i 2π
∫
Md+1 ωd+1(a

Gb ), (6)

where ωd+1(a
Gb) is R/Z-valued d-cochain: ωd+1(a

Gb) ∈
Cd+1(Md+1;R/Z), whose value on a d + 2-simplex

(i0i1 · · · id+1) is a function of aGb

i0i1
, aGb

i0i2
, aGb

i1i2
, · · · :

(ωd+1)i0i1···id+1
= ωd+1(a

Gb

i0i1
, aGb

i0i2
, aGb

i1i2
, · · · ). Note that

aGb also satisfies the flat condition

(δaGb)ijk ≡ aGb

ij aGb

jk a
Gb

ki = 1. (7)

So we say aGb ∈ Z1(Md+1;Gb). In this case

the function ωd+1(a
Gb

i0i1
, aGb

i0i2
, aGb

i1i2
, · · · ) only depends on

aGb

i0i1
, aGb

i1i2
, aGb

i2i3
, etc , since other variables are determined

from those variables:

(ωd+1)i0i1···id+1
= ωd+1(a

Gb

i0i1
, aGb

i1i2
, aGb

i2i3
, · · · ). (8)

We note that the assignment of aGb

ij ∈ Gb on each

link (ij) can be viewed as a map φ (a homomorphism
of complexes) from space-time complex Md+1 to BGb

which is a simplicial complex that model the classifying
space BGb of the group Gb. The d+1-cochain ωd+1(a

Gb)
can be viewed as a pull back of a cochain ω̄d+1(ā

Gb) in
the classifying space BGb: ω̄d+1(ā

Gb) ∈ Cd+1(BGb;R/Z).
Here ω̄d+1(ā

Gb) is a function of the canonical 1-cochain
āGb . Note that links in BGb are labeled by elements of
Gb, which give rise to the canonical 1-cochain āGb on BGb

(see Ref. 41 and Appendix L). The above can be written
as

aGb = φ∗āGb ,

ωd+1(a
Gb) = φ∗ω̄d+1(ā

Gb). (9)

B. Making path integral exactly soluble

To make the model exactly soluble, we require ωd+1 to
be a pullback of a cocycle ω̄d+1 in the classifying space
BGb:

dω̄d+1(ā
Gb)

1
= 0 or ω̄d+1(ā

Gb) ∈ Zd+1(BGb;R/Z).
(10)

Why the above condition make our model exactly
soluble? Let us compare two action amplitudes

e i 2π
∫
Md+1 ωd+1(a

Gb ) and e i 2π
∫
Md+1 ωd+1(a

Gb′) for two dif-
ferent field values aGb and aGb′. We like to show that if
aGb and aGb′ can homotopically deform into each other,

then e i 2π
∫
Md+1 ωd+1(a

Gb ) = e i 2π
∫
Md+1 ωd+1(a

Gb′). But
aGb and aGb′ are discrete fields on discrete lattice. It
seems that they can never homotopically deform into
each other, in the usual sense.
To define the homotopical deformation for discrete

fields on discrete lattice, we try to find a flat connection
ãGb on a complex Md+1 × I in one higher dimension,
such that ãGb = aGb on one boundary ofMd+1 × I, and
ãGb = aGb′ on the other boundary ofMd+1 × I. If such
a field ãGb exists, then we say aGb and aGb′ can homo-
topically deform into each other. In this case, we find
that

e i 2π
∫
Md+1 ωd+1(a

Gb′)

e i 2π
∫
Md+1 ωd+1(a

Gb )
= e i 2π

∫
Md+1×I

dωd+1(ã
Gb )

= e i 2π
∫
φ(Md+1×I)

dω̄d+1(ā
Gb ), (11)

where φ is a homomorphism from Md+1 × I to BGb.

Therefore e i 2π
∫
Md+1 ωd+1(a

Gb ) = e i 2π
∫
Md+1 ωd+1(a

Gb′) if
dω̄d+1(ā

Gb)
1
= 0 and if aGb can homotopically deform

into aGb′ without breaking the flat condition (7).
Let us define aGb and aGb′ to be equivalent, if they are

related by

aGb′
ij = hia

Gb

ij h−1
j , hi ∈ Gb. (12)

Clearly, gauge equivalent configurations can always ho-
motopically deform into each other. We believe the re-
verse is also true: two configurations that can homotopi-
cally deform into each other are always gauge equivalent.

Clearly, the action amplitude e i 2π
∫
Md+1 ωd+1(a

Gb ) only
depends on the gauge equivalent classes of the field con-
figurations aGb . In fact

e i 2π
∫
Md+1 ωd+1(a

Gb ) = e i 2π
∫
Md+1 ωd+1(A

Gb ) (13)

which is independent of gi in eqn. (5).
Since the gauge fluctuations represent all the fluctua-

tions of aGb which is described by gi in eqn. (5), there
is only one equivalent classe for a fixed AGb . Thus path
integral eqn. (6) is given by

Z(Md+1, AGb) = |Gb|
Nv e i 2π

∫
Md+1 ωd+1(A

Gb ), (14)

and is thus exactly soluble.
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The space Zd+1(Gb;R/Z) of the cocylces ωd+1(a
Gb) is

not connected. Each connected piece describes models in
the same phase. Thus the different phases of the mod-
els are given by π0[Z

d+1(Gb;R/Z)] = Hd+1(BGb,R/Z).
Those models do not spontaneously break the Gb-
symmetry. Without symmetry twist AGb

ij = 1, the

volume-independent partition function Ztop(Md+1)46,47

of the above models is Ztop(Md+1) = 1 for any closed
oriented manifolds. So the models have no topological
orders, and realize only SPT orders. We see that the
SPT orders described by those models are labeled by
Hd+1(BGb,R/Z).
We believe that different classes [ωd+1] ∈

Hd+1(Gb;R/Z) can give rise to different topological
invariant for space-time Md+1 decorated with a flat
Gb connection AGb , i.e. for two different [ωd+1] and
[ω′

d+1], we can fine the pairs (Md+1, AGb) such that

e i 2π
∫
Md+1 ωd+1(A

Gb ) and e i 2π
∫
Md+1 ω′

d+1(A
Gb ) are dif-

ferent. Thus different classes, [ωd+1]’s, characterize
different exactly soluble models.

C. Including time reversal symmetry ZT
2

In the above, we did not include time reversal sym-
metry described by group ZT

2 . In the presence of time
reversal symmetry the full symmetry group Gb is an ex-
tension of ZT

2 : Gb = G0
b ⋋ ZT

2 , where G0
b is the unitary

on-site symmetry. In this case, the dynamical variable
is still gi ∈ Gb, the symmetry twist is still describe by
AGb

ij ∈ Gb. But the symmetry twist satisfy a constraint:

The natural projection Gb → ZT
2 reduce the Gb connec-

tion AGb

ij to a ZT
2 connection AT

ij ∈ ZT
2 . AT

ij describes a

Z2 bundle over the space-timeMd+1. The tangent bun-
dle of space-time Md+1 give rise to a Od+1 bundle over
Md+1. From the Od+1 bundle we can get its determi-
nant bundle, which is also a Z2 bundle overMd+1. Such
a Z2 bundle must be the homotopic equivalent to the
Z2 bundle described by the ZT

2 connection AT
ij . In other

words,

AT 2,d
= w1, (15)

where wn is the nth Stiefel-Whitney class of Md+1. In
addition to the above constraint, we also require the La-
grangian 2πωd+1(a

Gb) to have a time reversal symmetry.
As pointed out in Ref. 28, this can be achieved by requir-
ing ωd+1(a

Gb) to be a R/Z-valued cocycle where ZT
2 has

a non-trivial action on the value R/Z→ −R/Z.
We see that, to include time reversal symmetry, we

need to extend a space-time symmetry, space-time re-
fection ZT

2 , by the internal symmetry G0
b to obtain the

full symmetry group Gb. As shown in Ref. 28 and 31,
in this case, the SPT states are labeled by the elements
in Hd+1(BGb, (R/Z)T ) where time reversal in Gb has a
non-trivial action on the value T : R/Z → −R/Z. Also,
the differential operator d should be understood as the
one with this non-trivial action.

D. Classification of bosonic SPT phases

However, Hd+1(BGb, (R/Z)T ) fail to cover all bosonic
SPT orders29. It misses the SPT orders obtained
by decorating38 symmetry defects with the invertible
bosonic topological orders19,31,46. This problem can be
fixed if we replace Gb by GbO = G0

b ⋋ O∞, where On is
the n-dimensional orthogonal group. This generalizes the
extension Gb = G0

b ⋋ ZT
2 discussed in the last section to

include time reversal symmetry. The time reversal sym-
metry is included in O∞ as the disconnected component,
which is denoted by ZT

2 .

After replacing Gb by GbO, we can obtain local bosonic
models that realize more general SPT states, as well as
the bosonic SIT orders30:

Z(Md+1) =
∑

g∈C0(Md+1;GbO)

e i 2π
∫
Md+1 ωd+1(a

GbO ), (16)

where (aGbO )ij = giA
bO
ij g−1

j and AbO
ij ∈ GbO.

Also ωd+1(a
GbO ) is the pullback of ω̄d+1(ā

GbO ) ∈
Zd+1[BGbO; (R/Z)T ].

We like to stress that the AbO
ij is not the most gen-

eral connection of a GbO bundle on Md+1. We may
project AbO

ij ∈ GbO to AO
ij ∈ O∞ via the natural pro-

jection GbO → O∞. The resulting AO
ij describes a O∞

bundle on Md+1, and such a O∞ bundle must be the
tangent bundle ofMd+1 (extended by a trivial bundle).

The different exactly soluble models are labeled by
the elements in Hd+1[BGbO; (R/Z)T ], where GbO has
a non-trivial action on the value R/Z, to ensure the
time-reversal symmetry of the Lagrangian28. However,
since the O∞ part of AbO

ij is only the connection of

tangent bundle of Md+1, different cohomology classes
may give rise to the same volume-independent partition
function46,47 (i.e. topological invariant) for those limited
choices of AbO

ij . As a result, different cohomology classes

in Hd+1[BGbO;R/Z] may give rise to the same Gb-SPT
order. Thus, Hd+1[BGbO;R/Z] provides a many-to-one
label of bosonic SPT orders in any dimensions and for
any on-site symmetries30.

As pointed out in Ref. 30, adding O∞ has the same ef-
fect as decorating symmetry membrane-defects with E3

8

quantum Hall states29,38. In other words, our models not
only contain the fluctuating field gi, they also contain
the fluctuations of membrane object formed by E3

8 quan-
tum Hall states. The E8 quantum Hall state is described
by the following 8-layer K-matrix wave function48 in 2D
space (with coordinate z = x+ iy)

Ψ({zIi }) =
∏

i<j,I

(zIi − zIj )
KII

∏

i,j,I<J

(zIi − zJj )
KIJ e−

∑ |zI
i
|2

4

(17)
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K =

















2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1

0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2

















, (18)

It has gapless chiral edge excitation with chiral central
charge c = 8. The E3

8 membrane is formed by stacking
three E8 quantum Hall state together.
Another important question to ask is that whether all

the Gb-SPT states can be obtained this way. It is known
that GbO cocycle models (or Hd+1(BGbO;R/Z)) do not
produce all the H-type46 bosonic invertible topological
orders in 2+1D. But Hd+1(BGbO;R/Z) may classify all
the L-type46 SPT phases with Gb symmetry in a many-
to-one way.
Similarly, if we do not have time reversal symmetry,

more general bosonic SPT states can be constructed by
choosing the dynamical variables on each vertex to be
gi ∈ GbSO = Gb ⋋ SO∞. In this case, the effective vari-
able in the link will be aGbSO ∈ GbSO. The corresponding
local bosonic models that can produce more general Gb-
SPT phases for bosons are given by

Z(Md+1) =
∑

g∈C0(Md+1;GbSO)

e i 2π
∫
Md+1 ωd+1(a

GbSO ), (19)

where ωd+1(a
GbSO ) is the pullback of ω̄d+1(ā

GbSO ) ∈
Hd+1(BGbSO;R/Z). The cohomology classes in
Hd+1(BGbSO;R/Z) give rise to a many-to-one classifi-
cation of bosonic SPT orders which contain decoration
of bosonic invertible topological orders, such as the E3

8

states.

V. BOSONIZATION OF FERMIONS IN ANY

DIMENSIONS WITH ANY SYMMETRY

Gf = Zf
2 ⋋Gb

In this section, we will construct exactly soluble models
to realize fermionic SPT phases. We will use high dimen-
sional bosonization35,42 and use the approach in the last
section to construct exactly soluble path integrals. Our
discussion in this section is similar to that in Ref. 34,
but with a generalization at one point, so that the for-
malism can be applied to study fermionic SPT phases

with generic fermionic symmetry Gf = Zf
2 ⋋Gb beyond

Gf = Zf
2 ×Gb.

A. 3+1D cochain models for fermion

Let us first construct a cochain model that describes
fermion system in 3+1D. A world line of the fermions is
dual to a Z2-valued 3-cocycle f3. So we will use f3 as the
field to describe the dynamics of the fermions.

There are several ways to make f3 describe fermionic
particles. The first way only works when f3 is
a coboundary. In this case, we can do a 3+1D
statistics transmutation35,42, i.e. by adding a term

e
iπ

∫
M4 b2+b⌣

1
db
, db = f3 in the action amplitude. So

our model has the form

Z(M4) =
∑

f3∈B3(M4;Z2)

e
i 2π

∫
M4 L(f3)+

1
2 [b

2+b⌣
1
db]

=
∑

f3∈B3(M4;Z2)

e i 2π
∫
M4 L(f3)+

1
2Sq2b, (20)

where the path integral is a summation of the cobound-
aries f3 ∈ B3(M4;Z2). Here L(f3) is a R/Z-valued 4-
cochain that depends on the field f3, which can be viewed
as the Lagrangian density of our model. Different choices
of L(f3) will give rise to different models. In the above,
Sq2 defined in (A24) is a square operation acting on
cochains . It coincides with the Steenrod square when
acting on cohomology classes

Sqkx = Sqkx, if dx = 0. (21)

The term 1
2Sq2b is included to make f3 to describe

fermions. Here b is a 2-cochain that is a function of f3
as determined by db = f3. However, there are many
different b’s that satisfy db = f3. We hope those different
b all give rise to the same action amplitude34. To see this,
let us change b by a 2-cocycle b0 ∈ Z2(M4;Z2). We find
that (using (A28))

Sq2(b+ b0)− Sq2b
2,d
= Sq2b0

2,d
= (w2 +w2

1)b0, (22)

where we have used Sq2b0
2,d
= (w2+w2

1)b0 onM
4 (see Ap-

pendix I). We see that different solutions of b will all give
rise to the same action amplitude, provided thatM4 is a

Pin− manifold satisfying w2+w2
1

2,d
= 0 (see Appendix K).

Without time reversal symmetry, the space-time must

orientable w1
2,d
= 0. So the first way also requires the

space-time to be spin manifold w2
2,d
= 0.

In the second way to make f3 to describe fermion world
lines, we do not require f3 to be a coboundary, but we
require the pair (M4, f3) can be extended to one higher
dimensions. In other words, there is a 5-dimensional com-
plex N 5 and a cocycle f̃3 on N 5, such that M4 is the
boundary of N 5: M4 = ∂N 5, and f̃3 = f3 when re-
stricted on the boundaryM4. In fact, we have a stronger
requirement onM4:

For all Z2-valued 3-cocycles f3 on M4, the pair
(M4, f3) can be extended to a pair (N 5, f̃3) in
one higher dimension.

We note that (see (A26))34.

dSq2b
2
= Sq2db

2
= Sq2f3. (23)
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So (20) can be rewritten as

Z(M4) =
∑

f3∈Z3(M4;Z2)

e i 2π
∫
M4 L(f3)+iπ

∫
N5 Sq2f̃3 . (24)

The above expression directly depends on f̃3. We do not
need to solve b to define the action amplitude. This is
the better way to write 3+1D statistics transmutation.
However, in order for (26) to define a path integral

in 3+1D, the action amplitude e i 2π
∫
M4 ν4(f3)+iπ

∫
N5 Sq2f̃3

must not depend34 on how we extend f3 onM4 to f̃3 on
N 5. This requires that

∫

N 5

Sq2f̃3
2
= 0 (25)

for any f̃3 ∈ Z3(N 5;Z2) and for any closed N 5. We note

that on N 5, Sq2f̃3 = (w2
1 + w2)f̃3 (see Appendix I). So

the condition (25) cannot be satisfied.
To fix this problem, we rewrite the above partition

function as

Z(M4, AZ
f
2 )

=
∑

f3∈Z3(M4;Z2)

e i 2π
∫
M4 L(f3)+AZ

f
2 f3+iπ

∫
N5 Sq2f̃3+(w2+w2

1)f̃3

dAZ
f
2

2
= w2 +w2

1 onM4, (26)

and restrictM4 to be Pin− manifold where w2
1+w2

2,d
= 0

(see Appendix K). When N 5 is also a Pin− manifold,
then eqn. (26) reduces to eqn. (24). In general,

∫

N 5

Sq2f̃3 + f̃3(w2 +w2
1)

2
= 0 (27)

for any f̃3 ∈ Z3(N 5;Z2) and for any closed N 5. So
indeed, the action amplitude in eqn. (26) does not depend

on how we extend f3 onM4 to f̃3 on N 5.
We note that corrected partition depends on the Pin−

structure described by AZ
f
2 that satisfy dAZ

f
2

2
= w2 +w2

1

onM4. So the fermionic path integral can be defined on
Pin− manifold34M4, that is a boundary of 5-dimensional
complex N 5 (which may not be Pin−), and for f3’s that
can be extended to N 5.
When L(f3) respect the time reversal symmetry, we

may ask if the fermion is a time-reversal singlet or a
Kramers doublet? The fact that the path integral can
be defined on Pin− manifold implies that the fermions
are time-reversal singlet18,42.
We also like to remark that the two path integrals (20)

and (26) are not exactly the same. In (20) the summation
is over the coboundaries f3 ∈ B3(M4;Z2), while in (26)
the summation is over the cocycles f3 ∈ Z3(M4;Z2),
which is what we really want for a fermion path integral.

B. Bosonization of fermion models in any

dimensions

The above bosonization of fermion models also works
in other dimensions. In d + 1D space-time, the fermion

world line is described by d-cocycles fd ∈ Zd(Md+1,Z2),
after the Poincaré duality. The bosonized fermion model
is given by

Z(Md+1, AZ
f
2 ) =

∑

fd∈Zd(Md+1;Z2)

e i 2π
∫
Md+1 L(fd,e2)+

1
2 fdA

Z
f
2

e iπ
∫
Nd+2 Sq2f̃d+f̃d(w2+w2

1),

dAZ
f
2

2
= w2 + (w1)

2 + e2 onMd+1. (28)

Here we have generalized the discussion in Ref. 34 by

including an extra term e2 in dAZ
f
2

2
= w2 + (w1)

2 + e2
where e2 is a fixed Z2-valued 2-cocycle background field
on Md+1. As we will see later that such a generaliza-
tion allow us to study fermionic SPT phases with generic

fermionic symmetry Gf = Zf
2 ⋋Gb.

At the moment, we only mention that, in the pres-
ence of time reversal symmetry, when e2 = 0, the model
is well defined on space-time with a Pin− structure,

i.e. w2
1+w2

2,d
= 0 (see Appendix K), which means that the

fermions are time-reversal singlet42. When e2 = w2
1, the

model is well defined on space-time with a Pin+ struc-

ture, i.e. w2
2,d
= 0, which means that the fermions are

Kramers doublet42.
We see that to make the fermion model well defined,

the path integral will depend on the twisted spin struc-
ture of the space-timeMd+1. The above expression gen-
eralizes the one in Ref. 34 by including an extra term e2
in dAZ

f
2 which defines a twisted spin structure. As we

will see later that such a generalization allows us to study
fermionic SPT phases with generic fermionic symmetry

Gf = Zf
2 ⋋Gb.

Let us end this section by describing in more detail
how do we compute the partition function eqn. (28). We
first start with a space-timeMd+1, with a Z2 valued 1-
cochain, and a Z2-valued 2-cocycle e2 that satisfy w2 +

w2
1

2,d
= e2. Then for energy Z2-valued d-cocycle fd, we can

find an N d+2 and Z2-valued d-cocycle f̃d on N d+2 such

thatMd+1 = ∂N d+2 and fd
2
= f̃d onMd+1. (We require

Md+1 to have this property.) We also choose w2+w2
1 on

N d+2 such that dAZ
f
2

2
= w2+(w1)

2+ e2 onMd+1. This
choice is always possible. This allows us to compute the
action amplitude and the partition function in eqn. (28),
which are independent of the choices of N d+2, as well as
f̃d and w2+(w1)

2 on N d+2. This corresponds to a higher
dimensional bosonization of a fermion system.

C. Bosonized fermion models with Gf = Zf
2 ⋋Gb

symmetry in (d+ 1)-dimensions

In this section, we try to construct models that de-
scribe fermionic SPT orders in d+1D with Gf symmetry.

The fermion symmetry group Gf = Zf
2 ⋋Gb is a central

extension of Gb by fermion-number-parity symmetry Zf
2 .

Such a central extension is characterized by a 2-cocycle
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e2 ∈ H2(BGb;Z2) (see Appendix N). So we write, more

precisely, Gf = Zf
2 ⋋e2 Gb.

To construct fermionic models to realize Gf symmetric
SPT phases, we can first break the boson symmetry Gb

completely. We then consider the domain fluctuations
of the symmetry breaking state to restore the symmetry.
Just like the bosonic model discussed in the Section IV,
such domain fluctuations are described by gi ∈ Gb on
each vertex. The fermion world-lines are described by d-
cocycle fd as in the last subsection. After bosonization,
such a fermion system is described by

Z(Md+1, AZ2) =
∑

g∈C0(Md+1;Gb);fd∈Zd(Md+1;Z2)

e i 2π
∫
Md+1 L(g,fd)+

1
2 fdA

Z
f
2

e iπ
∫
Nd+2 Sq2f̃d+f̃d(w2+w2

1), (29)

where N d+2 is an extension ofMd+1: Md+1 = ∂N d+2,

and AZ
f
2 is a twisted spin structure

dAZ
f
2

2
= w2 +w2

1 + e2. (30)

Now let us try to couple the above model to the Gb-
symmetry twist described by Gb-valued 1-cocycle AGb ∈
Z1(M4, Gb), which satisfies the flat condition

(δAGb)ijk ≡ AGb

ij AGb

jk A
Gb

ki = 1 (31)

In the presence of the background Gb-connection, the
fermion model becomes

Z(Md+1, AGb , AZ
f
2 ) =

∑

g∈C0(Md+1;Gb);fd∈Zd(Md+1;Z2)

e i 2π
∫
Md+1 L(g,fd,A

Gb )+ 1
2 fdA

Z
f
2

e iπ
∫
Nd+2 Sq2f̃d+f̃d(w2+w2

1),

dAZ
f
2

2
= w2 +w2

1+e2(A
Gb). (32)

where e2 is a Z2-valued cocycle e2 ∈ H2(BGb,Z2). More
precisely the evaluation of e2 on a triangle (ijk) is a func-
tion of AGb on link (ij) and (jk):

(e2)ijk(A
Gb

ij , AGb

jk ). (33)

This is the meaning of e2(A
Gb). The Lagrangian L is a

R/Z-valued (d+ 1)-cochain in Cd+1(Md+1,R/Z).
Equation (32) is one of the main results of this paper.

It is a bosonization of fermions with an arbitrary finite

symmetry Gf = Zf
2 ⋋e2 Gb in any dimensions. In fact,

when w2 + w2
1 = 0, from dAZ

f
2

2
= e2(A

Gb) we see that

the pair (AGb , AZ
f
2 ) actually describes the Gf symmetry

twist AGf , which a flat Gf connection:

A
Gf

ij A
Gf

jk = A
Gf

ik , A
Gf

ij , A
Gf

jk , A
Gf

ik ∈ Gf . (34)

To see the above result, we rewrite the above usingA
Gf

ij ∼

(AGb

ij , A
Z

f
2

ij ) (see Appendix N)

(AGb

ik , A
Z

f
2

ik ) = (AGb

ij , A
Z

f
2

ij )(AGb

jk , A
Z

f
2

jk ) (35)

=
(

AGb

ij AGb

jk , A
Z

f
2

ij +A
Z

f
2

jk + e(AGb

ij , AGb

jk )
)

which reduces to

AGb

ij AGb

jk = AGb

ik , (36)

A
Z

f
2

ij +A
Z

f
2

jk + e(AGb

ij , AGb

jk )
2
= A

Z
f
2

ik , or dAZ
f
2

2
= e(AGb).

VI. EXACTLY SOLUBLE MODELS FOR

FERMIONIC SPT PHASES: FERMION

DECORATION

Now, we are going to choose the Lagrangian L such
that the fermion model is exactly soluble. We first wrote

∫

Md+1

L(g, fd, A
Gb) =

∫

Nd+2

dL(g, fd, A
Gb). (37)

The fermion model is exactly soluble when

−dL(g, fd, A
Gb)

1
=

1

2

(

Sq2fd + fde2(A
Gb)

)

. (38)

In this case, the action amplitude is always 1. But such
an equation has no solutions if we view g, fd, and e2 as
independent cochains, since in general 1

2 (Sq
2fd+fde2) is

not a coboundary.
So to obtain an exactly soluble model, we further as-

sume fd to be functions of g,A:

fd = nd(g,A
Gb). (39)

This process is called decorating symmetry point-defects
(described by (g,AGb)) with fermion particles (described
by fd)

17, or simply fermion decoration. This is also called
trivializing the cocycle Sq2fd+fde2 (see Section VIIIC).
We require nd(g,A

Gb) to be Gb-gauge invariant

nd(gi, A
Gb

ij ) = nd(gihi, h
−1
i AGb

ij hj). (40)

We can use such a gauge transformation to set gi = 1:
nd(gi, A

Gb

ij ) = nd(1, a
Gb

ij ) where

aGb

ij = giA
Gb

ij g−1
j . (41)

Thus nd is a cocycle nd ∈ Zd(BGb,Z2). Similarly, we can
choose L(g, fd, A

Gb) to be

L(g, fd, A
Gb) ≡ νd+1(a

Gb) +
1

2
fdξ1(a

Gb , AGb), (42)

where ξ1(a
Gb , AGb) is given by

dξ1(a
Gb , AGb)

2
= [e2(a

Gb)− e2(A
Gb)]. (43)

Here we have assumed that e2(a
Gb)− e2(A

Gb) is always
a coboundary.
The exact solubility condition becomes

−dνd+1(a
Gb)

1
=

1

2

(

Sq2[nd(a
Gb)] + nd(a

Gb)e2(a
Gb)

)

.

(44)
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where νd+1 ∈ Cd+1(BGb;R/Z) is a cochain on BGb. With
proper choices of nd(a

Gb) and e2(a
Gb), Sq2[nd(a

Gb)] +
e2(a

Gb)nd(a
Gb) can be a coboundary and the above equa-

tion has solutions. The above is nothing but the twisted
cocycle condition for group super-cohomology first de-
rived by Gu and Wen in Ref. 17 (for the case e2 = 0 and
d = 2, 3).
This way we obtain an exactly soluble local fermionic

model

Z(Md+1, AGb , AZ
f
2 )

=
∑

g∈C0(Md+1;Gb);fd=nd(a
Gb )

e i 2π
∫
Md+1 νd+1(a

Gb )+ 1
2 fdξ1(a

Gb ,AGb )+ 1
2 fdA

Z
f
2

e iπ
∫
Nd+2 Sq2f̃d+f̃d(w2+w2

1),

dAZ
f
2

2
= w2 +w2

1 + e2(A
Gb), fd

2
= f̃d onMd+1. (45)

The path integral sums over the Gb-valued 0-cochains g

and Z2-valued d-cocycles fd onMd+1, that satisfy fd
2
=

nd(a
Gb). On N d+2, f̃d is a Z2-valued d-cocycles that

satisfy f̃d
2
= fd

2
= nd(a

Gb) on the boundary. In other

words, f̃d may not be equal to nd(a
Gb) on N d+2, where

nd(a
Gb) is not even defined. The fd

2
= nd(a

Gb) condition
on the boundary can be imposed by an energy penalty
term in the Lagrangian. Thus g and fd on Md+1 are
the dynamical fields of the above local fermionic lattice
model (in the bosonized form).
The above model is well defined only ifMd+1 and AGb

satisfy

w2 +w2
1 + e2(A

Gb)
2,d
= 0, (46)

so that the twisted spin structure AZ
f
2 can be defined.

This implies that the fermion in our model is described
by a representation of Gf = Z2 ⋋e2 Gb, where Gf is a

Zf
2 extension of Gb as determined by the 2-cocycle e2 ∈

H2(BGb;Z2) (see Ref. 41).
Equation (45) is the first main result of this paper:

Equation (45) describes a local fermionic system
(in a bosonized form) where the full fermion sym-

metry is Gf = Zf
2 ⋋e2 Gb. Such a fermionic model

realizes a fermionic SPT state obtained by fermion
decoration construction.

The above generalizes the previous results of Ref. 17 and

34 from Gf = Zf
2 ×Gb to Gf = Zf

2 ⋋e2 Gb.
The partition function (45) can be evaluated exactly

Z(Md+1, AGb , AZ
f
2 )

= |Gb|
Nv e i 2π

∫
Md+1 νd+1(A

Gb )+ 1
2 fdA

Z
f
2

e iπ
∫
Nd+2 Sq2f̃d+f̃d(w2+w2

1),

dAZ
f
2

2
= w2 +w2

1 + e2(A
Gb), fd

2
= f̃d onMd+1. (47)

The volume independent46,47 part of the above partition
function is the SPT invariant

Ztop(Md+1, AGb , AZ
f
2 )

= e i 2π
∫
Md+1 νd+1(A

Gb )+ 1
2nd(A

Gb )AZ
f
2 (48)

e iπ
∫
Nd+2 Sq2f̃d+f̃d(w2+w2

1),

dAZ
f
2

2
= w2 +w2

1 + e2(A
Gb), f̃d

2
= nd(A

Gb) onMd+1.

Eqn. (48) is another key result of this paper. In this
paper, we will assume that the SPT invariant eqn. (48)
can resolve all different fermionic SPT phases. In other
words, the two fermion SPT states belong to the same
phase iff they have the same SPT invariant.
To show the above result let us consider the action

amplitude

e iS(Md+1,aGb ,AGb ,AZ
f
2 )

= e i 2π
∫
Md+1 νd+1(a

Gb )+ 1
2nd(a

Gb )ξ1(a
Gb ,AGb )+ 1

2nd(a
Gb )AZ

f
2

e iπ
∫
Nd+2 Sq2f̃d+f̃d(w2+w2

1), (49)

dAZ
f
2

2
= w2 +w2

1 + e2(A
Gb), f̃d

2
= nd(a

Gb) onMd+1.

where aGb is given in eqn. (5). We like to show that the
action ampltude is indepent of gi.
We note that

e iS(Md+1,aGb ,AGb ,AZ
f
2 ) e− iS(Md+1,AGb ,AGb ,AZ

f
2 )

= e i 2π
∫
Md+1 νd+1(a

Gb )+ 1
2nd(a

Gb )ξ1(a
Gb ,AGb )+ 1

2nd(a
Gb )AZ

f
2

e− i 2π
∫
Md+1 νd+1(A

Gb )+ 1
2nd(A

Gb )AZ
f
2

e iπ
∫
Nd+2 Sq2f̃d+f̃d(w2+w2

1), (50)

where N d+2 = I ×Md+1. Since aG is given by eqn. (5),
we can have Gb-valued 1-cochain ãGb on N d+2 such that
ãGb become aGb and AGb on the two boundaries of N d+2.
Now we can choose f̃d = nd(ã

Gb) on N d+2 so that it
becomes nd(A

Gb) and nd(a
Gb) on the two boundaries.

Using the relation

d
[

νd+1(ã
Gb) +

1

2
nd(ã

Gb)ξ1(ã
Gb , AGb) +

1

2
nd(ã

Gb)AZ
f
2

]

= −
1

2
[Sq2nd(ã

Gb) + nd(ã
Gb)e2(ã

Gb)]

+
1

2
nd(ã

Gb)[e2(ã
Gb)− e2(A

Gb)]

+
1

2
nd(ã

Gb)[w2 +w2
1 + e2(A

Gb)].

1
= −

1

2
[Sq2f̃d + f̃d(w2 +w2

1)], (51)

from eqn. (50), we see that

e iS(Md+1,aGb ,AGb ,AZ
f
2 ) = e iS(Md+1,AGb ,AGb ,AZ

f
2 ) (52)
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The exactly soluble model (45) systematically real-
izes a large class of fermionic SPT phases with any on-
site symmetry Gf and in any dimensions. This class of
fermionic SPT phases is described by the data (now writ-
ten more precisely in terms of cochains on BGb)

ē2(ā
Gb

01 , ā
Gb

12 ) ∈ Z2(BGb;Z2),

n̄d(ā
Gb

01 , · · · , ā
Gb

d−1,d) ∈ Zd(BGb;Z2), (53)

ν̄d+1(ā
Gb

01 , · · · , ā
Gb

d,d+1) ∈ Cd+1(BGb;R/Z),

−dν̄d+1(ā
Gb)

1
=

1

2
[Sq2n̄d(ā

Gb) + n̄d(ā
Gb)ē2(ā

Gb)].

Here āGb is the canonical 1-conchain on BGb (for details,
see Ref. 41 and Appendix L). Also e2(a

Gb), nd(a
Gb) and

νd+1(a
Gb) in (45) are pullbacks of ē2, n̄d and ν̄d+1 in (53)

by the homomorphism φ :Md+1 → BGb:

e2
2
= φ∗ē2, nd

2
= φ∗n̄d, νd+1

2
= φ∗ν̄d+1. (54)

We see that, for a fixed fermion symmetry Gf , the con-
structed SPT states are labeled by [n̄d(ā

Gb), ν̄d+1(ā
Gb)]

(where ē2 is fixed), that satisfying the conditions (53).
However, different pairs [n̄d(ā

Gb), ν̄d+1(ā
Gb)] can some

times label the same fermionic SPT states. Those pairs
that label the same SPT state are called equivalent. The
equivalence relations are partially generated by the fol-
lowing two kinds of transformations:

1. a transformation generated by a d-cochain η̄d ∈
Cd(BGb;R/Z):

n̄d(ā
Gb)→ n̄d(ā

Gb),

ν̄d+1(ā
Gb)→ ν̄d+1(ā

Gb) + dη̄d(ā
Gb). (55)

2. a transformation generated by a (d − 1)-cochain
ūd−1 ∈ Cd−1(BGb;Z2)

n̄d(ā
Gb)→ n̄d(ā

Gb) + dūd−1(ā
Gb),

ν̄d+1(ā
Gb)→ ν̄d+1(ā

Gb) +
1

2
Sq2ūd−1(ā

Gb) (56)

+
1

2
ūd−1(ā

Gb) ⌣
d−2

n̄d(ā
Gb) +

1

2
ūd−1(ā

Gb)ē2(ā
Gb).

More detailed discussions are given in the next Section
VII.

VII. A DESCRIPTION BASED ON HIGHER

GROUPS

The data (53) that characterizes the exactly soluble
model (45) has a higher group description. The higher
group description is more compact, and allows us to see
the equivalence relation between the data more clearly.
For an introduction on higher groups, see Ref. 41 and
Appendix L.

A. The higher group data for fermionic SPT

models

The exactly soluble model (45) and the related
fermionic SPT state is characterized by the following
data:

1. A particular higher group Bf (Z2, 2;Z2, d), deter-
mined by its Z2-valued canonical cochains ē2 and

f̄d, satisfying dē2
2
= 0 and df̄d

2
= 0 (see Ref. 41 and

Appendix L).

2. A particular R/Z-valued (d+ 2)-cocycle

ω̄d+2(f̄d, ē2)
1
=

1

2
Sq2f̄d +

1

2
f̄dē2 (57)

on the higher group Bf (Z2, 2;Z2, d).

3. Different trivialization homomorphisms ϕ : BGb →
Bf (Z2, 2;Z2, d), so that ϕ∗ω̄d+2 is a R/Z-valued
(d + 2)-coboundary on BGb. (We like to remark
that different choices of ϕ lead to different choices
nd ∈ Zd(BGb;Z2) in (53). If for some choices of
ϕ, the last equation in (53) has no solution for the
corresponding nd, then ϕ is not a trivialization ho-
momorphisms.)

4. Different choices of the trivialization ν̄d+1(ā
Gb)

that satisfy −dν̄d+1(ā
Gb)

1
= ϕ∗ω̄d+2(f̄d, ē2).

To roughly understand the above result, we loosely
rewrite eqn. (45) as

Z(Md+1, AGb , AZ
f
2 )

=
∑

g∈C0(Md+1;Gb);fd=nd(a
Gb )

e i 2π
∫
Md+1 νd+1(a

Gb ) e iπ
∫
Nd+2 Sq2f̃d+f̃de2 ,

dAZ
f
2

2
= w2 +w2

1 + e2(A
Gb), fd

2
= f̃d onMd+1. (58)

The first two pieces of data determine the term on

N d+2: e iπ
∫
Nd+2 Sq2f̃d+f̃de2 , which is always fixed. In fact,

1
2Sq

2f̃d+
1
2 f̃de2 can be viewed as the pullback of ω̄d+2 by a

simplicial homomorphism φN : N d+2 → Bf (Z2, 2;Z2, d):

1

2
Sq2fd +

1

2
fde2 = φ∗

N ω̄d+2(f̄d, ē2). (59)

The next two pieces of data determine the term

on Md+1: e i 2π
∫
Md+1 νd+1(a

Gb ). First, nd(a
Gb) and

e2(a
Gb) in (53) are the pullback of f̄d and ē2 on

Bf (Z2, 2;Z2, d) by the trivialization homomorphism ϕ :
BGb → Bf (Z2, 2;Z2, d) and by φM : Md+1 → BGb.
Thus if we only consider the pull back ϕ:

1

2
Sq2n̄d(ā

Gb) +
1

2
n̄d(ā

Gb)ē2(ā
Gb)

= ϕ∗(
1

2
Sq2f̄d +

1

2
f̄dē2), (60)



12

we also require ϕ∗( 12Sq
2f̄d +

1
2 f̄dē2) to be a coboundary

on BGb, i.e. there is a cochain ν̄d+1(ā
Gb) on BGb such

that

−dν̄d+1(ā
Gb)

1
=

1

2
Sq2n̄d(ā

Gb) +
1

2
n̄d(ā

Gb)ē2(ā
Gb). (61)

We see that the above higher group description re-
covers eqn. (53). Therefore, the exactly soluble mod-
els (45) and the corresponding fermionic SPT states are
characterized by a pair (ϕ, ν̄d+1), a trivialization homo-
morphism and a trivialization. The different trivializa-
tion homomorphisms ϕ correspond to different choices of
n̄d(ā

Gb) and ē2(ā
Gb). The different trivializations ν̄d+1

differ by d+ 1-cocycles on BGb.

B. SPT invariant from the higher group

description

The higher group description (ϕ, ν̄d+1) also determines
the SPT invariant of the corresponding fermionic SPT
state with a bosonic symmetry Gb. In the following, we
will discuss this SPT invariant in more detail. Given
(ϕ, ν̄d+1), we have a Z2-valued 2-cocycle ē2(Ā

Gb) and
a Z2-valued d-cocycle n̄d(Ā

Gb) on BGb, as the pull
back by ϕ from the canonical cocycles ē2 and f̄d on
Bf (Z2, 2;Z2, d). The fermionic SPT invariant is obtained
for a closed complex Md+1 which has a property that,
for any Z2-valued d-cocycle fd on Md+1, there exists a
complex N d+1 with a Z2-valued d-cocycle f̃d on it such

that ∂N d+1 = Md and f̃d
2
= fd on the boundary Md.

To obtain the SPT invariant, we also need to choose a
homomorphism φ : Md+1 → BGb and a Z2-valued 2-

cochain AZ
f
2 onMd, such that the following condition is

satisfied

dAZ
f
2

2
= w2 +w2

1 + φ∗ē2(Ā
Gb).

2
= w2 +w2

1 + φ∗ϕ∗ē2. (62)

For such choices ofMd+1, φ, AZ
f
2 , the fermionic SPT in-

variant is given by

Ztop
ϕ,ν̄d+1

(Md+1, φ, AZ2)

= e i 2π
∫
Md+1 φ∗ν̄d+1(Ā

Gb )+ 1
2 [φ

∗n̄d(Ā
Gb )]AZ

f
2

e iπ
∫
Nd+2 Sq2f̃d+f̃d(w2+w2

1),

= e i 2π
∫
Md+1 φ∗ν̄d+1(Ā

Gb )+ 1
2 (φ

∗ϕ∗f̄d)A
Z
f
2

e iπ
∫
Nd+2 Sq2f̃d+f̃d(w2+w2

1),

f̃d
2
= φ∗n̄d(Ā

Gb) onMd+1 = ∂N d+2. (63)

We like to remark that the above discussions are valid
regardless if we have time reversal symmetry or not.
Without time reversal symmetry, Md+1 must be ori-

entable, and w1
2
= 0. With time reversal symmetry,

Md+1 can be non-orientable. Also w1 is contained in
AGb , since Gb contain the group ZT

2 of time reversal sym-
metry.

C. Equivalent relations between the labels (ϕ, ν̄d+1)

It is possible that the SPT states labeled by
different pairs (ϕ, ν̄d+1) and (ϕ′, ν̄′d+1), i.e. by

different triples [ē2(ā
Gb), f̄d(ā

Gb), ν̄d+1(a
Gb)] and

[ē′2(ā
Gb), f̄ ′

d(ā
Gb), ν̄′d+1(a

Gb)], are the same SPT states
since the two triples may give rise to the same SPT
invariant (see eqn. (48) and eqn. (63)). In this case, we
say that the two pairs are equivalent. [Note that the
homomorphisim ϕ : BGb → B(Z2, 2;Z2, d) determines
ē2(ā

Gb) and f̄d(ā
Gb) on BGb.]

What are the equivalent relations for the pairs
(ϕ, ν̄d+1)? In the following, we are going to propose that
(ϕ, ν̄d+1) and (ϕ′, ν̄′d+1) are equivalent if they can be ho-
motopically connected. However, it is possible that such
an equivalent relation is not large enough. It may be pos-
sible that (ϕ, ν̄d+1) and (ϕ′, ν̄′d+1) can described the same
fermionic SPT state even if they are not homotopically
connected.
Mathematically, (ϕ, ν̄d+1) and (ϕ′, ν̄′d+1) are homotopi-

cally connected if

1. There exists a homomorphism Φ : I × BGb →
Bf (Z2, 2;Z2, d) such that on the two boundaries,
Φ reduces to ϕ and ϕ′.

2. There exists a R/Z-valued d + 1-cochain µ̄d+1 on

I × BGb such that −dµ̄d+1
1
= Φ∗ω̄d+2 and µ̄d+1

reduces to ν̄d+1 and ν̄′d+1 on the two boundaries.

In the following, we like to show that homotopically con-
nected (ϕ, ν̄d+1) and (ϕ′, ν̄′d+1) give rise to the same SPT
invariant (63), and hence the same fermionic SPT order.
We note that

Ztop
ϕ,ν̄d+1

(Md+1, φ, AZ2)

Ztop
ϕ′,ν̄′

d+1
(Md+1, φ, AZ2)

= e i 2π
∫
Md+1 φ∗ν̄d+1(Ā

Gb )+ 1
2 (φ

∗ϕ∗f̄d)A
Z
f
2

e− i 2π
∫
Md+1 φ∗ν̄′

d+1(Ā
Gb )+ 1

2 (φ
∗ϕ′∗f̄d)A

Z
f
2

e iπ
∫
Nd+2 Sq2f̃d+f̃d(w2+w2

1). (64)

where N d+2 = I × Md+1. The homomorphism φ :

Md+1 → BGb induce a natural homomorphism φ̂ :
N d+2 → I × BGb. We choose f̃d on N d+2 to be

f̃d = φ̂∗Φ∗f̄d. We note that f̃d becomes φ∗ϕ∗f̄d and
φ∗(ϕ′)∗f̄d on the two boundaries of N d+2. We also have

a R/Z-valued d + 1-cochain on N d+2: µd+1 = φ̂∗µ̄d+1.
We note that µd+1 becomes φ∗ν̄d+1 and φ∗ν̄′d+1 on the

two boundaries of N d+2. Therefore

Ztop
ϕ,ν̄d+1

(Md+1, φ, AZ2)

Ztop
ϕ′,ν̄′

d+1
(Md+1, φ, AZ2)

= e i 2π
∫
Nd+2 d

[

φ̂∗µ̄d+1+
1
2 f̃dA

Z
f
2

]

e iπ
∫
Nd+2 Sq2f̃d+f̃d(w2+w2

1)

= e i 2π
∫
Nd+2 dφ̂∗µ̄d+1+

1
2 (Sq

2f̃d+f̃dφ̂
∗Φ∗ē2) = 1. (65)



13

Before ending this section, we like to introduce a larger
equivalence relation. (ϕ, ν̄d+1) and (ϕ′, ν̄′d+1) are cobor-

dant if

1. There exist a complex Cb such that ∂Cb =
Bf (Z2, 2;Z2, d)⊔−Bf (Z2, 2;Z2, d) and a homomor-
phism Φ : Cb → Bf (Z2, 2;Z2, d) such that on the
two boundaries, Φ reduces to ϕ and ϕ′.

2. There exists a R/Z-valued d+1-cochain µ̄d+1 on Cb
such that −dµ̄d+1

1
= Φ∗ω̄d+2 and µ̄d+1 reduces to

ν̄d+1 and ν̄′d+1 on the two boundaries.

It is very tempting to regard two cobordant labels as
equivalent. However, so far we cannot show that two
cobordant labels give rise to the same SPT invariant.

D. Stacking and Abelian group structure of

fermionic SPT phases

We have seen that the higher dimensional bosonization
is closely related to a higher group Bf (Z2, 2;Z2, d), and a

particular choice of a R/Z-valued cocycle 1
2Sq

2f̄d+
1
2 f̄dē2

on the higher group. Such a choice of cocycle has an
important additive property

1

2
Sq2(f̄d + f̄ ′

d) +
1

2
(f̄d + f̄ ′

d)ē2

1,d
=

(1

2
Sq2f̄d +

1

2
f̄dē2

)

+
(1

2
Sq2f̄ ′

d +
1

2
f̄ ′
dē2

)

. (66)

This additive property insures that the fermionic SPT
phases can also be added so that the collection of
fermionic SPT phases actually form an Abelian group.
The addition of two SPT states physically corresponds to
stacking two SPT states one on top another, which im-
plies that the SPT phases should always have an Abelian
group structure.
For two SPT phases described by (n̄d(a

Gb), ν̄d+1(a
Gb))

and (n̄′
d(a

Gb), ν̄′d+1(a
Gb)) (with the same ē2(a

Gb)), they
add following a twisted addition rule

(n̄d, ν̄d+1) + (n̄′
d, ν̄

′
d+1)

=(n̄d + n̄′
d, ν̄d+1 + ν̄′d+1 +

1

2
n̄d ⌣

d−1
n̄′
d). (67)

VIII. A MORE GENERAL CONSTRUCTION

FOR FERMIONIC SPT STATES

A. With time reversal symmetry

The action amplitude

e i 2π
∫
Md+1 L(g,fd,A

Gb )+ 1
2 fdA

Z
f
2 e iπ

∫
Nd+2 Sq2fd+fd(w2+w2

1)

(68)

in (32) contains bosonic field g and fermionic field fd.
The bosonic field couples to a Gb-connection AGb and

the fermionic field couples to a spin connection AZ
f
2 (for

the twisted spin structure). More generally, the action
amplitude has the following gauge invariance

w2 +w2
1 → w2 +w2

1 + du1, AZ
f
2 → AZ

f
2 + u1, (69)

where u1 is a Z2 valued 1-cochain. Such a gauge in-
variance ensure the proper coupling between the fermion
current and the spin connection.
To construct more general fermionic SPT states and

to include time reversal symmetry, like what we did in
Section IVD, we generalize g and fd and allow them to

couple to AGb and AZ
f
2 as well as the space-time connec-

tion AO ∈ O∞. We can package the three connections

AGb

ij , A
Z

f
2

ij , and AO
ij into a single connection A

GfO

ij ∈ GfO

where

GfO = G0
f ⋋O∞. (70)

Here full fermion symmetry group is given by

Gf = G0
f ⋋ ZT

2 . (71)

i.e. G0
f is the fermion symmetry with time reversal re-

moved.
So a more general action amplitude can have the fol-

lowing form

e i 2π
∫
Md+1 L(g,fd,A

GfO ) e iπ
∫
Nd+2 Sq2fd+fd(w2+w2

1), (72)

where we may choose the field g to have its value in
GfO. Now gi transforms non-trivially under space-time
transformation. More precisely, under space time trans-
formation Od+1, gi transforms as

gi → gih, h ∈ GfO. (73)

where h has a property that under the natural projection

GfO
π
−→ GfO/G

0
f = O∞, (74)

h becomes hO = π(h) ∈ O∞, such that hO is in the Od+1

subgroup of O∞. The symmetry twist is now described

by A
GfO

ij ∈ GfO on each link (ij), such that, under the

projection π, A
GfO

ij become AO
ij = π(A

GfO

ij ) ∈ Od+1 ⊂

O∞ and AO
ij is the connection that describe the tangent

bundle of the space-time Md+1.
The above action amplitude should be invariant under

the following gauge transformation

w2 +w2
1 → w2 +w2

1 + du1, A
GfO

ij → A
GfO

ij (−)(u1)ij

(75)

It also has the following gauge invariance

gi → gihi, A
GfO

ij → h−1
i A

GfO

ij hj , gi, hi ∈ GfO.

(76)
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This leads to a more general bosonized fermion theory

Z(Md+1, AGfO ) (77)

=
∑

g∈C0(Md+1;GfO);fd∈Zd(Md+1;Z2)

e i 2π
∫
Md+1 L(g,fd,A

GfO ) e iπ
∫
Nd+2 Sq2fd+fd(w2+w2

1).

This allows us to introduce effective dynamical variables
on the links given by

a
GfO

ij = giA
GfO

ij g−1
j , gi ∈ GfO. (78)

Using the effective dynamical variables we can con-
struct a local fermionic exactly soluble models (in the
bosonized form) that describes the fermion decoration

Z(Md+1, AGfO ) (79)

=
∑

g∈C0(Md+1;GfO);fd=nd(a
GfO )

e i 2π
∫
Md+1 νd+1(a

GfO ) e iπ
∫
Nd+2 Sq2fd+fd(w2+w2

1).

whereMd+1 is the boundary ofN d+2, fd onN
d+2 satisfy

dfd
2
= 0, and fd on N d+2 is an extension of fd onMd+1.

The above model can realize more general fermionic SPT
states, which are constructed using the following data:

n̄d(ā
GfO ) ∈ Zd(BGfO;Z2);

ν̄d+1(ā
GfO ) ∈ Cd+1(BGfO;R/Z);

−dν̄d+1(ā
GfO )

1
=

1

2
Sq2n̄d(ā

GfO )

+
1

2
n̄d(ā

GfO )[w̄2(ā
O) + w̄2

1(ā
O)] (80)

where āOij = π(ā
GfO

ij ) ∈ O∞ (see eqn. (74)), and nd, νd+1

in (79) are the pullbacks of n̄d, ν̄d+1. Here we like to
stress that the time reversal transformation has a non-
trivial action on the value of ν̄d+1: ν̄d+1

T
→ −ν̄d+1. Thus

d is defined with this action and should be more precisely
written as dw1

(see Appendix A).
Eqn. (79) is exactly soluble since its action amplitude

is independent of dynamic field gi:

e i 2π
∫
Md+1 νd+1(a

GfO ) e iπ
∫
Nd+2 Sq2fd+fd(w2+w2

1)

= e i 2π
∫
Md+1 νd+1(A

GfO ) e iπ
∫
Nd+2 Sq2fd+fd(w2+w2

1) (81)

(Note that aGfO and AGfO only differ by a gauge trans-
formation.) Thus, the partition function can be calcu-
lated exactly (see Sec. VIII C 2)

Z(Md+1, AGfO )

= |GfO|
Nv e i 2π

∫
Md+1 νd+1(A

GfO ) e iπ
∫
Nd+2 Sq2fd+fd(w2+w2

1)

fd = nd(A
GfO ) onMd+1 = N d+2. (82)

This leads to the SPT invariant

Ztop(Md+1, AGfO )

= e i 2π
∫
Md+1 νd+1(A

GfO ) e iπ
∫
Nd+2 Sq2fd+fd(w2+w2

1)

fd = nd(A
GfO ) onMd+1 = N d+2. (83)

Eqns. (79) and (83) are the second main result of this
paper:

For fermion systems with full fermion symmetry

Gf = Zf
2 ⋋ Gb where Gb contains time rever-

sal symmetry, the fermions transform as represen-
tations of GfOd+1

= G0
f ⋋ Od+1 (for imaginary

time), under combined space-time rotation and in-
ternal symmetry transformation. Using the data
[n̄d(ā

GfO ), ν̄d+1(ā
GfO )] in eqn. (80), we can con-

struct an exactly soluble fermionic model (79) (in
a bosonized form), which realizes a fermionic SPT
state characterize by the SPT invariant (83).

Here we would like to stress that

to describe the symmetry of a fermion system, it
is not only important to specify the full fermion
symmetry group Gf , it is also important to specify
the group GfOd+1

= Gf ⋋ Od+1 for the combined
space-time rotation and internal symmetry trans-
formation.

Our model for fermionic SPT state uses the information
on how fermions transform under the combined space-
time rotation and internal symmetry transformation.

B. Without time reversal symmetry

If there is no time reversal symmetry, we can choose
the dynamical variable on each vertex to be gi ∈ GfSO ≡
Gf ⋋ SO∞. Under space time transformation SOd+1, gi
transforms as

gi → gih, h ∈ GfSO. (84)

h also satisfy that under the natural projection π :
GfSO → GfSO/Gf = SO∞, h become hSO = π(h) ∈
SOd+1 ⊂ SO∞.

The symmetry twist now is described by A
GfSO

ij ∈

GfSO on each link (ij), such that ASO
ij = π(A

GfSO

ij ) ∈

SOd+1 ⊂ SO∞ and ASO
ij is the connection that describe

the tangent bundle of the space-timeMd+1. The effective
dynamical variables on the links are given by

a
GfSO

ij = giA
GfSO

ij g−1
j . (85)

Using the effective dynamical variables we can con-
struct a local fermionic exactly soluble models (in the
bosonized form)

Z(Md+1, AGfSO ) (86)

=
∑

g∈C0(Md+1;GfSO);fd=nd(a
GfSO )

e i 2π
∫
Md+1 νd+1(a

GfSO ) e iπ
∫
Nd+2 Sq2fd+fdw2 .

where Md+1 is orientable and is the regular boundary
of orientable N d+2 and w2 is the second Stiefel-Whitney
class on N d+2. The above models are constructed using
the following data:

n̄d(ā
GfSO ) ∈ Zd(BGfSO;Z2),
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ν̄d+1(ā
GfO ) ∈ Cd+1(BGfSO;R/Z);

−dν̄d+1(ā
GfSO )

1
=

1

2
Sq2n̄d(ā

GfSO )

+
1

2
n̄d(ā

GfSO )w̄2(ā
SO), (87)

where āSO
ij ∈ SO∞ is obtained from ā

GfSO

ij by the natural

projection GfSO → SO∞. Again nd and νd+1 in (86) are
the pullbacks of n̄d and ν̄d+1. The SPT invariant for the
constructed model (86) is

Ztop(Md+1, AGfSO )

= e i 2π
∫
Md+1 νd+1(A

GfSO ) e iπ
∫
Nd+2 Sq2fd+fdw2

fd = nd(A
GfSO ) onMd+1 = N d+2. (88)

Eqns. (86) and (88) are the third main result of this
paper:

For fermion systems with full fermion symmetry

Gf = Zf
2 ⋋ Gb where Gb contains no time re-

versal symmetry, the fermions transform as rep-
resentations of GfSOd+1

= Gf ⋋SOd+1 (for imag-
inary time), under combined space-time rotation
and internal symmetry transformation. Using the
data [n̄d(ā

GfSO ), ν̄d+1(ā
GfSO )] in (87)), we can

construct an exactly soluble fermionic model (86)
(in a bosonized form). Such a fermionic model re-
alizes a fermionic SPT state characerized by the
SPT invariant (88).

C. A description based on higher groups

Again, the data (87) that characterizes the exactly sol-
uble model (86) has a higher group description. The ba-
sic idea is the same as that introduced in Section VII,
however, in this section we will elaborate in more detail.

1. Without time reversal symmetry

The exactly soluble model (86) and the related
fermionic SPT state is characterized by the following
data:

1. A particular higher group Bf (SO∞, 1;Z2, d), deter-

mined by its Z2-valued canonical cochain df̄d
2
= 0

(see Ref. 41 and Appendix L).

2. A particular R/Z-valued (d+ 2)-cocycle

ω̄d+2
1
=

1

2
Sq2f̄d +

1

2
f̄dw̄2(ā

SO) (89)

on the higher group Bf (SO∞, 1;Z2, d).

3. Different trivialization homomorphisms ϕ :
BGfSO → Bf (SO∞, 1;Z2, d), where GfSO = Gf ⋋

SO∞, so that ϕ∗ω̄d+2 is a R/Z-valued (d + 2)-
coboundary on BGfSO. (We like to remark that
different choices of ϕ lead to different choices nd ∈
Zd(BGfSO;Z2) in (87). If for some choices of ϕ,
the last equation in (87) has no solution for the
corresponding nd, then ϕ is not a trivialization ho-
momorphisms.)

4. Different choices of the trivialization ν̄d+1(ā
GfSO )

that satisfy −dν̄d+1(ā
GfSO )

1
= ϕ∗ω̄d+2(f̄d, ā

SO).

To understand the above result, we note that the
first two pieces of data determine the term on N d+2:

e iπ
∫
Nd+2 Sq2fd+fdw2 , which is always fixed. In fact,

1
2Sq

2fd + 1
2fdw2 can be viewed as the pullback of

ω̄d+2 by a simplicial homomorphism φN : N d+2 →
Bf (SO∞, 1;Z2, d):

1

2
Sq2fd +

1

2
fdw2(a

SO) = φ∗
N ω̄d+2(f̄d, ā

SO). (90)

Here aSO is the pullback of āSO: aSO = φ∗
N āSO. We re-

quire φN to be a homomorphism such that aSO = φ∗
N āSO

is the connection that describes the tangent bundle of
N d+2. In this case, Sq2fd + fdw2(a

SO) is a Z2-valued
coboundary on N d+2.
The next two pieces of data determine the term on

Md+1: e i 2π
∫
Md+1 νd+1(a

GfSO ). First, nd(a
GfSO ) and

w2(a
SO) in (87) are the pullback of f̄d and w̄2(ā

SO) on
Bf (SO∞, 1;Z2, d) by the trivialization homomorphism
ϕ : BGfSO → Bf (SO∞, 1;Z2, d). (To be more pre-
cise, nd(a

GfSO ) and w2(a
SO) in (87) are pullbacks of

n̄d(ā
GfSO ) and w̄2(ā

SO) by φM : Md+1 → BGfSO.)
Thus

1

2
Sq2n̄d(ā

GfSO ) +
1

2
n̄d(ā

GfSO )w̄2(ā
SO)

= ϕ∗[
1

2
Sq2f̄d +

1

2
f̄dw̄2(ā

SO)]. (91)

We also require ϕ∗[ 12Sq
2f̄d + 1

2 f̄dw̄2(ā
GSO )] to be

a coboundary on BGfSO. i.e. there is a cochain
ν̄d+1(ā

GfSO ) on BGfSO such that

−dν̄d+1(ā
GfSO )

1
=

1

2
Sq2n̄d(ā

GfSO )

+
1

2
n̄d(ā

GfSO )w̄2(ā
SO) (92)

Therefore, the exactly soluble models (86) and the cor-
responding fermionic SPT states are characterized by a
pair (ϕ, ν̄d+1), a trivialization homomorphism and a triv-
ialization. The different trivialization homomorphisms ϕ
correspond to different choices of nd(a

GfSO ). The differ-
ent trivializations ν̄d+1 differ by d+1-cocycles on BGfSO.
In fact, the exactly soluble models (86) can be written

explicitly using the higher group data:

Z(Md+1, AGfSO ) =
∑

φM

e i 2π
( ∫

Md+1 φ∗
M ν̄d+1+

∫
Nd+2 φ∗

N ω̄d+2

)

,
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M1 M2

N1

N2

M1 M2

(a) (b) (c)

N

FIG. 2. (Color online) Three space-time M1, M2, and
M1 ⊔ −M2, plus their extensions. N1, N2, and N . The
ratio of the action amplitudes (which are pure U1 phases) for
space-time (a) and (b): Z(a)/Z(b) = Z(a)Z∗(b) is given by
the action amplitude for space-time (c): Z(a)Z∗(b) = Z(c).

− dν̄d+1
1
= ϕ∗ω̄d+2, (93)

Here φM is a simplicial homomorphism φM : Md+1 →
BGfSO, such that φ∗

M āGfSO is gauge equivalent to
AGfSO :

ā
GfSO

ij = giA
GfSO

ij g−1
j . (94)

Also, φN is a simplicial homomorphism φN : N d+2 →
B(GfSO, 1;Z2, d), such that, when restrict to the bound-
ary of N d+2, φN = ϕφM .

2. An exact evaluation of the partition function

Let us examine the action amplitude
e i 2π

∫
Md+1 φ∗

M ν̄d+1+i2π
∫
Nd+2 φ∗

N ω̄d+2 for different φM

but a fixed ϕ. φN is chosen such that it is given
by ϕφM at the boundary ∂N d+2. We know that
1
2Sq

2fd + 1
2fdw2(a

SO) = φ∗
N ω̄d+2 is a R/Z-valued

coboundary on N d+2, thus the value of e iπ
∫
Nd+2 φ∗

N ω̄d+2

only depends on φN on the boundary ∂N d+2, i.e. only
depends on ϕφM . Therefore, the action amplitude
e i 2π

∫
Md+1 φ∗

M ν̄d+1+i2π
∫
Nd+2 φ∗

N ω̄d+2 is a function of φM .
We call φM1

: Md+1
1 → BGfSO and φM2

: Md+1
2 →

BGfSO cobordant, if there exists a homomorphism ϕN :

N d+2 → BGfSO such that ∂N d+2 = Md+1
1 ⊔ Md+1

2 ,

ϕN = φM1
on the boundaryMd+1

1 , and ϕN = φM2
on the

boundary Md+1
2 (see Fig. 2(c)). We can show that two

cobordant φM1
and φM2

have the same action amplitude.
This is because the difference (the ratio) of the action
amplitudes is given by (see Fig. 2)

e
i 2π[

∫
Md+1

1
φ∗
M1

ν̄d+1−
∫
Md+1

2
φ∗
M2

ν̄d+1]+ i2π
∫
Nd+2 φ∗

N ω̄d+2

(95)

where φN = ϕϕN . Because ϕN = φM1 or ϕN = φM2 on
the two boundaries of N d+2, we have

e
i 2π[

∫
Md+1

1
φ∗
M1

ν̄d+1−
∫
Md+1

2
φ∗
M2

ν̄d+1]

=e
i 2π[

∫
Md+1

1
ϕ∗

N ν̄d+1−
∫
Md+1

2
ϕ∗

N ν̄d+1]

=e i 2π
∫
Nd+2 dϕ∗

N ν̄d+1 (96)

Now the difference (the ratio) of the action amplitudes is
given by

e i 2π
∫
Nd+2 dϕ∗

N ν̄d+1+φ∗
N ω̄d+2

=e i 2π
∫
Nd+2 dϕ∗

N ν̄d+1+ϕ∗
Nϕ∗ω̄d+2

=e i 2π
∫
Nd+2 ϕ∗

N (dν̄d+1+ϕ∗ω̄d+2) = 1. (97)

We like to remark that in the action amplitude
e i 2π

∫
Md+1 φ∗

M ν̄d+1+i2π
∫
Nd+2 φ∗

N ω̄d+2 , the homomorphism
φM : Md+1 → BGfSO usually cannot be extended to
a homomorphism ϕN : N d+2 → BGfSO (i.e. φM is not
cobordant to a trivial homomorphism). As a result the
action amplitude is not equal to 1. If the homomorphism
φM : Md+1 → BGfSO can be extend to N d+2, the ac-
tion amplitude will be equal to one. If φM1

and φM2

are cobordant, then φM1
and φM2

on M1 and M2 in
Fig. 2(c) can be extended to N . In this case, the action
amplitude for space-time Fig. 2(c) will be equal to one.
In our exactly soluble model (93), the homomorphism

φM is determined by aGfSO which in turn is given by the
dynamical fields gi on vertices and the background field
AGfSO in the links (see (85)). For a fixed AGfSO , the
different homomorphisms φM are all cobordant to each
other, and the corresponding action amplitudes are all
equal to each other. Therefore, the partition function for
our model (93) can be calculated exactly

Z(Md+1, AGfSO ) =
∑

φM

e i 2π
( ∫

Md+1 φ∗
M ν̄d+1+

∫
Nd+2 φ∗

N ω̄d+2

)

= V Nv e i 2π
∫
Md+1 νd+1(A

GfSO )+iπ
∫
Nd+2 Sq2fd+fdw2 (98)

where V is the volume of GfSO and Nv the number of
vertices in Md+1. We see that the fermionic SPT state
realized by (93) [which is labeled by a pair (ϕ, ν̄d+1)] is
characterized by the SPT invariant

Ztop(Md+1, AGfSO )

=e i 2π
∫
Md+1 νd+1(A

GfSO )+iπ
∫
Nd+2 Sq2fd+fdw2 , (99)

where fd
2
= nd(A

GfSO ) on ∂N d+2 and

−dνd+1(A
GfSO )

1
=

1

2
Sq2nd(A

GfSO )

+
1

2
nd(A

GfSO )w2(A
SO). (100)

Here ASO
ij = π(A

GfSO

ij ) ∈ SO∞ and ASO must be the

connection for the tangent bundle onMd+1.
Equation (99) can also be rewritten as

Ztop(Md+1, AGfSO )

=e i 2π
∫
Md+1 φ∗

M ν̄d+1+i2π
∫
Nd+2 φ∗

N ω̄d+2 ,

φN |∂Nd+2 = ϕφM , (101)

where the homomorphism φM :Md+1 → BGfSO is de-
termined by the background field AGfSO via

AGfSO = φ∗
M āGfSO . (102)
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Also φN is a homomorphism φN : N d+2 →
Bf (SO∞, 1;Z2, d), such that, on the boundary Md+1 =
∂N d+2, φN is given by ϕφM , where ϕ is a homomorphism
ϕ : BGfSO → Bf (SO∞, 1;Z2, d).

3. Equivalent relations between the labels (ϕ, ν̄d+1)

It is possible that the SPT states labeled by
different pairs (ϕ, ν̄d+1) and (ϕ′, ν̄′d+1), i.e. by

different pairs [nd(A
GfSO ), νd+1(A

GfSO )] and
[n′

d(A
GfSO ), ν′d+1(A

GfSO )], are the same SPT states
since the two pair may give rise to the same SPT
invariant. In this case, we say that the two pairs are
equivalent.
What are the equivalent relations for the pairs

(ϕ, ν̄d+1) or [nd(A
GfSO ), νd+1(A

GfSO )]? Here is our pro-
posal: (ϕ, ν̄d+1) and (ϕ′, ν̄′d+1) are equivalent if

1. There exists a R/Z-valued d + 2-cocycle Ω̄d+2 on
I ×Bf (SO∞, 1;Z2, d) such that when restricted on
the two boundaries of I × Bf (SO∞, 1;Z2, d), Ω̄d+2

becomes ω̄d+2 in (117).

2. There exists a homomorphism Φ : I×BGfSO → I×
Bf (SO∞, 1;Z2, d) such that on the two boundaries,
Φ reduces to ϕ and ϕ′.

3. There exists a R/Z-valued d + 1-cochain µ̄d+1 on

I ×BGfSO such that −dµ̄d+1
1
= Φ∗Ω̄d+2 and µ̄d+1

reduces to ν̄d+1 and ν̄′d+1 on the two boundaries.

In the following, we like to show that equivalent
(ϕ, ν̄d+1) and (ϕ′, ν̄′d+1) give rise to the same SPT in-
variant (99), and hence the same SPT order. We note
that

Ztop
ϕ,ν̄d+1

(Md+1, φ, AGfSO )

Ztop
ϕ′,ν̄′

d+1
(Md+1, φ, AGfSO )

= e i 2π
∫
Md+1 φ∗ν̄d+1(Ā

GfSO )−φ∗ν̄′
d+1(Ā

GfSO )

e iπ
∫
Nd+2 Sq2fd+fd(w2+w2

1). (103)

where N d+2 = I × Md+1. The homomorphism φ :

Md+1 → BGb induce a natural homomorphism φ̂ :
N d+2 → I × BGb. We choose fd on N d+2 to be

fd = φ̂∗Φ∗f̄d. We note that fd becomes nd = φ∗ϕ∗f̄d
and n′

d = φ∗(ϕ′)∗f̄d on the two boundaries of N d+2.
We also have a R/Z-valued d + 1-cochain on N d+2:

µd+1 = φ̂∗µ̄d+1. We note that µd+1 becomes φ∗ν̄d+1

and φ∗ν̄′d+1 on the two boundaries of N d+2. Therefore
(using eqn. (87))

Ztop
ϕ,ν̄d+1

(Md+1, φ, AGfSO )

Ztop
ϕ′,ν̄′

d+1
(Md+1, φ, AGfSO )

(104)

= e i 2π
∫
Nd+2 d(φ̂∗µ̄d+1) e iπ

∫
Nd+2 Sq2fd+fd(w2+w2

1) = 1,

which complete our proof (see (101)).

The fermionic SPT states can also be labeled by
[n̄d(ā

GfSO ), ν̄d+1(ā
GfSO )] where n̄d(ā

GfSO ) is a Z2-valued
d-cocycle and ν̄d+1(ā

GfSO ) is a R/Z-valued d+1-cochain
on BGfSO. They are functions of canonical cocycle
āGfSO on BGfSO. In terms of [n̄d(ā

GfSO ), ν̄d+1(ā
GfSO )],

the equivalence relations are partially generated by the
following two transformations (see (A29)):

1. Transformation generated by d-cochain
η̄d(ā

GfSO ) ∈ Cd−1(BGfSO;R/Z)

n̄d(ā
GfSO )→n̄d(ā

GfSO )

ν̄d+1(ā
GfSO )→ν̄d+1(ā

GfSO ) + dη̄d(ā
GfSO ). (105)

2. Transformation generated by d − 1-cochain ūd ∈
Cd−1(BGfSO;Z2)

n̄d(ā
GfSO )→ n̄d(ā

GfSO ) + dūd−1(ā
GfSO ) (106)

ν̄d+1(ā
GfSO )→ ν̄d+1(ā

GfSO ) +
1

2
ūd−1(ā

GfSO )w̄2(ā
SO)

+
1

2
Sq2ūd−1(ā

GfSO ) +
1

2
dūd−1(ā

GfSO ) ⌣
d−1

n̄d(ā
GfSO ).

We can show the above two transformation generate
equivalent relations since they do not change the SPT
invariant (99).
In fact, we have a more general equivalent re-

lation in terms of [nd(a
GfSO ), νd+1(a

GfSO )] in (87).
Here nd(a

GfSO ) = φ∗
M n̄d(ā

GfSO ) and νd+1(a
GfSO ) =

φ∗
M ν̄d+1(ā

GfSO ) are a d-cocycle and a d + 1-cochain
on space-time Md+1. [nd(a

GfSO ), νd+1(a
GfSO )] and

[n′
d(a

GfSO ), ν′d+1(a
GfSO )] produce the same SPT invari-

ant if they satisfy (see (A29)):

1. Equivalence relation generated by d-cochain ηd ∈
Cd−1(Md+1;R/Z)

n′
d(a

GfSO )
2
=nd(a

GfSO )

ν′d+1(a
GfSO )

1
=νd+1(a

GfSO ) + dηd. (107)

2. Equivalence relation generated by d − 1-cochain
ud ∈ Cd−1(Md+1;Z2)

n′
d(a

GfSO )
2
= nd(a

GfSO ) + dud−1 (108)

ν′d+1(a
GfSO )

1
= νd+1(a

GfSO ) +
1

2
ud−1w2(a

SO)

+
1

2
Sq2ud−1 +

1

2
dud−1 ⌣

d−1
nd(a

GfSO ).

Because ud−1 and ηd are cochains on Md+1, which do
not have to be the pullbacks of cochains ūd−1(ā

GfSO )
and η̄d−1(ā

GfSO ) on BGfSO. So the above equivalent
relation is more general.
We can show that above [nd(a

GfSO ), νd+1(a
GfSO )] and

[n′
d(a

GfSO ), ν′d+1(a
GfSO )] produce the same action am-

plitude (thus the same SPT invariant). So the above
relations are indeed equivalent relations.
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M
d+1

M
d+1

N
d+2

d+1
I   M

N
d+2

FIG. 3. (Color online) The boundary of I × N d+2 is given
by N d+2 ⊔ I ×Md+1 ⊔N d+2. The boundary of I ×Md+1 is
given by Md+1 ⊔Md+1.

We first introduce a Z2-valued cochain Ωd+2 on I ×
N d+2

Ωd+2
1
=

1

2
Sq2Fd +

1

2
Fdw2 (109)

where Fd is a Z2-valued cocycle on I ×N d+2 given by

Fd = fd + dUd−1 (110)

and Ud−1 is a Z2-valued cochain on I ×N d+2. We know
that the boundary of I × N d+2 has three pieces N d+2,
I ×Md+1 and N d+2. Ud−1 is chosen such that it be-
comes 0 on one of the N d+2, and becomes ud−1 on the
boundary of the second N d+2: Md+1 = ∂N d+2. Using
(A26), we see that Ωd+2 is actually a cocycle on I×N d+2.
Therefore, we have (see Fig. 3)

1 =e i 2π
∫
I×Nd+2 dΩd+2 = e iπ

∫
I×Md+2 Sq2Fd+Fdw2×

e− iπ
∫
Nd+2 Sq2fd+fdw2 e+iπ

∫
Nd+2 Sq2f ′

d+f ′
dw2 , (111)

where f ′
d

2
= fd + dUd−1 on N d+2. On the boundary

Md+1 = ∂N d+2, f ′
d

2
= fd + dUd−1 becomes n′

d
2
= nd +

dud−1 (see (106)).

Next we calculate e iπ
∫
I×Md+2 Sq2Fd+Fdw2 (using

(A29)):

e iπ
∫
I×Md+2 Sq2(fd+dUd−1)+(fd+dUd−1)w2

= e
iπ

∫
I×Md+2 Sq2fd+fdw2+d

(

Sq2Ud−1+dUd−1 ⌣
d−1

nd+Ud−1w2

)

= e
i 2π

∫
I×Md+2 d

(

νd+1+
1
2Sq2Ud−1+

1
2 dUd−1 ⌣

d−1
nd+

1
2Ud−1w2

)

= e i 2π
∫
Md+2 νd+1 e− i 2π

∫
Md+2 ν′

d+1 (112)

Combined with (111), we find

e i 2π
∫
Md+2 νd+1+iπ

∫
Nd+2 Sq2fd+fdw2

= e i 2π
∫
Md+2 ν′

d+1+iπ
∫
Nd+2 Sq2f ′

d+f ′
dw2 (113)

The action amplitudes are indeed the same.
We like to remark that [nd(a

GfSO ), νd+1(a
GfSO )] and

[n′
d(a

GfSO ), ν′d+1(a
GfSO )] not related by the above two

types of transformations may still describe the same
SPT phase. To really show [nd(a

GfSO ), νd+1(a
GfSO )] and

[n′
d(a

GfSO ), ν′d+1(a
GfSO )] describe different SPT phases,

we need to show they produce different SPT invariants.

4. Stacking and Abelian group structure of fermionic SPT

phases

We have seen that the higher dimensional bosonization
is closely related to a higher group Bf (SO∞, 1;Z2, d),

and a particular choice of a R/Z-valued cocycle 1
2Sq

2f̄d+
1
2 f̄dw̄2 on the higher group. Such a choice of cocycle has
an important additive property

1

2
Sq2(f̄d + f̄ ′

d) +
1

2
(f̄d + f̄ ′

d)w̄2

1,d
=

(1

2
Sq2f̄d +

1

2
f̄dw̄2

)

+
(1

2
Sq2f̄ ′

d +
1

2
f̄ ′
dw̄2

)

, (114)

which insures that the fermionic SPT phases form an
Abelian group, as required physically by the stacking op-
eration of SPT states.
For two SPT phases described by (n̄d, ν̄d+1) and

(n̄′
d, ν̄

′
d+1), they add following a twisted addition rule

(n̄d, ν̄d+1) + (n̄′
d, ν̄

′
d+1)

=(n̄d + n̄′
d, ν̄d+1 + ν̄′d+1 +

1

2
n̄d ⌣

d−1
n̄′
d). (115)

This allows us to extract the group fSPTd+1(GfSO) given
by the stacking of fermionic SPTs with symmetry Gf .
Clearly there is homomorphism

fSPTd+1(GfSO)→ Hd(BGfSO;Z2)

(n̄d, νd+1) 7→ n̄d.

Not every n̄d allows a solution of ν̄d+1; the im-
age of the above homomorphism is a subgroup of
Hd(BGfSO;Z2), which will be called the obstruction-
free subgroup, denoted by BHd(BGfSO;Z2). The ker-
nel of the above homomorphism is a quotient group of
Hd+1(BGfSO;R/Z). This is because of the extra gauge

transformation 1
2 (Sq2ūd−1 + ūd−1w2) when n̄d = 0. Let

Γ ⊂ Hd+1(BGfSO;R/Z) be the subgroup generated by
1
2 (Sq2ūd−1 + ūd−1w̄2), ∀ūd−1 ∈ C

d−1(BGfSO;Z2), we
have the following exact sequence for group extension:

0→ Hd+1(BGfSO;R/Z)/Γ→ fSPTd+1(GfSO)

→ BHd+1(BGfSO;Z2)→ 0 (116)

whose corresponding group 2-cocycle in
H2[BHd(BGfSO;Z2), H

d+1(BGfSO;R/Z)/Γ] is given
by 1

2 n̄d ⌣
d−1

n̄′
d.

If all the symmetry in the fermionic SPT states is
gauged, we obtain a bosonic topological order with emer-
gent fermions. We know that bosonic topological orders
form a commutative monoid under the stacking operation
⊠

46. However, For bosonic topological order with emer-
gent fermions, they cannot have inverse for the stacking
operation ⊠, and thus they are not invertible topologi-
cal orders19,46,49,50. However, we may modify the stack-
ing operation by allowing the pairs of fermions from the
two stacked phases to condense (equivalently, identifying
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fermions from the two stacked phases). Such a modified
stacking operation is discussed in detail in Ref. 37 and
51. We denote the modified stacking operation by ⊠f .
The gauged fermionic SPT states also form an Abelian
group under the modified stacking operation ⊠f , as in
(115).

5. With time reversal symmetry

In the above, we discussed the situation without time-
reversal symmetry. In the presence of time reversal sym-
metry, we have the following result. The exactly soluble
model (79) and the related fermionic SPT state is char-
acterized by the following data:

1. A particular higher group Bf (O∞, 1;Z2, d), deter-

mined by its Z2-valued canonical cochain df̄d
2
= 0

(see Ref. 41 and Appendix L).

2. A particular R/Z-valued d+ 2-cocycle on

ω̄d+2
1
=

1

2
Sq2f̄d +

1

2
f̄d[w̄2(ā

O) + w̄2
1(ā

O)] (117)

on Bf (O∞, 1;Z2, d).

3. Different trivialization homomorphisms ϕ :
BGfO → Bf (O∞, 1;Z2, d), where GfO = Gf ⋋O∞.

4. Different choices of the trivialization νd+1(ā
GfO )

that satisfy −dνd+1(ā
GfO )

1
= ϕ∗ω̄d+2(f̄d, ā

O).

We like remark that in the above, the time reversal sym-
metry in O∞ acts non-trivially on the value of νd+1 (see
Appendix A).

We can also use [n̄d(ā
GfO ), ν̄d+1(ā

GfO )] in (80) to la-
bel the fermion SPT states with time reversal symmetry.
The equivalence relations are partially generated by the
following two relations (see (A29)):

1. Equivalence relation generated by d-cochain η̄d ∈
Cd−1(BGfSO;R/Z)

n̄′
d(ā

GfO )
2
=n̄d(ā

GfO )

ν̄d+1(ā
GfO )

1
=ν̄′d+1(ā

GfO ) + dη̄d(ā
GfO ) (118)

2. Equivalence relation generated by d − 1-cochain
ūd−1 ∈ Cd−1(BGfSO;Z2)

n̄′
d(ā

GfO )
2
= n̄d(ā

GfO ) + dūd−1(ā
GfO ) (119)

ν̄′d+1(ā
GfO )

1
= ν̄d+1(ā

GfO ) +
1

2
dūd−1(ā

GfO ) ⌣
d−1

n̄d(ā
GfO )

+
1

2
Sq2ūd−1(ā

GfO ) +
1

2
ūd−1(ā

GfO )[w̄2(a
O) + w̄2

1(a
O)]

The corresponding SPT invariant is given by

Ztop(Md+1, AGfO )

=e i 2π
∫
Md+1 νd+1(A

GfO )+iπ
∫
Nd+2 Sq2fd+fd(w2+w2

1),

=e i 2π
∫
Md+1 φ∗

M ν̄d+1+i2π
∫
Nd+2 φ∗

N ω̄d+2 ,

fd|∂Nd+2 = nd, φN |∂Nd+2 = ϕφM (120)

IX. 1+1D FERMIONIC SPT STATES

In this and next a few sections, we are going to ap-
ply our theory to study some simple fermionic SPT
phases. In 1+1D, the SPT invariant dose not depend on
n1 (see (99)). Thus the different 1+1D fermionic SPT
states are labeled by cocycles ν2. After quotient out
the equivalence relations, we find that 1+1D fermionic
SPT states from fermion decoration are classified by
H2(BGfSO;R/Z) without time reversal symmetry and by
H2[BGfO; (R/Z)T ] with time reversal symmetry, where
(R/Z)T remind us that the time reversal symmetry in

GfO has a non-trivial action on R/Z
T
→ −R/Z.

Since GfSO = Gf ⋋ SO∞, H2[BGfO; (R/Z)T ] is given
by a quotient of a subset of

H1[BSO∞;H1(BGf ;R/Z)]⊕H2(BSO∞;R/Z)⊕

H2(BGf ;R/Z) (121)

(see Appendix F). Using the universal coef-
ficient theorem (E4) and (G6), we find that
H1[BSO∞;H1(BGf ;R/Z)] = 0. Also H2(BSO∞;R/Z)
does not involve symmetry Gf can only correspond
to fermionic invertible topological order. In 1+1D, we
believe that fermion decoration construction produces all
fermionic SPT states. Thus 1+1D fermionic SPT states
are classified by a subset of H2(BGf ;R/Z) without time
reversal symmetry. This is consistent with the result
obtained by 1+1D bosonization:

1+1D fermionic SPT states with on-site symmetry
Gf are classified by H2(BGf ;R/Z) without time
reversal symmetry.

With time reversal symmetry, H2[BGfO; (R/Z)T ] is
given by a quotient of a subset of

H1[BO∞;H1(BG0
f ;R/Z)T ]⊕H2(BO∞;R/Z)⊕

H2(BG0
f ;R/Z) (122)

where the time reversal symmetry in O∞ may have a non-
trivial action on H1(BGf ;R/Z) (see Appendix F). In the
above, we have used the fact that GfO = G0

f⋋O∞, where

G0
f is the fermionic symmetry group after removing the

time reversal symmetry . The above result is consistent
with the result from 1d bosonization:

1+1D fermionic SPT states with on-site symmetry
Gf are classified by H2[BGf ; (R/Z)T ] with time
reversal symmetry.

We like to remark that the 1d topological p-wave
superconductor39 is a fermionic invertible topological or-
der. It is not a fermionic SPT state.

X. FERMIONIC Z2 × Zf
2 -SPT STATE

In this section, we are going to study the simplest
fermionic SPT phases, where the fermion symmetry is
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given by Gf = Z2×Zf
2 symmetry. In this case, Gb = Z2

and e2 = 0. We will consider 2+1D and in 3+1D sys-
tems. A double-layer superconductor with layer exchange

symmetry can realize Z2 × Zf
2 symmetry.

Our calculation contains three steps: (1) we first cal-
culate the Z2-valued cocycle n̄d; (2) we then compute the
R/Z-valued cochain ν̄d+1; (3) last we construct the cor-
responding SPT invariant trying to identify distinct SPT
phases labeled by (n̄d, ν̄d+1). Our calculation also come
with two flavors: (1) without extension of SO∞, and (2)
with extension of SO∞. Since our approaches are con-
structive, both of the above two flavors produce exactly
soluble fermionic models that realize various SPT states.
However, the approach with extension of SO∞ is more
complete, i.e. it produces all the SPT phases produced
by the approach without extension of SO∞.

A. 2+1D

1. Without extension of SO∞

Calculate n̄2: We note that cohomology ring
H∗(BZ2;Z2) is generated by 1-cocycle āZ2 . Thus n̄2 ∈
H2(BZ2;Z2) = Z2 has two choices: n̄2 = αn(ā

Z2)2,
αn = 0, 1.
Calculate ν̄3: Next, we consider dν̄3 in (53). Since
ē2 = 0, only the term 1

2Sq
2n̄2 = 1

2 n̄
2
2 is non-zero. The

term 1
2 n̄

2
2 = αn

2 (āZ2)4 is a cocycle in Z4(BZ2;R/Z). Since

H4(BZ2;R/Z) = 0, thus 1
2 n̄

2
2 is always a coboundary in

B4(BZ2;R/Z). Therefore (53) has solution for all choices
of n̄2. Noticing that (see (A32))

1

2
d(āZ2)3

=
1

2
(dāZ2)(āZ2)2 −

1

2
āZ2(dāZ2)āZ2 +

1

2
(āZ2)2dāZ2

= (β2ā
Z2)(āZ2)2 − āZ2(β2ā

Z2)āZ2 + (āZ2)2β2ā
Z2

2
= (Sq1āZ2)(āZ2)2 + āZ2(Sq1āZ2)āZ2 + (āZ2)2Sq1āZ2

2
= (āZ2)4, (123)

we find that the solution has a form

ν̄3
1
=

αn

4
(āZ2)3 +

αν

2
(āZ2)3, αν = 0, 1. (124)

where αν

2 (āZ2)3 ∈ H3(BZ2;R/Z).

We like to remark that in order for 1
4 (ā

Z2)3 to be well

defined mod 1, we need to view the Z2-valued āZ2 as Z-
valued with values 0 and 1. Let us use āZ2 denote such
a map from Z2-valued to Z-valued. Thus more precisely,
we have

ν̄3
1
=

αn

4
(āZ2)3 +

αν

2
(āZ2)3, αν = 0, 1. (125)

As a result, Z2 ×Zf
2 SPT states are labeled by (αn, αν).

Thus, there are 4 different Z2×Zf
2 fermionic SPT states

from fermion decoration.

SPT invariant: The four obtained Z2 × Zf
2 fermionic

SPT states labeled by αn, αν = 0, 1 are realized by the
following local fermionic model (in the bosonized form as
in (45))

Z(M3, AGb) (126)

=
∑

g∈C0(M4;Z2);f2
2
=αn(aZ2 )2

e iπ
∫
M3

αn+2αν
2 (aZ2 )3+αn(a

Z2 )2AZ
f
2 +iπ

∫
N4 Sq2f2+f2w2 .

Its SPT invariant is

Ztop(M3, AGb)

=e i 2π
∫
M3

αn+2αν
4 (AZ2 )3+αn

2 (AZ2 )2AZ
f
2 e iπ

∫
N4 Sq2f2+f2w2 ,

f2
∣

∣

∂N 4

2
= n2, dAZ2

2
= w2. (127)

2. With extension of SO∞

Calculate n̄2: First GfSO = Z2 × Spin∞, where Zf
2 is

contained in Spin∞. Since n̄2 ∈ H2[B(Z2×Spin∞);Z2],
n̄2 can be written as a combination of āZ2 , w̄1 and w̄2.

However, for Spin∞ w̄1
2,d
= w̄2

2,d
= 0. Thus n̄2 is given by

n̄2
2
= αn(ā

Z2)2. (128)

Thus n̄2 has two choices: αn = 0, 1.
Calculate ν̄3: Next, we consider ν̄3(ā

GfSO ) in (87) which
becomes

−dν̄3
1
=

1

2
Sq2n̄2 +

1

2
n̄2dĀ

Z
f
2

1
=

αn

2
(āZ2)4 +

αn

2
(āZ2)2dĀZ

f
2 (129)

where we have labeled ā
GfSO

ij ∈ GfSO = Z2×(Z
f
2 ⋋SO∞)

by a triple (āZ2
ij , Ā

Z
f
2

ij , āSO
ij ). We have used the fact that

w̄2(a
SO) is a coboundary: w̄2

2
= dĀZ

f
2 . The solution of

the above equation has a form

ν̄3(ā
Z2 , ĀZ

f
2 )

1
=

αν

2
(āZ2)3 +

αn

4
(āZ2)3 +

αn

2
(āZ2)2ĀZ

f
2

(130)

where αν = 0, 1.
SPT invariant: The SPT invariant is given by

Ztop(M3, AGfSO )

= e i 2π
∫
M3

αν
2 (AZ2 )3+αn

4 AZ23
+αn

2 (AZ2 )2AZ
f
2

e iπ
∫
N4 Sq2f2+f2w2 ,

f2
∣

∣

∂N 4

2
= αn(A

Z2)2, dAZ2
2
= w2. (131)

where the background connection AGfSO is labeled by a

triple (AZ2 , AZ
f
2 , ASO). As a result, Z2 × Zf

2 SPT states
from fermion decoration are labeled by (αn, αν). It turns
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out that all those labels (αn, αν) are inequivalent accord-

ing to (105) and (106). Thus there are 4 different Z2×Z
f
2

fermionic SPT states from fermion decoration.
However, for non-interacting fermions, the 2+1D Z2×

Zf
2 -SPT phases are labeled by Z. After include interac-

tion, Z reduces to Z8, and there are 8 different fermionic

Z2 × Zf
2 -SPT phases52–55. The extra fermionic SPT

phases must come from the decoration of the topolog-
ical p-wave superconducting chains.35,36 In this paper,
we only develop a generic theory for fermion decoration,

which misses some of the Z2×Zf
2 fermionic SPT phases.

We hope to develop a generic theory for the decoration of
the topological p-wave superconducting chains in future.

B. 3+1D

1. Without extension of SO∞

Calculate n̄3: n̄3 ∈ H3(BZ2;Z2) = Z2 has two choices:
n̄3 = αn(ā

Z2)3, αn = 0, 1. These two n̄3’s are not equiv-
alent.
Calculate ν̄4: ν̄4 is obtained from (53), which has a form

−dν̄4
1
=

αn

2
Sq2(āZ2)3. (132)

It turns out that 1
2Sq

2(āZ2)3
1
= 1

2 (ā
Z2)5 (see (M5)), which

is a non-trivial element in H5(BZ2;R/Z) = Z2. Thus
ν̄4 has no solution when αn = 1 and αn must be zero.
When n̄3 = 0, ν̄4 has only one inequivalent solution since
H4(BZ2;R/Z) = 0.

2. With extension of SO∞

Calculate n̄3: From GfSO = Z2 × Spin∞, we see that
n̄3 ∈ H3(GfSO;Z2) is generated by āZ2 and Stiefel-
Whitney class w̄n. For Spin∞, w̄1 = w̄2 = 0. Also,

Sq1w̄2
2,d
= w̄1w̄2 + w̄3

2,d
= w̄3. Since w̄2 is a coboundary

for Spin∞, w̄3 is also a coboundary. Thus, n̄3 is given by

n̄3
2
= αn(ā

Z2)3, αn = 0, 1. (133)

Calculate ν̄4: ν̄4 is obtained from

−dν̄4
1,d
=

αn

2
Sq2(āZ2)3. (134)

Since 1
2Sq

2(āZ2)3
1
= 1

2 (ā
Z2)5 (see (M5)) is the non-trivial

element in H5(BGfSO;R/Z) = Z2. Thus ν̄4 has solution
only when αn = 0.
When n̄3 = 0, ν̄4 has a form

ν̄4(ā
GfSO )

1
=

αν,1

2
(āZ2)4 +

αν,2

2
w̄4 + ανp1,

αν,1, αν,2 = 0, 1, αν ∈ [0, 1), (135)

where p1 is the first Pontryagin class. However, 1
2 (ā

Z2)4

is a coboundary in B4(BGfSO;R/Z).

Also, in 3+1D space-time M4, w4
2,d
= w2

2 + w4
1 (see

Appendix I 4). Since M4 is orientable spin manifold,

w2
2

2,d
= w4

1
2,d
= 0, we also have w4

2,d
= 0. Last αν is not

quantized and different values of αν ’s are connected and
belong to the same phase. Thus the above solutions
are equivalent. We find that there is only one trivial

fermionic Z2 × Zf
2 SPT phases in 3+1D from fermion

decoration. This agrees with the result in Ref. 17.
Ref. 18 and 19 showed that there is only one trivial

fermionic Z2 × Zf
2 -SPT phases in 3+1D. Our result is

also consistent with that.

XI. FERMIONIC Zf
4 -SPT STATE

In this section, we are going to study fermionic SPT

phases with Gf = Zf
4 symmetry in 2+1D and in 3+1D.

Such a symmetry can be realized by a charge-2e super-

conductor of electrons where the Zf
4 symmetry is gen-

erated by 180◦ Sz-spin rotation. Another way to real-

ize the Zf
4 symmetry is via charge-4e superconductors of

electrons. This kind of fermionic SPT states is beyond
the approach in Ref. 17, 35, and 36 which only deal with

Gf of the form Gf = Z
f
2 ×Gb.

For fermion systems with bosonic symmetry Gb = Z2,
the full fermionic symmetry Gf is an extension of Gb by

Zf
2 . The bosonic symmetry Gb = Z2 has two extensions

described by ē2 ∈ H2(BZ2;Z2) = Z2. For ē2
2
= 0, the

extension is Gf = Zf
2 × Z2. The corresponding fermion

SPT phases are discussed in the last section. For ē2
2
=

(āZ2)2, the extension is Gf = Zf
2 ⋋ Z2 = Zf

4 . We will
discuss the corresponding fermionic SPT phases in this
section.
For Gf = Zf

4 , the group GfSO is an extension of SO∞

by Zf
4 :

GfSO = Zf
4 ⋋e2 SO∞ = (Zf

2 ⋋ Z2)⋋ SO∞. (136)

The possible extensions of SO∞ by Z4 are labeled by

ē2 ∈ H2(BSO∞;Z4) = Z2 which is generated by ē2
4
=

2w̄2(ā
SO).

The links in the simplicial complex BGfSO are labeled

by ā
GfSO

ij ∈ GfSO (see Ref. 41 and Appendix L). We may

label the elements ā
GfSO

ij ∈ GfSO by a pair āSO
ij ∈ SO∞

and ā
Zf

4
ij ∈ Z

f
4 :

aGfSO = (aZ
f
4 , aSO). (137)

This allows us to introduce two projections π(ā
GfSO

ij ) =

āSO
ij and σ(ā

GfSO

ij ) = ā
Zf

4
ij (see Appendix N). Thus we can

also label the links using a pair (ā
Zf

4
ij , āSO

ij ). Although

w2(ā
SO) is a cocycle in C2(BSO∞;Z2), 2w2(π(ā

GfSO )),
when viewed as a function of āGfSO , is a coboundary
in B2(BGfSO;Z4). In other words, the two canonical
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1-cochain on BGfSO, ā
SO
ij and ā

Zf
4

ij , are related by (see

(N13))

dāZ
f
4

4
= 2w̄2(ā

SO). (138)

We can write āZ
f
4 as

āZ
f
4

4
= āZ2 + 2ĀZ

f
2 (139)

where āZ2 and ĀZ
f
2 are Z2-valued 1-cochains. We see

āZ
f
4

2
= āZ2 , dāZ2

2
= 0. (140)

Equation (140) implies that

β2ā
Z2

2
= w̄2(ā

SO) + dĀZ
f
2 . (141)

which can be rewritten as (see (A32))

Sq1āZ2
2
= (āZ2)2

2
= w̄2(ā

SO) + dĀZ
f
2 . (142)

A. 2+1D

1. Without extension of SO∞

Calculate n̄2: First, n̄2 ∈ H2(BZ2;Z2) = Z2. It has
two choices: n̄2 = αn(ā

Z2)2, αn = 0, 1.
Calculate ν̄3: Similar to the last section, ν̄3 satisfies

−dν̄3
1
=

α2
n

2
Sq2(āZ2)2 +

αn

2
(āZ2)2ē2

1
= 0. (143)

Thus, ν̄3 has two solutions:

ν̄3
1
=

αν

2
(āZ2)3, αν = 0, 1, (144)

since H3(BZ2;R/Z) = Z2.

SPT invariant: The four Zf
4 fermionic SPT states la-

beled by αn, αν = 0, 1 have the following SPT invariant

Ztop(M3, AZ2 , AZ
f
2 )

= e i 2π
∫
M3

αν
2 (AZ2 )3+αn

2 (AZ2 )2AZ
f
2 e iπ

∫
N4 Sq2f2+f2w2 ,

dAZ
f
2

2
= w2 + (AZ2)2, f2

∣

∣

∂N 4

2
= αn(A

Z2)2 (145)

where the space-timeM3 is orientable and w1
2
= 0. How-

ever, as we will see below, the four Zf
4 fermionic SPT

states all belong to the same phase.

On 2+1D space-time manifold, w2 + w2
1

2,d
= 0 (see

Appendix I 3). The Zf
4 fermionic symmetry requires

the space-time M3 to be a orientable manifold with

w2 + (AZ2)2
2,d
= 0 and w1

2,d
= 0. Thus (AZ2)2 is always a

coboundary: (AZ2)2 = du1.

Let us write f2 = f̃2 + αndu1 where f̃2
2
= 0 on ∂N 4,

which implies e iπ
∫
N4 Sq2f̃2+f̃2w2 = 1. The SPT invariant

now becomes (see (A29))

Ztop(M3, AZ2 , AZ
f
2 )

= e i 2π
∫
M3

αν
2 AZ2 du1+

αn
2 du1A

Z
f
2 e iπ

∫
M3 αn(Sq2u1+u1w2)

= e iπ
∫
M3 αn[u1(w2+du1)+(u1 du1+u1w2)] = 1. (146)

We see that the SPT invariant is independent of αn, αν .

Thus at the end, we get only one Zf
4 fermionic SPT

phase, which is the trivial SPT phase.

2. With extension of SO∞

Calculate n̄2: With extension of SO∞, in general,
n̄2(ā

GfSO ) ∈ H2(BGfSO;Z2) is given by [using the pair

(āSO, āZ
f
4 ) to label āGfSO ]

n̄2(ā
GfSO )

2
= αn,1w̄2(ā

SO) + αn,2(ā
Z2)2, (147)

αn,1, αn,2 = 0, 1. The above can be reduced to

n̄2(ā
GfSO )

2
= αn(ā

Z2)2 (148)

αn = 0, 1, due to the relation (142). So n̄2(ā
GfSO ) has

two choices, and H2(BGfSO;Z2) = Z2.
Calculate ν̄3: Next, we consider ν3 in (87) which be-
comes

−dν̄3
1
=

1

2
Sq2n̄2 +

1

2
n̄2w̄2

1
=

αn

2
(āZ2)2dĀZ

f
2 , (149)

where we have used (142) and (148). We find that ν̄3 is
given by

ν̄3
1
=

αν

2
(āZ2)3 +

αn

2
(āZ2)2ĀZ

f
2 , αν = 0, 1. (150)

SPT invariant: This leads to the SPT invariant

Ztop(M3, AGfSO )

= e i 2π
∫
M3

αν
2 (AZ2 )3+αn

2 (AZ2 )2AZ
f
2 e iπ

∫
N4 Sq2f2+f2w2 ,

f2
∣

∣

∂N 4

2
= αn(A

Z2)2, dAZ
f
2

2
= w2 + (AZ2)2, (151)

which as calculated above is always an identity. Thus,

there is only one trivial Zf
4 SPT fermionic phase in 2+1D.

This agrees with the result obtained in Ref. 37.

The Zf
4 symmetry was denoted by G−(C) symmetry

in Ref. 26. There, it was found that for non-interacting

fermion systems with Zf
4 = G−(C) symmetry, the SPT

phases in 2+1D is classified by Z. The result from Ref. 37

indicates that all of those non-interacting fermion Zf
4 -

SPT states actually correspond to trivial SPT states in
the presence of interactions.

B. 3+1D

1. Without extension of SO∞

Calculate n̄3: n̄3 ∈ H3(BZ2;Z2) has two choices:

n̄3 = αn(ā
Z2)3, (152)
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αn = 0, 1, since H3(BZ2;Z2) = Z2.
Calculate ν̄4: Next we want to solve

−dν̄4
1
=

1

2
(Sq2n̄3 + n̄3ē2)

1
= 0. (153)

where we have used (M5). Since H4(BZ2;R/Z) = 0, the

solution of (153) is unique ν̄4
1
= 0.

SPT invariant: This leads to the SPT invariant

Z(M3, AZ
f
4 ) = e iπ

∫
M4 αn(A

Z2 )3AZ
f
2 e iπ

∫
N5 Sq2f2+f2w2 ,

f3
∣

∣

∂N 4

2
= αn(A

Z2)3, (154)

where we have written AZ
f
4 as

AZ
f
4

4
= AZ2 + 2AZ

f
2 , (155)

which satisfies

dAZ
f
4

4
= 2w2, (156)

dAZ2
2
= 0, dAZ

f
2

2
= w2 + β2A

Z2
2
= w2 + (AZ2)2.

2. With extension of SO∞

Calculate n̄3: In general, n̄3(ā
GfSO ) ∈ H3(BGfSO;Z2)

can be written as

n̄3(ā
GfSO )

2
= αnw̄3(ā

SO) + α′
n(ā

Z2)3 + α′′
nw̄2(ā

SO)āZ2 ,

αn, α
′
n, α

′′
n = 0, 1. (157)

However, from w̄2
2,d
= (āZ2)2, we find that w̄2ā

Z2
2,d
=

(āZ2)3 and Sq1(w̄2 + (āZ2)2)
2,d
= w̄1w̄2 + w̄3

2,d
= w̄3

2,d
= 0

(see Appendix I and notice w̄1
2
= 0). Thus the above

expression for n3(ā
GfSO ) is reduced to

n3(ā
GfSO )

2
= αn(ā

Z2)3,

αn = 0, 1. (158)

There are two choices of n3.
Calculate ν̄4: Next, we consider ν̄4 in (87) which be-
comes (see (142) and (M5))

−dν̄4(ā
GfSO )

1
=

1

2
Sq2n̄3(ā

GfSO ) +
1

2
n̄3(ā

GfSO )w̄2(ā
SO)

1
=

αn

2
(āZ2)5 +

αn

2
(āZ2)3w̄2(ā

SO)

1
=

αn

2
(āZ2)3dĀZ

f
2 . (159)

From 1
2w2

1,d
= 1

2 (ā
Z2)2, we obtain that 1

2w2(ā
Z2)2

1,d
=

1
2 (ā

Z2)4 and 1
2 (w2)

2 1,d
= 1

2 (ā
Z2)2w2. Thus 1

2 (w̄2)
2 1,d

=
1
2 (ā

Z2)4. Since H4(BZ2;R/Z) = 0, we find that
1
2 (ā

Z2)4
1,d
= 0. We also find (see Appendix I) 0

2,d
=

Sq1(w̄2+(āZ2)2)
2,d
= w̄1w̄2+w̄3

2,d
= w̄3 and 0

2,d
= Sq2(w̄2+

(āZ2)2) = w̄2
2 + (āZ2)4. To summarize, we have

1

2
(āZ2)4

1,d
=

1

2
w̄2

2
1,d
=

1

2
āZ2w̄3

1,d
=

1

2
(āZ2)2w2

1,d
= 0. (160)

This allows us to conclude that ν̄4 must have a form

ν̄4
1
=

αn

2
(āZ2)3ĀZ

f
2 +

αν

2
p̄1. (161)

But on M4, we have p1
2,d
= w2

2
2,d
= 0. Thus the pullback

of ν̄4 toM4 reduces to

ν4
1
=

αn

2
(aZ2)3AZ

f
2 . (162)

SPT invariant: The corresponding fermionic model (in
the bosonized form) is given by

Z(M4, AGfSO )

=
∑

gi∈GfO

e iπ
∫
M4 αn(a

Z2 )3AZ
f
2 e iπ

∫
N5 Sq2f2+f2(w2+w2

1),

f3
∣

∣

∂N 5

2
= αn(a

Z2)3, (163)

which lead to a SPT invariant given by

Ztop(M4, AGfSO )

= e iπ
∫
M4 αn(A

Z2 )3AZ
f
2 e iπ

∫
N5 Sq2f2+f2w2 ,

f3
∣

∣

∂N 5

2
= αn(A

Z2)3, dAZ
f
2

2
= w2 + (AZ2)2, (164)

where AGfSO is labeled by (AZ2 , AZ
f
2 , ASO) (see (137)

and (139)). This agrees with (154)
Is the above SPT invariant trivial or not trivial? One

way to show the non-trivialness is to change AZ
f
2 by a

Z2-valued 1-cocycle A
Z

f
2

0 . In this case Ztop(M4, AGfSO )
changes by a factor

Z̃top = e iπ
∫
M4 αn(A

Z2 )3A
Z
f
2

0 = e iπ
∫
M4 αnw2A

Z2A
Z
f
2

0

(165)

where we have used w2
2,d
= (AZ2)2. Since

w2A
Z2A

Z
f
2

0
2,d
= Sq2(AZ2A

Z
f
2

0 )
2,d
= (Sq1AZ2)(Sq1A

Z
f
2

0 )

2,d
= (

1

2
dAZ2)(

1

2
dA

Z
f
2

0 ). (166)

We find

Z̃top = e iπ
∫
M4 αn(

1
2 dAZ2 )( 1

2 dA
Z
f
2

0 ) = 1, (167)

which is independent of αn. This suggests that αn = 0, 1
describes the same SPT phases.

C. Zf
4 × ZT

2 -SPT model

We have seen that the model (163) describes a trivial

Zf
4 -SPT phase even when αn = 1. However, we note

that the model (163) actually has a Zf
4 × ZT

2 symmetry.
It turns out that the model (163) realizes a non-trivial

Zf
4 × ZT

2 -SPT phase when αn = 1.
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To physically detect that non-trivial Zf
4 × ZT

2 -SPT
phase, we note that n3 = αn(A

Z2)3 is the 3-cocycle

fermion current. Let us put the Zf
4 -SPT state on space-

time S1
t × M3, where AGfSO on S1

t × M3 is the pull-
back of a AGfSO on the space M3. In this case, us-

ing (AZ2)2
2,d
= w2 and w2

1
2,d
= w2 on M3, we can rewrite

(AZ2)3 on M3 as AZ2w2
2,d
= AZ2w2

1. Now we can choose
M3 = RP 2 × S1. Then we have

∫

M3

n3
2
= αn

∫

RP 2×S1

AZ2w2
1

2
= αn

∫

S1
z

AZ2 . (168)

We find that, if we put the Zf
4 -SPT state on space RP 2×

S1, the fermion number in the ground state will be given

by Nf
2
= αn

∫

S1 A
Z2 . Thus adding a Zf

4 symmetry twist

around S1
z will change the fermion number in the ground

state by αn mod 2. When αn = 1, the non-trivial change
in the fermion number indicates the non-trivialness of the
SPT phase.

To realize such a fermionic Zf
4 × ZT

2 -SPT phase in
3+1D, we start with a symmetry breaking state that

break the Zf
4 to Zf

2 . The order-parameter has a Z2-
value. We then consider a random configuration of order-
parameter in 3d space. A fermion decoration that gives
rise to the αn = 1 phase is realized by binding a fermion
worldline to ∗(∗W3)

3. Here W3 is the 3-dimensional do-
main wall of the Z2-order-parameter. ∗ is the Poincaré
dual. Thus ∗W3 is a 1-cocycle. ∗(∗W3)

3 is the Poincaré
dual of a 3-cocycle which is a closed loop. The fermion
worldline is attached to such a loop.

XII. FERMIONIC Zf
2 × ZT

2 -SPT STATE

The fermion symmetry Zf
2 ×ZT

2 is realized by electron
superconductors with coplanar spin polarization. The
time reversal ZT

2 is generated by the standard time re-
versal followed by a 180◦ spin rotation.

For Gf = ZT
2 × Zf

2 , GfO is a Zf
2 extension of O∞:

GfO = Zf
2 ⋋ O∞. Such kind of extensions are classified

by H2(BO∞;Z2) = Z2
2 which is generated by w2

1 and w2.

For fermion symmetry Zf
2 × ZT

2 , we should choose the

extension GfO = Zf
2 ⋋w2+w2

1
O∞ = Pin−

∞. According to

Appendix N, this implies that, on BPin−
∞, the canonical

1-cochain āGfO satisfy a relation

w̄2(ā
GfO ) + w̄2

1(ā
GfO )

2
= dĀZ

f
2 . (169)

A. 2+1D

1. Without extension of O∞

Calculate n̄2: From n̄2 ∈ H2(BZT
2 ;Z2) = Z2, we obtain

n̄2
2,d
= αn(ā

ZT
2 )2

2,d
= αnw̄

2
1, αn = 0, 1. (170)

Calculate ν̄3: Next, we consider ν̄3 in (53). Since
ē2 = 0, only the term 1

2Sq
2n̄2 = 1

2 n̄
2
2 is non-zero. The

term 1
2 n̄

2
2 = αn

2 (āZT
2 )4 is a cocycle in Z4(ZT

2 ; (R/Z)T ).

Note that now ZT
2 has a non-trivial action on the

value R/Z and the differential operator d is modified
by this non-trivial action [which corresponds to the
cases of non-trivial αi in Ref. 41 and Appendix L, see
(L18)]. This modifies the group cohomology. Since

H4(BZT
2 ; (R/Z)T ) = Z2, and

1
2 (a

ZT
2 )4 is the non-trivial

cocycle inH4(BZT
2 ; (R/Z)T ), (53) has solution only when

αn = 0. In case αn = 0, there is only one solution ν3
1
= 0,

since H3(BZT
2 ; (R/Z)T ) = 0.

From (126), we see that when αn = 1, the action ampli-
tude is not real, and breaks the time reversal symmetry.
This is why αn = 1 is not a solution for time-reversal
symmetric cases.

2. With extension of O∞

Calculate n̄2: Due to the relation (169) on BGfO =

BPin−
∞, H2(BPin−

∞) = Z2 which is generated by w̄2
2,d
=

w̄2
1. Therefore, n̄2 ∈ H2(BPin−

∞;Z2) = Z2 has two
choices

n2
2
= αnw̄

2
1, αn = 0, 1. (171)

Calculate ν̄3: Next, we consider ν̄3 that satisfy (80)
which becomes, in the present case,

−dν̄3
1
=

αn

2
[w̄4

1 + w̄2
1(w̄2 + w̄2

1)].

1
=

αn

2
[w̄4

1 + w̄2
1dĀ

Z
f
2 ]. (172)

where we have used

dĀZ
f
2

2
= w̄2 + w̄2

1. (173)

1
2 w̄

4
1 is a non-trivial cocycle in H4(BPin−

∞; (R/Z)T ).
Thus (80) has solution only when αn = 0. In this case,
there are four solutions

ν̄3
1
=

αν

2
w̄3 +

α̃ν

2
w̄3

1, αν , α̃ν = 0, 1. (174)

SPT invariant: The corresponding SPT invariant is
given by

Ztop(M3, AGfO )

= e i 2π
∫
M3

αν
2 w3(A

O)+ α̃ν
2 w3

1(A
O) e iπ

∫
N4 Sq2f2+f2w2 ,

f2
∣

∣

∂N 4

2
= 0 → e iπ

∫
N4 Sq2f2+f2w2 = 1, (175)

where the background connection AGfO is labeled by

(AZ
f
2 , AO). On 2+1D space-time M3, we always have

w2 +w2
1

2,d
= 0 and w3

1
2,d
= w2w1

2,d
= w3

2,d
= 0 (see Appendix

I 3). The above four solutions give rise to the same SPT

invariant and the same fermionic Zf
2 × ZT

2 SPT phase.
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For non-interacting fermions, there is no non-trivial

fermionic Zf
2 ×ZT

2 -SPT phase. The above result implies
that, for interacting fermions, fermion decoration also fail

to produce any non-trivial fermionic Zf
2 ×Z

T
2 -SPT phase.

The spin cobordism consideration18,19 tells us that there

is no non-trivial fermionic Zf
2 ×ZT

2 -SPT phase, even be-
yond the fermion decoration construction.

B. 3+1D

1. Without extension of O∞

Calculate n̄3: From H3(BZT
2 ;Z2) = Z2, we find that:

n̄3 = αn(ā
ZT

2 )3 = αnw̄
3
1, (176)

αn = 0, 1.

Calculate ν̄4: Next, we consider ν̄4 in (53), which has a
form

−dν̄4
1
=

αn

2
Sq2w̄3

1
1
=

αn

2
w̄5

1 (177)

where (M5) is used. It turns out that 1
2 w̄

5
1 is a trivial

element in H5(BZT
2 ; (R/Z)T ) = 0:

1

2
w̄5

1
1
= dw1 η̄4. (178)

To calculate η̄4, we first note that (see (A9))

(dw̄1

1

4
)01 =

1

4
(−)(w̄1)01 −

1

4
= −

1

2
(w̄1)01, (179)

or

dw̄1

1

4

1
=

1

2
w̄1. (180)

We also note that

w̄4
1

2
= (Sq1w̄1)

2 2
= (β2w̄1)

2, (181)

where β2w̄1 is a Z-valued cocycle. Thus

1

2
w̄5

1
1
=

1

2
w̄1(β2w̄1)

2 1
= (dw̄1

1

4
)(β2w̄1)

2 1
= dw̄1 [

1

4
(β2w̄1)

2].

(182)

or

ν̄4 =
1

4
(β2w̄1)

2 (183)

We see that ν̄4 has a form

ν̄4
1,d
=

αn

4
(β2w̄1)

2 +
αν

2
w̄4

1 αν = 0, 1. (184)

2. With extension of O∞

Calculate n̄3: n̄3 ∈ H3(BPin−
∞;Z2) may have a form

n3
2
= αnw̄

3
1 + α′

nw̄1w̄2 + α′′
nw̄3, αn, αn, α

′′
n = 0, 1.

(185)

From (169), we have w̄1w̄2
2
= w̄3

1 and 0
2
= Sq1(w̄2

1+w̄2)
2
=

w̄1w̄2 + w̄3. Thus n̄3 has two choices

n̄3
2
= αnw̄

3
1, αn = 0, 1. (186)

Calculate ν̄4: Next, we consider ν̄4 that satisfy (80)
which becomes, after using (M5)

−dν̄4
1
=

αn

2
[w̄5

1 + w̄3
1(w̄2 + w̄2

1)].

1
= αn(dη̄4 +

1

2
w̄3

1dĀ
Z

f
2 ). (187)

where we have used (169) and (178).

From 1
2 w̄2

1,d
= 1

2 w̄
2
1, we obtain that 1

2 w̄2w̄
2
1

1,d
= 1

2 w̄
4
1 and

1
2 w̄

2
2

1,d
= 1

2 w̄
2
1w̄2. We also find (see Appendix I) 0

2,d
=

Sq1(w̄2 + w̄2
1)

2,d
= w̄1w̄2 + w̄3 and 0

2,d
= Sq2(w̄2 + w̄2

1) =
w̄2

2 + w̄4
1. To summarize, we have

1

2
w̄4

1
1,d
=

1

2
w̄2

2
1,d
=

1

2
w̄2

1w̄2
1,d
=

1

2
w̄1w̄3

1,d
=

1

2
p̄1. (188)

where p̄1(a
O) is the first Pontryagin class (see (J2)).

Thus (80) has a solution of form

ν̄4
1
= αn(

1

4
(β2w̄1)

2 +
1

2
w̄3

1Ā
Z

f
2 ) +

αν

2
w̄4

1 +
α̃ν

2
w̄4,

αν , α̃ν = 0, 1, (189)

SPT invariant: The corresponding SPT invariant is
given by

Ztop(M4, AGfO ) = e iπ
∫
N5 Sq2f3+f3(w2+w2

1)

e i 2π
∫
M4 αn(

1
4 (β2w1)

2+ 1
2w

3
1A

Z
f
2 )+αν

2 w4
1+

α̃ν
2 w4 ,

f3
∣

∣

∂N 5

2
= αnw

3
1, dAZ

f
2

2
= w2 +w2

1, (190)

where the background connection AGfO is labeled by

(AZ
f
2 , AO). In 3+1D space-time, we have some additional

relations (I16). When combined with (188), we find

1

2
w4

1
1,d
=

1

2
w2

2
1,d
=

1

2
w2

1w2
1,d
=

1

2
w1w3

1,d
=

1

2
p1

1,d
= 0,

1

2
w4

1,d
= 0. (191)

Therefore, the SPT invariant is independent of αν and

α̃ν , and they fail to label different Zf
2 ×ZT

2 -SPT phases.

Also from w2
1 + w2

2,d
= 0 and w1w2

2,d
= 0 on the 3+1D

space-time, we see that w3
1

2,d
= 0. Thus n3 is always a

Z2-valued coboundary when pulled back on M4. As a
result, the SPT invariant is independent of αn and it
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fails to label different Zf
2 × ZT

2 -SPT phases (see (108)).

Therefore, there is only one trivial Zf
2 × ZT

2 SPT phase.

The fermionic Zf
2 ×ZT

2 symmetry is denoted by GT
+ in

Ref. 26. It was found that for non-interacting fermions,

there is no non-trivial fermionic Zf
2 × ZT

2 -SPT phase in
3+1D.24–26 The spin cobordism consideration18,19 also

tells us that there is no non-trivial fermionic Zf
2 × ZT

2 -
SPT phase, even beyond the fermion decoration con-
struction.

XIII. FERMIONIC ZT,f
4 -SPT STATE

In this section, we consider the fermionic SPT states

with Gb = ZT
2 and a non-trivial ē2 = (āZT

2 )2 = w̄2
1 in

H2(BZT
2 ;Z2) = Z2. In this case, the full fermionic sym-

metry is Gf = ZT,f
4 . For Gf = ZT,f

4 , GfO is a Zf
2

extension of O∞: GfO = Zf
2 ⋋w2

O∞ = Pin+
∞. This

implies that on BGfO = BPin+
∞, we have a relation (see

Appendix N)

w̄2(ā
GfO )

2
= dĀZ

f
2 . (192)

The fermion symmetry ZT,f
4 is realized by charge 2e elec-

tron superconductors with spin-orbital couplings.

A. 2+1D

1. Without extension of O∞

Calculate n̄2: First, the possible n̄2’s have a form

n̄2 = αn(ā
ZT

2 )2
2
= αnw̄

2
1, (193)

where αn = 0, 1.
However, after n̄2 is pulled back on M3, it becomes

n2
2
= αnw

2
1. On 2+1D manifold, we have w2 + w2

1
2,d
= 0,

and on a Pin+ manifold we have w2
2,d
= 0. Thus, on a

2+1D Pin+ manifold, w2
1 is always a coboundary. The

two solutions of n2 are equivalent (see (108)) and we can
choose αn = 0.
Calculate ν̄3: Now ν̄3 is obtained from dν̄3

1
= 0. ν̄3 has

only one solution ν̄3
1
= 0, since H3(BZT

2 ; (R/Z)T ) = 0.

2. With extension of O∞

Calculate n̄2: Due to the relation (192), H2(BPin+
∞) =

Z2 which is generated by w̄2
1. Thus n̄2 ∈ H2(BPin+

∞;Z2)

has two choices n̄2
2
= αnw̄

2
1, αn = 0, 1.

On a 2+1D space-timeM3 with GfO = Zf
2 ⋋w̄2 O∞ =

Pin+
∞ connection AGfO , the connection can be viewed as

a pullback from the canonical 1-cochain āGfO on BGfO.

Such a 2+1D space-time satisfies w2
2,d
= 0 and is a Pin+

manifold. Since any 3-manifoldM3 satisfies w2 +w2
1

2,d
=

0 (see Appendix I), therefore, M3 with Zf
2 ⋋w̄2

O∞ =

Pin+
∞ connection satisfies w2

2,d
= w2

1
2,d
= 0. The pullback

of n̄2 onM3 is given by n2
2
= αnw

2
1. We see that, after

pulled back to M3, αn = 1 and αn = 1 are equivalent.
We may choose αn = 0.

Calculate ν̄3: Next, we consider ν̄3 that satisfy −dν̄3
1
=

0. There are four solutions

ν̄3
1
=

αν

2
w̄3 +

α̃ν

2
w̄3

1, αν , α̃ν = 0, 1. (194)

After pulled back to M3, ν̄3 becomes ν3
1
= αν

2 w3 +
α̃ν

2 w3
1. But on 2+1D space-time M3, we have a rela-

tion w3
2,d
= 0 (see (I12)). Combined the w2

2,d
= w2

1
2,d
= 0

obtained above, we find that the above four solutions
differ only by coboundaries, which give rise to the same

fermionic ZT,f
4 SPT phase. Therefore the fermion decora-

tion construction fails to produce a non-trivial fermionic

ZT,f
4 SPT phase. Thus, the fermion decoration construc-

tion fail to produces any non-trivial fermionic ZT,f
4 -SPT

state.
In fact, 2+1D ZT,f

4 fermionic SPT phases is classified

by Z2
18,19. The non-trivial ZT,f

4 SPT phase can be re-
alized as a p + ip superconductor for spin-up fermions
stacking with a p − ip superconductor for spin-down
fermions56,57. It has the following special property: Af-

ter we gauge the Zf
2 symmetry, we obtain a Zf

2 gauge

theory with Gb = ZT
2 symmetry. In 2+1D, Zf

2 charge

e, Zf
2 -flux, and their bound state em are all point-like

topological excitations. The time-reversal symmetry in
this case exchanges the bosonic e and m, and em is a
Kramers doublet29,33,58.

B. 3+1D

1. Without extension of O∞

Calculate n̄3: n̄3 ∈ H3(BZT
2 ;Z2) = Z2 is given

n̄3
2,d
= αn(ā

ZT
2 )3

2,d
= αnw̄

3
1. (195)

For the 3+1D space-time with a Pin+ structure

(i.e. w2
2,d
= 0), it turns out that, even when w2

2,d
= 0,

w3
1 is still non-trivial. So n3

1
= αnw

3
1 indeed has two

choices.
Calculate ν̄4: Next we want to solve

−dν̄4
1
=

1

2
Sq2n̄3 +

1

2
n̄3ē2

1
=

αn

2
Sq2(āZT

2 )3 +
αn

2
(āZT

2 )5
1
= 0, (196)

where we have used (M5)). Since H4(BZT
2 ; (R/Z)T ) =

Z2, ν4 has two solutions

ν̄4
1
=

αν

2
(āZT

2 )4
1
=

αν

2
w̄4

1.
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On 3+1D space-time with w2
2,d
= 0, 1

2w
4
1 is still a non-

trivial R/Z-valued cocycle. The pullback on M4, ν4
1
=

αν

2 w4
1, is still non-trivial.

2. With extension of O∞

Calculate n̄3: Due to the relation (192), and

0
2,d
= Sq1w̄2

2,d
= w̄1w̄2 + w̄3

2,d
= w̄3, we find that

H2(BPin+
∞;Z2) = Z2 is generated by w̄3

1. Thus n̄3 ∈

H2(BPin+
∞;Z2) has two choices n̄3

2
= αnw̄

3
1, αn = 0, 1.

Calculate ν̄4: Next, we consider ν̄4 that satisfy

−dν̄4
1
=

αn

2
[w̄5

1 + w̄3
1(w̄2 + w̄2

1)]

1
=

αn

2
w̄3

1dĀ
Z

f
2 . (197)

Since w̄2
2,d
= w̄3

2,d
= 0, there are eight solutions

ν̄4
1
=

αn

2
w̄3

1Ā
Z

f
2 +

αν,1

2
w̄4

1 +
αν,2

2
w̄4 +

αν,3

2
p̄1,

αν,i = 0, 1. (198)

But on 3+1D space-time M3 with w2
2,d
= 0, we have

relations w3
2,d
= 0, w4

2,d
= w4

1, and p1
2
= w2

2
2
= 0 (see (I16)).

So the pullback of ν̄4 onM4 becomes

ν4
1
=

αn

2
w3

1Ā
Z

f
2 +

αν

2
w4

1, αν = 0, 1. (199)

SPT invariant: The corresponding SPT invariant is
given by

Ztop(M4, AGfO ) = e iπ
∫
N5 Sq2f3+f3(w2+w2

1)

e i 2π
∫
M4

αn
2 w3

1Ā
Z
f
2 +αν

2 w4
1 ,

f3
∣

∣

∂N 5

2
= αnw

3
1, dAZ

f
2

2
= w2, (200)

where the background connection AGfO is labeled by

(AZ
f
2 , AO). We see that fermion decoration construction

produces four different fermionic ZT,f
4 -SPT phases.

For non-interacting fermion systems, the ZT,f
4 -SPT

phases are classified by Z.24–26 However, after include in-

teraction, Ref. 18 and 19 found that the ZT,f
4 -SPT phases

are classified by Z16. Thus fermion decoration construc-

tion does not produce all the ZT,f
4 -SPT phases.

XIV. FERMIONIC (Uf
1 ⋊φ ZT,f

4 )/Z2-SPT STATE –

INTERACTING TOPOLOGICAL INSULATORS

The symmetry group

Gf = (Uf
1 ⋊φ ZT,f

4 )/Z2 (201)

is the symmetry group for topological insulator, i.e. for

electron systems with time reversal ZT,f
4 and charge con-

servation Uf
1 symmetries. Such a symmetry can be real-

ized by electron systems with spin-orbital coupling.

In the above expression, φ is a homomorphism φ :

ZT,f
4 → Aut(Uf

1 ). Let T be the generator of ZT,f
4 , then

φ(T ) changes an element in Uf
1 to its inverse. The semi-

direct product Uf
1 ⋊φZ

T,f
4 is defined using such an auto-

morphism φ(T ). Z2 in (Uf
1 ⋊φ ZT,f

4 )/Z2 is generated by

the product of the π-rotation in Uf
1 and T 2. It is in the

center of Uf
1 ⋊φ ZT,f

4 .
The symmetry group can be written as

Gf = Uf
1 ⋋ε̄2,φ ZT

2 . (202)

In other words, the elements in Gf can be labeled by

(ā(R/Z)f , āZT
2 ), ā(R/Z)f ∈ (R/Z)f and āZT

2 ∈ ZT
2 = {0, 1},

such that

(ā
(R/Z)f

1 , ā
ZT

2
1 )(ā

(R/Z)f

2 , ā
ZT

2
2 ) = (203)

(

ā
(R/Z)f

1 + φ(ā
ZT

2
1 ) ◦ ā

(R/Z)f

2 + ε̄2(ā
ZT

2
1 , ā

ZT
2

2 ), ā
ZT

2
1 + ā

ZT
2

2

)

where

ε̄2(ā
ZT

2
1 , ā

ZT
2

2 ) =
1

2
ā

ZT
2

1 ā
ZT

2
2 , φ(0) = 1, φ(1) = −1.

(204)

In terms of cochains, the above can be rewritten as

ε̄2 =
1

2
(āZT

2 )2. (205)

We may write Uf
1 as Z

f
2 ⋋c̄1 U1, i.e. write

ā(R/Z)f =
1

2
āR/Z +

1

2
ĀZ

f
2 (206)

where āR/Z ∈ R/Z = (− 1
2 ,

1
2 ] and ĀZ

f
2 ∈ Z

f
2 = {0, 1}.

From

ā
(R/Z)f

1 + ā
(R/Z)f

2 =
1

2
ā

R/Z
1 +

1

2
ā

R/Z
2 +

1

2
Ā

Z
f
2

1 +
1

2
Ā

Z
f
2

2

=
1

2
(ā

R/Z
1 + ā

R/Z
2 − ⌊ā

R/Z
1 + ā

R/Z
2 ⌋)

+
1

2
(Ā

Z
f
2

1 +
1

2
Ā

Z
f
2

2 + ⌊ā
R/Z
1 + ā

R/Z
2 ⌋)

=
1

2
(ā

R/Z
1 + ā

R/Z
2 − ⌊ā

R/Z
1 + ā

R/Z
2 ⌋)

+
1

2
(Ā

Z
f
2

1 +
1

2
Ā

Z
f
2

2 + c̄1(ā
R/Z
1 , ā

R/Z
2 )), (207)

we see that

c̄1(ā
R/Z
1 , ā

R/Z
2 ) = ⌊ā

R/Z
1 + ā

R/Z
2 ⌋ (208)

which is the first Chern class of U1. Note that

c̄1(ā
R/Z
1 , ā

R/Z
2 ) is a smooth function of ā

R/Z
1 , ā

R/Z
2 near

ā
R/Z
1 , ā

R/Z
2 = 0. But it has discontinuities away from

ā
R/Z
1 , ā

R/Z
2 = 0.

Now we can label elements in Gf by triples

(ĀZ
f
2 , āR/Z, āZT

2 ). The group multiplication is

(Ā
Z

f
2

1 , ā
R/Z
1 , ā

ZT
2

1 )(Ā
Z

f
2

2 , ā
R/Z
2 , ā

ZT
2

2 )



28

=
(

Ā
Z

f
2

1 + Ā
Z

f
2

2 + 2ε̄2(ā
ZT

2
1 , ā

ZT
2

2 ) + c̄1(ā
R/Z
1 , ā

R/Z
2 ) ,

ā
R/Z
1 + φ(ā

ZT
2

1 ) ◦ ā
R/Z
2 , ā

ZT
2

1 + ā
ZT

2
2

)

(209)

We see that Gf can also be written as

Gf = Zf
2 ⋋ē2 (U1 ⋊φ ZT

2 ), (210)

where

ē2
2,d
= c̄1 + (āZT

2 )2
2,d
= c̄1 + w̄2

1. (211)

For fermion symmetry Gf = (Uf
1 ⋊φ ZT,f

4 )/Z2, the
corresponding extended group GfO can be written as

GfO = G0
f ⋋ε̄′2

O∞ = Uf
1 ⋋ε̄′2

O∞ = Zf
2 ⋋ē′2

(U1 ⋊φ O∞)

ε̄′2
1
=

1

2
w̄2, ē′2

2
= w̄2 + c̄1. (212)

where G0
f is the fermion symmetry with time reversal

removed: G0
f = Uf

1 . We like to mention that ε̄′2 ∈

H2(BO∞;R/Z) which describes how we extend O∞ by

Uf
1 and ē′2 ∈ H2(B(U1 ⋊φ O∞);Zf

2 ) which describes how

we extend U1 ⋊φ O∞ by Zf
2 .

We may view ε̄′2(ā
O) as ε̄′2(π

U1(āGfO )) an element
in H2(BGfO; (R/Z)T ), where πU1 is the projection

GfO
πU1

−−→ O∞. Then ε̄′2(π
U1(āGfO )) is a trivial element

in H2(BGfO; (R/Z)T ) (i.e. is a (R/Z)T -valued cobound-
ary, see Appendix N):

1

2
w̄2(π

U1(āGfO ))
1
= dη̄1(ā

GfO ),

η̄1 ∈ C1(BGfO, (R/Z)T ). (213)

Similarly, we may view ē′2 as a trivial element in
H2(BGfO;Z2):

w̄2(π
Zf

2 (āGfO )) + c̄1(π
Zf

2 (āGfO ))
2
= dū1(ā

GfO ),

ū1 ∈ C1(BGfO,Z2), (214)

where πZf
2 is the projection GfO

πZ
f
2

−−−→ U1 ⋊ O∞. Equa-
tions, (213) and (214) imply that although c̄1 mod 2
can be a non-trivial Z2-valued cocycle, 1

2 c̄1 is always a
(R/Z)T -valued coboundary on BGfO.

In other words, on space-time Md+1, we have a GfO

connection aGfO . The GfO connection can be labeled in
two ways

aGfO = (a(R/Z)f , aO) = (AZ
f
2 , aR/Z, aO) (215)

using the two expressions of GfO (212). In the above aO

is the connection of the tangent bundle of the space-time.
The above results implies that, if the aO can be lifted to
a aGfO connection, then 1

2w2(a
O) onMd+1 is a (R/Z)T -

valued coboundary and w2 + c1 is a Z2-valued cobound-
ary. Here O has a non-trivial action on the (R/Z)T co-

efficient: R/Z
T
−→ −R/Z, as indicated by the subscript

T .

A. 2+1D

1. Without extension of O∞

Calculate n̄2: To construct fermionic (Uf
1 ⋊ ZT,f

4 )/Z2

SPT states using fermion decoration, we need to find
n̄2 ∈ H2(BGb;Z2) = H2(B(U1 ⋊ ZT

2 );Z2). Notice that

H2[B(U1 ⋊ ZT
2 );Z2] ֌ H2(BZT

2 ;Z2)⊕

H1[BZT
2 ;H

1(BU1,Z2)]⊕H2(BU1;Z2) (216)

We can construct n̄2(ā
Gb) using flat ZT

2 -connection aZ
T
2

and nearly flat U1 connection aR/Z:

n2(a
Gb)

2
= αn(ā

ZT
2 )2 + α̃nc̄1

2
= αnw̄

2
1 + α̃nc̄1,

αn, α̃n = 0, 1. (217)

When αn = 1, we decorate the intersection of ZT
2

symmetry-breaking domain walls by fermion. When
α̃n = 1, we decorate the 2π-flux of bosonic U1 (which

is the π-flux of bosonic Uf
1 ) by fermion.

We note that the space-timeMd+1 has a twisted spin
structure

dAZ
f
2

2
= w2 +w2

1 + e2
2
= w2 + c1. (218)

So an electron system with time reversal and charge con-

servation symmetry Gf = (Uf
1 ⋊φZ

T,f
4 )/Z2 can only lives

on space-time with trivial w2 + c1. A 2+1D space-time

M3 also satisfies w2 + w1
1

2,d
= 0. Thus decorating the

intersection of ZT
2 symmetry-breaking domain walls and

decorating the 2π-flux of bosonic U1 give rise to the same
SPT phase. The inequivalent pullback of n̄2 to M3 has
a form

n2
2
= αnw

2
1, αn = 0, 1. (219)

So n2 has two choices.
Calculate ν̄3: Next, we calculate ν̄3(ā

Gb) from (53),
which becomes

−dν̄3
1
=

αn

2
[w̄4

1 + w̄2
1(w̄

2
1 + c̄1)].

1
=

αn

2
c̄1w̄

2
1 (220)

1
2 c̄1w̄

2
1 is a coboundary in H4(B(U1 ⋊ ZT

2 ); (R/Z)T ):

1

2
c̄1w̄

2
1

1
= d

1

4
c̄1w̄1. (221)

We first note that 1
4 c̄1w̄1 is a product of three values: a

R/Z-value 1
4 , a Z-value in c̄1, and a Z2-value in w̄1. The

time reversal ZT
2 has a non-trivial action on the R/Z-

value 1
4 → −

1
4 and a non-trivial action on the Z-value

Z→ −Z. Thus time reversal ZT
2 acts on the Chern class

c̄1 → −c̄1. Therefore, ZT
2 acts trivially on the combina-

tion 1
4 w̄1c̄1, and d in d 1

4 w̄1c̄1 is the ordinary differentia-
tion operator, not the dw1

in (A9). Now using (A32), we
find

d
1

4
w̄1c̄1 =

1

2
(β2w̄1)c1

1
=

1

2
w̄2

1c̄1. (222)
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This means that ν̄3 has solution for all two cases αn =
0, 1:

ν̄3
1
=

αn

4
w̄1c̄1. (223)

We note that

H3[B(U1 ⋊ ZT
2 ); (R/Z)T ] ֌ H3[BZT

2 ;H
0(BU1;R/Z)]⊕

H2[BZT
2 ;H

1(BU1;R/Z)]⊕H1[BZT
2 ;H

2(BU1;R/Z)]⊕

H0[BZT
2 ;H

3(BU1;R/Z)]

= H3[BZT
2 ; (R/Z)T ]⊕H2[BZT

2 ;Z]⊕H0[BZT
2 ; (Z)T ]

= 0 (224)

Thus, for each n̄2, there is only one solution of ν̄3 since
H3[B(U1 ⋊ ZT

2 ); (R/Z)T ] = 0.

2. With extension of O∞

Calculate n̄2: To construct fermionic Gf = (Uf
1 ⋊φ

ZT,f
4 )/Z2 SPT states using fermion decoration and ex-

tension of O∞ , we first calculate n̄2 ∈ H2(BGfO;Z2) =

H2(B(Uf
1 ⋋ε̄′2

O∞);Z2). n̄2 has a form

n̄2
2,d
= αnw̄

2
1 + α̃nw̄2, αn, α̃n = 0, 1. (225)

We do not have the c̄1 term due to the relation c̄1
2,d
= w̄2.

However, on 2+1D manifold, w2
2,d
= w2

1. Thus the pull-
back of n̄2 on space-timeM3 has a simpler form

n2
2,d
= αnw

2
1, αn = 0, 1. (226)

Calculate ν̄3: Next, we calculate ν̄3(ā
GfO ) from (80),

which becomes

−dν̄3
1
=

αn

2
[w̄4

1 + w̄2
1(w̄2 + w̄2

1)].

1
=

αn

2
w̄2

1c̄1

Similarly, we find ν̄3 ∈ H3(B(Uf
1 ⋋ε̄′2

O∞); (R/Z)T ) to
have a form

ν̄3
1
=

αn

4
w̄1c̄1 +

αν

2
w̄3

1 +
α̃ν

2
w̄3. (227)

The term 1
2 w̄1c̄1

1,d
= 1

2 w̄1w̄2 is not included since 1
2 w̄2 is

a coboundary (see (213)).

In 2+1D space-time, we have w2
1 +w2

2,d
= w3

2,d
= 0 (see

(I12)). This also implies that w3
1 is a coboundary. So the

pullback of ν̄3 onM3 is reduced to

ν3
1
=

αn

4
w1c1. (228)

SPT invariant: The above ν3 gives rise to two fermionic

(Uf
1 ⋊φ ZT,f

4 )/Z2-SPT states, whose SPT invariant is
given by

Ztop(M4, AGfO )

= e i 2π
∫
M4

αn
4 w1c1 e iπ

∫
N4 Sq2f2+f2(w2+w2

1),

dAZ
f
2

2
= w2 + c1(A

U1), f2
∣

∣

∂N 4

2
= αnw

2
1,

αn = 0, 1. (229)

Here we label AGfO ∈ Uf
1 ⋋ε̄′2

O∞ by (AUf
1 , AO), and

label AUf
1 by A

Uf
1

ij = 1
2A

U1
ij + 1

2A
Z

f
2

ij , where A
Uf

1
ij , AU1

ij ∈

[0, 1) and A
Z

f
2

ij = 0, 1. The 2+1D space-time and its GfO

connection satisfies (213) and (214).

For non-interacting fermion systems, the (Uf
1 ⋊φ

ZT,f
4 )/Z2-SPT phases (the topological insulators) are

classified by Z2.
24–26 In the above, we show that, af-

ter including interaction and via fermion decoration, the
resulting interacting topological insulators are still de-
scribed by Z2.

B. 3+1D

1. Without extension of O∞

Calculate n̄3: n̄3(ā
Gb) ∈ H2(BGb;Z2) = H2(B(U1 ⋊

ZT
2 );Z2) has a form

n̄3
2
= αnw̄

3
1 + α̃nw̄1c̄1 (230)

On a 3+1D space-time M4 with w2
2,d
= c1, we have

w1c1
2,d
= w1w2

2,d
= 0 (see (I16)). Thus after pulled back

onM4, n̄3 reduces to

n3
2
= αnw

3
1, αn = 0, 1. (231)

Calculate ν̄4: ν̄4(ā
Gb) is calculated from (53), which

becomes

−dν̄4
1
=

αn

2
[w̄5

1 + w̄3
1(w̄

2
1 + c̄1)].

1
=

αn

2
c̄1w̄

3
1

To see if 1
2 c̄1w̄

3
1 is a non-trivial cocycle, we note that

H5[B(U1 ⋊ ZT
2 ); (R/Z)T ] ֌ H5[BZT

2 ;H
0(BU1;R/Z)]⊕

H4[BZT
2 ;H

1(BU1;R/Z)]⊕H3[BZT
2 ;H

2(BU1;R/Z)]⊕

H2[BZT
2 ;H

3(BU1;R/Z)]⊕H1[BZT
2 ;H

4(BU1;R/Z)]⊕

H0[BZT
2 ;H

5(BU1;R/Z)]

= H5[BZT
2 ; (R/Z)T ]⊕H4[BZT

2 ;Z]⊕H2[BZT
2 ; (Z)T ]⊕

H5(BU1;R/Z) = Z2 ⊕ Z (232)

The Z in H4[BZT
2 ;Z] comes from H1(BU1;R/Z) =

Z. The unit in Z correspond to the generator of
H1(BU1;R/Z): the R/Z-valued nearly-flat 1-cochain
āR/Z. The time-reversal ZT

2 has a non-trivial action on
the R/Z-value: R/Z → −R/Z. It also has a non-trivial
action on U1: āR/Z → −āR/Z. So the total action of ZT

2
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is given by āR/Z → āR/Z. Thus the action of ZT
2 on the

coefficient Z is trivial. In this case H4[BZT
2 ;Z] = Z2. It

is generated by η̄5 that satisfy

dη̄5
1
= c̄1β2(w̄

3
1)

1
=

1

2
c̄1dw1

(w̄3
1). (233)

Thus

η̄5 =
1

2
c̄1w̄

3
1. (234)

The Z in H2[BZT
2 ;ZT ] comes from H3(BU1;R/Z) =

Z. The unit in Z correspond to the generator of
H3(BU1;R/Z): the R/Z-valued nearly-flat 3-cochain
āR/Zc1, where c1 is the first Chern class of āR/Z. The
total action of ZT

2 is given by āR/Zc1 → −āR/Zc1.
Thus the action of ZT

2 on the coefficient Z is non-trivial
Z → −Z. This is why we denote Z as ZT . In this case
H2[BZT

2 ;ZT ] = 0.
So, H5[B(U1⋊ZT

2 ); (R/Z)T ] is generated by 1
2 w̄

3
1c̄1 and

āR/Zc̄21. We see that 1
2 w̄

3
1c̄1 is a non-trivial cocycle in

H5[B(ZT
2 ⋊U1); (R/Z)T ] This means that ν̄4 has solution

only when αn = 0. In this case, ν̄4 is given by the cocycles
in H4[B(U1 ⋊ ZT

2 ); (R/Z)T ]. We note that

H4[B(U1 ⋊ ZT
2 ); (R/Z)T ] ֌ H4[BZT

2 ;H
0(BU1;R/Z)]⊕

H3[BZT
2 ;H

1(BU1;R/Z)]⊕H2[BZT
2 ;H

2(BU1;R/Z)]⊕

H1[BZT
2 ;H

3(BU1;R/Z)]⊕H0[BZT
2 ;H

4(BU1;R/Z)]

= H4[BZT
2 ; (R/Z)T ]⊕H3[BZT

2 ;Z]⊕H1[BZT
2 ;ZT ]

= Z2 ⊕ Z2 (235)

The Z in H3[BZT
2 ;Z] comes from H1(BU1;R/Z) =

Z. The unit in Z correspond to the generator of
H1(BU1;R/Z): the R/Z-valued nearly-flat 1-cochain
āR/Z. The time-reversal ZT

2 has a non-trivial action on
the R/Z-value: R/Z → −R/Z. It also has a non-trivial
action on U1: āR/Z → −āR/Z. So the total action of ZT

2

is given by āR/Z → āR/Z. Thus the action of ZT
2 on the

coefficient Z is trivial. In this case H3[BZT
2 ;Z] = 0.

The Z in H1[BZT
2 ;ZT ] comes from H3(BU1;R/Z) =

Z. The unit in Z correspond to the generator of
H3(BU1;R/Z): the R/Z-valued nearly-flat 3-cochain
āR/Zc1, where c1 is the first Chern class of āR/Z. The
total action of ZT

2 is given by āR/Zc1 → −āR/Zc1.
Thus the action of ZT

2 on the coefficient Z is non-trivial
Z → −Z. This is why we denote Z as ZT . In this case
H1[BZT

2 ;ZT ] = Z2.
So, H4[B(U1 ⋊ ZT

2 ); (R/Z)T ] is generated by 1
2 c̄

2
1 and

1
2 (ā

ZT
2 )4. ν̄4 may have a form

ν̄4
1
=

αν

2
w̄4

1 +
α̃ν

2
c̄21, αν , α̃ν = 0, 1. (236)

2. With extension of O∞

Calculate n̄3: Let us first calculate n̄3 ∈
H2(BGfO;Z2) = H3(B(Uf

1 ⋋ε̄′2
O∞);Z2). n̄3 has a

form

n̄3
2,d
= αnw̄

3
1 + α̃nw̄1w̄2, αn, α̃n = 0, 1. (237)

We do not have the w̄1c̄1 term due to the relation c̄1
2,d
=

w̄2.

However, on 3+1D manifold, w1w2
2,d
= 0. Thus the

pullback of n̄3 on space-timeM3 has a simpler form

n3
2,d
= αnw

3
1, αn = 0, 1. (238)

Calculate ν̄4: Next, we calculate ν̄4(ā
GfO ) from (80),

which becomes

−dν̄4
1
=

αn

2
[w̄5

1 + w̄3
1(w̄2 + w̄2

1)]

1
=

αn

2
w̄3

1w̄2
1
=

αn

2
w̄3

1c̄1 +
αn

2
w̄3

1dū1, (239)

where we have used (214). We note that 1
2 w̄

3
1 is a (R/Z)T -

valued coboundary:

1

2
w̄3

1
1
= dη2, (240)

where ZT
2 has a non-trivial action on the value (R/Z)T .

Thus 1
2 w̄

3
1w̄2 is also a coboundary

1

2
w̄3

1w̄2
1
= d(η̄2c̄1 +

1

2
w̄3

1ū1). (241)

We find ν̄4 to have a form

ν̄4
1
= αn(η̄2c̄1 +

1

2
w̄3

1ū1) +
αν,1

2
w̄4

1 +
αν,2

2
w̄2

2 +
αν,3

2
w̄4

+
αν,4

2
w̄2

1w̄2 +
αν,5

2
w̄1w̄3, αν,i = 0, 1. (242)

The terms p̄1, w̄2c̄1, and w̄2
1c̄1 are not included since w̄2

2
2
=

p̄1 and w̄2
2
= c̄1.

In 3+1D space-time, we have w1w2
2,d
= w1w3

2,d
= w4

1 +

w2
2+w4

2,d
= 0 (see (I16)). Thus after pulled back to space-

timeM4, ν̄4 reduces to

ν4
1
= αn(η2c1 +

1

2
w3

1u1) +
αν

2
w4

1 +
α̃ν

2
w2c1

αν , α̃ν = 0, 1. (243)

We note that w2c1
2,d
= w2

2
2,d
= p1.

From (213), we see that 1
2w2 is a coboundary. So one

might expect the term 1
2w2c1 to be a coboundary, and

can be dropped. 1
2w2c1 is indeed a coboundary if we

view 1
2w2 as a (R/Z)T -valued cocycle, where subscript

T indicate the non-trivial action by time-reversal. (Note
that 1

2w2 can also be viewed as a R/Z-valued cocycle, and
in this case it may not be a coboundary.) Since c1 is a ZT -
valued cocycle, this implies that 1

2w2c1 is a coboundary if
we view it as R/Z-valued cocycle, where the time-reversal
acts trivially. But α̃ν

2 w2c1 in ν4 is viewed as a (R/Z)T
valued cocycle, which may be non-trivial.
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SPT invariant: The above ν4 gives rise to two fermionic

(Uf
1 ⋊φ ZT,f

4 )/Z2-SPT states, whose SPT invariant is
given by

Ztop(M4,AGfO ) = e i 2π
∫
M4 αn(η2c1+

1
2w

3
1u1)+

αν
2 w4

1+
α̃ν
2 p1

e iπ
∫
N5 Sq2f3+f3(w2+w2

1),

dAZ
f
2

2
= w2 + c1(A

U1), f3
∣

∣

∂N 4

2
= αnw

3
1,

αn, αν = 0, 1. (244)

Here we label AGfO ∈ Uf
1 ⋋ε̄′2

O∞ by (AUf
1 , AO), and

label AUf
1 by A

Uf
1

ij = 1
2A

U1
ij + 1

2A
Z

f
2

ij , where A
Uf

1
ij , AU1

ij ∈

[0, 1) and A
Z

f
2

ij = 0, 1. The 3+1D space-time and its GfO

connection satisfies (213) and (214).
In the above, we show that, after including inter-

action and via fermion decoration, we obtain 8 types
of interacting topological insulators (including the triv-
ial type). For non-interacting fermion systems, the

(Uf
1 ⋊φZ

T,f
4 )/Z2-SPT phases (the topological insulators)

in 3+1D are classified by Z2.
24–26 We also know that

bosonic ZT
2 -SPT phases are classified by Z2

2,
28–31 which

are generated by bosonic ZT
2 -SPT states with SPT in-

variants 1
2w

4
1,

1
2p1.

30,31 Our above result indicates that

the 4 bosonic ZT
2 -SPT phases correspond to 4 differ-

ent fermionic SPT phases when the bosons are formed
by electron-hole pairs. Z2 from free fermions and Z2

2

from bosonic electron-hole pairs leads to the total of 8

fermionic (Uf
1 ⋊φ ZT,f

4 )/Z2-SPT phases in 3+1D, ob-
tained via fermion decoration construction. This is con-
sistent with the previous physical argument59 and the
cobordism calculation.18,19

XV. FERMIONIC SUf
2 -SPT STATE

In this section, we are going to study fermionic SPT

phases with Gf = SUf
2 symmetry in 2+1D and in 3+1D.

Such a symmetry can be realized by a charge-2e spin-
singlet superconductor of electrons. For non-interacting

electron, there is no non-trivial SUf
2 -SPT phase in 3+1D.

For fermion systems with bosonic symmetry Gb =
SO3, the full fermionic symmetry Gf is an extension of

Gb by Zf
2 . The extension Gf = SUf

2 = Zf
2 ⋋

w
SO3
2

SO3 is

characterized by

ē2
2
= w̄SO3

2 ∈ H2(BSO3;Z2). (245)

For Gf = SUf
2 , the group GfSO is an extension of

SO∞ by SUf
2 :

GfSO = SUf
2 ⋋e2 SO∞ = Zf

2 ⋋ē′2
(SO3 × SO∞). (246)

where ē′2 ∈ H2(B(SO3 × SO∞);Z2) is given by

ē′2
2
= w̄2(ā

SO) + w̄SO3
2 (āSO3). (247)

On BGfSO, ē
′
2 is trivialized

w̄2(ā
SO) + w̄SO3

2 (āSO3)
2
= dĀZ

f
2 , (248)

where a GfSO connection is labeled by

aGfSO = (AZ
f
2 , aSO3 , aSO). (249)

A. 2+1D

1. Without extension of SO∞

Calculate n̄2: First, n̄2 ∈ H2(BSO3;Z2) = Z2. It has
two choices:

n̄2 = αnw̄
SO3
2 , αn = 0, 1. (250)

Calculate ν̄3: Similar to the last section, ν̄3 satisfies

−dν̄3
1
=

α2
n

2
Sq2w̄SO3

2 +
αn

2
w̄SO3

2 ē2
1
= 0. (251)

Thus, ν̄3 has solutions classified by Z:

ν̄3
1
= ανω

SO3
3 , αν ∈ Z, (252)

since H3(BSO3;R/Z) = Z (see (G7)).

SPT invariant: The SUf
2 fermionic SPT states labeled

by αn, αν have the following SPT invariant

Ztop(M3, AZ2 , AZ
f
2 )

= e i 2π
∫
M3 ανω

SO3
3 +αn

2 w
SO3
2 AZ

f
2 e iπ

∫
N4 Sq2f2+f2w2 ,

dAZ
f
2

2
= w2 +wSO3

2 , f2
∣

∣

∂N 4

2
= αnw

SO3
2 (253)

where the space-timeM3 is orientable and w1
2
= 0. How-

ever, as we will see below, the SUf
2 fermionic SPT phase

are only labeled by αν ∈ Z.

On 2+1D space-time manifold, w2 + w2
1

2,d
= 0 (see

Appendix I 3). The SUf
2 fermionic symmetry requires

the space-time M3 to be a orientable manifold with

w2 + wSO3
2

2,d
= 0 and w1

2,d
= 0. Thus n2

2,d
= wSO3

2 is
always a coboundary, and αn = 0, 1 describe the same
SPT phase.

2. With extension of SO∞

Calculate n̄2: With extension of SO∞, in general,
n̄2(ā

GfSO ) ∈ H2(BGfSO;Z2) is given by [using the triple

(ĀZ
f
2 , āSO3 , āSO) to label āGfSO ]

n̄2(ā
GfSO )

2
= αn,1w̄2(ā

SO) + αn,2w̄
SO3
2 (āSO3), (254)

αn,1, αn,2 = 0, 1. The above can be reduced to

n̄2(ā
GfSO )

2
= αnw̄2 (255)
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αn = 0, 1, due to the relation (248). So n̄2(ā
GfSO ) has

two choices. But on 2+1D orientable space-time M3,

w2
2,d
= 0. Thus after pulled back toM3, w2 is a cobound-

ary. Thus n2 is always trivial.
Calculate ν̄3: Next, we consider ν3 in (87) which be-

comes dν̄3
1
= 0. We find that ν̄3 is given by

ν̄3
1
= αν ω̄

SO3
3 +

α̃ν

2
w̄3 αν ∈ Z, α̃ν = 0, 1. (256)

However, w̄3
2,d
= β2w̄2 (see (A32) and (I7)) So the term

α̃ν

2 w̄3 can be rewritten as

α̃ν

2
w̄3

1,d
=

α̃ν

2
β2w̄2. (257)

In this form, since β2w̄2 is a Z-valued cocycle, α̃ν do not
have to be quantized as α̃ν = 0, 1. α̃ν can take any real
values and α̃ν

2 w̄3 is still a R/Z-valued cocycle. Thus α̃ν

is not quantized and can be tuned to zero. Thus we drop

the α̃ν

2 w̄3 term. Thus, The fermionic SUf
2 -SPT phase

obtained via fermion decoration is classified by αn ∈ Z.

B. 3+1D

1. Without extension of SO∞

Calculate n̄3: n̄3 ∈ H3(BSO3;Z2) has two choices:

n̄3 = αnw̄
SO3
3 (258)

αn = 0, 1, since H3(BSO3;Z2) = Z2.
Calculate ν̄4: Next we want to solve

−dν̄4
1
=

1

2
(Sq2n̄3 + n̄3ē2).

1
=

αn

2
(Sq2w̄SO3

3 + w̄SO3
3 w̄SO3

2 )
1
= ds̄SO3

4 , (259)

where we have used (see (I7))

Sq2w̄SO3
3

2
= w̄SO3

2 w̄SO3
3 + ds̄SO3

4 (āSO3) (260)

Since H4(BSO3;R/Z) = Z2, the solution of ν̄4 has a form

ν̄4
1
=

αν

2
w̄SO3

4 +
αn

2
s̄SO3
4 , αν = 0, 1. (261)

2. With extension of SO∞

Calculate n̄3: In general, n̄3(ā
GfSO ) ∈ H3(BGfSO;Z2)

can be written as

n̄3(ā
GfSO )

2
= αnw̄3 + α′

nw̄
SO3
3 ,

αn, α
′
n = 0, 1. (262)

However, from w̄2
2,d
= w̄SO3

2 , we find that Sq1(w̄2 +

w̄SO3
2 )

2,d
= w̄3 + w̄SO3

2
2,d
= 0 (see (I7) and notice w̄1

2
=

w̄SO3
1

2
= 0). Furthermore, on a orientable 4-manifoldM4,

wSO3
3

2,d
= w3 is always a coboundary. From Appendix I 4,

we have

aZ2w3
2,d
= (aZ2)2w2

2,d
= Sq2(aZ2)2

2,d
= (aZ2)4

2,d
= w1(a

Z2)3
2,d
= 0. (263)

Since aZ2 can be an arbitrary Z2-valued 1-cocycle, we

find w3
2,d
= 0. Thus the above expression for n3(ā

GfSO )
is reduced to

n3(ā
GfSO )

2
= 0. (264)

Calculate ν̄4: Next, we consider ν̄4 in (87) which be-

comes dν̄4(ā
GfSO )

1
= 0. We find that

ν̄4
1
= 0. (265)

Note that we do not have the p̄1 term since p̄1 is Z-valued
and its coefficient is not quantized. Also onM4, we have

w4
2,d
= w2

2
2,d
= p1. So we do not have the w4 and w2

2

terms. Due to (248), we also do not have the w2w
SO3
2 and

(wSO3
2 )2 terms. Thus there is no non-trivial fermionic

SUf
2 -SPT phases in 3+1D from fermion decoration.

XVI. FERMIONIC Z2 × Z4 × Zf
2 -SPT STATE

In this section, we are going to study fermionic SPT
phases, where the fermion symmetry is given by Gf =

Z2 × Z4 × Zf
2 symmetry. For non-interaction fermions,

there is no non-trivial Z2×Z4×Z
f
2 -SPT phases in 3+1D.

For Gf = Z2 × Z4 × Zf
2 , the corresponding GfSO =

Gf ⋋ SO∞ is given by GfSO = Z2 × Z4 × Spin∞. w̄2 is
trivialized on BGfSO:

w̄2(a
SO)

2
= dĀZ

f
2 , (266)

where we have labeled the GfSO connection as

aGfSO = (AZ
f
2 , aZ2 , aZ4 , aSO). (267)

where aZ4 is a Z4-valued 1-cocycle.

A. 2+1D

Calculate n̄2: First n̄2 ∈ H2(BGfSO;Z2) is given by

n̄2
2
= αn,1(ā

Z2)2 + αn,2(ā
Z4)2 + αn,3ā

Z2 āZ4 ,

αn,i = 0, 1. (268)

Calculate ν̄3: Next, we consider ν̄3(ā
GfSO ) in (87) which

becomes

−dν̄3
1
=

1

2
Sq2n̄2 +

1

2
n̄2dĀ

Z
f
2
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1
=

αn,1

2
(āZ2)4 +

αn,2

2
(āZ4)4 +

αn,3

2
(āZ2)2(āZ4)2

+
αn,3

2
āZ2 [d(āZ2 ⌣

1
āZ4)]āZ4

+
αn,1αn,2

2
d[(āZ2)2 ⌣

1
(āZ4)2]

+
αn,1αn,3

2
d[(āZ2)2 ⌣

1
āZ2 āZ4 ] (269)

+
αn,2αn,3

2
d[(āZ4)2 ⌣

1
āZ2 āZ4 ]

+ [
αn,1

2
(āZ2)2 +

αn,2

2
(āZ4)2 +

αn,3

2
āZ2 āZ4 ]dĀZ

f
2 .

The solution of the above equation has a form

ν̄3
1
=

αn,1

4
āZ2β2ā

Z2 +
αn,2

4
āZ4β2ā

Z2 +
αn,3

4
āZ4β2ā

Z2

+
αn,3

2
āZ2(āZ2 ⌣

1
āZ4)āZ4

+
αn,1αn,2

2
(āZ2)2 ⌣

1
(āZ4)2

+
αn,1αn,3

2
(āZ2)2 ⌣

1
āZ2 āZ4 (270)

+
αn,2αn,3

2
(āZ4)2 ⌣

1
āZ2 āZ4

+ [
αn,1

2
(āZ2)2 +

αn,2

2
(āZ4)2 +

αn,3

2
āZ2 āZ4 ]ĀZ

f
2

+
αν,1

2
(āZ2)3 +

αν,2

2
āZ4β2ā

Z2 +
αν,3

4
(āZ4)3.

where αν,i|i=1,2 = 0, 1 and αν,3 = 0, 1, 2, 3. αn,i, αν,i

label 128 different SPT phases, which can be divided into
8 classes with 16 SPT phases in each class. The 8 classes
are labeled by αn,i. The 16 SPT phases in each class
only differ by stacking the bosonic Z2 × Z4-SPT phases
realized by fermion pairs.

B. 3+1D

Calculate n̄3: Since GfSO = Z2 × Z4 × Spin∞, n̄3 ∈
H3(GfSO;Z2) is generated by āZ2 , āZ4 , and Stiefel-
Whitney class w̄n. For Spin∞, w̄1 = w̄2 = 0. Also,

Sq1w̄2
2,d
= w̄1w̄2 + w̄3

2,d
= w̄3. Since w̄2 is a coboundary

for Spin∞, w̄3 is also a coboundary. Thus, n̄3 is given by

n̄3
2
= αn,1(ā

Z2)3 + αn,2(ā
Z4)3 + αn,3ā

Z4(āZ2)2

+ αn,4ā
Z2(āZ4)2, αn,i = 0, 1. (271)

Calculate ν̄4: ν̄4 is calculated from (87)

dν̄4
1,d
=

αn,1

2
Sq2(āZ2)3 +

αn,2

2
Sq2(āZ4)3

+
αn,3

2
Sq2āZ4(āZ2)2 +

αn,4

2
Sq2āZ2(āZ4)2

1,d
=

αn,1

2
(āZ2)5 +

αn,2

2
(āZ4)5

+
αn,3

2
āZ4(āZ2)4 +

αn,3

2
āZ2(āZ4)4,

where we have used (M6). 1
2 (ā

Z2)5, 1
2 (ā

Z4)5,

and
αn,3

2 āZ2(āZ4)4 are non-trivial cocycles in

H5(BGfSO;R/Z). But
1
2 ā

Z4(āZ2)4 is a coboundary

1

2
āZ4(β2ā

Z2)(β2ā
Z2)

1
=

1

4
āZ4(dāZ2)β2ā

Z2
1
= d(

1

4
āZ4 āZ2β2ā

Z2)

(272)

Thus ν4 has a form

ν̄4(ā
GfSO )

1
=

αn

4
āZ4 āZ2β2ā

Z2 +
αν,1

2
āZ2(āZ4)3

+
αν,2

2
āZ4(āZ2)3, αν,i = 0, 1. (273)

We find that there are eight fermionic Z2 × Z4 × Zf
2 -

SPT phases in 3+1D from fermion decoration. Those
phases can be divided into two groups of four, and the
four phases in each group differ by bosonic Z2×Z4-SPT
phases from fermion pairs.

Ref. 21 has calculated Z2×Z4×Zf
2 -SPT phases using

cobordism approach and found Z2 × Z4 phases. On the
other hand, non-interacting fermions can only realize the

trivial Z2 × Z4 × Zf
2 -SPT phase.24–26 So the intrinsic

fermionic Z2×Z4×Z
f
2 -SPT phase (the phases that cannot

be realized by bosonic fermion pairs) cannot come from
non-interacting fermions.60 In the above, we see that the

intrinsic fermionic Z2×Z4×Zf
2 -SPT phases can all come

from fermion decoration.
After posting this paper, a paper Ref. 61 with related

results appeared. As stressed in this paper, the symmetry

in fermion systems is not described by Gb⋋Zf
2 , but more

precisely by a structure Zf
2 ⋋Gb ⋋ SO∞:

1→ Zf
2 → Gb ⋋ SO∞ → SO∞ → 1. (274)

Previously, the fermionic SPT orders with symmetry

Gf = Gb×Z
f
2 were studied17,35,36. This paper generalizes

the symmetry to the more general case Gf = Gb ⋋ Zf
2 ,

or more generally Zf
2 ⋋ Gb ⋋ SO∞. The paper Ref. 61

also include the cases with more general symmetry Gf =

Gb ⋋ Zf
2 , but not as general as Z

f
2 ⋋Gb ⋋ SO∞.

XVII. SUMMARY

In this paper, we construct exactly soluble models to
systematical realize a large class of fermionic SPT states.
The constructed path integrals and the corresponding
fermionic SPT phases are labeled by some data. Those
data can be described in a compact form using terminol-
ogy of higher group B(Π1, 1;Π2, 2; · · · ) (see Appendix L
for details). We note that, for a d-group B(G, 1;Z2, d)
(i.e. a complex with only one vertex), its links are la-
beled by group elements g ∈ G. This gives rise to the
so called canonical G-valued 1-cochain ā on the com-
plex B(G, 1;Z2, d). On each d-simplex in B(G, 1;Z2, d)
we also have a Z2 label. This gives us the canonical Z2-
valued d-cochain f̄d on the complex B(G, 1;Z2, d). The

condition df̄d
2
= 0 gives us a a particular higher group

Bf (O∞, 1;Z2, d) (see Ref. 41 and Appendix L). Now, we
are ready to state our results:
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1. Characterization data without time rever-

sal: For unitary symmetry Gf , the fermionic
SPT phases obtained via fermion decora-
tion are described by a pair (ϕ, νd+1), where
ϕ : B(Gf ⋋ SO∞, 1) → Bf (SO∞, 1;Z2, d) is
a homomorphism between two higher groups
and νd+1 is a R/Z-valued d + 1-cochain on
B(Gf ⋋ SO∞, 1) that trivializes the pullback of a

R/Z-valued d + 2-cocycle ω̄d+2 = 1
2Sq

2f̄d +
1
2 f̄dw̄2

on Bf (SO∞, 1;Z2, d), i.e. −dνd+1 = dϕ∗ω̄d+2.
Here f̄d is the canonical d-cochain on
Bf (SO∞, 1;Z2, d), and w̄n is the nth Stiefel-
Whitney class constructed from canonical d-
cochain ā on Bf (SO∞, 1;Z2, d). Note that ā can
be viewed as the SO∞ connection of a SO∞

bundle over Bf (SO∞, 1;Z2, d).

2. Characterization data with time reversal:
In the presence of time reversal symmetry Gf =
G0

f ⋋ ZT
2 , we find that the fermionic SPT phases

obtained via fermion decoration are described by
a pair (ϕ, νd+1), where ϕ : B(G0

f ⋋ O∞, 1) →
Bf (O∞, 1;Z2, d) is a homomorphism between two
higher groups and νd+1 is a R/Z-valued d + 1-
cochain on B(G0

f ⋋O∞, 1) that trivializes the pull-

back of a R/Z-valued d+2-cocycle ω̄d+2 = 1
2Sq

2f̄d+
1
2 f̄d(w̄2 + w̄2

1) on Bf (O∞, 1;Z2, d), i.e. −dνd+1 =
dϕ∗ω̄d+2.

3. Model construction and SPT invariant: Us-
ing the data (ϕ, νd+1), we can write down the ex-
plicit re-triangulation invariant path integral that
describes a local fermion model (in bosonized form)
that realizes the corresponding SPT phase (see
(93), (86), and (79)). We can also write down the
SPT invariant18,30,31,43,44 that characterize the re-
sulting fermionic SPT phase (see (101), (99), and
(120)). Those bosonized fermion path integrals,
(93), (86), and (79), and the corresponding SPT
invariants, (101), (99), and (120), are the main re-
sults of this paper.

4. Equivalence relation: Only the pairs (ϕ, νd+1)
that give rise to distinct SPT invariants correspond
to distinct SPT phases. The pairs (ϕ, νd+1) that
give rise to the same SPT invariant are regarded as
equivalent. In particular, two homotopically con-
nected ϕ’s are equivalent and two νd+1’s differ by
a coboundary are equivalent.

The data (ϕ, νd+1) cover all the fermion SPT states ob-
tained via fermion decoration. But they do not include
the fermion SPT states obtained via decoration of chains
of 1+1D topological p-wave superconducting states, but
may include some fermion SPT states obtained via dec-
oration of sheets of 2+1D topological p-wave supercon-
ducting state.
After we post this paper, a related and more general

treatment of fermionic SPT phases Ref. 61 was posted.

(b)(a)
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FIG. 4. (Color online) Two branched simplices with opposite
orientations. (a) A branched simplex with positive orientation
and (b) a branched simplex with negative orientation.
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Appendix A: Space-time complex, cochains, and

cocycles

In this paper, we consider models defined on a space-
time lattice. A space-time lattice is a triangulation of
the D-dimensional space-time MD, which is denoted by
MD. We will also call the triangulationMD as a space-
time complex, which is formed by simplices – the vertices,
links, triangles, etc . We will use i, j, · · · to label vertices
of the space-time complex. The links of the complex (the
1-simplices) will be labeled by (i, j), (j, k), · · · . Similarly,
the triangles of the complex (the 2-simplices) will be la-
beled by (i, j, k), (j, k, l), · · · .
In order to define a generic lattice theory on the space-

time complex MD using local Lagrangian term on each
simplex, it is important to give the vertices of each sim-
plex a local order. A nice local scheme to order the ver-
tices is given by a branching structure.28,62,63 A branch-
ing structure is a choice of orientation of each link in the
d-dimensional complex so that there is no oriented loop
on any triangle (see Fig. 4).
The branching structure induces a local order of the

vertices on each simplex. The first vertex of a simplex is
the vertex with no incoming links, and the second vertex
is the vertex with only one incoming link, etc . So the
simplex in Fig. 4a has the following vertex ordering:
0, 1, 2, 3.
The branching structure also gives the simplex (and its

sub-simplices) a canonical orientation. Fig. 4 illustrates
two 3-simplices with opposite canonical orientations com-
pared with the 3-dimension space in which they are em-
bedded. The blue arrows indicate the canonical orienta-
tions of the 2-simplices. The black arrows indicate the
canonical orientations of the 1-simplices.
Given an Abelian group (M,+), an n-cochain fn is

an assignment of values in M to each n-simplex, for ex-
ample a value fn;i,j,··· ,k ∈ M is assigned to n-simplex
(i, j, · · · , k). So a cochain fn can be viewed as a bosonic

field on the space-time lattice.
M can also be viewed a Z-module (i.e. a vector space

with integer coefficient) that also allows scaling by an
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i

l

j k

a

FIG. 5. (Color online) A 1-cochain a has a value 1 on the
red links: aik = ajk = 1 and a value 0 on other links: aij =
akl = 0. da is non-zero on the shaded triangles: (da)jkl =
ajk + akl − ajl. For such 1-cochain, we also have a ⌣ a = 0.
So when viewed as a Z2-valued cochain, β2a 6= a ⌣ a mod 2.

integer:

x+ y = z, x ∗ y = z, mx = y,

x, y, z ∈ M, m ∈ Z. (A1)

The direct sum of two modules M1⊕M2 (as vector spaces)
is equal to the direct product of the two modules (as sets):

M1 ⊕ M2
as set
= M1 × M2 (A2)

We like to remark that a simplex (i, j, · · · , k) can have
two different orientations. We can use (i, j, · · · , k) and
(j, i, · · · , k) = −(i, j, · · · , k) to denote the same simplex
with opposite orientations. The value fn;i,j,··· ,k assigned
to the simplex with opposite orientations should differ by
a sign: fn;i,j,··· ,k = −fn;j,i,··· ,k. So to be more precise fn
is a linear map fn : n-simplex → M. We can denote the
linear map as 〈fn, n-simplex〉, or

〈fn, (i, j, · · · , k)〉 = fn;i,j,··· ,k ∈ M. (A3)

More generally, a cochain fn is a linear map of n-chains:

fn : n-chains→ M, (A4)

or (see Fig. 5)

〈fn, n-chain〉 ∈ M, (A5)

where a chain is a composition of simplices. For example,
a 2-chain can be a 2-simplex: (i, j, k), a sum of two 2-
simplices: (i, j, k) + (j, k, l), a more general composition
of 2-simplices: (i, j, k) − 2(j, k, l), etc . The map fn is
linear respect to such a composition. For example, if a
chain is m copies of a simplex, then its assigned value
will be m times that of the simplex. m = −1 correspond
to an opposite orientation.

We will use Cn(MD;M) to denote the set of all n-
cochains on MD. Cn(MD;M) can also be viewed as
a set all M-valued fields (or paths) on MD. Note that
Cn(MD;M) is an Abelian group under the +-operation.

The total space-time lattice MD correspond to a D-
chain. We will use the same MD to denote it. Viewing

i

k l

j i j

k la’

a

a’

a

FIG. 6. (Color online) A 1-cochain a has a value 1 on the
red links, Another 1-cochain a′ has a value 1 on the blue
links. On the left, a ⌣ a′ is non-zero on the shade triangles:
(a ⌣ a′)ijl = aija

′

jl = 1. On the right, a′ ⌣ a is zero on
every triangle. Thus a ⌣ a′ + a′ ⌣ a is not a coboundary.

fD as a linear map of D-chains, we can define an “inte-
gral” overMD:

∫

MD

fD ≡ 〈fD,MD〉 (A6)

=
∑

(i0,i1,··· ,iD)

si0i1···iD (fD)i0,i1,··· ,iD .

Here si0i1···iD = ±1, such that a D-simplex in the D-
chainMD is given by si0i1···iD (i0, i1, · · · , iD).
We can define a derivative operator d acting on an

n-cochain fn, which give us an n + 1-cochain (see Fig.
5):

〈dfn, (i0i1i2 · · · in+1)〉

=

n+1
∑

m=0

(−)m〈fn, (i0i1i2 · · · îm · · · in+1)〉 (A7)

where i0i1i2 · · · îm · · · in+1 is the sequence i0i1i2 · · · in+1

with im removed, and i0, i1, i2 · · · in+1 are the ordered
vertices of the (n+ 1)-simplex (i0i1i2 · · · in+1).
A cochain fn ∈ Cn(MD;M) is called a cocycle if

dfn = 0. The set of cocycles is denoted by Zn(MD;M).
A cochain fn is called a coboundary if there exist a
cochain fn−1 such that dfn−1 = fn. The set of cobound-
aries is denoted by Bn(MD;M). Both Zn(MD;M) and
Bn(MD;M) are Abelian groups as well. Since d2 =
0, a coboundary is always a cocycle: Bn(MD;M) ⊂
Zn(MD;M). We may view two cocycles differ by a
coboundary as equivalent. The equivalence classes of co-
cycles, [fn], form the so called cohomology group denoted
by

Hn(MD;M) = Zn(MD;M)/Bn(MD;M), (A8)

Hn(MD;M), as a group quotient of Zn(MD;M) by
Bn(MD;M), is also an Abelian group.
When we study systems with time reversal symmetry,

we need to consider cochains with local value. To define
cochains with local value, we first note that a manifold
MD has a Stiefel-Whitney class w1 to describe its ori-
entation structure. On each link (ij) of MD, w1 has
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two values (w1)ij = 0, 1. For a cochain f with local val-
ues, we cannot directive compare their values on different
simplexes, say fijk··· and flmn···. To compare fijk··· and
flmn···, we need to use w1 to parallel transport the value
flmn··· with base point l to the value with base point i:
flmn··· → (w1)ilflmn··· then we can compare fijk··· and
(w1)ilflmn···.
Such a interpretation of the value of a cochain will

modify our definition of derivative operator

〈dw1
fn, (i0i1i2 · · · in+1)〉

= (−)(w1)01〈fn, (i1i2 · · · in+1)〉

+

n+1
∑

m=1

(−)m〈fn, (i0i1i2 · · · îm · · · in+1)〉 (A9)

we note that on the right-hand-side of the above equa-
tion, all the terms have the base point 0, except the first
term which has a base point 1.
In this paper, on orientable manifold MD, we will

choose w1
2
= 0, and the cochains will all be the cochains

with global values and the derivative operator is defined
by (A7). On the other hand, on unorientable manifold
MD, the cochains will all be the cochains with local val-
ues and the derivative operator is defined by (A9). One
can show that d and dw1

have the same local properties.
We will drop the subscript w1 in dw1

and write dw1
as

d.
For the ZN -valued cocycle xn, dxn

N
= 0. Thus

βNxn ≡
1

N
dxn (A10)

is a Z-valued cocycle. Here βN is Bockstein homomor-
phism.
We notice the above definition for cochains still makes

sense if we have a non-Abelian group (G, ·) instead of an
Abelian group (M,+), however the differential d defined
by (A7) will not satisfy d ◦ d = 1, except for the first
two d’s. That is to say, one may still make sense of 0-
cocycle and 1-cocycle, but no more further naively by
formula (A7). For us, we only use non-Abelian 1-cocycle
in this article. Thus it is OK. Non-Abelian cohomology is
thoroughly studied in mathematics motivating concepts
such as gerbe.
From two cochains fm and hn, we can construct a third

cochain pm+n via the cup product (see Fig. 6):

pm+n = fm ⌣ hn,

〈pm+n, (0→ m+ n)〉 = 〈fm, (0→ m)〉×

〈hn, (m→ m+ n)〉, (A11)

where i→ j is the consecutive sequence from i to j:

i→ j ≡ i, i+ 1, · · · , j − 1, j. (A12)

Note that the above definition applies to cochains with
global. If hn has a local value, we then have

pm+n = fm ⌣ hn,

〈pm+n, (0→ m+ n)〉 = (−)(w1)0m〈fm, (0→ m)〉×

〈hn, (m→ m+ n)〉, (A13)

The cup product has the following property

d(hn ⌣ fm) = (dhn) ⌣ fm + (−)nhn ⌣ (dfm) (A14)

for cochains with global or local values. We note that the
above is a local relation. Locally, we can always choose

a gauge to make w1
2
= 0. Thus, the local relations are

valid for cochains with both global and local values.
We see that hn ⌣ fm is a cocycle if both fm and hn are

cocycles. If both fm and hn are cocycles, then fm ⌣ hn is
a coboundary if one of fm and hn is a coboundary. So the
cup product is also an operation on cohomology groups
⌣: Hm(MD;M) × Hn(MD;M) → Hm+n(MD;M). The

cup product of two cocycles has the following property
(see Fig. 6)

fm ⌣ hn = (−)mnhn ⌣ fm + coboundary (A15)

We can also define higher cup product fm ⌣
k

hn which

gives rise to a (m+ n− k)-cochain64:

〈fm ⌣
k

hn, (0, 1, · · · ,m+ n− k)〉

=
∑

0≤i0<···<ik≤n+m−k

(−)p〈fm, (0→ i0, i1 → i2, · · · )〉×

〈hn, (i0 → i1, i2 → i3, · · · )〉, (A16)

and fm ⌣
k

hn = 0 for k < 0 or for k > m or n. Here

i → j is the sequence i, i + 1, · · · , j − 1, j, and p is the
number of permutations to bring the sequence

0→ i0, i1 → i2, · · · ; i0 + 1→ i1 − 1, i2 + 1→ i3 − 1, · · ·
(A17)

to the sequence

0→ m+ n− k. (A18)

For example

〈fm ⌣
1
hn, (0→ m+ n− 1)〉 =

m−1
∑

i=0

(−)(m−i)(n+1)×

〈fm, (0→ i, i+ n→ m+ n− 1)〉〈hn, (i→ i+ n)〉.
(A19)

We can see that ⌣
0
=⌣. Unlike cup product at k = 0, the

higher cup product of two cocycles may not be a cocycle.
For cochains fm, hn, we have

d(fm ⌣
k

hn) = dfm ⌣
k

hn + (−)mfm ⌣
k

dhn+ (A20)

(−)m+n−kfm ⌣
k−1

hn + (−)mn+m+nhn ⌣
k−1

fm

If hn has a local value, we then have

〈fm ⌣
k

hn, (0, 1, · · · ,m+ n− k)〉
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=
∑

0≤i0<···<ik≤n+m−k

(−)p(−)(w1)0i0 〈fm, (0→ i0, i1 → i2, · · · )〉×

〈hn, (i0 → i1, i2 → i3, · · · )〉, (A21)

Let fm and hn be cocycles and cl be a chain, from
(A20) we can obtain

d(fm ⌣
k

hn) = (−)m+n−kfm ⌣
k−1

hn

+ (−)mn+m+nhn ⌣
k−1

fm,

d(fm ⌣
k

fm) = [(−)k + (−)m]fm ⌣
k−1

fm,

d(cl ⌣
k−1

cl + cl ⌣
k

dcl) = dcl ⌣
k

dcl

− [(−)k − (−)l](cl ⌣
k−2

cl + cl ⌣
k−1

dcl). (A22)

From (A22), we see that, for Z2-valued cocycles zn,

Sqn−k(zn) ≡ zn ⌣
k

zn (A23)

is always a cocycle. Here Sq is called the Steenrod square.
More generally hn ⌣

k

hn is a cocycle if n+k = odd and hn

is a cocycle. Usually, the Steenrod square is defined only
for Z2-valued cocycles or cohomology classes. Here, we
like to define a generalized Steenrod square for M-valued
cochains cn:

Sqn−kcn ≡ cn ⌣
k

cn + cn ⌣
k+1

dcn. (A24)

From (A22), we see that

dSqkcn = d(cn ⌣
n−k

cn + cn ⌣
n−k+1

dcn) (A25)

= Sqk dcn + (−)n

{

0, k = odd

2Sqk+1cn k = even
.

In particular, when cn is a Z2-valued cochain, we have

dSqkcn
2
= Sqk dcn. (A26)

Next, let us consider the action of Sqk on the sum of
two M-valued cochains cn and c′n:

Sqk(cn + c′n) = Sqkcn + Sqkc′n+

cn ⌣
n−k

c′n + c′n ⌣
n−k

cn + cn ⌣
n−k+1

dc′n + c′n ⌣
n−k+1

dcn

= Sqkcn + Sqkc′n + [1 + (−)k]cn ⌣
n−k

c′n

− (−)n−k[−(−)n−kc′n ⌣
n−k

cn + (−)ncn ⌣
n−k

c′n]

+ cn ⌣
n−k+1

dc′n + c′n ⌣
n−k+1

dcn

= Sqkcn + Sqkc′n + [1 + (−)k]cn ⌣
n−k

c′n

+ (−)n−k[dc′n ⌣
n−k+1

cn + (−)nc′n ⌣
n−k+1

dcn]

− (−)n−k d(c′n ⌣
n−k+1

cn) + cn ⌣
n−k+1

dc′n + c′n ⌣
n−k+1

dcn

= Sqkcn + Sqkc′n + [1 + (−)k]cn ⌣
n−k

c′n

+ [1 + (−)k]c′n ⌣
n−k+1

dcn − (−)n−k d(c′n ⌣
n−k+1

cn)

− [(−)n−k+1dc′n ⌣
n−k+1

cn − cn ⌣
n−k+1

dc′n]

= Sqkcn + Sqkc′n + [1 + (−)k]cn ⌣
n−k

c′n

+ [1 + (−)k]c′n ⌣
n−k+1

dcn − (−)n−k d(c′n ⌣
n−k+1

cn)

− d(dc′n ⌣
n−k+2

cn) + dc′n ⌣
n−k+2

dcn

= Sqkcn + Sqkc′n + dc′n ⌣
n−k+2

dcn

+ [1 + (−)k][cn ⌣
n−k

c′n + c′n ⌣
n−k+1

dcn]

− (−)n−k d(c′n ⌣
n−k+1

cn)− d(dc′n ⌣
n−k+2

cn). (A27)

We see that, if one of the cn and c′n is a cocycle,

Sqk(cn + c′n)
2,d
= Sqkcn + Sqkc′n. (A28)

We also see that

Sqk(cn + dfn−1) (A29)

= Sqkcn + Sqk dfn−1 + [1 + (−)k]dfn−1 ⌣
n−k

cn

− (−)n−k d(cn ⌣
n−k+1

dfn−1)− d(dcn ⌣
n−k+2

dfn−1)

= Sqkcn + [1 + (−)k][dfn−1 ⌣
n−k

cn + (−)nSqk+1fn−1]

+ d[Sqkfn−1 − (−)n−kcn ⌣
n−k+1

dfn−1 − dcn ⌣
n−k+2

dfn−1]

= Sqkcn + [1 + (−)k][cn ⌣
n−k

dfn−1 + (−)nSqk+1fn−1]

+ d[Sqkfn−1 − (−)n−k dfn−1 ⌣
n−k+1

cn].

Using (A30), we can also obtain the following result if
dcn = even

Sqk(cn + 2c′n)
4
= Sqkcn + 2d(cn ⌣

n−k+1
c′n) + 2dcn ⌣

n−k+1
c′n

4
= Sqkcn + 2d(cn ⌣

n−k+1
c′n) (A30)

As another application, we note that, for a M-valued
cochain md and using (A20),

Sq1(md) = md ⌣
d−1

md +md ⌣
d

dmd

=
1

2
(−)d[d(md ⌣

d

md)− dmd ⌣
d

md] +
1

2
md ⌣

d

dmd

= (−)dβ2(md ⌣
d

md)− (−)dβ2md ⌣
d

md +md ⌣
d

β2md

= (−)dβ2Sq0md − 2(−)dβ2md ⌣
d+1

β2md

= (−)dβ2Sq0md − 2(−)dSq0β2md (A31)

This way, we obtain a relation between Steenrod square
and Bockstein homomorphism, when md is a Z2-valued
cochain

Sq1(md)
2
= β2md, (A32)

where we have used Sq0md = md for Z2-valued cochain.
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Appendix B: Almost cocycle and almost coboundary

A R/Z-valued cocycle c satisfies

dc
1
= 0. (B1)

A R/Z-valued almost-cocycle c̃ satisfies

dc̃
1

≈ 0. (B2)

Physically, it is impossible to constrain an R/Z-value
to exactly zero. So almost-cocycle is more relevant for
our model construction. In this paper, when we say
R/Z-valued cocycle, we really mean R/Z-valued almost-
cocycle.
Similarly, a R/Z-valued almost-coboundary is given by

dc+ ǫ, (B3)

where ǫ is an almost-zero cochain.
The cohomology class H∗

a (M ;R/Z) for R/Z-valued
almost-cocycles is different from the cohomology class
H∗(M ;R/Z) for R/Z-valued cocycles. For example, let
us consider H1

a (S
2;R/Z). We parametrize S2 by the po-

lar angle θ, and the azimuthal angle φ. The 1-cochain

ãR/Z =
1− cos(θ)

4π
dφ (B4)

is not a cocycle since dãR/Z 6= 0 mod 1. But it is a
1-almost-cocycle since

dãR/Z ≈ c1, (B5)

and c1 is a Z-valued. ãR/Z is not an 1-almost-coboundary,
since c1 generates H2(S2;Z). In fact, ãR/Z is the gener-
ator of H1

a (S
2;R/Z) and we have

H1
a (S

2;R/Z) ∼= H2(S2;Z) = Z. (B6)

In contrast H1(S2;R/Z) = 0.
In general, for an almost-cocycle c̃,

⌊dc̃⌋ = C (B7)

is a Z-valued cocycle. The non-trivialness of c̃ is given
by the non-trivialness of C. Thus we have

Hn
a (M ;R/Z) ∼= Hn+1(M ;Z). (B8)

In this paper, we will drop the subscript and write
Hn

a (M ;R/Z) as Hn(M ;R/Z).

Appendix C: Some additional discussion of fermion

decoration

1. Another form of exactly soluble local fermionic

models

We can also write the path integral (45) as one on
Md+1. To do so, we introduce a new Z2-valued (d − 1)-
cochain field bd−1 that satisfy

dbd−1
2
= fd (C1)

to write the integrand of
∫

Nd+2 as a total derivative (using
(A26))

d[Sq2bd−1 + bd−1(w2 +w2
1)]

2
= Sq2nd + nd(w2 +w2

1). (C2)

This way, we can change the path integral (45) to one on
Md+1 only:

Z(Md+1, AGb) =
∑

g∈C0(Md+1;Gb);fd
2
=nd(a

Gb )

e i 2π
∫
Md+1 νd+1(a

Gb )+ 1
2Sq2bd−1+

1
2 bd−1e2 ,

(C3)

where bd−1 is a function of fd as determined from (C1).
The summation

∑

g∈C0(Md+1;Gb);fd
2
=nd(a

Gb )
(i.e. the path

integral) is over a Gb-valued 0-cochain field g and Z2-
valued d-cochain field fd. But fd subject to a constrain

fd
2
= nd(a

Gb) = nd(giA
Gb

ij g−1
j ), which can be imposed as

an energy penalty. The term 1
2Sq2bd−1 makes the current

fd a fermion current (i.e. makes the field fd to describe
a fermion).
In order for (C3) to be well defined, the action ampli-

tude e i 2π
∫
Md+1 νd+1(a

Gb )+ 1
2 [Sq2bd−1+bd−1e2(a

Gb )] should be
a function of fd and does not depend on which solution

bd−1 of dbd−1
2
= fd that we choose. Different solutions

can differ by a cocycle b̄d−1. Using (A27), we find that

Sq2(bd−1 + b̄d−1) + (bd−1 + b̄d−1)e2 − Sq2bd−1 − bd−1e2
2,d
= Sq2(b̄d−1) + b̄d−1e2(a

Gb)
2,d
= b̄d−1[w2 +w2

1 + e2(A
Gb)]. (C4)

Thus the path integral is well defined only on Md+1 with

a symmetry twist A such that w2 + w2
1 + e2(A

Gb)
2,d
=

0. This implies that fd describes a fermion. This also
implies that the fermion is described by a representation
of Gf = Z2 ⋋e2 Gb (see Ref. 41).

2. Exactly soluble local bosonic models with

emergent fermions

If we treat the field bd−1 in (C3) as an independent
dynamical field (instead of as a function of fd), then we
will get a very different theory:

Z(Md+1, AGb) =
∑

g∈C0(Md+1;Gb);dbd−1
2
=nd(a

Gb )

e iπ
∫
Md+1 2νd+1(a

Gb )+Sq2bd−1+bd−1e2(a
Gb ),

(C5)

The new path integral (C5) sums over the 0-cochains gi
and (d − 1)-cochains bd−1 satisfying dbd−1 = nd(a

Gb).
Such a model is actually a local bosonic model. The
local bosonic model has emergent fermions whose current
is given by fd = dbd−1 − nd(a

Gb).
The above local bosonic model has a Gb symmetry.

Thus the model describes symmetry Gb enriched topo-
logical order with emergent fermions. If we break the
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Gb symmetry, the model describes a Z2-topological or-
der with emergent fermion. Such a Z2-topological is de-
scribed by a Z2 gauge theory where the Z2 charge is
fermionic. In the presence of Gb symmetry, the emergent
fermions carry fractionalized symmetry quantum num-
ber. Since the partition function of the local bosonic
model vanishes when w2 + w2

1 + e2(A
Gb) 6= 0, we con-

clude that the emergent fermions carry representations
of Gf = Z2 ⋋e2 Gb. The partition function of the local
bosonic model vanishes when w2+w2

1+e2(A
Gb) 6= 0. We

may view (45) as a fermionic model with Gf symmetry,

and the bosonic model (C5) as the Zf
2 gauged fermionic

model. If we gauge all the symmetry Gf in the fermionic
model (45), we will obtain a higher gauge theory as de-
scribed in Ref. 41:

Z(Md+1) =
∑

aGb∈C1(Md+1;Gb);dbd−1=nd(a
Gb )

e iπ
∫
Md+1 2νd+1(a

Gb )+Sq2bd−1+bd−1e2(a
Gb ).

(C6)

Despite their similarity, the two local bosonic models
(C5) and (C6) are very different. In (C5), the dynami-

cal fields are g, bd−1 (with aGb

ij = giA
Gb

ij g−1
j ), where g is

a Gb-valued 0-cochain living on vertices. In contrast, in
(C5), the dynamical fields are aGb , bd−1 where aGb is a
Gb-valued 1-cochain living on links.

3. Another connection to higher gauge theory

There is another connection to higher gauge theory.
After gauging all the Gf symmetry in the fermionic
model (45), we obtain a local bosonic model (C6). Such
a local bosonic model is a higher gauge theory with emer-
gent fermion. Such a higher gauge theory is characterized
by a higher group and its cocycle. Thus the data that
characterizes a fermionic SPT phase is closely related to
a higher group and its cocycle.
In fact the local bosonic theory (C6) is characterized

by a higher group Bnd
(Gb, 1;Z

f
2 , d − 1) and its higher-

group cocycle ωd+1. The field content aGb , bd−1 and their
conditions

(δaGb)ijk ≡ aGb

ij aGb

jk a
Gb

ki = 1

dbd−1
2
= nd(a

Gb), (C7)

determine the higher group Bnd
(Gb, 1;Z

f
2 , d − 1), which

can be viewed as a space with homotopy groups π1 = Gb,

πd−1 = Zf
2 , and other πn = 0.

The local bosonic model (C6) and (C5) are ex-
actly soluble if the Lagrangian is given by a higher-

group cocycle satisfying dωd+1
1
= 0 (i.e. ωd+1 ∈

Zd+1[Bnd
(Gb, 1;Z

f
2 , d− 1);R/Z]):

ωd+1(a
Gb , bd−1)

= νd+1(a
Gb) +

1

2
[Sq2bd−1 + nd(a

Gb)e2(a
Gb)], (C8)

(See Ref. 41 and Appendix L for an introduction on
higher groups and higher-group cocycles.)

Appendix D: Operations on modules

The tensor-product operation ⊗R and the torsion-
product operation TorR1 act on R-modules M,M′,M′′.
Here R is a ring and a R-module is like a vector space
over R (i.e. we can “multiply” a “vector” in M by an
element of R, and two “vectors” in M can add.) The
tensor-product operation ⊗R has the following proper-
ties:

M⊗Z M′ ≃ M′ ⊗Z M,

(M′ ⊕ M′′)⊗R M = (M′ ⊗R M)⊕ (M′′ ⊗R M),

M⊗R (M′ ⊕ M′′) = (M⊗R M′)⊕ (M⊗R M′′);

Z⊗Z M ≃ M⊗Z Z = M,

Zn ⊗Z M ≃ M⊗Z Zn = M/nM,

Zn ⊗Z R/Z ≃ R/Z⊗Z Zn = 0,

Zm ⊗Z Zn = Z〈m,n〉,

R⊗Z R/Z = 0,

R⊗Z R = R. (D1)

The torsion-product operation TorR1 has the following
properties:

Tor1R(M,M′) ≃ Tor1R(M
′,M),

Tor1R(M
′ ⊕ M′′,M) = Tor1R(M

′,M)⊕ Tor1R(M
′′,M),

Tor1R(M,M′ ⊕ M′′) = Tor1R(M,M′)⊕ Tor1R(M,M′′)

Tor1Z(Z,M) = Tor1Z(M,Z) = 0,

Tor1Z(Zn,M) = {m ∈ M|nm = 0},

Tor1Z(Zn,R/Z) = Zn,

Tor1Z(Zm,Zn) = Z〈m,n〉,

Tor1Z(R/Z,R/Z) = 0. (D2)

These expressions allow us to compute the tensor-
product ⊗R and the torsion-product Tor1R. We will use
abbreviated Tor to denote Tor1Z.
In addition to ⊗Z and Tor, we also have Ext and Hom

operations on modules. Ext operation is given by

Ext1R(M
′ ⊕ M′′,M) = Ext1R(M

′,M)⊕ Ext1R(M
′′,M),

Ext1R(M,M′ ⊕ M′′) = Ext1R(M,M′)⊕ Ext1R(M,M′′)

Ext1Z(Z,M) = 0,

Ext1Z(Zn,M) = M/nM,

Ext1Z(Zn,Z) = Zn,

Ext1Z(Zn,R/Z) = 0,

Ext1Z(Zm,Zn) = Z〈m,n〉, . (D3)

The Hom operation on modules is given by

HomR(M
′ ⊕ M′′,M) = HomR(M

′,M)⊕HomR(M
′′,M),
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HomR(M,M′ ⊕ M′′) = HomR(M,M′)⊕HomR(M,M′′),

HomZ(Z,M) = M,

HomZ(Zn,M) = {m ∈ M|nm = 0},

HomZ(Zn,Z) = 0,

HomZ(Zn,R/Z) = Zn,

HomZ(Zm,Zn) = Z〈m,n〉. (D4)

We will use abbreviated Ext and Hom to denote Ext1Z
and HomZ.

Appendix E: Künneth formula and universal

coefficient theorem

The Künneth formula is a very helpful formula that
allows us to calculate the cohomology of chain complex
X × X ′ in terms of the cohomology of chain complex
X and chain complex X ′. The Künneth formula is ex-
pressed in terms of the tensor-product operation ⊗R and
the torsion-product operation TorR1 described in the last
section (see Ref. 65 page 247):

0→
d

⊕

k=0

Hk(X,M)⊗R Hd−k(X ′,M′)

→ Hd(X ×X ′,M⊗R M′)

→
d+1
⊕

k=0

Tor1R(H
k(X,M), Hd−k+1(X ′,M′))→ 0, (E1)

where the exact sequence is split. Here R is a prin-
ciple ideal domain and M,M′ are R-modules such that
Tor1R(M,M′) = 0. We also require either
(1) Hd(X,Z) and Hd(X

′,Z) are finitely generated, or
(2) M′ and Hd(X

′,Z) are finitely generated.
(For example, M′ = Z⊕· · ·⊕Z⊕Zn⊕· · ·⊕Zm is finitely
generated, with R = Z.)
For more details on principal ideal domain and R-

module, see the corresponding Wiki articles. Note that
ring Z and R are principal ideal domains. Also, R and
R/Z are not finitely generate R-modules if R = Z.

The Künneth formula works for topological cohomol-
ogy where X and X ′ are treated as topological spaces.
As the first application of Künneth formula, we like

to use it to calculate H∗(X ′,M) from H∗(X ′,Z), by
choosing R = M′ = Z. In this case, the condition
Tor1R(M,M′) = Tor1Z(M,Z) = 0 is always satisfied. M can
be R/Z, Z, Zn etc . So we have

0→
d

⊕

k=0

Hk(X,M)⊗Z Hd−k(X ′,Z)

→ Hd(X ×X ′,M)

→
d

⊕

k=0

Tor(Hk(X,M), Hd−k+1(X ′,Z))→ 0 (E2)

Again, the exact sequence is split.

We can further choose X to be the space of one point
in (E2), and use

Hd(X,M)) =

{

M, if d = 0,

0, if d > 0,
(E3)

to reduce (E2) to

Hd(X,M) ≃ M⊗Z Hd(X,Z)⊕ Tor(M, Hd+1(X,Z)).
(E4)

where X ′ is renamed as X. The above is a form of the
universal coefficient theorem which can be used to calcu-
late H∗(X,M) from H∗(X,Z) and the module M.
Using the universal coefficient theorem, we can rewrite

(E2) as

Hd(X ×X ′,M) ≃
d

⊕

k=0

Hk[X,Hd−k(X ′,M)]. (E5)

The above is valid for topological cohomology.

Appendix F: Lyndon-Hochschild-Serre spectral

sequence

The Lyndon-Hochschild-Serre spectral sequence (see
Ref. 66 page 280,291, and Ref. 67) allows us to under-
stand the structure of of the cohomology of a fiber bundle
F → X → B, H∗(X;M), from H∗(F ;M) and H∗(B;M).
In general, Hd(X;M), when viewed as an Abelian group,
contains a chain of subgroups

{0} = Hd+1 ⊂ Hd ⊂ · · · ⊂ H0 = Hd(X;M) (F1)

such that Hl/Hl+1 is a subgroup of a factor group of
H l[B,Hd−l(F ;M)B ], i.e. H

l[B,Hd−l(F ;M)B ] contains a
subgroup Γk, such that

Hl/Hl+1 ⊂ H l[B,Hd−l(F ;M)B ]/Γ
l,

l = 0, · · · , d. (F2)

Note that π1(B) may have a non-trivial action on M and
π1(B) may have a non-trivial action on Hd−l(F ;M) as
determined by the structure F → X → B. We add the
subscript B to Hd−l(F ;M) to indicate this action. We
also have

H0/H1 ⊂ H0[B,Hd(F ;M)B ],

Hd/Hd+1 = Hd = Hd(B;M)/Γd. (F3)

In other words, all the elements in Hd(X;M) can be one-
to-one labeled by (x0, x1, · · · , xd) with

xl ∈ Hl/Hl+1 ⊂ H l[B,Hd−l(F ;M)B ]/Γ
l. (F4)

Let xl,α, α = 1, 2, · · · , be the generators of H l/H l+1.
Then we say xi,α for all l, α are the generators of
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Hd(X;M). We also call Hl/Hl+1, l = 0, · · · , d, the gen-
erating sub-factor groups of Hd(X;M).
The above result implies that we can use

(k0, k1, · · · , kd) with kl ∈ H l[B,Hd−l(F ;M)B ] to
label all the elements in Hd(X;M). However, such a
labeling scheme may not be one-to-one, and it may
happen that only some of (k0, k1, · · · , kd) correspond to
the elements in Hd(X;M). But, on the other hand, for
every element in Hd(X;M), we can find a (k0, k1, · · · , kd)
that corresponds to it. Such a relation can be described
by an injective map

Hd(F ⋋B;M) ֌

d
⊕

l=0

H l[B,Hd−l(F ;M)B ] (F5)

For the special case X = B × F , (k0, k1, · · · , kd) will
give us an one-to-one labeling of the elements in Hd(B×
F ;M). In fact

Hd(B × F ;M) =

d
⊕

l=0

H l[B,Hd−l(F ;M)]. (F6)

Appendix G: The ring of H∗(BSO∞;Z)

The ring H∗(BSOn;Z2) has a simple structure:

H∗(BSOn;Z2) = Z2[w2,w3, · · · ,wn]. (G1)

According to Ref. 68, the ring H∗(BSOn;Z) is given by

H∗(BSO∞;Z) = Z[{pi}, {β2(w2i1w2i2 · · · )}, Xn]/ ∼,
(G2)

where Z[{pi}, {β2(w2i1w2i2 · · · )}, Xn] is a polynomial
ring generated by pi and β2(w2i1w2i2 · · · ), 0 < i ≤ ⌊n−1

2 ⌋,

0 < i1 < i2 < · · · ≤ ⌊n−1
2 ⌋, with integer coefficients.

Here pi ∈ H4i(BSO∞;Z) is the Pontryagin class of
dimension 4i and wi ∈ Hi(BSO∞;Z2) is the Stiefel-
Whitney class of dimension i. Since TorHd(BG,R/Z) =
TorHd+1(BG;Z) (see, for example, Ref. 69), the nat-
ural map Hd(BG;Z2) → TorHd(BG,R/Z) induces the
Bockstein homomorphism Hd(BG;Z2) → Hd+1(BG;Z):
β2 : Hi(BSO∞;Z2) → Hi+1(BSO∞;Z). Note that

f ∈ Hi(BSO∞;Z2) satisfies df
2
= 0. Thus 1

2 df
1
= 0,

or 1
2 df is an integral cocycle. This allows us to write the

Bockstein homomorphism as

β2f =
1

2
df ∈ Hi+1(BSO∞;Z). (G3)

To obtain the ring H∗(BSO∞;Z) from a polynomial
ring generated by pi and β2(w2i1w2i2 · · · ), we need to
quotient out certain equivalence relations ∼. The equiv-
alence relations ∼ contain

2β2(w2i1w2i2 · · · ) = 0, pn
2
= w2

2n, Xn = β2w2k if n = 2k + 1, X2
n = pk if n = 2k, (G4)

β2w(I)β2w(J) =
∑

k∈I

β2w2k β2w[(I − {k}) ∪ J − (I − {k}) ∩ J ] p[(I − {k}) ∩ J ],

where I = {i1, i2, · · · }, w(I) = w2i1w2i2 · · · , and p(I) =
pi1pi2 · · · . Many last kind of the equivalence relations
are trivial identities. The first non-trivial equivalence
relations appears at dimension 14:

β2(w4w2)β2w6 = β2w4β2(w6w2) + β2w2β2(w6w4),

β2(w4w2)β2(w4w2) = p1β2w4β2w4 + p2β2w2β2w2.
(G5)

We see that there are no effective equivalence relations
of the last kind for dimensions less than 14. So for low
dimensions,

H0(BSO∞;Z) = Z,

H1(BSO∞;Z) = 0,

H2(BSO∞;Z) = 0,

H3(BSO∞;Z) = Z2 = {β2w2},

H4(BSO∞;Z) = Z = {p1},

H5(BSO∞;Z) = Z2 = {β2w4}, (G6)

H6(BSO∞;Z) = Z2 = {β2w2β2w2},

H7(BSO∞;Z) = Z⊕3
2 = {β2w6, β2(w2w4), p1β2w2},

H8(BSO∞;Z) = Z⊕2 ⊕ Z2 = {p21, p2, β2w2β2w4}.

In the above, we also list the basis (or generators) of
cohomology classes. Using (B8), the above allows us to
obtain

H0
a (BSO∞;R/Z) = 0,

H1
a (BSO∞;R/Z) = 0,

H2
a (BSO∞;R/Z) = Z2 = {

1

2
w2},

H3
a (BSO∞;R/Z) = Z = {ω3},

H4
a (BSO∞;R/Z) = Z2 = {

1

2
w4}, (G7)

H5
a (BSO∞;R/Z) = Z2 = {

1

2
w2w3)},
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H6
a (BSO∞;R/Z) = Z⊕3

2 = {
1

2
w6,

1

2
w2w4,

1

2
p1w2},

H7
a (BSO∞;R/Z) = Z⊕2 ⊕ Z2 = {ω3p1, ω7,

1

2
w3w4}.

where ω4n−1 is a R/Z-valued almost-cocycle on BSO∞

(the gravitational Chern-Simons term)

dω4n−1 = pn. (G8)

The above basis give rise to the basis in (G6) through
the natural map β: Hd(BG,R/Z)→ Hd+1(BG,Z).

Appendix H: The ring of H∗(BO∞;Z)

The ring H∗(BOn;Z2) is given by

H∗(BOn;Z2) = Z2[w1,w2, · · · ,wn]. (H1)

and the ring H∗(BO∞;Z) is given by68

H∗(BO∞;Z) = Z[{pi}, {β2(w
ǫ
1w2i1w2i2 · · · )}]/ ∼, (H2)

where Z[{pi}, {β2(w
ǫ
1w2i1w2i2 · · · )}] is a polynomial

ring with integer coefficients, generated by pi and
β2(w

ǫ
1w2i1w2i2 · · · ), ǫ = 0, 1, 0 < i ≤ ⌊n2 ⌋, and 0 < i1 <

i2 < · · · ≤ ⌊n2 ⌋. Here pi ∈ H4i(BO∞;Z) is the Pontrya-

gin class of dimension 4i and wi ∈ Hi(BO∞;Z2) is the
Stiefel-Whitney class of dimension i.
To obtain the ringH∗(BO∞;Z) from a polynomial ring

generated by pi and β2(w
ǫ
1w2i1w2i2 · · · ), we need to quo-

tient out certain equivalence relations ∼. The equiva-
lence relations ∼ contain

2β2(w2i1w2i2 · · · ) = 0, β2(w1wn) = 0, pn
2
= w2

2n, (β2wn)
2
∣

∣

n=even
= pn/2β2w1, (H3)

β2w(I)β2w(J) =
∑

k∈I

β2w2k β2w[(I − {k}) ∪ J − (I − {k}) ∩ J ] p[(I − {k}) ∩ J ],

where I = { ǫ2 , i1, i2, · · · }, w(I) = wǫ
1w2i1w2i2 · · · , and

p(I) = wǫ
1pi1pi2 · · · . Many last kind of the equivalence

relations are trivial identities. The non-trivial equiva-
lence relations for dimension 9 and less are given by:

[β2(w1w2)]
2 = (β2w2)

2β2w1 + (β2w1)
2p1,

β2(w1w2)β2w4 = β2w2β2(w1w4) + β2w1β2(w2w4) (H4)

So for low dimensions,

H0(BO∞;Z) = Z,

H1(BO∞;Z) = 0,

H2(BO∞;Z) = Z2 = {β2w1},

H3(BO∞;Z) = Z2 = {β2w2},

H4(BO∞;Z) = Z2 ⊕ Z = {(β2w1)
2, p1},

H5(BO∞;Z) = Z⊕2
2 = {β2w4, β2w1β2w2}, (H5)

H6(BO∞;Z) = Z⊕3
2 = {(β2w2)

2, (β2w1)
3, p1β2w1},

H7(BO∞;Z) = Z⊕5
2 = {β2w6, β2(w2w4),

p1β2w2, (β2w1)
2β2w2, β2w1β2w4},

H8(BO∞;Z) = Z⊕5
2 ⊕ Z⊕2 = {β2(w1w2w4), (β2w1)

4,

β2w2β2w4, β2w1(β2w2)
2, p1(β2w1)

2, p21, p2}.

In the above, we also list the basis (or generators) of
cohomology classes. Due to the relation (B8), the above

allows us to obtain

H0
a (BO∞;R/Z) = R/Z,

H1
a (BO∞;R/Z) = Z2 = {

1

2
w1},

H2
a (BO∞;R/Z) = Z2 = {

1

2
w2},

H3
a (BO∞;R/Z) = Z2 ⊕ Z = {

1

2
w1β2w1, ω3},

H4
a (BO∞;R/Z) = Z⊕2

2 = {
1

2
w4,

1

2
w1β2w2}, (H6)

H5
a (BO∞;R/Z) = Z⊕3

2 = {
1

2
w2β2w2,

1

2
w1(β2w1)

2,
1

2
w1p1},

H6
a (BO∞;R/Z) = Z⊕5

2 = {
1

2
w6,

1

2
w2w4,

1

2
w2p1,

1

2
w2(β2w1)

2,
1

2
w1β2w4},

H7
a (BO∞;R/Z) = Z⊕5

2 ⊕ Z⊕2 = {
1

2
w1w2w4,

1

2
w1(β2w1)

3,

1

2
w2β2w4,

1

2
w1(β2w2)

2,
1

2
w1p1β2w1, ω3p1, ω7}.

Appendix I: Relations between cocycles and

Stiefel-Whitney classes on a closed manifold

The cocycles and the Stiefel-Whitney classes on a
closed manifold satisfy many relations. In this section,
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we will show how to generate those relations.

1. Introduction to Stiefel-Whitney classes

The Stiefel-Whitney classes wi ∈ Hi(MD;Z2) is de-
fined for an On vector bundle on a d-dimensional space
with n→∞. If the O∞ vector bundle on d-dimensional
space, MD, happen to be the tangent bundle of MD

direct summed with a trivial ∞-dimensional vector bun-
dle, then the corresponding Stiefel-Whitney classes are
referred as the Stiefel-Whitney classes of the manifold
MD.
The Stiefel-Whitney classes of manifold behave well

under the connected sum of manifolds. Let

w(M) = 1 + w1(M) + w2(M) + · · · (I1)

be the total Stiefel-Whitney class of a manifold M . If we
know w(M) and w(N), then we can obtain w(M#N):

w(M#N)
2,d
= w(M) + w(N)− 1. (I2)

Under the product of manifolds, we have

w(M ×N)
2,d
= w(M)w(N). (I3)

The Stiefel-Whitney numbers are non-oriented cobor-
dism invariant. All the Stiefel-Whitney numbers of a
smooth compact manifold vanish iff the manifold is the
boundary of some smooth compact manifold. Here the
manifold can be non-orientable.
The Stiefel-Whitney numbers and Pontryagin numbers

are oriented cobordism invariant. All the Stiefel-Whitney
numbers and Pontryagin numbers of a smooth compact
orientable manifold vanish iff the manifold is the bound-
ary of some smooth compact orientable manifold.

2. Relations between Stiefel-Whitney classes of the

tangent bundle

For generic O∞ vector bundle, the Stiefel-Whitney
classes are all independent. However, the Stiefel-Whitney
classes for a manifold (i.e. for the tangent bundle) are not
independent and satisfy many relations.
To obtain those relations, we note that, for any O∞

vector bundle, the total Stiefel-Whitney class w = 1 +
w1 + w2 + · · · is related to the total Wu class u = 1 +
u1 + u2 + · · · through the total Steenrod square70:

w
2,d
= Sq(u), Sq = 1 + Sq1 + Sq2 + · · · . (I4)

Therefore, wn
2,d
=

∑n
i=0 Sq

i(un−i). The Steenrod squares
have the following properties:

Sqi(xj)
2,d
= 0, i > j, Sqj(xj)

2,d
= xjxj , Sq0 = 1, (I5)

for any xj ∈ Hj(MD;Z2). Thus

un
2,d
= wn +

∑

i=1,2i≤n

Sqi(un−i). (I6)

This allows us to compute un iteratively, using Wu for-
mula

Sqi(wj)
2,d
= 0, i > j, Sqi(wi)

2,d
= wiwi, (I7)

Sqi(wj)
2,d
= wiwj +

i
∑

k=1

(j − i− 1 + k)!

(j − i− 1)!k!
wi−kwj+k, i < j,

Sq1(wj)
2,d
= w1wj + (j − 1)wj+1,

and the Steenrod relation

Sqn(xy)
2,d
=

n
∑

i=0

Sqi(x)Sqn−i(y). (I8)

We find

u0
2,d
= 1, u1

2,d
= w1, u2

2,d
= w2

1 +w2,

u3
2,d
= w1w2, u4

2,d
= w4

1 +w2
2 +w1w3 +w4, (I9)

u5
2,d
= w3

1w2 +w1w
2
2 +w2

1w3 +w1w4,

u6
2,d
= w2

1w
2
2 +w3

1w3 +w1w2w3 +w2
3 +w2

1w4 +w2w4,

u7
2,d
= w2

1w2w3 +w1w
2
3 +w1w2w4,

u8
2,d
= w8

1 +w4
2 +w2

1w
2
3 +w2

1w2w4 +w1w3w4 +w2
4

+w3
1w5 +w3w5 +w2

1w6 +w2w6 +w1w7 +w8.

We note that the Steenrod squares form an algebra:

SqaSqb =

[a/2]
∑

j=0

(

b− j − 1
a− 2j

)

Sqa+b−jSqj ,

=

[a/2]
∑

j=0

(b− j − 1)!

(a− 2j)!(b− a+ j − 1)!
Sqa+b−jSqj ,

0 < a < 2b. (I10)

which leads to the relation Sq1Sq1 = 0.
If the O∞ vector bundle on d-dimensional space, MD,

happen to be the tangent bundle of MD, then the corre-
sponding Wu class and the Steenrod square satisfy

SqD−j(xj)
2,d
= uD−jxj , for any xj ∈ Hj(MD;Z2).

(I11)

We can generate many relations for cocycles and Stiefel-
Whitney classes on a manifold using the above result:

1. If we choose xj to be a combination of Stiefel-
Whitney classes, plus the Sq operations them, the
above will generate many relations between Stiefel-
Whitney classes.

2. If we choose xj to be a combination of Stiefel-
Whitney classes and cocycles, plus the Sq opera-
tions them, the above will generate many relations
between Stiefel-Whitney classes and cocycles.
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As an application, we note that Sqi(xj)
2,d
= 0 if i > j.

Therefore uixD−i
2,d
= 0 for any xD−i ∈ HD−i(MD;Z2)

if i > D − i. Since Z2 is a field and according to the

Poincaré duality, this implies that ui
2,d
= 0 for 2i > D.

Also Sqn · · · Sqm(ui)
2,d
= 0 if 2i > D. This also gives us

relations among Stiefel-Whitney classes.

3. Relations between Stiefel-Whitney classes and a

Z2-valued 1-cocycle in 3-dimensions

On a 3-dimensional manifold, we can find many rela-
tions between Stiefel-Whitney classes:

(1) u2
2,d
= w2

1 +w2
2,d
= 0.

(2) u3
2,d
= w1w2

2,d
= 0.

(3) Sq1(u2)
2,d
= 0. Using Sq1(wi)

2,d
= w1wi + (i + 1)wi+1,

we find that Sq1(w2
1 +w2)

2,d
= Sq1(w1)w1 +w1Sq

1(w1) +

Sq1(w2)
2,d
= w1w2 +w3

2,d
= 0.

This gives us three relations

w2
1

2,d
= w2, w1w2

2,d
= w3

2,d
= 0. (I12)

Let aZ2 be a Z2-valued 1-cocycle. We can also find a
relation between the Stiefel-Whitney classes and aZ2 :

w1(a
Z2)2

2,d
= Sq1((aZ2)2)

2,d
= 2(aZ2)3

2,d
= 0. (I13)

There are six possible 3-cocycles that can be con-
structed from the Stiefel-Whitney classes and the 1-
cocycle aZ2 :

(w1)
3, w1w2, w3,

(aZ2)3, w1(a
Z2)2, w2

1a
Z2 . (I14)

From the above relations, we see that only two of them
are non-zero:

(aZ2)3, w2
1a

Z2 . (I15)

4. Relations between Stiefel-Whitney classes and a

Z2-valued 1-cocycle in 4-dimensions

The relations between the Stiefel-Whitney classes for
4-dimensional manifold can be listed:
(1) u3

2,d
= w1w2

2,d
= 0.

(2) u4
2,d
= w4

1 +w2
2 +w1w3 +w4

2,d
= 0.

(3) Sq1(u3)
2,d
= 0, which implies Sq1(w1w2)

2,d
=

Sq1(w1)w2 + w1Sq
1(w2)

2,d
= w2

1w2 + w2
1w2 + w1w3

2,d
=

w1w3
2,d
= 0,

which can be summarized as

w1w2
2,d
= 0, w1w3

2,d
= 0, w4

1 +w2
2 +w4

2,d
= 0. (I16)

We also have many relations between the Stiefel-Whitney
classes and aZ2 :
(1) Sq1((aZ2)3)

2,d
= (aZ2)4

2,d
= w1(a

Z2)3.

(2) Sq1(w1(a
Z2)2)

2,d
= w2

1(a
Z2)2

2,d
= w1[w1(a

Z2)2].

(3) Sq1(w2
1a

Z2)
2,d
= w2

1(a
Z2)2

2,d
= w3

1a
Z2 .

(4) Sq1(w2a
Z2)

2,d
= (w1w2 + w3)a

Z2 + w2(a
Z2)2

2,d
=

w1w2a
Z2 , which implies that w3a

Z2
2,d
= w2(a

Z2)2.

(5) Sq2((aZ2)2)
2,d
= (aZ2)4

2,d
= (w2

1 +w2)(a
Z2)2.

(6) Sq2(w1a
Z2)

2,d
= w2

1(a
Z2)2

2,d
= (w2

1 + w2)w1a
Z2

2,d
=

w3
1a

Z2 , which is the same as (2).
To summarize

w2
1(a

Z2)2
2,d
= w3

1a
Z2 , (aZ2)4

2,d
= w1(a

Z2)3, (I17)

w2(a
Z2)2

2,d
= w3a

Z2 , (aZ2)4 +w2
1(a

Z2)2 +w2(a
Z2)2

2,d
= 0.

There are nine 4-cocycles that can be constructed from
Stiefel-Whitney classes and a 1-cocycle aZ2 :

(aZ2)4, w1(a
Z2)3, w2

1(a
Z2)2,

w2(a
Z2)2, w3

1a
Z2 , w3a

Z2 ,

w4
1, w2

2, w4. (I18)

Only four of them are independent

w4
1, w2

2, w3a
Z2 , w3

1a
Z2 . (I19)

Appendix J: Relation between Pontryagin classes

and Stiefel-Whitney classes

There is result due to Wu that relate Pontryagin classes
and Stiefel-Whitney classes (see Ref. 71 Theorem C):
Let B be a vector bundle over a manifold X, wi be its
Stiefel-Whitney classes and pi its Pontryagin classes. Let
ρ4 be the reduction modulo 4 and θ2 be the embedding
of Z2 into Z4 (as well as their induced actions on coho-
mology groups). Then

P2(w2i)
4,d
= pi + 2

(

w1Sq
2i−1w2i +

i−1
∑

j=0

w2jw4i−2j

)

, (J1)

where P2 is the Pontryagin square, which maps x ∈
H2n(X,Z2) to P2(x) ∈ H4n(X,Z4). The Pontryagin

square has a property that P2(x)
2
= x2. Therefore

P2(w2i)
2,d
= w2

2i
2,d
= pi. (J2)

Appendix K: Spin and Pin structures

Stiefel-Whitney classes can determine when a manifold
can have a spin structure. The spin structure is defined
only for orientable manifolds. The tangent bundle for
an orientable manifold Md is a SOd bundle. The group
SOd has a central extension to the group Spin(d). Note
that π1(SOd) = Z2. The group Spin(d) is the double
covering of the group SOd. A spin structure on MD is
a Spin(d) bundle, such that under the group reduction
Spin(d)→ SOd, the Spin(d) bundle reduces to the SOd
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bundle. Some manifolds cannot have such a lifting from
SOd tangent bundle to the Spin(d) spinor bundle. The
manifolds that have such a lifting is called spin mani-
fold. A manifold is a spin manifold iff its first and second
Stiefel-Whitney class vanishes w1 = w2 = 0.
For a non-orientable manifold Nd, the tangent bun-

dle is a Od bundle. The non-connected group Od has
two nontrivial central extensions (double covers) by Z2

with different group structures, denoted by Pin+(d) and
Pin−(d). So the Od tangent bundle has two types of
lifting to a Pin+ bundle and a Pin− bundle, which are
called Pin+ structure and Pin− structure respectively.
The manifolds with such lifting are called Pin+ manifolds
or Pin− manifolds. We see that the concept of Pin±

structure applies to both orientable and non-orientable
manifolds. A manifold is a Pin+ manifold iff w2 = 0. A
manifold is a Pin− manifold iff w2 + w2

1 = 0. If a man-
ifold Nd does admit Pin+ or Pin− structures, then the
set of isomorphism classes of Pin+-structures (or Pin−-
structures) can be labeled by elements in H1(Nd;Z2).
For example RP 4 admits two Pin+-structures and no
Pin−-structures since w2(RP

4) = 0 and w2(RP
4) +

w2
1(RP

4) 6= 0.
From (I2), we see that M#N is Pin+ iff both M and

N are Pin+. Similarly, M#N is Pin− iff both M and N
are Pin−.

Appendix L: Higher group as simplicial complex

1. Higher group and its classifying space

Given a topological space K, we can triangulate it
and use the resulting complex K to model it. If K is
connected, we can choose the complex K to have only
one vertex. We can even choose the one-vertex com-
plex to be a simplicial set. Such a simplicial set is
called a higher group if various Kan conditions are sat-
isfied and the corresponding space K is called the clas-

sifying space of the higher group. More precisely, K is
an n-group (n ∈ {1, 2, . . . } ⊔ {∞}), if K satisfies Kan
conditions Kan(m, j), i.e. the natural horn projection

Km

pm
j

−−→ Λm
j (K) is surjective, for all 0 ≤ j ≤ m; and

strict Kan conditions Kan(m, j)!, i.e. Km

pm
j

−−→ Λm
j (K) is

isomorphic, for all 0 ≤ j ≤ m and m ≥ n + 1. Here,
Λm
j (K) denotes the set of (m, j)-horns in K. We will use
B to denote a higher group (i.e. a simplicial set).

Let us describe an explicit construction for such a
higher group B. As a simplicial set, B is described by
a set of vertices [B]0, a set of links [B]1, a set of triangles
[B]2, etc. The complex B is formally described by

[B]0 [B]1
d0,d1
oo

oo [B]2
d0,d1,d2
oo

oo

oo [B]3
d0,...,d3
oo

·
oo

[B]4,
d0,...,d4
oo

·
oo

(L1)

where di are the face maps, describing how the n-
simplices are attached to a (n− 1)-simplex.

As the set of vertices, [B]0 = {pt}, i.e. there is only
one vertex. An link in [B]1 is labeled simply by a label
a01 whose end points are both this point pt. Such labels
from a group G. An triangle in [B]2 is labeled by its
three links a01, a12, a02, and possibly an additional label
b012. Such additional labels form an Abelian group Π2.
Thus an triangle is labeled by (a01, a12, a02; b012). We
introduce a compact notation

s[012] = (a01, a12, a02; b012) (L2)

to denote such a triangle. Similarly, an generic d-simplex
is labeled by a label-set s[0 · · · d] = (aij ; bijk; · · · ).
We see that a higher group B in this model consists

the data of a collection of groups G,Π2,Π3, · · · , where G
can be non-Abelian and Πi’s are Abelian. Both G and Πi

can be discrete or continuous. We denote such a higher
group as B(G, 1;Π2, 2;Π3, 3; · · · ). With such a labeling
of the simplices, such as s[012] = (a01, a12, a02; b012), the
face map di can be expressed simply

d0(a01, a12, a02; b012) = a12,

d1(a01, a12, a02; b012) = a02,

d2(a01, a12, a02; b012) = a01, (L3)

or

dms[0 · · · d] = s[0 · · · m̂ · · · d] (L4)

where m̂ means that the m index is removed.
However, in order for the label-set s[0 · · · d] to label a

d-simplex in complex B(G, 1,Π2, 2;Π3, 3; · · · ), the labels
aij , etc., in the set s[0 · · · d] must satisfy certain con-
ditions. Those conditions determine the structure of a
higher group B(G, 1;Π2, 2;Π3, 3; · · · ). Such constructed
higher group is a triangulation of a topological space K.
Different higher groups give us a classification of homo-
topy types of topological spaces.
From our labeling of the simplices s[0 · · · d] =

(aij ; bijk; · · · ), we can also introduce the canonical
cochains on the higher group B(G, 1,Π2, 2;Π3, 3; · · · ).
The canonical G-valued 1-cochain a is given by its eval-
uation on 1-simplices s[01] = a01:

〈a, a01〉 = a01, a01 ∈ G. (L5)

The canonical Π2-valued 2-cochain b is given by its eval-
uation on 2-simplices s[012] = (a01, a12, a02; b012):

〈b, (a01, a12, a02; b012)〉 = b012, b012 ∈ Π2. (L6)

The canonical Πn-valued n-cochain xn can be defined in
a similar fashion.
The conditions satisfied by the labels aij , bijk, etc., in

the set s[0 · · · d] can be expressed as the conditions on
those canonical cochains. In other words, we start with
a chain complex of groups

G
q2
←− Π2

q3
←− Π3

q4
←− . . .

qk←− Πk,
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and group actions G
αj

−→ Aut(Πj), where qi are G-
equivariant with G acting on G trivially, and

αj(apqaqra
−1
pr ) = id. (L7)

Then the structure and the definition of a higher group
Bn3,...,nk+1

(G, 1;Π2, 2; . . . ; Πk, k) can be formulated via
the conditions on the canonical cocycles inductively:
given k − 1 cocycles

n3 ∈ Z3(G, (Π0
2)

α2),

n4 ∈ Z4(Bn3
(G, 1;Π2, 2), (Π

0
3)

α3),

. . . (L8)

nk+1 ∈ Zk+1(Bn3,...,nk
(G, 1;Π2, 2; . . . ; Πk−1, k − 1), (Π0

k)
αk)

where Π0
j := ker qj ⊂ Πj for j = 2, . . . , k,

Xd := {s[0 . . . d] = (x1
01, x

1
02, . . . , x

1
d−1d;

x2
012, . . . , x

2
(d−2)(d−1)d; . . . ;x

d
0...d)|

x1
.. ∈ G, xj

.. ∈ Πj ,

dαj
xj = qj+1(x

j+1) + nj+1(x
1;x2; . . . ;xj−1),

∀j = 2, 3, . . . , d, and dx1 = q2(x
2).}

(L9)

is a k-group. Here we take all Π≥k+1 = 0 (thus q≥k+1 =
0) and all n≥k+2 = 0 in the general definition ofXd. Here

dαj
xj(s[0 . . . j + 1] : = αj(a01) · x

j(s[1 . . . j + 1])

− xj(s[02 . . . j + 1]) + . . . (L10)

Equation (L7) guarantees that dαj
◦ dαj

= 0.
We notice that Bn3

(G, 1;Π2, 2) is the 2-group con-
structed via cocycles n3 with equations dx1 = q2(x

2)
and dα2

x2 = n3(x
1). But it is not in contradiction with

the equation dα2
x2 = q3(x

3)+n3(x
1) in the definition of

Xd. First of all, n3 is a cocycle, therefore it is possible
that dα2

x2 = n3(x
1) has solutions. Secondly, dα2

x2 =
q3(x

3) + n3(x
1) is describing another set of solutions in

Xd, which is also possible to be there. Why? If we apply
dα2

to it, we have dα2
q3(x

3) = 0, but this holds natu-
rally, since dα2

q3(x
3) = q3(dα3

x3) = q3(n4(x
1, x2)) = 0,

no matter we have dα3
x3 = q4(x

4) + n4(x
1, x2) or

dα3
x3 = n4(x

1, x2). Thirdly, from both equations, we
have q2(n3(x

1)) = q2(dα2
x2) = dq2(x

2) = ddx1 = 0,
which is also fine since n3 takes value in Π0

2 = ker q2. We
thus can further understand these equations, which are
not contradict to each other, inductively for higher k’s.

Now let us prove that what we construct satisfies de-
sired Kan conditions, therefore is a higher group. Notice
that the horn space Λm

j (X) has the same (m−2)-skeleton
as Xm, thus to verify the Kan condition Kan(m, j), we
only need to take care of (m− 1)-faces. Since there is no
non-trivial ≥ k+1 faces, it is clear that Kan(≥ k+2, j)!
are satisfied. Then Kan(k + 1, j)! are satisfied for 0 ≤
j ≤ k + 1 because the following equation,

dαk
xk = nk+1(x

1;x2; . . . ;xk−1), (L11)

implies that as long as we know any k + 1 out of k + 2
k-faces in the (k + 1)-simplex s[01 . . . k + 1], then the
other one is determined uniquely. Similarly, Kan(m+1, j)
are satisfied for 0 ≤ j ≤ m < k because the following
equation,

dαm
xm = qm+1(x

m+1) + nm+1(x
1;x2; . . . ;xm−1),

implies that any m + 1 out the m + 2 m-faces in the
(m+ 1)-simplex s[01 . . .m+ 1] determines the other one
up to a choice of qm+1(x

m+1). Thus we can always fill
the (m+1, j)-horn and we have unique filling if and only
if qm+1 = 0.
Moreover, if two sets of canonical two chains nX

j ’s

and nY
j ’s differ by coboundaries valued in ker qj , then

they define weak equivalent k-groups. More precisely,
this is an inductive process: if nY

3 − nX
3 = dn′

2, and
n′
2 ∈ ker q2, then we let f2 : x2 7→ x2 + n2(x1) and

f1 = f0 = id; further using this truncated simplicial ho-
momorphism, if f∗nY

4 − nX
4 = dn′

3, and n′
3 ∈ ker q3,

then we let f3 : x3 7→ x3 + n′
3(x1, x2); further using

f0, . . . , f3, if f
∗nY

5 −nX
5 = dn′

4, and n′
4 ∈ ker q4, then we

let f5 : x5 7→ x5 + n′
4(x1, x2, x3); . . . in the end, we ob-

tain a simplicial homomorphism f made up by automor-

phisms fj of Gj ×Π
(j2)
2 ×Π

(j3)
3 × · · · ×Πj . This simplicial

morphism is a weak equivalence f : X → Y of higher
groups. Here X is the higher group defined by canon-
ical chains nX

j and Y the one defined by nY
j . This is

because f introduces isomorphisms on homotopy groups
of X and Y . Notice that X and Y both have the same
homotopy groups: π0 = 0, π1 = G/Imq2, π2 = Π2/Imq3,
. . . . The construction above makes sure that f is a sim-
plicial homomorphism, and it gives rise to isomorphisms
when passing to homotopy groups.

Therefore, if we fix other canonical cocycles,
up to weak equivalence, we may take nk+1 ∈
Hk+1(Bn3,...,nk

(G, 1;Π2, 2; . . . ; Πk−1, k−1), (Π
0
k)

αk), and
if qk = 0, we may further assume that nk+1 ∈
Hk+1(Bn3,...,nk

(G, 1;Π2, 2; . . . ; Πk−1, k − 1),Πk
αk).

2. 3-group

In the following, we discuss a 3-group
B(G, 1,Π2, 2;Π3, 3) in more details. The missing
labels Πn, n|n>3 mean that Πn = |n>30. In order for
(a01, a12, a02; b012) to label a triangle in the complex,
a01, a12, a02 must satisfy

(δa)012 ≡ a01a12a
−1
02 = q2(b012). (L12)

In terms of canonical cochains, the above condition can
be rewritten as

δa = q2(b). (L13)

Here q2 is a group homomorphism q2 : Π2 → G. So only
a01 and a12, b012 are independent. The triangles in the
complex are described by independent labels

s[012] = [a01, a12; b012]. (L14)
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Therefore the set of triangles is given by G×2 × Π2. If
a01, a12, a02 do not satisfy the above condition, then the
three links a01, a12, a02 simply do not bound a triangle
(i.e. there is a hole).
Similarly, for a tetrahedron s[0123], the labels aij in

the label-set s[0123] all satisfy (L12) if we replace 012 by
i < j < k. There an additional condition

(dα2
b)0123 ≡ α2(a01) · b123 − b023 + b013 − b012

= q3(c0123) + n3(a01, a12, a23), (L15)

where q3 is a group homomorphism q3 : Π3 → Π2, α2

is a group homomorphism α2 : G → Aut(Π2), and n3 ∈
Z3(B(G, 1), (Π0

2)
α2). In terms of canonical cochains, the

above can be rewritten as

dα2
b = q3(c) + n3(a) (L16)

We see that a tetrahedron are described by independent
labels

s[0123] = [a01, a12, a23; b012, b013, b023; c0123]. (L17)

Therefore the set of tetrahedrons is given by G×3×Π×3
2 ×

Π3.

For a 4-simplex s[01234], the labels aij and bijkl in the
label-set s[01234] all satisfy (L12) and (L15). There an
additional condition

(dα3
c)01234

≡ α3(a01) · c1234 − c0234 + c0134 − c0124 + c0123

= n4(a01, a12, a23, a34, b012, b013, b023) (L18)

where α3 is a group homomorphism α3 : G → Aut(Π3)
and n4 ∈ Z4(B(G, 1;Π2, 2), (Π

0
3)

α3) is a closed cochain.
In terms of canonical cochains, the above can be rewrit-
ten as

dα3c = n4(a, b). (L19)

In general, the 3-group B(G, 1;Π2, 2;Π3, 3) has the fol-
lowing sets of simplices:

pt G
d0,d1
oo

oo G×2 ×Π2

d0,...,d2
oo

oo

oo G×3 ×Π×3
2

d0,...,d3
oo

·
oo

G×4 ×Π×6
2 ×Π3

d0,...,d4
oo

·
oo

G×5 ×Π×10
2 ×Π×10

3 . . .
d0,...,d5
oo

·
oo

(L20)

The d-simplices form a set G×d × Π
×(d2)
2 × Π

×(d3)
3 .

The d-simplices in G×d × Π
(d2)
2 × Π

×(d3)
3 are labeled by

{aij , bijk, cijkl}, i, j, k, l = 0, 1, · · · , d, that satisfy the
conditions (L12) (after replacing 012 by i < j < k), (L15)
(after replacing 0123 by i < j < k < l) and (L18) (after
replacing 01234 by i < j < k < l < m).

We find that 3-groups B(G; Π2; Π3) are classified by
the following data

G; Π2, q2, α2, n3; Π3, q3, α3, n4 (L21)

where G is a group, Π2,Π3 are Abelian groups, α2, α3

are group actions α2 : G → Aut(Π2) and α3 :
G → Aut(Π3), n3 ∈ Z3(B(G, 1), (Π0

2)
α2), and n4 ∈

Z4(B(G; Π2); (Π
0
3)

α3). When n3, n4 differ by a cobound-
ary valued in ker q2, ker q3 respectively, the 3-groups are
weak equivalent.

3. 3-group cocycle

In the following, we give an explicit description of
3-group cocycles, which are the cocycles on the com-
plex B(G, 1;Π2, 2;Π3, 3). First, a d-dimensional 3-group

cochain νd with value M is a function ωd : G×d × Π
(d2)
2 ×

Π
(d3)
3 → M. Then, using the face map (L4), we can define

the differential operator d acting on the 3-group cochains

as the following:

(dωd)(s[0 · · · d+ 1]) =

d+1
∑

m=0

(−)mωd(s[1 · · · m̂ · · · d+ 1]),

(L22)

With the above definition of d operator, we can define
the 3-group cocycles as the 3-group cochains that satisfy
dωd = 0. Two different 3-group cocycles dωd and dω′

d are
equivalent if they are different by a 3-group coboundary
dνd−1. The set of equivalent classes of d-dimensional 3-
group cocycles is denoted by Hd(B(G, 1;Π2, 2;Π3, 3),M),
which in fact forms an Abelian group.

In the above, we gave a quite general definition of
k-group. In more standard definition, qi is chosen to
be qi = 0. Such qi = 0 k-group will be denoted by
B(G, 1;Π2, 2;Π3, 3; · · · ). Its homotopy group are given
by

πn

(

B(G, 1;Π2, 2;Π3, 3; · · · )
)

= Πn, Π0 = G. (L23)

Usually, we can use the canonical cochains a, b, c etc to
construct the cocycles on B(G, 1;Π2, 2;Π3, 3). For ex-
ample, on a 3-group B0(G, 1;Π2, 2;Π3, 3) defined via its
canonical cochains: δa = 1, db = 0, dc = 0, a 3-group
cocycle ωd will be a cocycle on B0(G, 1;Π2, 2;Π3, 3).
The expressions b, b2, Sq3c, etc are also cocycles on
B0(G.1;Π2, 2;Π3, 3).
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4. Continuous group

The above discussions apply to both discrete and con-
tinuous groups. However, in order to construct principle
bundle or higher principle bundle on space-time M , it is
not enough to consider only strict simplicial homomor-
phisms from space-time complexM to G(G, 1;Π2, 2; . . . )
when G is a continuous group. The reason is that, for ex-
ample, in the case of G(SU2, 1) = BSU2, strict simplicial
homomorphisms φstrict : M → BSU2 can only produce
trivial principal SU2-bundles on M = |M|, which is the
geometric realization ofM. We thus need to allow gen-
eralised morphisms φgen fromM to G(G, 1;Π2, 2; . . . ), so
that their pullback can produce non-trivial higher prin-
cipal bundles onM.

Let us explain this via an example: a generalized mor-

phism M
φ
−→ BSU2 consists of a zigzag, M

χ
←− M̃

φ̃
−→

BSU2, where both χ and φ̃ are strict simplicial homo-
morphisms and χ is a weak equivalence. Here, we de-
fine X → Y between simplicial topological spaces being
a weak equivalence if and only if their geometric realiza-
tion |X| and |Y | are weakly homotopy equivalent (namely
all homotopy groups are the same). Homotopy equiva-
lence clearly implies weak homotopy equivalence. This
coincides with usual weak equivalence between simplicial
sets when both X and Y are simplicial sets (taking dis-
crete topology). Then to present an SU2-principal bundle
P on M, we take a good cover {Uα} (that is, all sorts
of finite intersections ∩Uα are contractible), where P is

trivial on each Uα. Then we take M̃ to be the Cech
groupoid ⊔αUα ⇐ ⊔αβUα ∩ Uβ . . . . The set of vertices

of M̃ is the set of points in all Uα’s, i.e. the disjoined
union ⊔αUα. The set of links in M̃ is given by the set
of the points xαβ in Uα ∩ Uβ , imagined as links linking
xα ∈ Uα and xβ ∈ Uα which are actually the same point

x in M but in different covers. The set of triangles in M̃
is given by the set of the points xαβγ ∈ Uα ∩Uβ ∩Uγ . A
point in Uα ∩Uβ ∩Uγ can be viewed as a triple xα ∈ Uα,
xβ ∈ Uβ , and xγ ∈ Uγ , that correspond to the same

point in M . The homomorphism φ̃ is determined by φ̃1

with φ̃1(xαβ) = aαβ(xαβ), where xαβ ∈ Uα ∩ Uβ and
aαβ(xαβ) ∈ G = SU2 are the transition functions to glue
P .

We take the so called abstract nerve N(M̃) of the cov-

ering simplicial space M̃, which is constructed as follow-
ing: N(M̃)0 is the index set I of the cover {Uα}. We de-
note a vertex by vα with α ∈ I. A d-simplex s[0, . . . , d] is
a set {vα0

, . . . , vαd
} with d ≥ 0 and α0, . . . , αd ∈ I, such

that Uα0
∩ · · · ∩ Uαd

6= ∅. It is clear that there is a map

M̃
χ′

−→ N(M̃) by mapping all points in Uα0
∩ · · · ∩ Uαd

exactly back to the simplex s[0, . . . , d]. As long as M is
paracompact and {Ui} is a good cover, as we assumed,

Borsuk Nerve Theorem ensures that M and |N(M̃)| are
homotopy equivalent. Segal72 proved that in |M̃| and
M are homotopy equivalent. Thus |N(M̃)| and |M̃| are
homotopy equivalent. Thus χ′ is a weak equivalence.

On the other hand, from the simplicial set M which
corresponds to a simplicial decomposition of M , we cre-
ate a cover UM by the star construction: we denote S the
set of simplices in the simplicial decomposition given by
M. For σ ∈ S, the star of σ defined by Uσ := ∪σ⊂s,s∈Ss

0

the union of interior of simplices having σ as a subface,
is an open set in M . Clearly, for two vertices vi and vj ,
Uvi ∩ Uvj

6= ∅ if and only if there is an edge eij link-
ing vi and vj , and in this case, Uvi

∩ Uvj
= Ueij . In

general, Uv0
∩ . . . Uvd 6= ∅ if and only if there is a sim-

plex s[0, . . . , d] with vertices v0, . . . , vd, and in this case,
Uv0 ∩ · · · ∩ Uvd = U[0,...,d]. It is then clear if we take

the cover in M̃ to be this particular open cover (which
is a good cover), namely stars of all vertices inM, then

N(M̃) is exactlyM. Thus we obtain a weak equivalence

M
χ′

←− M̃.
Now the only problem left is that this cover UM might

not be fine enough to create non-trivial principal bun-
dles. But this can be easily solved by taking a refinement
of UM on which transition functions glue to the desired
principal bundle P . We denote the Cech groupoid of the
refinement by M̂. Then there is a weak equivalence be-

tween Cech groupoids M̃
∼=
←− M̂. Then we have weak

equivalences M
∼=
←− M̃

∼=
←− M̂. Thus we realize P as a

generalised morphism,M
∼=
←− M̂ → BSU2.

Thus in our article, when we talk about homomor-
phisms between simplicial objects, we understand them
as this correct version of morphisms, namely generalised
morphisms when G is continuous or strict simplicial ho-
momorphisms when G is discrete.

Appendix M: Calculate a3 ⌣

1
a3

Let a be a 1-cochain. We have

〈a3 ⌣
1
an, (012 · · ·n+ 2)〉

2
=

∑

〈a3, A1 ∪A3〉〈xn, A2〉

2
= (a3)0,n,n+1,n+2(a

n)01···n + (a3)0,1,n+1,n+2(a
n)12···n+1

+ (a3)0,1,2,n+2(a
n)23···n+2

2
= a01a12 · · · an+1,n+2(a0n + a1,n+1 + a2,n+2). (M1)

Thus

a3 ⌣
1
an

2
= (a ⌣

1
an)a2 + a(a ⌣

1
an)a+ a2(a ⌣

1
an)

(M2)

When a is a Z2-valued 1-cocycle, the above allows us
to obtain

a3 ⌣
1
a3

2
= (a ⌣

1
a3)a2 + a(a ⌣

1
a3)a+ a2(a ⌣

1
a3).

(M3)

Using (A20), we find a ⌣
1
a3

2
= a3 ⌣

1
a, and

a3 ⌣
1
a

2
= (a ⌣

1
a)a2 + a(a ⌣

1
a)a+ a2(a ⌣

1
a)

2
= a3

(M4)
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This allows us to show

a3 ⌣
1
a3 = Sq2a3

2
= a5. (M5)

More generally, we can show that for Z2-valued 1-cocycles
a1 and a2,

Sq2(a1a
2
2)

2
= a1a

4
2. (M6)

Appendix N: Group extension and trivialization

Consider an extension of a group H

A→ G→ H (N1)

where A is an Abelian group with group multiplication
given by x+ y ∈ A for x, y ∈ A. Such a group extension
is denoted by G = A ⋋ H. It is convenient to label the
elements in G as (h, x), where h ∈ H and x ∈ A. The
group multiplication of G is given by

(h1, x1)(h2, x2) = (h1h2, x1 + α(h1) ◦ x2 + e2(h1, h2)).
(N2)

where e2 is a function

e2 : H ×H → A, (N3)

and α is a function

α : H → Aut(A). (N4)

We see that group extension is defined via e2 and α. The
associativity

[(h1, x1)(h2, x2)](h3, x3) = (h1, x1)[(h2, x2)](h3, x3)]
(N5)

requires that

x1 + α(h1) ◦ x2 + e2(h1, h2) + α(h1h2) ◦ x3 + e2(h1h2, h3)

= α(h1) ◦ x2 + α(h1)α(h2) ◦ x3 + α(h1) ◦ e2(h2, h3)]

+ x1 + e2(h1, h2h3) (N6)

or

α(h1)α(h2) = α(h1h2) (N7)

and

e2(h1, h2)− e2(h1, h2h3) + e2(h1h2, h3)

− α(h1) ◦ e2(h2, h3) = 0. (N8)

Such a e2 is a group 2-cocycle e2 ∈ H2(BH;Aα), where
H has a non-trivial action on the coefficient A as de-
scribed by α. Also, α is a group homomorphism α :
H → Aut(A). We see that the A extension from H to
G is described by a group 2-cocycle e2 and a homomor-
phism α. Thus we can more precisely denote the group
extension by G = A⋋e2,α H.

Note that the homomorphism α : H → Aut(A) is in
fact the action by conjugation in G,

(h, 0)(1, x) = (h, α(h) ◦ x) = (1, α(h) ◦ x)(h, 0),

⇒ (h, 0)(1, x)(h, 0)−1 = (1, α(h) ◦ x). (N9)

Thus, α is trivial if and only if A lies in the center of G.
This case is called a central extension, where the action
α will be omitted.
Our way to label group elements in G:

g = (h, x) ∈ G (N10)

defines two projections of G:

π : G→ H, π(g) = h,

σ : G→ A, σ(g) = x. (N11)

π is a group homomorphism while σ is a generic function.
Using the two projections, g1g2 = g3 can be written as

(π(g1), σ(g1))(π(g2), σ(g2))

= [π(g1)π(g2), σ(g1) + α(π(g1)) ◦ σ(g2) + e2(π(g1), π(g2))]

= (π(g3), σ(g3)) = (π(g1g2), σ(g1g2)) (N12)

We see that the group cocycle e2(h1, h2) in H2(BH;A)
can be pullback to give a group cocycle e2(π(g1), π(g2))
in H2(BG;A), and such a pullback is a coboundary

e2(π(g1), π(g2)) = −σ(g1) + σ(g1g2)− α(π(g1)) ◦ σ(g2),
(N13)

i.e. an element in B2(BG;Aα), where G has a non-trivial
action on the coefficient A as described by α.

The above result can be put in another form. Consider
the homomorphism

ϕ : BG→ BH (N14)

where G = A ⋋e2 H, and e2 is a A-valued 2-cocycle on
BH. The homomorphism ϕ sends an link of BG labeled
by aGij ∈ G to an link of BH labeled by aHij = π(aGij) ∈ H.
The pullback of e2 by ϕ, ϕ∗e2, is always a coboundary
on BG
The above discussion also works for continuous group,

if we only consider a neighborhood near the group iden-
tity 1. In this case, e2(h1, h2) and α(h) are continu-
ous functions on such a neighborhood. But globally,
e2(h1, h2) and α(h) may not be continuous functions.
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