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Higher symmetries can emerge at low energies in a topologically ordered state with no symmetry,
when some topological excitations have very high energy scales while other topological excitations
have low energies. The low energy properties of topological orders in this limit, with the emergent
higher symmetries, may be described by higher symmetry protected topological order. This moti-
vates us, as a simplest example, to study a lattice model of Z,-1-symmetry protected topological
(1-SPT) states in 3+1D for even n. We write down an exactly solvable lattice model and study its
boundary transformation. On the boundary, we show the existence of anyons with non-trivial self-
statistics. For the n = 2 case, where the bulk classification is given by an integer m mod 4, we show
that the boundary can be gapped with double semion topological order for m = 1 and toric code
for m = 2. The bulk ground state wavefunction amplitude is given in terms of the linking numbers
of loops in the dual lattice. Our construction can be generalized to arbitrary 1-SPT protected by
finite unitary symmetry.

CONTENTS C. Boundary perspective 16
I Introduction 1 X. Conclusions 17
A. Staterpent of results . 2 A. Space-time complex, cochains, and cocycles 17
B. Notations and conventions 2
C. Overview of paper 2 B. Procedure for deriving Hamiltonian from topological
. . . partition function 20
II. A brief review of topological order, SPT states, and 1. Zero background gauge field case 21
higher SPT states 3 2. Non-zero background gauge field case 22
II1. Int}litive a.rggment for boundary transformation C. Ground state wavefunction 23
string statistics 5 1. Zero background gauge field case 23
IV. A 341D model to realize a Z,,-1-SPT phase for even 2. Non-zero background gauge field case 24
n ) 6 D. Triangulation of hypercubic lattice 24
A. The bulk exactly solvable Lagrangian 7
o E. Evaluation of [,,(b*")? in a hypercube 25
V. Exactly solvable Hamiltonian 8
A. Even m case 8 F. Evaluation of P;; in the m=even case 25
B. General m case 9
G. Evaluation of P;; for general m 26
VI. Ground state wavefunctions and boundary
transformations 9 H. Calculation details for 84, 04,4, 27
A. Boundary States and their 1-symmetry
transformations 9 L. Evaluation of W, for (n,m) = (2,1) 27
B. Boundary transformation strings 10 1. DS projection Hamiltonian 28
C. Self and mutual statistics of boundary 7
transformation strings 10 J. wa, ¢3 and @2 28
1. Self-statistics 10
9 Mutual-statistics 11 K. Generalization of (49) and (51) to G-protected
1-SPT for finite unitary groups 29
VII. Gapped symmetric boundaries 11
A. Engineering boundary gapped Hamiltonian 12 References 30
1. Hp is exactly solvable and has 1-symmetry 12
2. Topological ordered surface states forn =2 13
3. Connection to Works of Wan and Wang 13 I. INTRODUCTION
VIIL Geometric. interpretation of ground state In the last few decades, there has been rapid progress
wavefunction 13 . N . " .
in understanding “topological phases” of matter, which
A. Even m case 14 . .
despite sharing the same symmetry, must undergo a
B. Odd m case 14 o
phase transition to reach one phase from another. Some
IX. Non-zero background gauge field 15 famous examples are the topological ordered states
A. Exactly Solvable Hamiltonian 16 with no symmetry’? which have degenerate ground

B. Geometric interpretation of wavefunction 16 states on topological non-trivial closed manifolds, as well



as symmetry protected topological (SPT) states with
symmetry> , which does not have topological order and
have a unique gapped ground state in closed manifolds.

A 3+1D topological order can have point-like and
string-like topological excitations™®. For example, a
341D topological order described by Z, gauge theory
has Z,, charges (the point-like topological excitations)
and Z,, flux-lines (the string-like topological excitations).
If the Z,, charges have very large energy gap, then the
theory for low energy Z,, flux-lines will have an emergent
higher symmetry — a Z,, 1-symmetry'®. In other words
the low energy effective Hamiltonian is invariant under
the symmetry transformations that act on all closed 2-
dimension subspaces of the 3-dimensional space. Thus to
understand the topological orders in such a limit, we can
study Hamiltonians with a 1-symmetry. This motivates
us to study 1-symmetry in this paper, such as the lattice
Hamiltonian that realize 1-symmetry and the associated
symmetry protected topological order, as well as their
boundaries.

We will refer the transformations that act closed 2-
dimension subspaces as the transformation membrane. If
the 3d space have a boundary, the transformation mem-
brane may intersect with the boundary. Such an inter-
section will be called transformation string.

A. Statement of results

In this paper, we will study lattice systems with higher
symmetries!! 24, Like the usual symmetry (0-symmetry)
that can have SPT order®%, higher symmetry can also
have higher SPT order!%!%:2! In this paper, we will con-
centrate on 341D systems with Z,, 1-symmetry and the
associated associated 3+1D Z,, 1-SPT states. Those sys-
tems can appear as low energy effective theories for 3+1D
Z,, topological order where the Z,, charges have a large
energy gap.

The 3+1D Z,, 1-SPT states are known to have a Zs,
classification®2, labeled by m € Zs,. We study them
in the Hamiltonian formalism and write down an exactly
solvable bulk Hamiltonian, which has a compact expres-
sion when m is even.

The boundary of our system can also have the
Z, 1l-symmetry, but such a Z, l-symmetry is
anomalous'??%27,  We find that on the boundary,
the transformation strings can carry non-trivial self-
statistics, as a reflection of the anomaly. This predicts
the gapped boundary of the 1-SPT to have emergent
anyons. We also find that it is possible for its surface
state to be a gapped topological ordered state. The topo-
logical ordered boundary state has degenerate ground
states if the surface manifold has non-zero genus. These
degenerate states exhibit the spontaneous breaking of 1-
symmetry. We also give a geometric interpretation of the
ground state wave function, by writing the wave function
amplitude in terms of the linking numbers of loops in the
dual lattice.

B. Notations and conventions

In some part of this paper, we will use the Lagrangian
formalism to describe quantum lattice systems. This al-
lows us to use extensively the notion of cochain, cocycle,
and coboundary, as well as their higher cup product —~

and Steenrod square Sg”, to construct exactly solvable
Lagrangian that realize topological orders and (higher)
SPT orders. The reason to use modern mathematical for-
malisms is that they allow us to see the features of topo-
logical order and (higher) SPT order easily and quickly.

But the modern mathematical formalisms are not
widely used in condensed matter theory. So we provide a
brief introduction in Appendix A. Also, the Lagrangian
formalism does not give us a lattice Hamiltonian explic-
itly. So in this paper, we present a systematic and direct
way to obtain a lattice Hamiltonian from the those ex-
actly solvable Lagrangian.

We will abbreviate the cup product of cochains a — b
as ab by dropping —. We will use = to mean equal up
to a multiple of n, and use = to mean equal up to df
(i.e. up to a coboundary). We will use (I, m) to denote
the greatest common divisor of [ and m ((0,m) = m).
We will also use |z] to denote the integer that is closest
to z. (If two integers have the same distance to x, we
will choose the smaller one, eg . [1] = 0.)

In this paper, we will deal with Z,-value quantities.
We will denote them as:

a
alr i =a— nLEL

so the value of a%" has a range from —|251] to [2]. We

will sometimes lift a Z,,-value to Z-value, and when we
do so we omit the superscript, eg . a’r = o = a, SO we
can make sense of expressions like a?” +a'4, which means
a? + a'%. Since (a + nu?)%n = a», whenever we lift a
Z,-value to Z-value we need to take care whether the
final result is independent of choice of lifting, i.e. choice
of u”.

We will also use D to denote spacetime dimensions and
d to denote space dimensions.

C. Overview of paper

The structure of the paper and a road map for reading
is presented as follows.

In section II, we review some background informa-
tion connecting the cohomology models we studied to
the standard many-body theory. We explained what are
those cohomology models, and some simple examples of
those model that realize simple topological orders and
(higher) SPT orders.

In section III we present an intuitive, informal argu-
ment for one of our major results, the self and mutual
statistics of boundary transformation strings, without
using the mathematical machinery of cochains and cocy-
cles. The formal argument begins from section IV, where



we cite from the literature that the Z,,-1 SPT has Z,,
classification from cohomology, such that each phase is
labeled by m € Zs,. We write down the exactly solv-
able Lagrangian, the expression for wy in (11). We also
show that it changes by a boundary term under gauge

transformation via (16)=(20),
W4[BZ" + daZ”] = UJ4[BZ"] + d(ﬁg[BZ",CLZ"}

for some function ¢s. This implies wy[B%" + da’"| and
w4[BZ”] gives the same answer when summed over a
closed manifold, which is expected from gauge invariance
(1). )

In section V we specialize to the case B%" = 0 and
give the explicit form of ¢3[a?"] in (28). In Appendix
B and C, we argue that on a closed spatial manifold
M3, e27i [ 939”"] g the amplitude of the ground state
wavefunction. We achieve this by examining the time-
evolution operator e~ THe whose matrix elements are
given in (B3). We show that it is a projection opera-
tor(hence an infinite gap) and has trace 1(hence a unique
ground state). We further argue this transfer matrix can
be decomposed into local commuting projection opera-
tors P;; (B6). We then build our exactly solvable Hamil-
tonian with a finite gap by summing over the —F;;’s. We
then verify that the ground state wavefunction is indeed
given in terms of ¢3lan].

To write down the exactly solvable Hamiltonian, we
consider a particular triangulation of M3, given in Ap-
pendix D. We compute the explicit form for P;; for the
even m case in Appendix F and the odd m case in Ap-
pendix G. Unfortunately, we are unable to further sim-
plify the expression in the odd m case. The results are
summarized and presented in section V.

In section VI we consider the case when M? has a
boundary. We introduced the notion of a “boundary
state” (36), which is obtained by fixing the degrees of
freedom on the boundary and relaxing the bulk degrees
of freedom to their ground state. As a result, the orig-
inally non-anomalous 1-symmetry transformation from
the bulk now transform the boundary states with an
additional phase €271 Joas #2[a”"h*"]1 " Thig phase cap-
tures the 't Hooft anomaly of 1-symmetry in the bound-
ary. Any boundary Hamiltonian must be symmetric un-
der this anomalous 1-symmetry in order to cancel the 't
Hooft anomaly. We show that ¢o[a?"] is related to the
ground state wavefunction ¢z[a?"] by (40):

osl(a+ dh)*] — ¢sla’"] = —dgo[a”", h*"]

which states that under the 1-symmetry, the ground state
wavefunction changes by a boundary term. We write
down the explicit form of ¢ala?",h%"] in (41). Using
this explicit form, we are able to compute the self(49)
and mutual(51) statistics of the transformation strings.
Details of the computation are given in H. The boundary
transformation strings may be interpreted as hopping op-
erators for anyons residing on the end of the strings. This

predicts the emergence of such anyon on the boundary
theory and is the main result of the paper.

In section VII we test our prediction by writing down
some gapped boundary Hamiltonians which obeys the
anomalous 1-symmetry. We specialize to n = 2 and check
the cases m = 2 and m = 1. We show that the gapped
boundary is identical to the toric code model (for m = 2)
and the double semion model (for m = 1). We verify in
both cases that the boundary indeed contains an anyon
with the predicted statistics. Details of the computation
for the boundary Hamiltonian are given in I.

In section VIII we return to examine the ground state
wavefunction. We present the geometric interpretation
of the bulk wave function amplitude as a knot invariant
(linking number) of loops dual to da?".

In section IX we extend our study to the case with a
non-zero background gauge field. In the even m case, we
find a line charge with charge —m is attached to the dual
line of the background gauge field. Details are presented
in Appendix B2 and C2.

In Appendix J we go deeper into the origin of the con-
nections between w4, ¢3, ¢2, and show that they are
members of a series of algebraic objects ¢ which en-
codes the same cocycle w, at sub-manifolds of dimension
k.

In Appendix K we present the result of generalizing
the computation of boundary string statistics to other
unitary groups.

II. A BRIEF REVIEW OF TOPOLOGICAL
ORDER, SPT STATES, AND HIGHER SPT
STATES

A large class of topological orders can be realized by
exactly solvable Lagrangian model. To write down the
Lagrangian model, we first triangulate the spacetime to
obtain a spacetime lattice MP, whose vertices are la-
beled by i, j, - - -. The physical degrees of freedom B;; live
on the link 77, and takes value in a group G, i.e. B;; € G.
In this paper, we always assume G to be Abelian. The
collection of those values B;; give us a field B on space-
time, which, in this case, is also called a gauge configu-
ration. A quantum system in Lagrangian formulation
is described by a path integral with an action ampli-
tude. For our model, the action amplitude assigns a
U(1) phase 2miS PIMPB] ¢ g gauge configuration B
on a D-dimensional spacetime lattice MP. The gauge
field B satisfies the “flatness condition” dB = 0 which is
enforced by an energy penalty term U|dB|? in U — oo
limit. The model is exactly solvable if the U(1) phase
is a topological invariant, meaning it remains unchanged
under “deformations” of the lattice MP (change of tri-
angulation), and is also invariant under gauge transfor-
mations B — B+ da, i.e. (in this paper we will assume
the underlying group G is an Abelian finite group.)

S©P[MP B+ da] = S*PMP B], acG (1)



Here = means equal up to 1. The partition function
, after summing all the degrees of freedom (i.e. the G
values in all the links), is given by

Z(MD) _ Z eQWiSLUp[ML)7B].
{B}

Up to a volume term,”?8 the partition function Z(M?P) is
a topological invariant of manifold MP, that characterize
a topological order. When S*P[MP B] = 0, our model
realize a G topological order described by a G-gauge the-
ory. When S*P|MP B] # 0, our exactly solvable model
realizes a topological order described by a twisted G-
gauge theory, which is also known as Dijkgraaf-Witten
model?”.

The action amplitude e of the ex-
actly solvable model can also be viewed as an SPT
invariant3 32 that characterizes an SPT order protected
by symmetry G, if we view B as the background gauge
field B that describes the symmetry twist on the space-
time MP. Such a relation is also referred to as “ungaug-
ing” a topological order, which results in a SPT order.

The SPT invariant e2715“"M”.Bl characterizes a large
class of SPT orders.

To realize the SPT states characterized by the above
SPT invariant, we write B = B + da, fix a background
gauge configuration B, and treat the different gauge
transformations a as distinct physical fields. The par-
tition function, after summing all the degrees of freedom
a, reproduces the SPT invariant, up to a space-time vol-

ume term: 28

271 S°PMP B]

A~ . qtop D B . Qtop D B
Z[MD,B] _ /Dae?n'lb [M*,B+da] ~ eQﬂ'lb [M”,B]

Note that the action is invariant under the symmetry
a — a + « for «a satisfying daa = 0. An SPT is triv-
fal if e2miS"PIMP.B] 1 for all closed manifolds and
background gauge fields B. SPTs also form an Abelian
group under stacking. The topological action S*P for
the stacked SPT is the sum of the topological actions of
its layers. The trivial SPT is the identity element under
stacking and describes a direct product state.

“Group cohomology construction” 5 is one way to write
down S*P[MP | B]. In this construction, we assume that
S%P[MP | B] can be written as a sum over all the D-

simplices AP:

SMP B = [ wplBl= S wolB] ()
MP AD

where wp|B] assigns a number to each D-simplex. The

requirement that S*°[MP | B] is invariant under triangu-

lation leads to the following constraint on wp[B], known

as the “cocycle condition”:

dUJD[B] = 0,

whose solutions are called cocycles. (The left hand side is
evaluated on a D+1-simplex and d is called the cobound-
ary operator analogous to the exterior derivative for dif-
ferential forms. See Appendix A for further details.) Dis-
tinct solutions of the cocycle condition do not necessarily
correspond to distinct topological phases, since two solu-
tions wp, W}, may give the same S*°P on closed manifolds
ifwp = wp+dBp_1 for some function Sp_;. Defining an
equivalence relation wp ~ wfp, + dBp_1 on cocycles and
solving for the equivalence classes of cocycles, the result-
ing algebraic object is known as a cohomology group,
which also provide a way to classify SPTs. .

In the traditional SPT, the gauge field B assigns
a group element of G to every 1-dimensional sim-
plex(i.e. links), and are thus called 1-cochain. (A G-
valued m-cochain is an assignment of a group element of
G to each m-simplex.) Gauge transformations are pa-
rameterized by a 0-cochain a which assigns a group ele-
ment to every O-dimensional simplex(i.e. vertices). Sym-
metry is parameterized by 0-cochain «. The condi-
tion da = 0 implies « is a constant function on ev-
ery connected component. Physically this corresponds
to a global symmetry acting on a connected component
of the spatial slice. An example is the Zs-protected
SPT in D = 2 + 1.* The Z, symmetric ground state
wavefunction can be constructed as the superposition of
domain walls in the Z5 symmetry breaking state, with
(_1)110. of domain walls as its amplitude33.

With the above description of usual SPT states, we
can now describe higher SPTs. Higher SPT states, or “k-
symmetry protected topological states” (k-SPT)10:19:21
is a generalization of traditional SPTs. They have
symmetry acting on closed sub-lattices of codimension
k11724 The 1-cochain (i.e. the vector field) B is pro-
moted to (k + 1)-cochain. The gauge transformation is
now described by a k-cochain a:

B— B+ da. (3)

The path integral on spacetime lattice M that realize
a higher SPT state is given by

Z[MD,B] _ Z e27ri S wp(B+da) (4)
{a}

where the dynamical field a is now a k-cochain (a field
which takes values on the k simplices), and S*°P[MP B]
is given by eqn. (2). In such a lattice model, the higher
symmetry is generated by a k-cocycle a:

a—a+a. (5)

We see that the symmetry acts on k-simplices where
a # 0. Such k-simplices are dual to a (D —k)-dimensional
manifold & on the dual lattice. The condition da = 0 im-
plies @ has no boundary within the space-time manifold.
& may have a non-empty boundary if it intersects the
boundary of the space-time manifold dMP.

When wp = 0, eqn. (4) describes a state with trivial
k-SPT order. When wp is a non-trivial cocycle, eqn. (4)



realizes a state with a non-trivial k-SPT order. The tra-
ditional SPT corresponds to k = 0 case.

The above Lagrangian is a realization of higher SPT
states. In this paper, we show how to convert the above
Lagrangian realization into a Hamiltonian realization. In
the Hamiltonian formalism, a k-symmetry operator acts
on codimension k sub-lattices in the spatial manifold. For
example in a 3 space dimensions, a 1-symmetry operator
acts on closed membranes. These membranes may inter-
sect the boundary as strings. We show in Section VI that
the 1-symmetry membrane operators in the bulk corre-
sponds to 1-symmetry string operators on the boundary.

The hallmark of non-trivial SPT is that its boundary
cannot be gapped with a unique ground state on all man-
ifolds. If it were the case, we could start from a triv-
ial SPT, nucleate a small bubble of the non-trivial SPT,
and expand the bubble to fill up the entire space. This
would have provided a path connecting the trivial and the
non-trivial SPTs without closing the energy gap, lead-
ing to a contradiction. Generically the boundary of non-
trivial SPT is gapless, breaks symmetry spontaneously,
or has topological order. The inability for the boundary
to achieve a uniquely gapped state on all manifolds is
encoded by the 't Hooft anomaly of the k-symmetry on
the boundary. Therefore studying such anomaly is a way
to probe the non-trivial nature of the topological bulk.

III. INTUITIVE ARGUMENT FOR BOUNDARY
TRANSFORMATION STRING STATISTICS

In this section we present an informal argument for the
self and mutual statistics of the boundary strings.

The ’t Hooft anomaly of the boundary transfor-
mation of SPTs may be interpreted via symmetry
fractionalization®#3°: when the symmetry acts on the
entire boundary manifold, and hence can be extended
into the bulk, the group representation structure is pre-
served. But when we attempt to examine the symmetry
acting only on a local patch of the boundary manifold,
various group representation structures may be spoiled.

Take for example the non-trivial G-protected 1d 0-
SPT36, for which the AKLT?" chain with G = SO(3)
is a well-known instance. The boundary of a 1d segment
are its two endpoints, indexed by L and R respectively.
When the bulk is gapped, the low energy effective theory
are described in terms of its boundary degrees of free-
dom, and the Hilbert space may be expressed as a tensor
product Hy ® Hg of the local Hilbert spaces Hr and Hg
for the two ends. For two group elements g, h acting on
the tensor product space, we have

Rr+r(9)Rr+r(h) = Rry+r(gh)

which says Rrpir(9) = Rr(9) ® Rr(g) is a linear rep-
resentation of G. This is because when the same g € G
acts on both boundaries, it may be extended into a sym-
metry acting globally in the bulk, where the group is

represented linearly. When localizing on the left end,
R 1 becomes a projective representations of G:

Ri(9)RL(h) = w(g,h)RL(gh).

The 't Hooft anomaly is expressed as the non-trivial
phase w(g, h), which spoils the linearity of the represen-
tation.

In the same spirit, for our case with Z,-1-SPT, we
may expect 't Hooft anomaly to appear as the spoiling
of some group representation structure when localizing
to a part of the boundary. If the boundary symmetry
can be extended into the bulk, the group representation
structure is expected to be preserved.

Consider the case where we have two 1-symmetries, W
and Ws, associated with group elements qlz" and qQZ" re-
spectively. They act on two contractible loops, as shown
below:

q1 q2

Each loop can be extended into the bulk as a 1-
symmetry acting on a hemisphere. In the bulk, the 1-
symmetries commute. We therefore expect that on the
boundary, the two loop operators also commute. This is
represented by the diagrammatic equation:

q1 a2 q1 a2
There are two intersections of the loops. Motivated
by the symmetry fractionalization picture, we may guess

that when localizing to one of the intersections, the com-
mutativity is spoiled by a U(1) phase e?"10aaz:

an q2

q1 Qo
\/ 27 gy 4, /
\ / (6)

If we further assume that two parallel lines associated
with group elements p?" and qlz” could stack into a single
line (p; + q1)% without incurring any phase, we can de-
duce that 64,4, is a linear function of ¢; by the following



manipulations:
q1 g2
/ ) N
27” Op1a2+0q1 45 \ : \%
P11+ ¢ p1tq

. /”

= = 27 O(p1+a1)an

NS

q1

27” O(p1+a1)a2 \

A similar argument shows 6,4, is linear in g2. We con-
clude

Og1q < 4102

Since qu"7 QQZ " are defined up to multiples of n, we expect
e?"10a192 to be invariant under ¢; — ¢1 + n. Thus the
coefficient should be a fraction 2 for some integer m.

m
Ogngo = 0102 (7)

When ¢; = g3 = ¢, we may also entertain the possibil-
ity that at an intersection, the transformation string may
“change track” and incur a U(1) phase €271 or e?7if
depending on the orientation of the crossing:

q q q q

XSS

Comparing to (

) with g1 = g2 = ¢, we observe that

eq - ‘911 = qu. (8)

On the other hand, we also have the equality of these
two diagrams:

@@

The reason is as follows, imagine when the left hand side
extends into the bulk as two hemispheres which intersect
on a line. On the intersection line, the 1-symmetry acts
trivially and may be removed by reconnecting the mem-
branes near the line. Thus we may reconnect the two
intersecting hemispheres into two non-intersecting mem-
branes which terminates on the surface as shown on the
right hand side. This implies

0y +0,=0.
Adding this equation to (8), we get 26, = 04q- Thus

) 1/2 0 qq 1/2 m 2
a 2 2n
SO

m
0, = %q + f(q,m n)

For some integer-valued function f. An argument similar

to that for the linearity of 64,4, implies 6, is proportional
2

to 2. So f(q,m,n) o ¢% and the coefficient of 2= in 0 is

an integer. Let’s redefine m to be this integer coefficient.

Thus we have

_m s
q_an

Upon ¢ — q + n, the above equation transform as

m
0, = —¢* = —(* +2qn+n
¢ =50 7o T (q? + 2gn +n?)
1 nm
=0, + —
02

so in order for §, to be invariant mod 1, nm must be even.
In the case n is even, m can be chosen from 0,1,...,2n—

1. With n odd, m must be an even number chosen from
0,2,4,...,2n — 2. Each choice gives a distinct set of 6,
and 64, 4,-

Assuming the set of 6, and 64,4, is bijective to the
set of 't Hooft anomalies, which is bijective to the set
of 1-SPT phases in the bulk, we would expect the bulk
Z,-1-SPT to have Zs,, classification for even n, and 7,
classification for odd n. This agrees with the classifica-
tion results in Ref.2> derived from cohomology and Ref.?%
from cobordism group.

We stress that the odd n case and the even n case
differs only in that the odd m’s are forbidden for odd
n. In fact, all the results in our paper for even m also
applies to odd n case.

In the rest of the paper, we will re-derive the expres-
sions for 04,4, and 0, formally, using the language of
group cohomology.

IV. A 341D MODEL TO REALIZE A Z,-1-SPT
PHASE FOR EVEN n

To construct lattice models with higher symmetries,
it is convenient to do so in the spacetime Lagrangian



formalism. We construct a spacetime lattice by first tri-
angulating a D-dimensional spacetime manifold MP. So
a spacetime lattice is a D-complex MP with vertices la-
beled by %, links labeled by ij, triangles labeled by ijk,
etc(see Fig. 1). The D-complex MP also has a dual com-
plex denoted as ~/\;lD . The vertices of MP correspond to
the D-cells in ./\/l]?, The links of MP correspond to the
(D — 1)-cells in MP, etc

Our spacetime lattice model may have a field living on
the vertices, g;. Such a field is called a 0-cochain. The
model may also have a field living on the links, a;;. Such
a field is called a 1-cochain, etc. To construct space-
time lattice models, in particular, the topological space-
time lattice models, 213839 we will use extensively the
mathematical formalism of cochains, coboundaries, and
cocycles (see Appendix A).

A. The bulk exactly solvable Lagrangian

We consider a 3+1D bosonic model on a spacetime
complex M*, with Z,-valued dynamic field aizj" on the

links ij of the complex M*. Here n is even. We also have
a Z,-valued non-dynamical background field Bizﬁé on the

triangles ijk of the complex M*. BZn is a Z,-valued
2-cocycle

dB% Z . (9)

The path integral of our bosonic model is given by

Z — Z C2’n’i jM4 UJ4[B] (10)
{a%n}
wilB] = 2-Sa’ B, (11)
n
B:=B+da (12)

B+ da
n

B% = B+ da—n| 1

where m,n = integers, > {aZn} SUIS OVer Z,,-valued 1-

cochains a?". We have lifted the Z,-valued quantities
BZn and a%r to Z-valued quantities B and a. Also Sg°
is the generalized Steenrod square defined by eqn. (A21).
We will show that the above model realizes a Z,,-1-SPT
phase.

Since wy[B] = wy[B%"] and B%» is invariant under the
transformation

B— B+nb?,  a—a+nu?, (13)

where bZ and u? are any Z valued 2-cochain and 1-
cochain, the action amplitude in eqn. (10) is invariant,
even when M?* has a boundary. The above result also
implies that the model has a Z,-1-symmetry generated
by

a—a+al, dafn Z0, (14)

FIG. 1. (Color online) The black lines describe a 2-
dimensional spacetime complex M?. The red lines describe
the dual complex M?2.

even when M?* has a boundary.

Also it can be checked that e?™'“s is a U(1)-valued
cocycle: Using (A21), (A18) and dB%» = 0 which follows
from (9), and remembering that n is even, we have

dwy [BZ"}

— L dsq?B%n
2n

= od(B*B% 4 87— 4B
2n 1
m

— (dBZn an + an dBZn
2n

+ dB%" — dB* + B dB — dB B )
1
= o (287 aB% + aB?r — daB™) L0,
2n 1
In eqn. (12), BZn is the Z,, background 2-connection

to describe the twist of the Z,-1-symmetry. The model
has a 7Z,, gauge symmetry:
a—a+a’, B-— B-da’. (15)

Also, using dB =0, (A21) and (A18),

m

%SQQBZ" (16)
= 5.5¢°(B—n| 1)
= 2Bl 2 (E-nl2)

+ (B—nLg )~ d(B—nL%)]
L Mo+ 21215+ BIE T+ 5 < dl2))
= %SGQBJr %d(B — L%) (17)
4 %s«f’@ = %SQQ(B + da) (18)

= 5-[(B+ da) (B + da) + (B + da) — d(B + da)]

1 m
n

[S¢°B + Bda + daB + dada + da — dB]



= ;[s«fﬁw d(ada + da — B + 2aB)] (19)
n 1

a M opna Mo 287

= —Sqg°B = —Sg“B“". 20
2n q 2n q (20)

In the last step we reused (16) = (18) with B replaced
by B. Therefore

0271 [y 355e% (B+da)®n _ 2mi [ -Se’ B (21)

for closed spacetime M*. This is expected from gauge
invariance (1). The model is exactly solvable and gapped
for closed spacetime M?.

Eqn. (10) has no topological order since on closed
spacetime and for BZ» = ()

Z(M4) = Z eQ’/ri fM4 %Sqf(da)z'” = Z 1= ana
{a%n} {a®n}
(22)

where N; is the number of links in the spacetime complex
M*. ™ is the so called the volume term that is linear in
the spacetime volume. The topological partition function
Z'°P is given by removing the volume term:”8

ZP (M) = Z(M*) /n™, (23)

which is equal to 1 for all closed 4-complex M?*. Thus the
above model has no topological order. After we turn on
the flat Z,-2-connection BZ», the topological partition
function of the model (10) becomes

N 2ri m (BZn BZn | BZn _ dB%4n
729 (M, B) = o It 7 dB%]

dB%" £ 0.

, (24)

In Ref. 25, it was shown that H*(B(Z,,2);R/Z) = Z»,
for n = even. Furthermore, the classification of higher-
SPTs based on a generalized cobordism theory approach
also obtains a Z,,, for n is even. See Table 7 of Ref. 26.
Thus the above 1-SPT invariant is non-trivial. There are
2n distinct Z,,-1-SPT phases labeled by m =0, -+ ,2n—
1.

V. EXACTLY SOLVABLE HAMILTONIAN

In this section we derive the exactly solvable Z,-1-
SPT Hamiltonian. For simplicity we focus on the un-
twisted theory and set the non-dynamical background
2-connection B%» = 0 so Z*P depends on a’n only. In
section IX we will examine the case with non-zero B%».

The action (10) is:

1 Fig! Zn
Ztop _ W Z e2 S g4 walda ]7 (25)
{a?n}
using (16) = (17) and (18) = (19) with B = 0,

m
wy[da?] = o Sg?(da)?n

da?»

1 Me 2. 7, mL 7.
_QnSq da +d(2da 1L 1)

= 2 5g2da?" + des[a?]
2n

= d(%aZn da? + &3 [aZ“])

= d¢slal, (26)
(note that da?» = d(a?") # (da)?") where
Esla) : = 2 da — | < (27)
éala) : = 7-a”" da”" + Eafa®"]
- %ada + &la] + déafal (28)
Gla =7 (a2 +da— [21). (0)

(28) and (29) are obtained from the previous line by
writing out a» — a — n[%]. By construction we have
#3la] = ¢3la+nu?] = ¢p3[a’] for any Z-valued 1-cochain
u?. However, &3 and & do not enjoy this property. (See
Appendix J for relationship between w4 and ¢3 in gen-
eral.)

We will analyze the cases for even and odd m sepa-
rately. For each case we write down the Hamiltonian

H = _ZPij7
j

which is the sum over links 5 of projections F;;, as de-
scribed in Appendix B. We can compute P;; by assuming
a hypercubic lattice for the space-time M?* = R? trian-
gulated as in Appendix D. The Hilbert space is spanned
by \{aZZj" ) for links 45 in the 3D cubic lattice.

A. Even m case

When m is even, (26) and (28) are simplified consid-
erably. The result is

wilda®] = Z-Se(da®) (30)
= d¢3 [a]
p3la) = %ada. (31)

We will also triangulate R? as described in Appendix D.
The variables in our lattice model lives on links. There
are three types of links: 1-diagonal, 2-diagonal or 3-
diagonal. A link ¢j is defined to be k-diagonal if the
displacement vector from ¢ to j differs by k distinct unit
vectors € {&1, 49, &3}. In the even m case, as shown in
Appendix F, the 2-diagonal and 3-diagonal links form
product states and can be ignored.
For the 1-diagonal links, the topological action

1 : m
Ztop _ — Z 6271'1 fM4 %SQQ(da)Z (32)
{aZn}



FIG. 2.

(Color online) The lattice Hamiltonian for even
m l-symmetric SPT consists of commuting projections P;;
summed over all links in the cubic lattice. The projection

consists of an operator )?ij (depicted in green) which incre-
ments the link value a®» — (a + 1)®», and the operators
2™ 3n P that multiplies the state by a phase proportional to
the fluxes F' = 3" da”" through the two squares(depicted in
blue) touching ij.

leads to mutually commuting projections (F2)
J RPN (mk @BV T S
Pj== ZXZ 2™ 1B 5 e (T +3) sy (M= 3)] - (33)

n
k=0

where the sum is carried over 1-diagonal links ij = (7, i+
&), Xij\aizj") = |(ai; +1)%"), 7;; = i+ < is the mid-point
of the link. 1 = (3,4,1) and Fg,(F) reads off the “Aux”
through the square centered at 7, or more specifically

F[”’Y(F) = <dazna (6737[;7—’_’:/),;7!9 > - (/j A4 ’Y)/ (34)

-2
2

ol

where (@, 57 ..., €7 is a shorthand for (a1, 5—}—1’1’, .o, Ct
7). The Hamiltonian is illustrated in Fig. 2

B. General m case

In appendix G we show for general m the correspond-
ing projections are given by (G1):

I o= 5i o n
Fij = S X et Jra duoalan]
k=0

Here 0, ¢3[a?"] is the change in ¢3[a?"] when a single
link 45 changes as aizj" — (aij + k)%». Under our trian-
gulation, it is evaluated for 1-, 2-, 3- diagonal links in
Appendix G.

VI. GROUND STATE WAVEFUNCTIONS AND
BOUNDARY TRANSFORMATIONS

By Appendix C, the ground state wavefunction in
closed space 3-manifold M3 is given by

o) = D &2 fas ésla® {201, (35)
{a%n}

For physical interpretation of these wavefunctions, see
Section VIII.

A. Boundary States and their 1-symmetry
transformations

Suppose we are interested in space 3-manifold which
has a boundary. We may write down a “boundary state”
by separating {a?"} = {aﬁ:‘lk,ag"} into boundary and
bulk links, fixing the values of ag" at the boundary in
(35) and only sum over links af&k inside the bulk.

omi [ 3 ¢p3lat™, .alm z z
Z e fM3 3lay0n05 ]‘{abquk7a8n}>'

z
{ayaun

(36)
Consider a 1-symmetry transformation

ja%") = [a""") = |(a +a)""), (37)

Zn ig a Z,,-valued 1-cochain. We have

{5 1o
= 3 e s (0 0y

z
{ayau

_ Z 6271'2' fM3 b3 [a/Z"}—éa@; [aZ”} |{a/Z” > (38)

1Zn
{ayain

where o

with
0o P[a] := ®la + o] — P[a].

for any function ®al.
For 1-symmetry, we have daZ» = 0, then

m. g daZn z. daZn
2 (a n ta n )

Zn
+ Bz déola”"]

z. da‘n
2n 2 (a 1 n )
Tazn da’n

2

~Gatala™] £ —=a®r da”" +

+ mdaz" — da
2 1 n

+ Sazno[a”]] + (39)

Assuming o = dh%» for a Z,, valued 0-cochain h?~,
then the last term can be made into a total derivative:

mozdatr g om (o da 0
2 @ n o 2 (a n —l—adhﬂ)

I
&
N
3
o
=
p—

\
[oW
—~

I~
[oW
—~
o] 3
>
o,
—

So

_5a¢3[azn] = do2 [avh} (40)



z
m m dasn
aZngln 4+ 2 (g2n

2n 2 1 n

Zn
+ Opzn Eo[a?m] + % (h%» dL%}) (41)

1 m m da
= 5,0 + 5(@ — 7) + da2la]

m o m « m dh
+d(F L1 v a) + el T+ 5 (hdl5)
L %dha + danéala) + déia, h]

ula, )= (| ).

¢ala, h]: =

-

(42)

By construction (41) we have
¢ola, h] = goa” h*"]. (43)

(See Appendix J for relationship between wy, ¢3 and ¢
in general.)
We also see that [, 6a¢s[{a®"}] is independent of

abijlk or aZj‘k, so we may take it out of the sum in the
last line of (38) and write:

{ag" Do

—y o2 [pgs 5a¢3[a§"]|{a:92n Vo

{a5™}o.

In the even m case, (41) simplifies to

— 2mi Joms @2 [a?‘ ,hEn]

(44)

éala,h] £ Za’rar,

so the non-onsite phase for the anomalous 1-symmetry is

palaln hZn] & 2ﬂ oZn gZn
OM? n Joms
- aln.  (45)

2n Jomsnazn

Here N is the cap product?’, which takes as input a g¢-
cochain ¢, and n-chain (0 — n), and outputs a (n — ¢)-
chain given by:

(0= n) N ¢q = (P4, (0 = q))(q = ).

In the more general case, by (41) and (29), the non-
onsite phase is:

(46)

Gala® 17
OM3

i / M ZngZn
OM3 2n

aZn 4 oZn

m. z, da’n z, z,
+5 (0" v ——+ (@™ + o) | ——]
Zn 7 dhzn
T PR i Y 0 Tt RN €1

where a?» = (dh%n)%n
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B. Boundary transformation strings

On the boundary OM?, the 1-cocycle a?" is Poincaré
dual to closed loops OM? N a?r. These loops are the
boundary of a 2-manifold —M3Na? in the bulk. While
the 1-symmetry is on-site in the bulk, it is non-onsite on
the boundary, accompanied by the phase [, s ¢2. Since
the bulk is a non-trivial SPT with 1-symmetry, we expect
that its boundary cannot be uniquely gapped without
breaking the 1-symmetry.

The 1-symmetry acts on the boundary as string opera-
tors. These string operators can be thought of as hopping
operators for some emergent flux anyons. We measure
the statistics of these anyons in the following subsection.

C. Self and mutual statistics of boundary
transformation strings

We triangulate the 2-dimensional boundary M3 as
shown in Fig. 3. We only focus on a yellow central square,
whose links are labeled as aiZ", 1=0,1,2,3,4. We define
string operators: W{, i = 1,2,3,4, to be the hopping
operator depicted in the bottom of Fig. 3.

Each string operator W is represented by an oriented
red line in the figure. The red line intersects links in the
lattice (colored in gray). Every lattice link intersecting
the red string is being updated as in (37) with a = dh?».
h%» = q in the pink shaded region and h%» = 0 in the
other unshaded regions. The operator W acts on the

boundary Hilbert space as described in (44), with ¢
given by (45) or (47).

1. Self-statistics

To compute the self statistics for anyon with flux ¢,
we compare the result of hopping an anyon from bottom
to top, then another anyon from left to right, versus the
result of hopping an anyon from bottom to right, and
another anyon from left to top.'® As shown in Fig. 4a, the
resulting positions of the two final anyons are exchanged
in the two processes. More explicitly the self-statistic is
given by 6,, where

WioWy = e*™0awiowy. (48)

Using (47) to compute the actions of W, the result is

(derivation details in Appendix H)
o m

0y =q" —

2n’ (49)

which is consistent with Ref. 38: The 3+1D bulk state
that we have constructed is a Z,,-1-SPT state labeled by
m € {0,1,--- ,2n—1}, protected by an on-site (anomaly-
free) Z,-1-symmetry. Its boundary has an anomalous
(non-on-site) Z,,-1-symmetry generated by closed string



a
a4
""’»"""—"»a’/’é'\ 0 - B A i S
ay
—q
hln = y
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h%n =0
—q
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W2 — —q W4 -
=q

FIG. 3. (Color online) Measurement of self and mutual statis-
tics of flux anyons. Top: A 2D region of dM?> is shown.
Here the Hilbert space is spanned by the boundary states
given in (36) and the degrees of freedom are a?" living
on gray links. Red lines depict the boundary 1-symmetry
W which can be regarded of as an anyon hopping opera-
tor. The corresponding " is non-zero on the gray links
intersecting the red dotted lines, and change these links by
la”)s — exp(2mi [ ¢2)|(a+ a)”")s, where ¢z is given by
(45) or (47). It turns out that, due to ¢2[a,h] = 0 when
dh = 0, in our calculation for self and mutual statistics it is
only necessary to keep track of links aiz" in the central square,
highlighted in yellow. Bottom: the configurations of four dif-
ferent 1-symmetries in the central square. Here h%" = ¢ in
the region shaded in pink and A*" = 0 in the unshaded re-
gions. The non-zero values of a = dh%" are shown in red on
gray links intersected by the red dotted lines.

operators (see eqn. (45) or eqn. (47)). The correspond-
ing open string operators will created topological exci-
tations on the boundary. The anomaly of the boundary
1-symmetry is encoded in the fractional statistics of those
topological excitations. For instance if n = 2, ¢ = 1, then
for m = 2, the anyon is an emergent fermion. For m =1
the anyon is an emergent semion.

2. Mutual-statistics

Similarly to compute the mutual statistics for two
anyons with flux ¢; and ¢o, we compare the result of

11

q — 627T’i9q q
q
f ;
(b)
o1 > — e2meqmz o 11 o

i(h qo

FIG. 4. (Color online) (a) To measure the self statistics, we
compare the outcome of two processes. The first hops an
anyon (shown in red) from left to right, and then hops an
anyon (shown in blue) from bottom to top; the second hops
an anyon from left to top and then hops an anyon from bottom
to right. The results differ by exchange of two anyons at their
final positions. (b) To measure the mutual braiding statistics,
we compare the outcome of two processes: the first hops a red
anyon (with flux ¢1) from left to right, followed by hopping
a blue anyon (with flux ¢2) from bottom to top; the second
process do these two operations in the different order. The
results differ by a change of linking number ALk(q1,q2) =1
between the world lines of the two anyons.

hopping a flux ¢; anyon from left to right, then the flux
@2 anyon from bottom to top, versus the result of doing
the two processes in a different order, as illustrated in

Fig. 4b. The mutual-statistic is given by 64,4,, Where
(derivation details in Appendix H)
Wit o Wi = ™ Waon V2 o Wi, (50)
and the result is
Og142 = %%%- (51)

VII. GAPPED SYMMETRIC BOUNDARIES

In this section we attempt to write down boundary
Hamiltonians which are symmetric under the non-onsite
transformation (44), and contain emergent anyons with
self-statistics predicted by (49). We will show that it is
possible to gap out the boundary by realizing a topolog-
ical order, which in the (n,m) = (2,1) case is the double
semion (DS) topological order, which contains an emer-
gent semion. In the (n,m) = (2,2) case the toric code
is realized on the boundary, which contains an emergent
fermion. The degenerate ground states for these systems
on a manifold with non-trivial cycles spontaneously break
the 1-symmetry.

An easy way to see this is as follows. From w, =



dgs[al, if M* has a boundary,

1 . z

top __ 2 da®n

Zop_W Z eﬂlfM4w4[ a“m]
{a®n}

Z 21 Jopqn #3la” "l (52)
{ag"}
where Ny is the number of links in the space-time trian-
gulation of the boundary.

If we impose the constraint da’» = 0 by hand (the
constraint doesn’t violate 1-symmetry since it is invariant

B nNm

under (14)), then from the expression for ¢3 (28), we have
z
7 LM 7, a2 = M2 da”?
" n. = n d - - 2
930" 4y20 = 5,00 2% T2

where in the last step we specialized to the case n = 2.
This can be recognized as the Lagrangian for the surface
topological order. To recast it into a more familiar form,
we have

Z

where S5 is the Bockstein homomorphism and the second
equality follows from (A33), and the third equality is by

definition of Steenrod square (A19) and da?? = 0. So,
(52) becomes

) = aZ2q?2

I’

1 . 7o daZ2
E o271 Joma a2 5=

da20 ~ N
{daZ0}
_ 1 § e27ri faM‘l %aZQ(LZ?aZ?
an,a ’
{daZ0}

Ztop |

which for m = 1 is (up to a volume term) the parti-
tion function for double semion topological order (see for
instance Ref. 41). For m = 2 the Lagrangian= 0 and
describes the Z5 gauge theory, i.e. toric code.

A. Engineering boundary gapped Hamiltonian

Alternatively, we can explicitly engineer a gapped
Hamiltonian consisting of mutually commuting terms on
the boundary Hilbert space respecting the anomalous 1-
symmetry and realizing the DS topological order.

The following boundary Hamiltonian is proposed:

> H,; =Y Hya (53)
i A

Hs,i = WOZ
Hp,A = 5(da,A>ZmO'

Here i is summed over all sites and A is summed over
all 2-simplices (i.e. triangles) in the boundary. ¢ is the
Kronecker delta function. (da,A) is evaluating the 2-
cochain da on the 2-simplex A. Hence H) A enforces the
“no flux” constraint da = 0 on every 2-simplices. Woi
is the 1-symmetry operator corresponding to a tiny loop
surrounding site ¢ (see Fig. 5).
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1. Hp is exactly solvable and has 1-symmetry

To show that Hp consists of mutually commuting
terms, which also commutes with the boundary 1-
symmetry operators, it suffices to check the following
commutators vanishes:

[Hp.a, W (h"")]

0
(Wo i W(h* )] =0

for any Z,,-valued 0-cochain h%», where W (h%") denotes
a l-symmetry operator parameterized by h%", whose
action is described by (44) with aéz" = (ag + dh)%n

To show (54), notice that
W (he") = Hy AW (h*)
= W(h*) 16 (ga,ayzn oW (RF")
= O(d(a+dh),A)2n 0 = O(da,a)2n 0 = Hp A,

where we used the fact that the non-onsite phases from
W (h#) and W (h%) ™! cancels, since d(4q ayzn o does not
change the value of a?» in the ket.

To show (55), notice that for any two Z,-valued 0-
cochain h%" and h4", we have

W) ~1W () W (RS )W () [{a™" 1)
— exp [2ri / (= 2l + dho)®, hi"] = ¢ala”, h3"]
OM3
+ dal(a+ dhn)?, b5 + dala® hE7)) | [{a* 1o
—exp [2ni [ dola® KPP Do, (50)
OM3

where we applied (43) and (42) in the last step to show
that the integrand in the exponent is a total derivative:

$ol(a+ dhy)®, hg"] — gola’™, h5"] — (hy ¢ ho)
= ¢ola + dhi, ha] — ¢2la, ha] — (h1 < h2)

- %th(a + dhy) + San,Eala+ dhy] + déifa + dhy, hal
- %dhw — ddn,&2la] — déifa, ho] —

I Ahodhy + ddgn, €1]a, ha] —
2n

(hl e h2)

(hl < hg)
= dé[a?n, hPm hin)

where
d1la,hy bl - = %hfu An + & Ja?n + dh?n hin)
— &la® h5m) = (hy 4 ho) (57)
= hodhy + dan € la, ha] + dSolha, bl
— (h1 ¢ ho)
Solha, ho] - = m(L@] — dhy + hlL_D



FIG. 5. (Color online) W ; is the 1-symmetry operator on
the boundary Hilbert space for a tiny loop surrounding site
i. Here the pink shaded region has h?» = 1. The non-zero
values of @ = dh%" = +1 are drawn in red. The neighboring
sites of i are labeled j =1,...,6.

(See Appendix J for relationship between wy, ¢3, ¢2 and
¢1 in general.)

Thus by Stoke’s theorem, (56) implies that when evalu-
ated on the closed manifold IM3, [W (h"), W (hZ")] =0
for any Z,-valued 0-cochains hi, hs. For the case of
our interest (55), we may take hi" = héi where
Woi = W(héL) as depicted in Fig. 5, and hQZ" = h4n
to be an arbitrary 1l-symmetry. Alternatively we
can evaluate (56) by integrating the exponent over

a patch covering the region where hZ ; # 0 and use

drla’n by = 0,hy"] =

2. Topological ordered surface states for n =2

We can specialize to the case (n,m) = (2,1) and eval-
uate W ;. Assuming “no flux” constraint is enforced,
we have (see Appendix I for details)

yA yA
Woillaif, ajji}) ’ da20

= TI e Has; + )%, a3 D),
(4,3")

where j,7' € {1,...,6} are neighboring sites of i (see
Fig. 5). The product is taken over six links with neigh-
boring 7, 7/. The resulting Hy gives rise to DS topological
order.

For the m = 2 case, we have

= H(ai; + 1)*,a32})

So hg ; is the usual star term and hj A is the usual plaque
term for the toric code model. Thus Hy gives rise to the
toric code topological order.

W@ |{a’i2’ ]J }>

8. Connection to Works of Wan and Wang

A general theory of gapped symmetric boundaries of
higher SPT is presented in Section IIT of Ref. 42, which is
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a generalization of Ref. 41. It was then applied in Section
IX of Ref. 43, and Section 8 of Ref. 44, which also contains
a lattice Hamiltonian description for a 4+1D bulk/3+1D
boundary.

We give a rough review of their result in the following.
In general, a 1-SPT protected by 1-form finite symme-
try Ip(which is Abelian) and O-form finite symmetry G,
may be associated with a “2-group” G, such that its clas-
sifying space BG = B(G,Ils) has m = G, m = IIs and
7o = Tk>2 = 0. (In addition, G also contains the data?®
as @ G — Aut(Tly) and 3 € H?*(BG,15?) describing
the interplay between G and IIs.) A space-time field
configuration is a map ¢ : MP — BG, and the cocycle
wp describing the 1-SPT is the pullback: wp = ¢*wp
for a topological term wp, which can be an element of
HP(BG,U(1)), or a bordism invariant in general. Sec-
tion IIT of Ref. 42 claimed that the gapped boundary of
1-SPT corresponds to a fibration:

BK — BH — BG

such that the topological invariant wp in BG is pulled
back to a trivial topological invariant in BH. Here H is
a 2-group, viewed as an extension of G. BK is the to-
tal space of a fibration BQK[H — BK — BK|y, where
K, K1) are some O-form and 1-form symmetries re-
spectively. For a finite group G, B?G = K(G,2) is
a Filensberg-MacLane space for which the only non-
trivial homotopy group is mo = G. To be precise,
the topological invariants of the classifying spaces BG,
BH are bordism invariants of the bordism groups*®: 46
QSG(BG), QSH(B[H), computed?® with respect to an
“S-structure”, Sg.p = SO/O/Spin/Pini, correspond-
ing to unitary bosonic SPT/time-reversal invariant
bosonic SPT/unitary fermionic SPT/time-reversal in-
variant fermionic SPT with 72 = (F)¥", respectively.

In this framework, our Z5-1-SPT has D = 4, (G, I13) =
(0,Z2) and Sg = SO. Gapping out its 241D boundary
for m = 2 with toric code topological order corresponds
to the fibration:

B7, — BSpin(4) x B*Z, — BSO(4) x B%*Z,

where the pullback of @, is trivial because of a relation
between Z,-valued 2-cocycle B42 and the Stiefel-Whitney
classes wi, wo (which is derived using Wu formula, eqg .

in Appendix D.5 of Ref. 38):
Sq”(B*2) =

where wy, wo vanishes when pulled back to BSpin(4) x
B?Z,, which is a spin manifold. The emergent fermion
is due to the emergent spin structure.

(W} + w2)B”2,

VIII. GEOMETRIC INTERPRETATION OF
GROUND STATE WAVEFUNCTION

In this section we attempt to provide an intuitive in-
terpretation of the ground state wavefunction (35) on a
closed 3-manifold.



Recall from (35) and (28), the ground state wavefunc-
tion is

o) = D @2 e ala® {201
{aZn}

d
2 ada+ Zda — L—a] + dézal.
2 1 on

9sla] = 2n

In a closed 3—manifold~/\/l3, we can ignore the d&; term.
In the dual manifold M3, a is dual to 2-chains @, and da
is dual to da, which is a 1-cycle.

If we focus on the term *ada, which only depends on
1-diagonal links, we can imagine the dual 2-chains and
1-cycles as living on the dual faces and links of a simple
cubic lattice. Geometrically, $ada is contributed from

the intersections of @ and da’, which is da displaced by
the framing vector —3 = (—=1/2,-1/2,-1/2).

m m
/M3 %ada: Z %Qa,pqaa/,pa

pcanda’

where 4, G9a'p € Z denote the integer coeflicients of
the 2-chain @ and 1-cycle 0a’ at the intersection point p.

If the 1-cycle da can be resolved into non-intersecting
loops K, then a are the Seifert surfaces S; for these loops.
A Seifert surface of loop K is an oriented surface with K;
as its boundary. It is known that the signed intersection
number between K; and a Seifert surface of K’ is the sum
of signed crossings between K; and K ; (viewed from the

—g direction), which is the linking number Lk(K;, K})*".
Thus

/M3 %ada = Z Z %qifb’

,J SiﬂK;.

m
=5, Z qiq; Lk(K;, K)

3
m m
=5, Z giw(K;) + - Z(IinLk(Kia K;), (58)

i<j

where w(K;) = Lk(K;, K]) is the self-linking number
of Kj, and for i # j, Lk(K;, K}) = Lk(K;, Kj) is the
linking number between K; and K;. g; € Z denote the
“strength” of each loop K;. Note the result (58) is in-
variant (mod 1) under ¢; — ¢; + nu; for any integers
{u;} for general m. For example in Figure 6(a), we see
that for an unknot with self linking number +1 carrying
flux da = ¢, fMS srada = %qQ. In Figure 6(b), for the
Hopf link with linking number 1, with two loops carry-
ing flux da = ¢; and ¢2, we have fM3 srada = T:q1q2.
This could be regarded as an alternative way to derive
the self-statistics (49) and mutual-statistics (51) of the
boundary transformation strings, from the 3d bulk space
perspective instead of the 2+1d boundary spacetime per-
spective.

However, when multiple lines intersect at a point,
we need to carefully resolve the 1-cycle 0d into non-
intersecting loops. We will consider the even m case and
the odd m case separately.
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FIG. 6. (Color online) Evaluation of [, ; $~ada in the dual
lattice. Yellow squares, red links and green links represent a,
Oa and 0a&’ respectively. Blue dot represents the intersection
of green links and yellow square, where ada # 0. The config-
uration of da is: (a) an unknot with self-linking number +1,
where the coefficient of the 2-chain a on every yellow square
is ¢; (b) a Hopf link with linking number +1, where the coef-
ficient of the 2-chain @ on the two yellow squares are ¢; and

q2.

A. Even m case

In the case of even m, (28) is
m
$3a) = %ada.

Each lattice point of the dual cubic lattice has six con-
necting dual links. Given a dual cycle configuration 0a,
we project these six links onto the plane perpendicular

to the —% framing vector. Then we resolve the inter-
section into disjoint loops with “no-crossing” resolution:
requiring that no crossing occurs in this intersection. An
example is shown in Fig. 7.

Since all the crossings are contributed away from in-
tersections, the wavefunction amplitude (58) is

m 9 m
:—g “w(K; —E iqi LE(K;, K5).
//\/13 ¢3al on i q; w(K;) + n i<jqu ( i)

with K; obtained from 0a by “no-crossing” resolution at
each vertex.

B. 0Odd m case

In the case of odd m, (28) is

a1 m
2n

As explained previously,

/ " ad LN
—ada = —
M3 2n 2n

m da
d —da — | —1].
¢3lal ada + 5 a- an

signed crossings
away from intersections |



K

FIG. 7. (Color online) “No-crossing” resolution at an in-
tersection. In the simple cubic dual lattice, every vertex is
connected to six oriented links. Each link carries an integer
q which is the coefficient of the 1-cycle da. The Ijgure on
the left shows one such configuration, viewed from % In the
“no-crossing” resolution, each link is resolved into ¢ parallel
strands away from the original vertex. Near the vertex the

strands are connected such that there is no crossing when
viewed from % Such resolution may not be unique, but can

be fixed by choosing some convention.

-2

In the following we will also interpret the second term
as 5-Xthe sum of signed crossings under a “quotient-
remainder” resolution at intersections.

Since the term % da ~ [ de] = 2 (da)’n — [ a7

also depends on 2- and 3-diagonal links, we need to use
the full triangulation described in Appendix D with six
tetrahedrons per unit cubic cell. The dual lattice is a
cubic lattice with six sites forming a hexagon in each
unit cell, depicted in Fig. 8(a).

The “quotient-remainder” resolution is the following:
write da = (da)?” +n[92]. These two terms are called
the “remainder” and “quotient” respectively. The 1-
cycles dual to da live on the links of the dual lattice.
We split each link in the dual lattice into two channels:
the “remainder” channel dual to (da)?~, and the “quo-
tient” channel dual to n[42]. They are depicted as black
and red links respectively in Fig. 8(b). If we detach the
‘quotient” intersections from the “remainder” intersec-
tions by displacing them slightly towards the center of
each cube, then da - n|427 is the sum of signed cross-

ings (mod 2n) between the “remainder” channels and

the “quotient” channels, viewed from %, as depicted in
Fig. 8(b). All other intersections (black and red dots in
Fig. 8(b)) are resolved with the “no-crossing” resolution.

Thus % da — L%} is 5-xsum of signed crossings be-
tween quotient channels and remainder channels at a ver-
tex. As before, the sum of signed crossings is the sum
of linking numbers between resolved loops. Hence the
wavefunction amplitude (58) is

/M3 p3la] = % Xi:QiZw(Ki) + % Z qiqj Lk(K;, Kj).

1<j
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FIG. 8. (Color online) (a)A cubic cell is triangulated with
six tetrahedrons. In the dual lattice they corresponds to six
vertices (shown in black), which forms a hexagon. There are
two external links at each face which connects to vertices of a
neighboring cube. (b) Each link is separated into a “remain-
der” channel (black) dual to (da)?" and a “quotient” channel
(red) dual to n|492]. In each tetrahedron, the intersections
for “quotient” channels (red dots) were displaced slightly to-
wards the center of the cube, away from intersections for
“remainder” channels (black dots). The resulting crossings
lletween “remainder” and “quotient” channels viewed from

% contribute to da — [%] The two channels are coupled
1

within each tetrahedron by a red dashed line, dual to nd[42].

with K; obtained from da by “quotient-remainder” res-
olution at each vertex.
The term Fda — L%] is necessary to ensure that
1

¢3la] is invariant mod 1 under @ — a 4 nu for Z-valued
1-chain u. Indeed under a — a + nu, all changes occur
only in the quotient channel n| 427 — n| 427+ ndu. The
change to ¢3[a] mod 1 is %xthe sum of signed crossings
between the dual of (da)?? in remainder channel and
the dual of du in the quotient channel. Since both of
them are closed loops living in separate channels, the
total number of signed crossing is even. Hence ¢sla] is
invariant mod 1.

IX. NON-ZERO BACKGROUND GAUGE FIELD

We may also extend our derivations to the case where
the background gauge field B in (12) is non-zero. By
keeping track of the coboundary terms in (16)=(20), it
can be shown that (26),(27),(28),(29) become

wa|(B + da)?"] = %S&BZ” + d¢sla, B]
= w4[BZ"] —+ d¢3[a, B]

;= 2ﬂ(azn daZn + aZn BZn 4 BZngln)
n

+ &la?n, B*] (59)



+ (ada+aB + Ba) + &la, B] + dafa, B
53[‘1’3}::%[(B+da)\: LB+da1+a\f%
. B
+ B~ 1] A
&la, B : = %(ﬂ%} +da — L%] +a— LEW +B - L%

and (39),(40),(41),(42) become

— dusla?n, Bn] = d[%(aa —a— B)

m da A A da
+ E(a \1/ 7 +5a§2[a,B] +B \; 7)]
N d o
~PBa+ Zat2 = des[a, h, B] (60)
n 2 n
where
M Zn Zn Zy 7y
¢2[(1,h,B] :%((1 a — TB )
d Zy N N d Zy
+ (aZn ~ “ + 5azn 52 [azn ’ BZ"] + BZ" ~ @
2 1 n 2 n

dh?n
n

— EBZTL th + @hZﬂdl_
n 2

1 m

1

(dha — dh — B) ~ %Bh + Sanéola, B] + déila, h]
(61)

[\

n

U < athlSM).

In Appendix B2, we generalize the construction of an
exactly solvable Hamiltonian with a unique ground state
to the case of non-zero B. Also in Appendix C2 we gen-
eralize the expression of the ground state wavefunction
(C3) in terms of ¢3:

&ila, h] =

A 1 . A A
o B]) = N_w Z 02mi [r3 ¢3[a,B]f¢3[O7B]|{a}>' (62)
{a}
In the following we consider the case m is even, where
(59), (61) simplifies to

~o.m

¢3la, B] - (ada + aB + Ba) (63)

m

éala,h, B 2 (dha — dh— B)— ZBh (64
1 n

n

A. Exactly Solvable Hamiltonian

The bulk Hamiltonian is given by
H=-> P;[B

By using (C4) to write down matrix elements of P;;[B]
It can be shown that P;;[B] are the same as (33),

n
A ~ . mk @BY = T -
P,[B] = 1 Xk o2mi B S5 [Fay (Tij+5)+Fpy (T — 3)]
©J n 1] )
k=0
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except that in the definition (34) of the flux F', da is
replaced by B + da:

_g> — (B <)
(65)

F—

Fan(7) = (B + da)?", (6,6,6+4),._

B. Geometric interpretation of wavefunction

In (63), the background gauge field B is coupled to a
through the extra terms

— (aB + Ba 66
= (B + Ba) (66)
Geometrically, in 3d space, the 2-cocycle gauge field B
is dual to a 1d line B. we may shift these lines in the
+1 directions to obtain B.. Then the extra terms (66)
contributes a phase e?™13% to every signed intersections
between By and a (Recall a is the surface dual to a).
For simplicity let’s pretend a will not fluctuate too
wildly near the intersection, and so B4 gives the same
number of signed intersections as B, then the extra terms

2ri

contribute a phase e“™' = for every such intersection.
signed intersections
o Z gned intersec fons
between B and a

_ We may interpret such phase as a charge attachment to
B. In 1-SPT, charged objects are 1-dimensional: a charge

sk
2mit

/ m(aB-|—Ba)z—
M

32N n

k line pick up a phase e for every intersection with a
unit-shift(i.e. acting by the generator of Z,,) 1-symmetry
membrane operator. Charge lines live on the original

lattice.
Thus in a Z,-1-SPT labeled by m, consider the 1-
symmetry transformation |[{a}) — [{a+a}) = |{a'}),

where « is a unit-shift acting on a membrane intersect-
ing B once. We have(as in (38))

> 1 T 3|a B3] — 3 B
[%olB]) = &~ Y emidue dsla Blmos 0Bl {a})
P
{a}
1 2mi [, 3 ¢p3la’,B]—¢3]0,B]—8a ds3la,B ’
B P P

= i 5By [B)).

using (60) and assuming OM? = (). Hence the ground
state wavefunction picks up a phase e 271 due to the
background gauge field. Thus the dual of the background
gauge fields B(with unit gauge strength) is attached a
charge —m line(located at B, to be exact).

C. Boundary perspective

We can alternatively consider the effect of background
gauge field from a boundary perspective. Consider the



FIG. 9. A non-zero background gauge field B, whose dual
B is depicted as the wiggly line in the figure, intersects the
1-symmetry membrane « acting in the bulk(whose dual & is
depicted as dotted red lines). The intersection in the bulk
is denoted by a cross x. From the boundary, the endpoint
of B(depicted as a black dot) is enclosed in a region h" =
1(shaded in pink), where a = dh, and h = 0 outside the pink
region. The line B with unit gauge strength acquires a phase

27

e n under a unit shift I-symmetry a.

arrangement depicted in Fig. 9. In the bulk, the unit
strength background gauge B intersects the 1-symmetry
« once. On the boundary, the 0d endpoint of background
gauge field is enclosed in a region where h%» = 1, and
the endpoint is far away from the 1-symmetry operator
in the boundary (so dh = 0 near the end point). From
(64), under this 1-symmetry there is an extra term

dalag, h, B] - /W dslap, b 0]

oM3

:/ ULy 57— (67)
OM3 n n

contributed to the boundary transformation (44), com-
pared to the case without background gauge fields. The
boundary state hence acquires a phase e 271% due to
the background gauge field. i.e. the endpoint of B has
charge —m under the boundary 1-symmetry.

We observe that the above boundary argument extends
to the odd m case as well. (67) still holds by inspecting
(61) and again assuming dh = 0 near the end point where
B # 0. So we expect the same charge attachment also
occurs for odd m.

X. CONCLUSIONS

In this paper we studied the Z,-1-symmetry protected
topological states in 3-+1-dimensions, which is labeled by
m € {0,1,---,2n — 1}. The Z,-1-symmetry is gener-
ated by closed membrane operators. We presented an
exactly solvable Hamiltonian which commutes with the
closed membrane operators, and wrote down the ground
state wavefunction. We also studied the effective bound-
ary theory in 241-dimensions. The effective boundary
theory has an anomalous Z,-1-symmetry generated by
closed string operators. We showed that those bound-
ary string operators create topological excitations at the
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string ends, which may have non-trivial self-statistics. In
particular for the n = 2 case, they have self-semionic
(for m = 1) or fermionic statistics (for m = 2). In
these cases we can gap out the boundary with an en-
gineered boundary Hamiltonian with the anomalous Z.,,-
1-symmetry, which gives the same ground state as the
toric code model (for m = 2) and double-semion model
(for m = 1) on the boundary. We interpreted the wave-
function amplitudes of the bulk grounds states as linking
numbers of strings in the dual lattice. Finally we extend
to the case of non-zero background gauge field and find
the lines dual to the background gauge field is attached
with line charge —m.

In the future, we would like to study the nature of
the gapless boundary states. It is also interesting to see
whether other knot invariants can be derived from the
wavefunction amplitude for other 1-SPT’s.

LT thanks Yuan-Ming Lu and Juven Wang for helpful
discussions. LT is supported by the Croucher Fellowship
for Postdoctoral Research. XGW is partially supported
by NSF Grant No. DMS-1664412 and by the Simons Col-
laboration on Ultra-Quantum Matter, which is a grant
from the Simons Foundation (651440)

Appendix A: Space-time complex, cochains, and
cocycles

In this paper, we consider models defined on a space-
time lattice. A spacetime lattice is a triangulation of
the D-dimensional spacetime M P, which is denoted by
MP . We will also call the triangulation MP as a space-
time complex, which is formed by simplices — the vertices,
links, triangles, etc. We will use 4, j,--- to label vertices
of the spacetime complex. The links of the complex (the
1-simplices) will be labeled by (¢, 7), (4, k), - - - . Similarly,
the triangles of the complex (the 2-simplices) will be la-
beled by (4,7, k), (4,k,1),---.

In order to define a generic lattice theory on the space-
time complex MP using local Lagrangian term on each
simplex, it is important to give the vertices of each sim-
plex a local order. A nice local scheme to order the ver-
tices is given by a branching structure.>*84% A branching
structure is a choice of orientation of each link in the d-
dimensional complex so that there is no oriented loop on
any triangle (see Fig. 10).

The branching structure induces a local order of the
vertices on each simplex. The first vertex of a simplex is
the vertex with no incoming links, and the second vertex
is the vertex with only one incoming link, etc. So the
simplex in Fig. 10a has the following vertex ordering:
0,1,2,3.

The branching structure also gives the simplex (and its
sub-simplices) a canonical orientation. Fig. 10 illustrates
two 3-simplices with opposite canonical orientations com-
pared with the 3-dimension space in which they are em-
bedded. The blue arrows indicate the canonical orienta-
tions of the 2-simplices. The black arrows indicate the



FIG. 10. (Color online) Two branched simplices with oppo-
site orientations. (a) A branched simplex with positive orien-
tation and (b) a branched simplex with negative orientation.

FIG. 11. (Color online) A 1-cochain a has a value 1 on the
red links: aix = ajx = 1 and a value 0 on other links: a;; =
ar; = 0. da is non-zero on the shaded triangles: (da)ju =
ajk + ar — aj;. For such 1-cohain, we also have a — a = 0.
So when viewed as a Zs-valued cochain, $2a # a — a mod 2.

canonical orientations of the 1-simplices.

Given an Abelian group (M,+), an n-cochain f, is
an assignment of values in M to each n-simplex, for ex-
ample a value fp; ;.. r € M is assigned to nm-simplex
(4,4, ,k). So a cochain f, can be viewed as a bosonic
field on the spacetime lattice.

M can also be viewed a Z-module (i.e. a vector space
with integer coefficient) that also allows scaling by an
integer:

rty==z, T*Yy =2z,

meE /Z.

mx =1y,

:L'vyaZGMa (Al)

The direct sum of two modules M; @M, (as vector spaces)
is equal to the direct product of the two modules (as sets):

My @ My = My x My (A2)
We like to remark that a simplex (4, 7,--- , k) can have
two different orientations. We can use (4,7, ,k) and

(jyi,--+ k) = —(i,7,-+- , k) to denote the same simplex
with opposite orientations. The value f,; ;... » assigned
to the simplex with opposite orientations should differ by
a sign: fni ... k = —fnyji, . k- S0 to be more precise f,
is a linear map f, : n-simplex — M. We can denote the
linear map as (f,, n-simplex), or

<fn7 (ivja e 7k)> = fn;i,j,---,k SHh

More generally, a cochain f, is a linear map of n-chains:

(A3)

fn : n~chains — M, (A4)

18

i J i J
a a

FIG. 12.  (Color online) A 1-cochain a has a value 1 on
the red links, Another 1-cochain a’ has a value 1 on the blue
links. On the left, a — a’ is non-zero on the shade triangles:
(a — a)iji = aijaly = 1. On the right, o’ — a is zero on
every triangle. Thus a — a’ + a’ — a is not a coboundary.

or (see Fig. 11)

(fn,n-chain) € M, (A5)

where a chain is a composition of simplices. For example,
a 2-chain can be a 2-simplex: (i,7,k), a sum of two 2-
simplices: (4, j,k) + (4, k,1), a more general composition
of 2-simplices: (i,7,k) — 2(j, k,1), etc. The map f, is
linear respect to such a composition. For example, if a
chain is m copies of a simplex, then its assigned value
will be m times that of the simplex. m = —1 correspond
to an opposite orientation.

We will use C"(MP; M) to denote the set of all n-
cochains on MP. C"(MP;M) can also be viewed as
a set all M-valued fields (or paths) on MP. Note that
C"(MP; 1) is an Abelian group under the +-operation.

The total spacetime lattice MP correspond to a D-
chain. We will use the same MP to denote it. Viewing
fp as a linear map of D-chains, we can define an “inte-
gral” over MP:

fD = <fD7MD>

B>

(30,01, ,iD)

(A6)
Sigir-—ip (SD)ioyit, - yip-

Here s;yi,...i, = £1, such that a D-simplex in the D-
chain MP is given by s;.4,...i,, (10,71, -+ ,iD)-

We can define a derivative operator d acting on an n-
cochain f,,, which give us an (n 4 1)-cochain (see Fig.
11):

(dfn, (ioiriz - iny1))
n+1

- Z (_)m<f’ﬂ: (i0i1i2 T %m T in+1)>

m=0

(A7)

where igt1i -y, - - - ipy1 1S the sequence igi1ds - - iny1
with 4, removed, and ig,%1,%2 - i1 are the ordered
vertices of the (n 4 1)-simplex (igi1is -« pt1)-

A cochain f, € C"(MP;M) is called a cocycle if
df, = 0. The set of cocycles is denoted by Z"(MP;M).
A cochain f, is called a coboundary if there exist a
cochain f,_1 such that df,,_1 = f,. The set of cobound-
aries is denoted by B"(MP;M). Both Z"(MP; 1) and



B"(MP: M) are Abelian groups as well. Since d? =
0, a coboundary is always a cocycle: B"(MP;M) C
Z"(MP;M). We may view two cocycles differ by a
coboundary as equivalent. The equivalence classes of co-

cycles, [fy], form the so called cohomology group denoted
by

HY(MP;¥) = 27 (MP; W) /B (MP3 ), (AS)
H"(MP;1M), as a group quotient of Z"(MP;M) by
B"(MP; 1), is also an Abelian group.

For the Zy-valued cocycle x,, daz,, = 0. Thus

1
—dz, (A9)

/BNm’I’L = N

is a Z-valued cocycle. Here By is Bockstein homomor-
phism.

We notice the above definition for cochains still makes
sense if we have a non-Abelian group (G, -) instead of an
Abelian group (M, +), however the differential d defined
by eqn. (A7) will not satisfy dod = 1, except for the first
two d’s. That is, one may still make sense of 0-cocycle
and 1-cocycle, but no more further naively by formula
eqn. (AT). For us, we only use non-Abelian 1-cocycle
in this article. Thus it is ok. Non-Abelian cohomology
is then thoroughly studied in mathematics motivating
concepts such as gerbes to enter.

From two cochains f,,, and h,,, we can construct a third
cochain py,4+, via the cup product (see Fig. 12):

Pm+4n = fm ~ hn7
(Pmtn, (0= m+n)) = (fin, (0 = m))x

(hpn,(m = m+n)), (AL0)

where ¢ — j is the consecutive sequence from ¢ to j:

t—=j=41+1,--,7—1,7. (A11)
Note that the above definition applies to cochains with
global.

The cup product has the following property

for cochains with global or local values. We see that h,, —
fm is a cocycle if both f,,, and h,, are cocycles. If both f,,
and h,, are cocycles, then f,, — h,, is a coboundary if one
of f,, and h,, is a coboundary. So the cup product is also
an operation on cohomology groups —: H™(M?P;M) x
H"(MP: 1) — H™ " (MP:M). The cup product of two
cocycles has the following property (see Fig. 12)

fm = hn =(=)""hy — fm + coboundary  (Al3)

We can also define higher cup product f,, — h, which
k

gives rise to a (m + n — k)-cochain®’:

(fm\k/hn,((),l,-~- ,m+n—k))
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— ST ()P fms (0 = oy in — i, -+ -))x

0<ip<-<ig<n+m—k

(hn, (g = i1,02 = 43,---)),  (Al4)

and f,, — h, = 0 for £k < 0 or for £ > m or n. Here
k

i — 7 is the sequence i, + 1,--- ,7 — 1,7, and p is the
number of permutations to bring the sequence

0—19,%1 = t9, 30+ 1—4; —1,994+1—>123—1,---

(A15)
to the sequence
0—=m-+n-—k. (A16)

For example

3

(fm =l (05 m4n—1) =Y (=)D
1

(frm, (0= 4,0 +n—=>m+n—1))h,, (i = i+n)).
(A17)

(e}

We can see that —=-—. Unlike cup product at k = 0, the

0
higher cup product of two cocycles may not be a cocycle.
For cochains f,,, h,, we have

(_)m—i—n—kfm N hn + (_)TYLn+m+n,}Ln _ fm
k—1 k—1

Let f,, and h, be cocycles and ¢; be a chain, from
eqn. (A18) we can obtain

d(fm :’ hn) = (_)m+nikfm k\_/ hn

c—1

+ (_)mn+m+nhn ~ fm7
k-1
d(fm 7; fm) = [(*)k + (*)m]fm ]:’1 fma
d(Cl — ¢+~ dcl) = d¢ — dg
k—1 k k

Ve V(e _
(=) = (D Wa — ata — da). (A19)
From eqn. (A19), we see that, for Zs-valued cocycles

Zn;s

Sq" *(2n) = 20— 2 (A20)
k
is always a cocycle. Here Sq is called the Steenrod square.
More generally h,, — h,, is a cocycle if n+k = odd and h,,
k

is a cocycle. Usually, the Steenrod square is defined only
for Zs-valued cocycles or cohomology classes. Here, we
like to define a generalized Steenrod square for M-valued
cochains ¢,,:

Sq”fkcn =c¢, — ¢p + ¢y — dey,. (A21)
k k+1
From eqn. (A19), we see that
dSq*e,, = d(ep, — cn+cn — dep) (A22)

n—k n—k+1



0, k = odd

25¢**e, k=even’

=Sg*de, + (=) {

In particular, when ¢, is a Zs-valued cochain, we have

dSq”e,, = SaFde,,. (A23)

Next, let us consider the action of qu on the sum of
two M-valued cochains ¢,, and ¢} :

Sq* (¢, + ¢,) = Sg¥e, + Sofe +

/ /
Cp ~—~ Cp+C, — Cptey
n—=k

/ /
— dc, +¢, — dec,
n—k

n—k+1 n—k+1

= Sq¥¢, 4+ Sa*d, + [1+ (—)¥en ~ ch

— () )R et (2)"en = cl)

ek
ten — de), + ¢, e dep, (A24)
Notice that (see eqn. (A18))
= ()", = et (2)"en = €, (A25)
= d(c, T cn) — dd, = ln (=), T dey,

we see that

Se* (¢, + ) = SgFe, + quc;l + 1+ (—)¥en — ¢,

n—k
+ (_)nik[dciz Cn + (_)HC;L ~ an]
n—k+1 n—k+1
— (— n—k / ~ ~— / / ~—
( ) d(Cn n—k+1 Cn) T n n—k+1 an + Cn n—k-+1 dcn
= Sg"cn + Sa¥c), + [1+ (—)¥en — ¢,
k1 _ (_\n—k I
PN < de— (R, < e
_q{_\n—k+1 3./ — _ — /
[(—) de, LT~ de,,]. (A26)
Notice that (see eqn. (A18))
_yn—k+14. _ - /
( ) dc" n—k+1 en = Cn n—k+1 dcn
=d(de, — cp)+ (—)"dd, — dey, (A27)
n—k+2 n—k+2

we find

Sa*(cn + ) = Saen + Sa¥cl, + [1+ (—)*len — ¢,

n—

EAY PV _ (_\n—k N
H ()~ den = ()"l en)
— d(dd, T cn) — (—)"de), T dey,
= Sq”¢, + Sofc, — (—)"dd, 7, den
HL+ () len = e, e, —  den
n—=k n—k+1
— (=) kd(e, e cp) — d(dd, o~ cn).  (A28)

We see that, if one of the ¢, and ¢, is a cocycle,

Sq*(cn + ¢),) = SgFe, + Sgd,. (A29)
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We also see that

qu(cn + dfn—l) (A30)
= Sq"cn, + Sg* dfn1 + 1+ (—)k]dfn,l ~ Cn
— ()" Fd(en — dfp1)—d(de, — dfa1)
n—k+1 n—k+2

= Sgfcn + [1+ ()" [dfa1 = en+ (=)"S0 " frii]

+d[So" fru1 — (=) Fen — dfuo1 — den — dful.
n—k+1 n—k+2
Using eqn. (A28), we can also obtain the following re-
sult if de,, = even

Sq” (¢, + 2¢,)
= Sg”e, + 2d(cp — c)+2de, —

—k+1 n—k+1

= SgFe, +2d(cy, =) (A31)

n—k
As another application, we note that, for a Q-valued
cochain mgy and using eqn. (A18),

Sql(md) =Ma — Mq +my ~ dmy

1
)

1
—_— d ~— _ ~— — N—
(=) d(mq - mg) — dmg - mq] + de y dmy

(—)4B2(ma — ma) — (—)*Bamy — Mg +mg Bamg
= (—)?B280"mg — 2(—)Bamy e Bamg
= (=)B250"ma — 2(—)?5q° Bama

This way, we obtain a relation between Steenrod square
and Bockstein homomorphism, when my is a Zs-valued
cochain

(A32)

Sq' (ma) = Bama, (A33)

where we have used Sqomd = my for Zs-valued cochain.
For a k-cochain ag, k = odd, we find that

quak = apap + ap — day (A34)
1
1
= —[d(lk — ap — ap — dap — d((],k — (Ik)] + ap — dag
2 1 1 1 1

1 1
= §[dak 5 day — d(da;xc Y ak)} - §d(ak Y ak)

1 1
= —d(day — dag) — =d(ar — a, + dag, — ax)
4 3 2 1 2

Thus Sg*ay is always a Q-valued coboundary, when k is
odd.

Appendix B: Procedure for deriving Hamiltonian
from topological partition function

We briefly review the procedure for writing down local
commuting projection Hamiltonians from the topological
action. The reader may refer to Ref.>>! for details.



1. Zero background gauge field case

Suppose M* = M3 x I for some closed 3-manifold
M3 and I is an interval parameterized by t € [0,T], to
be regarded as the time direction. The space-time has
boundaries at ¢t = 0,7, where the field configurations are
given by {ao} and {ar}. The transfer matrix is given by

({ar}|e ™7 [{ao}) = 2 [{ar}, {ao}] (B1)

Z i l{ar}, {ao}] (B2)
1 i 3 Wy

- nNyint+(Nio+Nir) /2 {Z} 62 S ) (B3)

where [ e x g Wi is evaluated with link configurations at
its boundaries fixed to be {ap}, {ar}. Links not liv-
ing on the boundary are called internal links. Their
configuration is given by {aint}. Nio, Nir and Njne
are the number of links at the two boundaries and in
the space-time bulk respectively. In the following we as-
sume the two boundaries have the same triangulation so
Nio = Nir = Ny

We may represent the transfer matrix diagrammati-
cally as a spacetime cylinder

o

{ao}

where the top and bottom ellipses represent the spatial
closed manifold M3 at t = T, 0 respectively. They are the
boundaries of the space-time cylinder and are drawn as
bold lines. Note that although M3 is a three-dimensional
manifold, we draw it as a one-dimensional ellipse.
Recall from Ref.>®! that under a local spacetime re-
triangulation, the topological action [ v wa changes by

dwy. Hence the cocycle condition dw, = 0 implies the ac-
tion is invariant under re-triangulation mod 1. Moreover,
during a re-triangulation, the boundary degrees of free-
dom cannot change, thus we can only conclude that the
value of [ s g w4 1s independent of triangulations of the
internal bulk, but it could depend on the boundary trian-
gulation. Furthermore, [ ex w4 is independent of the
values of a;,¢. This is because during a re-triangulation,
the internal link values are forgotten, which can be illus-
trated with the re-triangulation of a square:

Aint 0

Thus Z*°P[{ar},{ao}] is independent of both the tri-
angulation and field configuration of the internal bulk
and only depends on the configuration at its boundaries.
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We can show that the transfer matrix is a projection
with a computation:

({azr}| e TH™ e THZ (g0 })

= Z Z*°P{agr}, {ar}) Z*?{ar}, {ao}]

{ar}
- Z WQQM(IML;X[O,T] wat [p8 (1,27 @4)
{aT,aint} '
-2 meZﬂi]Msxlmﬂ wa
{ar,aint} ’
- m Z %l S a3 x (0,21 @1
{ainer}

= ({azr} e T |{ao})

where the label int includes all the links not on the slices
t = 0,T,27T and the label int’ includes all the links not on
the slices t = 0,2T. This computation can be expressed
diagrammatically as

D

{ao} {ao}

Since the eigenvalues of a projection is 1 or 0, corre-
spondingly H., has eigenvalues 0 or oo, i.e. an infinite
energy gap.

Moreover, the transfer matrix has trace 1. This is be-
cause Tr[e~TH~=] is evaluated by identifying the top and
bottom link configurations of the cylinder and summing
over them. With the two ends identified, M3 x I =
M3 x S becomes a closed manifold. As we showed in
(22), on a closed manifold without any background gauge

fields, fM4 w4 = 0. Thus we have

¢ 1
“THel _ _
Trle |= N N g 1=1 (B4)

{@int,a0}

Diagrammatically, this is expressed as

hence the ground state of H is unique.

Although the transfer matrix is a non-local operator,
it can be decomposed into a product of local operators.
Suppose we evaluate f Maxgwa with a triangulation of
the internal space-time, such that it consists of N ys +
1 infinitesimal spatial slices, each slice having the same
triangulation of the spatial slices at ¢ = 0,7. Between



two adjacent slices, only a single link ¢j is updated from
ag,ij to ar,;j, while all other links remains the same. We
have

7TH°°

H P (B5)

<{aT}|Pij‘{a0}> =n iz =1 6“0 i1 j05am it g X
3207 3207

it §' i

Z3 1 l{ar}, {ao}], (B6)
In diagrams, this means

I LR L
1 _n
{ao} —— {a}
In (B6), it is not very clear that P;; is a local opera-

tor. The locality of F;; can be seen by examining the
diagrammatic expression for P,

@0,ij

where double slash indicates the region in which field con-
figurations on the top needs to be identified with that on
the bottom. On the right hand side we see that P;; is
associated with M3 x S with a slit at the link 4j. This
means that in M3, the links far away from ij become
internal links in the non-zero matrix elements of P;;, and
hence the non-zero matrix elements of P;; are indepen-
dent of the value of links far away from ij. Thus F;; is a
local operator.

Using the same arguments as before, it can be shown
that P;; is a projection operator with trace nNiame L
So each projection by P;; reduces the dimension of the
ground state Hilbert space by a factor or n. Furthermore,
in the following we will show that any two such operators
P;j, Py commute. The two orderings Pj; Py or Py F;j
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corresponds to triangulations shown below

ag,ij ao,kl

It is readily seen that the two diagrams only differs for
the internal links. Thus P;; Py = Py Fy;.

We note that the computation for P;; can be further
simplified by setting a;,; = 0.

({ar}|Pij|{ao})
H 5(10 il 1A it 5t 5 Qﬂi fM3><I “a (B7)

aint=0
i i m

The ground state of H> satisfies Pi;|o) = [t0). We
can construct a Hamiltonian with finite gap but the same
ground state as H* by defining

H= —ZPU- (B8)

2. Non-zero background gauge field case

Suppose we are given a background gauge field on the
spatial manifold M?3. In order to define the transfer ma-
trix, we need to specify the background gauge field B
on the spacetime M3 x I. We propose that B should
be static, meaning that it should be invariant under time
translation, i.e. B is the same on every spatial slice. This
is sensible because a non-static background gauge field
actually correspond to the insertion of a 1-symmetry op-
erator into the transfer matrix.

Such static background gauge field B on M3 x I can
be constructed from a given flat B on M3 as follows. We
triangulate M x I such that any 2-cell (ijk) in M3 x I,
when projected onto M3, is either also a 2-cell (igjoko)
in M3, or a lower dimensional cell. Then we define

(B, (iojoko)) if (ijk) projects to a 2-cell
0 else

(B, (ijk)) == {



it can be checked B = 0.

We then construct the transfer matrix with such static
background gauge field. Diagrammatically, the transfer
matrix is represented as follows:

o

efTI:IDC[B] =

{ao}

where the wiggly vertical line represents the static B. We
may repeat the same analysis as in the previous subsec-
tion, except that we include a wiggly vertical line in the
diagrams. For example, in showing the transfer matrix
is a projection, we have

- {aor} - {azr}
Z{aT} {ar) = -
h‘ {ao} {ao}

We need to be slightly careful about generalizing the
argument that trace of transfer matrix is 1. Recall from
the previous section at (B4), we used the fact that on a
closed manifold M* = M3 x S, we have

/w wi[da) = /w wil0] = 0,

which is due to gauge invariance of the topological action
(21). In the present case we have

/M4 wa[B + da) = /M4 w4 B]

To complete the argument, note that a “static” back-
ground gauge field on M3 x S! may be extended into a
higher dimensional manifold M3 x D?, where D? = S!
with the same construction as before.’? Thus

/ walB] = walB]
M1 (M3 D?)

= / dw,[B] = 0.
M3 x D2

using Stoke’s theorem and the cocycle condition.
Therefore we have

(B9)

Tr (e_TI:IOC [B]> = -1

and the ground state is unique.

All the arguments in the previous section will follow
through for the present case. We can construct commut-
ing projections P;;[B] which differs from the zero-gauge
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projections only when ij is near the non-zero B. Its cor-
responding diagram is

Pi;|B] =

ao,ij

Appendix C: Ground state wavefunction
1. Zero background gauge field case

Suppose wy = d¢s for some 3-cochain ¢3(which may
not have l-symmetry, so this does not mean wy is a
coboundary with 1l-symmetry), then ¢3 can be inter-
preted as the phase of a ground state wavefunction.
Define [ipg) = NLw Z{a} ™ Jas #3191 {q}) with normal-

ization Ny = V n™Nim3 . Suppose the spatial manifold
M3 = OM§ is the boundary of some manifold M¢(such
M3 exists for any closed, oriented 3-manifold®®). Then
the amplitude is

/w psla] = o ¢sla] = /w desla) = /Mé wylal.

0

So |[tg) may be represented diagrammatically as

[90) =

Mg

We check that |1)g) survives the P;; projection:

({ar }|Pij o)

= Nl Z H 5(10. ar eZﬂi[jM3xlw4+JM3 #slao]]
0,37 1 Q! §1
VT Laoy i

-5 2mi [ys éslar]

= N 2 T a7t oo
{ag} i'j'#ij

= 5 e 0] = (far) o)

[

(C1)

where in the second step we used Stoke’s theorem

T
fM3X1w4 = fMS ¢3|0 . The same result can also be de-



rived diagrammatically as follows:

{ao}

{ar}
> fao

Mg
Therefore, the transfer matrix is

o~ T — |ypo) (4o,

represented diagrammatically by

"

{ar}

{ao} {ag}

and the local projections P;; can be expressed in terms
of ¢3 as

{({ar}|Pijl{ao})
=] 5T

1§ #ij

e?™i Jaa(9slar]=¢slac)) ()

which is

@o,ij

2. Non-zero background gauge field case

Suppose wy[B + da] = wy[B] + désla, B]. While it is
still true that M3 = OM{ for some manifold Mg, there
may be obstructions in Mg that forbids the extension of
the background gauge field into Mg, while respecting the
flatness constraint dB = 0.

So we will instead take M§ = M3 x I, where I =
[-1,0] is an interval. The boundary now have two com-
ponents OM§ = M3 x {0} [T M? x {—1}. We take the
first component to be the original spatial manifold and
extend the field configurations such that on the other end
M3 x {—1}, we fix a = 0. The background gauge field is
extended to be “static” as in the previous section.
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We define
[olB)) = - 3 @2 e sl B 0B 0}y (C3)
No 1
Thus we have
oala, B~ 0al0.B) = [ 6o,
M3 oM
:/ d¢sla, B] :/ w4[B—|—da]—/ w4 B
MG MG MG

Z/ w4[B+da].
por

where in the last step the term f/\/lg wy[B] = 0 because
its field configuration at M3 x {0} and M3 x {—1} are
the same and the two ends can be glued together to form
a closed manifold. The same arguments used in (B9) can
be applied.

In diagram, this means

and the matrix elements of P;; [B] can be expressed in
terms of ¢sa, B:

{{ar}|Pi;[B]l{ao})
H 5‘10 il 1A 5!

i’ #ij

Qﬂlst(%[aﬂ B]—¢3]a0,B]) (C4)

Appendix D: Triangulation of hypercubic lattice

RY may be triangulated by first admitting a hyper-
cubic lattice, and triangulating each hypercube I? =
{(z1,...,2zq) : 1 > x; > 0 Vi} into d! simplices A, la-
beled by p in the permutation group Sy:

Ap={12zpa) = 2 Ty = 0}.



The vertices and branching structure for each A, are
given by

where 7 is the unit vector in the x; direction. The orien-
tation of A, is given by o(p) = p(1)---p(d)

Appendix E: Evaluation of [,,(b**)* in a hypercube

Let b7 be a 2-cocycle. Under the triangulation in
Appendix D for d = 4, we have

[ 02
= ((

b)%, Y o(p)A

= <(bZn )Qa GPWPUA{;UJ/)U}>

Appendix F: Evaluation of P;; in the m=even case

In this section we follow the procedure described in
Appendix B and write down the projections P;; in the
m=even case for the topological action (32) with M3 =
R3. The matrix elements are given by (B7) and (30):

o HPylag b = T Gurn, a2

iy TL/J/
i #ij

1 o ¢
% _627r1j[R3><I%5q
n

?(da®n)
)

where

/ S¢?(da’r) = / da? da®r
R3xTI R3x T

:/ d(a®" da”) :/ R
R3xT R3

= sa’n da?
R3

n 4 a%r dsa?n + da’r dda’n

T
=0 (/ a’r daz">
0 R3
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d

= sa% da” + da®"da’n,
R3

where we have defined §(z) := :c|0T In the last step we
used integration by part and the fact that da?» dda?» =
0 because it is impossible for both factors of the cup
product to be non-zero, since da" is non-zero for only
one link ij. So Using the triangulation of Appendix D
for D = 3 space, we have

sa’m da? + da?§a’n

R3

_ Z 6a/3’y<6alndaln —‘rdaZ”(S(lZ”,(G;d;d""_B’ T)ﬁ>
nezs3

= 3 e5a? (0, 4)nda’" (&, a + B, 1)z
nezs

+ da”?"(0, &, & + B)ada’ (& +
= Z *P1§5a%7 (0, a) 5 da’ (&, & + B, 1D

nezs
+da”™ (0,5, 8+ 4);_5_406a""(0,8)5
aBy o
=Y —da” (0, &)
nezs
B4 B4
X [Fﬁ'v(§ 2)n+a+Fﬁw(§ §)ﬁ_/§_ay]

—

. i
5a” (0, &) [Fay (75 + 3)

afy

€ T
=> + Fpy (735 = 35)];
nez3

(F1)

where (Ei,g ., €)7 is a shorthand for (@411, 5—&—1’1’, .o, Ct
i), and we have dropped the () brackets for pairing
cochains and chains. 7j; = 7i + § denote the mid-point

of ij = (G,d)ﬁ, % = (%, %, %), and

Note that the final expression F1 only depends on links
which are 1-diagonal. So the 2-diagonal and 3-diagonal
links simply form decoupled product states. We may
henceforth neglect all these links for the current analysis.

We may now write down the expression for Pj;

2 [Fpy (7i5+3) +Fan (7 — 1) , (F2)

n
1 - mk P
- E Xk o2mi B
n t

k=0

summed only over 1-diagonal links ij = (7,7 + &), )?w
increments a ™ by 1. It can be checked that [P;;, Py /] =
0 for dlbtlnCt 1 diagonal links 75 and 7’5’



Appendix G: Evaluation of P;; for general m

As in the m=even case, the matrix elements of the
projections P;; are given by (B7):

(g Pl = T bz, e,

T,i! §!

i'j'#ij
o le2ﬂi‘fk3x1 2.5g2(da?n)+dés[a?n]
b

n

where the exponent is

/ 52 da? + desfa®]
R3xI 21

:/Mdasg /6¢3 I

where ¢3 is given in (28). Again §a?" dda?" = 0 since we

only change by one link.

Spsla”]) L = (60" da”" + da”"6a”")
n

da? + dﬁaznw]

£ ‘

(5(1 ”(da) (da)z"éaz")

*5{ oL

da? + déazn]
- .

+ % {5&2" - d|

Where we integrated by part in the last step and used
Zn Zn .
6aZ"5LdaT1 = 6LdaT]6aZ" = 0. Evaluating on the
d = 3 lattice triangulation described in Appendix D, we

have

LA, G+ ﬁ)éaz" (& + B, 1)

Zn
[da”(0,a + B, 1)5] da

da?n + déa’r

a”(0,1)d
+ a3, Tya S
The projections can be written as

1~ o : "
Pij =3 Xl Jro oudsle],
k=0

(G1)

where §pa?n = (a;; + k)% — aZr

ij 1s non-zero for only one
link j.
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There are three cases to consider: ij can be 1-, 2- or
3-diagonal, as defined in subsection V A of the main text.
For the 3-diagonal links ij = (7,7 + 1),

Spgala”] = Y e*P16,45(0, 4,6+ B, 1)

3
R ez’
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a,B,y

where (@,b,7)7 is a shorthand for (@ + 7, b + 7, & + ).
We see that the 3-diagonal link j is coupled to L%]
on twelve triangles making up the six faces of the cube
whose diagonal is ij.

For the 2-diagonal links ij = (7,7 + & + B),

da”» - 5o
X L34+ @ Dy — 3,7+ B, D)as] |
Zn - ~ — A ~
= %Md‘; 1[0, &,a 4 B)s — (0,8, & + B)x]
« Zeaﬁ’)/dazn [(G’d + B, T)ﬁ — (7;}/,6,(& +/§)ﬁ]
7

For instance, if o, 8 = x1,x2, the link ¢j is involved as
Ok L%} in two triangles making up the square in x1—x2
plane enclosing ij. Each of the triangles is coupled to
da? on two other faces in the (z; + z2)-x3 plane. All
four triangles intersect at 4j.

For the 1-diagonal links ij = (7,7 + &),




Z. /= A T daz” A .
+ da n(o’ ’l)nf’?(st 1(7a7+0"a1)ﬁ7'y
L da? .~ . .
+ da® (0,8, )5 53 =13, 8+4.1);_5_,)
=Y e { e sa? (0, 4)
n

In the case n = 2, Lda222] 2 Sg*(a??).

Appendix H: Calculation details for 6,, 04,4,

It turns out we only need to keep track of the two trian-
gles and five links in the central square, shown in Fig. 3.
This is slightly non-trivial, essentially due to ¢a[a, h] =0
when dh = 0. In this section we assume a; = aiZ” and

= ¢%». Applying (44), we have

W-qHCLZ" > _ eZﬂ’i [gbg({ul,a4,ao},}L(Wiq))7<b2({a2,a37a0},}L(W;’))]
x [{la + dh(W)])*™)}),

with h(W]) depicted in the bottom of Fig. 3.
Evaluating ¢o using (47), we have

0a({ar. as ok hWD) £ 2 (as — ao) “1
¢2({az, az, ao}, h(WY))
= 2 gay + 2 az + ag — a0) 1]
¢>2({a1,a4,a0},h(W§))
—g)4n
= %(*Q)Z"% + %(01 + a4 — a@t#]
a —q)%n
202, 3,0}, AOWE)) = (a3 — ag) | 2D
¢2({G1,CL4,CLO}JZ(W§)) =0
02({az. az, a}. h(W5)) £ F-qas
+ %(ao(w) + (az + q)LMW
+ (a2 +az — ao)(|_a2;_ q] + |_a3 + (n_q)zn]))
0a({ar.as,00}. h(W]) £ 5= (~q)*"as
m —q)%n a
# 2o EDT ) (a4 (g 210

a1 + (—q)”r
n
p2({az, a3, ao}, (W) = 0.

+ (a1 + a4 —ao)(|

So for self-statistics (48), after some algebra, we are left
with

0, = p2({ar, as, ao}, W(W3)) — p2({az, as, ao}, W(W3))

(
+ ¢2({(a1 — )", aq, (a0 — @)}, L(W{))
— ¢2({az, (a3 — )", (a0 — @)}, h(W{))
— ¢2({a1, as, a0}, H(W3)) + ¢2({az, az, ao}, (W)
— ¢2({a1, a4, a0}, H(W}))
+ ¢2({(az + q)*", (a3 — ¢)"", ao}, h(W{))
L am

fq%_

Whereas for mutual-statistics (50), we have

Og100 = P2({a1, as, a0}, H(W5?)) — da({az, as, ao}, h(W5?))
+ ¢2({(a1 — q2)*", aa, (a0 — 2)*" }, (W)
— ¢a({az, (a3 — g2)"", (a0 — g2) "}, H(W{"))
— ¢2({a1, aq, a0}, A(WY")) + d2({az, az, ao}, (W)
— ¢a({ar, (as + q1)"", (a0 + q1) "}, L(W5?))
+ ¢2({(a2 + q1)"" . as, ao}, h(W5?))

1 m
=q192—-
n

Appendix I: Evaluation of W ; for (n,m) = (2,1)

In this section we derive (I). We also assume a = a’~
for all initial link values in this section. Restricting to

(n,m) = (2,1) and enforcing “no flux” rule da = 0, (47)
is

1 1 da?2
pala, h?2] = Zaba + E(a TS
a+ a’? dh?z

+ (a + a??)| 1+ h%2d|

1)- (I1)
Applying (44), we have

Woillaij, aji Dl 22,

= M {(ai; + 1), a5:0),
where

@[a] = <¢27 (15 2: 7’)) - <¢27 (25 iv 3)> + <¢2: (Zz 37 4))
- <¢27 (Zv 57 4)> + <¢27 (67 iv 5)> - <¢27 (17 65 Z)>

Applying (I1) for each 2-simplex in Fig. 5, we get

az; +1

ty)

(#2,(2,4,3)) = iais + %(@3 + (az; + 1)

(62, (1,2,0)) = 5 (@a]
a;3+1

+y)




(62,3, 4)) = 7o

(62, (1,5,4)) = “asq

4
(92, (6,4,5)) = iazs + %(%5 + (ae; + 1)\_ai52+ 1])
(o, (1,6,1)) = %(amL%i; 11).

’
Note for a = a2 and o’ = a/*2, we have [%£%] = ad'.
Also for any simplex (i,7,k), the “no flux” constraint
means
Qij + Gik

5|

ajr = (aij + am)™® = ai; + i — 2|
= ;5 + Qi — 2a¢jaik.
After a bit of algebra, simplifying using the above iden-
tities, we finally arrive at

1
(I)[a} é 5 Z Qij Qg0
(33"

1. DS projection Hamiltonian

For completeness, we supplement this section by briefly
explaining the projection Hamiltonian for DS topological
order from the action (up to a volume term)

. 1
ZDS = Z 627” fM3 §aaa.
da20
The construction was well-studied in the literature, see
eg . Ref. 51. It is similar to that described in Appendix

B, except that six links connecting to the same site is
updated. We have

H=- Z B 1;[ 0(da,2),0 ~ XA: 0(da,A),0,

where A is summed over all 2-simplices, A; are product
over all 2-simplices having 7 as a vertex.

Pil{aij, ajy}) = 705 (ay; + 1)72, a5501),

and ®pgla] is evaluating the cocycles on the six tetra-
hedrons involved when a site is updated. Using Fig. 5
and updating i to ¢’ with ¢’ out of paper, where a;; =
(ai; + 1)%2 and a;y = 1, the result is

1
®psla] = By [a12a2i + agi(a;z + 1) + (a3 + 1)asy

+ (a5 + 1)ass + agi(ais + 1) + ai6a6]

1
é 5 Z QjjQijr.

(43")

We see it describes the same phase as Hp in (53).
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Appendix J: w4, ¢3 and ¢2

In the main text, we find that for Z,-1-SPT, the 4-
cocycle wy, the ground state wavefunction amplitude ¢3,
and the boundary transform anomalous phase ¢ are re-
lated via (26) and (40):

wy[da?"] = de¢sla]

—dags[a”] = dgsla, h.

In general, given wy satisfying dwy = 0. We can define

the 3-cochain ¢>§ as follows:
(69, (1234)) = (wy, (01234)),

where we have introduced an extra “reference” vertex 0.
A heuristic way to interpret 0 is that it is located at ¢t =
—oo whereas the other vertices i = 1,2, 3,4 are located at
a spatial slice at t = 0. So a;; are “spatial” links and as.
are “temporal” links. We may choose the links s = 0,

i =1,2,3,4 as a convention. The dependence of ¢9 on
0 is the choice of such convention. For arbitrary 4-chain
(01234), we have

(dgf, (01234))

(=)™(60,(0...7h...4))

[
B

3
Il
o

*

(=)™ (w4, (00...70...4))

[
B

I
o

m

= (wy, (01234)) — (dwy, (001234))
= (w4, (01234)),
so wy = dgy.

To generalize (40), note that if we have a 1-symmetry
a = dh only on the spatial links, then we can use the
invariance of w4 under space-time 1-symmetry to undo h
from the spatial links and act (—h) on the temporal links
instead, i.e.

0[a + dh], (1234))
w4 [(L + (dh)spatia,l]v (61234)>
walal, (11234))

gial, (1234)).

(60l + al, (1234))

=
=
=
=

So 0,99 = ¢ — #3. Here (dh)spatiar means it only exists
on spatial links a;;/, and we have introduced a new vertex

1 where

ax = ax — h; = —h,;.
1i 0i v ¢
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If we define + w4(0,0,¢,0,0,0) — wy(0,0,—¢,0,—q,—q)
- (K1)
01 (234)) := (wy, (01234
(@2, (234)) := o, )) 04100 = {[Mx(ﬂh,o’ —q1,41,0, —q1 — q2)
it can then be checked that for arbitrary 3-chain (1234), + w4(0,0, —q1, —q2, —q1 — G2, —q1)
we have
- W4(Q1a Oa Oa —q1, —q1 — 42, _QQ)
(ded’, (1234)) @@= 0]~ (@=0f+(@ew), (K2
4 * %
= Z — (=)™, (1...17...4)) where ¢,q1,q920 € G labels the group element as-
m=1 sociated with the transformation string, wys[B] =
4 . w4 (Boi2, Bo13, Bo14, Bo23, Boza, Boza) where dB = 0. It
= —(=)"™ (w4, (011 ...702... 4)) can be checked (K1) and (K2) are topological invariants,
m=1 namely, they are unchanged under wy; — wy + dfs for
i any l-symmetric 3-cochain f3.
_ Ry S - We will check that (K1) and (K2) recovers (49) and
N Z (=) s, (0...m ... 11234)) + (duwy, (011234)) (51) in the case G = Z,,. The Z,, 4-cocycle (11) is
=0
. . m
= —(wa, (11234)) + (w4, (01234)) wy[B] = %SQQBZ"
0 m
= <<753, (1234)) + (93, (1234)). =5 (65175822:?4 + Big, (dB " )o123 + Bgfi;(dBZ")mM)’

. .. (K3)
So 6,09 = —dedl.

In general we may define where

n _ rRZn Zn Zn Zn
(dB")o123 = Bigs — Bogs + Bits — Bijs

(dB*")1234 = Bigy — B3y + Bisy — Bis,
for £ =3,2,1,0,—1. They represent the anomaly in the BZn BZn _ BZn 4 BZn\Zn f, 0
boundary transformation in k-dimensional sub-manifolds ijk = = 0jk 0ike + Soij 5)n for i 0,
in the boundary. k¥ = —1 means dimension 0 in the bulk.
. so (K1) and (
They satisfy

<¢0 (k1) (01234)) = (w, (0. .. (4 — k — 1)(4—k)...4))

K2) are

6(1 - _w4(_qa —q, 07 —q, 07 Q) + w4(_Q7 —-q,—q¢,—¢q, 07 0)

Ay = ()" i, — wy(0,—¢,0,—¢,—q,0) + w4(0,0,0,0, —q, 0)
where +W4(070:q7070a0) - UJ4(0,0, _qvov _Qv_q)
Lk L0+ (g2 —040+0-0= =g
()P40 = 3 (gl 0, o 2n
0 Oq142 = {[M(—Chaoa —q1,q1,0,—q1 — ¢2)

+ W4(O, 07 —q1,—q92, —q1 — 42, _ql)

Appendix K: Generalization of (49) and (51) to —walq1,0,0, a1, —01 — g2, )

G-protected 1-SPT for finite unitary groups —(q1 — 0)} — (g2 — 0)} + (q1 & @)
. m z, z,
In general, we can carry through the calculations for = {[(%(—ql) (—q2)
self-statistics and mutual-statistics for transformation . 2
strings, for a G-protected 1-SPT in 341D as well, where + @(7(]1 _ qz)Zn,_ql_—(_ql)")
G is any unitary group. Note G is Abelian since it is a 2
1-symmetry. In this section we will only present the final m —(—q1)%" — qlz"
results. N E( 42)"" n
Following similar strategies for deriving self- and
mutual-statistics in the Z,, case, it can be shown that — (= 0)} ~ (e 0)} (01 a)

for general unitary group G, the self- and mutual- statis-
tics of transformation strings are given by

= {[(—CHQQ + = [CIlL 1 +q

—q1
2 Ln

9(1 = _W4(_q, —q, 0) —q, 0) Q) + w4(_Q7 —-q,—4¢,—¢q, Oa 0) —(]1
— w4(0,—¢,0,—q, —q,0) + w4(0,0,0,0,—q, 0) + (@ +a) (|2 1 +1—DJ)

n



- a1+ =)

— (a1 = 0)] = (@ = 0} + (@1 ¢ a)

Lfm mo =g -a
—{[(QHQNJQJr 2[qﬂ - 1+ ¢ -

30

+a( B+ [ZED)] - (2= 0 f + (@1 a2)

II=

(a2l =21 + 6l =21) + (@ a2)

m
—4q192-
n

Thus (49) and (51) are recovered.
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