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Abstract
Let H (u) be the Hilbert transform along the parabola (t, ut2) where u ∈ R. For a set
U of positive numbers consider the maximal functionHU f = sup{|H (u) f | : u ∈ U }.
We obtain an (essentially) optimal result for the L p operator norm of HU when 2 <
p < ∞. The results are proved for families of Hilbert transforms along more general
nonflat homogeneous curves.

1 Introduction and statement of results

Given b > 1, u > 0, consider the curve

�u,b(t) = (t, uγb(t)), t ∈ R,

where γb is homogeneous of degree b, with γb(±1) �= 0.
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That is, there are c+ �= 0, c− �= 0 such that

γb(t) =
{
c+ tb, t > 0,

c−(−t)b, t < 0.
(1.1)

For f ∈ S(R2) the Hilbert transform along �u,b is defined by

H (u) f (x) = p.v.
∫
R

f (x1 − t, x2 − uγb(t))
dt

t
.

For an arbitrary nonempty U ⊂ R consider the maximal function

HU f (x) = sup
u∈U

|H (u) f (x)|. (1.2)

The individual operators H (u) extend to bounded operators on L p(R2) for 1 < p <
∞ (see [10,27]). The purpose of this paper is to prove, for p > 2, optimal L p bounds
for the maximal operator HU in terms of suitable properties of U .

Our maximal function is motivated by a similar one involving directional Hilbert
transforms which correspond to the limiting case b = 1, c+ = −c− not covered
here. This maximal function for Hilbert transforms along lines was considered by
Karagulyan [18] who proved that in this case the L2 → L2,∞ operator norm is
bounded below by c

√
log(#U ); the lower bound was extended to all L p by Łaba,

Marinelli and Pramanik [19]. Demeter and Di Plinio [7] showed the upper bound
O(log(#U )) for p > 2 (see also [6] for the sharp L2 result with bound O(log(#U ))).
Moreover there is a sharp bound ≈ √

log(#U ) for lacunary sets of directions (see also
Di Plinio and Parissis [9]) and there are other improvements for direction sets of Vargas
type. Another motivation for our work comes from the recent papers [8,16] which take
up the curved cases and analyze the linear operator f �→ H (u(·)) f for special classes
ofmeasurable functions x �→ u(x). [16] covers the casewhen u(x) depends only on x1
and [8] covers the case where u is Lipschitz. The analogous questions for variable lines
are still not completely resolved (cf. [1,2] for partial L p ranges in the one-variable
case, and [15] and the references therein for partial results related to the Lipschitz
case).

For our curved variant we seek to get sharp results about the dependence of the
operator norm

‖HU‖L p→L p = sup{‖HU f ‖p : ‖ f ‖p ≤ 1}

on U . Unlike in the case for lines we obtain for b > 1 an optimal bound when p > 2
and also observe a different type of dependence on U ; namely it is not the cardinality
ofU that determines the size of the operator norm for the maximal operator but rather
the minimal number of intervals of the form (R, 2R) that is needed to cover U . This
number is comparable to

N(U ) := 1 + #{n ∈ Z : [2n, 2n+1] ∩U �= ∅}. (1.3)
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Theorem 1.1 For every p ∈ (2,∞), the operatorHU is bounded on L p if and only if
N(U ) < ∞. Moreover,

‖HU‖L p→L p ≈ √
log(N(U )) .

The constants implicit in this equivalence depend only on p, b and |c+/c−|.

Remarks (i) The lower bound c
√
log(N(U )) can be extended to all p > 1. Indeed, if

we had a smaller operator norm for some p0 < 2 we could, by interpolation, also
deduce a better upper bound for p > 2 which is not possible. The lower bound
for p < 2 is generally not efficient, see however some results for lacunary sets in
Sect. 7.

(ii) Concerning upper bounds there is no endpoint result for generalU withN(U ) <
∞when p = 2. In fact one can show using the Besicovitch set that forU = [1, 2]
the operatorHU even fails to be of restricted weak type (2, 2). Cf. [24, §8.3] for
the details of a similar argument in the context of maximal functions for circular
means.

(iii) In our theoremwe avoid the cases c± = 0, for the following reasons. For the case
c+ = 0 = c− in (1.1) the operators H (u) are equal to the Hilbert transform along
a fixed line and the problems on HU become trivial. For the choices c+ �= 0,
c− = 0 and c+ = 0, c− �= 0 the curves are unbalanced and by [5, §6] the
individual operators Hu are not bounded on L p.

(iv) The operators HU are invariant under conjugation with dilation operators with
respect to the second variable; i.e. if δ(2)v f (x) = f (x1, vx2) then we haveHvU =
δ
(2)
v−1HU δ

(2)
v and thus the L p operator norm of HU and HvU are the same. This

shows that any dependence of c+, c− in the operator norms can always be reduced
to a dependence on just |c+/c−| as one can assume that c+ = 1. The implicit
constants in the above theorems depend on c±, b, p but are uniform as long as
|c+/c−| is taken in a compact subset of (0,∞), and b and p are taken in compact
subsets of (1,∞). Thus implicit constants in all inequalities in this paper will
be allowed to depend on c±, b, with the above understanding of boundedness on
compact sets.

This paper

In Sect. 2 we describe the basic decomposition (2.8) of the Hilbert transform H (u) into
a standard nonisotropic singular integral operator Su and two operators T u± which can
be viewed as singular Fourier integral operatorswith favorable frequency localizations.
The growth condition in terms of

√
logN(U ) is only relevant for the maximal function

supu∈U |Su f | for which we prove L p bounds for all 1 < p < ∞. Here we use the
Chang–Wilson–Wolff inequality, togetherwith a variant of an approximation argument
in [16]. It turns out that the full maximal operators associated to the T u± are bounded
in L p(R2) for 2 < p < ∞. This is related to space-time L p inequalities (so-called
local smoothing estimates) for Fourier integral operators in [21]. This connection has
already been used by Marletta and Ricci in their work [20] on families of maximal
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functions along homogeneous curves. The results for Su , T u± are formulated in Sect. 2
as Theorems 2.2 and 2.3.

Section 3 contains several auxiliary results. A version of our maximal function for
Mikhlin multipliers (dilated in the second variable) is given in Sect. 4; this is used to
prove Theorem 2.2 in Sect. 5. Theorem 2.3 is proved in Sect. 6. In Sect. 7 we prove
some results about upper bounds for the maximal functions supu∈U |T u± f | when U is
a lacunary set; one of these results will be helpful in the proof of lower bounds for the
operator norm.

The proof of lower bounds is given in Sect. 8. The arguments for the lower bounds
in L2 are based on ideas of Karagulyan [18]. “Appendix A” contains a Cotlar type
inequality which is used in the proof of Theorem 2.2.

2 Decomposition of the Hilbert transforms

Let χ+ be supported in (1/2, 2) such that
∑

j∈Z χ+(2 j t) = 1 for t > 0. Let χ−(t) =
χ+(−t) and χ = χ+ + χ− . We define measures σ+ and σ− by

〈σ± , f 〉 =
∫

f (t, γb(t))χ±(t)
dt

t
. (2.1)

Let, for j ∈ Z, the measure σ j be defined by

〈σ j , f 〉 =
∫

f (t, γb(t))χ(2
j t)

dt

t
.

By homogeneity of γb we see that (in the sense of distributions) σ j = 2 j(1+b)σ0(δ
b
2 j ·)

with δbt x = (t x1, tbx2). Observe that σ0 = σ+ +σ− satisfies the cancellation condition
σ̂0(0) = 0 (where σ̂ (ξ) ≡ F[σ ](ξ) = ∫

e−i〈x,ξ〉dσ(x) denotes the Fourier transform).
For Schwartz functions f the Hilbert transform along �b is then given by

H f =
∑
j∈Z
σ j ∗ f .

2.1 Asymptotics for the Fourier transform of�0

We analyze σ̂±(ξ) for large ξ . We have

σ̂±(ξ) =
∫

e−iψ±(t,ξ)χ±(t)
dt

t

with

ψ+(t, ξ) = tξ1 + c+ tbξ2,

ψ−(t, ξ) = tξ1 + c−(−t)bξ2.
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Observe that

∂tψ+(t, ξ) = ξ1 + c+btb−1ξ2,

∂tψ−(t, ξ) = ξ1 − c−b(−t)b−1ξ2.
(2.2)

Thus ψ+ has a critical point t+(ξ) > 0 when ξ1/(c+ξ2) < 0, and ψ− has a critical
point t−(ξ) < 0 when ξ1/(c−ξ2) > 0 , and t±(ξ) are given by

t+(ξ) =
( −ξ1
bc+ξ2

) 1
b−1

, t−(ξ) = −
(

ξ1

bc−ξ2

) 1
b−1

.

These critical points are nondegenerate as we have

∂t tψ±(t, ξ) = c±b(b − 1)(±t)b−2ξ2.

Setting 
±(ξ) = −ψ±(t±(ξ), ξ) we get


+(ξ) = (b − 1)c+ξ2

(
− ξ1

bc+ξ2

) b
b−1

,


−(ξ) = (b − 1)c−ξ2

(
ξ1

bc−ξ2

) b
b−1

.

The functions 
± are homogeneous of degree one and putting ξ2 = ±1 we have the
crucial lower bounds for the second derivatives of ξ1 �→ 
(ξ1,±1) needed for the
application of the space time estimate in Sect. 3.4.

Assume |ξ | > 1. We observe that then

inf
1/3≤t≤3

∣∣∂tψ+(t, ξ)
∣∣ � |ξ | (2.3a)

if ξ1/c+ξ2 does not belong to the interval [−b(7/2)b−1,−b(2/7)b−1].
Likewise, again for |ξ | > 1 we observe that

inf−3≤t≤−1/3

∣∣∂tψ−(t, ξ)
∣∣ � |ξ | (2.3b)

if ξ1/c−ξ2 does not belong to the interval [b(2/7)b−1, b(7/2)b−1]. These observations
suggest the following decomposition of σ0.

Let η0 be supported in {|ξ | ≤ 100} and equal to 1 for |ξ | ≤ 50. Let ς+
be a C∞

c (R) function supported on (b(1/4)b−1, b4b−1) which is equal to 1 on
[b(2/7)b−1, b(7/2)b−1]. Let ς− be a C∞

c (R) function supported on (−b4b−1,

−b(1/4)b−1) which is equal to 1 on [−b(7/2)b−1,−b(2/7)b−1]. Then we decom-
pose

σ0 = φ0 + μ0,+ + μ0,− (2.4a)
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where φ0 is given by

φ̂0(ξ) = η0(ξ )̂σ0(ξ)+ (1 − η0(ξ))
(
1 − ς−

(
ξ1

c+ξ2

))
σ̂+(ξ)

+ (1 − η0(ξ))
(
1 − ς+

(
ξ1

c−ξ2

))
σ̂−(ξ) (2.4b)

and μ0,± are given by

μ̂0,+(ξ) = (1 − η0(ξ))ς−
(
ξ1

c+ξ2

)
σ̂+(ξ), (2.4c)

μ̂0,−(ξ) = (1 − η0(ξ))ς+
(
ξ1

c−ξ2

)
σ̂−(ξ). (2.4d)

Lemma 2.1 (i) φ0 is a Schwartz function with φ̂0(0) = 0.
(ii) The function μ̂0,+ is supported on

Sect+ =
{
ξ : |ξ | > 50, −b4b−1 <

ξ1

c+ξ2
< − b

4b−1

}
(2.5a)

and satisfies

μ̂0,+(ξ) = ω+(ξ)ei
+(ξ) + E+(ξ)

whereω+ is a standard symbol of order−1/2, and E+(ξ) is a Schwartz function,
both supported on Sect+ .

(iii) The function μ̂0,− is supported on

Sect− =
{
ξ : |ξ | > 50,

b

4b−1 <
ξ1

c−ξ2
< b4b−1

}
(2.5b)

and satisfies

μ̂0,−(ξ) = ω−(ξ)ei
−(ξ) + E−(ξ)

whereω− is a standard symbol of order−1/2, and E−(ξ) is a Schwartz function,
both supported on Sect− .

Proof. In view of the lower bounds for ∂tψ± stated in (2.3a), (2.3b) under their respec-
tive assumptions we see that φ0 is a Schwartz function.We have that σ̂+(0) = −σ̂−(0)
and it follows that φ̂0(0) = 0. The formulas for μ̂0,±(ξ) follow by the method of sta-
tionary phase.

We now define�0 by �̂0 = φ̂0 + E+ + E− so that�0 is a Schwartz function with
�̂0(0) = 0. Define � j , κ j,± by

�̂ j (ξ) = �̂0(2
− jξ1, 2

− jbξ2)
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and

κ̂ j,±(ξ) = ω±(2− jξ1, 2
− jbξ2)e

i
±(2− j ξ1,2− jbξ2).

Define operators Su and T u± by

Ŝu f (ξ) =
∑
j∈Z
�̂ j (ξ1, uξ2) f̂ (ξ) (2.6)

T̂ u± f (ξ) =
∑
j∈Z
κ̂ j,±(ξ1, uξ2) f̂ (ξ) (2.7)

These expressions are at least well defined if f is a Schwartz function whose
Fourier transform is compactly supported in R

2\{0}. For these functions we have then
decomposed our Hilbert transform as

H (u) f = Su f + T u+ f + T u− f . (2.8)

For the upper bound in Theorem 1.1 we shall prove

Theorem 2.2 For 1 < p < ∞,

∥∥∥∥sup
u∈U

|Su f |
∥∥∥∥
p

�
√
log(N(U ))‖ f ‖p. (2.9)

Theorem 2.3 For 2 < p < ∞,

∥∥∥∥sup
u>0

|T u± f |
∥∥∥∥
p

� ‖ f ‖p. (2.10)

3 Auxiliary results

3.1 The Chang–Wilson–Wolff inequality

We consider the conditional expectation operators E j generated by dyadic cubes of
length 2− j , i.e. intervals of the form

∏d
i=1[ni2− j , (ni + 1)2− j ) with n ∈ Z

d . Let
f ∈ L1

loc(R
d). For each j ∈ N ∪ {0}, E j is given by

E j f (x) = 1

2− jd

∫
I j (x)

f (y)dy

where I j (x) is the unique dyadic cube of side length 2− j that contains x . Let

D j = E j+1 − E j
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be the martingale difference operator. Let S f be the dyadic square function, defined
by

S f (x) =
⎛
⎝∑

j∈Z
|D j f (x)|2

⎞
⎠

1/2

.

Also letM be the dyadic maximal function, given by

M f (x) = sup
j∈Z

|E j f (x)|.

The following is a slight variant of an inequality due to Chang et al. [4]:

Proposition 3.1 Suppose that f ∈ L p(Rd) ∩ L∞(Rd) for some p < ∞. Then there
exist two universal constants c1 and c2 such that

meas
({

x ∈ R
d : | f (x)| > 4λ and S f (x) ≤ ελ

})
≤ c2 exp(−c1ε

−2)meas
({

x ∈ R
d : M f (x) > λ

})
(3.1)

for all λ > 0 and 0 < ε < 1/2.

This is a scaling invariant version of the Chang–Wilson–Wolff inequality. For a
detailed proofwe refer to the arXiv version of our paper (arXiv:1902.00096, “Appendix
B”).

We shall apply the one-dimensional version of this theorem for the vertical slices
in R

2. Let f be a measurable function in L p(R2) ∩ L∞(R2), and for j ≥ 0, let E
(2)
j

be the conditional expectation operator acting on the second variable, i.e.

E
(2)
j f (x) = 1

2− j

∫
I j (x2)

f (x1, y)dy

where I j (x2) is the unique dyadic interval of length 2− j that contains x2. Let D
(2)
j =

E
(2)
j+1 − E

(2)
j , and

S(2) f (x) =
⎛
⎝∑

j∈Z
|D(2)j f (x)|2

⎞
⎠

1/2

.

Then from the above proposition, we clearly have

meas
({

x ∈ R
2 : | f (x)| > 4λ and S(2) f (x) ≤ ελ

})
≤ c2e

−c1ε−2
meas

({
x ∈ R

2 : M(2) f (x) > λ
})

(3.2)
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for all λ > 0 and 0 < ε < 1
2 , where M(2) is the dyadic maximal function in the

second variable, i.e. M(2) f (x) = sup j∈Z |E(2)j f (x)|.

3.2 Martingale difference operators and Littlewood-Paley projections

We need some computations from [14] which are summarized in the following lemma.
Let M denote the Hardy-Littlewood maximal operator acting on functions in L p(R).
Let φ be supported in (c−1, c) ∪ (−c,−c−1) for some c > 1.

Lemma 3.2 Assume that f ∈ L1 + L∞(R). Then

(i) For q ≥ 1, n ≥ 0,

Ek(F−1[φ(2−k−n ·) f̂ ])(x) � 2−n(1− 1
q )
(
M(| f |(x)q)

)1/q
(ii) For n ≥ 0

Dk(F−1[φ(2−k+n ·) f̂ ])(x) � 2−nM f (x)

almost everywhere.

Proof of Lemma 3.2 Cf. Sublemma 4.2 in [14].

Given a function on R
2 we shall apply this lemma to y2 �→ f (y1, y2) and relate

the square functionS(2) to Littlewood-Paley square functions in the second variable.
Let χb be an even C∞ function supported in (2−b, 2b) ∪ (−2b,−2−b) such that∑
k∈Z χb(2−kbt) = 1 for all t �= 0. Define the Littlewood-Paley projection type

operators P(1)k , P(2)k,b acting on Schwartz functions on R
2 by

̂
P(1)k f (ξ) = χ1(2

−kξ1) f̂ (ξ) (3.3)

̂
P(2)k,b f (ξ) = χb(2

−kbξ2) f̂ (ξ) (3.4)

Lemma 3.3 Let q > 1, b > 0, and let g ∈ L1 + L∞. Then the pointwise inequality

S(2)g ≤ Cb,q

(∑
k∈Z

[
M (2)

(∣∣∣P(2)k,b g
∣∣∣q)]2/q

)1/2

holds almost everywhere. Here M (2) denotes the Hardy-Littlewood maximal operator
in the second variable.

Proof of Lemma 3.3 Let φb be a C∞ function with

supp(φb) ⊂ (2−b, 2b) ∪ (−2b,−2−b)
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which equals 1 on the support of χb. Define
̂
P̃(2)k,b f (ξ) = φb(2−kbξ2) f̂ (ξ).We write

D
(2)
k =

∑
n∈Z

∑
l∈Z:

n≤k−lb<n+1

D
(2)
k P̃(2)l,b P(2)l,b

and use Minkowski’s inequality and Lemma 3.2 to estimate, with ε < 1 − 1/q,

S(2) f �
∑
n∈Z

2−|n|ε

⎛
⎜⎜⎝

∞∑
k=0

⎡
⎢⎢⎣ ∑

l∈Z:
n≤k−lb<n+1

M (2)(|P(2)l,b f |q)

⎤
⎥⎥⎦
2/q⎞
⎠

1/2

�
(∑

l∈Z

[
M (2)(|P(2)l,b f

∣∣q)|2/q
)1/2

.

This finishes the proof of Lemma 3.3.

3.3 A variant of Cotlar’s inequality

Recall that χ+ ∈ C∞
c (R) be supported in (1/2, 2) such that

∑∞
j=−∞ χ+(2 j t) = 1 for

t > 0 and let η = χ+(| · |).
Consider a Mikhlin–Hörmander multiplier m on R

d satisfying the assumption

sup
t>0

‖ηm(t ·)‖L 1
α

=: B(m) < ∞, α > d; (3.5)

here L 1
α is the potential space of functions g with (I − �)

α
2 g ∈ L1. Let S f =

F−1[m f̂ ], and for n ∈ Z let Sn be defined by

Ŝn f (ξ) =
∑
j≤n

η(2− jξ)m(ξ) f̂ (ξ).

Then both S and the Sn are of weak type (1, 1) and bounded on L p for p ∈ (1,∞)
with uniform operator norms �p B(m). We are interested in bounds for the maximal
function

S∗ f (x) = sup
n∈Z

|Sn f (x)| (3.6)

Proposition 3.4 Let α > d, r > 0 and B(m) as in (3.5). For f ∈ L p(Rd), we have,
for almost every x, and for 0 < δ ≤ 1/2

S∗ f (x) ≤ 1

(1 − δ)1/r
(
M(|S f |r )(x))1/r + Cd,αδ

−1B(m)M f (x). (3.7)

Proposition 3.4 is a variant of the standard Cotlar inequality regarding truncations
of singular integrals. A proof is included in “Appendix A”.
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3.4 An Lp space time estimate for Fourier integral operators of convolution type
and vector valued extensions

Let S(a0, a1) be the sectorial region in R
2

S(a0, a1) = {(ξ1, ξ2) : a0 < |ξ1|/|ξ2| < a1, ξ2 > 0}

and let ηsect beC∞ and compactly supported in Sann := S(a0, a1)∩{ξ : 1 < |ξ | < 2}.
Let q ∈ C∞ be defined in S(a0, a1) and homogeneous of degree one, satisfying

qξξ �= 0 on S(a0, a1)

i.e. the Hessian qξξ has rank one on the sector S(a0, a1). Model cases for q(ξ) are
given by |ξ |, or ξ21 /ξ2 in the sector {|ξ1| ≤ c|ξ2|}. Define

FR f (x, t) =
∫

ei(〈x,ξ〉+tq(ξ))ηsect(ξ/R) f̂ (ξ)dξ.

We need a so-called local smoothing estimate from [21] (the terminology is supposed
to indicate that the integration over a compact time interval improves on the fixed time

estimate ‖FR f (·, t)‖p � R
1
2− 1

p ‖ f ‖p, 2 ≤ p < ∞).

Theorem [21] If I is a compact interval then

(∫
I

∫
R2

|FR f (x, t)|pdx dt
)1/p

� CI R
1
2− 1

p −ε(p)‖ f ‖p, (3.8)

with ε(p) > 0 if 2 < p < ∞. The estimates are uniform as ηsect ranges over a
bounded subset of C∞ functions supported in Sann.

In this paper we shall need a square-function extension of (3.8) which involves
nonisotropic dilations of the associated multipliers of the form ξ �→ (2− jξ1, 2−bjξ2)

with b ≥ 1, j ∈ Z (the strict inequality b > 1 assumed in the introduction is not
used here); see (6.8) below. We rely on a variant of a theorem in [23], for families
of smooth multipliers ξ �→ m(ξ, t) on R

d depending continuously on the parameter
t ∈ I , where I is a compact interval. Let P be a real matrix whose eigenvalues have
positive real parts and consider the dilations δs = exp(s logP).
Proposition 3.5 Let 2 < p < ∞ and I ⊂ R be a compact interval. Recall that η is a
radial non-trivial C∞ function with support in {ξ : 1/2 < |ξ | < 2}. Suppose

sup
t∈I

sup
ξ

|m(ξ, t)| ≤ A,

and assume that for all f ∈ S(Rd),

sup
s>0

(
1

|I |
∫
I

∥∥F−1[ηm(δs ·, t) f̂ ]
∥∥p
pdt

)1/p

≤ A‖ f ‖p.
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Moreover, suppose that for all multiindices α with |α1| + |α2| ≤ d + 1,

∣∣∂αξ [η(ξ)m(δsξ, t)]
∣∣ ≤ B, t ∈ I , s > 0.

Then there is a constant Cp > 0 such that

(
1

|I |
∫
I

∥∥F−1[m(·, t) f̂ ]∥∥ppdt
)1/p

≤ Cp A log(2 + B/A)1/2−1/p‖ f ‖p. (3.9)

The proof is exactly the same as the proof for standard multipliers in [23]. We shall
use the following consequence for a square function inequality to derive (6.8).

Corollary 3.6 Let 2 < p < ∞ and I ⊂ R be a compact interval. Suppose that there is
a compact subset K ⊂ R

2\{0} such that m0(ξ, t) = 0 if ξ ∈ K � or t ∈ I�. Suppose
that for all multiindices α with |α1| + |α2| ≤ 10,

|∂αξ m0(ξ, t)| ≤ B, t ∈ I ,

and that

sup
t∈I

sup
ξ

|m0(ξ, t)| ≤ A.

Moreover, suppose that for all f ∈ S(R2) the inequality

(
1

|I |
∫
I

∥∥∥F−1[m0(·, t) f̂ ]
∥∥∥p
p
dt

)1/p

≤ A‖ f ‖p

holds. Define Tj f (x, t) by T̂j f (ξ, t) = m0(δ2− j ξ, t) f̂ (ξ). Then there is a constant
C(K , p) such that for all { f j } ∈ L p(�2) we also have

⎛
⎜⎝ 1

|I |
∫
I

∥∥∥∥∥∥∥
⎛
⎝∑

j∈Z
|Tj f j (·, t)|2

⎞
⎠

1/2
∥∥∥∥∥∥∥
p

p

dt

⎞
⎠

1/p

≤ C(K , p)A log(2 + B/A)1/2−1/p

∥∥∥∥∥∥∥
⎛
⎝∑

j

| f j |2
⎞
⎠

1/2
∥∥∥∥∥∥∥
p

. (3.10)

Proof of Corollary 3.6. This is a straightforward consequence of Proposition 3.5 (alter-
natively one can adapt the proof of Proposition 3.5 to a vector-valued setting). Let
φ̃ ∈ C∞

c (R
d\{0}) such that φ̃(ξ) = 1 for ξ ∈ K . Let J be a subset of integers with

the property that the supports of φ̃(δ2− j ·), j ∈ J are disjoint. We may write Z as
union over CK such families. It is sufficient to show the analogue of (3.10) with the
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j-summation extended over J . It will be convenient to work with an enumeration
{ j1, j2, . . . } of J .

Let L j be defined by L̂ j f = φ̃(δ2− j ξ) f̂ (ξ).Let g = ∑
i L ji f ji ; then by the adjoint

version of the Littlewood-Paley inequality we have

‖g‖p �

∥∥∥∥∥∥
(∑

i

| f ji |2
)1/2

∥∥∥∥∥∥
p

. (3.11)

Notice that
Tj g = Tj f j (3.12)

by the disjointness condition on the supports of φ(δ2− ji ·). Let {ri }∞i=1 denote the
sequence of Rademacher functions. Applying Proposition 3.5 to the multipliers

mα(ξ) =
∞∑
i=1

ri (α)m0(δ2− ji ξ, t)

and the function g = ∑∞
i=1 F[φ̃(δ2− ji ·) f̂ ji ] we get

(∫ 1

0

1

|I |
∫
I

∥∥∥F−1[mα(·, t)ĝ]
∥∥∥p
p
dt dα

)1/p

� A log(2+B/A)1/2−1/p‖g‖p . (3.13)

By interchanging the α-integral and the (x, t)-integral and applying Khintchine’s
inequality we obtain

⎛
⎜⎝ 1

|I |
∫
I

∥∥∥∥∥∥∥
⎛
⎝∑

j∈Z
|Tj g(·, t)|2

⎞
⎠

1/2
∥∥∥∥∥∥∥
p

p

dt

⎞
⎠

1/p

� A log(2 + B/A)1/2−1/p‖g‖p

and the proof is completed by applying (3.11) and (3.12).

3.5 A version of theMarcinkiewicz multiplier theorem

In the proof of Proposition 7.1 we shall use a well known version of theMarcinkiewicz
multiplier theorem with minimal assumptions on the number of derivatives. Let ηpr
be a nontrivial C∞

c function which is even in all variables and supported in {ξ : 1/2 <
|ξi | ≤ 2, i = 1, 2}. Let L 2

α,α the Sobolev space with mixed dominating smoothness
consisting of g ∈ L2 such that

‖g‖L 2
α,α

=
(∫

(1 + |ξ1|2)α(1 + |ξ2|2)α |̂g(ξ)|2dξ
)1/2
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is finite. Let α > 1/2 and m be a bounded function such that

sup
t1>0,t2>0

‖ηpr m(t1·, t2·)‖L2
α,α

≤ B. (3.14)

Then we have, for 1 < p < ∞,

‖F−1[m f̂ ]‖p ≤ cpB‖ f ‖p. (3.15)

One can prove this using a straightforward product-type modification of Stein’s proof
of theMikhlin–Hörmander multiplier theorem in [25, §3]. One can also deduce it from
Fefferman’s theorem [12], cf. [3,13].

4 Somemaximal function estimates for families of Mikhlin type
multipliers on R

2

In this sectionwe considerMikhlin–Hörmander multipliers with respect to the dilation
group δbt , b > 0, with δbt (ξ) = (tξ1, tbξ2).

Theorem 4.1 Suppose that

sup
t>0

∑
|α|≤4

∥∥∂α(η(·)a(δbt ·))∥∥L1(R2)
≤ 1 (4.1)

Define, for n ∈ Z the operator Tn by

T̂n f (ξ) = a(ξ1, 2
bnξ2) f̂ (ξ). (4.2)

Let N be a subset of Z with #N = N. Then for 1 < p < ∞,

∥∥∥∥ sup
n∈N

|Tn f |
∥∥∥∥
p

≤ Cp
√
log(1 + N )‖ f ‖p. (4.3)

By the Marcinkiewicz interpolation theorem it suffices to show that there is A =
A(p) such that the inequality

meas

(
{x : sup

n∈N
|Tn f | > 4λ}

)
≤ (

A
√
log(1 + N )λ−1‖ f ‖p

)p (4.4)

holds for all Schwartz functions f whose Fourier transform is compactly supported
in R

2\{0}, all λ > 0 and all N with #N ≤ N .
One can decompose

a(ξ1, ξ2) =
∑
j∈Z

a j (2
− jξ1, 2

−bjξ2) (4.5)
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where each a j is supported in {(ξ1, ξ2) : 1/2 < |ξ1| + |ξ2|1/b < 2} and

sup
j

∫ ∣∣∂αξ a j (ξ)
∣∣ dξ ≤ Cα, |α| ≤ 4.

We shall repeatedly use that the operators Tn are bounded on L p(R2) with norm
independent of n. This follows by the Mikhlin-Hörmander multiplier theorem and
rescaling in the second variable.

Let TN f := supn∈N |Tn f | and set

εN := (log(C1N ))
−1/2 (4.6)

where C1 > c−1
1 with c1 as in (3.2), also εN < 1/2. Since f is a Schwartz function,

with f̂ compactly supported in R
2\{0} the function TN f is in L∞ ∩ L2 which allows

us to apply the Chang-Wilson-Wolff inequality.
We have that

meas
({x ∈ R

2 : TN f (x) > 4λ})
≤
∑
n∈N

meas
({x ∈ R

2 : |Tn f (x)| > 4λ, S(2)Tn f (x) ≤ εNλ}
)

+ meas

({
x ∈ R

2 : sup
n∈N

|S(2)[Tn f ](x)| > εNλ
})
. (4.7)

By the Chang–Wilson–Wolff inequality (3.2), the first term on the right hand side
of (4.7) is bounded by

c2Ne−c1ε
−2
N max

n∈N
meas

({
x ∈ R

2 : M(2)[Tn f ] > λ
})

≤ c2Ne−c1ε
−2
N max

n∈N
λ−p‖M(2)[Tn f ]‖p

p � Ne−c1ε
−2
N λ−p‖ f ‖p

p � λ−p‖ f ‖p
p

where we used that Ne−c1ε
−2
N ≤ 1 (by (4.6)) and that the operators Tn are uniformly

bounded.
ByChebyshev’s inequality the second termon the right hand side of (4.7) is bounded

by

ε
−p
N λ−p

∥∥∥∥ sup
n∈N

S(2)[Tn f ]
∥∥∥∥
p

L p

� ε
−p
N λ−p

∥∥∥∥∥∥ supn∈N

(∑
k∈Z

[
M (2)(|Tn P(2)k,b f |q)

]2/q)1/2
∥∥∥∥∥∥
p

p

.

Here we have used Lemma 3.3 with g = Tn f and the fact that the operators Tn and
P(2)k,b commute; q will be chosen so that 1 < q < p.
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We shall now use an idea in [16] and approximate the operators Tn by a convolution
operator acting in the first variable. Define T (1) by

̂T (1) f (ξ1, ξ2) =
∑
j∈Z

a j (2
− jξ1, 0) f̂ (ξ1, ξ2).

Recall the definition of χb in Lemma 3.3. Notice also that

a j (2
− jξ1, 2

(n− j)bξ2)χb(2
−kbξ2) ≡ 0

if j < n + k − 1 and therefore we have

Tn P
(2)
k,b f =

∑
j≥n+k−1

F−1[a j (2
− j ·, 2(n− j)b·)] ∗ P(2)k,b f

=
∑

j≥n+k−1

F−1[a j (2
− j ·, 0)] ∗ P(2)k,b f (4.8a)

+
∑

j≥n+k−1

F−1[a j (2
− j ·, 2(n− j)b·)− a j (2

− j ·, 0)] ∗ P(2)k,b f . (4.8b)

For the first term (4.8a) we use the one-dimensional version of Proposition 3.4 to get

∣∣∣∣∣∣
∑

j≥n+k−1

F−1[a j (2
− j ·, 0)] ∗ P(2)k,b f

∣∣∣∣∣∣ � M (1)
(
P(2)k,b f

)
+ M (1)

(
T (1)P(2)k,b f

)
.

(4.9)

HereM (1) denotes theHardy–Littlewoodmaximal operator acting on the first variable.
Nowconsider the second term (4.8b). Let φ̃ be an appropriately chosen non-negative

bump function supported in (1/4, 3) ∪ (−3,−1/4) and let K j,k,n be the convolution
kernel with multiplier

K̂ j,k,n(ξ) = φ̃(2−kbξ2)
(
a j (2

− jξ1, 2
(n− j)bξ2)− a j (2

− jξ1, 0)
)
.

Then

K̂ j,k,n(2
jξ1, 2

kbξ2) = 2(k+n− j)bφ̃(ξ2)ξ2

∫ 1

0
∂2a j (ξ1, 2

(k+n− j)bsξ2) ds

and we have
∥∥∂α(K̂ j,k,n(2 j ·, 2kb·))∥∥1 � 2(k+n− j)b for multiindices |α| ≤ 3. This

implies

|K j,k,n(x)| � 2(k+n− j)b 2 j+kb

(1 + 2 j |x1| + 2kb|x2|)3
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and hence

∑
j≥n+k−1

∣∣∣K j,k,n ∗ P(2)k,b f (x)
∣∣∣ � Mstr

(
P(2)k,b f

)
(x)

where Mstr is the strong maximal operator which is controlled by M (2) ◦ M (1).
Combining the estimates we thus see that the second term on the right hand side of

(4.7) is bounded by

ε
−p
N λ−p

⎛
⎝
∥∥∥∥∥∥
(∑
k∈Z

[
M (2)(|M (2)M (1)P(2)k,b f |q)

]2/q)1/2
∥∥∥∥∥∥
p

+
∥∥∥∥∥∥
(∑
k∈Z

[
M (2)(|M (2)M (1)T (1)P(2)k,b f |q)

]2/q)1/2
∥∥∥∥∥∥
p

⎞
⎠

p

.

We use this with 1 < q < p and apply Fefferman-Stein estimates for the vector-
valued versions ofM (1) andM (2) and theMarcinkiewicz-Zygmund theoremon L p(�2)

boundedness applied to the operator T (1). Consequently the last expression can be
bounded by

C p
pε

−p
N λ−p‖ f ‖p

p � C p
p (log(1 + N ))p/2λ−p‖ f ‖p

p ,

by the definition of εN . This finishes the proof of (4.4) and thus the proof of Theorem
4.1.

5 Proof of Theorem 2.2

We decompose �0 = ∑
l∈Z�0,l where �̂0,l(ξ) = χ+(2−l |ξ |)�̂0(ξ) . Define

a0,l(ξ) = �̂0,l(2
lξ),

ã0,l,s(ξ) = sbξ2
∂�̂0,l

∂ξ2
(2lξ1, 2

l sbξ2).

Then the functions a0,l and ã0,l,s , for every s ∈ (1/2, 2), are supported in {ξ : 10−b <

|ξ | < 10b} and satisfy the estimates

∫ ∣∣∂αξ a0,l(ξ)∣∣dξ +
∫ ∣∣∂αξ ã0,l,s(ξ)∣∣dξ ≤ C2−|l|

for all multiindices α with |α1| + |α2| ≤ 10. This means that there is a c > 0 such
that the multipliers
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al(ξ) = c2|l|∑
j∈Z

a0,l(2
− jξ1, 2

− jbξ2),

ãl,s(ξ) = c2|l|∑
j∈Z

a0,l,s(2
− jξ1, 2

− jbξ2)
(5.1)

satisfy the conditions (4.1) in Theorem 4.1. Now define operators Sul and Ru
l

Ŝul f (ξ) =
∑
j∈Z
�̂0,l(2

− jξ1, 2
− jbuξ2) f̂ (ξ),

R̂u
l f (ξ) =

∑
j∈Z
�̂0,l(2

l− jξ1, 2
l− jbuξ2) f̂ (ξ).

The assertion of the theorem follows if we can prove

∥∥∥∥sup
u∈U

|Sul f |
∥∥∥∥
p

� 2−|l|√logN(U )‖ f ‖p

which follows by isotropic rescaling from

∥∥∥∥sup
u∈U

|Ru
l f |

∥∥∥∥
p

� 2−|l|√logN(U )‖ f ‖p. (5.2)

Now let

N = {n ∈ Z : ∃s ∈ (1/2, 2) such that (2ns)b ∈ U }.

Observe that #N ≤ C(b)N(U ). The inequality (5.2) follows from

∥∥ sup
n∈N

sup
1/2<s<2

|R(2ns)bl f |∥∥p � 2−|l|√log(1 + #N )‖ f ‖p

which is a consequence of

∥∥∥∥ sup
n∈N

|R2nb
l f |

∥∥∥∥
p

� 2−|l|√log(1 + #N )‖ f ‖p (5.3)

and ∫ 2

1/2

∥∥∥∥ sup
n∈N

∣∣∣∣ ∂∂s R(2ns)bl f

∣∣∣∣
∥∥∥∥
p

ds � 2−|l|√log(1 + #N )‖ f ‖p . (5.4)
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Since

F[R2nb
l f ](ξ) =

∑
j

a0,l(2
− jξ1, 2

nb− jbξ2) f̂ (ξ),

F[∂s R(2ns)bl f ](ξ) = b

s

∑
j

a0,l,s(2
− jξ1, 2

nb− jbξ2) f̂ (ξ),

the inequalities (5.3) and (5.4) follow by applying Theorem 4.1 to the multipliers in
(5.1).

6 Proof of Theorem 2.3

We only consider the maximal function for the operator T u+, since the analogous
problem for T u− can be reduced to the former one by a change of variable (with a
different curve). We omit the subscript and set T u = T u+.

Decompose κ0,+ = ∑∞
�=0 κ0,� where

κ̂0,�(ξ) = χ+(2−�|ξ |)ω+(ξ)ei
+(ξ).

Notice that, by Lemma 2.1, |ξ1| ≈ |ξ2| ≈ 2� for ξ ∈ supp(κ̂0,�). Define κ j,� by
κ̂ j,�(ξ) = κ̂0,�(2− jξ1, 2− jbξ2) and define T u

j,� by

T̂ u
j,� f (ξ) = κ̂ j,�(ξ1, uξ2) f̂ (ξ). (6.1)

Then we have T u = ∑
�≥0

∑
j∈Z T u

j,�.
The assertion of the theorem follows if we can show, for 2 < p < ∞, that there

exists some ε = ε(p) > 0 with

∥∥∥∥∥∥supn∈Z
sup

1/2<s<2

∣∣∣∣∣∣
∑
j∈Z

T (2
ns)b

j,� f

∣∣∣∣∣∣
∥∥∥∥∥∥
p

� 2−�ε‖ f ‖p. (6.2)

Define Ru
j,� by

R̂u
j,� f (ξ) = κ̂0,�(2

�− jξ1, 2
�− jbuξ2) f̂ (ξ).

By isotropic rescaling inequality (6.2) is equivalent with

∥∥∥∥∥∥supn∈Z
sup

1/2<s<2

∣∣∣∣∣∣
∑
j∈Z

R(2
ns)b

j,� f

∣∣∣∣∣∣
∥∥∥∥∥∥
p

� 2−�ε‖ f ‖p. (6.3)
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This inequality follows, by the embedding �p ⊂ �∞ and Fubini’s theorem from

⎛
⎝∑

n∈Z

∥∥∥∥∥∥ sup
1/2<s<2

∣∣∣∣∣∣
∑
j∈Z

R(2
ns)b

j,� f

∣∣∣∣∣∣
∥∥∥∥∥∥
p

p

⎞
⎠

1/p

� 2−�ε‖ f ‖p (6.4)

Fix n, x and set G(s) = ∑
j R

(2ns)b

j,� f (x). We use the standard argument of applying
the fundamental theorem of calculus to |G(s)|p and then Hölder’s inequality which
gives

|G(s)|p ≤ |G(1)|p + p

(∫ 2

1/2
|G(s)|pds

)1/p′ (∫ 2

1/2
|G ′(s)|pds

)1/p

.

This inequality and another application of Hölder’s inequality in R
2 shows that (6.4)

follows from

⎛
⎝∑

n∈Z

∫ 2

1/2

∥∥∥∥∥∥
∑
j

R(2
ns)b

j,� f

∥∥∥∥∥∥
p

p

ds

⎞
⎠

1/p

� 2−�(ε+1/p)‖ f ‖p, (6.5a)

⎛
⎝∑

n∈Z

∫ 2

1/2

∥∥∥∥∥∥
∂

∂s

(∑
j

R(2
ns)b

j,� f
)∥∥∥∥∥∥

p

p

ds

⎞
⎠

1/p

� 2�−�(ε+1/p)‖ f ‖p (6.5b)

and ⎛
⎝∑

n∈Z

∥∥∥∥∥∥
∑
j

R2nb
j,� f

∥∥∥∥∥∥
p

p

⎞
⎠

1/p

� 2−�/p‖ f ‖p (6.5c)

for 2 < p < ∞.
We focus on the derivation of the inequality (6.5a). Note that for s ∈ [1/2, 2]

κ̂0,�(ξ1, s
bξ2) = ω+(ξ1, sbξ2)χ+(2−�|(ξ1, sbξ2)|)ei
+(ξ1,sbξ2)

= 2−�/2η�,s(2−�ξ)e−is
b

b−1
+(ξ1,ξ2)

where

η�,s(ξ1, ξ2) = 2�/2ω+(2�ξ1, 2�sbξ2)χ+(|(ξ1, sbξ2)|)

and taking into account that ω+ is a symbol of order −1/2 we see that the η�,s belong
to a bounded set of C∞ functions supported in an annulus {ξ : a0 ≤ |ξ | ≤ a−1

0 }, for
fixed a0 = a0(b) < 1.
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After changing variables t = s− b
b−1 , with t ∈ (2− b

b−1 , 2
b

b−1 ) this puts us in the
position to apply (3.8) with R = 2� and we obtain, with suitable ε′ = ε′(p) > 0

(∫ 2

1/2

∥∥∥F−1[κ̂0,�(ξ1, sbξ2) f̂ ]
∥∥∥p
p
ds

)1/p

� 2−�(ε′+1/p)‖ f ‖p.

By isotropic scaling, replacing κ̂0,�(ξ1, sbξ2) with κ̂0,�(2�ξ1, sb2�ξ2), we also have

(∫ 2

1/2

∥∥Rsb
0,� f

∥∥p
pds

)1/p

≤ Cε2
−�(ε′+1/p)‖ f ‖p. (6.6)

Let

m j,�(ξ, s) = κ̂0,�

(
2�− jξ1, s

b2�− jbξ2

)

and observe ̂Rsb
j,� f (ξ) = m j,�(ξ, s) f̂ (ξ). The functions ξ �→ m0,�(ξ, s) are supported

in a fixed annulus and satisfy

∣∣∣∂α1ξ1 ∂α2ξ2 m0,�(ξ, s)
∣∣∣ � 2�(α1+α2). (6.7)

By Corollary 3.6 we get the inequality

⎛
⎜⎝∫ 2

1/2

∥∥∥∥∥∥∥
⎛
⎝∑

j∈Z
|Rsb

j,� f j |2
⎞
⎠

1/2
∥∥∥∥∥∥∥
p

p

ds

⎞
⎠

1/p

� 2−�(ε′+1/p)(1 + �)1/2−1/p

∥∥∥∥∥∥∥
⎛
⎝∑

j

| f j |2
⎞
⎠

1/2
∥∥∥∥∥∥∥
p

. (6.8)

We can replace the multipliers m j,�(ξ1, ξ2, s) by m j,�(ξ1, 2nbξ2, s), after scaling
in the second variable. This means that for every fixed n we have proved, for ε < ε′,

⎛
⎜⎝∫ 2

1/2

∥∥∥∥∥∥∥
⎛
⎝∑

j

|R(2ns)bj,� f j |2
⎞
⎠

1/2
∥∥∥∥∥∥∥
p

p

ds

⎞
⎠

1/p

� 2−�(ε+1/p)

∥∥∥∥∥∥∥
⎛
⎝∑

j

| f j |2
⎞
⎠

1/2
∥∥∥∥∥∥∥
p

,

(6.9)
with the implicit constant independent of n.

We now combine thiswith Littlewood-Paley inequalities to prove (6.5a). Let χ̃ (1) be
an evenC∞ function supported on {ξ1 : |c+|b2−3b−1 ≤ |ξ1| ≤ |c+|b23b+1} and equal
to 1 for |c+|b2−3b ≤ |ξ1| ≤ |c+|b23b. Let χ̃ (2)b be an even C∞ function supported on
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{ξ2 : 2−2b−1 ≤ |ξ2| ≤ 22b+1} and equal to 1 for 2−2b ≤ |ξ2| ≤ 22b. Define P̃(1)j , P̃(2)j,b
by

̂
P̃(1)j f (ξ) = χ̃ (1)(2− jξ1) f̂ (ξ)

̂
P̃(2)j,b f (ξ) = χ̃ (2)(2− jbξ2) f̂ (ξ)

Then by the support properties of κ̂0,�(2�·) we get for 1/2 ≤ s ≤ 2

R(2
ns)b

j,� = P̃(1)j P̃(2)j−n,bR
(2ns)b

j,� P̃(2)j−n,b P̃
(1)
j . (6.10)

Hence, by Littlewood-Paley theory

⎛
⎝∑

n∈Z

∫ 2

1/2

∥∥∥∥∥∥
∑
j

R(2
ns)b

j,� f

∥∥∥∥∥∥
p

p

ds

⎞
⎠

1/p

�

⎛
⎜⎝∑

n∈Z

∫ 2

1/2

∥∥∥∥∥∥∥
⎛
⎝∑

j

|R(2ns)bj,� P̃(2)j−n,b P̃
(1)
j f |2

⎞
⎠

1/2
∥∥∥∥∥∥∥
p

p

ds

⎞
⎠

1/p

and by (6.9) this is controlled by

2−�(ε(p)+1/p)

⎛
⎜⎝∑

n∈Z

∥∥∥∥∥∥∥
⎛
⎝∑

j∈Z
|P̃(2)j−n,b P̃

(1)
j f |2

⎞
⎠

1/2
∥∥∥∥∥∥∥
p

p

⎞
⎠

1/p

for some ε(p) > 0 when 2 < p < ∞.We finish the proof of (6.5a) by observing that

⎛
⎜⎝∑

n∈Z

∥∥∥∥∥∥∥
⎛
⎝∑

j∈Z
|P̃(2)j−n,b P̃

(1)
j f |2

⎞
⎠

1/2
∥∥∥∥∥∥∥
p

p

⎞
⎠

1/p

≤

∥∥∥∥∥∥∥
⎛
⎝∑

j∈Z

∑
n∈Z

|P̃(2)j−n,b P̃
(1)
j f |2

⎞
⎠

1/2
∥∥∥∥∥∥∥
p

=

∥∥∥∥∥∥∥
⎛
⎝∑

k1∈Z

∑
k2∈Z

|P̃(2)k2,b
P̃(1)k1

f |2
⎞
⎠

1/2
∥∥∥∥∥∥∥
p

�‖ f ‖p

where we have used the embedding �2 ↪→ �p for p > 2, and applied a two-parameter
Littlewood-Paley inequality.

We now turn to the estimate (6.5b). A computation shows
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2−� ∂
∂s

⎛
⎝∑

j

F[R(2ns)bj,� f ](ξ)
⎞
⎠

= f̂ (ξ)
b

s

∑
j

υ�

(
2− jξ1, s

b2(n− j)bξ2

)
ei2

�
+(2− j ξ1,sb2(n− j)bξ2) (6.11a)

where

υ�(ξ) = 2−�χ ′+(|ξ |)
ξ22

|ξ |ω+(2�ξ1, 2�ξ2)+ χ+(|ξ |)ξ2 ∂ω+
∂ξ2

(2�ξ1, 2
�ξ2)

+χ+(ξ)ω+(2�ξ1, 2�ξ2)iξ2
∂
+
∂ξ2

(ξ1, ξ2). (6.11b)

Here the main contribution in (6.11b) comes from the third term (the others are similar
but better by a factor of about 2−�).

It is now straightforward to check that in the proof of (6.5a) the termR(2
ns)b

j,� f can

be replaced with 2−�∂s(R(2
ns)b

j,� f ) and one obtains (6.5b).
Finally, a simple modification of the proof of (6.5a) would also prove (6.5c): in

place of (3.8), one would use a fixed time estimate, as stated immediately before
(3.8). This finishes the proof of Theorem 2.3.

7 Maximal functions for lacunary sets

We shall prove some upper bounds for the operator norm ofHU for lacunary sets.

Definition Let κ > 1. A finite set U is called κ-lacunary if it can be arranged in a
sequence U = {u1 < u2 < · · · < uM } where u j+1 ≤ u j/κ for j = 1, . . . ,M − 1. U
is lacunary if U is κ-lacunary for some κ > 1.

Note that for lacunary sets we have #U ≈ N(U ) (with the implicit constant depend-
ing on κ).

Proposition 7.1 Let U be a lacunary set. Then, for 4/3 < p < ∞

‖HU‖L p→L p �
√
log(1 + (#U )) . (7.1)

Proposition 7.1 will be used in the proof of lower bounds in Sect. 8. For this
application it is important that (7.1) just holds for some p < 2. We do not know at this
time whether the result extends to all p > 1.1 For special lacunary sequences it does:

1 Added in September 2019: After the submission of this paper the authors showed the bound of Proposition
7.1 for general lacunary sets U , in the full range 1 < p < ∞. This result can be found in the paper [17]
which also contains L p results, p < 2, for more general sets U , under suitable dimension assumptions.
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Proposition 7.2 Let U be a subset of {2nb : n ∈ Z}. Then, for 1 < p < ∞

‖HU‖L p→L p �
√
log(1 + (#U )) .

Here b is as in the definition of the curve γb in (1.1).

7.1 Proof of Proposition 7.1

We may assume that for every interval In := [2nb, 2(n+1)b), n ∈ Z, there is at most
one u ∈ U ∩ In . This is because of the lacunarity assumption we can split U in O(1)
many sets with this assumption.

We order U = {uν} such that uν < uν+1 and let n(ν) be the unique integer for
which uν ∈ In .

We split H (u) = Su + T u as in (2.8). In view of Theorems 2.2, 2.3 it suffices to
prove the inequality ∥∥∥∥sup

u∈U
|T u± f |

∥∥∥∥
p

� ‖ f ‖p (7.2)

for 4/3 < p ≤ 2. By the reduction in Sect. 6 this can be accomplished if

∥∥∥∥∥∥supν
∣∣∣∣∣∣
∑
j

Ruν
j,� f

∣∣∣∣∣∣
∥∥∥∥∥∥
p

� 2−�ε(p)‖ f ‖p (7.3)

can be proved for ε(p) > 0, in our case in the range 4/3 < p ≤ 2.
Replacing the sup by an �2 norm we see that (7.3) follows from

∥∥∥∥∥∥∥
⎛
⎜⎝∑

ν

∣∣∣∣∣∣
∑
j

Ruν
j,� f

∣∣∣∣∣∣
2
⎞
⎠

1/2∥∥∥∥∥∥∥
p

� 2−�ε(p)‖ f ‖p (7.4)

Analogously to (6.10) we have

Ruν
j,� = P̃(1)j P̃(2)j−n(ν),bR

uν
j,� P̃

(2)
j−n(ν),b P̃

(1)
j

and thus, by Littlewood–Paley theory, (7.4) is a consequence of

∥∥∥∥∥∥∥
⎛
⎝∑

ν

∑
j∈Z

∣∣∣Ruν
j,� P̃

(2)
j−n(ν),b P̃

(1)
j f

∣∣∣2
⎞
⎠

1/2
∥∥∥∥∥∥∥
p

� 2−�ε(p)‖ f ‖p. (7.5)
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By a standard application of Khintchine’s inequality this estimate follows if we can
prove ∥∥∥∥∥∥

∑
ν

∑
j∈Z

c(ν, j)Ruν
j,� P̃

(2)
j−n(ν),b P̃

(1)
j f

∥∥∥∥∥∥
p

� 2−�ε(p)‖ f ‖p. (7.6)

for an arbitrary choice of {c(ν, j)} with sup j,ν |c(ν, j)| ≤ 1. Let

ω�(ξ) = ω+(2�ξ)χ+(|ξ |)

then ω� and its derivatives are O(2−�/2), by the symbol property of ω+, and are
supported on a common annulus. We see that the L2 operator norms of the individual
operators Ruν

j,� are O(2−�/2), and that the function

m�(ξ) =
∑
ν

∑
j

χ̃ (1)(2− jξ1)χ̃
(2)(2− jb+n(ν)bξ2)

×ω�(2− jξ1, 2
(n(ν)− j)bξ2)e

i2�
+(2− j ξ1,2(n(ν)− j)bξ2)

has L∞ norm � 2−�/2. This implies

∥∥∥∥∥∥
∑
ν

∑
j∈Z

c(ν, j)Ruν
j,� P̃

(2)
j−n(ν),b P̃

(1)
j f

∥∥∥∥∥∥
2

� 2−�/2‖ f ‖2. (7.7)

For p near 1 we apply the Marcinkiewicz multiplier theorem in the form described in
Sect. 3.5. It is not hard to check that the multiplier m� satisfies the condition (3.14)
with constant B ≤ Cα2�(2α−1/2). Hence we get

∥∥∥∥∥∥
∑
ν

∑
j∈Z

c(ν, j)Ruν
j,� P̃

(2)
j−n(ν),b P̃

(1)
j f

∥∥∥∥∥∥
p

� 2�(2α− 1
2 )‖ f ‖p, α > 1/2. (7.8)

We interpolate between (7.7) and (7.8). By choosing α very close to 1/2, we obtain
(7.6) for any p ∈ (4/3, 2].

7.2 Proof of Proposition 7.2

We argue as in the proof of Proposition 7.1. The desired conclusion follows if under
our present conditions (7.8) can be upgraded to

∥∥∥∥∥∥
∑
ν

∑
j∈Z

c(ν, j)Ruν
j,� P̃

(2)
j−n(ν),b P̃

(1)
j f

∥∥∥∥∥∥
p

≤ cp(1 + �4)‖ f ‖p, 1 < p ≤ 2. (7.9)
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As now uν = 2n(ν)b for a strictly increasing sequence {n(ν)} we see by another
application of Littlewood-Paley theory that (7.9) is a consequence of the inequality

∥∥∥∥∥∥∥
⎛
⎝∑

n∈Z

∑
j∈Z

∣∣∣R2nb
j,� f j,n

∣∣∣2
⎞
⎠

1/2
∥∥∥∥∥∥∥
p

� (1 + �4)

∥∥∥∥∥∥∥
⎛
⎝∑

j,n

| f j,n|2
⎞
⎠

1/2
∥∥∥∥∥∥∥
p

. (7.10)

This is proved as in [16] by using a superposition of shifted maximal operators,
in a vector-valued setting. To analyze the situation we recall how Ru

j,� was formed
(namely by rescaling T u

j,�, then see Sect. 2).
Let σ+ be as in (2.1). Then there is a Schwartz function ς such that

̂R2nb
j,� f (ξ) = χ+(|(2− jξ1, 2

nb− jbξ2)|)σ̂+(2�− jξ1, 2
�+nb− jbξ2) f̂ (ξ)

+ χ+(|(2− jξ1, 2
nb− jbξ2)|)ς̂(2�− jξ1, 2

�+nb− jbξ2) f̂ (ξ).

Consider the second (error) term. It is easy to see that

∣∣F[χ+(|(2− jξ1, 2
nb− jbξ2)|)ς̂(2�− jξ1, 2

�+nb− jbξ2) f̂ (ξ)](x)
∣∣ � 2−�Mstr f (x)

so that these terms are taken care of by an application of the Fefferman-Stein inequality
for the vector-valued strong maximal function.

We concentrate on the main term. We write σ+ = ∑2�+1

m=2�−1 μm where the measure
μm is given by

〈μm, f 〉 =
∫ (m+1)2−�

m2−�
f (t, γb(t))χ+(t)

dt

t
.

Define Ru
j,�,m f by

R̂u
j,�,m f (ξ) = χ(|(2− jξ1, 2

− jbξ2)|)μ̂m(2
�− jξ1, 2

�− jbuξ2) f̂ (ξ).

Then by the above discussion we have

∣∣∣∣∣∣R2nb
j,� f (x)−

2�+1∑
m=2�−1

R2nb
j,�,m f (x)

∣∣∣∣∣∣ � 2−�Mstr f (x)

and hence, by Minkowski’s inequality, it suffices to show that

∥∥∥∥∥∥∥
⎛
⎝ ∑

n, j∈Z

∣∣∣R2nb
j,�,m f j,n

∣∣∣2
⎞
⎠

1/2
∥∥∥∥∥∥∥
p

� 2−�(1 + �)4
∥∥∥∥∥∥∥
⎛
⎝ ∑

j,n∈Z
| f j,n|2

⎞
⎠

1/2
∥∥∥∥∥∥∥
p

(7.11)
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for 2�−1 ≤ m ≤ 2�+1. Notice that

∣∣∣μm ∗ F−1[χ+(| · |2−�)](y)
∣∣∣

� 2−� 2�

(1 + 2�|y1 − m2−�|)10
2�

(1 + 2�|y2 − mb2−�b|)10

Now define

ρ
(1)
m,k1

(y1) = 2k1
(
1 + |2k1 y1 − m|

)−10

ρ
(2)
m,k2

(y2) = 2bk2
(
1 + 2bk2 |y2 − mb2−�(b−1)|

)−10

We then have the pointwise estimate

∣∣∣R2nb
j,� f (x)

∣∣∣ � 2−� (ρ(1)m, j ⊗ ρ(2)m, j−n

)
∗ | f |. (7.12)

By an application of inequalities for the shifted maximal operators (see [16, Theorem
3.1]) we see that the expressions

⎛
⎜⎝∫

∣∣∣∣
⎛
⎝∑

k1,k2

[∫
ρ
(1)
m,k1

(x1 − y1)|gk1,k2(y1, x2)|dy2
]2⎞⎠

p/2

dx

⎞
⎠

1/p

,

⎛
⎜⎝∫

∣∣∣∣
⎛
⎝∑

k1,k2

[∫
ρ
(2)
m,k2

(x2 − y2)|gk1,k2(x1, y2)|dy2
]2⎞⎠

p/2

dx

⎞
⎠

1/p

are both bounded by a constant times

(logm)2

∥∥∥∥∥∥∥
⎛
⎝∑

k1,k2

|gk1,k2 |2
⎞
⎠

1/2
∥∥∥∥∥∥∥
p

.

Applying both estimates iteratively we get

∥∥∥∥∥∥∥
⎛
⎝∑

k1,k2

[(
ρ
(1)
m,k1

⊗ ρ(2)m,k2

)
∗ |gk1,k2 |

]2⎞⎠
1/2
∥∥∥∥∥∥∥
p

� (logm)4

∥∥∥∥∥∥∥
⎛
⎝∑

k1,k2

|gk1,k2 |2
⎞
⎠

1/2
∥∥∥∥∥∥∥
p

.

We apply this with gk1,k2 = fk1,k1−k2 and use (7.12) to obtain (7.11).
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8 Lower bounds

8.1 Themain lower bound and some consequences

The purpose of this section is to prove the lower bound

Theorem 8.1 Let U ⊂ (0,∞) and 1 < p < ∞. Then there is a constant cp such that

‖HU‖L p→L p ≥ cp
√
log(N(U )).

8.1.1 Some consequences

(i) First, Theorem 8.1 in combination with the already proven upper bounds in The-
orems 2.2 and 2.3 yields the equivalence (with constants depending on p)

‖HU‖L p→L p ≈ √
log(N(U )) (8.1)

for 2 < p < ∞, stated as Theorem 1.1.
(ii) We also immediately get an equivalence in Propositions 7.1 and 7.2 which we

formulate as

Corollary 8.2 Let U be a lacunary set. Then (8.1) holds for 4/3 < p < ∞. If U is
contained in {2nb : n ∈ Z} then (8.1) holds for 1 < p < ∞.

8.1.2 Reduction to the case p = 2

Let U∗ be a maximal subset of U with the property that each interval [2n, 2n+1]
contains at most one point in U . Then #(U∗) ≈ N(U ). Let Ũ be any finite subset of
U∗ with the understanding that Ũ = U∗ if U∗ is already finite. Clearly

‖HU‖L p→L p ≥ ‖HU∗‖L p→L p ≥ ‖HŨ‖L p→L p

and thus it suffices to prove the inequality

‖HŨ‖L p→L p � Ap

√
log(#Ũ ). (8.2)

We show that it suffices to prove (8.2) for p = 2: Since Ũ is a disjoint union of two
lacunary sets we have the inequality

‖HŨ‖Lq→Lq ≤ Cq

√
log(#Ũ ), for 4/3 < q < ∞,

by Proposition 7.1.
If 1 < p < 2 we pick q such that 2 < q < ∞, and if 2 < p < ∞ we pick q such

that 4/3 < q < 2. Let θ ∈ (0, 1) such that (1 − θ)/p + θ/q = 1/2. We have
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A2
(
log(#Ũ )

)1/2 ≤ ‖HŨ‖L2→L2 ≤ ‖HŨ‖1−θL p→L p‖HŨ‖θLq→Lq

≤ (
cq(log(#Ũ ))

1/2)θ‖HŨ‖1−θL p→L p

which implies

‖HŨ‖L p→L p ≥ A
1

1−θ
2 c

− θ
1−θ

q

√
log(#Ũ ).

For the remainder of this section we shall verify the lower bound in (8.2) for p = 2.
We shall need to skim the set Ũ a bit more. To prepare for this we first study in more
detail the multipliers of the Hilbert transforms.

8.2 Observations on themultipliers for the Hilbert transforms

We may assume c+ > 0. We write ̂H (u) f (ξ) = m(ξ1, uξ2) f̂ (ξ) where

m(ξ1, ξ2) = lim
ε→0+
R→∞

(∫
ε<t≤R

e−i(tξ1+c+tbξ2) dt

t
+
∫

−R<t<−ε
e−i(tξ1+c−(−t)bξ2) dt

t

)
.

By the homogeneity of the curve �b with respect to the dilations (ξ1, ξ2) �→
(λξ1, λ

bξ2), we see that m(λξ1, λbξ2) = m(ξ1, ξ2) for λ > 0. Moreover one can
check that m is continuous on R

2\{0},

m(ξ1, 0) = −π i signξ1, ξ1 �= 0, (8.3a)

and if ξ2 > 0, then

m(0, ξ2) =
⎧⎨
⎩

− 1
b log(c+/c−) if c− > 0

− 1
b log(−c+/c−)− 1

bπ i if c− < 0.
(8.3b)

We shall need the following Hölder continuity condition at the axes.

Lemma 8.3 There is C◦ = C◦(b, c±) ≥ 1 such that we have the estimates

|m(ξ1, ξ2)− m(ξ1, 0)| ≤ C◦
( |ξ2|

|ξ1|b
) 1

2b

, (8.4a)

|m(ξ1, ξ2)− m(0, ξ2)| ≤ C◦
( |ξ1|b

|ξ2|
) 1

2b

. (8.4b)

Proof of Lemma 8.3 We have |m(ξ1, ξ2)| ≤ C◦(b, c±) and therefore it suffices to show
that (8.4a) holds for |ξ2| � |ξ1|b and (8.4b) holds for |ξ1|b � |ξ2|.

For the proof of (8.4a) it suffices to check, by homogeneity and boundedness ofm,

|m(±1, ξ2)− m(±1, 0)| � |ξ2|β, |ξ2| ≤ 1, (8.5)

123

Author's personal copy



S. Guo et al.

for some β ≥ (2b)−1. Let

A = A(η) = 1

2
|η|− 1

b+1 . (8.6)

We have

m(1, ξ2)− m(1, 0) =
3∑
j=1

(I j,+(c+bξ2)− I j,−(c−bξ2))

where

I1,±(η) =
∫ A(η)

0
e∓i t (e−i tbη/b − 1)

dt

t
,

I2,±(η) =
∫ ∞

A(η)
e∓i t−i tbη/b dt

t
,

I3,±(η) = −
∫ ∞

A(η)
e∓i t dt

t
.

Clearly

|I1,±(η)| ≤
∫ A

0
tb−1|η|b−1dt = Abb−2|η|.

By integration by parts,

|I3,±| ≤ 2A−1.

By our choice (8.6)

|I1,±(η)| + |I3,±(η)| � |η| 1
b+1

We may assume |η| < 1. Let B1 = B1(η) = |η−1/(b−1)|/2 and B2 = B2(η) =
2|η−1/(b−1)|. Then B1(η) ≥ A(η) and we split

I2,±(η) =
∫ B1

A
+
∫ B2

B1
+
∫ ∞

B2
eiψ(t)t−1dt

with ψ(t) = ∓t − tbη/b.
Note that for |t | ≤ B1 we have 1/2 < |ψ ′(t)| ≤ 2 and thus, by van der Corput’s

lemma with first derivative we have | ∫ B1
A (...)dt | � A−1.

Note that |ψ ′′(t)| = |η|(b − 1)tb−2. For the second integral we apply van der
Corput’s lemma with second derivatives and get | ∫ B2

B1
(...)dt | � |B1|−1|η|−1/2(b −

1)−1/2|B1|−(b−2)/2 � (b − 1)−1/2|η|1/(2b−2).
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Finally for the third integral we use that |ψ ′(t)| ≈ |η|tb−1 and |ψ ′′(t)| ≈
|η|(b − 1)tb−2 and a straightforward integration by parts argument yields the bound

O(|η|−1B−b
2 ) = O(|η| 1

b−1 ).
The estimate for m(−1, ξ2) − m(−1, 0) is analogous. Altogether we obtain (8.5)

with β = min{(b + 1)−1, (2b − 2)−1}, and we have β ≥ (2b)−1.
We now turn to the proof of (8.4b). It suffices to check, by homogeneity and

boundedness of m,

|m(ξ1,±1)− m(0,±1)| � |ξ1|1/2, |ξ1| ≤ 1. (8.7)

Let
B = B(ξ1) = (a|ξ1|)−1/2 where a = min± (bc±/2)

2
b−1 . (8.8)

We have

m(ξ1, 1)− m(0, 1) =
3∑
j=1

(
I I j,+(ξ1)− I I j,−(ξ1)

)

where

I I1,±(ξ1) =
∫ B(ξ1)

0
(e∓i tξ1 − 1)e−ic±tb dt

t
,

I I2,±(ξ1) =
∫ ∞

B(ξ1)
e∓i tξ1−ic±tb dt

t
,

I I3,±(ξ1) = −
∫ ∞

B(ξ1)
e∓i t dt

t
.

The estimation of these terms is straightforward; we get

|I I1,±(ξ1)| � |ξ1|B(ξ1)

and

|I I3,±(ξ1)| � B(ξ1)
−1

and both terms are O(|ξ |1/2), by our choice (8.8). By this choice we also have 2 ≤
|c±|btb−1 for t ≥ B(ξ1) which implies that for |ξ1| ≤ 1

1

2
|c±|btb−1 ≤ |∂t (∓tξ1 − c±tb)| ≤ 2|c±|btb−1 for t ≥ B(ξ1).

Integration by parts now shows that

|I I2,±(ξ1)| � B(ξ1)
−b
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which isO(|ξ1|b/2), hence alsoO(|ξ1|1/2). The termm(ξ1,−1)−m(0,−1) is similarly
estimated. This completes the proof of (8.7).

8.3 Reduction to a lower bound for a lacunarymaximal operator

Recall that Ũ ⊂ U withN(Ũ ) < ∞. Let J be the collection of all integers n such that
[2n, 2n+1] has nonempty intersection with Ũ , thus N(Ũ ) = 1 + #I. Let

K = K (Ũ ) = (C◦N(Ũ ))2b (8.9)

where C◦ is as in (8.4a), (8.4b). Let I′ be amaximal subfamily of Iwith the condition

n1 ∈ I′, n2 ∈ I′, n1 < n2 �⇒ n2 − n1 + 1 ≥ log2(8K
2). (8.10)

Pick an integer M such that M + 1 is of the form 2μ with μ ∈ N and such that

N(Ũ )

log2(16K 2)
= N(Ũ )

4 + 4b log2(C◦N(Ũ ))
∈ [M, 2M).

We may assume that the displayed quantity is ≥ e100, so that the logarithm of this
quantity is comparable to logM (otherwise the desired lower bound for ‖HU‖L2→L2

just follows from the trivial lower bound for the Hilbert transform along a fixed curve).
We may now pick an increasing sequence {u j }Mj=1 such that each u j belongs to Ũ

and to exactly one interval determined by the collection I′. Hence we have

u j+1

u j
≥ 16K 2 . (8.11)

Given the reduction in Sect. 8.1.2 the lower bound
√
log(N(U )) in Theorem 8.1

follows from

Proposition 8.4 Let Ũ and {u j }Mj=1 be as above. Then there is c > 0 such that

sup
‖ f ‖2=1

∥∥∥∥∥ sup
1≤ j≤M

|H(u j ) f |
∥∥∥∥∥
2

≥ c
√
logM .

The proof of this proposition is based on a construction by Karagulyan [18].

8.4 A theorem of Karagulyan

We will invoke the following proposition, which is a small generalization of the main
theorem of Karagulyan [18] (see also [19]). For μ ∈ N, let

Wμ = {∅} ∪
μ−1⋃
�=1

{0, 1}�
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be the set of binary words of length at most μ− 1, and let

τ : Wμ → {1, . . . , 2μ − 1}

be the bijection given by τ(∅) = 2μ−1 and

τ(w) = w12
μ−1 + w22

μ−2 + · · · + w�2μ−� + 2μ−�−1

if w = w1w2 . . . w� for some � ∈ {1, . . . , μ − 1}, and each w1, . . . , w� ∈ {0, 1}.
Observe that for a word w of length �, τ(w) is divisible by 2μ−�−1 but not by 2μ−�.

Proposition 8.5 Let μ be any positive integer, M = 2μ − 1, and let S1, . . . , SM be
pairwise disjoint subsets of the (frequency) plane R

2, so that every S j contains balls
of arbitrarily large radii (in other words, for every 1 ≤ j ≤ M and every R > 0, S j

contains some ball of radius R). Then there exists an L2 function f on R
2, that admits

an orthogonal decomposition

f =
∑
w∈Wμ

fw,

where

supp f̂w ⊂ Sτ(w) for all w ∈ Wμ, and (8.12)

‖ f ‖2L2 =
∑
w∈Wμ

‖ fw‖2L2 ≤ 2; (8.13)

in addition, ∥∥∥∥∥∥ sup
1≤ j≤M

∣∣∣∣∣∣
∑

w∈Wμ : τ(w)≥ j

fw

∣∣∣∣∣∣
∥∥∥∥∥∥
L2

≥
√
μ

100
‖ f ‖L2 . (8.14)

Accepting this for the moment, we prove Proposition 8.4.

8.5 Proof of Proposition 8.4

As before, suppose c+ > 0. Let

ρ =
{

− 1
b log(c+/c−) if c− > 0,

− 1
b log(−c+/c−)− 1

bπ i if c− < 0.

Then m(0, ξ2) = ρ for ξ2 > 0 and m(ξ1, 0) = −π i for ξ1 > 0 (cf. (8.3b), (8.3a)). Let
K as in (8.9), then

C◦K− 1
2b ≤ (N(Ũ ))−1 ≤ M−1.
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From (8.4a) and (8.4b) we see, for ξ1 > 0, ξ2 > 0

ξ2/ξ
b
1 ≤ K−1 �⇒ |m(ξ1, ξ2)+ π i | ≤ C◦K− 1

2b ≤ M−1. (8.15a)

ξ2/ξ
b
1 ≥ K �⇒ |m(ξ1, ξ2)− ρ| ≤ C◦K− 1

2b ≤ M−1 (8.15b)

For 1 ≤ j ≤ M , define

S j =
{
(ξ1, ξ2) : ξ1 > 0, ξ2 > 0,

1

2Ku j
<
ξ2

ξb1

<
1

Ku j

}
, (8.16)

so that the S j are pairwise disjoint, and contain balls of arbitrarily large radii. By
Proposition 8.5, there exists an L2 function f = ∑

w∈Wμ fw on R
2, such that (8.12),

(8.13) and (8.14) hold. Now for 1 ≤ j ≤ M ,

|H(u j ) f (x)− ρ f (x)| ≥

∣∣∣∣∣∣∣∣
∑

w∈Wμ :
τ(w)≥ j

(π i + ρ) fw(x)

∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣
∑

w∈Wμ :
τ(w)≥ j

(
H(u j ) fw(x)+ π i fw(x)

)
∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣
∑

w∈Wμ :
τ(w)< j

(
H(u j ) fw(x)− ρ fw(x)

)
∣∣∣∣∣∣∣∣
,

and thus, with c0 = π(1 − 1
b ),

sup
1≤ j≤M

|H(u j ) f (x)− ρ f (x)| ≥ c0 sup
1≤ j≤M

∣∣∣∣∣∣∣∣
∑

w∈Wμ :
τ(w)≥ j

fw(x)

∣∣∣∣∣∣∣∣

− sup
1≤ j≤M

∣∣∣∣∣∣∣∣
∑

w∈Wμ :
τ(w)≥ j

(H(u j ) + π i) fw(x)

∣∣∣∣∣∣∣∣
− sup

1≤ j≤M

∣∣∣∣∣∣∣∣
∑

w∈Wμ :
τ(w)< j

(H(u j ) − ρ) fw(x)
)
∣∣∣∣∣∣∣∣
.

(8.17)

Now supp f̂w ∈ Sτ(w). If τ(w) ≥ j , then for ξ ∈ supp f̂w, we have u jξ2/ξ
b
1 <

uτ(w)ξ2/ξb1 < K−1 and therefore, by (8.15a), we have |m(ξ1, u jξ2)+π i | ≤ M−1 for
ξ ∈ supp f̂w. Hence

∥∥(H(u j ) + π i) fw
∥∥
2 ≤ M−1‖ fw‖2 if τ(w) ≥ j . (8.18)
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Moreover if τ(w) < j we have, for ξ ∈ supp f̂w,

u j
ξ2

ξb1

= u j

uτ(w)
uτ(w)

ξ2

ξb1

≥ 16K 2 1

2K
= 8K

and hence, by (8.15b), |m(ξ1, u jξ2)− ρ| ≤ M−1 for ξ ∈ supp f̂w. Thus

∥∥(H(u j ) − ρ) fw
∥∥
2 ≤ M−1‖ fw‖2 if τ(w) < j . (8.19)

Statements (8.18) and (8.19) imply

∥∥∥∥∥∥∥∥
sup

1≤ j≤M

∣∣∣∣∣∣∣∣
∑

w∈Wμ :
τ(w)< j

(H(u j ) − ρ) fw

∣∣∣∣∣∣∣∣

∥∥∥∥∥∥∥∥
2

� ‖ f ‖2 (8.20)

∥∥∥∥∥∥∥∥
sup

1≤ j≤M

∣∣∣∣∣∣∣∣
∑

w∈Wμ :
τ(w)≥ j

(H(u j ) + π i) fw

∣∣∣∣∣∣∣∣

∥∥∥∥∥∥∥∥
2

� ‖ f ‖2. (8.21)

Indeed, to obtain (8.21) we use the Cauchy-Schwarz inequality in the w sum and
replace a sup in j by an �2 norm, then interchange integrals and sums and apply (8.19)
to get

∥∥∥∥∥∥∥∥
sup

1≤ j≤M

∣∣∣∣∣∣∣∣
∑

w∈Wμ :
τ(w)< j

(H(u j ) − ρ) fw

∣∣∣∣∣∣∣∣

∥∥∥∥∥∥∥∥
2

≤ M1/2

∥∥∥∥∥∥∥
⎛
⎝ M∑

j=1

∑
τ(w)< j

|(H(u j ) − ρ) fw|2
⎞
⎠

1/2
∥∥∥∥∥∥∥
2

= M1/2

⎛
⎝ M∑

j=1

∑
τ(w)< j

∥∥(H(u j ) − ρ) fw
∥∥2
2

⎞
⎠

1/2

≤ M1/2

⎛
⎝ M∑

j=1

M−2
∑
w

‖ fw‖22
⎞
⎠

1/2

� ‖ f ‖2

(the last line following from (8.13)). Inequality (8.20) is proved in exactly the same
way (relying on (8.18)).
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Now we go back to (8.17), use (8.14) for the main part and (8.20), (8.21) for the
two error terms. Then we get

∥∥∥∥∥ sup
1≤ j≤M

|(H(u j ) − ρ) f |
∥∥∥∥∥
2

≥ c
√
μ‖ f ‖2

for some constant c = c(b, c±) > 0. If
√
μ ≥ 2|ρ|/c this also implies

∥∥∥∥∥ sup
1≤ j≤M

|H(u j ) f |
∥∥∥∥∥
2

≥ (c/2)√μ‖ f ‖2.

This completes the proof of Proposition 8.4, except for Proposition 8.5.

8.6 Proof of Proposition 8.5

Fix a non-negative Schwartz function φ on R
2 with

∫
R2 φ(x)dx = 1, such that φ̂ is

supported in the unit ball B(0, 1) centered at the origin. Define the frequency cutoff
φρ by

φρ(x) := ρ2φ(ρx).

Then φ̂ρ is supported on B(0, ρ).
The following lemma explains what we actually construct, in order to prove Propo-

sition 8.5:

Lemma 8.6 Letμ ∈ N, M = 2μ−1, and let S1, . . . , SM be as given in Proposition 8.5.
Then there exist a sequence of sets {Ew}w∈Wμ , modulation frequencies {ξw}w∈Wμ ⊂
R
2, and radii {ρw}w∈Wμ such that the following holds:

(a) For every w ∈ Wμ, Ew ⊂ [0, 1]2, and for every w ∈ Wμ−1, Ew is the disjoint
union of Ew0 and Ew1 Also, E∅ = [0, 1]2. For � = 0, . . . , μ − 1, [0, 1]2 is a
disjoint union of the Ew with length(w) = �, and

∑
w∈Wμ

1Ew(x) = μ. (8.22)

for every x ∈ [0, 1]2.
(b) For every w ∈ Wμ,

‖1Ew ∗ φρw − 1Ew‖L2 ≤ 2−μ−10, (8.23)∫
Ew

| cos(〈ξw, x〉)|dx ≥ |Ew|
3
, (8.24)

B(ξw, ρw) ⊂ Sτ(w). (8.25)
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(c) For every w ∈ Wμ−1, we have

cos(〈ξw, x〉) ≥ 0 if x ∈ Ew0,

cos(〈ξw, x〉) < 0 if x ∈ Ew1.
(8.26)

With this lemma we can prove Proposition 8.5 as follows.

Proof of Proposition 8.5 For every w ∈ Wμ, let Ew, ρw and ξw be as in Lemma 8.6.
We set

fw(x) := μ−1/2ei〈ξw,x〉1Ew ∗ φρw(x), (8.27a)

and let
f :=

∑
w∈Wμ

fw. (8.27b)

Then the support of f̂w is contained inside B(ξw, ρw), so (8.12) follows from (8.25).
Also, the f̂w’s are supported in the sets Sτ(w) which are disjoint and thus by orthogo-
nality we have

‖ f ‖2 =

∥∥∥∥∥∥∥
⎛
⎝ ∑
w∈Wμ

| fw|2
⎞
⎠

1/2
∥∥∥∥∥∥∥
2

.

But, from (8.23), we have

∥∥∥ fw − μ−1/2ei〈ξw,x〉1Ew

∥∥∥
2

≤ 2−μ−10. (8.28)

Observe

⎛
⎝ ∑
w∈Wμ

| fw|2
⎞
⎠

1/2

≤
⎛
⎝ ∑
w∈Wμ

∣∣∣ fw − μ−1/2ei〈ξw,x〉1Ew

∣∣∣2
⎞
⎠

1/2

+
⎛
⎝ ∑
w∈Wμ

∣∣∣μ−1/2ei〈ξw,x〉1Ew

∣∣∣2
⎞
⎠

1/2

,

and using (8.22) to simplify the second term we get

⎛
⎝ ∑
w∈Wμ

| fw|2
⎞
⎠

1/2

≤
⎛
⎝ ∑
w∈Wμ

∣∣∣ fw − μ−1/2ei〈ξw,x〉1Ew

∣∣∣2
⎞
⎠

1/2

+ 1[0,1]2
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for almost every x ∈ R
2. Taking L2 norms of both sides, and using (8.28), we have

∥∥∥∥∥∥∥
⎛
⎝ ∑
w∈Wμ

| fw|2
⎞
⎠

1/2
∥∥∥∥∥∥∥
2

≤ 2−5−μ/2 + 1 < 2.

Thus (8.13) follows.
Lastly we have to verify (8.14). To do so, we first introduce an auxiliary family of

functions {Fw}w∈Wμ , where
Fw := Re fw 1Ew . (8.29)

These Fw’s satisfy three key properties, namely

∑
w∈Wμ

‖Fw − Re fw‖L2 ≤ 2−10, (8.30)

1

3
≤

sup1≤ j≤M

∣∣∣∑w∈Wμ : τ(w)≥ j Fw(x)
∣∣∣∑

w∈Wμ |Fw(x)| ≤ 1 for a.e. x ∈ [0, 1]2, (8.31)

and

√
μ

4
≤
∥∥∥∥∥∥
∑
w∈Wμ

|Fw|
∥∥∥∥∥∥
1

≤
∥∥∥∥∥∥
∑
w∈Wμ

|Fw|
∥∥∥∥∥∥
2

≤
∥∥∥∥∥∥
∑
w∈Wμ

|Fw|
∥∥∥∥∥∥∞

≤ √
μ. (8.32)

Indeed, (8.30) will be a consequence of

‖Fw − Re fw‖L2 � 2−μ−10 for all w ∈ Wμ. (8.33)

Since Fw − Re fw = Re fw1R2\Ew , heuristically, (8.33) says that the real part of
each fw is essentially supported on Ew: the L2 norm of Re fw outside Ew is small.
Furthermore, (8.31) says that there isn’t much cancellation, if we first order the Fw’s
according to the value of τ(w), and then sum successively; this will be achieved by
showing that {Fw}w∈Wμ form a tree system in the sense of Karagulyan [18] (who
credits the idea to Nikišin and Ul’janov [22]).

Let us now establish the three key properties of the Fw’s, namely (8.30), (8.31) and
(8.32). Since Fw − Re fw = Re fw1(Ew)� , and since

Re fw(x) = 1√
μ
cos(〈ξw, x〉)1Ew ∗ φ�w(x), (8.34)

we have

‖Fw − Re fw‖L2(R2) = ∥∥μ−1/2 cos(〈ξw, x〉)1Ew ∗ φ�w
∥∥
L2(R2\Ew)

≤ ∥∥1Ew − 1Ew ∗ φ�w
∥∥
L2(R2\Ew) ≤ 2−μ−10
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by (8.23). This establishes (8.33), and (8.30) follows by summing over w ∈ Wμ.
Next we verify (8.31). The second inequality in (8.31) is immediate by the triangle

inequality. For the first, we observe from (8.34) that if x ∈ Ew, then Fw(x) has the
same sign as cos(〈ξw, x〉) since 1Ew ∗ φ�w is everywhere positive. We claim that for
almost every x ∈ [0, 1]2, there exists j = j(x) such that Fw(x) ≥ 0 for everyw ∈ Wμ
with τ(w) ≥ j , and Fw(x) < 0 for everyw ∈ Wμ with τ(w) < j . This is because for
almost every x ∈ [0, 1]2, there exists a unique word w(x) = w1 . . . wμ−1 of length
μ− 1 such that x ∈ Ew(x). By (8.26), it follows that, for every � = 0, 1, . . . , μ− 2,

Fw1...w�(x) > 0 if w�+1 = 0,

Fw1...w�(x) < 0 if w�+1 = 1,

and that Fw′(x) = 0 if w′ ∈ Wμ\{∅, w1, w1w2, . . . , w1 · · ·wμ−1}. But

τ(w1 . . . w�) = w12
μ−1 + · · · + w�2μ−� + 2μ−�−1,

while

τ(w(x)) = w12
μ−1 + · · · + w�2μ−� + w�+12

μ−�−1 + · · · + wμ−12
1 + 20.

This shows that for every � = 0, 1, . . . , μ− 2,

τ(w1 . . . w�) > τ(w(x)) if w�+1 = 0,

τ (w1 . . . w�) < τ(w(x)) if w�+1 = 1.

Thus for any w′ ∈ Wμ, one has

Fw′(x) ≥ 0 if τ(w′) > τ(w(x)),
Fw′(x) ≤ 0 if τ(w′) < τ(w(x)).

If Fw(x)(x) ≥ 0, we set j(x) = τ(w(x)); if Fw(x)(x) < 0, we set j(x) = τ(w(x))+1.
It follows that that Fw(x) ≥ 0 whenever τ(w) ≥ j(x), and Fw(x) ≤ 0 whenever
τ(w) < j(x). We distinguish two cases now. In the first case we have∣∣∣∣∣∣

∑
w∈Wμ : τ(w)≥ j(x)

Fw(x)

∣∣∣∣∣∣ ≥ 1

3

∑
w∈Wμ

|Fw(x)|.

In the opposite case, we have |∑w∈Wμ : τ(w)≥ j(x) Fw(x)| < 1
3

∑
w∈Wμ |Fw(x)|, so

|∑w∈Wμ : τ(w)< j(x) Fw(x)| ≥ 2
3

∑
w∈Wμ |Fw(x)|. Then

∣∣∣∣∣∣
∑
w∈Wμ

Fw(x)

∣∣∣∣∣∣ ≥

∣∣∣∣∣∣∣∣
∑

w∈Wμ :
τ(w)< j(x)

Fw(x)

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣
∑

w∈Wμ :
τ(w)≥ j(x)

Fw(x)

∣∣∣∣∣∣∣∣
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≥
∑

w∈Wμ :
τ(w)< j(x)

|Fw(x)| − 1

3

∑
w∈Wμ

|Fw(x)| ≥ 1

3

∑
w∈Wμ

|Fw(x)|.

Hence in both cases

sup
1≤ j≤M

∣∣∣∣∣∣
∑

w∈Wμ : τ(w)≥ j

Fw(x)

∣∣∣∣∣∣ ≥ 1

3

∑
w∈Wμ

|Fw(x)|

for every x ∈ [0, 1]2. This completes the proof of (8.31).
Finally, we have to verify (8.32). Note that Fw is supported on [0, 1]2 for every

w ∈ Wμ, and for almost every x ∈ [0, 1]2, there exists at most μ words w ∈ Wμ for
which Fw(x) �= 0. Furthermore, |Fw(x)| ≤ μ−1/2 for every x ∈ [0, 1]2 and every
w ∈ Wμ. Thus, we have

∥∥∥∥∥∥
∑
w∈Wμ

|Fw|
∥∥∥∥∥∥
1

≤
∥∥∥∥∥∥
∑
w∈Wμ

|Fw|
∥∥∥∥∥∥
2

≤
∥∥∥∥∥∥
∑
w∈Wμ

|Fw|
∥∥∥∥∥∥∞

≤ √
μ.

Next, for the lower bound,

∥∥∥∥∥∥
∑
w∈Wμ

|Fw|
∥∥∥∥∥∥
1

=
∑
w∈Wμ

∫
Ew
μ−1/2| cos(〈ξw, x〉)1Ew ∗ φ�w(x)|dx

which is

≥ 1√
μ

∑
w∈Wμ

∫
Ew

(
| cos(〈ξw, x〉)| − ∣∣ cos(〈ξw, x〉)[1Ew − 1Ew ∗ φ�w ]∣∣) dx

≥ 1√
μ

∑
w∈Wμ

(∫
Ew

| cos(〈ξw, x〉)|dx − ‖1Ew − 1Ew ∗ φ�w‖L2 |Ew|1/2
)

≥ 1√
μ

∑
w∈Wμ

( |Ew|
3

− 2−μ−10
)

≥
√
μ

3
− 2−μ−10√μ ≥

√
μ

4
,

where for the last line we have used (8.24), (8.23) and (8.22). This completes the proof
of (8.32).

We will now return to the proof of (8.14). First,

sup
1≤ j≤M

∣∣∣∣∣∣
∑

w∈Wμ : τ(w)≥ j

fw(x)

∣∣∣∣∣∣ ≥ sup
1≤ j≤M

∣∣∣∣∣∣
∑

w∈Wμ : τ(w)≥ j

Re fw(x)

∣∣∣∣∣∣
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≥ sup
1≤ j≤M

∣∣∣∣∣∣
∑

w∈Wμ : τ(w)≥ j

Fw(x)

∣∣∣∣∣∣−
∑
w∈Wμ

|Fw(x)− Re fw(x)|,

which by (8.31) is

≥ 1

3

∑
w∈Wμ

|Fw(x)| −
∑
w∈Wμ

|Fw(x)− Re fw(x)|.

From (8.30) and (8.32), we then have∥∥∥∥∥∥ sup
1≤ j≤M

∣∣∣∣∣∣
∑

w∈Wμ : τ(w)≥ j

fw

∣∣∣∣∣∣
∥∥∥∥∥∥
L2

≥
√
μ

12
− 2−10 ≥

√
μ

50
.

Hence (8.14) follows from (8.13). This finishes the proof of Proposition 8.5, except
for the proof of Lemma 8.6.

The proof of Lemma 8.6 is done by induction over the length of words. The basic
step is contained in

Lemma 8.7 Given ε > 0, a set E of finite measure and a set S in frequency space that
contains balls of arbitrary large radii, there exist ρ0 > 0, a frequency ξ0 and a ball
B = B(ξ0, ρ0) ⊂ S such that‖φρ0∗1E−1E‖2 < ε and

∫
E | cos(〈ξ0, x〉)| dx ≥ |E |/3.

Proof. Since {φρ}ρ>0 form an approximation of the identity there is R1 = R1(S, E, ε)
such that

‖φρ ∗ 1E − 1E‖2 < ε (8.35)

for ρ > R1. Also observe that

lim inf|ξ |→+∞

∫
E

| cos(〈ξ, x〉)|dx ≥ lim inf|ξ |→+∞

∫
E
cos2(〈ξ, x〉)dx

= lim|ξ |→+∞

∫
E

1 + cos(2〈ξ, x〉)
2

dx = |E |
2
,

by the Riemann–Lebesgue lemma. Hence we find R2 = R2(S, E, ε) such that∫
E

| cos(〈ξ, x〉)|dx ≥ |E |/3, (8.36)

for |ξ | ≥ R2.
By assumption on S we can find a ball B0 of radius R0 > 10max{R1, R2}, centered

at some �0 such that B0 ⊂ S. There is a point ξ0 ∈ B(�0, R0/2) that satisfies
|ξ0| ≥ R0/4. Set ρ0 = R0/4. The ball B(ξ0, ρ0) is contained in B0 and thus in S.
Also since ρ0 ≥ R1 we have (8.35) for ρ = ρ0 and since |ξ0| > R2 we have (8.36)
for ξ = ξ0.
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Proof of Lemma 8.6 We will construct a sequence of sets {Ew}, radii ρw and modula-
tion frequencies ξw using induction on the length of words. We use ε = 2−μ−10 in
Lemma 8.7.

First let E∅ = [0, 1]2. We apply Lemma 8.7 with E = E∅ and S = Sτ(∅). We thus
find ξ∅, ρ∅ such that (8.23), (8.24), (8.25) hold for w = ∅. We consider the two words
of length one, i.e. 0 and 1 and let

E0 := {x ∈ E∅ : cos(〈ξw, x〉) ≥ 0}
E1 := {x ∈ E∅ : cos(〈ξw, x〉) < 0}

so that E∅ is a disjoint union of E0 and E1, and (8.26) holds forw = ∅. Clearly [0, 1]2
is a disjoint union of the Ew with words w of length 1.

Suppose Ew, ρw, ξw are defined for all words of length � < μ− 1. Take any word
of length �+ 1, of the form w0 or w1 where w is of length �, and where Ew, ρw, ξw
satisfy (8.23), (8.24), (8.25), and where [0, 1]2 is a disjoint union of the Ew with
length(w) = �. We let

Ew0 := {x ∈ Ew : cos(〈ξw, x〉) ≥ 0}
Ew1 := {x ∈ Ew : cos(〈ξw, x〉) < 0}

so that (8.26) holds, Ew is a disjoint union of Ew0 and Ew1, and thus [0, 1]2 is a
disjoint union of all Ew where w runs over all words of length �+ 1.

We now use Lemma 8.7 to find ρw0, ξw0 so that (8.23), (8.24) and (8.25) hold for
w0 in place ofw. Then we use Lemma 8.7 again to find ρw1, ξw1 so that (8.23), (8.24)
and (8.25) hold for w1 in place of w.

At step � = μ − 1 this completes our construction of Ew, ρw and ξw for all
w ∈ Wμ, and all the properties stated in Lemma 8.6 are satisfied at every stage of the
construction. Note that the balls B(ξw, ρw), B(ξw̃, ρw̃) are disjoint for different w, w̃
because these balls belong to the disjoint sets Sτ(w), Sτ(w̃), respectively.

Finally we have by our construction, for � = 0, . . . , μ− 1,

∑
w:length(w)=�

1Ew = 1[0,1]2 ,

and we obtain (8.22) by summing in �.
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Appendix A: Proof of Proposition 3.4

The proof is amodification of the argument for the standardCotlar inequality regarding
truncations of singular integrals, cf. [26, §I.7].

Let m j (ξ) = η(2− jξ)m(ξ) and let a j (ξ) = m j (2 jξ). We pick 0 < ε < min{α −
d, 1}. Then by assumption

sup
j∈Z

‖a j‖L 1
α

≤ B < ∞ (A.1)

which implies that |F−1[a j ](x)| ≤ CB(1+|x |)−d−ε, and thus, with K j = F−1[m j ],

|K j (x)| + 2− j |∇K j (x)| ≤ CB2 jd(1 + 2 j |x |)−d−ε.

For Schwartz functions f we have S f = ∑
j∈Z K j ∗ f and Sn f = ∑

j≤n K j ∗ f .

Lemma A.1 Fix x̃ ∈ R
d and n ∈ Z, and let g(y) = f (y)1B(x̃,2−n)(y) and h = f − g.

Then

(i) |Sng(x̃)| � B M[ f ](x̃).
(ii) |Snh(x̃)− Sh(x̃)| � B M[ f ](x̃).
(iii) For |w − x̃ | ≤ 2−n−1 we have |Sh(x̃)− Sh(w)| � B M[ f ](x̃).
Proof. By appropriate normalization of the multiplier we may assume B = 1.

(i) is immediate since for j ≤ n

|K j ∗ g(x̃)| � 2 jd
∫

|x̃−y|≤2−n
|g(y)|dy � 2( j−n)dM[g](x̃)

and the assertion follows since |g| ≤ | f |.
For (ii) notice that |Snh(x̃)− Sh(x̃)| ≤ ∑

j>n |K j ∗ h(x̃)|. For j > n we estimate

|K j ∗ h(x̃)| � 2− jε
∫

|x̃−y|≥2−n
|x̃ − y|−d−ε|h(y)|dy

� 2− jε
∑
l≥0

2(n−l)ε \
∫
B(x̃,2l−n)

|h(y)|dy

where the slashed integral denotes the average. Thus we get

∑
j≥n

|K j ∗ h(x̃)| � M[h](x̃)

and, since |h| ≤ | f |, the assertion follows.
Concerning (iii) we consider the terms K j ∗ h(x̃) − K j ∗ h(w) separately for

j ≤ n and j > n. The term
∑

j>n |K j ∗ h(x̃)| was already dealt with in (ii). Since
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|w− x̃ | ≤ 2−n−1 we have |w− y| ≈ |x̃ − y| for |x̃ − y| ≥ 2−n and thus the previous
calculation also yields

∑
j>n

|K j ∗ h(w)| � M[h](x̃) � M f (x̃).

It remains to consider the terms for j ≤ n. In that range we write

K j ∗ h(x̃)− K j ∗ h(w) =
∫ 1

0

∫
|x̃−y|≥2−n

〈x̃ − w,∇K j (w + s(x̃ − w)− y)〉h(y)dy ds.

Since |w − x̃ | ≤ 2−n−1 we can replace |w + s(x̃ − w) − y| in the integrand with
|x̃ − y| and estimate the displayed expression by C

∑
l≥0 Al, j,n where

Al, j,n = 2 j |x̃ − w|
∫
2−n+l−1≤|x̃−y|≤2−n+l

2 jd

(1 + 2 j |x̃ − y|)d+ε |h(y)|dy

� 2( j−n)(1−ε)2−lε \
∫
B(x̃,2l−n)

|h(y)|dy.

Summing in l > 0 and then j ≤ n yields

∑
j≤n

|K j ∗ h(x̃)− K j ∗ h(w)| � Mh(x̃) � M f (x̃). (A.2)

Proof of (3.7) We proceed arguing as in [26, §I.7]. Fix x̃ ∈ R
d and n ∈ Z and define

g and h as in the lemma. For (suitable) w with |w − x̃ | ≤ 2−n−1 we write

Sn f (x̃) = Sng(x̃)+ (Sn − S)h(x̃)+ Sh(x̃)

= Sng(x̃)+ (Sn − S)h(x̃)+ Sh(x̃)− Sh(w)+ S f (w)− Sg(w). (A.3)

By Lemma A.1

|Sng(x̃)| + |(Sn − S)h(x̃)| + |Sh(x̃)− Sh(w)| � B M[ f ](x̃)

and it remains to consider the term S f (w) − Sg(w) for a substantial set of w with
|w − x̃ | ≤ 2−n−1.

By the Mikhlin-Hörmander theorem we have for all f ∈ L1(Rd) and all λ > 0

meas({x : |S f (x)| > λ}) ≤ Aλ−1‖ f ‖1

where A ≤ Cα,d B.
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Now let δ ∈ (0, 1/2) and consider the set

 n(x̃, δ) = {
w : |w − x̃ | < 2−n−1, |Sg(w)| > 2dδ−1A M[ f ](x̃)}.

In (A.3) we can estimate the term |Sg(w)| by 2dδ−1A M[ f ](x̃) when w ∈
B(x̃, 2−n−1)\ n(x̃, δ). Hence we obtain

|Sn f (x̃)| ≤ inf
w∈B(x̃,2−n−1)\ n(x̃,δ)

|S f (w)| + C(α, d)B(1 + δ−1)M[ f ](x̃). (A.4)

By the weak type inequality for S we have

meas( n(x̃, δ)) ≤ A‖g‖1
2dδ−1AM[ f ](x̃) = δ

2dM[ f ](x̃)
∫

|x̃−y|≤2−n
| f (y)|dy

≤ δ 2−d meas(B(x̃, 2−n)) = δmeas(B(x̃, 2−n−1)).

Hence meas(B(x̃, 2−n−1)\ n(x̃, δ)) ≥ (1 − δ)meas(B(x̃, 2−n−1)) and thus for all
r > 0

inf
w∈B(x̃,2−n−1)\ n(x̃,δ)

|S f (w)|

≤
(

1

meas(B(x̃, 2−n−1)\ n(x̃, δ))

∫
B(x̃,2−n−1)

|S f (w)|r dw
)1/r

≤
(

1

(1 − δ)|B(x̃, 2−n−1)|
∫
B(x̃,2−n−1)

|S f (w)|r dw
)1/r

.

We obtain

|Sn f (x̃)| ≤ (1 − δ)−1/r (M[|Sw|r ](x̃))1/r + C(α, d)(1 + δ−1)B M[ f ](x̃)

uniformly in n. This implies (3.7).
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