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Abstract

Let H™ be the Hilbert transform along the parabola (¢, ut*) where u € R. For a set
U of positive numbers consider the maximal function HY f = sup{|H"f| : u € U}.
We obtain an (essentially) optimal result for the L” operator norm of HY when 2 <
p < oo. The results are proved for families of Hilbert transforms along more general
nonflat homogeneous curves.

1 Introduction and statement of results

Given b > 1, u > 0, consider the curve

Fu,b(t) = (t7 ul/b(t))’ t [S Ra

where y}, is homogeneous of degree b, with y,(£1) # 0.
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That is, there are ¢ # 0, c— # 0 such that

c tb t>0
=317 ’ 1.1
70 :c_(—t)b, t<0. @b

For f € S(R?) the Hilbert transform along I, ;, is defined by

) dt
H™Yf(x)=puv. | fx —l‘,xz—ul/b(l‘))T-
R
For an arbitrary nonempty U C R consider the maximal function

HYf (x) ==su5|11“”fKX)L (1.2)
ue

The individual operators H ™ extend to bounded operators on L” (R?) for 1 < p <
oo (see [10,27]). The purpose of this paper is to prove, for p > 2, optimal L? bounds
for the maximal operator HY in terms of suitable properties of U.

Our maximal function is motivated by a similar one involving directional Hilbert
transforms which correspond to the limiting case b = 1, cx = —c_ not covered
here. This maximal function for Hilbert transforms along lines was considered by
Karagulyan [18] who proved that in this case the L> — L>° operator norm is
bounded below by c¢,/log(#U); the lower bound was extended to all L? by Laba,
Marinelli and Pramanik [19]. Demeter and Di Plinio [7] showed the upper bound
O(log(#U)) for p > 2 (see also [6] for the sharp L? result with bound O(log(#U))).
Moreover there is a sharp bound ~ /log(#U) for lacunary sets of directions (see also
Di Plinio and Parissis [9]) and there are other improvements for direction sets of Vargas
type. Another motivation for our work comes from the recent papers [8,16] which take
up the curved cases and analyze the linear operator f — H () f for special classes
of measurable functions x — u(x).[16] covers the case when u (x) depends only on x{
and [8] covers the case where u is Lipschitz. The analogous questions for variable lines
are still not completely resolved (cf. [1,2] for partial L? ranges in the one-variable
case, and [15] and the references therein for partial results related to the Lipschitz
case).

For our curved variant we seek to get sharp results about the dependence of the
operator norm

IHY 1 r— 1o = sup{IH £ llp : 1 f1l, < 1}

on U. Unlike in the case for lines we obtain for b > 1 an optimal bound when p > 2
and also observe a different type of dependence on U; namely it is not the cardinality
of U that determines the size of the operator norm for the maximal operator but rather
the minimal number of intervals of the form (R, 2R) that is needed to cover U. This
number is comparable to

NWU) :=1+#neZ: 2", 21 nU £ 9). (1.3)
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Theorem 1.1 For every p € (2, 00), the operator HY is bounded on L? if and only if
NU) < oo. Moreover,

IHY ILr— 10 & /log(M(U)) .

The constants implicit in this equivalence depend only on p, b and |cy [c_]|.

Remarks (i) The lower bound c¢,/log(91(U)) can be extended to all p > 1. Indeed, if
we had a smaller operator norm for some py < 2 we could, by interpolation, also
deduce a better upper bound for p > 2 which is not possible. The lower bound
for p < 2 is generally not efficient, see however some results for lacunary sets in
Sect. 7.
(i) Concerning upper bounds there is no endpoint result for general U with M(U) <
oo when p = 2. In fact one can show using the Besicovitch set that for U = [1, 2]
the operator HY even fails to be of restricted weak type (2, 2). Cf. [24, §8.3] for
the details of a similar argument in the context of maximal functions for circular
means.
(iii) In our theorem we avoid the cases c+ = 0, for the following reasons. For the case
cy =0 =c_in(1.1) the operators H® are equal to the Hilbert transform along
a fixed line and the problems on HY become trivial. For the choices ¢, # 0,
c- = 0and c; = 0, c— # 0 the curves are unbalanced and by [5, §6] the
individual operators H" are not bounded on L?”.

(iv) The operators HY are invariant under conjugation with dilation operators with
respect to the second variable; i.e. if 8,(,2) f(x) = f(x1, vxy) then we have HU =
81()2,)1 ’HU(SI(,Z) and thus the L? operator norm of HY and H'Y are the same. This
shows that any dependence of ¢, c_ in the operator norms can always be reduced
to a dependence on just |c4/c_| as one can assume that c; = 1. The implicit
constants in the above theorems depend on cy, b, p but are uniform as long as
|c+/c—] is taken in a compact subset of (0, 00), and b and p are taken in compact
subsets of (1, co). Thus implicit constants in all inequalities in this paper will
be allowed to depend on c4, b, with the above understanding of boundedness on
compact sets.

This paper

In Sect. 2 we describe the basic decomposition (2.8) of the Hilbert transform H ™ into
a standard nonisotropic singular integral operator S* and two operators 7§ which can
be viewed as singular Fourier integral operators with favorable frequency localizations.
The growth condition in terms of /log (V) is only relevant for the maximal function
sup,cy |S* f| for which we prove L? bounds for all 1 < p < co. Here we use the
Chang—Wilson—Wolff inequality, together with a variant of an approximation argument
in [16]. It turns out that the full maximal operators associated to the 7' are bounded
in L?(R?) for 2 < p < oo. This is related to space-time L” inequalities (so-called
local smoothing estimates) for Fourier integral operators in [21]. This connection has
already been used by Marletta and Ricci in their work [20] on families of maximal
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functions along homogeneous curves. The results for S, T} are formulated in Sect. 2
as Theorems 2.2 and 2.3.

Section 3 contains several auxiliary results. A version of our maximal function for
Mikhlin multipliers (dilated in the second variable) is given in Sect. 4; this is used to
prove Theorem 2.2 in Sect. 5. Theorem 2.3 is proved in Sect. 6. In Sect. 7 we prove
some results about upper bounds for the maximal functions sup,,c;; |7 f| when U is
a lacunary set; one of these results will be helpful in the proof of lower bounds for the
operator norm.

The proof of lower bounds is given in Sect. 8. The arguments for the lower bounds
in L? are based on ideas of Karagulyan [18]. “Appendix A” contains a Cotlar type
inequality which is used in the proof of Theorem 2.2.

2 Decomposition of the Hilbert transforms

Let x4 be supported in (1/2, 2) such that ZjeZ X+ (2/t) =1fort > 0.Let x_(t) =
x+(—1) and x = x, + x_. We define measures o, and o_ by

d
(o, f) = / . Vb(f))Xi(l)Tt- @.1)

Let, for j € Z, the measure o; be defined by
j dt
(oj, [)=| f@, v@)x2 I)T-

By homogeneity of y;, we see that (in the sense of distributions) o; = 27 (14b) 5, (83 )
with Sfx = (1x1, t?x2). Observe that oy = o, +o_ satisfies the cancellation condition

50(0) = 0 (whered (&) = Flo1(¢) = [ e %) do (x) denotes the Fourier transform).
For Schwartz functions f the Hilbert transform along I';, is then given by

Hf =) oj%f.

JEZ
2.1 Asymptotics for the Fourier transform of oy

We analyze o+ (£) for large £. We have
—~ —i dt
o, (§) = / em V) y (t)_t

with

Y, (1, 8) = te + ¢, 178,
Y (t.&) = 1& +c_(-"&.

@ Springer
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Observe that

U, (1.8) =& +c bt" ',

o 2.2)
OY_(t,8) =& —c_b(—=1)"" &.

Thus ¥, has a critical point 74 (§) > 0 when §;/(c, §2) < 0, and _ has a critical
point 7_(§) < O when &;/(c_&>) > 0, and 7 (£) are given by

1 1
_ b—1 b—1
r(E) = (;;cféz) ) =- (bfls) |

These critical points are nondegenerate as we have

B (1, 6) = e b(b — 1) (£1)P 26,

Setting Wi (&) = — v, (14(6), &) we get

£ =
W, (€)= (b - 1e, & (—bc 1$2> :
+

b

U_E) =0b-1c k& < bfé) .

The functions W are homogeneous of degree one and putting & = =£1 we have the
crucial lower bounds for the second derivatives of & — W (&, 1) needed for the
application of the space time estimate in Sect. 3.4.

Assume |£| > 1. We observe that then

nf |0y, (2, 6)] Z 1€ (2.3a)

if £ /c4 & does not belong to the interval [—b(7/2)P~, —=b(2/7)P711.
Likewise, again for |£| > 1 we observe that

A |0y_@.8)| 2 1] (2.3b)

if £ /c_&; does not belong to the interval [b(2/ 7)1”1 ,b(7/ 2)?=11. These observations
suggest the following decomposition of oy.

Let no be supported in {|§] < 100} and equal to 1 for |§| < 50. Let ¢
be a C°(R) function supported on (b(1 /4)b_1,b4b_1) which is equal to 1 on
[b2/7)?~1, b(7/2)P71]. Let c_ be a CX(R) function supported on (—b4>~1,
—b(1/4)>=1) which is equal to 1 on [—b(7/2)P~', —=b(2/7)P~"]. Then we decom-
pose

00 = ¢o + o+ + Ho.— (2.4a)
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where ¢ is given by

$0(&) = ()50 + (1 —mo®) (1 - o~ () ) 3+ ©

c+&

+ =@ (1- 5+ (55))5-® (2.4b)

and y, , are given by

fo+®) = (1 = no@)s- () 546, (24¢)
fo-© = (1 = no@s+ () 5-©), (24d)

Lemma 2.1 (i) ¢o is a Schwartz function with (}50 0) =0.
(ii) The function [y, + is supported on

(2.52)

Sect, = {g CE] > 50, —bab! < dl b }

el <P
and satisfies

o+ (6) = 0p.()e" @ + EL(§)
where w4 is a standard symbol of order —1/2, and E4(§) is a Schwartz function,

both supported on Sect, .
(iii) The function [y, — is supported on

. b &1 b—1
Sect_ = {E 1 &) > 50, T < s < b4 (2.5b)

and satisfies
lo,— (&) = w_(&)e'V-® + E_(§)

where w_ is a standard symbol of order —1/2, and E_(§) is a Schwartz function,
both supported on Sect_.

Proof. In view of the lower bounds for 9,1 stated in (2.3a), (2.3b) under their respec-

tive assumptions we see that ¢ is a Schwartz function. We have that 5, (0) = —o_ (0)
and it follows that ¢0(0) = 0. The formulas for 1z 1 (§) follow by the method of sta-
tionary phase. O

We now define ®( by 60 = :l;o +E, +E so that @ is a Schwartz function with
60(0) = 0. Define ®; , «; + by

D(5) = D27V, 2770g)
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and

1) = ws(27g), 2770y V=@ /82700,

Define operators S* and T} by

SUfE) =) B utr) F(€)

JEZL
TE7E) =Y a1 ue) @)
JEZL

(2.6)

2.7)

These expressions are at least well defined if f is a Schwartz function whose
Fourier transform is compactly supported in R\ {0}. For these functions we have then

decomposed our Hilbert transform as
HYf =S"f +T'f+T"f.
For the upper bound in Theorem 1.1 we shall prove

Theorem 2.2 For1 < p < o0,

sup |S* f|

uelU

Theorem 2.3 For2 < p < o9,

sup [T f |

u>0

SIAlp.
p

3 Auxiliary results

3.1 The Chang-Wilson-Wolff inequality

S V3ogMUDIF 1l p-
p

2.8)

2.9

(2.10)

We consider the conditional expectation operators E; generated by dyadic cubes of
length 27/, i.e. intervals of the form ]—[?zl[niZ’j, (nj + D277) with n € Z9. Let

f e L} (RY). Foreach j € NU{0}, E; is given by

loc

1
37d /1-(x) fdy

J

E;f(x)=

where /;(x) is the unique dyadic cube of side length 27/ that contains x. Let

Dj=Ej1 —Ej
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be the martingale difference operator. Let G f be the dyadic square function, defined
by

172

Sf) =Y IDjfx)P

JEZ
Also let M be the dyadic maximal function, given by

M [f(x) =sup|E; f(x)]

JjeZ
The following is a slight variant of an inequality due to Chang et al. [4]:

Proposition 3.1 Suppose that f € LP(R%) N L®(R?) for some p < oo. Then there
exist two universal constants c| and c such that

meas({x eRY: | F ()] > 4 and & f(x) < sk})

<o exp(—clsfz)meas({x eRY: Mf(x) > A]) 3.1

forallh >0and0 < e < 1/2.

This is a scaling invariant version of the Chang—Wilson—Wolff inequality. For a
detailed proof we refer to the arXiv version of our paper (arXiv:1902.00096, “Appendix
B’?).

We shall apply the one-dimensional version of this theorem for the vertical slices
in R2. Let f be a measurable function in L? (R?) N L*°(R?), and for j > 0, let E(/.z)
be the conditional expectation operator acting on the second variable, i.e. '

1
EPf @) = 5 [ £ Gx1, y)dy
Ij(x2)

where 1 (x7) is the unique dyadic interval of length 27/ that contains x5. Let D;z) =
E? . —E?, and
,] 9

1/2

&2f() = | Y DY )P

JEZL
Then from the above proposition, we clearly have

meas({x e R?: | f(x)| > 4A and 6(2)f(x) < 8)»})

< cZe—flf’zmeas({x e R2: MPf(x) > A}) (3.2)

@ Springer
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forall A > 0and 0 < ¢ < %, where M@ is the dyadic maximal function in the

second variable, i.e. M(z)f(x) =Supjez, |E5.2)f(x)|.

3.2 Martingale difference operators and Littlewood-Paley projections

We need some computations from [14] which are summarized in the following lemma.
Let M denote the Hardy-Littlewood maximal operator acting on functions in L” (R).
Let ¢ be supported in (¢ e)U (=c, —=c71) for some ¢ > 1.

Lemma 3.2 Assume that f € L' + L®(R). Then
(i) Forg > 1,n>0,

B 9@ T £ 270 (M f1eom)
(i) Forn >0
Di(F g7 ") FH(x) S 27" Mf ()
almost everywhere.

Proof of Lemma 3.2 Cf. Sublemma 4.2 in [14]. O

Given a function on R? we shall apply this lemma to y, — f(y1, y2) and relate
the square function &® to Littlewood-Paley square functions in the second variable.
Let x; be an even C* function supported in (2_b ,2b ) U (—2b ,—27b ) such that
D rez x»(27%Pt) = 1 for all t # 0. Define the Littlewood-Paley projection type

operators Pk(l), Pk(zb) acting on Schwartz functions on R? by

P& = @ ke f &) (3.3)
PO FE) = @ e F(6) (3.4)

Lemma3.3 Letg > 1, b > 0, and let g € L' + L. Then the pointwise inequality
2 1/2
2 q q
6% < Gy (Z [Ma) (‘p]igg’ )] )
keZ

holds almost everywhere. Here M® denotes the Hardy-Littlewood maximal operator
in the second variable.

Proof of Lemma 3.3 Let ¢, be a C*° function with
supp(¢p) € 270,20y U (=28, —27)
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which equals 1 on the support of x;. Define f’k(zh) f(&) =ao» (Z’kb.’;‘z)f(é). We write

(2) 2 p2) p(2)

Dy :Z Z Dy Pz,b Pz,b
nez leZ:

n<k—Ilb<n+1

and use Minkowski’s inequality and Lemma 3.2 to estimate, withe < 1 — 1/g,

2/qy 1/2
o0

CRVEDIFEL DY IR (VD)

nez k=0 leZ:
n<k—Ib<n+1

1/2
s(Z[M<2><|P;%)f|q>|2/q) -

leZ

This finishes the proof of Lemma 3.3. O

3.3 Avariant of Cotlar’s inequality

Recall that x4 € C2°(R) be supported in (1/2, 2) such that Z‘;ifoo x+(27t) =1 for
t>0andletn = x+(|-1]).
Consider a Mikhlin-Hérmander multiplier m on R¢ satisfying the assumption

sup ||nm(t-)||$m1 =: B(m) <00, «a>d, 3.5)

>0

here .,2”(11 is the potential space of functions g with (I — A)%g e L' Let Sf =
f‘l[mf], and for n € Z let S, be defined by

5.7 =Y n@ T eme) f&).

j<n

Then both S and the S, are of weak type (1, 1) and bounded on L? for p € (1, o0)
with uniform operator norms S, B(m). We are interested in bounds for the maximal
function

S f(x) = sup | S, f(x)] (3.6)

nez

Proposition3.4 Let o > d, r > 0 and B(m) as in (3.5). For | € LP(Rd), we have,
for almost every x, and for0 < § < 1/2

Sef0 = (MASFIN @) + Caud ' BmMf(x).  (3.7)

_8)1/r

Proposition 3.4 is a variant of the standard Cotlar inequality regarding truncations
of singular integrals. A proof is included in “Appendix A”.
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3.4 An L? space time estimate for Fourier integral operators of convolution type
and vector valued extensions

Let S(ag, a1) be the sectorial region in R?

S(ao, a1) = {61, &) a0 < &11/152] < a1, & > 0}

and let ngecc be C°° and compactly supported in Syny := S(ag, a))N{E : 1 < |§] < 2}.
Let g € C®° be defined in S(aop, a1) and homogeneous of degree one, satisfying

gsg 70 on S(ap, ay)

i.e. the Hessian gg¢ has rank one on the sector S(ap, a1). Model cases for g (&) are
given by |&|, or 512/52 in the sector {|&1] < c|&>|}. Define

Frfx.) = / BTN (e R) FE)dE.

We need a so-called local smoothing estimate from [21] (the terminology is supposed

to indicate that the integration over a compact time interval improves on the fixed time
1

1
estimate | Frf (-, Dl S R 71 fllp,2 < p < 00).

Theorem [21] If I is a compact interval then

1/p
(/;42|FRf(x,t)|pdxdl‘> SC[R%iiis(p)”f”p, (38)

with e(p) > 0if2 < p < oo. The estimates are uniform as nNsect ranges over a
bounded subset of C* functions supported in Sy

In this paper we shall need a square-function extension of (3.8) which involves
nonisotropic dilations of the associated multipliers of the form & — (277&, 27 &)
with b > 1, j € Z (the strict inequality » > 1 assumed in the introduction is not
used here); see (6.8) below. We rely on a variant of a theorem in [23], for families
of smooth multipliers & — m (&, t) on RY depending continuously on the parameter
t € I, where [ is a compact interval. Let P be a real matrix whose eigenvalues have
positive real parts and consider the dilations §; = exp(s log P).

Proposition3.5 Let2 < p < ocoand I C R be a compact interval. Recall that 1 is a
radial non-trivial C* function with support in {&€ : 1/2 < |&| < 2}. Suppose

supsup |m(§,1)| < A,
tel &

and assume that for all f € S(R?),

| B ~ 1/p
sup <_/||,7—' [nm (85~ 1) f1| dz) < Al flp-
1] J; P

s>0
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Moreover, suppose that for all multiindices o with || + |a2| < d + 1,
0gInE)mS. 0]| < B, tel,s>0.

Then there is a constant C, > 0 such that

. 1/p
(lTII/I |7~ tmc ”f”'ﬁd[) < CpAlog2+ B/AVPIfL. (3.9

The proof is exactly the same as the proof for standard multipliers in [23]. We shall
use the following consequence for a square function inequality to derive (6.8).

Corollary 3.6 Let2 < p < ooand I C R be a compact interval. Suppose that there is
a compact subset K C R*\{0} such that mo(£,1) = 0 if & € KCort eIt Suppose
that for all multiindices a with |o1| + |z < 10,

|dg'mo(5, )| < B, tel,

and that

supsup [mo(§, 7)| < A.
tel &

Moreover, suppose that for all f € S(R?) the inequality

1 _p 1/p
(m/I H}‘l[mo(~,t)f]det> < Alfl,

holds. Define T f (x,t) by 7]?(5, t) = mo(6,-j§, t)f(%‘). Then there is a constant
C(K, p) such that for all {f;} € LP (¢%) we also have

1/2]P 1/p
1 2
— Tifi(-,t dt
I/II 2_ITi 50

JjEZ
p
1/2
< C(K.p)Alog(2+ B/A)' 2=1P [ 3" £ . (3.10)
j
p

Proof of Corollary 3.6. This is a straightforward consequence of Proposition 3.5 (alter-
natively one can adapt the proof of Proposition 3.5 to a vector-valued setting). Let
(Z € CE’O(R"\{O}) such that g(&) = 1for & € K. Let J be a subset of integers with
the property that the supports of 5(827 i), j € J are disjoint. We may write Z as
union over Cg such families. It is sufficient to show the analogue of (3.10) with the

@ Springer



A maximal function for families of Hilbert transforms...

Jj-summation extended over . It will be convenient to work with an enumeration
{j1, jo, ...} of J. -

Let L bedefinedby L; f = 5(82__,- 5)]"\(5). Letg = Y ; Lj fj;: then by the adjoint
version of the Littlewood-Paley inequality we have

1/2
Hﬂp§<2]ﬁﬁ) . (3.11)

p

Notice that
Tig=Tjf (.12)
by the disjointness condition on the supports of ¢(8,-j;-). Let {r;}72, denote the

sequence of Rademacher functions. Applying Proposition 3.5 to the multipliers

o0
ma(§) = 3 _ri(@mo(d-i. 1)

i=1

and the function g = ) 77, ]:[55(527].[ ')f/‘]\‘i] we get

t » 1/p
(f 1 / |7 macom] ae d“) < Alog2+B/A)' 2P g], . (3.13)
0 1 P

By interchanging the a-integral and the (x, f)-integral and applying Khintchine’s
inequality we obtain

127 I/p
1 _
|1_|/ D oITigC 0l dr| < Alog2+ B/A)/>P g,
1 j€Z
P
and the proof is completed by applying (3.11) and (3.12). O

3.5 A version of the Marcinkiewicz multiplier theorem

In the proof of Proposition 7.1 we shall use a well known version of the Marcinkiewicz
multiplier theorem with minimal assumptions on the number of derivatives. Let 7y
be a nontrivial CZ° function which is even in all variables and supported in {£ : 1/2 <
& <2,i =1,2}. Let .ZO% « the Sobolev space with mixed dominating smoothness
consisting of g € L? such that

1/2
lglgz, = ( / A+ &) 0 + |sz|2>“|§(s>|2ds)
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is finite. Let « > 1/2 and m be a bounded function such that

sup  |[nprm(t1-, 2-)l 2, < B. (3.14)
t1>0,1p>0 ’

Then we have, for 1 < p < o0,
17~ i F1llp < epBIS I p- (3.1)
One can prove this using a straightforward product-type modification of Stein’s proof

of the Mikhlin—-Hormander multiplier theorem in [25, §3]. One can also deduce it from
Fefferman’s theorem [12], cf. [3,13].

4 Some maximal function estimates for families of Mikhlin type
multipliers on R?

In this section we consider Mikhlin—Hormander multipliers with respect to the dilation
group 82, b > 0, with 82 (&) = (1£1, 1°&,).

Theorem 4.1 Suppose that

sup Z I 3“(’7(')‘1(5?'))HL1(R2) =<1 4.1

t>0 lal<4

Define, for n € 7 the operator T, by

T, f (&) = a&1.2"&) F(&). (4.2)

Let N be a subset of Z with #N' = N. Then for 1 < p < oo,

< Cpy/log(I + M1l p- (4.3)
p

sup |1, f|

ne.

By the Marcinkiewicz interpolation theorem it suffices to show that there is A =
A(p) such that the inequality

meas ({x csup [T, f| > 4A}> < (AV1og(1 + N2 M £l )” (4.4)

holds for all Schwartz functions f whose Fourier transform is compactly supported
in R2\{0}, all A > 0 and all V with #\/ < N.
One can decompose

ag, &) =) aj(27VE,27"g) (4.5)

JEZ
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where each a; is supported in {(§1,£2) : 1/2 < |§1] + 1€,|1/b < 2} and
sup/ |02a; ()| d < Ca. ol < 4.
J

We shall repeatedly use that the operators 7}, are bounded on L”(R?) with norm
independent of n. This follows by the Mikhlin-Hormander multiplier theorem and
rescaling in the second variable.

Let Ty f = sup,enr [Ty f| and set

ey = (log(C1N))™'/? (4.6)

where/\Cl > C1_1 with ¢y as in (3.2), also ey < 1/2. Since f is a Schwartz function,
with f compactly supported in R?\ {0} the function 7 f is in L% N L? which allows
us to apply the Chang-Wilson-Wolff inequality.

We have that

meas({x € R? : Ty f(x) > 41})

< Y meas({x € R : [T, f(x)| > 4%, 8PT, f(x) < eyr})
neN

+ meas ({x e R?: sup |SP[T, f1(x)| > eN)\D . 4.7

neN

By the Chang—Wilson—Wolff inequality (3.2), the first term on the right hand side
of (4.7) is bounded by

czNe_C“?h_l2 max meas({x € R : MPT, f] > A})
neN

-2 -2
<caNe v HS\)})‘_[’”M(Z)[Tnf]”ﬁ SNe NP FN S ATPIf I
n

where we used that Ne 168" < 1 (by (4.6)) and that the operators 7}, are uniformly
bounded.

By Chebyshev’s inequality the second term on the right hand side of (4.7) is bounded
by

p
sup ST, f]

sgpk_p
neN

Lr

12
L 2/q
Sey’A7P | sup Z [M(z)(|TnP/f?;3f|q)]

neN \kez »

Here we have used Lemma 3.3 with g = T, f and the fact that the operators 7, and
Pk(i) commute; g will be chosen so that 1 < g < p.
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We shall now use an idea in [16] and approximate the operators 7,, by a convolution
operator acting in the first variable. Define 7" by

TOfGE, &) = a2 76,0 f ¢ &).

JEL
Recall the definition of x; in Lemma 3.3. Notice also that
a;j(27751,207 P8 5,27 082) = 0
if j <n+ k — 1 and therefore we have

2 — —j —j 2
LPof= Y Fllaj@ 7. 2000 f

Jj=n+k—1

= Y Fllaei, o1 pdf (4.82)
j>n+k—1

+ Y F e 200y ;27T 01« PO F. (4.8b)
j>n+k—1

For the first term (4.8a) we use the one-dimensional version of Proposition 3.4 to get

> F g 0ns BG f| < MY (PO ) + MO (TVRS) £).
j>n+k—1
4.9)

Here MV denotes the Hardy—Littlewood maximal operator acting on the first variable.

Now consider the second term (4.8b). Let ¢ be an appropriately chosen non-negative
bump function supported in (1/4, 3) U (=3, —1/4) and let K ; x , be the convolution
kernel with multiplier

Kjkn) = ¢Q7"&) (a;277 8,207 08) —a; (27781, 0)).
Then
—_— . . ~ 1 .
Kjxn(2 g, 20 gy) = 20Hn=0b g (g)e, / daj(&, 28Dy ds
0
and we have [|9%(K; .27, 20) |, < 2%+~ for multiindices || < 3. This
implies

2j+kb

K an ()] < 204n=ib
ik TS T+ 27 i + 2% )3

@ Springer



A maximal function for families of Hilbert transforms...

and hence

> [Kiko PO F| € Mar (PG £) )

j>n+k—1

where My is the strong maximal operator which is controlled by M o M.
Combining the estimates we thus see that the second term on the right hand side of
(4.7) is bounded by

1/2
_ 2/q
2
8Np} P < E I:M(Z)(lM(z)M(l)Pk(,lsz])iI )

keZ

1/2
2/q
2
+ (E [M(z)(|M(2)M(1)T(1)Pk(’;f|q)] )

keZ
€ P

We use this with | < ¢ < p and apply Fefferman-Stein estimates for the vector-
valued versions of M1 and M® and the Marcinkiewicz-Zygmund theorem on L (¢%)
boundedness applied to the operator 7. Consequently the last expression can be
bounded by

Che " APl fIIh < Chlog(l + N)P2a=P | fI1b,

by the definition of e . This finishes the proof of (4.4) and thus the proof of Theorem
4.1. O

5 Proof of Theorem 2.2

We decompose ®g = Y, Po; Where B (&) = x1(27'1£)Po(&) . Define

ao 1 (€) = Do (2'8),

~ 0D
do..s(8) = sP e, 2L (Mg 2l sPEy).
&

Then the functions ag ; and dg ; 5, for every s € (1/2, 2), are supported in {£ : 107° <
|€] < 10} and satisfy the estimates

/ |0 a0.1(5)|ds + / |9 0.1,5(6)]dg < c27V

for all multiindices @ with |o1| + |e2| < 10. This means that there is a ¢ > 0 such
that the multipliers
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@) =2y ap 277 E1, 27778y,

JEZ

a5 &) =c2"> g, (27781, 27778)

JEL

5.1

satisfy the conditions (4.1) in Theorem 4.1. Now define operators S;' and R;'

SIFE) =Y Por@ e 2Pk Fl6),

JEZ
RIF(€) =Y 0,2 T8, 27ugy) F (&),
JEZ

The assertion of the theorem follows if we can prove

sup |} f1

uelU

<27 log M) £11,
p

which follows by isotropic rescaling from

sup |R}' f
uelU

<27 Slog W) |1 £11 - (5.2)
P

Now let
N ={neZ:3s € (1/2,2) such that (2”s)b e U}.

Observe that #N < C(b)N(U). The inequality (5.2) follows from

n.\b
| sup sup (R £, S 27" log(1 +#AD I £,

neN 1/2<s<2

which is a consequence of

nb _
sup [R7 f1| < 27M/log(1 +#M)| £l (5.3)
neN »
and
2
8 n.\b
/ sup | =RVl ds <271 log(U+#N) | £, - (5.4)
172 lnenr | 08

p

@ Springer



A maximal function for families of Hilbert transforms...

Since

FIRY'F16) = api 27751, 2076 F &),

J

g b s _ o~
FIo, R F16) = -2 a0 @78, 27 e ).
J

the inequalities (5.3) and (5.4) follow by applying Theorem 4.1 to the multipliers in
(5.1). O

6 Proof of Theorem 2.3

We only consider the maximal function for the operator TV, since the analogous
problem for 7" can be reduced to the former one by a change of variable (with a
different curve). We omit the subscript and set 7" = TY.

Decompose ko, + = Yo ko,¢ Where

©0.0(8) = x1 Q7 EDw L (£)e!V+ ),

Notice that, by Lgmma 2_.1, €1 ~ |&] ~ ot for € € supp(<g7). Define kie by
Kj0(E) = k0.0(277&,277&) and define Tj', by

T [ &) =75 061, uka) (&), ©.1)

Then we have T" =30 > ez T}
The assertion of the theorem follows if we can show, for 2 < p < oo, that there
exists some ¢ = ¢(p) > 0 with

on b _
sup sup D TEF S 27 A (6.2)
neZl/2<s<2 jez

p

Define R? . by

RE ) = k02 6, 2P ugn) 7).

By isotropic rescaling inequality (6.2) is equivalent with

on b _
sup sup DRV S 27E NS (6.3)
nezZ 1/2<s<2 jez
p
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This inequality follows, by the embedding £” C ¢°° and Fubini’s theorem from

p\ U/p
n b
Yol sup YRGS <271 (6.4)

nez 1/2<s<2 i€z )

n\b
Fix n, x and set G(s) = }_; R;-zf) f(x). We use the standard argument of applying
the fundamental theorem of calculus to |G (s)|” and then Holder’s inequality which

gives
2 1/p 2 1/p
IG()|F < IG(1)|p+p(f IG(S)IPdS) (f IG’(S)I”dS) .
1/2 172

This inequality and another application of Holder’s inequality in R? shows that (6.4)
follows from

) P 1/p
n b
2 / SRE | as| 27 P, 650
nez 1/2 j »
2 P 1/p
8 n b _
Z/ —(XREY)| as] s, 6b)
nez 172 j p
and
N\ 1/p
nb _
DR 2P £, 6.50)
neZ | j »

for2 < p < oo.
We focus on the derivation of the inequality (6.5a). Note that for s € [1/2, 2]

RC(E1 5"8) = w4 (1. 5762 x4 QU (6, sP ) eV B

b
=272, 2 tE)e s =Ty (51.52)
where

nes(E1, &) = 2w, 2%, 25 8) x 1 (1(E1, s"E)))

and taking into account that w4 is a symbol of order —1/2 we see that the 7, ; belong
to a bounded set of C* functions supported in an annulus {& : a9 < |§] < a; l}, for
fixed ap = ag(b) < 1.
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After changing variables t = sfbi with r € 2751 2b 1) this puts us in the
position to apply (3.8) with R = 2¢ and we obtain, with sultable g =¢(p)>0

(fl/z HF [Koz(sl,ssz)f]H ds) <UD gy

By isotropic scaling, replacing &g ¢ (§1, s”&) with kg ¢ (2¢€1, s°2%&>), we also have

2 1/p
(/ ||R‘8]fef||$dS> < C2 P £ 6.6)
12
Let

mj(E.s) = (265" )

/—\

and observe 72é Zf(é) =mj (&, s)f(é) The functions & +— mg ¢(&, s) are supported
in a fixed annulus and satisfy

05 97 mo.e (5. 5)| S 20, ©.7)

By Corollary 3.6 we get the inequality

12”7 1/p
2
/ Zm Wil ds
1/2 JjEZ
p
1/2
S 2—£(s’+1/[7)(1 _i_z)l/z—l/p Z|f1|2 . (68)
p

We can replace the multipliers m j ¢(§1, &2, 5) by m; ¢(&1, 2"1’&, s), after scaling
in the second variable. This means that for every fixed n we have proved, for ¢ < &,

1727 I/p 12

2
on b _
/ E |R( s) f/|2 ds S 2 L(e+1/p) § |f/|2 ,
1/2 : -
J

P P
(6.9)
with the implicit constant independent of 7.
We now combine this with Littlewood-Paley inequalities to prove (6.5a). Let Y1) be
an even C* function supported on {&; : |c+ 1627301 < || < |y |b230H1) and equal

to 1 for |cy|p2730 < |&] < |c4|b2%P. Let X( ) be an even C*° function supported on

@ Springer



S.Guo et al.

{£2:272071 < |&| < 2%'*1} and equal to 1 for 272> < |&| < 2%, Define P(l) P(z)
by

PP 1@ =30 @)
(z)f(é) FP @ Pe) Fie)
Then by the support properties of kg.¢(2¢-) we get for 1/2 < s <2
Q') _ 3 5@ Q) 52 50
Ri =P P R PD, P (6.10)

Hence, by Littlewood-Paley theory

P 1/p
n\b
Z/ D RGS| ds
nez j »
1/2 p 1/p
2150 52) 51
S Doy I Dl LV I R
nez j
p
and by (6.9) this is controlled by
1/2 pN\ U/p
7—te(p)+1/p) Z ZUS(Z) 13(1)f|2
j—n.b"j
nel JEZ
p

for some ¢(p) > 0 when 2 < p < oco. We finish the proof of (6.5a) by observing that

12PN\ /P 12
52 75 (1 52 (1
2| AP 7 S DI =
nez JEZL JEL nel
p p
1/2
2 1
=1 > > 188, B 1 Sl
k1€Z kyel
p

where we have used the embedding ¢> < ¢ for p > 2, and applied a two-parameter
Littlewood-Paley inequality.
We now turn to the estimate (6.5b). A computation shows
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me‘z Y 116

=f(é)—§ e (2‘-"51,s”2<”‘-">”52) 2V CTIELSP2NE) (g 1)
s =
J
where

V() =27 x+<|s|>%w+(z‘fsl, 28) + X+(|E|)§2T(2£§1, 2%8)

+x+ ) (2%, 2%2)’52?@‘ ,&). (6.11b)

Here the main contribution in (6.11b) comes from the third term (the others are similar
but better by a factor of about 27¢).

n b
It is now straightforward to check that in the proof of (6.5a) the term Rg.%@s) f can
n b '
be replaced with 2~0,(R'”,"" f) and one obtains (6.5b).
Finally, a simple modification of the proof of (6.5a) would also prove (6.5¢): in

place of (3.8), one would use a fixed time estimate, as stated immediately before
(3.8). This finishes the proof of Theorem 2.3.

7 Maximal functions for lacunary sets

We shall prove some upper bounds for the operator norm of HY for lacunary sets.
Definition Let « > 1. A finite set U is called x-lacunary if it can be arranged in a
sequence U = {u; <up <--- <uy}whereujy; <uj/cforj=1,...,. M—-1.U
is lacunary if U is k-lacunary for some « > 1.

Note that for lacunary sets we have #U ~ (U ) (with the implicit constant depend-
ing on «).

Proposition 7.1 Let U be a lacunary set. Then, for 4/3 < p < oo
IH e~ 2r S Viog(l + (#U)) . (7.1)
Proposition 7.1 will be used in the proof of lower bounds in Sect. 8. For this

application it is important that (7.1) just holds for some p < 2. We do not know at this
time whether the result extends to all p > 1.! For special lacunary sequences it does:

I Added in September 2019: After the submission of this paper the authors showed the bound of Proposition
7.1 for general lacunary sets U, in the full range 1 < p < oo. This result can be found in the paper [17]
which also contains L” results, p < 2, for more general sets U, under suitable dimension assumptions.
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Proposition 7.2 Let U be a subset of {2"° : n € Z}. Then, for 1 < p < 0o

IHY lr— e S Vlog(1 + H#U)).

Here b is as in the definition of the curve y;, in (1.1).

7.1 Proof of Proposition 7.1

We may assume that for every interval [, := [27b, 2(n+Db ), n € Z, there is at most
one u € U N I,,. This is because of the lacunarity assumption we can split U in O (1)
many sets with this assumption.

We order U = {u,} such that u,, < u,4+1 and let n(v) be the unique integer for
which u,, € I,.

We split H®) = §* + T* as in (2.8). In view of Theorems 2.2, 2.3 it suffices to
prove the inequality

sup |74 f|
uelU

S Iy (7.2)
p

for 4/3 < p < 2. By the reduction in Sect. 6 this can be accomplished if

sup | Y R SIS 27 PNf N, (7.3)
v .
J
p

can be proved for €(p) > 0, in our case in the range 4/3 < p < 2.
Replacing the sup by an £2 norm we see that (7.3) follows from

N 172

YRS <2 py, 7.4)
v J

p

Analogously to (6.10) we have

T e) w5 30
Rie=Pi P o) bRl 5w b P

and thus, by Littlewood-Paley theory, (7.4) is a consequence of

12
2
L s ~(1 _
>0 ‘RL},KPJ(—)nwbe; 'f S27 PNl (75
v jeZ
P
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By a standard application of Khintchine’s inequality this estimate follows if we can
prove

. , B2 5(1 -
DD e R P WP S 27D (7.6)
vV JEZL »

for an arbitrary choice of {c(v, j)} with sup; ,, [e(v, j)I < 1. Let

we(€) = wr ) x+ (1E])

then w, and its derivatives are O(27%/?), by the symbol property of w,, and are
supported on a common annulus. We see that the L? operator norms of the individual
operators R;’”( are 0(2~%%), and that the function

me§) =) Y 1@ Eg P @)
v
X g (27 gy, 2 =Db gy pi2 W 27612000y

has L norm < 27%/2. This implies

. b 52 ~(1 _
Y ¥ e, DRY P WPV S 27 f . (7.7)
Vv jEZ 2

For p near 1 we apply the Marcinkiewicz multiplier theorem in the form described in
Sect. 3.5. It is not hard to check that the multiplier m, satisfies the condition (3.14)
with constant B < Ca2g(2°‘_1/2). Hence we get

. v o2 (1 _1
YX e, DR P LGPV S22 RN, w172, (718

v jeZL P

We interpolate between (7.7) and (7.8). By choosing « very close to 1/2, we obtain
(7.6) for any p € (4/3, 2]. O

7.2 Proof of Proposition 7.2

We argue as in the proof of Proposition 7.1. The desired conclusion follows if under
our present conditions (7.8) can be upgraded to

Y e R P WPV <L EDIfll, 1 <p <20 (79)

vV jEZL
J p
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As now u, = 2"™P for a strictly increasing sequence {n(v)} we see by another
application of Littlewood-Paley theory that (7.9) is a consequence of the inequality
1/2 1/2

SA+H Y 1fal . (110)
j.n

SR i

nez jel

This is proved as in [16] by using a superposition of shifted maximal operators,
in a vector-valued setting. To analyze the situation we recall how R ¢ Was formed
(namely by rescaling Tj” ¢» then see Sect. 2).

Let o4 be as in (2.1). Then there is a Schwartz function ¢ such that

RY &) = x1 (17781, 2 ey Nar 21, 25T y) F(8)
+ x1(1Q 781, 207 Ibgy) et gy, 2540 Ibsy) fie).

Consider the second (error) term. It is easy to see that

| Flxe(1Q 771, 2" 1P e) ) T2 T gy, 2440770 60) F(E)1(0)| S 27 M f (%)

so that these terms are taken care of by an application of the Fefferman-Stein inequality

for the vector-valued strong maximal function.
. . 41
We concentrate on the main term. We write oy = anzzg,l Wm Where the measure

Wm 1s given by

(m+1)27¢ dt
<Mmsf)=/ , f(l,J/b(l))X+(l)T-

2—

Define R7 em)S BY

RY €)= x(1Q 761,27 ) )T 281, 2770 usn) (&),

Then by the above discussion we have

21’+1
RYf@) = Y RY, 0| $2 My f ()
m=2¢-1

and hence, by Minkowski’s inequality, it suffices to show that

172 1/2

nb _
Z ‘,R’%Emf]n 52 Z(1+Z)4 Z |fj,n|2 (711)
n,jeL j.nez
p P
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for 271 < m < 2¢+1 Notice that

o * F (- 1279100
Y4 l
<ot 2 2
N A+ 2y — m2710 (1 4 2 yy — mb2-C)10

Now define

—10
1 2 9
,Om( )k] ) = ki (1 +1 klyl —m|)

—10
DAtk () = 212 (14 2282y — b2 0=
We then have the pointwise estimate
nb 1 2
(RZ f(x)‘ <o (,0,51)] ® p° >H) “1f1. (7.12)

By an application of inequalities for the shifted maximal operators (see [16, Theorem
3.1]) we see that the expressions

l/p
)\ P12
/ > |:/ Por o 51 = YD I8k ke (V1 X2)|dy2] dx :
ki.ka
1/p
) r/2
/ > [ f Pty (62 = ¥2)8k1 ko (X1 Y2)|dy2} dx
ki,k2
are both bounded by a constant times
1/2
togm)* || D~ lgk xal?
ki,kz
P
Applying both estimates iteratively we get
1/2 1/2
2
1
S [(oh ® £ih,) * 180001 < togm)* [ | 3 1oty aa
k1 ,kz kl ;kZ
p p

We apply this with gk, x, = fk,.k,—k, and use (7.12) to obtain (7.11). O
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8 Lower bounds
8.1 The main lower bound and some consequences

The purpose of this section is to prove the lower bound

Theorem 8.1 Let U C (0, 00) and 1 < p < oo. Then there is a constant c, such that

IHY Lr—1r = cpy/Tog(M(U)).

8.1.1 Some consequences

(1) First, Theorem 8.1 in combination with the already proven upper bounds in The-
orems 2.2 and 2.3 yields the equivalence (with constants depending on p)

IHY Lo 1 ~ V10g(R(U)) ®.1)
for 2 < p < oo, stated as Theorem 1.1.

(i) We also immediately get an equivalence in Propositions 7.1 and 7.2 which we
formulate as

Corollary 8.2 Let U be a lacunary set. Then (8.1) holds for 4/3 < p < oco. If U is
contained in {2"° : n € 7} then (8.1) holds for 1 < p < oo.

8.1.2 Reduction to the casep = 2
Let U, be a maximal subset of U with the property that each interval [2", 2"+1]

contains at most one point in U. Then #(U,) ~ M(U). Let U be any finite subset of
U, with the understanding that U = U, if U, is already finite. Clearly

IHY o= re = IHY* lp— e > IHY lLp— 10

and thus it suffices to prove the inequality

IHY Lo 2 Apy/log(#O). (8.2)

We show that it suffices to prove (8.2) for p = 2: Since Uisa disjoint union of two
lacunary sets we have the inequality

1M L0 10 < Cqr/log#D), for4/3 < g < oo,

by Proposition 7.1.
Ifl < p <2wepickgsuchthat2 < g < oo, andif 2 < p < oo we pick ¢g such
that4/3 < g < 2.Let6 € (0, 1) such that (1 —60)/p +6/q = 1/2. We have
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1/2 U U, 1-6 U0
SIH Npes 2 S WVH NS o R e 1a

< (cqQogHONHIHYNLY. L,

Az (log#0))

which implies

. e =
IHY Ir—1r = Ay " cq 7/ log(#U).

For the remainder of this section we shall verify the lower bound in (8.2) for p = 2.
We shall need to skim the set U a bit more. To prepare for this we first study in more
detail the multipliers of the Hilbert transforms.

8.2 Observations on the multipliers for the Hilbert transforms

We may assume c4 > 0. We write I-m(é) =m(&y, uéz)f(é) where

; . dt ; . dt
m(§1, &) = lim ( / et en 4 / ez(zsl+c_<z>”sz)_>_
=0+ \Je<r<R t —R<t<—¢ t
R—o0 -

By the homogeneity of the curve I', with respect to the dilations (£1,&)
(A&7, AP&y), we see that m(r&, APE) = m(&), &) for A > 0. Moreover one can
check that m is continuous on R2\ {0},

m(&1,0) = —misigng;, & #0, (8.3a)

and if & > 0, then

—1log(cq/co) ife_ >0
m(0, &) = (8.3b)
1 1. -
—plog(—cq/co) — pmi ife- <O.

We shall need the following Holder continuity condition at the axes.

Lemma 8.3 There is C, = Co(b, c+) > 1 such that we have the estimates

IE2] \ %

(&1, &) —~m(&, 01 = Co () (8.42)
£ P\ T

|m (&1, &) —m(0, &) < C, <E) . (8.4b)

Proof of Lemma 8.3 We have |m (&1, &)| < Co(b, c+) and therefore it suffices to show
that (8.4a) holds for |&| < |& |b and (8.4b) holds for |§1|b < |&].
For the proof of (8.4a) it suffices to check, by homogeneity and boundedness of m,

Im(£1, &) —m(£1,0)] S &/, |8l <1, (8.5)
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for some g > (2b)~'. Let

| D
A=A = Elnl b+l (8.6)
We have
3
m(l, &) —m(1,0) = > (I 4 (cyb&r) — Ij _(c_b&))
j=1
where
A dt
I +(n) = / ejF”(e—ztbn/b —1H—,
0 t
hL+(n) = /Oo ﬁit_itbn/bﬂ,
’ A t
. dt
L) = —/ et —.
0) !
Clearly
A
2] < /0 =N lb~ldr = APh 2]
By integration by parts,

|4 <247

By our choice (8.6)

1
1+ + 1B+ < Inl#+

We may assume || < 1. Let By = Bi(n) = |n~"/®=D|/2 and B, = By(n) =
2|~ "/®=D|. Then Bi(n) > A(n) and we split

B B> 0o |
I +() =/ +/ +/ eV Orlar
A B B

with ¥ (1) = Fr — 1Pn/b.

Note that for |f| < Bj we have 1/2 < |//(¢)| < 2 and thus, by van der Corput’s
lemma with first derivative we have | ff‘ (.)dt] < AL

Note that | (t)| = |n|(b — 1)t*~2. For the second integral we apply van der
Corput’s lemma with second derivatives and get |f£lz(...)dt| < By " HnI7 V2 b —
1)—1/2|B] |—(b—2)/2 S b — 1)—1/2|n|1/(2b—2).
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Finally for the third integral we use that |¢/(r)] ~ |n|t®~! and |y (1) =~
[n|(b — 1)~ and a straightforward integration by parts argument yields the bound
0(n~' By = 0|7 ).

The estimate for m(—1, &) — m(—1, 0) is analogous. Altogether we obtain (8.5)
with 8 = min{(b + 1)~', (2b — 2)~'}, and we have 8 > (2b)~'.

We now turn to the proof of (8.4b). It suffices to check, by homogeneity and
boundedness of m,

Im(&, £1) —m(0, £D| < &2, &) < 1. (8.7)
Let 5
B = B(&) = (alg )~ Y*  wherea = min(bc/2) 7T (8.8)
‘We have
3
m(é1,1) —m(0,1) = Z (11 4+(&) —11; (&)
j=1
where

B&) o
Iha(E) = / (@6 — emies’ <L
0

o ce o bdt
Iha(E) = / oFitei—icsi 4

B(&1) !
e - dt
Iha(E) = —/ i
B(&1) t

The estimation of these terms is straightforward; we get

Hh£GED] S 1&11BED

and

(&) S BED™!

and both terms are O (|£|!/2), by our choice (8.8). By this choice we also have 2 <
lc4|bt?=1 for t > B(&) which implies that for [£1] < 1

1
Slexlbt”™! < 10, (F1é1 — cxt)] < 2lexlbt”™ fort = B(E).
Integration by parts now shows that

D) < BED™
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whichis O (& |%/?), hence also O (|&1|'/?). The termm (&1, —1)—m (0, —1) is similarly
estimated. This completes the proof of (8.7). O

8.3 Reduction to a lower bound for a lacunary maximal operator

Recall that U ¢ U with NM(U) < oo. Let J be the collection of all integers n such that
[2", 2"*1] has nonempty intersection with U, thus (U) = 1 + #3J. Let

K = K(U) = (CN0))* (8.9)
where C, is as in (8.4a), (8.4b). Let 7’ be a maximal subfamily of J with the condition
med, meld, ni<n = ny—n;+1>log,(8K?). (8.10)

Pick an integer M such that M + 1 is of the form 2 with & € N and such that

noy N0)
logy(16K2) 4+ 4blog,(C.N(T))

€[M,2M).

We may assume that the displayed quantity is > ¢!%°, so that the logarithm of this
quantity is comparable to log M (otherwise the desired lower bound for || HY[|;2_, ;2
just follows from the trivial lower bound for the Hilbert transform along a fixed curve).

We may now pick an increasing sequence {u j}ﬁ”: | such that each u ; belongs to U

and to exactly one interval determined by the collection J'. Hence we have

Lt S 16K2. 8.11)
uj

Given the reduction in Sect. 8.1.2 the lower bound /log(91(U)) in Theorem 8.1
follows from

Proposition 8.4 Let U and {uj}j!’lzl be as above. Then there is ¢ > 0 such that

> cy/logM .

2

sup |H“) £
1<j=<M

sup
I fll2=1

The proof of this proposition is based on a construction by Karagulyan [18].

8.4 A theorem of Karagulyan

We will invoke the following proposition, which is a small generalization of the main
theorem of Karagulyan [18] (see also [19]). For u € N, let

n—1
W, =@ u | . 1"

=1
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be the set of binary words of length at most i — 1, and let
W= {1,...,2* -1}
be the bijection given by 7 () = 2*~! and
T(w) = w2 wp2h 2 o w2t ot

if w = wyw;y...wy for some £ € {1,...,u — 1}, and each wy, ..., w, € {0, 1}.
Observe that for a word w of length £, 7 (w) is divisible by 2#~¢~! but not by 2*~*.

Proposition 8.5 Letr i be any positive integer, M = 2" — 1, and let Sy, ..., Sy be
pairwise disjoint subsets of the (frequency) plane R?, so that every S j contains balls
of arbitrarily large radii (in other words, for every 1 < j < M and every R > 0, §;
contains some ball of radius R). Then there exists an L? function f on R?, that admits
an orthogonal decomposition

f:quH

weW,

where

suppﬁ C Sty forallw e W, and (8.12)

1172 = D Ifulf2 <2 (8.13)

weW,
in addition,
w
sup oo hl| = YR e (8.14)

; 100
IST=M\pew,: c(w)=) L2

Accepting this for the moment, we prove Proposition 8.4.

8.5 Proof of Proposition 8.4

As before, suppose ¢ > 0. Let

_ — 1 log(c/c) ifc_ >0,
—% log(—cy/c-) — %ni ifc_ <O0.

Then m (0, &) = p for& > Oand m(&1,0) = —mi for & > 0 (cf. (8.3b), (8.3a)). Let
K asin (8.9), then

CoK™% < (MO ' <M,
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From (8.4a) and (8.4b) we see, for &1 > 0, & > 0

BN <K' = Im(E,&) il < CK B <M, (8.15a)
g/8) > K = |mELE)—pl < CoK™ 5 < M~ (8.15b)

For 1 < j < M, define

) 1 &
Sj==(§17§2)~§1 >0, & >0, < = < (8.16)

1
2Kuj éf’ Kuj

so that the §; are pairwise disjoint, and contain balls of arbitrarily large radii. By
Proposition 8.5, there exists an L? function f= Zwewﬂ fuw on R2, such that (8.12),
(8.13) and (8.14) hold. Now for 1 < j < M,

HYD f) —pfl = | Y (i +p) ful®)
weW,:
T(w)=j

—| >0 (M fu) +mifu )| = | Y (HYD fux) = pfu )]

weW,: weW,:
T(w)>j T(w)<j

and thus, with co = (1 — 1),

sup [HU) f(x) = pf0)l =co sup | D fulx)

1<j<M 1<j=M |, Sy

r(w)>1

— sup | > (H“ +wi) fu()| = sup | D (HY = p) fu(0)].

l<j=M weW, l<j=M weW,:

f(w)>J T(w)<j

(8.17)

Now suppﬁ € Sty If t(w) > j, then for £ € supp]/‘;, we have u,-&/g{’ <

u,(w)gz/%b\< K ~! and therefore, by (8.15a), we have |m (&1, u ;&) +mi| < M~ for
& e supp fiy. Hence

|(HY“D + i) fu |, < M7 fwlla ifT(w) > j. (8.18)
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Moreover if T(w) < j we have, for & € supp]/‘;,

j 1
uj% = u—]uf(w)é—z > 16K2§ =8K
51 Uz (w) 51

and hence, by (8.15b), [m (&1, u ;&) — pl < M~ for€ e suppﬁ. Thus

1D — ) full, < M~ full2 i T(w) < . (8.19)

Statements (8.18) and (8.19) imply

sup | Y (HY = p)ful| SIfI2 (8.20)
l=j=M weW,:

T(w)<j 2
sup | Y (H") 7 ful| S If - (8.21)
l=j=M weW,:

T(w)> )

Indeed, to obtain (8.21) we use the Cauchy-Schwarz inequality in the w sum and
replace a sup in j by an £? norm, then interchange integrals and sums and apply (8.19)
to get

sup | > (H“ = p) fu

l<j=M

weW,:
T(w)<j 2
y 172
=MD Y I HY —p) ful
Jj=ltw)<j 2
u i 1/2
L Do O (YA
j=lt(w)<j
u 12

<M"Y MY N3] SIS
j=1 w

(the last line following from (8.13)). Inequality (8.20) is proved in exactly the same
way (relying on (8.18)).
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Now we go back to (8.17), use (8.14) for the main part and (8.20), (8.21) for the
two error terms. Then we get

sup |(H") — p) f]

l<j=M

> /il fll2

2

for some constant ¢ = c(b, c+) > 0.1If /it > 2|p|/c this also implies

sup |H“D f|

l<j<M

= (c/2)V/ll fll2-

2

This completes the proof of Proposition 8.4, except for Proposition 8.5. O

8.6 Proof of Proposition 8.5

Fix a non-negative Schwartz function ¢ on R? with f]RZ ¢ (x)dx = 1, such that :5 is
supported in the unit ball B(0, 1) centered at the origin. Define the frequency cutoff

¢, by
¢p(x) == p*P(px).

Then 5; is supported on B(0, p).
The following lemma explains what we actually construct, in order to prove Propo-
sition 8.5:

Lemma8.6 Letiu € N, M =2*—1,andlet Sy, ..., Sy be as given in Proposition 8.5.
Then there exist a sequence of sets { Ey }wew,, modulation frequencies {§,}wew, C
R2, and radii {,ow}wewH such that the following holds:

(a) For every w € Wy, Ey, C [0, 113, and for every w € W, _1, Ey, is the disjoint
union of Eyo and Ey1 Also, Eg = [0,11%. For £ = 0,...,u—1,[0,1% is a
disjoint union of the E,, with length(w) = £, and

> 1, @) = p. (8.22)

weWH

for every x € [0, 172
(b) Forevery w € Wy,
ILE, * ¢p, — LE, 2 <2741, (8.23)
|Ewl

[ cos((&w, x))|dx > 3 (8.24)
B(w, pw) C Sr(w)- (8.25)
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(c) Foreveryw € W,_1, we have

cos({&y, x)) >0 ifx € Eyo,

. (8.26)
cos((§w,x)) <0 ifx € Ey.

With this lemma we can prove Proposition 8.5 as follows.

Proof of Proposition 8.5 For every w € W, let E,,, py, and &, be as in Lemma 8.6.
We set

fu@) = pu 21 gy, (1), (8.27a)
and let
fi=> fo (8.27b)
weW,

Then the support of ﬁ is contained inside B (&, pyw), so (8.12) follows from (8.25).
Also, the f,,’s are supported in the sets Sz () which are disjoint and thus by orthogo-
nality we have

1/2
If = D 1l
weW,
2
But, from (8.23), we have
H fu — p Ve Gy H2 < 2110, (8.28)
Observe
1/2
D 1l
weW,
1/2 172
2

. . 2
< Z )fw—u_l/ze”éw”‘)hw n Z ‘M—l/Zet(éw,ﬂle ’

weW, weW,

and using (8.22) to simplify the second term we get

1/2 1/2

. 2
PRI I I DR VAEERL S N I I Pgee

weW, weW,
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for almost every x € R?. Taking L? norms of both sides, and using (8.28), we have

1/2
> 1ful <25 m2i <,

weW, 5

Thus (8.13) follows.
Lastly we have to verify (8.14). To do so, we first introduce an auxiliary family of
functions {Fw}wewu , Where
F, :=Re f, 1g,. (8.29)

These F,’s satisfy three key properties, namely

> IFy —Re fyll2 <271, (8.30)
weW,
1 Suplg/fM ‘ ZweWM: T(w)>j FW(X) 2
- < <1 forae. x €[0,1]°, (8.31)
3 Y ew, [Fu)]
and
"
TSI R S| R = Y R =V (83D
weW, 1 weW, ) weW, s
Indeed, (8.30) will be a consequence of
| Fy —Re full2 S27#710 forallw e W,,. (8.33)

Since Fy — Re fy = Re fylg2 g, , heuristically, (8.33) says that the real part of
each f,, is essentially supported on E,,: the L? norm of Re fw outside E,, is small.
Furthermore, (8.31) says that there isn’t much cancellation, if we first order the Fy,’s
according to the value of 7(w), and then sum successively; this will be achieved by
showing that {Fw}wewu form a tree system in the sense of Karagulyan [18] (who
credits the idea to NikiSin and Ul’janov [22]).

Let us now establish the three key properties of the F3,’s, namely (8.30), (8.31) and
(8.32). Since F,, — Re f,, = Re waL(Ew)g, and since

Re fi(x) = % cos({&w, X)) 1, * ¢g, (), (8.34)
we have

IFw —Re full 22y = |1~/ cos((&w. X)) LE, * b, |

< |1g, — 1k, * ¢x, ||L2<R2\Ew) < n-10

L2(R?\Ey)

@ Springer



A maximal function for families of Hilbert transforms...

by (8.23). This establishes (8.33), and (8.30) follows by summing over w € W,,.
Next we verify (8.31). The second inequality in (8.31) is immediate by the triangle
inequality. For the first, we observe from (8.34) that if x € E,,, then F,(x) has the
same sign as cos((§,,, x)) since 1 g, * ¢, is everywhere positive. We claim that for
almostevery x € [0, 112, there exists j = j(x) suchthat Fy,,(x) > Oforeveryw € W,
with T(w) > j,and F,(x) < O forevery w € W, with (w) < j. This is because for
almost every x € [0, 1]?, there exists a unique word w(x) = wj ... wy—1 of length
1 — 1 such that x € Ey,(y). By (8.26), it follows that, forevery £ = 0,1, ..., u — 2,

le...w( ()C) >0 if Wey] = O,
le...w[(x) < 0 lf w(+1 = 1’

and that F,,y(x) = 0if w’ € W,\{0, w1, wiwy, ..., wy---wy—1}. But
T(wy ... wp) = w2 o w2t or T
while
T(w@) = w2 w 2P w2 w2t 20
This shows that for every £ =0, 1,..., u — 2,

T(wy...wp) > T(wx)) if wey) =0,

T(wy...wp) < t(wx)) ifwey =1,
Thus for any w’ € W, one has

Fy(x) =0 if r(w') > t(w(x)),
Fy(x) <0 ift(w) < t(wx)).

If Fyry(x) > 0, weset j(x) = t(w(x));if Fiyu)(x) < 0, weset j(x) = t(w(x))+1.
It follows that that F,,(x) > 0 whenever t(w) > j(x), and F,(x) < 0 whenever
T(w) < j(x). We distinguish two cases now. In the first case we have

DRI S SRR

weW,: t(w)>j(x) weW,

In the opposite case, we have |Zw€W“: rwyz ) Fo® < %Zwewu |Fyp(x)], s0
2
| 2 wew,: twy<jor) Fu = 5 2yew, |Fu )] Then

YR =| Y R[] Y. Fux

weW, weW,: weW,:
T(w)<j(x) T(w)>j(x)
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> Y R@-r Y Rz Y R
3 3

weW,: weW, weW,
T(w)<j(x)

Hence in both cases

w | Y Rz Y R

ISI=M\yew, s t(w)>j wew,

for every x € [0, 1]2. This completes the proof of (8.31).

Finally, we have to verify (8.32). Note that F, is supported on [0, 112 for every
w € W, and for almost every x € [0, 112, there exists at most n words w € W, for
which F, (x) # 0. Furthermore, |F,,(x)| < pu~'/? for every x € [0, 11 and every
w € W,. Thus, we have

YR | IR < | X IRl =V

weW, 1 weW, P weW, 00

Next, for the lower bound,

> 1Fy| Z/ 12| cos((w, X)L E, * dr,, (x)|dx

weW, weW,

which is

v

SI

/ | c0s((Ews XD — | cos((us ¥)[LE, — Lg, * e, 1]) dx

v

SI

eW,
Z ( | cos((€w, x >>|dx—||1Ew—ﬂEw*mwnLnEwH/z)
ew,
"

E,
(| | 2/410) > \/TE _zfufloﬂz \/Tﬁ’

where for the last line we have used (8.24), (8.23) and (8.22). This completes the proof
of (8.32).
We will now return to the proof of (8.14). First,

sup Yo fu]= sup Y. Refyl)

1SI=Mlyew, s t(w)>j SIS lwew,: tw)>j
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> sup Y. Fu|— Y [Fu(x) —Re fu(x)],

1SI=Mlpew, : t(w)>) weW,

which by (8.31) is

>

D IR = Y [Fy(x) = Re fuy(x)].

weW, weW,

From (8.30) and (8.32), we then have

sup Z foll =75~ 702
ISI=M\yew, : tw)>j L2

Hence (8.14) follows from (8.13). This finishes the proof of Proposition 8.5, except
for the proof of Lemma 8.6. O

The proof of Lemma 8.6 is done by induction over the length of words. The basic
step is contained in

Lemma 8.7 Given ¢ > 0, a set E of finite measure and a set S in frequency space that
contains balls of arbitrary large radii, there exist po > 0, a frequency &y and a ball
B = B(&9, po) C Ssuchthat ||pp,*x1g—1Egl2 < sande | cos({&o, x))| dx > |E|/3.

Proof. Since {¢,},~0 form an approximation of the identity there is Ry = R1(S, E, ¢)
such that
lpp *1g — Lgl2 <€ (8.35)

for p > Rp. Also observe that

liminf/ | cos((&, x))|dx > liminffcosz((é,x))dx
|E|—>+c0 JE |§]—>+oc0 JE
. 1 + cos(2(, x)) |E]|
= lim ———dx = —,
[§l>+00 JE 2 2

by the Riemann—Lebesgue lemma. Hence we find Ry = R, (S, E, €) such that

/ | cos((€, x))ldx = |E|/3, (8.36)
E

for |§] = R».

By assumption on S we can find a ball By of radius Ry > 10 max{R, R»}, centered
at some Eg such that By C S. There is a point &y € B(Eo, Rp/2) that satisfies
&0l > Ro/4. Set pg = Ro/4. The ball B(&p, po) is contained in By and thus in S.
Also since pg > R; we have (8.35) for p = pg and since |&y| > R we have (8.36)
for & = &. i
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Proof of Lemma 8.6 We will construct a sequence of sets {Ey,}, radii p,, and modula-
tion frequencies &, using induction on the length of words. We use ¢ = 27#~10 jn
Lemma 8.7.

First let Ey = [0, 1]°. We apply Lemma 8.7 with E = Ej and S = Sz (@) We thus
find &y, py such that (8.23), (8.24), (8.25) hold for w = @. We consider the two words
of length one, i.e. 0 and 1 and let

Eo:={x € Ey: cos({y, x)) > 0}
E| :={x € Eg: cos({&y, x)) < 0}

so that Ej is a disjoint union of Eg and E1, and (8.26) holds for w = #. Clearly [0, 1]?
is a disjoint union of the E,, with words w of length 1.

Suppose Ey,, py, &y are defined for all words of length £ < u — 1. Take any word
of length ¢ + 1, of the form w0 or w; where w is of length ¢, and where E,, py, &y
satisfy (8.23), (8.24), (8.25), and where [0, 11%is a disjoint union of the E,, with
length(w) = £. We let

Eyo = {x € Ey: cos((§y, x)) > 0}
Ey1:={x € Ey: cos({&y, x)) < 0}

so that (8.26) holds, E,, is a disjoint union of Eo and E, and thus [0, 1% is a
disjoint union of all E3 where w runs over all words of length £ + 1.

We now use Lemma 8.7 to find py,0, £,,0 so that (8.23), (8.24) and (8.25) hold for
w0 in place of w. Then we use Lemma 8.7 again to find py,1, &1 so that (8.23), (8.24)
and (8.25) hold for w1 in place of w.

At step £ = p — 1 this completes our construction of E, p, and &, for all
w € Wy, and all the properties stated in Lemma 8.6 are satisfied at every stage of the
construction. Note that the balls B(&,,, py), B(&5, py) are disjoint for different w, w
because these balls belong to the disjoint sets Sz(y), Sr(s), respectively.

Finally we have by our construction, for £ =0, ..., u — 1,

Z 1]‘Ew = 1[0,1]2’

w:length(w)=¢

and we obtain (8.22) by summing in ¢. O
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Appendix A: Proof of Proposition 3.4

The proof is a modification of the argument for the standard Cotlar inequality regarding
truncations of singular integrals, cf. [26, §1.7].

Letm;(§) = n(27/&)m(&) and let a;(§) = m;(2/&). We pick 0 < & < min{a —
d, 1}. Then by assumption

sup [lajllg1 < B < 00 (A.1)
JEZ “

which implies that [F~[a;](x)| < CB(1+ |x])~¢~¢, and thus, with K; = F~[m;],
IK; ()] + 27/ |VKj(x)| < CB274(1 +27|x)~4*.
For Schwartz functions f we have Sf = 3.7 K;* fand Sy f =3, K; x f.

LemmaA.1 Fix¥ € R? andn € Z, and let g(y) = SO pE2m(y)andh = f—g.
Then

i) [Sng(®)| < BMLf1(X).
(i) [Sph(X) — Sh(X)| S B M[f1(%).
(iii) For |w — ¥| < 27" we have |Sh(¥) — Sh(w)| < B M[f1(%).

Proof. By appropriate normalization of the multiplier we may assume B = 1.
(i) is immediate since for j < n
K % g(®)] 2/ / lsMldy <297 M[g](3)
[X—y|=27"
and the assertion follows since |g| < | f].

For (ii) notice that |S, 7 (%) — SA(X)| < > |K; % h(X)|. For j > n we estimate

j>n
K % h(%)| gz—fS/ ¥ — yI7F |h(y)ldy
|§—y|=27"
< iy T pnhe f |h(y)|dy
ZZZO 3(3,217")

where the slashed integral denotes the average. Thus we get

Y IKj xh(D] S M)

jzn

and, since || < |f|, the assertion follows.
Concerning (iii) we consider the terms K; * h(x) — K; * h(w) separately for
Jj <nandj > n. The term ) |K; * h(x)| was already dealt with in (ii). Since

j>n
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|lw—%| < 27"~ we have |w — y| & | — y| for |¥ — y| > 27" and thus the previous
calculation also yields

D IKj s h(w)| S MIRI(E) S Mf (%)

j>n
It remains to consider the terms for j < n. In that range we write
1
Kj*h(x)—Kj*h(w) :/ / (X —w, VKj(w+s(x —w) — y)h(y)dyds.
0
[¥—yl=27"

Since |[w — | < 27"~ we can replace |w + s(X — w) — y| in the integrand with
|X — y| and estimate the displayed expression by C 2120 Ay, j.n where

jd

A jn =2 1% —w| lh(y)|dy

2_”+l_l§|f—y|§2_”+l (1 + 2J|j€'~ — y|)d+6

< 2UmmU=e)p—le f lh(y)|dy.
B(x,2!-m)

Summing in/ > 0 and then j < n yields

YUK #h(E) — Kj o h(w)]| S MhE) < Mf (). (A.2)

j<n
O

Proof of (3.7) We proceed arguing as in [26, §1.7]. Fix x € R and n € Z and define
g and £ as in the lemma. For (suitable) w with |w — X| < 277! we write

S f (%) = $p8(X) + (Sn — SHh(X) + Sh(X)
= $u8(X) 4 (Sp — Hh(X) + Sh(X) — Sh(w) + Sf(w) — Sg(w). (A.3)

By Lemma A.1
[Sng ()] + 1(Sy — SYh(X)| + |Sh(X) — Sh(w)| < B M[f1(X)
and it remains to consider the term Sf(w) — Sg(w) for a substantial set of w with
lw—X| <271
By the Mikhlin-Hormander theorem we have for all f € L'(R%) and all > > 0
meas({x : |Sf(x)| > 2}) < Ax~ | flh

where A < Cy 4B.
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Now let 6 € (0, 1/2) and consider the set
Q8 ={w:|lw—F <27"7", [Sgw)| > 2967 TAM[f1(D)].

In (A.3) we can estimate the term |Sg(w)| by 245-14 M[f](x) when w €
B(%,27""H\Q,(, 8). Hence we obtain

S, @< inf ISf(w)| + Cla, B+ HMIF1F). (A4
weB(%,27"H\Q,(%,8)

By the weak type inequality for S we have

Allsh 8 1 F )l
TAMIf1Z)  29M[f1(X) Jjg—yj<an
<8277 meas(B(¥,27")) = S meas(B(¥,2""1)).

meas(£2,(x, ) < 5=

Hence meas(B(%, 27" ")\, (%, 8)) > (1 — §)meas(B(X, 27"~ ")) and thus for all
r>20

inf ISf (w)]
weB(X,2 "~ H\Q, (¥,8)
1 1/r
= = - ISf (w)|"dw
meas(B(¥, 27"\ Q, (%, 8)) Jp(z.2-n-1)
1 1/r
= = ISf(w)I’dw> .
((1 - 8)|B()C, 2*}171)| B()f,2_"_1)

We obtain
1Sy £ ()] < (1 =8~V (M[ISw|" 1ENY" + Cle, d)(1 + 8B M f1(F)

uniformly in n. This implies (3.7). O
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