Leveraging Approximate Data for Robust Flash Storage

Qiao Li*, Liang Shi*, Jun Yang§, Youtao Zhang§, Chun Jason Xue*

*City University of Hong Kong, *East China Normal University, $University of Pittsburgh

ABSTRACT

With the increasing bit density and adoption of 3D NAND, flash
memory suffers from increased errors. To address the issue, flash
devices adopt error correction codes (ECC) with strong error cor-
rection capability, like low-density parity-check (LDPC) code, to
correct errors. The drawback of LDPC is that, to correct data with a
high raw bit error rate (RBER), read latency will be amplified. This
work proposes to address this issue with the assistance of approxi-
mate data. First, studies have been conducted and show there are
ample amount of approximate data available in flash storage. Sec-
ond, a novel data organization is proposed to fortify the reliability
of regular data by leaving approximate data unprotected. Finally,
a new data allocation strategy and modified garbage collection
scheme are presented to complete the design. The experimental
results show that the proposed approach can improve read perfor-
mance by 30% on average comparing to current techniques.

ACM Reference Format:

Qiao Li*, Liang Shit, Jun Yang§, Youtao Zhang§, Chun Jason Xue*, *City
University of Hong Kong, *East China Normal University, $University of
Pittsburgh . 2019. Leveraging Approximate Data for Robust Flash Storage.
In The 56th Annual Design Automation Conference 2019 (DAC °19), June
2-6, 2019, Las Vegas, NV, USA. ACM, Las Vegas, NV, USA, 6 pages. https:
//doi.org/10.1145/3316781.3317848

1 INTRODUCTION

NAND flash memory is now widely deployed as the storage of
mobile devices, laptops, and servers. However, NAND flash is in-
herently prone to different types of errors, including retention time
errors, wearing errors, and voltage disturbance errors. The problem
worsens with the increasing bit density and the adoption of 3D
NAND. To address this issue, error correction codes (ECC) have
been adopted in flash devices to correct errors. Recently, low-density
parity-check code (LDPC), which has strong error correction ca-
pability, has been adopted in NAND flash memories [1][2]. The
principle of LDPC is to use the likelihood information of flash mem-
ory cell to correct errors. For data with a high RBER, LDPC requires
several sensing iterations to acquire accurate likelihood informa-
tion, which would significantly degrade the read performance.

To optimize the access performance of LDPC enabled flash mem-
ory, previous studies have proposed approaches to exploit the error

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC 19, June 2-6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06...$15.00
https://doi.org/10.1145/3316781.3317848

characteristics on flash memory from different aspects[3][4]. Differ-
ently, in this work, approximate data will be leveraged to fortify the
data reliability. Approximate data are able to tolerate a predefined
number of errors. For example, multimedia data can tolerate some
errors without impacting the user experience. Recent studies found
that approximate data are seen in various applications. Previous
works proposed to exploit the error tolerance for performance and
energy optimization [5][6][7][8]. One common approach is to relax
the reliability requirement on approximate data by reducing the
noise margin between the threshold voltage states of flash memory
[8][9]. However, this scheme needs the support of multiple pro-
gramming voltages from flash chip, which is not always available
for the designers. Another strategy is to apply ECC with reduced
error correction strength for approximate data [6][7]. However, im-
plementing multiple ECCs for flash memory introduces significant
hardware and power costs to the flash devices. In addition, none
of these work proposed to exploit approximate data for read per-
formance improvement. Different from previous work, we analyze
a set of data with error tolerance capability and propose a new
scheme to exploit it for read performance improvement.

In this work, we first analyze a large amount of accessed data in
the flash storage of mobile devices and personal computers and find
some characteristics. For example, when watching an online video,
the video file will be cached. When the cache is full, video data will
be written to the flash storage. The cached video data can endure
a high RBER due to 2 reasons: 1) most of these data are encoded
multimedia data, which presents high error tolerance; 2) even if
they are corrupted, the system can also download them from the
internet. This paper defines this type of data as approximate data,
and other data as regular data that are guaranteed to be error free.
Then, based on the observation, we propose a scheme to leverage
the error tolerance characteristic of approximate data for read per-
formance improvement. The basic idea of the scheme is to organize
both approximate data and regular data in one data page. The error
correction capability of the page will all be used to correct the errors
in regular data while approximate data will be stored without ECC
protection. Basically, this is achieved by combining regular data
with know data, like all ‘1’s to form the encoded information in
ECC codeword. In this case, the RBER of encoded data is reduced
and the access performance of regular data will be improved. There
are several challenges to realize the aforementioned idea. First, each
ECC codeword needs to be constructed with approximate data and
regular data for reliability enhancement. Second, if approximate
data have a large number of errors, they should be set as invalid.
To solve above challenges, several approaches are proposed. First,
a data allocation scheme is proposed to construct the ECC code-
word during host accesses. Second, a new garbage collection (GC)
scheme is proposed to construct more ECC codewords with the

proposed design. Once RBER of approximate data reaches a pre-
defined threshold, they will be set as invalid. Note that from our
studies, we find that the defined approximate data always have a
short retention time. This is because they are only used for cache
for a short time and persisted after checkpoint or data syncing for
consistency consideration. With this characteristic, errors rarely
happen in the defined approximate data. Experimental results show
that the proposed approach can improve read performance by 12%
in early life stage and 30% in late life stage of flash storage. The
following contributions are made in this paper.

o Identified that a large amount of data generated during ap-
plication execution is error-tolerance;

e Introduced a new ECC encoding scheme to enhance the reli-
ability of regular data through leveraging the error tolerance
of approximate data;

e Proposed a data allocation scheme and GC scheme to assist
the implementation of the new ECC encoding design;

e Implemented and evaluated the proposed scheme. Experi-
ments show encouraging performance improvement over
the current schemes.

In the remaining of this paper, Section 2 presents the background
and related work. Section 3 is the motivation. Section 4 presents the
proposed approaches. Section 5 shows the experiments and results.
Section 6 concludes the paper.

2 BACKGROUND AND RELATED WORK
2.1 Background

NAND flash memory stores charges in flash cells and represents
data based on the amount of charges. For the flash memory with
n bits per cell, the threshold voltage is divided into 2" regions to
represent different data. If the threshold voltages of some flash
cells shift out of their original regions due to charge leakage over
time or charge increasing from interference, raw bit errors will
happen on the stored data. To increase the storage density and
capacity, the trend is to store more bits in one cell and decrease the
technology size, which leads to narrow voltage regions. In addition,
the advent of 3D NAND introduces more errors because of its
complex structure. As a result, NAND flash memory becomes more
vulnerable to various types of errors.

The common solution to recover flash errors is to apply error
correction codes. For each unit of data, ECC stores a certain amount
of redundant bits in the out-of-band areas of the flash pages. A lim-
ited number of raw bit errors can be corrected, where the number
is determined by the strength of the applied ECC. Low-density
parity-check (LDPC) code has been adopted on NAND flash mem-
ory, due to its strong error correction capability. Different from
traditional ECC codes, LDPC uses both hard and soft decoding to
correct data with high RBER. The process involves soft informa-
tion obtaining, which needs multiple voltage sensing operations
on flash cells. Thus, LDPC needs longer access latency to decode
data, especially for data with a high RBER, which deteriorates flash
performance.

2.2 Related Work

To improve the read performance on LDPC based flash memory,
previous studies have proposed approaches from different aspects.
The first group of work [10][1][3][4] leveraged specific error char-
acteristics on NAND flash memory to optimize the soft information
gaining strategy of read operations for LDPC decoding. The second
group of work [2][11] proposed approaches to make tradeoffs in
exchange of RBER reduction on read-critical data which will greatly
improve the read performance, thus improving the overall access
performance. The third group of work [12][13] strived to reduce
RBER from the view of cell voltage characteristics on NAND flash
memory. By contrast, our work will leverage the error tolerance of
approximate data to fortify the reliability of regular data.

Prior work has studied the error tolerance of the data in different
applications and proposed approaches to store approximate data
[5][6][7][8]. It was found that data from many applications, such
as multimedia, scientific computation, and cloud computing, shows
high error resiliency, and can produce acceptable results even with
a high RBER. Previous studies have proposed different storage
schemes by leaving some errors to approximate data. Sampson et al.
[9] and Cui et al. [8] proposed to tighten the noise margins between
the threshold voltage states. Holcomb et al. [14] and Nelson et al.
[15] proposed to increase the storage density for approximate data.
Guo et al. [6] and Jevdjic et al. [7] adopted multiple ECCs for data
with different error requirements. Xu et al. [5] further proved that
it is possible for some approximate data to achieve the data-level
error tolerance without using any ECC protections. Different from
all of these work, this paper is the first one on exploiting approximate
data for read performance improvement. In addition, the proposed
scheme does not introduce any extra hardware overheads.

3 MOTIVATION

During the last decades, the amount of data has increased signifi-
cantly for various storage systems, from mobile, personal comput-
ers, to data centers. Among all the data stored in storage devices,
there are a great deal of cache data and temporary data during the
execution of applications. For example, when we watch an online
video on mobile phones, the video file shall be downloaded from the
servers and maintained in the cache. When the cache is full, video
data will be evicted out of the cache and be written to flash memory.
As presented above, ECC is applied to eliminate raw bit errors for all
the data stored in storage. However, for those cached data stored in
flash memory, the reliability of them is not a necessary requirement.
If some bit errors occur, resulting that users cannot access the data,
users can just download another copy from the server. This paper
defines this type of data as approximate data, since the data can
tolerate errors without affecting normal execution of applications.

To study the amount and percentage of approximate data dur-
ing application execution, several representative workloads are
collected in the block layer on a mobile phone and a personal com-
puter, which adopts NAND flash memory as storage devices. By
extracting the type of data file of each request, Figure 1 presents the
ratio of regular and approximate data in the workloads. The results
show that all the workloads access both regular and approximate
data. The percentages of approximate data for write request are
much higher than that for read requests. These written cached data

W Regular data

O Approximate data
100%

80%
60%
40%

20%

Breakdown of Read Data

0%

(a) Breakdown of read data

Breakdown of Read Data

W Regular data

O Approximate data
100%

80%

60%

40%

20%

0%

(b) Breakdown of write data

Figure 1: Breakdown of read and write data. The accessed data in flash memory includes both regular and approximate data.

are often deleted after manually controlled system acceleration on
mobile devices or power off on personal computers. This character-
istic further confirms that we can relax the reliability requirement
on these data. In addition, based on the analysis on the lifetime of
these data, we found that they are kept for no more than 1 hour.
Most of the data are deleted by the system in seconds. This is true
since these data are cached data. Therefore, this work proposes to
leave them without ECC protection. We use error detection code
(EDC), which consumes much less overheads than ECC, to detect
the errors on the data during read operations, in case they are cor-
rupted due to too many errors. If the detected error bits are above
a threshold, which will rarely happen, they will be set as invalid in
the flash memory and downloaded again from servers.

4 ROBUST FLASH DESIGN

4.1 Overview

Figure 2 shows the overview of the proposed approach. A new data
organization is proposed to enhance the error correction capability
on regular data, while approximate data is written without ECC
protection. This design enables multiple error correction capabil-
ities with only one ECC, which involves no extra ECC overhead.
In the following, the new ECC encoding scheme is first presented.
Then, a new data allocation scheme and a GC scheme are proposed
to construct the encoding units.

4.2 Robust ECC

In traditional ECC encoding, the total length of one ECC codeword
is n, the length of user data, which can be either regular data or
approximate data, is k, and the remaining n — k bits are ECC parity.
Inside each flash page, the OOB area is used to store ECC parity
bits and other information. Since the space for parity is limited, the
error correction strength for a data page is limited. The basic idea
is to store both regular data and approximate data in one page and
apply all the error correction capability of the page on regular data.

In the new design, k/2-bit approximate data will not be included
in the ECC encoding due to its error tolerance. All (n — k)-bit parity
will be used to protect k/2-bit regular data. First, k/2-bit known
information, for example, all-one vector 1 /25 will be combined
with the regular data vector ry, to construct a new k-bit user
data vector [ry /o, 1x/2]- Second, ECC encoding will be conducted
on the k-bit vector to generate (n — k)-bit parity p,_;. Third, the

1/0 Requests
(LPN, size, R/W, R/A)

‘ Host Interface Logic ‘

Mapping for RAB &HRB
LPN1o | PPNqg| LPNy4

Flash Controller

Mapping for RB & AB
LPN; | PPN;

PPN,

LPN; LPNig | PPNis | LPN;1 | PPNyo

[Write Buffer H Garbage Collection]

Flash Memory Array
[JRegular data Il Approximate data <]ECC parity [] Free

PPN,

RB AB HRB Clean Block

Figure 2: Overview of the proposed robust flash memory.

known information is removed from the vector. Finally, the encoded
codeword, which includes three parts, k/2-bit approximate data,
k/2-bit regular data and (n — k)-bit parity, are programmed to the
flash memory.

During read operation, k/2-bit approximate data will be read
out directly without ECC decoding. All-one vector 1/, will be
automatically combined with k/2-bit sensed regular data to form a
k-bit vector, ready for ECC decoding. Since there are no bit errors
in the known information part, the RBER of the ECC codeword will
be reduced. Suppose there are ¢-bit errors in one ECC codeword, the
RBER of the original codeword will be calculated as t/n, denoted as
RBER;. The RBER of the new codeword RBER; can be expressed
as:

RBER; = RBER; - (1 — 25). 1)
n

As an example, for an ECC with code rate of 8/9, the RBER can be
reduced to 5/9. With the reduction of RBER, two objects can be
optimized for NAND flash memory. First, in the early lifetime, since
read latency depends on the RBER of data, the read performance
can be improved on these data. Second, in the late lifetime, with
the same ECC, the acceptable RBER on the regular data is higher
and therefore the lifetime can be improved.

4.3 Data Allocation

The above robust ECC design can benefit the performance and
lifetime of NAND flash memory. However, it requires the incoming
write requests to access equal size of regular and approximate data,
which cannot be guaranteed in different applications. Based on the
access ordering, four types of blocks are defined and the data of
write requests will be programmed to one type of the blocks based
on the ratio of regular and approximate data in current request
queue. 1) RAB (Regular and Approximate Block): Both regular data
and approximate data are stored in each page, organized in the
way described above. Inside this type of blocks, the reliability of
regular data is improved; 2) RB (Regular Block): Only regular data
are stored in the traditional way. k bits regular data are encoded
with n — k bits ECC parity; 3) HRB (Half Regular Block): Only
regular data are stored by occupying half of the user-data space
in each page, leaving the other half to be empty. These blocks are
used to replace RB at the end of lifetime when approaching the
maximum P/E cycles for reliability concern. 4) AB (Approximate
Block): Only approximate data are stored without ECC protection.

Before the end of flash lifetime, ECC can provide error correction
capability for k bits user data. During this period, three active blocks,
including RAB, RB and AB, are maintained in each flash plane for
programming. The goal is to maximize the amount of regular data
written into RAB to enhance the reliability. In the flash controller, a
write buffer is equipped to accommodate the data of the dispatched
requests, where the data can be reorganized before programming.
This work utilizes the write buffer to reorganize the approximate
data and regular data written to RAB. If there exist both regular and
approximate pages in the write request queue, a regular data page
and an approximate data page will be selected to construct two new
data pages written to a RAB. If there are only regular/approximate
pages, a regular/approximate page will be selected, written to a
RB/AB.

As an example, if there are 5 pages of regular data and 3 pages
of approximate data for writing, the first 3 regular data pages and
all the 3 approximate data pages will be reorganized in the write
buffer. Afterwards, the 6 organized pages of data will be processed
and the data will be written to a RAB. The remaining 2 regular
data pages will be written to a RB.

Flash Translation Layer Design: To support the strengthened
ECC design, the logical page number to physical page number (L2P)
mapping needs to be revised. Assume the baseline strategy is page
mapping. For RB and AB, the L2P mapping is the same as tradi-
tional mechanism. For RAB and HRB, the mapping information
will be doubled since the mapping unit is half page. As shown in
Figure 2, one bit will be added to differentiate the two parts. Note
that the block type is determined during runtime and a clean block
can be used as any type.

4.4 Garbage Collection

The above data allocation scheme strives to write data into RABs.
There can be some data still written to other types of blocks. A new
GC strategy is proposed to select two blocks, one RB/HRB and
one AB, for GC and copy all the valid pages into a RAB.

Denote IVR 4, IVg and IV as the largest number of invalid pages
of RAB, RB and AB blocks respectively. The corresponding three

blocks are Bgra, B and B4. The largest number of invalid pages
among all the blocks is:

IVimax = max(IVRa,IVR, IV4) (2

Considering the GC efficiency, default greedy GC strategy will
choose the block whose invalid page number is IVy; 4, as the victim
block for GC, to minimize the number of valid page copy. The
proposed scheme takes both reliability enhancement for regular
data and GC efficiency into consideration. If the following condition
is satisfied, the block pair Bg and B4 will be chosen for GC.

IWiax — min(IVR,IVy) < T (3)

In the expression, the threshold T bounds the influence on GC
efficiency. If the condition is not satisfied, the block with the largest
number of invalid pages will be chosen as the victim block.

As an example, we assume each block has 64 pages and IVr 4,
IVR and IVy4 equal to 62, 62 and 61 respectively. If T is set as 2, the
condition is satisfied and Bg and B4 will be selected. There are 2
valid pages in Bg and 3 valid pages in B4 required to be copied.
On average, each block has 61.5 invalid pages. The GC efficiency,
which is defined as the percentage of invalid page, is 96.1%. While
traditional GC strategy will choose Br4 or Bg as victim block and
one block has 62 invalid pages with GC efficiency 96.9%. The GC
efficiency of the proposed approach is sacrificed a little to promote
data allocation to RAB.If T is set as 1, there won’t be GC efficiency
loss in the example.

Note that RB will be replaced by HRB at the end of flash lifetime.
Since HRBs only store data by using half of the space, the condition
will be changed to:

IVimax — min(2 = IVgR,IV4) < T (4)

After selecting the victim block(s), the valid page will first be
copied to the write buffer. Similar to the process of write requests,
the page pairs including one regular data page and one approximate
data page will be prioritized to be written to a RAB. The remaining
data will be written to a block in one of the other types based on
the data type.

5 EXPERIMENT
5.1 Experimental Setup

The proposed approach is evaluated on a widely-used trace-driven
simulator, SSDSim [16]. The simulated flash device has two chan-
nels, with two chips per channel, and four planes per chip. Inside
each plane, there are 256 blocks, each of which contains 64 4KB
pages. The workloads in the experiments are all collected in the
block layer of storage systems, which adopt flash memory as stor-
age devices. The first 5 workloads are collected on mobile devices
during executing target applications. The other 4 workloads are
collected on a personal computer, which simulate two scenarios,
work and entertainment. For the 2 work workloads, the user mainly
operates on documents and occasionally surfs on the Internet to
search for browsing and downloading documents. For the 2 enter-
tainment workloads, the user mainly watches videos and browses
the latest news. One tag is added to differentiate regular data and
approximate data based on the type of the collected data, same to
previous work [8].

M Baseline @Robust [RobustGC Oldeal

Normalized read latency

(a) Normalized read latency of early life stage

o o
o o e

©
i

o

(b) Normalized read latency of late life stage

Figure 3: Read latency comparison of the proposed approach.

5.2 Experimental Results

The following four schemes are evaluated for comparison. Baseline
is the traditional approach by protecting all the data with ECC.
Robust is the proposed scheme with four types of blocks and the
data allocation scheme. RobustGC is Robust plus GC optimization.
Ideal is the ideal case by exploiting approximate data for maximizing
performance, where all regular data are stored in RAB or HRB.

In RobustGC, we will change RB into HRB to extend flash life-
time at late life stage, which will introduce space reduction. The
reduction is closely related to the workload characteristics. If all the
blocks are used as HRB, the space is reduced to 50%, which is the
worst case. Suppose the space is always enough to accommodate all
write requests when using HRB, by using ECC with code rate of
8/9, the lifetime of Robust can be extended by 15%. In the following,
we mainly compare the performance before the lifetime ending.

Access Performance: Figure 3 shows the normalized read la-
tency in the early and late life stages. Compared to Baseline, the
proposed approach can averagely reduce read latency by 12% and
30% in early and late life stages, respectively. The improvement
comes from two aspects. First, the RBER on regular data is reduced,
thus the read latency for LDPC decoding is reduced. Second, approx-
imate data are stored without ECC encoding, where the read latency
is also reduced. In early stage, the performance improvement is in-
significant and RobustGC has worse performance than Robust. This
is because the RBER is low which requires short read latency. The
error reduction won’t introduce significant benefits and even Ideal
gains not much improvement. In this case, the benefits achieved
from GC optimization are smaller than the interference from in-
creased GC operations, which explains why RobustGC is worse
than Robust. In late stage, with the increasing of P/E cycles, RBER
is increased and therefore the performance improvement is greater.
RobustGC has better performance than Robust for most workloads
because the proposed GC scheme constructs more RABs. One ex-
ception is Twitter, where GC with increased overhead introduces
interference to host I/O. This issue can be avoided by changing the
threshold setting for invalid page number.

Block Distribution: Figure 4 shows the distribution of blocks
in different types for RobustGC. Note that there are only three types
of blocks as explained above since HRB is only used in late stage.
Among these blocks, RAB takes up 10% while either RB or AB
dominates for different workloads. Even with GC modification, the
percentage of RAB is low, therefore the overhead for mapping is
low for FTL design.

ERAB ERB OAB
100%
2
o 80% -
<]
o
5 60% -
s
o 40% -
kel
2
©
L 20%
@
0% -
& N N X e o o > Q ‘2
&S & & q'\iéa &\30 \$o& $o‘$ EOE z@%
@(g, SR < S & & @

Figure 4: The breakdown of blocks in different types.

GC Impacts: Figure 5 presents the normalized block erase num-
ber and valid page copy number. For some workloads, such as Earth
and EnterTn2, Robust and RobustGC have a little more GC opera-
tions, which introduces slight increasing on erase operations and
valid page copies. Correspondingly, the read performance for the
workloads achieves significant improvement, by more than 50%.
Therefore, these workloads sacrifice small GC efficiency to gain bet-
ter read performance. While for some workloads, such as Facebook
and Youtube, the number of GC operations is reduced, with less
erase operations and copies. This is because regular data and ap-
proximate data usually have different update frequencies. Since the
proposed scheme separates two types of data into different blocks,
the data are actually separated based on data hotness. As a result,
the GC efficiency is improved with less performance improvement.

Based on the results, there exists a tradeoff between read perfor-
mance and GC efficiency. If there are more RABs, the performance
will be better but the GC efficiency is worse and vice-versa. The
number of RAB depends on the access characteristics of the ap-
plications. Write requests accessing both regular and approximate
data in a short period of time will promote the allocation of RAB.
How to allocate data with further consideration of workload char-
acteristics will be our future work.

Sensitivity: The threshold of invalid page number T to decide
how to conduct GC greatly impacts the performance of RobustGC.
Sensitivity studies on T are conducted with setting T to 1, 2 and 3.
Figure 6(a) shows the normalized read latency, where we have the
following two observations. First, the read performance by setting
T to 2 is the best on average among the three settings. A small
value for T results in small number of RAB, thus read performance
has little improvement. While a large value results in large number
of GC which may interfere host I/O requests and impact access
performance. Second, the best setting for different workloads is

M Baseline O Robust O RobustGC

M Baseline O Robust O RobustGC

1.2

1.2

Normalized block erase number

(a) Normalized block erase number

Normalized valid page copy count

T
|
|

(b) Normalized valid page copy number

Figure 5: The normalized block erase number and valid page copy number in GC.

W Baseline @ERobustGCT=1 ORobustGCT=2 ORobustGC T=3

-

©c o o 9o I
o N B OO 00 B N

Normalized read latency

(a) Normalized read latency

Normalized erase number

)
((,bc, ‘_J\)Q

(b) Normalized block erase number

Figure 6: Sensitivity study on the threshold.

different due to the variation of the workload characteristics. This
indicates a dynamic setting instead of static setting is required,
which will be studied in our future work.

Figure 6(b) shows the normalized block erase number. With the
increasing of T, the erase count is slightly increased because more
block pairs will be chosen for GC. Nevertheless, the difference is
negligible.

6 CONCLUSION

To address the read performance issue of LDPC based NAND flash
memory, this work leverages the error tolerance of approximate
data. By collecting the accessed data type of real applications, we
found that a lot of approximate data exists in the flash storage.
Due to the fact that approximate data can endure a high RBER,
this work proposes to leave them without ECC protection and
move the error correction capability on regular data to enhance the
reliability. A new ECC codeword design is proposed to enable the
realization of the idea. Then, a data allocation and a GC strategy are
presented. Experimental results show that the proposed approaches
can significantly improve read performance.

ACKNOWLEDGMENT

This work is supported by NSFC 61772092 and 61572411. The cor-
responding author is Liang Shi (shi.liang.hk@gmail.com).

REFERENCES

[1] K. Zhao, W. Zhao, H. Sun, T. Zhang, X. Zhang, and N. Zheng, “LDPC-in-SSD:
Making advanced error correction codes work effectively in solid state drives,”
in FAST, 2013, pp. 244-256.

[2] Q.Li, L. Shi, C. J. Xue, K. Wu, C. Ji, Q. Zhuge, and E. H.-M. Sha, “Access charac-
teristic guided read and write cost regulation for performance improvement on
flash memory,” in FAST, 2016, pp. 125-132.

Q. Li, L. Shi, C. J. Xue, Q. Zhuge, and E. H.-M. Sha, “Improving ldpc performance
via asymmetric sensing level placement on flash memory,” in ASP-DAC, 2017, pp.
560-565.

Y. Du, D. Zou, Q. Li, L. Shi, H. Jin, and C. J. Xue, “Laldpc: Latency-aware ldpc for
read performance improvement of solid state drives” MSST, 2017, pp. 1-13.
X. Xuand H. H. Huang, “Exploring data-level error tolerance in high-performance
solid-state drives,” TR, vol. 64, no. 1, pp. 15-30, 2015.

Q. Guo, K. Strauss, L. Ceze, and H. S. Malvar, “High-density image storage using
approximate memory cells,” in ACM SIGPLAN Notices, vol. 51, no. 4, 2016, pp.
413-426.

D. Jevdjic, K. Strauss, L. Ceze, and H. S. Malvar, “Approximate storage of com-
pressed and encrypted videos,” ACM SIGOPS Operating Systems Review, vol. 51,
no. 2, pp. 361-373, 2017.

[8] J. Cui, Y. Zhang, L. Shi, C. J. Xue, W. Wu, and J. Yang, “Approxftl: On the perfor-
mance and lifetime improvement of 3-d nand flash-based ssds,” TCAD, vol. 37,
no. 10, pp. 1957-1970, 2018.

A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage in solid-state
memories,” TOCS, vol. 32, no. 3, p. 9, 2014.

G. Dong, N. Xie, and T. Zhang, “Enabling NAND flash memory use soft-decision
error correction codes at minimal read latency overhead,” TOCS, vol. 60, no. 9,
pp. 2412-2421, 2013.

Q. Li, L. Shi, Y. Di, Y. Du, C. J. Xue, and H. Edwin, “Exploiting process variation
for read performance improvement on ldpc based flash memory storage systems,”
in ICCD, 2017, pp. 681-684.

T. Nakamura, Y. Deguchi, and K. Takeuchi, “Aep-ldpc ecc with error dispersion
coding for burst error reduction of 2d and 3d nand flash memories,” in IMW, 2017,
pp. 1-4.

[13] J. Guo, W. Wen, J. Hu, D. Wang, H. Li, and Y. Chen, “Flexlevel: a novel NAND
flash storage system design for ldpc latency reduction,” in DAC, 2015, pp. 1-6.
D. E. Holcomb and K. Fu, “Qbf-based synthesis of optimal word-splitting in
approximate multi-level storage cells,” in WACAS, 2014.

J. Nelson, A. Sampson, and L. Ceze, “Dense approximate storage in phase-change
memory,” ASPLOS Ideas & Perspectives, 2011.

Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and C. Ren, “Exploring and exploiting
the multilevel parallelism inside SSDs for improved performance and endurance,”
TC, vol. 62, no. 6, pp. 1141-1155, 2013.

[3]

[9]

(10]

(1]

[12]

[14]
[15]

[16]

