
Leveraging Approximate Data for Robust Flash Storage

Qiao Li∗, Liang Shi‡, Jun Yang§, Youtao Zhang§, Chun Jason Xue∗

∗City University of Hong Kong, ‡East China Normal University, §University of Pittsburgh

ABSTRACT

With the increasing bit density and adoption of 3D NAND, flash

memory suffers from increased errors. To address the issue, flash

devices adopt error correction codes (ECC) with strong error cor-

rection capability, like low-density parity-check (LDPC) code, to

correct errors. The drawback of LDPC is that, to correct data with a

high raw bit error rate (RBER), read latency will be amplified. This

work proposes to address this issue with the assistance of approxi-

mate data. First, studies have been conducted and show there are

ample amount of approximate data available in flash storage. Sec-

ond, a novel data organization is proposed to fortify the reliability

of regular data by leaving approximate data unprotected. Finally,

a new data allocation strategy and modified garbage collection

scheme are presented to complete the design. The experimental

results show that the proposed approach can improve read perfor-

mance by 30% on average comparing to current techniques.

ACM Reference Format:

Qiao Li∗, Liang Shi‡, Jun Yang§, Youtao Zhang§, Chun Jason Xue∗, ∗City

University of Hong Kong, ‡East China Normal University, §University of

Pittsburgh . 2019. Leveraging Approximate Data for Robust Flash Storage.

In The 56th Annual Design Automation Conference 2019 (DAC ’19), June

2–6, 2019, Las Vegas, NV, USA. ACM, Las Vegas, NV, USA, 6 pages. https:

//doi.org/10.1145/3316781.3317848

1 INTRODUCTION

NAND flash memory is now widely deployed as the storage of

mobile devices, laptops, and servers. However, NAND flash is in-

herently prone to different types of errors, including retention time

errors, wearing errors, and voltage disturbance errors. The problem

worsens with the increasing bit density and the adoption of 3D

NAND. To address this issue, error correction codes (ECC) have

been adopted in flash devices to correct errors. Recently, low-density

parity-check code (LDPC), which has strong error correction ca-

pability, has been adopted in NAND flash memories [1][2]. The

principle of LDPC is to use the likelihood information of flash mem-

ory cell to correct errors. For data with a high RBER, LDPC requires

several sensing iterations to acquire accurate likelihood informa-

tion, which would significantly degrade the read performance.

To optimize the access performance of LDPC enabled flash mem-

ory, previous studies have proposed approaches to exploit the error

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317848

characteristics on flash memory from different aspects[3][4]. Differ-

ently, in this work, approximate data will be leveraged to fortify the

data reliability. Approximate data are able to tolerate a predefined

number of errors. For example, multimedia data can tolerate some

errors without impacting the user experience. Recent studies found

that approximate data are seen in various applications. Previous

works proposed to exploit the error tolerance for performance and

energy optimization [5][6][7][8]. One common approach is to relax

the reliability requirement on approximate data by reducing the

noise margin between the threshold voltage states of flash memory

[8][9]. However, this scheme needs the support of multiple pro-

gramming voltages from flash chip, which is not always available

for the designers. Another strategy is to apply ECC with reduced

error correction strength for approximate data [6][7]. However, im-

plementing multiple ECCs for flash memory introduces significant

hardware and power costs to the flash devices. In addition, none

of these work proposed to exploit approximate data for read per-

formance improvement. Different from previous work, we analyze

a set of data with error tolerance capability and propose a new

scheme to exploit it for read performance improvement.

In this work, we first analyze a large amount of accessed data in

the flash storage of mobile devices and personal computers and find

some characteristics. For example, when watching an online video,

the video file will be cached. When the cache is full, video data will

be written to the flash storage. The cached video data can endure

a high RBER due to 2 reasons: 1) most of these data are encoded

multimedia data, which presents high error tolerance; 2) even if

they are corrupted, the system can also download them from the

internet. This paper defines this type of data as approximate data,

and other data as regular data that are guaranteed to be error free.

Then, based on the observation, we propose a scheme to leverage

the error tolerance characteristic of approximate data for read per-

formance improvement. The basic idea of the scheme is to organize

both approximate data and regular data in one data page. The error

correction capability of the page will all be used to correct the errors

in regular data while approximate data will be stored without ECC

protection. Basically, this is achieved by combining regular data

with know data, like all ‘1’s to form the encoded information in

ECC codeword. In this case, the RBER of encoded data is reduced

and the access performance of regular data will be improved. There

are several challenges to realize the aforementioned idea. First, each

ECC codeword needs to be constructed with approximate data and

regular data for reliability enhancement. Second, if approximate

data have a large number of errors, they should be set as invalid.

To solve above challenges, several approaches are proposed. First,

a data allocation scheme is proposed to construct the ECC code-

word during host accesses. Second, a new garbage collection (GC)

scheme is proposed to construct more ECC codewords with the

proposed design. Once RBER of approximate data reaches a pre-

defined threshold, they will be set as invalid. Note that from our

studies, we find that the defined approximate data always have a

short retention time. This is because they are only used for cache

for a short time and persisted after checkpoint or data syncing for

consistency consideration. With this characteristic, errors rarely

happen in the defined approximate data. Experimental results show

that the proposed approach can improve read performance by 12%

in early life stage and 30% in late life stage of flash storage. The

following contributions are made in this paper.

• Identified that a large amount of data generated during ap-

plication execution is error-tolerance;

• Introduced a new ECC encoding scheme to enhance the reli-

ability of regular data through leveraging the error tolerance

of approximate data;

• Proposed a data allocation scheme and GC scheme to assist

the implementation of the new ECC encoding design;

• Implemented and evaluated the proposed scheme. Experi-

ments show encouraging performance improvement over

the current schemes.

In the remaining of this paper, Section 2 presents the background

and related work. Section 3 is the motivation. Section 4 presents the

proposed approaches. Section 5 shows the experiments and results.

Section 6 concludes the paper.

2 BACKGROUND AND RELATEDWORK

2.1 Background

NAND flash memory stores charges in flash cells and represents

data based on the amount of charges. For the flash memory with

n bits per cell, the threshold voltage is divided into 2n regions to

represent different data. If the threshold voltages of some flash

cells shift out of their original regions due to charge leakage over

time or charge increasing from interference, raw bit errors will

happen on the stored data. To increase the storage density and

capacity, the trend is to store more bits in one cell and decrease the

technology size, which leads to narrow voltage regions. In addition,

the advent of 3D NAND introduces more errors because of its

complex structure. As a result, NAND flash memory becomes more

vulnerable to various types of errors.

The common solution to recover flash errors is to apply error

correction codes. For each unit of data, ECC stores a certain amount

of redundant bits in the out-of-band areas of the flash pages. A lim-

ited number of raw bit errors can be corrected, where the number

is determined by the strength of the applied ECC. Low-density

parity-check (LDPC) code has been adopted on NAND flash mem-

ory, due to its strong error correction capability. Different from

traditional ECC codes, LDPC uses both hard and soft decoding to

correct data with high RBER. The process involves soft informa-

tion obtaining, which needs multiple voltage sensing operations

on flash cells. Thus, LDPC needs longer access latency to decode

data, especially for data with a high RBER, which deteriorates flash

performance.

2.2 Related Work

To improve the read performance on LDPC based flash memory,

previous studies have proposed approaches from different aspects.

The first group of work [10][1][3][4] leveraged specific error char-

acteristics on NAND flash memory to optimize the soft information

gaining strategy of read operations for LDPC decoding. The second

group of work [2][11] proposed approaches to make tradeoffs in

exchange of RBER reduction on read-critical data which will greatly

improve the read performance, thus improving the overall access

performance. The third group of work [12][13] strived to reduce

RBER from the view of cell voltage characteristics on NAND flash

memory. By contrast, our work will leverage the error tolerance of

approximate data to fortify the reliability of regular data.

Prior work has studied the error tolerance of the data in different

applications and proposed approaches to store approximate data

[5][6][7][8]. It was found that data from many applications, such

as multimedia, scientific computation, and cloud computing, shows

high error resiliency, and can produce acceptable results even with

a high RBER. Previous studies have proposed different storage

schemes by leaving some errors to approximate data. Sampson et al.

[9] and Cui et al. [8] proposed to tighten the noise margins between

the threshold voltage states. Holcomb et al. [14] and Nelson et al.

[15] proposed to increase the storage density for approximate data.

Guo et al. [6] and Jevdjic et al. [7] adopted multiple ECCs for data

with different error requirements. Xu et al. [5] further proved that

it is possible for some approximate data to achieve the data-level

error tolerance without using any ECC protections. Different from

all of these work, this paper is the first one on exploiting approximate

data for read performance improvement. In addition, the proposed

scheme does not introduce any extra hardware overheads.

3 MOTIVATION

During the last decades, the amount of data has increased signifi-

cantly for various storage systems, from mobile, personal comput-

ers, to data centers. Among all the data stored in storage devices,

there are a great deal of cache data and temporary data during the

execution of applications. For example, when we watch an online

video on mobile phones, the video file shall be downloaded from the

servers and maintained in the cache. When the cache is full, video

data will be evicted out of the cache and be written to flash memory.

As presented above, ECC is applied to eliminate raw bit errors for all

the data stored in storage. However, for those cached data stored in

flash memory, the reliability of them is not a necessary requirement.

If some bit errors occur, resulting that users cannot access the data,

users can just download another copy from the server. This paper

defines this type of data as approximate data, since the data can

tolerate errors without affecting normal execution of applications.

To study the amount and percentage of approximate data dur-

ing application execution, several representative workloads are

collected in the block layer on a mobile phone and a personal com-

puter, which adopts NAND flash memory as storage devices. By

extracting the type of data file of each request, Figure 1 presents the

ratio of regular and approximate data in the workloads. The results

show that all the workloads access both regular and approximate

data. The percentages of approximate data for write request are

much higher than that for read requests. These written cached data

0%

20%

40%

60%

80%

100%
Br

ea
kd

ow
n

of
 R

ea
d

Da
ta

Regular data Approximate data

(a) Breakdown of read data

0%

20%

40%

60%

80%

100%

Br
ea

kd
ow

n
of

 R
ea

d
Da

ta

Regular data Approximate data

(b) Breakdown of write data

Figure 1: Breakdown of read and write data. The accessed data in flash memory includes both regular and approximate data.

are often deleted after manually controlled system acceleration on

mobile devices or power off on personal computers. This character-

istic further confirms that we can relax the reliability requirement

on these data. In addition, based on the analysis on the lifetime of

these data, we found that they are kept for no more than 1 hour.

Most of the data are deleted by the system in seconds. This is true

since these data are cached data. Therefore, this work proposes to

leave them without ECC protection. We use error detection code

(EDC), which consumes much less overheads than ECC, to detect

the errors on the data during read operations, in case they are cor-

rupted due to too many errors. If the detected error bits are above

a threshold, which will rarely happen, they will be set as invalid in

the flash memory and downloaded again from servers.

4 ROBUST FLASH DESIGN

4.1 Overview

Figure 2 shows the overview of the proposed approach. A new data

organization is proposed to enhance the error correction capability

on regular data, while approximate data is written without ECC

protection. This design enables multiple error correction capabil-

ities with only one ECC, which involves no extra ECC overhead.

In the following, the new ECC encoding scheme is first presented.

Then, a new data allocation scheme and a GC scheme are proposed

to construct the encoding units.

4.2 Robust ECC

In traditional ECC encoding, the total length of one ECC codeword

is n, the length of user data, which can be either regular data or

approximate data, is k , and the remaining n − k bits are ECC parity.

Inside each flash page, the OOB area is used to store ECC parity

bits and other information. Since the space for parity is limited, the

error correction strength for a data page is limited. The basic idea

is to store both regular data and approximate data in one page and

apply all the error correction capability of the page on regular data.

In the new design, k/2-bit approximate data will not be included

in the ECC encoding due to its error tolerance. All (n −k)-bit parity
will be used to protect k/2-bit regular data. First, k/2-bit known
information, for example, all-one vector 1k/2, will be combined

with the regular data vector rk/2 to construct a new k-bit user
data vector [rk/2, 1k/2]. Second, ECC encoding will be conducted

on the k-bit vector to generate (n − k)-bit parity pn−k . Third, the

Host Interface Logic

I/O Requests
(LPN, size, R/W, R/A)

RAB RB AB HRB Clean Block

Flash Controller

Flash Memory Array
Regular data Approximate data ECC parity Free

LPN1

LPNi
...

PPN1

PPNi
...

Mapping for RB & AB
LPN1,0

LPNi,0
...

PPN1,0

PPNi,1
...

Mapping for RAB &HRB
LPN1,1

LPNi,1
...

PPNj,1

PPNk,0
...

Write Buffer Garbage Collection

Figure 2: Overview of the proposed robust flash memory.

known information is removed from the vector. Finally, the encoded

codeword, which includes three parts, k/2-bit approximate data,

k/2-bit regular data and (n − k)-bit parity, are programmed to the

flash memory.

During read operation, k/2-bit approximate data will be read

out directly without ECC decoding. All-one vector 1k/2 will be

automatically combined with k/2-bit sensed regular data to form a

k-bit vector, ready for ECC decoding. Since there are no bit errors

in the known information part, the RBER of the ECC codeword will

be reduced. Suppose there are t-bit errors in one ECC codeword, the

RBER of the original codeword will be calculated as t/n, denoted as
RBER1. The RBER of the new codeword RBER2 can be expressed

as:

RBER2 = RBER1 · (1 −
k

2n
). (1)

As an example, for an ECC with code rate of 8/9, the RBER can be

reduced to 5/9. With the reduction of RBER, two objects can be

optimized for NAND flash memory. First, in the early lifetime, since

read latency depends on the RBER of data, the read performance

can be improved on these data. Second, in the late lifetime, with

the same ECC, the acceptable RBER on the regular data is higher

and therefore the lifetime can be improved.

4.3 Data Allocation

The above robust ECC design can benefit the performance and

lifetime of NAND flash memory. However, it requires the incoming

write requests to access equal size of regular and approximate data,

which cannot be guaranteed in different applications. Based on the

access ordering, four types of blocks are defined and the data of

write requests will be programmed to one type of the blocks based

on the ratio of regular and approximate data in current request

queue. 1)RAB (Regular and Approximate Block): Both regular data

and approximate data are stored in each page, organized in the

way described above. Inside this type of blocks, the reliability of

regular data is improved; 2) RB (Regular Block): Only regular data

are stored in the traditional way. k bits regular data are encoded

with n − k bits ECC parity; 3) HRB (Half Regular Block): Only

regular data are stored by occupying half of the user-data space

in each page, leaving the other half to be empty. These blocks are

used to replace RB at the end of lifetime when approaching the

maximum P/E cycles for reliability concern. 4) AB (Approximate

Block): Only approximate data are stored without ECC protection.

Before the end of flash lifetime, ECC can provide error correction

capability fork bits user data. During this period, three active blocks,
including RAB, RB and AB, are maintained in each flash plane for

programming. The goal is to maximize the amount of regular data

written intoRAB to enhance the reliability. In the flash controller, a

write buffer is equipped to accommodate the data of the dispatched

requests, where the data can be reorganized before programming.

This work utilizes the write buffer to reorganize the approximate

data and regular data written toRAB. If there exist both regular and

approximate pages in the write request queue, a regular data page

and an approximate data page will be selected to construct two new

data pages written to a RAB. If there are only regular/approximate

pages, a regular/approximate page will be selected, written to a

RB/AB.

As an example, if there are 5 pages of regular data and 3 pages

of approximate data for writing, the first 3 regular data pages and

all the 3 approximate data pages will be reorganized in the write

buffer. Afterwards, the 6 organized pages of data will be processed

and the data will be written to a RAB. The remaining 2 regular

data pages will be written to a RB.

Flash Translation Layer Design: To support the strengthened

ECC design, the logical page number to physical page number (L2P)

mapping needs to be revised. Assume the baseline strategy is page

mapping. For RB and AB, the L2P mapping is the same as tradi-

tional mechanism. For RAB and HRB, the mapping information

will be doubled since the mapping unit is half page. As shown in

Figure 2, one bit will be added to differentiate the two parts. Note

that the block type is determined during runtime and a clean block

can be used as any type.

4.4 Garbage Collection

The above data allocation scheme strives to write data into RABs.

There can be some data still written to other types of blocks. A new

GC strategy is proposed to select two blocks, one RB/HRB and

one AB, for GC and copy all the valid pages into a RAB.

Denote IVRA, IVR and IVA as the largest number of invalid pages

of RAB, RB and AB blocks respectively. The corresponding three

blocks are BRA, BR and BA. The largest number of invalid pages

among all the blocks is:

IVmax =max(IVRA, IVR , IVA) (2)

Considering the GC efficiency, default greedy GC strategy will

choose the block whose invalid page number is IVmax , as the victim

block for GC, to minimize the number of valid page copy. The

proposed scheme takes both reliability enhancement for regular

data and GC efficiency into consideration. If the following condition

is satisfied, the block pair BR and BA will be chosen for GC.

IVmax −min(IVR , IVA) ≤ T (3)

In the expression, the threshold T bounds the influence on GC

efficiency. If the condition is not satisfied, the block with the largest

number of invalid pages will be chosen as the victim block.

As an example, we assume each block has 64 pages and IVRA,
IVR and IVA equal to 62, 62 and 61 respectively. If T is set as 2, the

condition is satisfied and BR and BA will be selected. There are 2

valid pages in BR and 3 valid pages in BA required to be copied.

On average, each block has 61.5 invalid pages. The GC efficiency,

which is defined as the percentage of invalid page, is 96.1%. While

traditional GC strategy will choose BRA or BR as victim block and

one block has 62 invalid pages with GC efficiency 96.9%. The GC

efficiency of the proposed approach is sacrificed a little to promote

data allocation to RAB. IfT is set as 1, there won’t be GC efficiency

loss in the example.

Note thatRBwill be replaced byHRB at the end of flash lifetime.

SinceHRBs only store data by using half of the space, the condition

will be changed to:

IVmax −min(2 ∗ IVHR , IVA) ≤ T (4)

After selecting the victim block(s), the valid page will first be

copied to the write buffer. Similar to the process of write requests,

the page pairs including one regular data page and one approximate

data page will be prioritized to be written to a RAB. The remaining

data will be written to a block in one of the other types based on

the data type.

5 EXPERIMENT

5.1 Experimental Setup

The proposed approach is evaluated on a widely-used trace-driven

simulator, SSDSim [16]. The simulated flash device has two chan-

nels, with two chips per channel, and four planes per chip. Inside

each plane, there are 256 blocks, each of which contains 64 4KB

pages. The workloads in the experiments are all collected in the

block layer of storage systems, which adopt flash memory as stor-

age devices. The first 5 workloads are collected on mobile devices

during executing target applications. The other 4 workloads are

collected on a personal computer, which simulate two scenarios,

work and entertainment. For the 2 work workloads, the user mainly

operates on documents and occasionally surfs on the Internet to

search for browsing and downloading documents. For the 2 enter-

tainment workloads, the user mainly watches videos and browses

the latest news. One tag is added to differentiate regular data and

approximate data based on the type of the collected data, same to

previous work [8].

0

0.2

0.4

0.6

0.8

1
N

or
m

al
ize

d
re

ad
 la

te
nc

y Baseline Robust RobustGC Ideal

(a) Normalized read latency of early life stage

0

0.2

0.4

0.6

0.8

1

N
or

m
al

ize
d

re
ad

 la
te

nc
y Baseline Robust RobustGC Ideal

(b) Normalized read latency of late life stage

Figure 3: Read latency comparison of the proposed approach.

5.2 Experimental Results

The following four schemes are evaluated for comparison. Baseline

is the traditional approach by protecting all the data with ECC.

Robust is the proposed scheme with four types of blocks and the

data allocation scheme. RobustGC is Robust plus GC optimization.

Ideal is the ideal case by exploiting approximate data formaximizing

performance, where all regular data are stored in RAB or HRB.

In RobustGC, we will change RB into HRB to extend flash life-

time at late life stage, which will introduce space reduction. The

reduction is closely related to the workload characteristics. If all the

blocks are used as HRB, the space is reduced to 50%, which is the

worst case. Suppose the space is always enough to accommodate all

write requests when using HRB, by using ECC with code rate of

8/9, the lifetime of Robust can be extended by 15%. In the following,

we mainly compare the performance before the lifetime ending.

Access Performance: Figure 3 shows the normalized read la-

tency in the early and late life stages. Compared to Baseline, the

proposed approach can averagely reduce read latency by 12% and

30% in early and late life stages, respectively. The improvement

comes from two aspects. First, the RBER on regular data is reduced,

thus the read latency for LDPC decoding is reduced. Second, approx-

imate data are stored without ECC encoding, where the read latency

is also reduced. In early stage, the performance improvement is in-

significant and RobustGC has worse performance than Robust. This

is because the RBER is low which requires short read latency. The

error reduction won’t introduce significant benefits and even Ideal

gains not much improvement. In this case, the benefits achieved

from GC optimization are smaller than the interference from in-

creased GC operations, which explains why RobustGC is worse

than Robust. In late stage, with the increasing of P/E cycles, RBER

is increased and therefore the performance improvement is greater.

RobustGC has better performance than Robust for most workloads

because the proposed GC scheme constructs more RABs. One ex-

ception is Twitter, where GC with increased overhead introduces

interference to host I/O. This issue can be avoided by changing the

threshold setting for invalid page number.

Block Distribution: Figure 4 shows the distribution of blocks

in different types for RobustGC. Note that there are only three types

of blocks as explained above since HRB is only used in late stage.

Among these blocks, RAB takes up 10% while either RB or AB

dominates for different workloads. Even with GC modification, the

percentage of RAB is low, therefore the overhead for mapping is

low for FTL design.

0%

20%

40%

60%

80%

100%

Br
ea

kd
ow

n
of

 b
lo

ck
s

RAB RB AB

Figure 4: The breakdown of blocks in different types.

GC Impacts: Figure 5 presents the normalized block erase num-

ber and valid page copy number. For some workloads, such as Earth

and EnterTn2, Robust and RobustGC have a little more GC opera-

tions, which introduces slight increasing on erase operations and

valid page copies. Correspondingly, the read performance for the

workloads achieves significant improvement, by more than 50%.

Therefore, these workloads sacrifice small GC efficiency to gain bet-

ter read performance. While for some workloads, such as Facebook

and Youtube, the number of GC operations is reduced, with less

erase operations and copies. This is because regular data and ap-

proximate data usually have different update frequencies. Since the

proposed scheme separates two types of data into different blocks,

the data are actually separated based on data hotness. As a result,

the GC efficiency is improved with less performance improvement.

Based on the results, there exists a tradeoff between read perfor-

mance and GC efficiency. If there are more RABs, the performance

will be better but the GC efficiency is worse and vice-versa. The

number of RAB depends on the access characteristics of the ap-

plications. Write requests accessing both regular and approximate

data in a short period of time will promote the allocation of RAB.

How to allocate data with further consideration of workload char-

acteristics will be our future work.

Sensitivity: The threshold of invalid page number T to decide

how to conduct GC greatly impacts the performance of RobustGC.

Sensitivity studies on T are conducted with setting T to 1, 2 and 3.

Figure 6(a) shows the normalized read latency, where we have the

following two observations. First, the read performance by setting

T to 2 is the best on average among the three settings. A small

value forT results in small number of RAB, thus read performance

has little improvement. While a large value results in large number

of GC which may interfere host I/O requests and impact access

performance. Second, the best setting for different workloads is

0

0.2

0.4

0.6

0.8

1

1.2
N

or
m

al
ize

d
bl

oc
k

er
as

e
nu

m
be

r Baseline Robust RobustGC

(a) Normalized block erase number

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

ize
d

va
lid

 p
ag

e
co

py
 c

ou
nt Baseline Robust RobustGC

(b) Normalized valid page copy number

Figure 5: The normalized block erase number and valid page copy number in GC.

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

ize
d

re
ad

 la
te

nc
y

Baseline RobustGC T=1 RobustGC T=2 RobustGC T=3

(a) Normalized read latency

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

ize
d

er
as

e
nu

m
be

r Baseline RobustGC T=1 RobustGC T=2 RobustGC T=3

(b) Normalized block erase number

Figure 6: Sensitivity study on the threshold.

different due to the variation of the workload characteristics. This

indicates a dynamic setting instead of static setting is required,

which will be studied in our future work.

Figure 6(b) shows the normalized block erase number. With the

increasing of T , the erase count is slightly increased because more

block pairs will be chosen for GC. Nevertheless, the difference is

negligible.

6 CONCLUSION

To address the read performance issue of LDPC based NAND flash

memory, this work leverages the error tolerance of approximate

data. By collecting the accessed data type of real applications, we

found that a lot of approximate data exists in the flash storage.

Due to the fact that approximate data can endure a high RBER,

this work proposes to leave them without ECC protection and

move the error correction capability on regular data to enhance the

reliability. A new ECC codeword design is proposed to enable the

realization of the idea. Then, a data allocation and a GC strategy are

presented. Experimental results show that the proposed approaches

can significantly improve read performance.

ACKNOWLEDGMENT

This work is supported by NSFC 61772092 and 61572411. The cor-

responding author is Liang Shi (shi.liang.hk@gmail.com).

REFERENCES
[1] K. Zhao, W. Zhao, H. Sun, T. Zhang, X. Zhang, and N. Zheng, “LDPC-in-SSD:

Making advanced error correction codes work effectively in solid state drives,”
in FAST, 2013, pp. 244–256.

[2] Q. Li, L. Shi, C. J. Xue, K. Wu, C. Ji, Q. Zhuge, and E. H.-M. Sha, “Access charac-
teristic guided read and write cost regulation for performance improvement on
flash memory,” in FAST, 2016, pp. 125–132.

[3] Q. Li, L. Shi, C. J. Xue, Q. Zhuge, and E. H.-M. Sha, “Improving ldpc performance
via asymmetric sensing level placement on flash memory,” in ASP-DAC, 2017, pp.
560–565.

[4] Y. Du, D. Zou, Q. Li, L. Shi, H. Jin, and C. J. Xue, “Laldpc: Latency-aware ldpc for
read performance improvement of solid state drives.” MSST, 2017, pp. 1–13.

[5] X. Xu andH. H. Huang, “Exploring data-level error tolerance in high-performance
solid-state drives,” TR, vol. 64, no. 1, pp. 15–30, 2015.

[6] Q. Guo, K. Strauss, L. Ceze, and H. S. Malvar, “High-density image storage using
approximate memory cells,” in ACM SIGPLAN Notices, vol. 51, no. 4, 2016, pp.
413–426.

[7] D. Jevdjic, K. Strauss, L. Ceze, and H. S. Malvar, “Approximate storage of com-
pressed and encrypted videos,” ACM SIGOPS Operating Systems Review, vol. 51,
no. 2, pp. 361–373, 2017.

[8] J. Cui, Y. Zhang, L. Shi, C. J. Xue, W. Wu, and J. Yang, “Approxftl: On the perfor-
mance and lifetime improvement of 3-d nand flash-based ssds,” TCAD, vol. 37,
no. 10, pp. 1957–1970, 2018.

[9] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage in solid-state
memories,” TOCS, vol. 32, no. 3, p. 9, 2014.

[10] G. Dong, N. Xie, and T. Zhang, “Enabling NAND flash memory use soft-decision
error correction codes at minimal read latency overhead,” TOCS, vol. 60, no. 9,
pp. 2412–2421, 2013.

[11] Q. Li, L. Shi, Y. Di, Y. Du, C. J. Xue, and H. Edwin, “Exploiting process variation
for read performance improvement on ldpc based flash memory storage systems,”
in ICCD, 2017, pp. 681–684.

[12] T. Nakamura, Y. Deguchi, and K. Takeuchi, “Aep-ldpc ecc with error dispersion
coding for burst error reduction of 2d and 3d nand flash memories,” in IMW, 2017,
pp. 1–4.

[13] J. Guo, W. Wen, J. Hu, D. Wang, H. Li, and Y. Chen, “Flexlevel: a novel NAND
flash storage system design for ldpc latency reduction,” in DAC, 2015, pp. 1–6.

[14] D. E. Holcomb and K. Fu, “Qbf-based synthesis of optimal word-splitting in
approximate multi-level storage cells,” inWACAS, 2014.

[15] J. Nelson, A. Sampson, and L. Ceze, “Dense approximate storage in phase-change
memory,” ASPLOS Ideas & Perspectives, 2011.

[16] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and C. Ren, “Exploring and exploiting
the multilevel parallelism inside SSDs for improved performance and endurance,”
TC, vol. 62, no. 6, pp. 1141–1155, 2013.

