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ABSTRACT

Deep neural networks (DNNs) have gained considerable attention
in various real-world applications due to the strong performance on
representation learning. However, a DNN needs to be trained many
epochs for pursuing a higher inference accuracy, which requires
storing sequential versions of DNNs and releasing the updated ver-
sions to users. As a result, large amounts of storage and network
resources are required, significantly hampering DNN utilization on
resource-constrained platforms (e.g., IoT, mobile phone).

In this paper, we present a novel delta compression framework
called Delta-DNN, which can efficiently compress the float-point
numbers in DNNs by exploiting the float similarity existing in DNN's
during training. Specifically, (1) we observe the high similarity of
float-point numbers between the neighboring versions of a neural
network in training; (2) inspired by delta compression technique, we
only record the delta (i.e., the differences) between two neighboring
versions, instead of storing the full new version for DNNs; (3) we use
the error-bounded lossy compression to compress the delta data for
a high compression ratio, where the error bound is strictly assessed
by an acceptable loss of DNNs’ inference accuracy; (4) we evaluate
Delta-DNN’s performance on two scenarios, including reducing the
transmission of releasing DNNs over the network and saving the
storage space occupied by multiple versions of DNNs.

According to experimental results on six popular DNNs, Delta-
DNN achieves the compression ratio 2x-10x higher than state-of-
the-art methods, while without sacrificing inference accuracy and
changing the neural network structure.
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1 INTRODUCTION

In recent years, deep neural networks (DNNs) have been widely
applied to many artificial intelligence tasks in various scientific
and technical fields, such as computer vision [44], natural language
processing [4]. Generally, DNNs are designed to solve complicated
and non-linear problems (e.g., the face recognition [45]) by using
multi-layer structures, which consist of millions of parameters (i.e.,
floating-point data types).

To further improve the data analysis capabilities by increasing
the inference accuracy, DNNs are becoming deeper and more com-
plicated [43]. Meanwhile, the frequent training of DNNs results in
huge overheads for storage and network. The overheads overwhelm
resource-constrained platforms such as mobile devices and [oT de-
vices. For instance, a typical use case is to train a DNN in the cloud
servers using high-performance accelerators, such as GPUs or TPUs,
and then transfer the trained DNN model to the edge devices to
provide accurate, intelligent, and effective services [20], while the
cloud to edge data transfer is very costly.

Compressing neural networks [32] is an effective way to reduce
the data transfer cost. However, existing approaches focus on simpli-
fying DNNs for compression such as pruning [21, 33], low-rank ap-
proximation [14], quantization [12, 37], knowledge distillation [11],
and compact network design [38, 55]. These methods usually operate
on models that have already been trained, modifying the model struc-
ture and may make the model untrainable [30]. Therefore, in this
paper, we focus on designing an approach to effectively compressing
DNNs without changing their structures.

Existing studies [15, 24] suggest that DNNs are difficult to be
compressed using traditional compressors (e.g., GZIP [5], LZMA [35])
since there are large amounts of floating-point numbers with the ran-
dom ending mantissa bits. However, our observation on existing
DNNSs suggests that most of the floating-point values only slightly
change during the training of DNNs. Thus, there exists data simi-
larity between the neighboring neural networks! in training, which
means we only need to record the delta (i.e., the differences) of
the data between two neighboring versions for potentially higher
data reduction. Moreover, considering the locality of the delta, error-
bounded lossy compression mechanisms can be very effective.

1Neighboring neural networks in this paper refers to the checkpointed/saved neural
network models in the training epochs/iterations.
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In this paper, we present a novel delta compression framework
called Delta-DNN to efficiently compress DNNs with a high com-
pression ratio by exploiting the data similarity existing in DNNs
during training. Our contributions are four-fold:

(1) We observe the high similarity of floating-point numbers (i.e.,
parameters) existing in the neighboring versions of a DNN,
which can be exploited for data reduction.

(2) We propose to only store the delta data between neighboring
versions, then apply error-bounded lossy compression to the
delta data for a high compression ratio. The error bound
is strictly assessed by the maximal tolerable loss of DNNs’
inference accuracy. To the best of our knowledge, this is the
first work to employ the idea delta compression for efficiently
reducing the size of DNNs.

(3) We discuss Delta-DNN’s benefits on two typical scenarios,
including significantly reducing the bandwidth consumption
when releasing DNNs over the network and reducing the
storage requirements by preserving versions of DNNs.

(4) Our evaluation on six popular DNNs suggests that compared
with state-of-the-art compressors including SZ, LZMA, and
Zstd, Delta-DNN can improve the compression ratio by 2X to
10x while keeping the neural network structure unchanged at
the cost of only losing inference accuracy by less than 0.2%.

The rest of the paper is organized as follows. Section 2 presents
the background and motivation of this work. Section 3 describes
the design methodologies of the Delta-DNN framework in detail.
Section 4 discusses the two typical application scenarios of Delta-
DNN. Section 5 discusses the evaluation results of Delta-DNN on
six well-known DNNs, compared with state-of-the-art compressors.
In Section 6, we conclude this paper and present our future work.

2 BACKGROUND AND MOTIVATION

In this section, we present the necessary background about data
compression techniques, compressibilities of DNNs, lossy compres-
sion of floats, and also discuss our critical observations of the data
similarity existing in DNNs as our research motivation.

2.1 Data Compression Techniques

Recently, data grows exponentially in cloud computing, big data,
and artificial intelligence environments. As a result, efficient data
compression techniques are especially important for data reduction.
Generally, data compression can be categorized into lossless com-
pression and lossy compression techniques.

General lossless compression, such as GZIP [5], LZMA [35],
and Zstd [57], has been developed for decades. These techniques usu-
ally deal with data as byte streams, and reduce data at the byte/string
level based on classic algorithms such as Huffman coding [13] and
dictionary coding [56]. These fine-grained data compression tech-
niques are extremely compute-intensive, and are usually used to
eliminate redundancies inside a file or in a limited data range.

Recently, some other special lossless compression techniques
have been proposed, such as data deduplication [8, 31], and delta
compression [42], which eliminates redundancies among files. For
example, data deduplication, a coarse-grained compression tech-
nique, detects and eliminates the duplicate chunks/files among the

different backup versions in backup storage systems. Delta compres-
sion observes the high data similarity and thus the high data redun-
dancies in the neighboring versions of the (modified) files in backup
storage systems, and then records the delta data (the differences)
of them for space savings [42, 51], by eliminating redundancies
between the similar files at the byte- and string-level.

Lossy compression also appears for decades. The typical lossy
compressors are for images, and their designs are based on human
perception, such as JPEG2000 [36]. Thus they use lossy compression
techniques, such as wavelet transform and vector optimization, to
dramatically reduce the image data sizes.

Nowadays, more attention is paid to the lossy compression of
floating-point data generated from HPC. The most popular lossy
compressor includes ZFP [27], SZ [6, 26, 47]. ZFP is an error-
controlled lossy compressor designed for scientific data. Specifically,
ZFP first transforms the floating-point numbers to fixed-point data
values block by block. Then, a reversible orthogonal block transfor-
mation is applied in each block to mitigate the spatial correlation,
and embedded coding [39] is used to encode the coefficients.

SZ, another lossy compressor, is designed for scientific data focus-
ing on a high compression ratio by fully exploiting the characteristics
of floating-point numbers. Specifically, there is a data-fitting predic-
tor in SZ’s workflow, which generates a predicted value for each
data according to its surrounding data (i.e., data’s spatial correla-
tion). Predictor utilizes the characteristics (or the rules) in floats for
prediction while ensuring the point-wise error controls on demand.
Consequently, the difference between the predicted value and the
real value will be quantized, encoded, and batch compressed, which
often achieve a much higher compression ratio than directly com-
pressing the real value. Note that SZ’s compression ratio depends
on the predictor design, and also the rules are existing in the data.
Thus, to achieve a high compression ratio, some variants of SZ try
to explore more rules existing in the data, such as the temporal
correlation and spatiotemporal decimation [23, 25].

2.2 Compressing DNNs

Recently, with the rise of Al boom, efficiently compressing deep neu-
ral networks (DNNs) are also gaining increasing attention. However,
this is not easy, due to that DNNs consist of many floating-point
numbers generated from training on a large amount of users’ data,
which is of very low compressibility.

A widely adopted method of training DNNs is called Gradient
Descent [19], which usually generates large amounts of floating-
point numbers and requires lots of resources (e.g., memory, storage,
and network). More specifically, in the training process of a DNN, a
snapshot will be generated periodically for backup, to prevent the
case of accuracy decreasing by over-fitting the DNN. Thus, storing
many versions of DNNs is space-consuming, and also the case of
frequently dispatching a new version of DNN to users, is becoming
a challenge for using DNN in practical, especially in the resource-
limited scenarios, such as mobile phones and wireless sensors.

Generally, compressing DNNs means compressing a large amount
of very random floating-point numbers. Due to the strong random-
ness of the ending mantissa bits in DNNs’ floats, existing traditional
compression approaches only achieve a very limited compression
ratio on DNNs according to recent studies [28, 41], both lossless



compressors (such as GZIP [5], Zstd [57], and LZMA [35]) and
lossy compressors (such as SZ [6, 26, 47] and ZFP [27]).

Therefore, other special technologies for compressing DNNs are
proposed, such as pruning [7, 21, 33] and quantization [12, 37].
Deep Compression [9] uses the techniques of pruning (removing
some unimportant parameters), quantization (transforming the floats
into integers), and Huffman coding to compress DNNs, which may
change the neural network structure (by pruning) and may signifi-
cantly degrade the networks’ inference accuracy (by quantization
and pruning). Therefore, the network needs to be retrained many
times to avoid accuracy degradation, thus resulting in huge execu-
tion overheads. DeepSZ [15] combines SZ lossy compressor and the
pruning technique to achieve a high compression ratio on DNNS, but
it may also change the structure of networks due to pruning.

There are also some other approaches focusing on not only com-
pressing the storage space of DNNs but also simplifying the models
in DNNs to reduce computation, which is called structured prun-
ing [21, 50]. For example, Wen et al. [S0] added a LASSO (Least
Absolute Shrinkage and Selection Operator) regular penalty term
into the loss function to realize the structured sparsity of DNNs. Li
et al. [21] proposed a method of pruning the filter of convolutional
layers to remove the unimportant filters accordingly.

Overall, the pruning or quantization based approaches will de-
stroy the completeness of the structure of DNNs, and may degrade
the inference accuracy. In this paper, we focus on using the tradi-
tional compression approaches to compress the parameters of DNN's
without changing DNNs’ structures.

2.3 Observation and Motivation

As introduced in the last subsection, there are many parameters (i.e.,
floating-point numbers) in a neural network, and in the training pro-
cess (i.e., Gradient Descent), some parameters in the networks vary
greatly while some parameters vary slightly. According to our ex-
perimental observations, most of the parameters vary slightly during
training, which means data similarity exists (i.e., data redundancy)
among the neighboring neural network versions.

To study the similarity in DNNs, we collect 368 versions of
six popular neural networks in training (six DNNs’ characteristics
and the training dataset will be detailed in Subsection5.1) and then
linearly fit all the corresponding parameters from every two neigh-
boring networks (including all layers) as shown in Figure 1. Besides,
in this test, we use the metric of Structural Similarity (SSIM) [49]
(also shown in Figure 1), which is widely used to measure the simi-
larity of two bitmap pictures. Because bitmap pictures and neural
networks both can be regarded as matrices, it is reasonable to use
this metric to measure the similarity of two networks.

Observation: the results shown in Figure 1 suggest the floating-
point numbers of the neighboring networks are very similar: (I) the
results of the linear fitting are very close to y = x. Specifically, in
Figure 1, the x-axis and y-axis denote the parameters of two neigh-
boring network versions, respectively. We can observe a clear linear
relationship, which reflects the extremely high similarity between
the neighboring neural network models. ) the SSIM is very close
to 1.0, which usually suggests that bitmaps are very similar [49].

Although there exists data similarity, parameters in neighboring
versions of DNNs are completely different in terms of bit repre-
sentation due to the random ending mantissa bits. Thus, traditional

lossless compression methods can not achieve an ideal compression
ratio on these similar floats in DNNs. Meanwhile, SZ compressor
can well compress the similar floats (i.e., the rule existing in floats)
by using a data-fitting predictor and an error-controlled quantizator.

Therefore, according to the above observation and discussion, we
present the motivations of this paper: Motivation (D), inspired by
the delta compression technique used in the area of backup stor-
age, we can calculate the delta data (i.e., difference) of the similar
floats between neighboring networks, which is very compressible
in the lossy compression; Motivation (2), we employ the ideas of
error-bound SZ lossy compression, i.e., a data-fitting predictor and
an error-controlled quantizator, to compress the delta data while
ensuring the inference accuracy loss under control.

The two motivations, combined with our observations of floats
similarity existing in DNNSs, inspire us to adopt delta compression
and error-bounded lossy compression with high compressibility.
Specifically, regarding there exists floats similarity between two
neighboring versions of a DNN (see Figure 1), we propose an “inter-
version” predictor to predict the corresponding data value between
two neighboring network versions, which will achieve a much higher
compression ratio (as demonstrated in Section 5), and the specific
techniques will be introduced in Section 3.

Note that DeepSZ [15] also uses the error-bounded SZ lossy com-
pression to compress DNNs, and the key difference between DeepSZ
and our approach Delta-DNN is that DeepSZ directly compresses
floats one-by-one on DNNs combining with some pruning tech-
niques (may change the network structure [30]). At the same time,
Delta-DNN exploits the float similarity of neighboring networks for
lossy compression to target at a much higher compression ratio on
DNN:s regardless of whether or not to use the pruning techniques.

3 DESIGN AND IMPLEMENTATION

Generally, Delta-DNN runs after the time-consuming training or fine-
tuning of the network on the training datasets (to get the updated
neural networks). In this section, we describe Delta-DNN design
in detail, including exploiting similarity of the neighboring neural
networks to calculate the lossy delta data, optimizing parameters,
and encoding schemes.

3.1 Overview of Delta-DNN Framework

The general workflow of Delta-DNN framework is shown in Figure
2. To compress a neural network (called target network), we need a
reference neural network, which is usually the former version of the
network in training, and Delta-DNN will calculate and compress the
delta data of two networks for efficient space savings. Specifically,
Delta-DNN consists of three key steps: calculating the delta data,
optimizing the error bound, and compressing the delta data.

(1) Calculating the delta data is to calculate the lossy delta data
of the target and reference networks (including all layers),
which will be much more compressible than directly com-
pressing the floats in DNNGs, as detailed in Subsection 3.2.

(2) Optimizing the error bound is to select the suitable error
bound used for maximizing the lossy compression efficiency
while meeting the requirements of the maximal tolerable loss
of DNNs’ inference accuracy, as detailed in Subsection 3.3.
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Figure 1: Parameter similarity (using linear fitting) of the neighboring neural networks in training, from the six popular DNNs.
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Figure 2: Overview of Delta-DNN framework for compressing deep neural networks.

(3) Compressing the delta data is to reduce the delta data size by
using the lossless compressors, as detailed in Subsection 3.4.

In the remainder of this section, we will discuss these three steps
in detail to show how Delta-DNN efficiently compresses the floating-
point numbers by exploiting their similarity.

3.2 Calculating the Delta Data

In Delta-DNN, because of the observed float similarity existing in
the neighboring networks, the corresponding parameters (i.e., floats)
of the target network and reference network will be calculated their
lossy delta data, following the idea of SZ lossy compressor [6, 26,
47]. Specifically, we denote a parameter from the target network as
A; and the corresponding parameters from the reference network as
B;, and the lossy delta data of the floats A; and B; can be calculated
and quantized as below.

M;=|——1—+05]

2-log(1+e€) M

Here € is the predefined relative error bound used for SZ lossy
compression (e.g., 1E-1 or 1E-2), and M; is an integer (called ‘quan-
tization factor’) for recording the delta data of A; and B;. This delta
calculation of floats shown in Equation (1) is demonstrated to be very
efficient in lossy compression of scientific data (i.e., compressing
large amounts of floats) where the ‘quantization factors’ (i.e., the
integers M;) are highly compressible [26].

In Delta-DNN, according to the similarity we observed in Sub-
section 2.3, we believe that A; — B; will be very small in most cases,
which means most of M; are equal to zero. Therefore, the ‘quantiza-
tion factors’ M are also very compressible in Delta-DNN as that in
Scientific data. Then the target network will be replaced by “the M;
network” (the lossy delta data) for space savings in Delta-DNN.

With the delta data (i.e., amounts of M;) and the reference network
(i.e., B;), we can recover (i.e., decompress) the target network (i.e.,
the parameters A;) as illustrated in Equation (2) with a limited loss
based on the error bound €: |A; — A]| < e.

Al{ =2-M;-

log(1+¢€) + B; (2)



All in all, the delta data M; between the target and reference
networks are very compressible, while its compression ratio depends
on the two key factors. The first factor is the similarity of the data A;
and B;, which is demonstrated to be very high in Subsection 2.3. The
second one is the predefined relative error bound € used for lossy
compression, which also impacts the inference accuracy of DNNs in
our lossy delta compression framework. The selection of the error
bound € used in our Delta-DNN will be discussed in Subsection 3.3.

3.3 Optimizing the Error Bound

In this subsection, we discuss how to get a reasonable relative error
bound e to maximize the compression ratio of Delta-DNN without
compromising DNNs’ inference accuracy.

From Equation (1) described in Subsection 3.2, we can know that
the larger error bound results in the smaller ‘quantization factor’
and thus the higher compression ratio. Nevertheless, at the same
time, it leads to an uncertain inference accuracy loss of DNNs.
This is because the recovered target network parameters would vary
randomly (i.e., sometimes larger, sometimes smaller) along with
different error bounds, after decompression in Delta-DNN.

Figures 3 and 4 show examples of studying the impact of the error
bound € on the final compression ratio on DNNs, with Delta-DNN
running on six well known DNNs. Generally, the results demonstrate
our discussion in the last paragraph that Delta-DNN can achieve a
higher compression ratio (see Figure 4) but cause uncertain inference
accuracy when increasing the error bounds (see Figure 3).

Note that Figure 3 shows of the inference accuracy of the last
model files on six DNNs using Delta-DNN with different error
bounds. Figure 3 (c) has a significant accuracy decrease, and we
also observe this phenomenon among the different training stages
in other DNNs. This is because gradient descents are nonlinear, and
some steps of them seem to be more sensitive.

Therefore, in Delta-DNN’s workflow of calculating the delta data,
we need to find a reasonable error bound for both considering the
two key metrics: the compression ratio and the inference accuracy
loss on DNNs. Moreover, we need to design a flexible solution to
meet the users’ various requirements on both the two metrics while
strictly ensuring the inference accuracy loss is acceptable for DNNs
(e.g., 0.2% as shown in Figure 3).

To this end, Algorithm 1 presents our method of selecting an
optimal error bound by assessing its impact on both compression
ratio and inference accuracy loss on DNNs. Generally, it consists
of two steps: (D) Collecting the results of compression ratio and
the inference accuracy degradation along with the available error
bounds, while meeting the requirement of the maximal tolerable
accuracy loss of the tested DNN, (2) Assessing the collected results
to select an optimal error bound according to Formula (3) as below.

Score=a-d+4-Q, (a+f=1) 3)

where @ is the relative loss of inference accuracy (calculated the
recovered network after decompression, compared with the original
network); Q is the compression ratio (i.e., the ratio of before/after
compression); « and f are the influencing weights defined by users,
which are used to fine-tune the importance of ® and Q in Formula
(3), and @ + B = 1 (e.g., the user can set « = 0, f = 1 to maximize
the importance of compression ratio in Delta-DNN).

Algorithm 1: Error Bound Assessment and Selection

Input: Target network: Nj; Reference network: No;
Accepted accuracy loss: 6;  Available error bounds: EB;
Compression ratio of network N with error bound e: Q(N,¢€);
Accuracy degradation of network N with error bound e: ®(N, €);
Output: The best error bound: EBpes;;
/e, B are weights of compression ratio & accuracy defined by user;
for € in EB do

{®(N1,€),Q(Ny,€) } « Estimate(Ny, N2, €);
if abs(®(Ny, €)) < O then

| save {®(Nj,€), Q(Ny, €) } in Sets;
SCOREpes < 0;
EBpesr — A; //A is user-defined default minimal error bound;
for {P(Ny,€), Q(Ny,€)} in Sets do
Score « CalcScore(®(Ny, €), Q(Ny, €), a, B);
if Score > SCOREps; then
SCOREpess < Score;
L EBpest < €;

return EBpegt;

Thus, as shown in Formula (3) and Algorithm 1, we use the Score
to assess the compression efficiency of Delta-DNN to select the
optimal error bound for DNNs, satisfying users’ requirements on
both the compression ratio and the inference accuracy of DNNs.

Note that the computation cost of Algorithm 1 is minor compared
with the training process of DNNs, which is explained as below.
Generally, the time complexity of Algorithm 1 is O(n - (r + e +
d)), where n is the number of error bounds for testing, and n is
equal to 10 in this paper; O(7) is the time complexity of testing
a network’s inference accuracy on a testing dataset; O(e) is the
time complexity of compressing a network, and O(d) is the time
complexity of decompressing a network (usually negligible [15]).
The time costs of compressing and testing (for DNN accuracy) are
both positively related to the size of the network while compressing
is usually faster than testing (for DNN accuracy). Hence, the time
complexity of Algorithm 1 can be simplified to O(n - k - r) where
1 < k < 2. Delta-DNN is running after the time-consuming training
or fine-tuning of the network on the training datasets. Specifically,
in deep neural networks, the time complexity of training DNN on
the training datasets O(M) over that of verifying DNN’s accuracy
on the testing datasets, is usually 99:1 2 50 the time complexity of
Algorithm 1 is about O( "']gg'M ) ~ O(%), which is much smaller
than the training time complexity O(M) in deep learning.

3.4 Compressing the Delta Data

After calculating the lossy delta data (i.e., ‘quantization factor’ as
introduced in Equation (1) in Subsection 3.2) with the optimized
error bound according to the requirement of the inference accuracy
of DNNs, Delta-DNN then compresses these delta data using the
lossless compressors, such as Zstd and LZMA, which is widely used
to compress ‘quantization factor’ in lossy compression [6]. Here
before using Zstd and LZMA in Delta-DNN, we introduce Run-
Length Encoding (RLE) that efficiently records the duplicate bytes
for quick space saving. This is because the delta data are calculated

2 Andrew Ng. https://www.deeplearning.ai/
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Figure 3: Inference accuracy of the last model files on six neural networks using Delta-DNN with different error bounds.
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from the very similar floats of the neighboring neural networks,
which is very compressible.

Figure 5 shows the compression ratio of four types of compressors
in Delta-DNN on six DNNs, which suggests RLE+ LZMA achieves
the highest compression ratio than others. Thus we adopt this hybrid
approach combining RLE and LZMA to compress the lossy delta
data into the compressed binary file in Delta-DNN.
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Figure 5: Compression ratios of Delta-DNN running 4 compres-
sors (to process the lossy delta data) in error bound 10%.

To recover the target network, as also shown in Figure 2, we will
decompress the compressed binary file by LZMA to get the delta data
M;, to recover all the parameters in the target network according
to the reference network and the delta data M; (as illustrated in
Equation (2) in Subsection 3.2), which is very fast.

4 TYPICAL APPLICATION SCENARIOS

In this section, we introduce two typical application scenarios for
delta compressing the deep neural networks (or called model) using
Delta-DNN: optimizing the network transmission and saving the
storage space for DNNs.

4.1 Optimizing Network Transmission for DNNs

In view of the effect of Delta-DNN framework, calculating and
compressing the delta data between neighboring neural networks,
we consider one of the current popular ways: DNNs are trained
on the server and deployed locally on the client [21, 29] (such as
mobile device [53] and IoT device [22]). Therefore, the process
of transferring the newly trained model (i.e., the latest version of
the deep neural network) from the server to the client is usually
similar to that of the software updating on the smart devices. It
can be regarded as packaging the DNN (or called the model) into
an updating package (usually using lossless compressors to reduce
size) on the server and then transmitting it to the target devices via
network.

In this scenario, the network of the resource-constrained clients
is usually a system bottleneck when updating DNNs [3, 9, 18].
Thus, applying Delta-DNN in this scenario, as shown in Figure 6,
can optimize the network transmission for DNNs by compression.
Specifically, we deploy Delta-DNN on the server, calculate and com-
press the lossy delta data of the target model along with the reference
model, and then transmit the compressed file to the client devices.



—

target network
—| Delta-DNN | — %

compressed
e file

reference network
|

SERVER

N

compressed
network file
transmission >
decompressed
network
local reference
L network y

CLIENTS

Figure 6: Delta-DNN for reducing network transmission.

On the client devices, Delta-DNN is also deployed for decompres-
sion, and the delta data will be decompressed for recovering the
target model along with the reference model.

In this scenario, the client only needs to download the full network
model package when installing the model at the first time, and when
updating, it only needs to download the lossy delta data generated
by Delta-DNN (from the server), which can efficiently reduce the
network overhead of transferring the updated model. And we also
evaluate Delta-DNN performance on this scenario in Section 5.3.
Note that here we should always guarantee that: (I) the target network
always remains the same as the traditional way (i.e., without using
Delta-DNN) during training; () the reference network on the clients
(used for decompression) is the same as the reference network on the
server (used for compression, it is also a lossy version). Therefore,
the accuracy loss is always under control.

4.2 Saving Storage Space for DNNs

In many applications, neural networks are trained with dynamically
growing datasets (i.e., size of training data will be enlarged in appli-
cations with time) or different tasks (e.g., Transfer Learning [54]),
and the network model needs to be continuously trained and updated.
Thus multiple snapshots or versions of DNNs are saved in the train-
ing process for the possible purposes of avoiding over-fitting [1],
Transfer Learning, and Incremental Learning [2].
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Figure 7: Delta-DNN for reducing storage cost.

In this scenario, with Delta-DNN, the original version of the
neural network will be fully saved, and the following versions will

be saved as a lossy delta data which is much smaller than the full
version, and thus the storage space will be greatly reduced, which
is shown in Figure 7. The left part in Figure 7 represents the model
training/fine-tuning processes and the model storage process in the
traditional way; The right part indicates that Delta-DNN is applied.
After processing by Delta-DNN, only the lossy delta data of the two
neighboring versions will be stored, instead of the full model, and
thus the consumption of storage for DNNs can be greatly reduced,
which will be evaluated in Section 5.4.

When recovering a model for retraining/fine-tuning, Delta-DNN
just needs to process the lossy delta data along with the reference
model. Note that there is a delta “chain” [42, 51] in this scenario
as shown in Figure 7: to recover the target network v4, Delta-DNN
needs to first recover the reference network v3 and thus another
reference network v2, which is time-consuming. To guarantee the
recovering performance of the latest version, backward encoding
(using the latest one as the reference network) or hop encoding
(selectively and fully storing some networks), which are widely used
in the traditional delta compression based storage systems [51, 52].

4.3 Discussion

Using Delta-DNN without pre-known accuracy: In some prac-
tical use cases, we need to apply DNNs on a new task, and the
accuracy in this situation is unknown to us. In this case, although the
actual accuracy is not available, the inference accuracy in training
and testing can be acquired, and an ‘acceptable’ loss of accuracy
can be defined and adjusted based on the testing inference accuracy.
On the other hand, the error bound range in the paper (configured
as 1%-10%) is just for the demonstration purpose. Respecting the
individual use cases, a user can set and adjust their error bound range
according to their applications to obtain an optimal result.

Parallelizing the compression process in Delta-DNN: In sub-
section 3.3, the compressing process needs to acquire the inference
accuracy on each error bound, and the process is a loop, which is
shown in Algorithm 1. Therefore, the time cost is nearly to O(n),
where n is the number of candidate error bounds. To accelerate the
compression process, we can run Algorithm 1 parallel with multi-
thread or multi-progress.

Compression overhead of Delta-DNN on larger datasets: In
subsection 3.3, Algorithm 1 needs to compress and decompress
the model several times to explore the effects of error bounds, and
pick up the best one. In this process, the main overhead is to obtain
the inference accuracy on each error bound after compression and



decompression. Obtaining the inference accuracy means running de-
compressed DNNs on a user-specified test dataset, and the overhead
is linear related to the size of the dataset. To reduce this overhead,
there are some solutions to effectively reduce the size of test datasets,
like Dataset Distillation [48] or analyze the distribution of datasets.

5 PERFORMANCE EVALUATION

In this section, we evaluate our proposed Delta-DNN framework
compared with state-of-the-art compressor Zstd, LZMA, SZ (also
used in DeepSZ [15]), on six popular DNNs.

5.1 Experimental Setup

We conduct our experiments on an Ubuntu server with an Intel Xeon
Gold 6130 processor (with 128 GB of memory) and a NVIDIA
TITAN RTX GPU (with 24 GB of memory).

We implement Delta-DNN based on the known Pytorch deep
learning framework [34]. Six popular DNNs> are used in our eval-
uation: VGG-16 [40], ResNet101 [10], GoogLeNet [43], Efficient-
Net [46], MobileNet [38], and ShuffleNet [55]. We train each neural
network on CIFAR-10 dataset [17] by SGD with Batch Normal-
ization and momentum (learning rate=0.01, momentum=0.9, and
weight decay=1e-4). These neural networks and the dataset are com-
monly used in amounts of studies for DNNs compression [29, 50].

In Delta-DNN framework, we set the default relative error bounds
as 0.1% and the optimized error bound is selected from 1%~10%
according to Algorithm 1 (where « and f are all set to 0.5). In terms
of neural network preserving, we generally follow the best inference
accuracy method, that is, during training, the epoch will be saved if
the inference accuracy of the neural network has been improved on
the test dataset, or within a fixed epochs interval (e.g., save the first
one for every 20 epochs).

Three state-of-the-art compressors are evaluated for comparison
in this section: Zstd, LZMA, and SZ, which are used directly on the
floats of the evaluated DNNSs. Zstd is short for Zstandard [57], which
is developed recently by Facebook, and it consists of dictionary
coding and entropy coding techniques. LZMA is a compression
approach focusing on the compression ratio, also known as 7zip [16].
SZ is an open-source project for compressing large amounts of
scientific data, and is also used in DeepSZ [15] for compressing
floats after using the pruning techniques. Among them, Zstd and
LZMA belong to the lossless compression, while SZ is for lossy
compression (similar to Delta-DNN). To get the optimal error bound
for SZ, we also use Algorithm 1 for SZ to select the best error bound
from 1%~10%, with the same configuration as Delta-DNN.

5.2 Compression Performance of Delta-DNN

In this subsection, we evaluate the overall compression performance
of Delta-DNN, mainly using two metrics: compression ratio and in-
ference accuracy of DNNs. In the evaluation, the acceptable relative
inference accuracy loss for Delta-DNN and SZ is set to 0.2%, which
reflects the maximal tolerable accuracy loss using lossy compression,
as discussed in Subsection 3.3.

Table 1 shows the compression ratio results of the four compres-
sors on six popular DNNs: compressing the last epoch of the neural
network that has the highest inference accuracy. Among them, Zstd

3https://github.com/kuangliu/pytorch-cifar.

and LZMA are lossless compression algorithms, and both of them
do not cause any changes in inference accuracy. As the lossy com-
pressors, the network inference accuracy results of Delta-DNN and
SZ, are also shown in this table. For comparison to the original
DNN accuracy before lossy compression, the percentage differences
(in parentheses) are also calculated in the table, where ‘-’ means
accuracy loss and ‘+” means accuracy gain.

As shown in Table 1, Delta-DNN achieves the highest compres-
sion ratio while keeping the inference accuracy less than 0.2%. SZ is
the second-best compressor in Table 1, using a smaller error bound
and obtains a slightly higher accuracy loss than Delta-DNN. This is
because: the to-be-compressed data in our Delta-DNN framework,
namely, the float pairs in the neighboring networks, are more com-
pressible than that in the SZ framework, i.e., the neighboring floats
in the data arrays. Meanwhile, LZMA and Zstd achieve the lowest
compression ratio, all less than 1.1, due to the known reason that
the floating-point numbers with the random ending mantissa bits are
difficult to be compressed (by lossless compressors).

Table 2 further studies the compression ratio and inference ac-
curacy of Delta-DNN and the other three compressors on different
epochs of VGG-16. Here the epochs of VGG-16 (i.e., the stable
versions) are saved only if the inference accuracy has been improved
over the last saved epoch on the datasets during training. The results
shown in this table are generally consistent with that in Table 1,
which suggests Delta-DNN achieves the highest compression ratio
and the comparable inference accuracy in all the tested five epochs.
Note that the results of other DNNs are similar to those of VGG-16
and are omitted due to space limit.

In all, by exploiting the floats similarity existing in the neighbor-
ing networks for the efficiently lossy delta compression, Delta-DNN
achieves about 2X ~ 10x higher compression ratio compared with
the state-of-the-art approaches, LZMA, zstd, and SZ, while keeping
the inference accuracy loss smaller than 0.2%.

5.3 Case 1: Optimizing Network Transmission

Network transmission of DNNs is a widely used application scenario
for deep learning. In this subsection, we use the statistical global
average network bandwidth from the SPEEDTEST tool 4 as the test
bandwidth, to evaluate the transmission time required for DNNs,
after compression by Delta-DNN and other approaches.

As discussed in Subsection 4.1, Delta-DNN is designed to re-
duce network transmissions by delta compressing the neighboring
neural networks, and then sending the compressed networks from
server to clients. Here the server mainly uses the wired network to
transfer models to clients, and the clients can use both the wired or
wireless network to download models from the server. So the net-
work configuration for this case includes uploading and downloading
models over the wired network, and downloading models over the
wireless network. And the SPEEDTEST tool provides the global
average network bandwidth in January 2020: the upload bandwidth
of wired broadband is 40.83Mbps, the download bandwidth of wired
broadband is 74.32Mbps, and the download bandwidth of wireless
broadband is 31.95Mbps.

Figure 8 shows the time cost of the network transmission of the
six DNNs after compression by the four compressors, i.e., running

4SPEEDTEST. https://www.speedtest.net/global-index



Table 1: Compression ratio and inference accuracy of LZMA, Zstd, SZ, and Delta-DNN (A-DNN).

Networks | Original Size Compression Ratio (and the error bound) Inference Accuracy (and the differences)
LZMA | Zstd SZ A-DNN Original SZ A-DNN

VGG-16 56.2 MB 1.096 | 1.088 | 4.415(7%) | 7.394 ( 8%) | 92.45% | 92.31% (-0.15%) | 92.32% (-0.15%)
ResNet101 162.6 MB 1.098 | 1.078 | 4.192 (5%) | 9.341 (10%) | 93.05% | 92.87% (-0.19%) | 93.44% (+0.42%)
GoogLeNet 23.6 MB 1.097 | 1.078 | 3.565 2%) | 7.811( 2%) | 94.95% | 94.88% (-0.07%) | 94.95% (+0.00%)
EfficientNet 11.3 MB 1.099 | 1.078 | 3.204 (1%) | 10.266 (10%) | 84.82% | 84.76% (-0.07%) | 84.88% (+0.07%)
MobileNet 8.9 MB 1.101 | 1.077 | 3.788 (3%) | 9.627 ( 9%) | 92.68% | 92.57% (-0.12%) | 93.16% (+0.52%)
ShuffleNet 3.5MB 1.097 | 1.076 | 3.192 (1%) | 11.291 (10%) | 86.29% | 86.19% (-0.12%) | 86.18% (-0.13%)

Table 2: Inference accuracy and compression ratio for the last 5 epochs of VGG-16 with and without Delta-DNN.

Epochs Compression Ratio (and the error bound) Inference Accuracy (and the differences)
LZMA | Zstd SZ Delta-DNN | Original SZ Delta-DNN
740 1.090 | 1.081 | 4.154 (5%) | 5.702 ( 6%) | 91.19% | 91.04% (-0.16%) | 91.25% (+0.07%)
744 1.090 | 1.081 | 3.959 (4%) | 7.130( 7%) | 91.99% | 91.81% (-0.20%) | 91.92% (-0.08%)
747 1.089 | 1.080 | 4.277 (6%) | 6.626 ( 5%) | 92.13% | 92.09% (-0.04%) | 92.07% (-0.07%)
761 1.089 | 1.080 | 3.775 3%) | 6.717 (10%) | 92.23% | 92.30% (+0.08%) | 92.16% (-0.08%)
765 1.088 | 1.079 | 4.310 (6%) | 7.394 ( 8%) | 92.45% | 92.44% (-0.01%) | 92.32% (-0.14%)
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Figure 8: Network time cost on six DNNs after compression using Delta-DNN, SZ, LZMA, and Zstd.

the compression approaches on the server/client architecture shown
in Figure 6. It can be seen that Delta-DNN significantly reduces
the network consumption of six neural networks, regardless of the
network bandwidth configurations. This is because the Delta-DNN-
compressed networks are about 7X ~ 11X smaller than the size
before compression. Meanwhile, Zstd, LZMA, and SZ take more
time for network transmission, as shown in Figure 8, which is due
to their lower compression ratio on DNNs.

5.4 Case 2: Saving Storage Space

In this subsection, we evaluate the performance of the Delta-DNN
framework in reducing the storage overhead in neural network train-
ing where many epochs are stored. We compare Delta-DNN with
other compressors on the two metrics: the DNNs’ inference accuracy
and storage space overhead.

Table 3 shows the total occupied storage space, the total compres-
sion ratio, and the average accuracy loss on six neural networks in
training, while using Delta-DNN. Since many versions of networks
in training are saved in this case, the storage sizes are much larger
than one network. However, Delta-DNN can effectively reduce the
storage size of the six DNNs by 5% ~ 10x while the average infer-
ence accuracy loss is all less than 0.001%. Note that the compression

Table 3: Storage space consumption in training 6 DNNs before
and after using Delta-DNN. In the last column of the accuracy
loss results, ‘-’ denotes the inference accuracy gain.

Total Size Comp. | Accuracy

Network | Epochs Original | A-DNN | Ratio Loss
VGG-16 95 521 GB | 693 MB | 7.702 | -0.0003%
ResNet101 89 14.1GB | 2.18GB | 6.488 | -0.0015%
GoogLeNet 83 191 GB | 191 MB | 10.259 | -0.0009%
EfficientNet | 110 121 GB | 208 MB | 5.946 | 0.0001%
MobileNet 115 1.00GB | 140MB | 7.311 | -0.0004%
ShuffleNet 113 391MB| 73MB| 5.302 0

ratio in this table is a little lower than that in Table 1, this is be-
cause some of the saved epochs are training with a long distance
(over many epochs) to get an improved inference accuracy and thus
have the less similarity to be exploited for delta compression in
Delta-DNN. However, the storage consumption is still significantly
reduced by Delta-DNN framework.

Figure 9 shows the comparison of inference accuracy before and
after using Delta-DNN when training the six DNNs. Even they are
two different DNN-training processes (using Delta-DNN or not), it
still could be seen that after using Delta-DNN, the inference accuracy
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Figure 9: Inference accuracy on different epochs of DNNs before and after using Delta-DNN (A-DNN).

in training is almost the same as the original before compression.
Even the accuracy loss from Delta-DNN exists in the earlier epochs,
but this loss has almost no impact on the following epochs, whose
inference accuracy loss is always minimal, as shown in this figure
(the average accuracy loss is also shown in Table 3). Note that the
inference accuracy may decrease in the training neural networks in
Figure 9 (c), this is because they belong to two training processes
of mini-batch gradient descent. The same phenomenon can be also
observed when repeating the same training process twice. And Delta-
DNN guarantees the accuracy loss within a user-specified limit but
is not responsible for the convergence of DNNs.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel delta compression framework for
deep neural networks, called Delta-DNN, which can significantly
reduce the size of DNNs by exploiting the float similarity existing in
neighboring networks in training. Specifically, we observe that large
amounts of parameters are slightly changed in DNN training. And
inspired by the delta compression technique used in the backup stor-
age area, we calculate the lossy delta data between the neighboring
networks and then use the lossless compressors to further reduce the
delta data. The high compression ratio of Delta-DNN is due to the
very compressible lossy delta data in our framework that exploits
float similarity. Our evaluation results on six popular DNNs suggest
Delta-DNN achieves 2x ~ 10X higher compression ratio compared
with Zstd, LZMA, and SZ approaches, while keeping the DNNs’
inference accuracy loss smaller than 0.2%.

In our future work, we plan to further improve the compression
ratio of Delta-DNN combining other model compression techniques
(such as pruning and quantization) and evaluating it on more DNNs.
Furthermore, we will continue to extend Delta-DNN framework into
more scenarios, such as deep learning in the distributed systems, to
further reduce the storage and network overheads.
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