
PageCmp: Bandwidth Efficient Page Deduplication
through In-memory Page Comparison

Mehrnoosh Raoufi
Computer Science Department

University of Pittsburgh
Pittsburgh, PA, USA

mraoufi@cs.pitt.edu

Quan Deng
College of Computer

National University of Defense Technology
Changsha, China

dengquan12@nudt.edu.cn

Youtao Zhang
Computer Science Department

University of Pittsburgh
Pittsburgh, PA, USA

zhangyt@cs.pitt.edu

Jun Yang
Electrical and Computer
Engineering Department
University of Pittsburgh
Pittsburgh, PA, USA

juy9@pitt.edu

Abstract—KSM-based page deduplication is an important
Linux system service for reducing main memory consumption
on cloud servers. However, it tends to incur large computation
and memory bandwidth overheads. Recently proposed hardware-
assisted KSM approaches, while effectively addressing the com-
putation overhead, still need to consume a dramatic amount of
off-chip memory bandwidth.

In this paper, we propose PageCmp, a PIM (Processing-In-
Memory) based page deduplication approach, to achieve band-
width efficiency on cloud servers. PageCmp exploits the bitwise
operation capability inside the DRAM cell array to enable fast
page comparison. By integrating a lightweight local comparator
inside the output buffer of DRAM modules, PageCmp sends
only the page comparison result back to the processor. Our
experimental results show that, comparing to the state-of-the-
art, PageCmp achieves 4x memory bandwidth reduction while
introducing less than 1% hardware overhead.

Index Terms—Processing-in-memory, Page deduplication,
DRAM, Bandwidth efficient, In-memory comparison

I. INTRODUCTION

Modern cloud servers widely adopt server consolidation [1],

i.e., having multiple virtual machines (VMs) and applications

hosted on one physical server, to achieve high resource uti-

lization. The aggregated memory demands from these VMs

and applications are often high, making memory one of the

most precious system resources in the system. Studies have

revealed that a large amount of memory pages from different

VMs contain the same data, making it possible to keep only

one physical copy of all pages that have the same data, this is

referred to as page deduplication.

The KSM (Kernel Same page Merging) page deduplication

has been proven to be an effective system service for reducing

memory space consumption [2]. However, KSM loads the

source and the target pages into the processor and performs

intensive byte-to-byte comparison, which not only introduces

large computation overhead, but also consumes a dramatic

amount of off-chip memory bandwidth. When having KSM

activated, the system may have to allocate a dedicated core to

perform the page comparison and consume 10GB/s off-chip

memory bandwidth [3]. To address the computation overhead,

Skarlatos et al. proposed PageForge [3] to offload the page

comparison to a specially designed comparison engine inside

the memory controller. While PageForge effectively addresses

the computation overhead, the memory bandwidth consump-

tion remains a big challenge for the system design.

In this paper, we propose PageCmp, a novel PIM

(Processing-In-Memory) design to address the bandwidth con-

sumption problem in page deduplication. We summarize our

contributions as follows.

• We exploit the capability of bulk bitwise operation in

DRAM enabled by charge-sharing to enable fast in-memory

page comparison. By returning only the comparison result to

the processor, PageCmp effectively mitigates large off-chip

bandwidth consumption caused by page deduplication.

• We propose PageCmp-Hybrid that exploits fine grained

control to terminate the page comparison early so that page

inequality comparison result can finish early. PageCmp-

Hybrid targets at achieving performance and energy con-

sumption improvements over the basic PageCmp design.

• We evaluate the proposed PageCmp schemes and com-

pare them to the state-of-the-art. Our experimental re-

sults show that PageCmp achieves 4x memory bandwidth

reduction while introduces less than 1% hardware over-

head. PageCmp-Hybrid outperforms the state-of-the-art page

deduplication by 31% and achieves up to 4x energy con-

sumption reduction.

II. BACKGROUND AND MOTIVATION

Modern cloud servers widely adopt server consolidation

to run multiple VMs on the same server. Since these VMs

often need the same libraries, packages, and drivers, they

share a significant amount of the same pages in the memory.

Page deduplication is a technique implemented in most of

hypervisors such as VMWare ESX, Xen, and Linux KVM.

The key idea is to keep only one physical copy of virtual

pages whose content happen to be the same. Deduplication

enables hypervisors to reduce the memory footprint of VMs.
Kernel Same-page Merging (KSM). Kernel Same-page

Merging (KSM) is the page deduplication service integrated

in Red Hat Linux [4]. Being the state-of-the-art open source

software-based page deduplication approach, KSM is also

utilized by the Linux KVM hypervisor to merge the same

pages across different KVM VMs. KSM is a kernel service

that, once enabled, runs continuously in the background. It

scans all pages in the memory periodically, checks whether

they are mergeable, merges identical pages, and marks them

as Copy-on-Write (CoW). KSM repeats the full scan process

at a specified frequency. Recent studies showed that KSM can

reduce the memory footprint by about 50% [5].

82

2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

978-1-7281-3391-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ISVLSI.2019.00023

Authorized licensed use limited to: University of Pittsburgh. Downloaded on June 03,2020 at 05:07:38 UTC from IEEE Xplore. Restrictions apply.

Mergeable pages in KSM are those that have not been

modified. Once a page is modified by an application or OS,

it is not considered as a candidate for merging. To this end,

KSM stores the hash values of pages and recomputes the hash

at each scan to determine if a page has been modified.

KSM uses two red-black trees, i.e., the Stable tree, and the

Unstable tree, to manage its scanned pages. The stable tree

keeps the pages that have been successfully merged so far

while the unstable tree keeps unmerged pages at each round.

Each node of the stable tree represents one physical page and

a list of virtual pages that share the physical page. The stable

tree is persistent and is maintained as long as KSM is running.

In contrast, the unstable tree is destroyed at the end of each

full scan. The unstable tree keeps track of the scanned pages

in the current round if no identical page is found for them

so far. At the end of each full scan round, the unstable tree

contains all unmerged pages.

For each full scan, KSM picks up a list of pages in the

memory as candidate pages for merging. Given one candidate

page, KSM computes its hash to determine if it has been

modified. KSM searches for an identical page to the candidate

in the stable tree. If it is found, it merges the candidate page

to the stable tree and marks it as CoW. In case it is not found

in the stable tree, KSM searches for an identical one in the

unstable tree. If it is found, it merges the candidate page to

that node, adds that node to the stable tree and removes the

node from the unstable tree. In case it is not found even in

the unstable tree, the candidate is added to the unstable tree

as a new node.

All the pages in the stable tree are marked as CoW.

Whenever a process initiates a write request to one of these

pages, a copy of that page is created by the OS such that

the write request is granted on the copy. This guarantees

the consistency of the physical page that is being shared by

different processes.

KSM performs an exhaustive byte-by-byte comparison be-

tween pages. The exhaustive comparison process keeps CPU

busy with a simple repetitive task. In addition, it consumes a

large amount of bandwidth. The CPU brings two pages into

its cache and uses the kernel function memcmp to compare

them byte-by-byte. memcmp can tell whether the two memory

segments are equal and if they are not which one is bigger. In

section IV, we conduct a comprehensive study on the memcmp
function call in KSM; to measure KSM bandwidth usage, and

to assess the benefit our design will achieve.

Hardware assisted deduplication. A couple of hardware

designs have been proposed to assist memory deduplication.

Tian et al. proposed [6] hardware support to merge the

same cache lines (instead of pages), which improves cache

utilization. HICAMP [7] is a hardware-based deduplication

design that introduces a completely new memory structure

for storing unique data. HICAMP is a complex design that,

in addition to memory redesign, requires new programming

models.

PageForge [3] is a recent work that introduced a hardware

accelerator inside the memory controller (MC) for improving

software-based page deduplication. It focuses on saving CPU

cycles of KSM. While PageForege effectively reduces the

computation overhead, it still demands the large bandwidth

usage. As an example, KSM and PageForge consume 10 GB/s

and 12GB/s, respectively, for a 2GB/s workload [3]. The large

bandwidth overhead motivates our design in this paper.

Processing-in-memory (PIM). Processing-in-memory

(PIM) has recently emerged as a promising solution to

address the memory wall crisis in the era of big data. PIM

moves a portion of computation to the memory, i.e., the

location where data resides. PIM improves the overall system

performance by mitigating the data movement overhead.

Ambit [8] is a recent study that exposes the great potential of

in-memory computation capability in DRAM. Ambit enables

performing bitwise AND, OR, XOR, and NOT operations

using charging sharing across multiple DRAM rows. In this

paper, we exploit the bulk in-memory computation capability

in DRAM to enable in-memory page comparison.

III. THE PAGECMP DESIGN

In this section, we discuss the PageCmp design and elabo-

rate the architecture details.

A. Overview

Figure 1 presents an overview of the PageCmp scheme.

It works as follows. When KSM is activated, the system

chooses a page P from the pool of pages to be scanned for

deduplication, and compares it to a page Q that is fetched

from the Stable tree or the Unstable tree. Given both trees are

red-black trees, the page comparison produces one of three

comparison results, i.e., ‘>’, ‘=’, or ‘<’. While the ‘>’ and

‘<’ results guide the search to the left and the right child trees,

respectively, the ‘=’ result terminates the search and enables

the page merging.

PageCmp replaces the “memcmp(P ,Q)” function in the

KSM process. The system sends the addresses of P and

Q to the memory module, which drives the two memory

pages for bitwise comparison. The in-memory comparison can

only generate the bitwise logic results, e.g., P ⊕ Q. Given

such results are distributed across different chips and lack the

ability to search in the red-black tree (using ‘>’, ‘=’, or ‘<’),

PageCmp drives them to the corresponding output buffers at

each chip and generates a local comparison result on each

chip. The local comparison results are then sent back to the

processor to determine the final comparison result.

Given a row buffer is often of 8KB and a memory page is

of 4KB, a page may occupy the first or the second half the row

buffer. To avoid misalignment during in-memory comparison,

PageCmp prepares a 8KB system buffer and copies the page

P twice to the buffer, and then compares the contents in the

buffer and Q. By default, a full KSM scan chooses 100 pages

to scan while the two trees contains hundreds of thousands

pages. As a result, the overhead of preparing the system buffer

is amortized. In the following discussion, we still use P and

Q to denote two pages to be compared and assume that they

are aligned.

83

Authorized licensed use limited to: University of Pittsburgh. Downloaded on June 03,2020 at 05:07:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. PageCmp organization overview.

B. The Comparison Algorithm

Assume a memory rank consists of eight DRAM chips and

the content bits of a memory page are distributed across all

chips with the interleaving unit being 64b. That is, Chip 0

stores 4096 bits, i.e., all bits 512*i to 512*i+63 with 0≤i≤63.

This is consistent with traditional memory mapping, e.g., a

64B (or 512b) cache line fetches data from all chips. The

assumption is that a page is stored in one row of a bank.

In some other configuration, a page may be interleaved over

the banks [9] but in this paper, we stick to the conventional

configuration. Note that there is one output buffer per chip and

it can hold 32, 64 or 128 bits in modern DRAM architectures

based on Micron data sheet [10]. In this paper, we assumed a

configuration that has 64-bit output buffer.

When comparing pages P and Q, PageCmp works takes the

following comparison steps.

• PageCmp first leverages the bitwise logic operation capabil-

ity in DRAM cell array [8] to compute P ⊕ Q. Each chip

only computes the partial results for the bits that it stores.

• The partial results on one chip are then driven to the

comparator inside the output buffer of the chip to determine

an 8-bit comparison summary (f1, f2, ind). The comparator

compares 64 bits at a time and finishes the comparison in

64 rounds. For the j-th round of comparison of Pj and Qj ,

each of Pj and Qj is of 64 bits, the comparator sets f1 to

1 if Pj ⊕ Qj=0, and 0 otherwise. Assuming f1 = 0, the

comparator finds the leftmost position, e.g., the m-th bit, of

bit ‘1’ of P ⊕ Q. It then sets the f2 flag as the m-th bit

value of P , and sets ind to j and Ri to m.

The m-th bit value of P indicates whether Pj > Qj or

Pj < Qj . Given this is the first bit that Pj differs from Qj ,

if f2=0, then the m-th bit of Pj is 0, indicating Pj < Qj ;

otherwise, if f2 = 1, then Pj > Qj .

• If f1 = 1, PageCmp proceeds to the next round and

overwrites (f1, f2, ind) with the summary of the new round.

If f1 = 0, PageCmp sets the summary of the current round

as the final result and skips the following rounds.

• With each chip sending back an 8-bit comparison summary,

the processor receives 8B summary from which it deter-

mines the final comparison result, i.e., P > Q, P = Q, or

P < Q.

For example, to compare P=01010101 and Q=01010100,

we use two chips with the first chip saves ‘0101’ for P and

‘0101’ for Q; the second chip saves ‘0101’ for P and ‘0100’

for Q. Each chip takes two rounds and each round compares

two bits. P ⊕Q is computed as ‘0000’ for the first chip and

‘0001’ for the second chip.

We then need to compute the comparison summary for each

chip. For the first round, both chips has ‘00’ from P ⊕Q such

that f1 = 1 and the comparison proceeds to the second round.

In the second round, the first chip has ‘00’ from P ⊕ Q so

that the final result is ‘1xxx xxxx’ with ‘x’ indicates don’t-

care bit. The second chip has ‘01’ from P ⊕Q so f1 = 0. It

then sets f2 = 1 and ind=1. The comparison summary from

the second chip is ‘0100 0001’. After receiving the comparison

results from both chips, the processor finds out the comparison

depends on the second chip summary. For the first bit that P
differs from Q, P stores bit ‘1’ so that P > Q.

C. The PIM based Page Comparison

PageCmp leverages Ambit [8] to generate P ⊕Q inside the

cell array. To analyze the XOR result we equipped PageCmp

with a small comparator inside the output buffer of each

chip to provide the local comparison summary. This section

explains the design of the comparator in details.

The comparator consists of several basic components to

compute f1, f2, ind and Ri in 64 rounds. It works as

follows. f1 is determined by a Zero Detector unit which

has a simple design of 3-level hierarchical OR and NOR

gates. To determine ind, there is a 6-bit counter inside the

comparator that increments at each round. For computing Ri,
we devised a fast and simple index generation scheme that

figure 2 demonstrates.

Index generation scheme mainly requires 3 basic units;

Leftmost One Detector, Index Mapping, Tri-state buffer. It also

reuses some partial result of the Zero Detector unit. The 6-bit

index generation works as follows. To accelerate the process,

we generate the 3 most significant bits; Rih and the 3 least

significant bits; Ril separately in parallel. For generating Ril,
we break the 64 bits into eight chucks (8 bits per chunk).

Then, we determine 3-bit index of the leftmost position of bit

‘1’ in each chunk. Thus, we will have 8 candidates for Ril,
we then need to select one of them. The 3-bit index generation

84

Authorized licensed use limited to: University of Pittsburgh. Downloaded on June 03,2020 at 05:07:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. PageCmp comparator design and index generation scheme.

Fig. 3. PageCmp timeline.

of each chunk works as follows. We feed each of 8-bit chunk

into a Leftmost One Detector unit that is shown in figure 2.

This circuit gets 8 bits and zeros out all of its bits except the

leftmost bit ‘1’. For instance, if it gets ”01101010”, it outputs

”01000000”. At last, this output is driven to an Index Mapping

unit. It is a simple unit that consists of 3 OR gates. It works

such that when it receives the ”01000000”, it outputs 110 that

is the index of leftmost ‘1’.

To select among 8 candidates for Ril, we reuse partial result

of Zero Detector unit, i.e., output of the second level as figure

2 indicates. It is an 8-bit result, let us call it Z. It is associated

with aforementioned 8 chunks such that if the k-th chunk is

non-zero the k-th bit of Z would be ‘1’ otherwise it would be

‘0’. Then, we feed Z into a Leftmost One Detector unit, let

the output be S. As previously discussed, only one bit of S
would be ‘1’. If n-th bit of S is ‘1’, it means the result of n-th

chunk (i.e. the n-th Ril candidate) should be selected. In other

words, n-th chunk is the leftmost chunk that is non-zero so it

contains the leftmost bit ‘1’ of the output buffer content. To

generate Rih, all we need is to feed S to an Index Mapping

unit. At last, Ri would be constructed by concatenating Rih
and Ril as figure 2 depicts.

The computed f1, Ri and ind at each round may or may

not be overwritten in the following rounds depending on value

of f1. As soon as it comes to a round that f1 = 0, PageCmp

sets f1, Ri and ind to their final result and skips the following

rounds. Then, the flag f2. needs to be set. f2 is actually the

m-th bit value of P where m is {ind,Ri}. At last, the chip will

send back comparison summary (f1, f2, ind) to the processor.

Figure 3 represents the timeline of PageCmp.

D. Summarizing Local Comparison Result

Final result is going to be determined in the memory

controller. It requires a small logic to aggregate local results.

It works as follows. First, it investigates whether all f1 flags

are zero in {LR0, . . . LR7} with LRj being the local result

of the j-th chip. If all f1 flags are zero, it then sets the final

result to P = Q. Otherwise, from {LR0, . . . LR7} it picks

those that have non-zero f1, then, among them picks the one

that has the highest ind . Let us call it LRtarget. The chip

that LRtarget belongs to, contains the overall leftmost ‘1’ in

the entire 4096×8 bits of P ⊕ Q. Hence, if f2 of LRtarget

is ‘1’, the final result is set to P > Q, otherwise it is set to

P < Q.

E. PageCmp-Hybrid Design

We proposed PageCmp-Hybrid that is an alternative design

to the original PageCmp to achieve a better performance and

energy efficiency. The motivation arose from a key observation

we made from our experiment. We exclusively studied data

transfer of memcmp invoked by KSM and determined the

distribution of page comparisons over the number of brought

cache lines (Section IV). We observed that for those com-

parisons in the category that requires memcmp to bring only

one cache line, memcmp outperforms the PageCmp in terms

of execution time. However, for the rest of categories in the

distribution, PageCmp performs faster. This happens because

bringing and comparing one cache line is pretty fast in CPU

and apparently it is not worth the overhead of entire page

comparison in memory.

Thus, we introduce PageCmp-Hybrid in which memcmp
is not entirely replaced. instead, PageCmp and memcmp are

integrated. It works as follows. For each comparison, memcmp
starts comparing byte-by-byte as usual. If it terminates after

bringing one cache line (i.e. comparing 64 bytes), there will

be no need to invoke in-memory comparison. Otherwise, CPU

requires memory controller to invoke an in-memory page

comparison which PageCmp will perform. The integration of

memcmp and PageCmp requires only a subtle modification in

KSM code. Note that despite the fact that most of comparisons

belong to the first category of distribution (i.e. requiring one

cache line comparison), the first category is neither the most

energy-consuming nor the most time-consuming one.

IV. EXPERIMENT

We made an extensive study on KSM service to analyze

its data movement overhead. Since KSM is a kernel service,

85

Authorized licensed use limited to: University of Pittsburgh. Downloaded on June 03,2020 at 05:07:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Memory bandwidth consumption during page deduplication.

we profile it via modifying and recompiling the kernel source

code. Basically, we set several timers and counters inside

the kernel source code to profile KSM. To load KVM VM

guests with some workload, we run 5 applications from Tail-

bench suite [11] on them; Img-Dnn (handwriting recognition

application based on a deep neural network), Masstree (in-

memory key-value store services), Moses (statistical machine

translation system), Sphinx (speech recognition systems) and

Silo (online transaction processing systems). Table I represents

the system configuration of the experiments.

TABLE I
SYSTEM CONFIGURATION.

Hardware Specification

Processor Cores 8
Frequency 3.4GHz
Main Memory 8GB

Hypervisor & Guests

Host OS Ubuntu 16.04
Guest OS Ubuntu 16.04
Hypervisor QEMU-KVM
#VMs 5
Memory/VM 512MB

KSM Settings

sleep millisecs 100
pages to scan 100
#Full Scans (up to profiling) 5

A. Memory Bandwidth Consumption

We specifically analyzed bandwidth consumption of

memcmp function. Recall that memcmp performs a byte-by-

byte comparison. However, each time that CPU accesses the

memory it fills up one cache line which is 64B. It means, no

matter memcmp triggers comparison of 1 byte or 64 bytes, the

amount of data transferred would be 64B. Since each page is

4KB, at most 64 cache lines will be brought so there would

be 64 categories of cache lines count. We then determined the

distribution of comparisons over those categories. Note that

in our calculation we assumed only one page is going to be

brought from the main memory per comparison and the other

page is already available in the cache since it is a candidate

page. This assumption is realistic since in KSM there is always

a candidate page being compared against other pages in KSM’s

trees so that candidate page is very likely to exist in the cache.

In contrast to memcmp, PageCmp incurs a fixed amount

of 8 bytes data transfer per comparison. Thus, we calculated

the proportion of data transfer of PageCmp with respect

to KSM. Then, we borrowed the bandwidth numbers form

PageForge [3], having these two, we ultimately estimated

the bandwidth usage of our design as figure 4 illustrates.

Baseline indicates when page deduplication is disabled. Note

that the estimated reduction in data movement is only applied

to the deduplication part so bandwidth usage of PageCmp

and PageCmp-Hybrid is additive to the Baseline. As figure 4

illustrates, PageCmp and PageCmp-Hybrid can achieve up to

4x and 2.5x bandwidth saving compared to KSM, respectively.

Comparing with PageForge, PageCmp and PageCmp-Hybrid

can achieve up to 5x and 3x bandwidth saving, respectively.

Fig. 5. PageCmp execution time normalized to the baseline.

B. Execution Time

To record the execution time of memcmp, we set up a

timer that exclusively timed each memcmp function invocation.

Then, to calculate the execution time of PageCmp, we did

as follows. Mainly, there are two factors that affect the

execution time: 1) required beforehand copies, and 2) in-

memory comparison. For the first factor, we determined the

proportion of comparisons that need inter-bank and intra-bank

copies and we considered copy latency of RowClone [12] and

LISA [13] for them respectively because they are state-of-the-

art for in-memory copies. The copy time is comparable to

bitwise operation time. Nevertheless, our experiment showed

that a single search in KSM incurs on average 20 comparisons

(which means 20 invocation of memcmp function). It means, if

we copy a candidate page P into a bank, it is probable that in

several consecutive upcoming comparisons we will be using

the same page P .

For the second factor, we calculated the estimated latency of

our in-memory compactor considering the fact that a logic cir-

cuit implemented inside the DRAM memory would be slower

than expected. Based on a previous work on DRAM/logic

technology [14] we applied 22% performance degradation to

86

Authorized licensed use limited to: University of Pittsburgh. Downloaded on June 03,2020 at 05:07:38 UTC from IEEE Xplore. Restrictions apply.

our HSPICE simulation results for latency. In addition, we

applied latency of XOR operation that Ambit [8] reported.

We also further determined that memcmp execution time

corresponds to 37% of KSM deduplication time. Provided

that percentage, we compared execution time of our design

versus the original KSM that uses memcmp function. In

figure 5 y-axis is normalized to KSM execution time. As the

figure demonstrates, PageCmp degrades performance of page

deduplication by 12% whereas PageCmp-Hybrid improves it

by 31%.

C. Performance, Energy & Area Overhead

There is a notion of busy time that figure 3 depicts. It is

the time we keep the device busy and prevent it from serving

regular memory requests. The busy time is incurred by; 1)

beforehand copies, and 2) analyzing the result of XOR by the

comparator near the output buffer. In total, PageCmp incurs

24% performance penalty for other application. However, this

overhead is reduced by PageCmp-Hybrid to 3%. It is quite

significant reduction that is achieved by avoiding in-memory

comparisons for those comparisons that are both the most-

frequent and the least time-consuming for CPU. PageCmp

incurs less than 1% area overhead to DRAM layout. Note that

the modification in layout is constrained to the output buffer

for each chip so it does not affect DRAM subarrays.

TABLE II
ENERGY CONSUMPTION PER 4KB PAGE COMPARISON.

Mechanism Energy Consumption (nJ) Energy Reduction

memcmp 80 - 5120 1x
PageCmp 341 1.3x
PageCmp-Hybrid 115 4x

Energy consumption of each in-memory page comparison

is mainly composed of three factors; 1) in-memory XOR

operation, 2) inter-bank copy. 3) sending back 8B comparison

summaries. We extracted energy consumption of each of these

factors as follows. 1) XOR operation consumes 22 nJ per

comparison. (Ambit paper reported energy consumption of

5.5 nJ/KB [8]). 2) Based on RowClone paper [12], inter-

bank consumes 1.1 μJ. 3) Molka et al. showed that data

transfer from RAM consumes 1250 pJ per byte [15], therefore,

transferring 8B comparison summaries consumes 10 nJ. We

estimated memory and channels energy consumption of our

design based on the aforementioned three factors. Table II

indicates energy consumption of the 4KB page comparison. As

it is stated in the table, energy consumption of memcmp varies

between 80 nJ to 5120 nJ. This is because number of cache

line that memcmp brings varies form 1 to 64. Note that we only

estimated energy consumption of memcmp by the amount of

its data transfer so that its computational energy consumption

is not included. Basic PageCmp consumes 1.3x less energy

than the baseline (i.e. memcmp). However, PageCmp-Hybrid

can achieve up to 4x energy reduction in comparison to the

baseline. This is because PageCmp-Hybrid exploits memcmp
for comparisons that it consumes low energy of 80 nJ.

V. CONCLUSION

We presented PageCmp, a novel bandwidth-efficient in-

memory page comparator to mitigate intensive data transfer

of page deduplication process. PageCmp achieves up to 4x

bandwidth reduction at the expense of 12% increase in page

deduplication execution time and less than 1% area overhead

to the DRAM layout. We exploit the opportunity of bulk

bitwise operation enabled by charge-sharing phenomenon in

DRAM to devise a PIM based comparison scheme. We also

proposed an alternative to our original design, PageCmp-

Hybrid that achieves up to 2.5x bandwidth reduction in addi-

tion to improving execution time by 31%. PageCmp-Hybrid is

4x more energy efficient compared to the conventional existing

approach for page comparison.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive

suggestions. The work is supported in part by NSF CCF#

1718080 and NSF CCF# 1617071.

REFERENCES

[1] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A. Yousafzai, and
F. Xia, “A survey on virtual machine migration and server consolidation
frameworks for cloud data centers,” J. Netw. Comput. Appl., vol. 52,
pp. 11–25, June 2015.

[2] I. Red Hat, “Kernel same-page merging (ksm),” 2019.
[3] D. Skarlatos, N. S. Kim, and J. Torrellas, “Pageforge: A near-memory

content-aware page-merging architecture,” MICRO-50 ’17, (New York,
NY, USA), pp. 302–314, ACM, 2017.

[4] A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density by
using ksm,” in In OLS, 2009.

[5] C.-R. Chang, J.-J. Wu, and P. Liu, “An empirical study on memory
sharing of virtual machines for server consolidation,” ISPA ’11, (Wash-
ington, DC, USA), pp. 244–249, IEEE Computer Society, 2011.

[6] Y. Tian, S. M. Khan, D. A. Jiménez, and G. H. Loh, “Last-level cache
deduplication,” ICS ’14, (New York, NY, USA), pp. 53–62, ACM, 2014.

[7] D. Cheriton, A. Firoozshahian, A. Solomatnikov, J. P. Stevenson, and
O. Azizi, “Hicamp: Architectural support for efficient concurrency-safe
shared structured data access,” ASPLOS XVII, (New York, NY, USA),
pp. 287–300, ACM, 2012.

[8] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit:
In-memory accelerator for bulk bitwise operations using commodity
dram technology,” MICRO-50 ’17, (New York, NY, USA), pp. 273–
287, ACM, 2017.

[9] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM addressing for cross-cpu attacks,” in 25th USENIX
Security Symposium (USENIX Security 16), (Austin, TX), pp. 565–581,
USENIX Association, 2016.

[10] I. Micron Technology, “8gb: x4, x8, x16 ddr4 sdram data sheet,” 2018.
[11] H. Kasture and D. Sanchez, “Tailbench: a benchmark suite and evalua-

tion methodology for latency-critical applications,” pp. 1–10, Sept 2016.
[12] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhi-

menko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry, “Rowclone: Fast and energy-efficient in-dram bulk data copy
and initialization,” MICRO-46, (New York, NY, USA), pp. 185–197,
ACM, 2013.

[13] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu,
“Low-cost inter-linked subarrays (lisa): Enabling fast inter-subarray data
movement in dram,” 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 568–580, 2016.

[14] Y.-B. Kim and T. Chen, “Assessing merged dram/logic technology,” in
1996 IEEE International Symposium on Circuits and Systems. Circuits
and Systems Connecting the World. ISCAS 96, vol. 4, pp. 133–136 vol.4,
May 1996.

[15] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller, “Characterizing
the energy consumption of data transfers and arithmetic operations
on x86-64 processors,” GREENCOMP ’10, (Washington, DC, USA),
pp. 123–133, IEEE Computer Society, 2010.

87

Authorized licensed use limited to: University of Pittsburgh. Downloaded on June 03,2020 at 05:07:38 UTC from IEEE Xplore. Restrictions apply.

